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Abstract 
 

       In this research we discuss the thermodynamics of the Dry atmosphere, and 
the numerical weather  prediction  issued from the  American  National  
Meteorological  Center .  We also discuss the  difference  between  the shallow 
water equation s  and  Semi- Gestrophic  equations . We discuss the  balanced  
flow, trajectorics  and  stream  lines .  
     We used the Kine matic  method  and  Adiabatic method  to inferring  the 
vertical  motion  field . Also we discuss the relationship between the circulation  
and  vorticity  by using  primary  measures of  rotation  in a fluid with some 
applications . 
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  الخلاصة 

فى ھذا البحث ناقشنا الدینامیكا الحراریة فى الجو الجاف والتنبؤ العددى للطقس التى        
ایضا ناقشنا الفرق بین معادلات المیاه نشرت من المركز الوطنى للأرصاد الجوي الأمریكي . و

  السطحیة ومعادلات شبھ الجستروفیة كما تناولنا التدفق المتوازن ومسارات خطوط العاصفة . 

وكذلك استخدمنا الطریقة الحركیة واسلوب ثابت الحرارة لأستنتاج مجال الحركة العمودیة      
ام المقاییس الاولیة للدورانیة مع بعض كما ناقشنا العلاقة بین الدورانیة والدوامیة باستخد

  التطبیقات . 
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INTRODICTION 

   In this research we are  dealing with the Governing Equations of the Dynamic 
Meteorology , and it is organized as follows :- 

      Firstly we being with a brief  introduction to the nature of the forces that 
influence atmospheric Motions and nature of these  apparent forces ,we  Also 
discuss the structure of the static  At mosphere and introduce some fundamental 
physical principles: 

 Conservation of Mass for afliud(cotinuty equation),we develops that using 
two alternative Methods, the first Method is based on an Eulerian control 
volume , where as the second is based on a Lagrangian control volume. 

 Conservation of Energy as applied to moving fluid element. 

Also we study the thermodynamics of the Dry atmosphere. 
      In chapter 2 we study the numerical weather  predicton issued from the national 
Meteorological center, also we indiacated to the numerical weather prediction 
principally with prediction of large cyclonic storms and anticyclones, Also we 
study the application of the fundamental lows of physics to the systems and the 
phanomena hosted by the subtle thin layer of gases and vapors surrounding the 
planct earth ,we also considered as an application of the fundamental lows because 
it is assumed that the set of physical concepts so for defined by scince are 
sufficient,and necessary , to describe all systems belonging to the atmosphere of 
our planct , also we illustrate simpler Models of weather such as the shallow 
weater equations and semi-gestrophic equations , and then we study the difference 
between them. 

     In chapter 3 we illustrate the basic equations(Momentum , Continuity , Energ) 
in isobaric coordinates , also we discuss the balanced flow, trajectories and 
streamlines , and we discuss the thermal wind . Also we used two Methods for 
inferring the vertical Motion field: 

 Kine matic Method , based on the equation of continuity. 
 Adiabatic  Method , based on the thermodynamic equation. 

     Also we study three instructive applications of the approach,ranging from are-
derivation of the well-known semi-geostraphic theory , via one of the recently 
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derived multi-scale Models for the trapics,to numerical Methods that are well-
balan. 

      Finally we defined the primary measures of rotation in afluid (circulation , 
vorticity) ,and  also discuss the relationship between them . Also we study the 
vorticity in natural coordinates, potential vorticity equations and  scale analysis of 
the vorticity equation , also  we study the vorticity in barotropic fluids,Also we 
discuss issues Modeling Mathematical for some basic geophysical fluid 
dynamics(G F D) Models(primitive equations(PEs) of the atmosphere , Ocean , 
Coupled atmosphere – Ocean). 
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Chapter(1) 
Fundamental Forces and Basic 

Conservation Laws 
Section(1.1):The Fundamental Forces and Static 
     Atmosphere  
  
        In this section we deal with the fundamental force and static Atmosphere , 
and we start with fundamental forces : 
 
(i) Pressure Gradient Force : 
 
We consider an infinitesimal volume element of air, ܸߜ =  centered at the ,ݖߜݕߜݔߜ
point  ݔ, ,ݕ  ,  , as illustrated in Fig.( 1.1) Due to random molecular motionsݖ
momentum is continually imparted to the walls of the volume element by the 
surrounding air. This momentum transfer per unit time per unit area is just the 
pressure exerted on the walls of the volume element by the surrounding air. If the 
pressure at the center of the volume element is designated by  , then the pressure 
on the wall labeled ܣ in figure(1.1) can be expressed in a Taylor series expansion 
as  

 +
߲
ݔ߲

ݔߜ
2

+ higer order terms 
 
 

 
 

Fig.(1.1) :  the ݔ component of the pressure gradient force acting on aflid element 
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N eglecting the higher order terms in this expansion, the pressure force acting on 
the volume element at wall A is 
 

௫ܨ = −൬ +
ݔߜ߲
ݔ2߲

൰  ݖߜݕߜ

 
where ݖߜ ݕߜ is the area of wall ܣ. Similarly, the pressure force acting on the 
volume element at wall ܤ is just 
 

௫ܨ = + ൬ −
ݔߜ߲
ݔ2߲

൰  ݖ߲ݕ߲

 
Therefore, the net ݔ component of this force acting on the volume is 
 

௫ܨ = ௫ܨ + ௫ܨ = −
߲
ݔ߲

 ݖߜ ݕߜ ݔߜ 

 
Because the net force is proportional to the derivative of pressure in the direction 
of the force, it is referred to as the pressure gradient force. The mass ݉ of the 
differential volume element is simply the density ߩ times the volume: 
 ݉ =  component of the pressure gradient force per unit ݔ Thus, the  ݖߜ ݕߜ ݔߜ ߩ
mass is 
 

௫ܨ
݉

= −
1
ߩ
߲
ݔ߲

 

 
Similarly, it can easily be shown that the ݕ and ݖ components of the pressure 
gradient force per unit mass are   
 

௬ܨ
݉

= −
1
ߩ
߲
ݕ߲

         and        
௭ܨ
݉

= −
1
ߩ
߲
ݖ߲

 

 
so that the total pressure gradient force per unit mass is 
 

۴
݉

= −
1
ߩ
 (1.1)                                                     ∇
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It is important to note that this force is proportional to the gradient of the pressure 
field, not to the pressure itself. 
 
(ii) Gravitational Force: 
 
Newton’s law of universal gravitation states that any two elements of mass in the 
universe attract each other with a force proportional to their masses and inversely 
proportional to the square of the distance separating them. Thus, if two mass 
elements M  and m are separated by a distance ݎ ≡ |r| (with the vector r directed 
toward  m  as shown in Fig.(1.2), then the force exerted by mass M  on mass  m 
dueto gravitation is 
 

F = −
݉ܯܩ
ଶݎ

ቀ
ܚ
ݎ
ቁ                                                (1.2) 

 
Where  G is a universal constant called the gravitational constant. 
The law of gravitation as expressed in Equation (1.2) actually applies only to 
hypothetical “point” masses since for objects of finite extent r will vary from one 
part of the object to another. However, for finite bodies, Equation (1.2) may still be 
applied if |ਮ| is interpreted as the distance between the centers of mass of the 
bodies. Thus, if the earth is designated as mass M and m is a mass element of the 
atmosphere, then the force per unit mass exerted on the atmosphere by the 
gravitational attraction of the earth is 
 

F
݉
≡ g∗ = −

݉ܯܩ
ଶݎ

ቀ
ܚ
ݎ
ቁ                                       (1.3) 
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Fig.(1.2) : two spherical masses whose centers are separated by adistance  ݎ 
       
      In dynamic meteorology it is customary to use the height above mean sea level 
as a vertical coordinate. If the mean radius of the earth is designated by ܽ and the 
distance above mean sea level is designated by ݖ, then neglecting the small 
departure of the shape of the earth from sphericity, ݎ = ܽ +  Therefore, Equation .ݖ
(1.3) can be rewritten as 
 

∗ =
∗

(1 + ଶ(ܽ/ݖ                                                       (1.4) 

 
where  g∗ =  is the gravitational force at mean sea level. For (ݎ/ܚ)(ଶܽ/ܯܩ)−
meteorological applications , ݖ ≪ ܽ so that with negligible error we can let ∗ =
∗  and simply treat the gravitational force as a constant. 
 
(iii) Viscous Force : 
 
Any real fluid is subject to internal friction (viscosity), which causes it to resist the 
tendency to flow. Although a complete discussion of the resulting viscous force 
would be rather complicated, the basic physical concept can be illustrated by a 
simple experiment. A layer of incompressible fluid is confined between two 
horizontal plates separated by a distance ݈ as shown in Fig.( 1.3). The lower plate 
is fixed and the upper plate is placed into motion in the  ݔ direction at a speed  ݑ.  
Viscosity forces the fluid particles in the layer in contact with the plate to move at 
the velocity of the plate. Thus, at ݖ = ݈ the fluid moves at speed  ݑ(݈) =  , and atݑ
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ݖ = 0 the fluid is motionless. The force tangential to the upper plate required to 
keep it in uniform motion turns out to be proportional to the area of the plate, the 
velocity, and the inverse of the distance separating the plates. Thus, we may write 
ܨ = μݑܣ/݈  where  µ is a constant of proportionality, the dynamic viscosity 
coefficient. 
    This force must just equal the force exerted by the upper plate on the fluid 
immediately below it. For a state of uniform motion, every horizontal layer of 
fluid of depth ߲ݖ must exert the same force ܨ on the fluid below. This may be 
 
 
  

 
 
 

Fig.(1.3) : one-dimensional steady-state viscous shear flow 
 
 

expressed in the form ܨ = μݖߜ/ݑߜܣ where ݑߜ =  /݈ is the velocity shear acrossݑ
the layer ݖߜ. The viscous force per unit area, or shearing stress, can then be defined 
as 
 

߬௭௫ = lim
ఋ௭→

μ
ݑߜ
ݖߜ

= ߤ
ݑ߲
ݖ߲

  
 
where subscripts indicate that ߬௭௫ is the component of the shearing stress in the  ݔ 
direction due to vertical shear of the ݔ velocity component. 
     From the molecular viewpoint, this shearing stress results from a net downward 
transport of momentum by the random motion of the molecules. Because the mean 
 momentum increases with height, molecules passing downward through ݔ
ahorizontal plane at any instant carry more momentum than those passing upward 
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through the plane. Thus, there is a net downward transport of  ݔ momentum. This 
downward momentum transport per unit time per unit area is simply the shearing 
stress. 
    In a similar fashion, random molecular motions will transport heat down amean 
temperature gradient and trace constituents down mean mixing ratio gradients.  In 
these cases the transport is referred to as molecular diffusion.  Molecular diffusion 
always acts to reduce irregularities in the field being diffused. 
     In the simple two-dimensional steady-state motion example  given above there 
is no net viscous force acting on the elements of fluid, as the shearing stress acting 
across the top boundary of each fluid element is just equal and opposite to that 
acting across the lower boundary. For the more general case of nonsteady two-
dimensional shear flow in an incompressible fluid, we may calculate the viscous 
force by again considering a differential volume element of fluid centered 
at(ݔ, ,ݕ  as shown in Fig.( 1.4). If the shearing stress in the ݖߜ ݕߜ ݔߜ with sides  (ݖ
 direction acting through the center of the element is designated ߬௭௫, then theݔ
stress acting across the upper boundary on the fluid below may be written 
approximately as 
 

߬௭௫ +
߲߬௭௫
ݖ߲

ݖ߲
2

 
 
while the stress acting across the lower boundary on the fluid above is 
 

−߬௭௫ −
߲߬௭௫
ݔ߲

ݖ߲
2
൨ 

 
(This is just equal and opposite to the stress acting across the lower boundary on 
the fluid below.) The net viscous force on the volume element acting in the ݔ 
direction is then given by the sum of the stresses acting across the upper boundary 
on the fluid below and across the lower boundary on the fluid above: 
 

൬߬௭௫ +
߲߬௭௫
ݖ߲

ݖߜ
2
൰ ݕߜݔߜ − ൬߬௭௫ −

߲߬௭௫
ݔ߲

ݖߜ
2
൰  ݕߜݔߜ

 



7 
 

 
 

Fig.(1.4) : the ݔ component of the vertical shearing stress on a fluid element . 
 

 
Dividing this expression by the mass ݖߜݕߜݔ ߜߩ, we find that the viscous force per 
unit mass due to vertical shear of the component of motion in the ݔ direction is 
 

1
ߩ
߲߬௭௫
ݖ߲

=
1
ߩ
߲
ݖ߲
൬ߤ
ݑ߲
ݖ߲
൰ 

 
       For constant  ߤ, the right-hand side just given above may besimplified to    
ݒ ଶ  , whereݖ߲/ݑଶ߲ݒ = ఓ

ఘ
 is the kinematic viscosity coefficient. For standard 

atmosphere conditions at sea level, ݒ = 1.46 × 10ିହmଶsିଵ. Derivations analogous 
to that shown in Fig.( 1.4 ) can be carried out for viscous stresses acting in other 
directions. The resulting frictional force components per unit mass in the three 
Cartesian coordinate directions are 
 

௫ܨ = ݒ ቈ
߲ଶݑ
ଶݔ߲

+
߲ଶݑ
ଶݕ߲

+
߲ଶݑ
ଶݖ߲

 

 

௬ܨ                                          = ݒ ቈ
߲ଶݒ
ଶݔ߲

+
߲ଶݒ
ଶݕ߲

+
߲ଶݒ
ଶݖ߲

                                        (1.5) 

 

௭ܨ       = ݒ ቈ
߲ଶݓ
ଶݔ߲

+
߲ଶݓ
ଶݕ߲

+
߲ଶݓ
ଶݖ߲
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    For the atmosphere below 100 km, ݒ is so small that molecular viscosity is 
negligible except in a thin layer within a few centimeters of the earth’s surface 
where the vertical shear is very large. Away from this surface molecular boundary 
layer, momentum is transferred primarily by turbulent eddy motions.  
      Now we study the  non inertial reference frames and “Apparent ˮ forces. In 
formulating the laws of atmospheric dynamics it is natural to use a geocentric 
reference frame, that is, a frame of reference at rest with respect to the rotating 
earth. Newton’s first law of motion states that a mass in uniform motion relative to 
a coordinate system fixed in space will remain in uniform motion in the absence of 
any forces. Such motion is referred to as inertial motion; and the fixed reference 
frame is an inertial, or absolute, frame of reference. It is clear, however, that an 
object at rest or in uniform motion with respect to the rotating earth is not at rest or 
in uniform motion relative to a coordinate system fixed in space. Therefore, motion 
that appears to be inertial motion to an observer in a geocentric reference frame is 
really accelerated motion. Hence, a geocentric reference frame is a noninertial 
reference frame. Newton’s laws of motion can only be applied in such a frame if 
the acceleration of the coordinates is taken into account. The most satisfactory way 
of including the effects of coordinate acceleration is to introduce “apparent” forces 
in the statement of Newton’s second law. These apparent forces are the inertial 
reaction terms that arise because of the coordinate acceleration. For a coordinate 
system in uniform rotation, two such apparent forces are required: the centrifugal 
force and the Coriolis force. In the following we present centripetal acceleration 
and centrifugal force. 
     A ball of mass m is attached to a string and whirled through a circle of radius r 
at a constant angular velocity ߱. From the point of view of an observer in inertial 
space the speed of the ball is constant, but its direction of travel is continuously 
changing so that its velocity is not constant. To compute the acceleration we 
consider the change in velocity ܄ߜ that occurs for a time increment ݐߜ during 
which the ball rotates through an angle ߠߜ as shown in Fig.( 1.5). Because ߠߜ is 
also the angle between the vectors ܄ and ܄ + δ܄, the magnitude of ߜV is just 
|܄ߜ|  = → ݐߜ and note that in the limit ݐߜ If we divide by .ߠߜ |܄|   is ܄ߜ ,0 
directed toward the axis of rotation, we obtain 
 

܄ܦ
ݐܦ

= |܄|
ߠܦ
ݐܦ

ቀ
−ਮ
ݎ
ቁ 
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      Fig.(1.5) :  centripetal acceleration  is given by the rate of change of the direction    
                        Of the velocity vector, which is directed toward  the axis of  rotation,  
                        As illustrated  here by ߜV. 
 
However, |܄|  = = ݐܦ/ߠܦ and ݎ߱   ߱, so that 
 

܄ܦ
ݐܦ

= −߱ଶ(1.6)                                                       ݎ 
 
    Therefore, viewed from fixed coordinates the motion is one of uniform 
acceleration directed toward the axis of rotation and equal to the square of the 
angular velocity times the distance from the axis of rotation. This acceleration is 
called centripetal acceleration. It is caused by the force of the string pulling the 
ball. 
     Now suppose that we observe the motion in a coordinate system rotating with 
the ball. In this rotating system the ball is stationary, but there is still a force acting 
on the ball, namely the pull of the string. Therefore, in order to apply Newton’s 
second law to describe the motion relative to this rotating coordinate system, we 
must include an additional apparent force, the centrifugal force, which just 
balances the force of the string on the ball. Thus, the centrifugal force is equivalent 
to the inertial reaction of the ball on the string and just equal and opposite to the 
centripetal acceleration. 
    To summarize, observed from a fixed system the rotating ball undergoes a 
uniform centripetal acceleration in response to the force exerted by the string. 
Observed from a system rotating along with it, the ball is stationary and the force 
exerted by the string is balanced by a centrifugal force. 
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       Now we discuss the Gravity force. Anobject at rest on the surface of the earth 
is not at rest or in uniform motion relative to an inertial reference frame except at 
the poles. Rather, an object of unit mass at rest on the surface of the earth is subject 
to a centripetal acceleration directed toward the axis of rotation of the earth given 
by −Ω܀, where ܀ is the position vector from the axis of rotation to the object and 
Ω = 7.292 × 10ିହ rad ିݏଵ  is the angular speed of rotation of the earth. Since 
except at the equator and poles the centripetal acceleration has a component 
directed poleward along the horizontal surface of the earth (i.e., along a surface of 
constant geopotential), there must be a net horizontal force directed poleward 
along the horizontal to sustain the horizontal component of the centripetal 
acceleration. This force arises because the rotating earth is not a sphere, but has 
assumed the shape of an oblate spheroid in which thereis a poleward component of 
gravitation along a constant geopotential surface just sufficient to account for the 
poleward component of the centripetal acceleration at each latitude for an object at 
rest on the surface of the earth. In other words, from the point of view of an 
observer in an inertial reference frame, geopotential 
 
 
 
 
 
 
Fig. (1.6) :  Relationship between the true gravitation 
                    vector g* and gravity g. For an idealized 
                   homogeneous spherical earth, g* would 

                   be directed toward the center of the earth. 
                   In reality, g* does not point exactly to the 
                   center except at the equator and the poles. 

                Gravity, g, is the vector sum of g* and 
                    the centrifugal force and is perpendicular 

                 to the level surface of the earth, which 
        approximates an oblate spheroid. 

 
  
surfaces slope upward toward the equator (see Fig.( 1.6)). As a consequence, the 
equatorial radius of the earth is about 21 km larger than the polar radius. 
   Viewed from a frame of reference rotating with the earth, however,a geopotential 
surface is everywhere normal to the sum of the true force of gravity, ∗, and the 
centrifugal force Ωଶ܀ (which is just the reaction force of the centripetal 
acceleration). A geopotential surface is thus experienced as a level surface by an 
object at rest on the rotating earth. Except at the poles, the weight of an object of 
mass m at rest on such a surface, which is just the reaction force of the earth on the 
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object, will be slightly less than the gravitational force ݉∗ because, as illustrated 
in Fig. (1.6), the centrifugal force partly balances the gravitational force. 
It is, therefore, convenient to combine the effects of the gravitational force and 
centrifugal force by defining gravity  such that 
 

≡   −gܓ ≡ ∗ +  (1.7)                                        ܀ଶߗ 
 

where ܓ designates a unit vector parallel to the local vertical. Gravity, g, 
sometimes referred to as “apparent gravity,” will here be taken as a constant (g =
 is not directed toward the center  ,Except at the poles and the equator .(ݏ9.81݉ 
of the earth,but is perpendicular to a geopotential surface as indicated by Fig. (1.6). 
True gravity ∗, however, is not perpendicular to a geopotential surface, but has a 
horizontal component just large enough to balance the horizontal component of 
 .ଶܴߗ
     Gravity can be represented in terms of the gradient of a potential function ∅, 
which is just the geopotential referred to above: 
 

સΦ =  − 
However, because  =  −gܓ where ݃ ≡  |g|, it is clear that  Φ=Φ(ݖ) and 
݀Φ/݀ݖ =  g. Thus horizontal surfaces on the earth are surfaces of constant 
geopotential. If the value of geopotential is set to zero at mean sea level, the 
geopotential Φ(ݖ) at height ݖ is just the work required to raise a unit mass to 
height ݖ from mean sea level: 
 

Φ = න g ݀ݖ
௭


                                                    (1.8) 

 
Despite the fact that the surface of the earth bulges toward the equator, an object at 
rest on the surface of the rotating earth does not slide “downhill” toward the pole 
because, as indicated above, the poleward component of gravitation is balanced by 
the equatorward component of the centrifugal force. However, if the object is put 
into motion relative to the earth, this balance will be disrupted. Consider a 
frictionless object located initially at the North pole. Such an object has zero 
angular momentum about the axis of the earth. If it is displaced away from the pole 
in the absence of a zonal torque, it will not acquire rotation and hence will feel a 
restoring force due to the horizontal component of true gravity, which, as indicated 
above is equal and opposite to the horizontal component of the centrifugal force for 
an object at rest on the surface of the earth. Letting ܴ be the distance from the 
pole, the horizontal restoring force for a small displacement is thus −ߗଶܴ, and the 
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object’s acceleration viewed in the inertial coordinate system satisfies the equation 
for a simple harmonic oscillator: 
 

݀ଶܴ
ଶݐ݀

+ ଶܴߗ = 0                                          (1.9) 

 

The object will undergo an oscillation of period ଶగ
ఆ

  along a path that will appear as 
a straight line passing through the pole to an observer in a fixed coordinate system, 
but will appear as a closed circle traversed in 1/2  day to an observer rotating with 
the earth (Fig.( 1.7)). From the point of view of an earthbound observer, there is an 
apparent deflection force that causes the object to deviate to the right of its 
direction of motion at a fixed rate. 
     In the following we illusterate the coriolis force and thecurvature effect. 
Newton’s second law of motion expressed in coordinates rotating with the earthcan 
be used to describe the force balance for an object at rest on  the surface of the 
earth, provided that an apparent force, the centrifugal force, is included among the 
forces acting on the object. If, however, the object is in motion along the surface of 
the earth, additional apparent forces are required in the statement of Newton’s 
second law.  
     Suppose that an object of unit mass, initially at latitude ∅ moving zonally at 
speed ݑ, relative to the surface of the earth, is displaced in latitude or in altitude by 
an impulsive force. As the object is displaced it will conserve its angular 
momentum in the absence of a torque in the east–west direction. Because the 
distance  ܴ to the axis of rotation changes for a displacement in latitude or altitude, 
the absolute angular velocity,Ω +  must change if the object is to conserve its ,ܴ/ݑ 
absolut angular momentum. 
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Fig. (1.7) :  Motion of a frictionless object launched from the north pole along the 0° longitude meridian 
at t = 0, as viewed in fixed and rotating reference frames at 3, 6, 9, and 12 h after launch. The                                   

horizontal dashed line marks the position that the 0° longitude meridian had at t = 0, and short dashed 
lines show its position in the fixed reference frame at subsequent 3 h intervals.Horizontal arrows show 3 h 
displacement vectors as seen by an observer in the fixed reference frame. Heavy curved arrows show the 
trajectory of the object as viewed by an observer in the rotating system. Labels A, B and C show the 
position of the object relative to the rotating coordinates at 3 h intervals. In the fixed coordinate frame the 
object oscillates back and forth along a straight line under the influence of the restoring force provided by 
the horizontal component of gravitation. The period for a complete oscillation is 24 h (only 1/2 period is 
shown) . To an observer in rotating coordinates, however, the motion appears to be at constant 
speed and describes a complete circle in a clockwise direction in 12 h. 
 
Because Ω is constnt, the relative zonal velocity must change. 
Thus, the object behaves as though a zonally directed deflection force were acting 
on it.  
    The form of the zonal deflection force can be obtained by equating the total 
angular momentum at the initial distance R to the total angular momentum at the 
displaced distance ܴ +  :ܴߜ 
 

ቀߗ +
ݑ
ܴ
ቁܴଶ = ൬ߗ +

ݑ + ݑߜ
ܴ + ܴߜ

൰ (ܴ +  ଶ(ܴߜ

 
where ݑߜ is the change in eastward relative velocity after displacement. Expanding 
the right-hand side, neglecting second-order differentials, and solving for ݑߜ gives 
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ݑߜ = ܴߜߗ2− −
ݑ
ܴ
 ܴߜ

 
    Noting that ܴ =  ,where a is the radius of the earth and i∅s latitude ,∅ ݏܿ ܽ 
dividing through by the time increment ݐߜ and taking the limit as ݐߜ →  0, gives in 
the case of a meridional displacement in which  ܴߜ = −sin ∅ݕߜ (see Fig. 1.8): 
 

ݑܦ
ݐܦ

= ቀ2݊݅ݏ ߗ∅ +
ݑ
ܽ
ቁ∅݊ܽݐ

ݕܦ
ݐܦ

= ∅݊݅ݏߗ2 +
ݒݑ
ܽ
 (1.10ܽ)          ∅݊ܽݐ

 
and for a vertical displacement in which ܴߜ =  :ݖߜ∅ ݏܿ+ 
 

   
ݑܦ
ݐܦ

= −ቀ2ݏܿ ߗ∅ +
ݑ
ܽ
ቁ
ݖܦ
ݐܦ

= ∅ݏܿ߱ߗ2 −
ݓݑ
ܽ

      (1.10ܾ) 
 
where ݒ = = ݓ and ݐ݀ܦ/ݕܦ   are the northward and upward velocity ݐܦ/ݖܦ 
components, respectively. The first terms on the right in (1.10a) and (1.10b) are the 
zonal components of the Coriolis force for meridional and vertical motions, 
respectively. The second terms on the right are referred to as metric terms or 
curvature effects. These arise from the curvature of the earth’s surface. 
    A similar argument can be used to obtain the meridional component of the 
Coriolis force. Suppose nowthat the object is set in motion in the eastward 
direction by an impulsive force. Because the object is now rotating faster than the 
earth, the centrifugal force on the object will be increased. Letting ܀  be the 
position vector 
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Fig. (1.8) :  Relationship of ܴߜ and ݕߜ =  for an equatorward displacement ߶ߜܽ 

 
from the axis of rotation to the object, the excess of the centrifugal force over that 
for an object at rest is 
 

ቀߗ +
ݑ
ܴ
ቁ
ଶ
܀ − ܀ଶߗ =

܀ݑߗ2
ܴ

+
܀ଶݑ
ܴଶ

 
 
The terms on the right represent deflecting forces, which act outward along the 
vector ܴ (i.e., perpendicular to the axis of rotation). The meridional and vertical 
components of these forces are obtained by taking meridional and vertical  
components of ܴ as shown in Fig.( 1.9) to yield 
 

ݒܦ
ݐܦ

= ∅݊݅ݏ ݑߗ2− −
ଶݑ

ܽ
 (1.11ܽ)                              ∅݊ܽݐ

 
ݓܦ
ݐܦ

= ∅ݏܿ ݑߗ2 +
ଶݑ

ܽ
                                           (1.11ܾ) 
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The first terms on the right are the meridional and vertical components, 
respectively,of the Coriolis forces for zonal motion; the second terms on the right 
are again the curvature effects. 
For synoptic scale motions |ݑ| ≪  the last terms in (1.10a) and (1.11a) can be ,ܴߗ
neglected in a first approximation. Therefore, relative horizontal motion produces a 
horizontal acceleration perpendicular to the direction of motion given by 
 

൬
ݑܦ
ݐܦ
൰
బ

= ∅݊݅ݏݒߗ2 =  (1.12ܽ)                                ݒ݂

 

൬
ݒܦ
ݐܦ
൰
బ

= ∅݊݅ݏߗ2− =  (1.12ܾ)                            ݑ݂−

 
             where ݂ ≡  .is the Coriolis parameter ∅ ݊݅ݏ ߗ2 
 
 

 
Fig.( 1.9) :  Components of the Coriolis force due to relative motion along a latitude circle. 
  

 
 
    The subscript Coindicates that the acceleration is the part of the total 
acceleration due only to the Coriolis force. Thus, for example, an object moving 
eastward in the horizontal is deflected equatorward by the Coriolis force, whereas a 
westward moving object is deflected poleward. In either case the deflection is to 
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the right of the direction of motion in the Northern Hemisphere and to the left in 
the Southern Hemisphere. The vertical component of the Coriolis force in (1.11b) 
is ordinarily much smaller than the gravitational force so that its only effect is to 
cause a very minor change in the apparent weight of an object depending on 
whether the object is moving eastward or westward. 
    The Coriolis force is negligible for motions with time scales that are very short 
compared to the period of the earth’s rotation (a point that is illustrated by several 
problems at the end of the chapter). Thus, the Coriolis force is not important for the 
dynamics of individual cumulus clouds, but is essential to the understanding of 
longer time scale phenomena such as synoptic scale systems. The Coriolis force 
must also be taken into account when computing long-range missile or artillery 
trajectories. 
    As an example, suppose that a ballistic missile is fired due eastward at 43N 
latitude (݂ =  10ିସିݏଵ ܽ43 ݐܰ). If the missile travels 1000 km at a horizontal 
speed ݑ =  ଵ , by how much is the missile deflected from its eastwardିݏ100݉
path by the Coriolis force? Integrating (1.12b) with respect to time we find that  
 

ݒ                         =  (1.13)                                                   ݐݑ݂−
 

where it is assumed that the deflection is sufficiently small so that we may let f and 
 be constants. To find the total displacement we must integrate Equation(1.13)ݑ
with respect to time: 
 

න ݐ݀ ݒ
௧


= න ݕ݀

௬బାఋ௬

௬బ

= ݐ݀ ݐනݑ݂−
௧



 

 
Thus, the total displacement is 
 

ݕߜ = −
ଶݐݑ݂

2
= −50 km 

 
Therefore, the missile is deflected southward by 50 km due to the Coriolis effect. 
     The x and y components given in Equation (1.12a) and Equation (1.12b) can be 
combined in vector form as 
 

൬
܄ܦ
ݐܦ
൰
బ

= ܓ݂− ×  (1.14)                                               ܄
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where ܄ ≡  is a vertical unit vector, and the ܓ ,is the horizontal velocity (ݒ,ݑ) 
subscript Co indicates that the acceleration is due solely to the Coriolis force. 
Since −ܓ ×  Equation (1.14) clearly,܄  is a vector rotated 90° to the right of ܄ 
shows the deflection character of the Coriolis force. The Coriolis force can only 
change the direction of motion, not the speed of motion. 
     Now we study the Constant Angular Momentum  Oscillations .Suppose an 
object initially at rest on the earth at the point  (ݔ,  )  is impulsively propelledݕ
along the x axis with a speed V at time ݐ = 0. Then from Equations(1.12a)  and 
(1.12b), the time evolution of the velocity is given by  ݑ =  ܸ cos ( ݂ ݐ)  and ݒ =
 −ܸ sin ( ݂ ݐ). However, because  ݑ = = ݒ and ݐܦ/ݔܦ  integration with , ݐܦ/ݕܦ
respect to time gives the position of the object at time t as 
 

ݔ − ݔ =
ܸ
݂

sin(݂ݐ) , ݕ − ݕ =
ܸ
݂

݂ ݏܿ) ݐ − 1)                  (1.15ܽ, ܾ) 

 
where the variation of f with latitude is here neglected. Equations (1.15a) and 
(1.15b) show that in the Northern Hemisphere, where f is positive, the object orbits 
clockwise (anticyclonically) in a circle of radius ܴ = ܸ/݂ about the point 
ቀݔ,ݕ −



ቁ with a period given by 

 

߬ =
ܴߨ2
ܸ

=
ߨ2
݂

=
ߨ

∅ ݊݅ݏ ߗ
                               (1.16) 

 
Thus, an object displaced horizontally from its equilibrium position on the surface 
of the earth under the influence of the force of gravity will oscillate about its 
equilibrium position with a period that depends on latitude and is equal to one 
sidereal day at 30° latitude and 1/2 sidereal day at the pole. Constant angular 
momentum oscillations (often referred to misleadingly as “inertial oscillations”) 
are commonly observed in the oceans, but are apparently not of importance in the 
atmosphere. 
   In the following we present the structure of static atmosphere Thethermodynamic 
state of the atmosphere at any point is determined by the values of pressure, 
temperature, and density (or specific volume) at that point. These field variables 
are related to each other by the equation of state for an ideal gas. Letting ,ܶ,  ,ߩ
and ߙ(≡  ,ଵ) denote pressure, temperature, density, and specific volumeିߩ 
respectively, we can express the equation of state for dry air as 
 

= ߙ           ܴܶ  or   =   (1.17)                                                         ܴܶߩ 
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where R is the gas constant for dry air (ܴ =  .( kgିଵKିଵ ܬ 287 
 
 

 
Fig.( 1.10):  Balance of forces for hydrostatic 
                     equilibrium.Small arrows show the upward 
                     and downward forces exerted by air 
                     pressure on the air mass in the shaded 
                    block. The downward force exerted by 
                    gravity on the air in the block is given 
                    by ݖ݀݃ߩ, whereas the net pressure force 
                   given by the difference between the 
                   upward force across the lower surface 
                   and the downward force across the upper 
                   surface is−݀. Note that ݀ is negative, 
                   as pressure decreases with height. (After 
                   Wallace and Hobbs, 1977.) 

  
 

        In The folloing we discauss the Hydrostatic Equation,In the absence of 
atmospheric motions the gravity force must be exactly balanced by the vertical 
component of the pressure gradient force. Thus, as illustrated in Fig. (1.10), 
 

ݖ݀/݀ =  (1.18)                                        ݃ߩ− 
 

    This condition of hydrostatic balance provides an excellent approximation for 
the vertical dependence of the pressure field in the real atmosphere. 
 Only for intense small-scale systems such as squall lines and tornadoes is it 
necessary to consider departures from hydrostatic balance. Integrating Equation 
(1.18) from a height ݖ to the top of the atmosphere we find that 
 

(ݖ) = න ݖ݀ gߩ
ஶ

௭

                                                     (1.19) 

 
so that the pressure at any point is simply equal to the weight of the unit cross 
section column of air overlying the point. Thus, mean sea level pressure (0)  =
1013.25 ℎܲܽ is simply the average weight per square meter of the total 
atmospheric column. It is often useful to express the hydrostatic equation in terms 
of the geopotential rather than the geometric height. Noting from Equation (1.8) 
that ݀Φ =  g ݀ݖ and from Equation (1.17) that α =  RT/p, we can express the 
hydrostatic equation in the form 



20 
 

 
g݀ݖ =  ݀ Φ = = ݀(/ ܴܶ)−   −ܴܶ ݀ ln            (1.20) 

 
Thus, the variation of geopotential with respect to pressure depends only on 
temperature. Integration of Equation (1.20) in the vertical yields a form of the 
hypsometric equation: 
 

Φ(ݖଶ) − Φ(ݖଵ) = g(ݖଶ − (ଵݖ = ܴ න ܶ݀ ln 

భ

మ

        (1.21) 

 
Here ܼ ≡   Φ(z)/g, is the geopotential height, where  g  ≡  ଶ istheିݏ9.80665݉ 
global average of gravity at mean sea level. Thus in the troposphere and lower 
stratosphere, ܼ is numerically almost identical to the geometric height ݖ. In terms 
of ܼ the hypsometric equation becomes 
 

்ܼ ≡ ଶݖ − ଵݖ =
ܴ
݃

න ܶ݀ ln 

భ

మ

                                         (1.22) 

 
where ்ܼ is the thickness of the atmospheric layer between the pressure surfaces 
 ଵ . Defining a layer mean temperature ଶ and
 

〈ܶ〉 = න ܶ݀ ln  

భ

మ

 න ݀ ln 

భ

మ



ିଵ

 

 
and a layer mean scale height ܪ ≡ ܴ〈ܶ〉/݃we have from Equation (1.22) 
 

                  ்ܼ  = ln ܪ 
ଵ
ଶ

                                                        (1.23) 

 
Thus the thickness of a layer bounded by isobaric surfaces is proportional to the 
mean temperature of the layer. Pressure decreases more rapidly with height in a 
cold layer than in a warm layer. It also follows immediately from Equation (1.23) 
that in an isothermal atmosphere of temperature T, the geopotential height is 
proportional to the natural logarithm of pressure normalized by the surface 
pressure, 
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                        ܼ = ܪ−  ln




                                                  (1.24) 

 
where is the pressure at ܼ =  0. Thus, in an isothermal atmosphere the pressure 
decreases exponentially with geopotential height by a factor of ݁ିଵ per scale 
height, 
 

(ܼ)  =   ௭/ுି݁(0) 
 

     Now we study the Pressure as a Vertical Coordinate, From the hydrostatic 
Equation (1.18), it is clear that a single valued monotonic relationship exists 
between pressure and height in each vertical column of the atmosphere. Thus we 
may use pressure as the independent vertical coordinate and height (or 
geopotential) as a dependent variable. The thermodynamic state of the atmosphere 
is then specified by the fields of  ݔ)ߠ, ,ݕ , ,ݔ) ܶ  and (ݐ ,ݕ ,  .(ݐ
     Now the horizontal components of the pressure gradient force given by 
Equation(1.1) are evaluated by partial differentiation holding z constant. However, 
when pressure is used as the vertical coordinate, horizontal partial derivatives must 
be 

 
 

Fig. (1.11): Slope of pressure surfaces in the ݔ,  .plane ݖ
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evaluated holding p constant. Transformation of the horizontal pressure gradient 
force from height to pressure coordinates may be carried out with the aid of Fig. 
(1.11). Considering only the ݔ,  plane, we see from Fig.( 1.11) that ݖ
 

ቈ
) + (ߜ − 

ݔߜ

௭

= ቈ
) + (ߜ − 

ݖߜ

௫
൬
ݖߜ
ݔߜ
൰


 

 
where subscripts indicate variables that remain constant in evaluating the 
differentials.Thus, for example, in the limit ݖߜ →  0 
 


) + (ߜ − 

ݖߜ
൨
௫
→ ൬−

߲
ݖ߲
൰
௫
 

 
where the minus sign is included because ݖߜ <  0 for ߜ >  0. 
    Taking the limits ݖߜ,ݔߜ →  0 we obtain: 
 

൬
߲
ݔ߲
൰
௭

= −൬
߲
ݖ߲
൰
௫
൬
ݖ߲
ݔ߲
൰

 

 
which after substitution from the hydrostatic Equation (1.18) yields 
 

−
1
ߩ
൬
߲
ݔ߲
൰
௭

= −݃ ൬
ݖ߲
ݔ߲
൰


= −൬
߲∅
ݔ߲
൰


                                (1.25) 

 
Similarly, it is easy to show that 
 

−
1
ߩ
൬
߲
ݕ߲
൰
௭

= −൬
߲∅
ݕ߲
൰


                                                      (1.26) 

 
Thus in the isobaric coordinate system the horizontal pressure gradient force is 
measured by the gradient of geopotential at constant pressure. Density no longer 
appears explicitly in the pressure gradient force; this is a distinct advantage of the 
isobaric system.In the last in this section we illusterate the Generalized Vertical 
Coordinate, Any single-valued monotonic function of pressure or height may be 
used as the independent vertical coordinate. For example, in many numerical 
weather prediction models, pressure normalized by the pressure at the ground  
≡ ߪ] ,ݔ)  ,ݕ ,ݖ ,ݕ,ݔ)௦/(ݐ  is used as a vertical coordinate. This choice  [(ݐ
guarantees that the ground is a coordinate surface (ߪ ≡  1) even in the presence of 
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spatial and temporal surface pressure variations. Thus, this so-called ߪ coordinate 
system is particularly useful in regions of strong topographic variations. 
     We now obtain a general expression for the horizontal pressure gradient, which 
is applicable to any vertical coordinate ݏ = ,ݔ)ݏ  ,ݕ ,ݖ  that is a single-valued (ݐ
monotonic function of height. Referring to Fig. (1.12) we see that for a horizontal 
distance ݔߜ the pressure difference evaluated along a surface of constant s is 
related to that evaluated at constant ݖ by the relationship 
 

 − 
ݔߜ

=
 − 
ݖߜ

∙
ݖߜ
ݔߜ

+
 − 
ݔߜ

   
 
Taking the limits as ݔߜ, → ݖߜ  0 we obtain 
 

൬
߲
ݔ߲
൰
௦

=
߲
ݖ߲

൬
ݖ߲
ݔ߲
൰
௦

+ ൬
߲
ݔ߲
൰
௭

                                     (1.27) 

 
 
 

 
Fig. (1.12): Transformation of the pressure gradient force to ݏ coordinates. 

 

 
Using the identity ߲ݖ߲/ =  ቀడ௦

డ௭
ቁ ቀడ

డ௦
ቁ, we can express Equation (1.27) in the 

alternate form 

൬
߲
ݔ߲
൰
௦

= ൬
߲
ݔ߲
൰
௭

+ ൬
ݏ߲
ݖ߲
൬
ݖ߲
ݔ߲
൰
௦
൰ ൬
߲
ݏ߲
൰                                (1.28) 
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Section(1.2):The continuity Equation, Energy Equation and  
                      Dry Atmosphere 
 
     In this section we introduce the some of fundamental conservation principles, 
conservation  of  mass, conservation of  Energy and thermodynamics of the Dry  
Atmosphere,and we start with develops the  conservation of mass for afluid(the 
continuity  Equation)using two alternative Methods.The first method is based on 
an Eulerian control volume, whereas the second is based on a Lagrangian control 
volume: 
 
(і) An Eulerian Derivation 
 
 We consider a volume element δx δy δz that is fixed in a Cartesian coordinate 
frame as shown in Fig.(1.13). For such a fixed control volume the net rate of mass 
inflow through the sides must equal the rate of accumulation of mass within the 
volume. The rate of inflow of mass through the left-hand face per unit area is  
 

ݑߩ −
߲
ݔ߲

(ݑߩ)
ݔߜ
2
൨ 

 
whereas the rate of outflow per unit area through the right-hand face is 
 

ݑߩ +
߲
ݔ߲

(ݑߩ)
ݔߜ
2
൨ 

 
 
    Because the area of each of these faces is ݖߜݕߜ, the net rate of flow into the 
volume due to the ݔ velocity component is 
 

ݑߩ −
߲
ݔ߲

(ݑߩ)
ݔߜ
2
൨ ݖߜݕߜ − ݑߩ +

߲
ݔ߲

(ݑߩ)
ݔߜ
2
൨ ݖߜݕߜ = −

߲
ݔ߲

 ݖߜݕߜݔߜ(ݑߩ)

 
Similar expressions obviously hold for the ݕ and ݖ directions. Thus, the net rate of 
mass inflow is 
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−
߲
ݔ߲

(ݑߩ) +
߲
ݕ߲

(ݒߩ) +
߲
ݖ߲

൨(ݓߩ)  ݖߜݕߜݔߜ

 
 

Fig. (1.13):  Mass inflow into a fixed (Eulerian) control volume due to motion parallel to the ݔ axis. 
 
and the mass inflow per unit volume is just −∇ ∙  which must equal the rate ,(ܷߩ)
of mass increase per unit volume. Now the increase of mass per unit volume is just 
the local density change ߲ݐ߲/ߩ.there for 
 

ߩ߲
ݐ߲

+ સ ∙ (܃ߩ) = 0                                                  (1.29) 
 
Equation (1.29) is the mass divergence form of the continuity equation. 
   An alternative form of the continuity equation is obtained by applying the vector 
Identity 
 

સ ∙ (܃ߩ) ≡ સߩ ∙ ܃ ∙ સߩ 
 
and the relationship 
 

ܦ
ݐܦ

≡
߲
ݐ߲

+ ܃ ∙ સ 
to get: 
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1
ߩ
ܦ
ݐܦ

+ સ ∙ ܃ = 0                                             (1.30)   

 
Equation (1.30) is the velocity divergence form of the continuity equation. It states 
that the fractional rate of increase of the density following the motion of an air 
parcel is equal to minus the velocity divergence.This should be clearl distinguished  
from  Equation(1.29), which states that the local rate of change of density is equal 
to minus the mass divergence. 
 
(іі) A Lagrangian Derivation 
 
The physical meaning of divergence can be illustrated by the following alternative 
derivation of  Equation (1.30). Consider a control volume of fixed mass ܯߜ that 
moves with the fluid. Letting ܸߜ =  be the volume, we find that ݖߜݕߜ ݔߜ 
because ܯߜ = ܸߜߩ  =  is conserved following the motion, we can write ݖߜݕߜݔߜߩ
 

1
ܯߜ

ܦ
ݐܦ

(ܯߜ) =
1
ܸߜߩ

ܦ
ݐܦ

(ܸߜߩ) =
1
ߩ
ߩܦ
ݐܦ

+
1
ܸߜ

ܦ
ݐܦ

(ܸߜ) = 0              (1.31) 

 
But 

   
1
ܸߜ

ܦ
ݐܦ

(ܸߜ) =
1
ݔߜ

ܦ
ݐܦ

(ݔߜ) +
1
ݕߜ

ߩܦ
ݐܦ

(ݕߜ) +
1
ݖߜ

ܦ
ݐܦ

 (ݖߜ)

 
Referring to Fig. (1.14), we see that the faces of the control volume in the ݕ,  ݖ
plane (designated ܣ and ܤ) are advected with the flow in the x direction at speeds 
ݑ  = ݑ and ݐܦ/ݔܦ   = + ݔ)ܦ   respectively. Thus, the difference ,ݐܦ/(ݔߜ 
in speeds of the two faces is ݑߜ = − ܤݑ  = ܣݑ  + ݔ)ܦ  − ݐܦ/(ݔߜ   or ݐܦ/ݔܦ 
= ݑߜ = ݒߜ ,Similarly .ݐܦ/ (ݔߜ)ܦ  =  and ݐܦ/(ݕߜ)ܦ    ,Therefore . ݐܦ/(ݖߜ)ܦ 
 

lim
ఋ௫,ఋ௬,ఋ௭→


1
ܸߜ

ܦ
ݐܦ

൨(ܸߜ) =
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲

+
ݓ߲
ݖ߲

= ∇ ∙  ܃
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Fig. (1.14): Change in Lagrangian control volume (shown by shading) due to fluid motion 
                     parallel to the  ݔ axis. 

 
so that in the limit ܸߜ →  0,Equation (1.31) reduces to the continuity Equation 
(1.30); the divergence of the three-dimensional velocity field is equal to the 
fractional rate of change of volume of a fluid parcel in the limit ܸߜ →  0. It is left 
as a problem for the student to show that the divergence of the horizontal velocity 
field is equal to the fractional rate of change of the horizontal area ܣߜ of a fluid 
parcel in the limit ܣߜ →  0. 
Now we study Scale Analysis of the Continuity Equation ,Following the technique 
developed  above,and again assuming thatหߩ/\ߩห ≪ 1, we can approximate the 
continuity Equation (1.30) as: 
 

1
ߩ
ቆ
\ߩ߲

ݐ߲
+ ܃ ∙ સߩ\ቇ +

ݓ
\ߩ
ߩ݀
ݖ݀

+ સ ∙ ܃ ≈ 0                                   (1.32) 

                                      A                       B              C 
 
where ߩ\designates the local deviation of density from its horizontally averaged 
value, ߩ (ݖ). For synoptic scale motions ߩ/\ߩ  ~10ିଶ so that using the 
characteristic scales given above we find that term ܣ has magnitude 
 

1
ߩ
ቆ
\ߩ߲

ݐ߲
+ ܃ ∙ સߩ\ቇ~

\ߩ

ߩ
≈ 10ିܵିଵ 

 
For motions in which the depth scale ܪ is comparable to the density scale 
height,݀ lnߩ  :scales as ܤ ଵ, so that termିܪ ~  ݖ݀/
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ݓ
ߩ
ߩ݀
ݖ݀

 ~ 
ݓ
ܪ

 ≈  10ିܵିଵ 

 
Expanding term ܥ in Cartesian coordinates, we have 
 

સ ∙ ܃ =
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲

+
ݓ߲
ݖ߲

 

 
For synoptic scale motions the terms ߲ݔ߲/ݑ   and   ߲ݕ߲/ݒ tend to be of equal 
magnitude but opposite sign. Thus, they tend to balance so that 
 

൬
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲
൰  ~10ିଵ

ܷ
ܮ
≈ 10ିିݏଵ                  

 
and in addition 
 

ݓ߲
ݖ߲

 ~
ܹ
ܪ
≈ 10ିିݏଵ 

 
Thus, terms ܤ and ܥ are each an order of magnitude greater than term ܣ, and to a 
first approximation, terms ܤ and ܥ balance in the continuity equation. To a good 
approximation then 
 

ݑ߲
ݔ߲

+
ݒ߲
ݕ߲

+
ݓ߲
ݖ߲

+ ݀ ݓ lnߩ = 0 

 
or, alternatively, in vector form 
 

સ ∙ (܃ߩ) = 0                                                      (1.33) 
 
Thus for synoptic scale motions the mass flux computed using the basic state 
density ߩ is nondivergent. This approximation is similar to the idealization of 
incompressibility, which is often used in fluid mechanics. However, an 
incompressible fluid has density constant following the motion: 
 

ߩܦ
ݐܦ

= 0 
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Thus by Equation (1.30) the velocity divergence vanishes (સ ∙ = ܃  0) in an 
incompressible fluid, which is not the same as Equation (1.33). Our approximation 
Equation(1.33) shows that for purely horizontal flowthe atmosphere behaves as 
though it were an incompressible fluid. However, when there is vertical motion the 
compressibility associated with the height dependence of  ߩ must be taken into 
account. 
     Now we stud the thermodynamic energy equationWe now turn to the  
fundamental conservation principle, the conservation of energy as applied to a 
moving fluid element. The first law of thermodynamics is usually derived by 
considering a system in thermodynamic equilibrium, that is,a system that is 
initially at rest and after exchanging heat with its surroundings and doing work on 
the surroundings is again at rest. For such a system the first law states that the 
change in internal energy of the system is equal to the difference between the heat 
added to the system and the work done by the system. 
      A Lagrangian control volume consisting of a specified mass of fluid may be 
regarded as a thermodynamic system. However, unless the fluid is at rest, it will 
not be in thermodynamic equilibrium. Nevertheless, the first law of 
thermodynamics still applies. To show that this is the case, we note that the total 
thermodynamic energy of the control volume is considered to consist of the sum of 
the internal energy (due to the kinetic energy of the individual molecules) and the 
kinetic energy due to the macroscopic motion of the fluid. The rate of change of 
this total thermodynamic energy is equal to the rate of diabatic heating plus the rate 
at which work is done on the fluid parcel by external forces. 
If we let ݁ designate the internal energy per unit mass, then the total 
thermodynamic energy contained in a Lagrangian fluid element of density ߩ and 
volume ܸߜ is [݁ +  (1/2)ܷ ∙  The external forces that act on a fluid . ܸߜ [ܷ
element may be divided into surface forces, such as pressure and viscosity, and 
body forces, such as gravity or the Coriolis force. The rate at which work is done 
on the fluid element by the ݔ component of the pressure force is illustrated in Fig. 
(1.15). Recalling that pressure is a force per unit area and that the rate at which a 
force does work is given by the dot product of the force and velocity vectors, we 
see that the rate at which the surrounding fluid does work on the element due to the 
pressure force onthe two boundary surfaces in the ݕ,  plane is given by ݖ

 
− ݖߜݕߜ(ݑ)  ݖߜݕߜ(ݑ) 

 
(The negative sign is needed before the second term because the work done on the 
fluid element is positive if ݑ is negative across face ܤ.) Now by expanding in a 
Taylor series we can write 
 



30 
 

(ݑܲ) = (ݑܲ) + 
߲
ݔ߲

൨(ݑܲ)

ݔߜ + ⋯ 

 
Fig.( 1.15 ): Rate of working on a fluid element due to the ݔ component of the pressure force. 

      
      Thus the net rate at which the pressure force does work due to the ݔ component 
of motion is 
 

(ݑܲ)] − ݖߜݕߜ[(ݑܲ) = −
߲
ݔ߲

൨(ݑܲ)

 ܸߜ

 
where ܸߜ =  .ݖߜݕߜݔߜ 
Similarly, we can show that the net rates at which the pressure force does work 
due to the  ݕ and  ݖ components of motion are 
 

− 
߲
ݕ߲

൨(ݒܲ) ݀݊ܽ ܸߜ − 
߲
ݖ߲

൨(ݓܲ)  ܸߜ

 
respectively. Hence, the total rate at which work is done by the pressure force is 
simply 
 

−સ ∙  ܸߜ(܃)
 

      The only body forces of meteorological significance that act on an element of 
mass in the atmosphere are the Coriolis force and gravity. However, because the 
Coriolis force,−2Ω ×  .is perpendicular to the velocity vector, it can do no work ,܃
Thus the rate at which body forces do work on the mass element is just   ߩ ∙  ܸߜ ܃
Applying the principle of energy conservation to our Lagrangian control volume 
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(neglecting effects of molecular viscosity), we thus obtain  
 

ܦ
ݐܦ

ߩ ൬݁ +
1
2
܃ ∙ ൰܃ ܸߜ = −સ ∙ ܸߜ(܃) + ߩ ∙ ܸߜ ܃ + ൨ܸߜ ܬߩ      (1.34) 

 
Here ܬ is the rate of heating per unit mass due to radiation, conduction, and latent 
heat release.With the aid of the chain rule of differentiation we can rewrite 
Equation (1.34) as: 

ܸߜߩ                      
ܦ
ݐܦ

൬݁ +
1
2
܃ ∙ ൰܃ + ൬݁ +

1
2
܃ ∙ ൰܃

ܦ
ݐܦ

   (ܸߜߩ)
 

= ܃− ∙ સܸߜ − સ ∙ δܸ ܃ − ρgܸߜݓ +  (1.35)         ܸߜܬߩ
 
where we have used  =  Now from Equation (1.31) the second term on the .ܓ݃− 
left in Equation(1.35) vanishes so that 
 

ߩ
݁ܦ
ݐܦ

+ ߩ
ܦ
ݐܦ

൬
1
2
܃ ∙ ൰܃ = ܃− ∙ સ − સ ∙ ܃ − ݓ݃ߩ +  (1.36)      ܬߩ

 
This  Equation can be simplified by noting that if we take the dot product of U with 
the momentum Equation (܃

௧
= −2Ω × ܃ − ଵ

ఘ
ߘ +  + ۴) we obtain (neglecting 

friction) 
 

ߩ
ܦ
ݐܦ

൬
1
2
܃ ∙ ൰܃ = ܃− ∙ સ −  (1.37)                                        ݓgߩ

 
Subtracting Equation (1.37) from Equation (1.36), we obtain 
 

ߩ             
݁ܦ
ݐܦ

= સ ∙ ܃ +  (1.38)                                    ܬߩ
 
The terms in Equation(1.36) that were eliminated by subtracting Equation (1.37) 
represent the balance of mechanical energy due to the motion of the fluid element; 
the remaining terms represent the thermal energy balance. 
Using the definition of geopotential Equation (1.15), we have 
 

ݓ݃ = ݃
ݖܦ
ݐܦ

=
Φܦ
ݐܦ
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so that Equation (1.37) can be rewritten as 
 

ߩ                    
ܦ
ݐܦ

൬
1
2
܃ ∙ ܃ + Φ൰ = ܃− ∙ સ(1.39)                                         

 
which is referred to as the mechanical energy equation. The sum of the kinetic 
energy plus the gravitational potential energy is called the mechanical energy. 
Thus Equation(1.39) states that following the motion, the rate of change of 
mechanical energy per unit volume equals the rate at which work is done by the 
pressure gradient force. 
    The thermal energy Equation (1.38) can be written in more familiar form by 
noting from Equation (1.30) that 
 

1
ߩ
સ ∙ ܃ = −

1
ଶߩ
ߩܦ
ݐܦ

=
ߙܦ
ݐܦ

 

 
and that for dry air the internal energy per unit mass is given by ݁ =  ܿ௩ܶ , where 
ܿ௩(=  717Jkgିଵିܭଵ) is the specific heat at constant volume.We then obtain 
 

                 ܿ௩
ܶܦ
ݐܦ

+ 
ߙܦ
ݐܦ

=  (1.40)                                                              ܬ
 
which is the usual form of the thermodynamic energy equation. Thus the first law 
of thermodynamics indeed is applicable to a fluid in motion. The second term 
on the left, representing the rate of working by the fluid system (per unit mass), 
represents a conversion between thermal and mechanical energy. This conversion 
process enables the solar heat energy to drive the motions of the atmosphere. 
       Now we discuss thermodynamics of the dry atmosphere ,Taking the total 
derivative of the Equation of state (1.14), we obtain 
 


ߙܦ
ݐܦ

+ ߙ
ܦ
ݐܦ

 = ܴ
ܶܦ
ݐܦ

 
 
Substituting for ݐܦ/ߙܦ in Equation (1.40) and using ܿ  =  ܿ௩  +  ܴ, where  
ܿ (= 1004 Jkgିଵ Kିଵ) is the specific heat at constant pressure, we can rewrite the 
first law of thermodynamics as 
 

ܿ
ܶܦ
ݐܦ

− ߙ
ܦ
ݐܦ

=   (1.41)                                                             ܬ
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Dividing through by ܶand again using the equation of state, we obtain the entropy 
form of the first law of thermodynamics: 
 

ܿ
ܦ lnܶ
ݐܦ

− ܴ
ܦ ln 
ݐܦ

=
ܬ
ܶ
≡
ݏܦ
ݐܦ

                                       (1.42) 
 
Equation (1.42) gives the rate of change of entropy per unit mass following the 
motion for a thermodynamically reversible process.A reversible process is one in 
which a system changes its thermodynamic state and then returns to the original 
state without changing its surroundings. For such a process the entropy s defined 
by Equation (1.42) is a field variable that depends only on the state of the fluid. 
Thus  ݏܦ is a perfect differential, and ݐܦ/ݏܦ is to be regarded as a total derivative. 
However, “heat” is not a field variable, so that the heating rate ܬ is not a total 
derivative. 
      In the following we present, Potential Temperature For an ideal gas undergoing 
an adiabatic process (i.e., a reversible process in which no heat is exchanged with 
the surroundings), the first law of thermodynamics can be written in differential 
form as 
 

ܿܦ lnܶ − ܦܴ ln  = ൫ܿܦ ln ܶ − ܴ ln ൯ = 0 
 
Integrating this expression from a state at pressure  and temperature ܶ to a state 
in which the pressure is ௦ and the temperature is ߠ, we obtain after taking the 
antilogarithm 
 

ߠ       = ோ/(/௦)ܶ                                                                    (1.43) 
 
This relationship is referred to as Poisson’s equation, and the temperature 
 is simply the ߠ .defined by Equation(1.43) is called the potential temperature ߠ
temperature that a parcel of dry air at pressure p and temperature ܶ would have if it 
were expanded or compressed adiabatically to a standard pressure ௦ (usually 
taken to be 1000 hPa). Thus, every air parcel has a unique value of potential 
temperature, and this value is conserved for dry adiabatic motion. Because 
synoptic scale motions are approximately adiabatic outside regions of active 
precipitation, ߠ is a quasi-conserved quantity for such motions. Taking the 
logarithm of Equation (1.43) and differentiating, we find that 
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                    ܿ
ܦ lnߠ
ݐܦ

= ܿ
ܦ ln ܶ
ݐܦ

− ܴ
ܦ lnܶ
ݐܦ

                              (1.44) 
 
Comparing  Equation(1.42) and Equation (1.44), we obtain 
 

                           ܿ
ܦ lnߠ
ݐܦ

=
ܬ
ܶ

=
ݏܦ
ݐܦ

                                             (1.45) 
 
Thus, for reversible processes, fractional potential temperature changes are indeed 
proportional to entropy changes. A parcel that conserves entropy following the 
motion must move along an isentropic (constant ߠ) surface. 
      Now we studyThe Adiabatic Lapse Rate,A relationship between the lapse rate 
of temperature (i.e., the rate of decrease of temperature with respect to height) and 
the rate of change of potential temperature with respect to height can be obtained 
by taking the logarithm of Equation (1.43) and differentiating with respect to 
height. Using the hydrostatic equation and the ideal gas law to simplify the result 
gives 
 

ܶ
ߠ
ߠ߲
ݖ߲

=
߲ܶ
ݖ߲

+
݃
ܿ

                                                       (1.46) 

 
 
For an atmosphere in which the potential temperature is constant with respect to 
height, the lapse rate is thus 
 

−
݀ܶ
ݖ݀

=
݃
ܿ
≡  (1.47)                                                ݀߁

 
Hence, the dry adiabatic lapse rate is approximately constant throughout the lower 
atmosphere. 
    Now we illusterate,The Static Stability If potential temperature is a function of 
height, the atmospheric lapse rate, ߁ ≡ − డ்

డ௭
 , will differ from the adiabatic lapse 

rate and 
 

ܶ
ߠ
ߠ߲
ݖ߲

= Γ݀ − Γ                                                  (1.48) 
 
If ߁ <  increases with height, an air parcel that undergoes an adiabatic ߠ so that ݀߁
displacement from its equilibrium level will be positively buoyant when displaced 
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downward and negatively buoyant when displaced upward so that it will tend to 
return to its equilibrium level and the atmosphere is said to be statically stable or 
stably stratified. Adiabatic oscillations of a fluid parcel about its equilibrium level 
in a stably stratified atmosphere are referred to as buoyancy oscillations. The 
characteristic frequency of such oscillations can be derived by considering a parcel 
that is displaced vertically a small distance ݖߜ without disturbing its environment. 
If the environment is in hydrostatic balance, ߩ݃ =  ߩ  and where ,ݖ݀/݀− 
are the pressure and density of the environment. The vertical acceleration of the 
parcel is 
 
 

ݓܦ
ݐܦ

=
ଶܦ

ଶݐܦ
(ݖߜ) = −݃ −

1
ߩ
߲
ݖ߲

                                        (1.49) 

 
 
where  and ߩ are the pressure and density of the parcel. In the parcel method it is 
assumed that the pressure of the parcel adjusts instantaneously to the 
environmental pressure during the displacement:  =  . This condition must be 
true if the parcel is to leave the environment undisturbed. Thus with the aid of the 
hydrostatic relationship, pressure can be eliminated in Equation (1.49) to give 
 

ଶܦ

ଶݐܦ
(ݖߜ) = ݃ ൬

ߩ − ߩ
ߩ

൰ = ݃
ߠ
ߠ

                                      (1.50) 

 
Where Equation (1.43) and the ideal gas law have been used to express the 
buoyancy force in terms of potential temperature. Here ߠ designates the deviation 
of the potential temperature of the parcel from its basic state (environmental) value 
= ݖ If the parcel is initially at level .(ݖ)ߠ  0 where the potential temperature is 
 we can represent the environmental ݖߜ (0), then for a small displacementߠ
potential temperature as 
 

(ݖߜ)ߠ ≈ (0)ߠ +  ݖߜ(ݖ݀/ߠ݀)
 
 
If the parcel displacement is adiabatic, the potential temperature of the parcel is 
conserved. Thus, (ݖߜ)ߠ  = (0)ߠ   − (ݖߜ)ߠ   =  and Equation ,ݖߜ(ݖ݀/ߠ݀)− 
(1.50) becomes 
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ଶܦ

ଶݐܦ
(ݖߜ) = −ܰଶ(1.52)                                          ݖߜ 

Where 
 

ܰଶ = ݃
݀ ln ߠ
ݖ݀

 
 
is a measure of the static stability of the environment. Equation (1.51) has a 
general solution of the form ݖߜ = Therefore, if ܰଶ .(ݐܰ݅)ݔ݁ܣ   >  0, the parcel 
will oscillate about its initial level with a period ߬ =  The corresponding .ܰ/ߨ2 
frequency ܰ is the buoyancy frequency.3 For average tropospheric conditions,ܰ ≈
 1.2 × 10ିଵ ିݏଵ so that the period of a buoyancy oscillation is about 8 min. In the 
case of ܰ =  0, examination of Equation (1.51) indicates that no accelerating force 
will exist and the parcel will be in neutral equilibrium at its new level. However, if 
ܰଶ <  0 (potential temperature decreasing with height) the displacement will 
increase exponentially in time.We thus arrive at the familiar gravitational or static 
stability criteria for dry air: 

 
< ݖ݀/0ߠ݀  0  statically stable, 

 
= ݖ݀/0ߠ݀   0 statically neutral, 

 
> ݖ݀/0ߠ݀     0 statically unstable. 

 
On the synoptic scale the atmosphere is always stably stratified because any 
unstable regions that develop are stabilized quickly by convective overturning. 
    In the following we study,Scale Analysis of the Thermodynamic Energy 
Equation If potential temperature is divided into a basic state ߠ(ݖ) and a deviation  
,ݕ,ݔ)ߠ ,ݖ   ݐ so that the total potential temperature at any point is given by( ݐ
௧௧ߠ = (ݖ)ߠ   + ,ݔ)ߠ   ,ݕ ,ݖ  the first law of thermodynamics Equation (1.4 5) ,( ݐ
can be written approximately for synoptic scaling as 
 

1
ߠ
൬
ߠ߲
ݐ߲

+ ݑ
ߠ߲
ݔ߲

+ ݒ
ߠ߲
ݕ߲
൰ + ݓ

݀ ln ߠ
ݖ݀

=
ܬ
ܿܶ

                                   (1.52) 

 
where we have used the facts that for |ߠ/ߠ|  ≪ |ݖ݀/ߠ݀|,1  ≪  and , ݖ݀/ߠ݀
 

lnߠ௧௧ = ln[ߠ(1 + [(ߠ/ߠ ≈ ln ߠ +  ߠ/ߠ
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Outside regions of active precipitation, diabatic heating is due primarily to net 
radiative heating. In the troposphere, radiative heating is quite weak so that 
typically ܬ/ܿ ≤ 1 ℃dିଵ (except near cloud tops, where substantially larger 
cooling can occur due to thermal emission by the cloud particles). The typical 
amplitudeof horizontal potential temperature fluctuations in a midlatitude synoptic 
system (above the boundary layer) is ߠ ∼  4°C. Thus, 
 

ܶ
ߠ
൬
ߠ߲
ݐ߲

+ ݑ
ߠ߲
ݔ߲

+ ݒ
ߠ߲
ݕ߲
൰~

ܷߠ
ܮ

 ~4℃dିଵ   

 
The cooling due to vertical advection of the basic state potential temperature 
(usually called the adiabatic cooling) has a typical magnitude of 
 

ݓ ൬
ܶ
ߠ
ߠ݀
ݖ݀

൰ = ݀߁)ݓ −  ଵି݀℃4~(߁

 
where ݓ ∼  1 cm ିݏଵ  and  ݀߁ −  the difference between dry adiabatic and,߁
actual lapse rates, is ∼  4°C k݉ିଵ. Thus, in the absence of strong diabatic heating, 
the rate of change of the perturbation potential temperature is equal to the adiabatic 
heating or cooling due to vertical motion in the statically stable basic state, and  
Equation(1.52) can be approximated as 
 

൬
ߠ߲
ݐ߲

+ ݑ
ߠ߲
ݔ߲

+ ݒ
ߠ߲
ݕ߲
൰ + ݓ

ߠ݀
ݖ݀

≈ 0                                           (1.53) 

 
Alternatively, if the temperature field is divided into a basic state ܶ(ݖ) and a 
deviation ܶ (ݕ,ݔ, ,ݖ ߠ/ߠ then since ,( ݐ ≈ ܶ/ ܶ , Equation (1.53) can be expressed 
to the same order of approximation in terms of temperature as 
 

൬
߲ܶ
ݐ߲

+ ݑ
߲ܶ
ݔ߲

+ ݒ
߲ܶ
ݕ߲
൰ + ݀߁)ݓ − (߁ ≈ 0                                       (1.54) 
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Chapter(2) 

Meteorology and Weather Prediction 

and Atmosphere 
Section (2.1): The Scientific Problem of Weather Prediction  

      the atmosphere is an approximately spherical thin gaseous shell about the earth, 
some 13, 000 km in diameter, with 50% of its mass below  5 ଵ

ଶ
 - km above the 

surface, and  90%  of its mass below  16 km.  In the mean it is rotating with the 
earth, although in both Northern and Southern Hemispheres in middle latitudes so-
called jet streams at about  10 km  completely circle the poles as ever-present vast 
vortices. The jet streams are westerly and slowly undulate north and south in up to 
5 or so very long waves. These waves of planetary scale strongly influence the 
development and motion of systems of smaller scale, and vice versa. 
      Numerical weather prediction at present deals principally with the prediction 
Of large cyclonic storms and anticyclones, which are several hundred to several 
thousand kilometers across, somewhat smaller in scale than the planetary waves. 
Because of interactions among scales both this storm scale and the planetary Scale 
must be explicitly predicted.  Likewise the effects of even smaller scales must in 
some way be accounted for to gain maximum achievable forecast skill. This is 
done by including in the equations turbulence, diffusion, and friction Terms and 
other supplementary numerical processes.  In writing the equations below, we do 
not show these terms and processes explicitly, but indicate them with appropriate 
symbols. 
    Newton's second law of motion 

ݑ߲
ݐ߲

+ ݑ
ݑ߲
ݔ߲

+ ݒ
ݑ߲
ݕ߲

+ ݓ
ݑ߲
ݖ߲

− ݒ݂ +
1
ߩ
߲
ݔ߲

= ௫ܨ                (2.1a) 

ݒ߲
ݐ߲

+ ݑ
ݒ߲
ݔ߲

+ ݒ
ݒ߲
ݕ߲

+ ݓ
ݒ߲
ݖ߲

+ ݑ݂ +
1
ߩ
߲
ݕ߲

=  ௬               (2.1b)ܨ

                 ݃ +
1
ߩ
߲
ݖ߲

= 0                                          (2.1c) 

 

 



39 
 

First law of thermodynamics 

௩ܥ                                           ቂ
డ்
డ௧

+ డ்
డ௫

+ ݒ డ்
డ௬

+ ݓ డ்
డ௭
ቃ             

+                    ቂడఘ
షభ

డ௧
+ ݑ డఘషభ

డ௫
+ ݒ డఘషభ

డ௬
+ ݓ డఘషభ

డ௭
ቃ =  (2.1d)                 ܪ

Conservation of mass 

ߩ߲
ݐ߲

+
ݑߩ߲
ݔ߲

+
ݒߩ߲
ݕ߲

+
ݓߩ߲
ݖ߲

= 0                                              (2.1e) 

 Conservation of water vapor 

ݍ߲
ݐ߲

+ ݑ
ݍ߲
ݔ߲

+ ݒ
ݍ߲
ݕ߲

+ ݓ
ݍ߲
ݖ߲

=  (2.1f)                                           ܧ

Equation of state for perfect gases 

  pିߩଵ  = RT                                                  (2.1g) 
 
where t is time and the known (time independent) variables are 

,ݔ                horizontal Cartesian coordinates                                        ݕ
 
 height above mean sea level                                          ݖ                
 
                ݂                                          Coriolis parameter 
 
                ݃                                          acceleration of gravity 
 
                ܿ௩                                          specific heat of air at constant volume 
 
                ܴ                                           gas constant for air 
 

 and the unknown (time-dependent ) variables are 
 

,ݔ                                    ݓ,ݒ,ݑ                     ,ݕ  components of velocity vector-ݖ
 
 density                                           ߩ                     
 
                      ܲ                                           pressure 
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                      ܶ                                          temperature 
 
 specific humidity                                          ݍ                      
 

௫ܨ  and ܨ௬  are accelerations due to friction, and drag of topography. ܪ is heat added 
to the system by radiation, transfer from earth and eoceans, and condensation and 
evaporation. ܧ is evaporation (positive) into the atmosphere and condensation 
(negative) of water vapor. The Coriolis forces, ݂ݒ and −݂ݑ are apparent forces due 
to earth's rotation. Equation (2.1c) states the hydrostatic condition, i. e., that 
pressure at agiven point equals the weight of air above the point. On the storm 
scale and larger, the ratio of gravitational acceleration g to vertical acceleraterms 
that are neglected is about 107, so it is a very accurate approximation; 
Note that these equations are in cartesian coordinates, and thus do not account 
for the spherical shape of the earth and atmosphere. In practice additional, 
so-called metrical, terms must be included, but they are not necessary for 
my purpose here, which is merely to illustrate the nature of the computations 
that need be done.     
     Now, these equations are for a continuous medium, but our computers are 
digital. They therefore can be integrated only by numerical estimate. Similarly, the 
derivatives in space cannot be evaluated except by estimations. 
In effect, then, we do not integrate these partial differential equations, but 
rather solve a set of albegraic so-called partial difference equations whose 
solution we think approximates the integrals. 
 The most common way to approach the problem today is to approximate the 
derivatives in space and time with finite-difference ratios.we should mention, 
however, that there is a trend toward use of orthogonal functions, such as spherical 
harmonics, for estimating the partial derivatives in space. 
       In order to be concrete in illustrating the computations, and still keep the 
equations and discussion within reasonable bounds, we will here consider a 
simplified set. The equations (2.1) are thus reduced to the shallow water equations. 
As written below, the terms containing the effects of very small scale, as well as 
heat and evaporation, are omitted 
 

ݑ߲
ݐ߲

+ ݑ
ݑ߲
ݔ߲

+ ݒ
ݑ߲
ݕ߲

− ݒ݂ + ݃
߲ℎ
ݔ߲

= 0                                              (2.2a) 

 
ݒ߲
ݐ߲

+ ݑ
ݒ߲
ݔ߲

+ ݒ
ݒ߲
ݕ߲

+ ݑ݂ + ݃
߲ℎ
ݕ߲

= 0                                              (2.2b) 
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߲ℎ
ݐ߲

+ ݑ
߲ℎ
ݔ߲

+ ݒ
߲ℎ
ݕ߲

+ ℎ ൬
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲
൰ = 0                                            (2.2c) 

 
where ݑ and ݒ are the vertically mass-averaged horizontal velocity components, 
and ℎ is a scalar whose gradient times g is the vertically mass-averaged pressure 
force . In practice, ℎ is reduced by a factor of about 4, to bring the behavior of 
planetary waves into correspondence with those of the atmosphere.The wind 
components are interpreted as ݑ and ݒ on the  50 kPa  isobaric surface,and ℎ is 
interpreted as the height of that surface. The   50 kPa  surface is roughly at the half-
mass level; about half the mass of the atmosphere is above it, and about half below 
it the set (2) of Equations is referred to by meteorologists as the barotropic model. 
Considering their simplicity, theygive a remarkably good prediction of the wind 
field at about  5 1/2 km, from which valuable inferences about surface weather can 
be made by experienced meteorologists. The first skillful numerical weather 
predictions were made during the 1950' s with such a model.  
     In practice, ݒ ,ݑ, and ℎ are given initially on a regular square grid of points in ݔ 
and ݕ, and their subsequent values are predicted on the same array. Let ∆ be the 
spacing between grid points, the same in each dimension, ݔ and ݕ. Let ∆ݐ be the 
time step used to approximate the partial derivatives in time. Let ݅, ݆, ݇ be the 
serial numbers of points in the ݐ ,ݕ ,ݔ-dimensions, respectively.That is, ݔ = ݅∆, 
ݕ = ݐ , ∆݆ =  For convenience and economy in writing we introduce a .ݐ∆݇
symbolism for finite-difference ratios:  
 

ଶ୲ݑ =
୧,୨,୩ାଵݑ − ୧,୨,୩ିଵݑ

2∆t
≅
ݑ߲
∂t

                                               (2.3a) 
 

ଶ௫ݑ   =
୧ାଵ,୨,୩ݑ − ୧ିଵ,୨,୩ݑ

ݔ∆2
≅
ݑ߲
ݔ߲

                                            (2.3b) 
 

ଶ௬ݑ =
୧,୨ାଵ,୩ݑ − ୧,୨ିଵ,୩ݑ

ݕ∆2
 ≅

ݑ߲
ݕ߲

                                           (2.3c) 

 
and similarly for the dependent variables v and h. Replacing the derivatives 
in equations (2.2) with these approximations, we get 
 

ଶ୲ݑ + ଶ௫ݑݑ + ଶ௫ݑݒ − ݂ݒ + ݃ℎଶ௫ = 0                                        (2.4a) 
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ଶ௧ݒ + ଶ௫ݒݑ + ଶ௬ݒݒ + ݑ݂ + ݃ℎଶ௬ = 0                                        (2.4b) 
 
 

ℎଶ୲ + ℎଶ௫ݑ + ℎଶ௬ݒ + ℎ൫ݑଶ௫ + ଶ௬൯ݑ = 0                                        (2.4c) 
 
We note that in the equations (2.4) with the symbols defined as in equations (2.3) 
all of the terms except the first can be evaluated with values of ݒ, ݑ , ℎ at the 
current time step, ݇. We can therefore easily find ݑଶ୲,  ଶ୲,ℎଶ୲ and knowing theݒ
valuesattime step ݇ − ݅, we can find ݒ ,ݑ, ℎ at time step ݇ + ݈. We then march 
forward in time, repeating the process until the desired forecast period is reached. 
The approximations (2.3) are called centered differences, not involving values 
at ݅, ݆,݇ Because of the centered differences in time, at the start of the prediction, 
fields of the dependent variables are required at two time steps (݇ = 0 and ݇ = ݈). 
Common practice is to input values for time step zero and generate the values for 
time step one by replacing ݑଶ୲ with 
 

୧,୨,ଵݑ − ୧,୨,ݑ
∆t

 
 
and similarly for v and h. The steps in time cannot be repeated using such 
approximations, however, because the resulting computational system would 
be unstable, with exponential growth of energy. This can easily be shown by linear 
analysis. 
     Linear analysis also shows that ∆t cannot be chosen arbitrarily, but must be 
related to ∆ by 
 
                                                     ∆t <∆/c 
 
otherwise exponential growth rates would be encountered in the solution. 
The quantity c is the magnitude of largest signal velocity, taken to be the 
sum of the wind speed and the speed of propagation of gravity waves, 
 

ܿ = ඥݑଶ + ଶݒ + ඥgℎ 
 
For our applicationඥgℎ ≅ 140msିଵ and  √ݑଶ + ଶݒ < 100msିଵ, so that 
 

ܿ < 240 msିଵ 
 
The leading terms in the equations of motion (2.la) and (2.lb) tend actually to 
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be smaller than the coriolis and pressure force.Thus, 

≅     ݒ                                                       ଵ


ப୮
ப௫

 

≅       ݑ                                                    ଵ


ப୮
ப௬

 

The vector thus defined is called the geostrophic wind. 
 For initial conditions, independent analyses of wind and pressure fields not only 
must be quasi geotropically related, but also should exhibit a rather delicate, even 
subtle, balance with each other.Otherwise, large spurious oscillations of a 
gravitational nature would occur in the solution, and even more serious errors 
might result. The subtle balances involved can only be expressed in terms of 
solutions of differential equations.The balances are sufficiently subtle that errors in 
the observations mask them.This whole problem is called the initialization problem 
and is not fully solved yet. 
      Particularly in the tropical regions and in summer in the temperate zones, 
small scale vertical overturning results in mixing of momentum, heat, and 
moisture, which modifies the vertical structure of the atmosphere over large areas.                                          
The individual cells are far too small to be carried explicitly in the net of grid 
points, and their mechanics are at least as complicated as the large-scale systems. 
To account for their effect on the large-scale systems, they are parameterized.That 
is to say, attempts are made to relate them to the larger scale fields of variables that 
are explicitly carried. Radiation effects are also important, both the short-wave 
radiation received from the sun, and the long-wave radiation emitted by earth and 
atmosphere. the calculations are far too many for an operational model, which 
must meet rather strict deadlines for completion. Simpler versions of the radiation 
equation must suffice for operational models. 
        Radiation effects should account for the high albedo of clouds and snow and 
ice cover as well as the more constant variations of albedo over continents and 
oceans.It is a tricky business to design an abbreviated version of the radiation 
calculations in order to get as much benefit as possible with as little calculation as 
possible. 
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                                                            Figure (2.1) 
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Figure (2.2) 
 

Section (2.2): Meteorology and Weather Prediction 
 
        In this section we deal with the impact of mathematics on meteorology and 
weather prediction, and we start with some simple model of weather. The shallow 
water equations on a domain of ℝଶ, with local Cartesian coordinates (ݔ,  and ,(ݕ
rotating with constant angular frequency ݂ 2⁄ , are  

ݑܦ
ݐܦ

− ݒ݂ + ݃
߲ℎ
ݔ߲

 = 0,
ݒܦ
ݐܦ

+ ݑ݂ + ݃
߲ℎ
ݕ߲

 = 0,                (2.5) 
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ℎܦ
ݐܦ

+ ℎ∇ ∙ ݑ = 0,                                                        (2.6) 

Whereݐdenotes time, ݃ is the acceleration due to gravity (a constant) and h(ݔ, ,ݕ  (ݐ
is the depth of the fluid.The horizontal velocity has two components 
 u(ݕ,ݔ, (ݐ =  and the Lagrangian, or material, derivative is ,(ݒ,ݑ)
 

                       
ܦ
ݐܦ

=
߲
ݐ߲

+ ݑ ∙ ∇ .                                                          (2.7) 

The Lagrangian derivative represents the rate of change of a dependent variable as 
we "follow the flow"; i.e. it is a directional derivative along the trajectory of fluid 
particle.The derivative u∙ ∇ is often referred to as the advection, or transport, term. 
 If any variable ܣ(ܺ, ܣܦ satisfies(ݐ ∕ = ݐܦ  0, then we say that ܣ(ܺ,  is (ݐ
conserved in the Lagrangian sense. Such conservation laws are of fundamental 
importance in meteorology and oceanography. The so-called semi-geostrophic 
equations amount to following approximation to the shallow water equations 
 

ݑܦ
ݐܦ

− ݒ݂ + ݃
߲ℎ
ݔ߲

= 0,
ݒܦ
ݐܦ

+ ݑ݂ + ݃
߲ℎ
ݕ߲

= 0,                     (2.8) 

                              
ℎܦ
ݐܦ

+ ℎ∇ ∙ ݑ = 0,                                                        (2.9) 

Whereݑ and ݒ are the two components of the geostrophic wind 
  

݃∇ℎ =  (ݑ݂−, ݒ݂)
 
The geostrophic flow is parallel to contours of constant ℎ (in the context of the 
Navier-Stokes equations on a rotating domain, the geotropic flow is parallel to the 
isobars of constant pressure).  The difference between the shallow water equations 
and the semi-geotropic equations is the replacement of the fluid velocity (ݒ,ݑ) 
with the geostrophic wind ൫ݑ,  ൯ in the Lagrangianderivatives of u and v, whileݒ
leaving the derivative operator (2.7) and the continuity equation (2.9) unchanged. 
 This is known as the geotropic momentum approximation, and it applies to flows 
in which the rate of change of momentum is much smaller than the Coriolis force. 
The adverting velocity (that is, the velocity appearing in the Lagrangian 
Derivative ݑ ∙  .is not approximated in semi-geostrophic theory (ߘ
 The incorporation of two velocity fields reects the fact that many atmospheric 
flows, such as jet streams and fronts, have two distinct length scales (for example, 
a weather front is a relatively sharp discontinuity between air masses, but fronts 
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extend to distances of the order of  1000km  along the interface between air 
masses). In essence, the geostrophic momentum approximation tells us that it 
isimportant to represent the adverting velocity accurately, while the quantity being 
advected (e.g.the geostrophic wind) can be approximated.  
The geostrophic momentum approximation is now well understood from the point 
of view of Hamiltonian mechanics: the canonical momentum is approximated, 
while the velocity ̇ݍ is unchanged. 
Equations (2.8) and (2.9) conserve energy and the following form of potential 
vortices 

ݍ =
1
ℎ
ቆ݂ +

ݒ߲
ݔ߲

−
ݑ߲
ݕ߲

+
1
݂
߲൫ݑ, ൯ݒ
,ݔ)߲ (ݕ ቇ                                        (2.10) 

 
In atmospheric dynamics (with thermodynamics included), potential vortices is 
proportional to the vector dot product of vortices and stratification that, following 
the flow, can only be changed by diabatic or frictional processes. 
 Potential vorticity is a fundamental conceptfor understanding the generation of 
vorticity in cyclogenesis (the birth and development ofa cyclone), especially along 
the polar front, and in analyzing flow in the ocean. The use of potential vortices 
played a key role as a diagnostic in understanding the evolution of Hurricane 
Sandy. 
       The semi-geostrophic equations have played a major role in understanding the 
formation Of fronts (frontogenesis), and the properties of the equations that 
facilitate such studies arerevealed through a transformation of coordinates. 
Defining new coordinates (sometimes calledgeostrophic momentum coordinates) 
 

ܺ ≡ (ܺ,ܻ) ≡ ൬ݔ +
ݒ
݂

ݕ, −
ݑ
݂
൰ ,                                 (2.11) 

We find that (2.8) may be replaced by 

       
ܺܦ
ݐܦ

= ݑ ≡ ൫ݑ,  ൯                                                 (2.12)ݒ
 
Hence the motion in these transformed coordinates is exactly geostrophic. The 
Jacobian isproportional to the potential vorticity (cf. (2.10)) 
 

߲(ܺ,ܻ)
,ݔ)߲ (ݕ

=
ℎ݃
݂

                                                          (2 .13) 

 
The vector  ܺ  may be  expressed as the gradient of a scalar function P(x), 
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ܺ = ൬
߲ܲ
ݔ߲

,
߲
ݕ߲
൰ ,                                                            (2.14) 

 
which, to within an arbitrary additive constant, is uniquely defined by 
 

ܲ(ܺ, (ݐ =
1
2

ଶݔ) + (ଶݕ +
݃ℎ(ܺ, (ݐ
݂ଶ

                              (2.15) 

 
We note, using ݃∇ℎ = ൫݂ݒ,−݂ݑ൯ together with (2.11) and (2.15), that (2.13) has 
the form of aMonge-Ampèere equation for P, given ݔ)ݍ, ,ݕ  and suitable (ݐ
boundary conditions 

ݍ =
݂
ℎ
൫ ௫ܲ௫ ௬ܲ௬ − ௫ܲ௬

ଶ ൯                                            (2.16) 
 
When the Jacobian (2.13) is non-singular, we express x(X) by introducing a scalar 
function R(X): 

               ܺ = ൬
߲ܴ
߲ܺ

 ,
߲ܴ
߲ܻ
൰ ,                                        (2.17) 

 
where R is given to within an additive constant by 
 

    ܴ(ܺ) = ܺ ∙ ܺ − ܲ(ܺ)                                      (2.18) 
 
(time is a parameter in this transformation). Equation (2.14) is the expression for 
the Legendre transformation between R(X) and P(x).The semi-geostrophic 
equations can be integrated in time using the conservation of potential vorticity, 
expressed in geostrophic momentum coordinates. We write the reciprocal of 
thePotentialvorticity, ିݍଵ, as 
 

,ܺ)ݍ  ଵି(ݐ ≡ ,ܺ)ߩ (ݐ = (,௧)


(ܴܴ − ܴଶ ).                              (2.19) 
 

This may be expressed solely in terms of the geostrophic momentum coordinates 
by defining ∅(ܺ, (ݐ = (,௧)

మ
 and ∅(ܺ, (ݐ = ଵ

ଶ
(ܺଶ + ܻଶ) − ܴ(ܺ, ,(ݐ then we note 

 
∂Φ
∂X

=
∂∅
∂x

= X − x ,
∂Φ
∂Y

=
∂∅
∂y

= Y − y ∙ 

 
Hence(3.19) may be written 
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,ܺ)ߩ (ݐ =
݂
݃
ቆΦ −

1
2

ଶߔ) + Φ
ଶ)ቇ ฬݏݏ݁ܪ ൬

1
2

(ܺଶ + ܻଶ) − Φ൰ฬ, 

where Hess(⋅) is the hessian matrix of the second derivatives of ∙with respect to X,Y 
.We can show that ߩ satisfies 

ߩ߲
ݐ߲

+ ܺ̇
ߩ߲
߲ܺ

+ ܻ̇
ߩ߲
߲ܻ

= 0                                (2.20) 
Where 

ܺ̇ = ݂ ൬
߲ܴ
߲ܻ

− ܻ൰ ,ܻ = −݂ ൬
߲ܴ
߲ܺ

− ܺ൰                               (2.21) 
 
The integration begins by solving the dual Monge-Amp_ere equation (2.19) for R, 
and thenusing R in (2.21) to determine the advecting velocities, which are in turn 
used to update ߩvia (2.20). Equations (2.21) can be expressed in Hamiltonian 
form: 

ܺ̇ = −݂
ߔ߲
߲ܻ

 , ܻ̇ = ݂
ߔ߲
߲ܺ 

 . 
 
The semi-geostrophic equations involve two important types of geometry: 
symplecticgeometry associated with the Hamiltonian structure, and contact 
geometry associated with theLegendre transformation. These two geometries also 
play a fundamental role in the theory of the Monge-Ampère equation and, in turn, 
relate to complex geometries, such as Käahler geometry. The transformation 
properties of the semi-geostrophic equations can be understood within the context 
of hyper-Käahler geometry, and this geometry has been exploited in the study of a 
much broader class of models of cyclones .The emergence of a complex structure, 
which at first sight is somewhat surprising givenThe classical nature of the fluid 
mechanics, occurs when the Monge-Ampère equation (2.16) is elliptic. This 
equation is elliptic when q > 0. The ellipticity is related to a convexity condition 
On the energy and to the stability of the flow . The total energy, which is 
conserved by the shallow water equations (2.5), (2.6), is 
 

ܧ = න(
1
2

ଶݑ) + (ଶݒ +
1
2
݃ℎ)ℎ݀(2.22)                        . ݕ݀ݔ 

 
This is a functional of u; v and h, and the conditions for E to be minimized 
corresponds to the stability of a geostrophic flow, viewed as a solution of the 
unapproximated equations, to perturbations of the form 
 



50 
 

ݑߜ = , ݕߜ݂ ݒߜ = , ݔߜ݂− ∇ ∙ ,ݔߜ) (ݕߜ = 0.          (2.23) 
 
The second variation of  E is greater than zero when the  Hessian  matrix  of  the 
Legendre function P is positive. This corresponds to the ellipticity of theMonge-
Ampère equation (2.16).Introducing momentum coordinates,  (ܺᇱ,ܻᇱ),via  
,ݑ) (ݒ ≡ ݕ)݂ − ܻᇱ,ܺᇱ − ߪߜ wecan show that the perturbations (2.23) imply , (ݔ =
0, wher 

ߪ = ℎ
,ݔ)߲ (ݕ
߲(ܺᇱ,ܻᇱ)

 .                                                                      (2.24) 

 
If we define a distance ݀(ܺ,ܺᇱ) between x and ܺ′ such that 
 

݀ଶ = ݂ଶ((ܺᇱ − ଶ(ݔ + (ܻᇱ −  ,(ଶ(ݕ
 
then the energy functional can be rewritten 
 

ܧ = න(
1
2
݀ଶ(ܺ,ܺᇱ) +

1
2
݃ℎ)ℎ݀(2.25)                                   . ݕ݀ݔ 

 
The proof that E can be uniquely minimized is established by showing that, given 
 as a non-negative function of the momentum coordinates, there is a unique ߪ
mapping from (ܺᇱ ,ܻᇱ) to (ݔ,  that minimizes E and satisfies (2.24).This is the (ݕ
starting point for expressing the energy minimization as a Monge optimal mass 
transport problem. Utilizing theorems on the regularity of solutions of the Monge-
Ampère equation, together with optimal mass transport theory, it has been shown 
that the semi-geostrophic equations can be integrated for large times from suitable 
initial data. 
 
 Section (2.3): The Physics of the Atmosphere 
 
       Let's consider the momentum equation for a unit volume of fluid whose 
density is ߩ and moving with speed v on a slowly and uniformly rotating planet. 
 

ݒ݀
ݐ݀

= ߗ2− × ݒ −
1
ߩ

+ ݃ +  (2.26)                                  ݒ∆ݒ

Here  denotes the total derivative that is also named material derivative, or 
substantialderivative, or Lagrangian derivative. Some author refers to itas 
convective derivative; anyway, since the adjective convective means a typical 
processfor the energy transfer, that is common in the lower troposphere, it is 
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suggested to avoidthis last name.Ω is the planet angular velocity vector, p is the 
pressure field and g isthe gravity acceleration vector. Viscosity is expressed in the 
last term of the (2.26). Forthe standard atmosphere conditions at the sea level ݒ is 
about 1.510ିହ݉ଶିݏଵand for the atmosphere from the bottom up to 100 km it is so 
small that it can be considerednegligible in comparison with the other terms of the 
equation (2.26), a part from a very thinlayer of about few centimeters close to the 
Earth surface, where thevertical wind shear isvery large. In that layer the 
momentum is transferred mainly by turbulent motions and,within it, important 
processes are responsible for the exchange of properties between theatmosphere 
and the ground, soil or water. Centrifugal acceleration (ߗ × ߗ ×  due to planet(ݎ
rotation has been included in the Gravity term and it identifies the vertical 
coordinate of the reference frame where themomentum equation is studied.  The 
vector is assumed to be constant and r is thedistance vector of the air parcel with 
respect to the Earth center. It is worth to note that the equation (2.26) is a partial 
deferentialequation that in caseof incompressible homogeneous frictionless fluid 
and without Earth rotation becomes aPoisson equation for pressure field. This 
means that the pressure is a nonlocal functionof the flow configuration .  This is 
the basic results of the Eulerequations.  The Euler equations are of the hyperbolic 
form .If the friction term is added then the equations become of the parabolic form 
The addition of the Coriolis component complicates further the equations that 
make the solution more difficult to achieve. 
       An important concept adopted to describe the atmospheric systems is the mass 
con-servation which is expressed by the continuity equation. 
 

ߩ݀
ݐ݀

+ ݒ∇ߩ = 0                                                 (2.27) 
 
In this form the continuity equation states that the density of a moving parcel  
of fluidchanges if its volume varies and there are no sources or sinks of mass. 
Furthermore the equation of state of the air parcel links the thermodynamic 
variables ofthe elementary air parcel. Composing the atmosphere,at all the 
temperatures and pressure conditions which it experiences on our planet is 
verywell approximated by the ideal-gas model.  
 

 =  (2.28)                                           ܴܶߩ
 
ܴ  is the gas constant and  ܶ  is the gas absolute temperature. 
Energy conservation is a principle that gives an additional constrain to the 
atmosphericsystems state and evolution. Combining the first thermodynamic 
principle and the equation of state (2.28), to express the work done by the gas as a 



52 
 

function of pressure anddensity, for a unit mass of fluid the energy conservation 
becomes: 
 

ߟ݀
ݐ݀

= ܿ
݀ܶ
ݐ݀

−
1
ߩ
݀
ݐ݀

                                            (2.29) 

 
 
 
 

 
Figure (2.3). The reference frame moving with the air parcel. ܺ and y axes are always placed onaplane 
parallel to the plane tangent to the Earth surface in the point where the vertical axis ܼ intersects the Earth 
surface. The ݕ axis is always pointing towards the North Pole and the y axis is normal to the x one and 
pointing towards East. 
 

      Whereௗఎ
ௗ௧

 represents the diabetic contribution and ܿ is the specific heat at 
constantPressure, both per unit mass.The vectorial form of the momentum equation 
(2.26) links the causes of the motionto the acceleration and it is not the result of the 
application of anyspecific  coordinate system.When a coordinate system is selected 
for the space, the equation (2.26) is equivalent to a set of three scalar equations, 
one for each of the vector components. To applythe second principle of dynamics, 
the Newton law, it is suitable to use a reference frame moving with the air parcel, 
see figure (2.3) , where the ݔ and the ݕ axes are always placed ona plane that is 
parallel to the plane tangent to the Earth surface in the point where therow 
containing the vertical coordinate axis  ݖ intersects the Earth surface. 
Furthermorethe ݕ axis is always pointing towards the  geographic North Pole and 
the x axis is normalto the y one and it is pointing towards East. As a consequence 
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the velocity vector v has the scalar components (ݑ,  respectively belonging to (ݓ,ݒ
the (ݔ, ,ݕ  .coordinates (ݖ
       In scalar form, in the reference frame described in figure (3.3) reporting the 
latitude of the parcel ∅ and its distance R from the origin of the coordinate system, 
the momentumequations become: 
 

ݑ݀
ݐ݀

−
(∅)݊ܽݐ ݒݑ

ܴ
+
ݓݑ
ܴ

=  (∅)݊݅ݏ ݒߗ2
 

(∅)ݏܿ ݓߗ2− −
1
ߩ
߲
ݔ߲

+  ௫                          (2.30)(ݒ∆ݒ)

 

        
ݒ݀
ݐ݀

+
(∅) ଶtanݑ

ܴ
+
ݓݒ
ܴ

= −2Ωݑ sin(∅) −
1
ߩ
߲
ݕ߲

+  ௬                         (2.31)(ݒ∆ݒ)

 

           
ݓ݀
ݐ݀

−
ଶݑ + ଶݒ

ܴ
= ݑߗ2 cos(∅) −

1
ߩ
߲
ݖ߲

− ݃ +  ௭                                (2.32)(ݒ∆ݒ)

The Tate equation: 
 

                                     =  (2.33)                                                       ܴܶߩ
The continuity equation: 

                           
ߩ݀
ݐ݀

+ ∇ߩ ∙ ݒ = 0                                         (2.34)  
The energy conservation: 

                 
ߟ߲
ݐ߲

= ܥ
݀ܶ
ݐ݀

−
1
ߩ
݀
ݐ݀

                                    (2.35) 

 
Completes the set of equations which becomes closed and in principle can be 
solved forthe six unknown’s functions ݑ,  and ܶ. Note that the scalar ߩ,,ݓ,ݒ
equations (2.30), (2.31), (2.32) present the curvature terms in their left side. These 
terms arise from the acceleration produced by the rotation of the reference frame 
which has been adopted forthe description of the system. Usually these terms are 
some order of magnitude less thanthe other contributions involved in the equations, 
so in simple analytical models they areconsidered negligible.Anyway for reliable 
numerical model of the atmosphere they areincluded in the solution schemes. It is 
also worth to note that the Coriolis acceleration acts along the vertical axis 
too,Look at the term  2ݑߗ cos (∅) in equation (2.32). Its contribution makes a 
bodies movingtowards east lighter and those moving toward west heavier than the 
bodies at rest, see figure (2.4). 
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      When constituents of the air parcel undergoes a variation of their 
concentration, for example the water vapor that escapes from the parcel volume 
because of the condensationin droplets which precipitate, or inversely there is a 
vapor increase due to the evaporationof liquid water, then sinks and sources of the 
constituents have to be considered in equation (2.34). 
      To deal with this process, a new variable is introduced , the specifichumidity q 
for example, and a new equation is added to the fundamental set to complete 
the system. The equation (2.34) still maintains its validity for the conserved 
constituents, while for the q the equation becomes: 
 

(ߩݍ)݀
ݐ݀

+ ∇(ߩݍ) ∙ ݒ =  (2.36)                                           ݏ
 
Where s is the source or the sink on non conserved constituents. 
There are some other basic equations that are useful in the physics of the 
atmosphere.In particular the radiative transfer equation: 
 

௩ܫ݀
݀߬௩

= ௩ܫ− +  ௩                                                                    (2.37)ܬ

 
where ܫ௩ is the specific radiation intensity, at frequency ݒ,  ௩ is the source functionܬ
and߬௩is the optical depth. In case in the elementary fluid parcel there are charged 
particles and the fluid movesin an area of the space affected by electromagnetic 
fields, then the Lorentz force has tobe added to equation (2.26). 
 

݂ = ݁ ቀܧ +
ݒ
ܿ

× ቁܤ                                                          (2.38) 
 
Where ݁ is the charge of the particle moving with speed ݒin the electric field ܧ and 
ina magneticfield ܤ; ܿ is the speed of light. 
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Figure (2.4). Measurements of gravity on a ship sailing in the Pacificocean. The route is reported (a) On a 
longitude-latitude box, while the gravity data are plotted as a function of the distance Covered by the ship 
(b) in arbitrary units. The parts of the route parallel to the meridians, 16 and 18 in (a) show a light gravity 
with respect to the measurements made during the westward Part of the route, 17, due to the Coriolis 
contribution to the acceleration. Figure taken from Persson(2001). 
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Chapter  (3) 

 An Application of Basic Equations and Meteorological 

 Modeling 

Section(3.1):ElementaryApplication Equations 
      In this section we deal with the basic equations in isobaric coordinates, and we 
start with the horizontal momentum equation . 

     The approximate horizontal momentum  Equations: 
 

ݑܦ
ݐܦ

= ݒ݂ −
1
ߩ
߲
ݔ߲

= ݂൫ݒ −  ൯ݒ

  and  
ݒܦ
ݐܦ

= ݑ݂− −
1
ߩ
߲
ݕ߲

= −݂൫ݑ −  ൯ݑ

 
 may be written in vectorial form as 
 

܄ܦ
ݐܦ

+ ܓ݂ × ܄ = −
1
ߩ
સ(3.1)                                                        

 
where ܄ = + ݑ݅   is the horizontal velocity vector. In order to express Equation ݒ݆ 
(3.1) in isobaric coordinate form, we transform the pressure gradient force using 
Equations(1.20) and (1.21) to obtain 
 

܄ܦ
ݐܦ

+ ܓ݂ × ܸ = −∇Φ                                                       (3.2) 
 
where સ is the horizontal gradient operator applied with pressure held constant. 
Because  is the independent vertical coordinate, we must expand the total 
derivative as 
 

                       
ܦ
ݐܦ

≡
߲
ݐ߲

+
ݔܦ
ݐܦ

߲
ݔ߲

+
ݕܦ
ݐܦ

߲
ݕ߲

+
ܦ
ݐܦ

߲
߲

                                  

 

                                    =
߲
ݐ߲

+ ݑ
߲
ݔ߲

+ ݒ
߲
ݕ߲

+ ߱
߲
߲

                                    (3.3) 
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Here ߱ ≡  is the pressure (usually called the “omega” vertical motion) ݐܦ/ܦ 
change following the motion, which plays the same role in the isobaric coordinate 
system that ݓ ≡  .plays in height coordinates ݐܦ/ݖܦ 
From Equation (3.2) we see that the isobaric coordinate form of the geostrophic 
relationship is 
 

܄ ݂  = × ܓ   સΦ                                                    (3.4) 
 

    One advantage of isobaric coordinates is easily seen by comparing Equation 
 

܄ ≡ ܓ ×
1
݂ߩ

સ 

 
 and Equation (3.4). In the latter equation, density does not appear. Thus, a given 
geopotential gradient implies the same geostrophic wind at any height, whereas a 
given horizontal pressure gradient implies different values of the geostrophic wind 
depending on the density. Furthermore, if  ݂ is regarded as a constant, the 
horizontal divergence of the geostrophic wind at constant pressure is zero: 
 

સ ∙ ܄  =  0 
 

      Now we discussThe Continuity Equation, It is possible to transform the 
continuity Equation (2.31) from height coordinates to pressure coordinates. 
However, it is simpler to directly derive the isobaric form by considering a 
Lagrangian control volume ܸߜ =  and applying the hydrostatic equation ݖߜ ݕߜ ݔߜ 
= ߜ > ߜ note that) ݖߜ݃ߩ−   0) to express the volume element as 
= ܸߜ   The mass of this fluid element, which is conserved .(݃ߩ)/ߜݕߜݔߜ− 
following the motion, is then  ܯߜ = = ܸߜߩ   ,Thus .݃/ߜݕߜݔߜ− 
 

1
ܯߜ

ܦ
ݐܦ

(ܯߜ) =
g

ߜݕߜݔߜ
ܦ
ݐܦ

൬
ߜݕߜݔߜ

g
൰ = 0  

 
After differentiating, using the chain rule, and changing the order of the differential 
operators we obtain 
 

1
ݔߜ

ߜ ൬
ݔܦ
ݐܦ
൰ +

1
ݕߜ

ߜ ൬
ݕܦ
ݐܦ
൰ +

1
ߜ

ߜ ൬
ܦ
ݐܦ
൰ = 0 

Or 
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ݑߜ
ݔߜ

+
ݒߜ
ݕߜ

+
߱ߜ
ߜ

= 0 

 
Taking the ݈݅݉݅ݕߜ,ݔߜ ݐ, → ߜ 0 and observing that ݔߜ and ݕߜ are evaluated at 
constant pressure, we obtain the continuity Equation in the isobaric system: 
 

൬
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲
൰


+
߲߱
߲

= 0                                                       (3.5) 

 
    This form of the continuity equation contains no reference to the density field 
and does not involve time derivatives. The simplicity of (3.5) is one of the chief 
advantages of the isobaric coordinate system. 
     In the following we present The Thermodynamic Energy Equation .The first 
law of thermodynamics  Equation(1.41) can be expressed in the isobaric system by 
letting ݐܦ/ܦ =  ߱ and expanding ݐܦ/ܶܦ by using Equation (3.3): 
 

ܥ ൬
߲ܶ
ݐ߲

+ ݑ
߲ܶ
ݔ߲

+ ݒ
߲ܶ
ݕ߲

+ ߱
߲ܶ
߲
൰ − ߱ߙ =                        ܬ

 
This may be rewritten as 
 

൬
߲ܶ
ݐ߲

+ ݑ
߲ܶ
ݔ߲

+ ݒ
߲ܶ
ݕ߲
൰ − ܵ߱ =

ܬ
ܥ

                                      (3.6) 

 
where, with the aid of the equation of state and Poisson’s  Equation (2.43), we 
have 
 

ܵ ≡
ܴܶ
ܥ

−
߲ܶ
߲

= −
ܶ
ߠ
ߠ߲
߲

                                (3.7) 

 
which is the static stability parameter for the isobaric system. Using Equation 
(1.48) and the hydrostatic Equation  (3.7) may be rewritten as 
 

                               ܵ = ݀߁) −  ݃ߩ/(߁
 
    Thus, ܵ is positive provided that the lapse rate is less than dry adiabatic. 
However, because density decreases approximately exponentially with height, ܵ 



59 
 

increases rapidly with height. This strong height dependence of the stability 
measure ܵ is a minor disadvantage of isobaric coordinates. 
      Now we study balanced flow Despite the apparent complexity of atmospheric 
motion systems as depicted on synoptic weather charts, the pressure (or 
geopotential height) and velocity distributions in meteorological disturbances are 
actually related by rather simple approximate force balances. In order to gain a 
qualitative understanding of the horizontal balance of forces in atmospheric 
motions, we idealize by considering flows that are steady state (i.e., time 
independent) and have no vertical component of velocity. Furthermore, it is useful 
to describe the flow field by expanding the isobaric form of the horizontal 
momentum  Equation (3.2) into its components in a so-called natural coordinate 
system. 
      Now we discuss  the Natural Coordinates The natural coordinate system is 
defined by the orthogonal set of unit vectors ܖ,ܜ, and ݇. Unit vector ݐ is oriented 
parallel to the horizontal velocity at each point; unit vector ݊ is normal to the 
horizontal velocity and is oriented so that it is positive to the left of the flow 
direction; and unit vector ܓ is directed vertically upward. In this system the 
horizontal velocity may be written ܄ =  where  , the horizontal speed, is a ܜ ܸ 
nonnegative scalar defined by ܸ ≡ ,ݕ,ݔ)ݏ where , ݐܦ/ݏܦ   is the distance along (ݐ
the curve followed by a parcel moving in the horizontal plane. The acceleration 
following the motion is thus 
 

܄ܦ
ݐܦ

=
(ܜܸ)ܦ
ݐܦ

= ܜ
ܸܦ
ݐܦ

+ ܸ
ܜܦ
ݐܦ

 
 
The rate of change of t following the motion may be derived from geometrical 
considerations with the aid of Fig. (3.1): 
 

߰ߜ =
ܵߜ
|ܴ| =

|ܜߜ|
|ܜ|

=  |ܜߜ|

 
Here ܴ is the radius of curvature following the parcel motion, and we have used 
the fact that |࢚|  =  1. By convention, R is taken to be positive when the center of 
curvature is in the positive ܖ direction. Thus, forܴ >  0, the air parcels turn toward 
the left following the motion, and for ܴ <  0 the air parcels turn toward the right 
following the motion. 
     Noting that in the limit ݏߜ →  the above ,ܖ is directed parallel to ݐߜ,0 
relationship 
yields ݏܦ/ܜܦ =  ,Thus .ܴ/ܖ 
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࢚ܦ
ݐܦ

=
࢚ܦ
ݏܦ

ݏܦ
ݐܦ

=
ܖ
ܴ
ܸ 

 
and 

     
܄ܦ
ݐܦ

= ࢚
ܸܦ
ݐܦ

+ ܖ
ܸଶ

ܴ
                                               (3.8) 

 

 
 

Fig. (3.1): Rate of change of the unit tangent vector t following the motion 
 
Therefore, the acceleration following the motion is the sum of the rate of change 
of speed of the air parcel and its centripetal acceleration due to the curvature of 
the trajectory. Because the Coriolis force always acts normal to the direction of 
motion, its natural coordinate form is simply 
 

× ܓ݂− ܄ =  ܖܸ݂−
 
whereas the pressure gradient force can be expressed as 
 

−સΦ = ܜ
߲Φ
ݏ߲

+ ܖ
߲Φ
߲݊

 
 
The horizontal momentum equation may thus be expanded into the following 
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component equations in the natural coordinate system: 
 

                                                         
ܸܦ
ݐܦ

= −
ߔ߲
ݏ߲

                                                     (3.9)  
 

                                                
ܸଶ

ܴ
+ ݂ܸ = −

ߔ߲
߲݊

                                                   (3.10)  
 
Equations (3.9) and (3.10) express the force balances parallel to and normal to 
the direction of flow, respectively. For motion parallel to the geopotential height 
contours, ߲Φ/߲ݏ = 0 and the speed is constant following the motion. If, in 
addition, the geopotential  gradient normal to the direction of motion is constant 
alonga trajectory, (3.10) implies that the radius of curvature of the trajectory is also 
constant. In that case the flow can be classified into several simple categories 
depending on the relative contributions of the three terms in (3.10) to the net force 
balance. 
     Now we study Geostrophic Flow, Flow in a straight line (R → ± ∞) parallel to 
height contours is referred to as geostrophic motion. In geostrophic motion the 
horizontal components of the Coriolis force and pressure gradient force are in 
exact balance so that V=Vg where the geostrophic wind  Vg  is defined by 

 
                                                                ݂ ܸ = −߲Φ/߲݊                                         (3.11)  

 
   This balance is indicated schematically in Fig. 3.2. The actual wind can be in 

exact geostrophic motion only if the height contours are parallel to latitude circles. 
the geostrophic wind is generally a good approximation to the actual wind in 
extratropical synoptic-scale disturbances. However,in some of the special cases 
treated later this is not true. 
    Now we study the Inertial Flow, If the geopotential field is uniform on an 
isobaric surface so that the horizontal pressure gradient vanishes, (3.10) reduces to 
a balance between Coriolis force and centrifugal force: 
 

                                                                 ܸଶ/ܴ +  ݂ܸ =  0                                     (3.12) 
 
Equation (3.12) may be solved for the radius of curvature 
 
 

ܴ =  −ܸ/݂ 
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Fig. (3.2 ): Balance of forces for geostrophic equilibrium. The pressure gradient force is designated by 
                  ܲ and the Coriolis force by ܥ 
 
Since from(3.9), the speed must be constant in this case, the radius of curvature 
is also constant (neglecting the latitudinal dependence of  f ). Thus the air parcels 
follow circular paths in an anticyclonic sense.3 The period of this oscillation is 
 

ܲ = ฬ
ߨ2
ܸ
ฬ =

ߨ2
|݂| =

1
ݕ2݀ܽ
|sin∅|                                  (3.13) 

  
 P is equivalent to the time that is required for a Foucault pendulum to turn through 
an angle of 180◦. Hence, it is often referred to as one-half  pendulum  day. 
Because both the Coriolis force and the centrifugal force due to the relative 
motion are caused by inertia of the fluid, this type of motion is traditionally 
referredto as an inertial oscillation, and the circle of radius |R| is called the inertia 
circle.It is important to realize that the “inertial flow” governed by Equation (3.12) 
is not the sameas inertial motion in an absolute reference frame.  Inthis flow the 
force of gravity, acting orthogonal to the plane of motion,keeps theoscillation on a 
horizontal surface. In true inertial motion, all forces vanish andthe motion 
maintains a uniform absolute velocity. 
In the atmosphere, motions are nearly always generated and maintained by 
pressure gradient forces; the conditions of uniform pressure required for pure 
inertial flow rarely exist. In the oceans, however, currents are often generated 
by transient winds blowing across the surface, rather than by internal pressure 
gradients. As a result, significant amounts of energy occur in currents that oscillate 
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with near inertial periods. An example recorded by a current meter near the island 
of Barbados is shown in Fig. 3.3. 
        In the following we illusterate the Cyclostrophic Flow, If the horizontal scale 
of a disturbance is small enough, the Coriolis force may be neglected in (3.10) 
compared to the pressure gradient force and the centrifugal force. The force 
balance normal to the direction of flow is then 
 

ܸଶ

ܴ
= −

߲Φ
߲݊

 
 
If this equation is solved for  , we obtain the speed of the cyclostrophic wind 
 

                                                      ܸ = ൬−ܴ
߲Φ
߲݊

൰
ଵ/ଶ

                                          (3.14) 
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Fig. (3.3):   Power spectrum of kinetic energy at 30-m depth in the ocean near Barbados (13°N). Ordinate 
                    shows kinetic energy density per unit frequency interval (cphିଵdesignates cycles per hour). 
                   This type of plot indicates the manner in which the total kinetic energy is partitioned   
                     among oscillations of different periods. Note the strong peak at 53 h, which is the period of  
                    an inertial oscillation at 13° latitude. [After Warsh et al., (1971.)  
                    Reproduced with permission of the American Meteorological Society.]           
 
     As indicated in Fig.( 3.4), cyclostrophic flow may be either cyclonicor 
anticyclonic. In both cases the pressure gradient force is directed toward the center 
of curvature, and the centrifugal force away from the center of curvature.The 
cyclostrophic balance approximation is valid provided that the ratio of the 
centrifugal force to the Coriolis force is large. This ratio V/(fR) is equivalent to 
the Rossby number discussed in Chapter one. As an example of cyclostrophic 
scale motion we consider a typical tornado. Suppose that the tangential velocity is 
30 m s−1 at a distance of 300 m from the center of the vortex. Assuming that  
 f  =10−4 s−1, the Rossby number is just  Ro = V/|fR| ≈ 103, which implies that the 
Coriolis force can be neglected in computing the balance of forces for a tornado. 
However, the majority of tornadoes in the Northern Hemisphere are observed to 
rotate in a cyclonic (counterclockwise) sense. This is apparently because they 
are embedded in environments that favor cyclonic rotation . 
Smaller scale vortices, however, such as dust devils and water spouts, do not have 
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Fig. (3.4):  Force balance in cyclostrophic flow: 
                   ܲ designates the pressure gradient and 
ܥ                     the centrifugal force. 
 
 

 
 
 
a preferred direction of rotation. According to data collected by Sinclair (1965), 
they are observed to be anticyclonic as often as cyclonic. 
      Now we studyThe GradientWind Approximation,Horizontal frictionless flow 
that is parallel to the height contours so that the tangential acceleration vanishes 
= ݐܦ/ܸܦ)  0) is called gradient flow. Gradient flow is a three-way balance among 
the Coriolis force, the centrifugal force, and the horizontal pressure gradient force. 
Like geostrophic flow, pure gradient flow can exist only under very special 
circumstances. It is always possible, however, to define a gradient wind, which at 
any point is just the wind component parallel to the height contours that satisfies 
Equation (3.10). For this reason,Equation (3.10) is commonly referred to as the 
gradient wind equation. Because Equation (3.10) takes into account the centrifugal 
force due to the curvature of parcel trajectories, the gradient wind is often a better 
approximation to the actual wind than the geostrophic wind. The gradient wind 
speed is obtained by solving Equation (3.10) for V  to yield 
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ܸ = −
݂ܴ
2

± ቆ
݂ଶܴଶ

4
− ܴ

߲Φ
߲݊

ቇ
ଵ/ଶ

 

 

                                                  = −
݂ܴ
2

± ቆ
݂ଶܴଶ

4
+ ݂ܴ ܸቇ

ଵ/ଶ

                                 (3.15) 

 
where in the lower expression Equation (3.11) is used to express ߲Φ/߲݊ in terms 
of the geostrophic wind.Not all the mathematically possible roots of  Equation  
(3.15) correspond to physically possible solutions, as it is required that  V  be real 
and nonnegative. In Table (3.1) the various roots of  Equation (3.15) are classified 
according to the signs of ܴ and ߲Φ/߲݊  in order to isolate the physically 
meaningful solutions The force balances for the four permitted solutions are 
illustrated in Fig. (3.5). Equation (3.15) shows that in cases of both regular and 
anomalous highs the pressure gradient is limited by the requirement that the 
quantity under the radical be nonnegative; that is, 
 

                                                   ห݂ ܸห = ฬ
߲Φ
߲݊

ฬ <
|ܴ|݂ଶ

4
                                         (3.16) 

 
Thus, the pressure gradient in a high must approach zero as |R| → 0. It is for 
this reason that the pressure field near the center of a high is always flat and the 
wind gentle compared to the region near the center of a low.The absolute angular 
momentum about the axis of rotation for the circularly symmetric motions shown 
in Fig. (3.5) is given by ܸܴ + ݂ܴଶ/2. From Equation (3.15) it is verified readily 
that regular gradient wind balances have positive absolute angular momentum in 
the Northern Hemisphere, whereas anomalous cases have negative absolute 
angular  momentum. Because the only source of negative absolute angular 
momentum is the Southern Hemisphere, the anomalous cases are unlikely to occur 
except perhaps close to the equator. In all cases except the anomalous low (Fig. 
(3.5c)) the horizontal components of the Coriolis and pressure gradient forces are 
oppositely directed. Such flow is   
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Table(3.1): Classification of Roots of the Gradient Wind Equation in the Northern Hemisphere 
 

 
 
 

 
 
Fig. (3.5 ): Force balances in the Northern Hemisphere for the four types of gradient flow: (a) regular 
                   low (b) regular high (c) anomalous low (d) anomalous high. 
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called baric. The anomalous low is antibaric; the geostrophic wind ܸ defined in 
Equation (3.11) is negative for an anomalous lowand is clearly not a useful 
approximation tothe actual speed.4 Furthermore, as shown in Fig. 3.5, gradient 
flow is cyclonic only when the centrifugal force and the horizontal component of 
the Coriolis force have the same sense (ܴ݂ >  0); it is anticyclonic when these 
forces have the opposite sense (ܴ݂ <  0). Since the direction of anticyclonic and 
cyclonic flow is reversed in the Southern Hemisphere, the requirement that ܴ݂ >
 0 for cyclonic flow holds regardless of the hemisphere considered. 
 The definition of the geostrophic wind Equation (3.11) can be used to rewrite the 
force balance normal to the direction of flow (3.10) in the form 
 

ܸଶ

ܴ
+ ݂ܸ − ݂ ܸ = 0 

 
Dividing through by ݂ܸ shows that the ratio of the geostrophic wind to the 
gradient wind is 
 

                                                       ܸ
ܸ

= 1 +
ܸ
݂ܴ

                                                         (3.17) 

 
For normal cyclonic flow (݂ܴ >  0), ܸ is larger than ܸ , whereas for anticyclonic 
flow (fR < 0), ܸ  is smaller than ܸ . Therefore, the geostrophic wind is an 
overestimate of the balanced wind in a region of cyclonic curvature and an 
underestimate in a region of anticyclonic curvature. For midlatitude synoptic 
systems, the difference between gradient and geostrophic wind speeds generally 
does not exceed 10–20%. [Note that the magnitude of  ܸ/(݂ܴ) is just the Rossby 
number.] For tropical disturbances, the Rossby number is in the range of 1–10, and 
the gradient wind formula must be applied rather than the geostrophic wind. 
Equation (3.17) also shows that the antibaric anomalous low, which has ܸg <  0, 
can exist only when ܸ/(݂ܴ)  <  −1. Thus, antibaric flow is associated with small-
scale intense vortices such as tornadoes. 
       Now we discuss the trajectories and streamlines ,In the natural coordinate 
system used in the previous section to discuss balanced flow, ݔ)ݏ, ,ݕ  was defined (ݐ
as the distance along the curve in the horizontal plane traced out by the path of an 
air parcel. The path followed by a particular air parcel over a finite period of time 
is called the trajectory of the parcel. Thus, the radius of curvature  R of the path s 
referred to in the gradient wind equation is the radius of curvature for a parcel 
trajectory. In practice, R is often estimated by using the radius of curvature of a 
geopotential height contour, as this can be estimated easily from a synoptic chart. 
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However, the height contours are actually streamlines of the gradient wind (i.e., 
lines that are everywhere parallel to the instantaneous wind velocity).It is 
important to distinguish clearly between streamlines, which give a “snapshot” of 
the velocity field at any instant, and trajectories, which trace the motion of 
individual fluid parcels over a finite time interval. In Cartesian coordinates, 
horizontal trajectories are determined by the integration of 
 

                                                              
௦ܦ 
௧ܦ

= (ܸ௫,௬,௧)                                            (3.18) 

 
over a finite time span for each parcel to be followed, whereas streamlines are 
determined by the integration of 
 

                                                           
ݕ݀ 
ݔ݀ 

=
,ݔ)ݒ ,ݕ (ݐ
,ݔ)ݑ ,ݕ (ݐ

                                        (3.19) 

 
with respect to x at time ݐ. (Note that since a streamline is parallel to the velocity 
field, its slope in the horizontal plane is just the ratio of the horizontal velocity 
components.) Only for steady-state motion fields (i.e., fields in which the local 
rate of change of velocity vanishes) do the streamlines and trajectories coincide. 
However, synoptic disturbances are not steady-state motions. They generally move 
at speeds of the same order as the winds that circulate about them. In order to 
gain an appreciation for the possible errors involved in using the curvature of     
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Fig. (3.6 ): Relationship between the change in angular direction of the wind δβ and the radius  
                 of curvature R. 

 
the streamlines instead of the curvature of the trajectories in the gradient wind 
equation, it is necessary to investigate the relationship between the curvature of 
the trajectories and the curvature of the streamlines for a moving pressure system. 
      We let β(x, y, t) designate the angular direction of the wind at each point on an 
isobaric surface, and R୲ and Rୱ designate the radii of curvature of the trajectories 
and streamlines, respectively. Then, from Fig. (3.6), = ݏߜ  so that in the ߚߜ ܴ 
 limitδs → 0 

                                                   
ߚܦ 
ݏܦ 

=
1
ܴ௧

  ܽ݊݀ 
ߚ߲
ݏ߲

=
1
ܴௌ

                                         (3.20) 

 
where ܦβ/ܦs means the rate of change of wind direction along a trajectory 
(positivefor counterclockwise turning) and ߲ݏ߲/ߚ is the rate of change of wind 
directionalong a streamline at any instant. Thus, the rate of change of wind 
direction following the motion is 
 

                                            
ߚܦ
ݐܦ

=
ߚ݀
ݏܦ

ݏܦ
ݐܦ

=
ܸ
ܴ௧

                                                            (3.21) 

 
 
 
 
 



71 
 

or, after expanding the total derivative, 
 

                                              
ߚܦ
ݐܦ

=
ߚ߲
ݐ߲

+ ܸ
ߚ߲
ݏ߲

+
ܸ
ܴௌ

                                                  (3.22) 

 
Combining Equation (3.21) and  Equation (3.22), we obtain a formula for the local 
turning of the wind: 
 

                                                  
ߚ߲
ݐ߲

= ܸ ൬
1
ܴ௧
−

1
ܴ௦
൰                                                       (3.23) 

 
Equation (3.23) indicates that the trajectories and streamlines will coincide only 
when the local rate of change of the wind direction vanishes. 
     In general, midlatitude synoptic systems move eastward as a result of advection 
by upper level westerly winds. In such cases there is a local turning of the wind 
due to the motion of the system even if the shape of the height contour pattern 
remains constant as the system moves. The relationship between ܴ௧ and ܴ௦in 
such a situation can be determined easily for an idealized circular pattern of height 
contours moving at a constant velocity ܥ. In this case the local turning of the wind 
is entirely due to the motion of the streamline pattern so that 
 

ߚ߲
ݐ߲

= ܥ− ∙ ߚߘ = ܥ−
ߚ߲
ݏ߲

ߛݏܿ = −
ܥ
ܴௌ
 ߛݏܿ

 
where γ is the angle between the streamlines (height contours) and the direction 
of motion of the system. Substituting the above into Equation (3.23) and solving 
for R୲ with the aid of Equation(3.20), we obtain the desired relationship between 
the curvature of the streamlines and the curvature of the trajectories: 
 

                                         ܴ௧ = ܴ௦ ቀ1 −
ߛݏܿ
ܸ

ቁ
ିଵ

                                                 (3.24) 
 
Equation (3.24) can be used to compute the curvature of the trajectory anywhere 
on a moving pattern of streamlines. In Fig.( 3.7) the curvatures of the trajectories 
for parcels initially located due north, east, south, and west of the center of a 
cyclonic system are shown both for the case of a wind speed greater than the speed 
of movement of the height contours and for the case of a wind speed less than the 
speed ofmovement of the height contours. In these examples the plotted  rajectories 
are based on a geostrophic balance so that the height contours are equivalent to 
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streamlines. It is also assumed for simplicity that the wind speed does not depend 
on the distance from the center of the system. In the case shown in Fig. (3.7b) there 
is a region south of the low center where the curvature of the trajectories is 
opposite that of the streamlines. Because synoptic-scale pressure systems usually 
move at speeds comparable to the wind speed, the gradient wind speed computed 
on the basis of the curvature of the height contours is often no better an 
approximation to the actual wind speed than the geostrophic wind. In fact, the 
actual gradient wind speed will vary along a height contour with the variation of 
the trajectory curvature . 
        In the following we present the thermal wind The geostrophic wind must have 
vertical shear in the presence of a horizontal temperature gradient, as can be shown 
easily from simple physical considerations based on hydrostatic equilibrium. Since 
the geostrophic wind  Equation (3.4) is proportional to the geopotential gradient on 
an isobaric surface, a geostrophic wind directed along the positive y axis that 
increases in magnitude with height requires that the 
 
 
 
 

 

 

 

 
 
Fig. (3.7):  Trajectories for moving circular 
                   cyclonic circulation systems in the  
                   Northern Hemisphere with (a) ܸ =   ܥ2 
          and (b)  2ܸ =  Numbers indicate positions .ܥ 
                    at successive times. The ܮ designates a 
                     pressure minimum. 
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slope of the isobaric surfaces with respect to the x axis also must increase with 
height as shown in Fig.( 3.8). According to the hypsometric Eq. (1.21), the 
thickness δz corresponding to a pressure interval δp is 
 

ݖߜ                         ≈ −gିଵܴܶδ ln                                                (3.25) 
 
Thus, the thickness of the layer between two isobaric surfaces is proportional 
to the temperature in the layer. In Fig. (3.8) the mean temperature ଵܶ of the column 
denoted by ݖߜଵ must be less than the mean temperature ଶܶfor the column denoted 
by ݖߜଶ Hence, an increase with height of a positive ݔ directed pressure gradient 
must be associated with a positive x directed temperature gradient. The air in a 
vertical column at ݔଶ, because it is warmer (less dense), must occupy a greater 
depth for a given pressure drop than the air at ݔଵ 
 
 
 

 
Fig. (3.8):  Relationship between vertical shear of the geostrophic wind and horizontal  

                           thickness gradients. (Note that δp <  0.) 
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   Equations for the rate of change with height of the geostrophic wind components 
are derived most easily using the isobaric coordinate system. In isobaric 
coordinates the geostrophic wind (3.4) has components given by 
 
 

ݒ                               =
1
݂
߲Φ
ݔ߲

    and       ݑ =
1
݂
߲Φ
ݕ߲

                                         (3.26) 

 
where the derivatives are evaluated with pressure held constant. Also, with the aid 
of the ideal gas law we can write the hydrostatic equation as 
 

                                                
߲Φ
߲

= ߙ− = −
ܴܶ


                                                 (3.27) 

Differentiating Equation (3.26) with respect to pressure and applying Equation 
(3.27), we obtain 

                                          
ݒ߲
߲

≡
ݒ߲
߲ ln 

= −
ܴ
݂
൬
߲ܶ
ݔ߲
൰


                                        (3.28)  

 

                                          
ݑ߲
߲

≡
ݑ߲
߲ ln 

=
ܶ
݂
൬
߲ܶ
ݕ߲
൰


                                              (3.29) 

or in vectorial form 
 

                                                       
܄∂
∂ ln p

= −
ܴ
݂
ܓ × સ୮T                                         (3.30) 

 
     Equation (3.30) is often referred to as the thermal wind equation. However,it 
is actually a relationship for the vertical wind shear (i.e., the rate of change of the 
geostrophic wind with respect to  ln p ). Strictly speaking, the term thermal wind 
refers to the vector difference between geostrophic winds at two levels. 
Designatingthe thermal wind vector by ்ܸ , we may integrate Equation(3.30) from 
pressure level  ܲ to level   ( ଵܲ < ଶܲ) to get 
 

                              ்ܸ ≡ ܸ(ଵ) − ܸ() = −
ܴ
݂
න ൫݇ × ܶ൯݀ߘ ln  
భ

బ
              (3.31) 

 
Letting 〈T〉denote the mean temperature in the layer between pressure pand 
pଵ, the x and y components of the thermal wind are thus given by 
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்ݑ                        = −
ܴ
݂
ቆ
߲〈ܶ〉
ݕ߲

ቇ


ln ൬

ଵ
൰ ; ்ݒ  =

ܴ
݂
ቆ
߲〈ܶ〉
ݔ߲

ቇ


ln ൬

ଵ
൰                (3.32) 

 
Alternatively, we may express the thermal wind for a given layer in terms of the 
horizontal gradient of the geopotential difference between the top and the bottom 
of the layer: 
 

்ݑ        = −
1
݂
߲
ݕ߲

(Φଵ − Φ) ; ்ݒ       =
1
݂
߲
ݔ߲

(Φଵ − Φ)                        (3.33) 

 
    The equivalence of Equation (3.32) and Equation (3.33) can be verified readily 
by integrating thehydrostatic Equation (3.27) vertically from pto pଵ after 
replacing T by the mean 〈T〉The result is the hypsometric Equation (1.22): 
 
 

                                     Φଵ  −Φ ≡ g்ܼ = ܴ〈ܶ〉 ln

ଵ

                                    (3.34) 

 
    The quantity ்ܼ is the thickness of the layer betweenp andpଵ measured in units 
of geopotential meters. From (3.34) we see that the thickness is proportional to the 
mean temperature in the layer. Hence, lines of equal ்ܼ(isolines of thickness) are 
equivalent to the isotherms of mean temperature in the layer. 
    The thermal wind equation is an extremely useful diagnostic tool, which is often 
used to check analyses of the observed wind and temperature fields for 
consistency. It can also be used to estimate the mean horizontal temperature 
advection in a layer as shown in Fig.( 3.9). It is clear from the vector form of the 
thermal wind relation: 
 

܄    =
1
݂
ܓ × સ(Φଵ −Φ) =

g
݂
ܓ × સZ =

ܴ
݂
ܓ × સ〈T〉 ln ൬

p
pଵ
൰          (3.35) 

 
 
that the thermal wind blows parallel to the isotherms (lines of constant thickness) 
with the warm air to the right facing downstream in the Northern Hemisphere. 
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Fig. (3.9):  Relationship between turning of geostrophic wind and temperature advection: (a) backing 
                   of the wind with height and (b) veering of the wind with height. 

 
Thus, as is illustrated in Fig. (3.9a), a geostrophic wind that turns counterclockwise 
with height (backs) is associated with cold-air advection. Conversely, as shown in 
Fig. (3.9b), clockwise turning (veering) of the geostrophic wind with height 
implies warm advection by the geostrophic wind in the layer. It is therefore 
possible to obtain a reasonable estimate of the horizontal temperature advection 
and its vertical dependence at a given location solely from data on the vertical 
profile of the wind given by a single sounding. Alternatively, the geostrophic wind 
at any level can be estimated from the mean temperature field, provided that the 
geostrophic velocity is known at a single level. Thus, for example, if the 
geostrophic wind at 850 hPa is known and the mean horizontal temperature 
gradient in the layer 850–500 hPa is also known, the thermal wind equation can be 
applied to obtain the geostrophic wind at 500 hPa. 
      Now we study Barotropic and Baroclinic Atmospheres , A barotropic 
atmosphere is one in which the density depends only on the pressure, ߩ =  so ,()ߩ 
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that isobaric surfaces are also surfaces of constant density. For an ideal gas, the 
isobaric surfaces will also be isothermal if the atmosphere is barotropic. Thus, 
સܶ = 0 in a barotropic atmosphere, and the thermal wind Equation (3.30) 
becomes ∂܄/ ∂ ln p = 0, which states that the geostrophic wind is independent of 
height in a barotropic atmosphere. Thus, barotropy provides a very strong 
constraint on the motions in a rotating fluid; the large-scale motion can depend 
only on horizontal position and time, not on height. 
     An atmosphere in which density depends on both the temperature and the 
pressure, ߩ =  is referred to as a baroclinic atmosphere. In a baroclinic ,( ܶ,) ߩ 
atmosphere the geostrophic wind generally has vertical shear, and this shear is 
related to the horizontal temperature gradient by the thermal wind Equation (3.30). 
Obviously, the baroclinic atmosphere is of primary importance in dynamic 
meteorology.However, as shown in later chapters, much can be learned by study of 
the simpler barotropic atmosphere. 
 
Section(3.2): Instructive Applications 
 
In this section we deal with the instructive Applications ,and we start with the 
Vertical motion .As mentioned previously, for synoptic-scale motions the vertical 
velocity component is typically of the order of a few centimeters per second. 
Routine meteorological soundings, however, only give the wind speed to an 
accuracy of about a meter per second. Thus, in general the vertical velocity is not 
measured directly but must be inferred from the fields that are measured directly. 
Two commonly used methods for inferring the vertical motion field are the 
kinematic method, based on the equation of continuity, and the adiabatic method, 
based on the thermodynamic energy equation. Both methods are usually applied 
using the isobaric coordinate system so that ߱() is inferred rather than (ݖ)ݓ. 
These two measures of vertical motion can be related to each other with the aid of 
the hydrostatic approximation. 
      Expanding ݐܦ/ܦ in the (x, y, z) coordinate system yields 
  

                             ω ≡
D୮

D୲
=
∂p
∂t

+ V ∙ ∇୮ + w ൬
∂p
∂z
൰                                        (3.36) 

 
Now, for synoptic-scale motions, the horizontal velocity is geostrophic to a first 
approximation. Therefore, we can write ܄ = ܄ +  ୟ, where Vୟ is the ageostrophic܄
wind and |܄ୟ| ≪ ห܄ห |. However, ܄ = (ρf)ିଵk × ∇୮ , so that ܄ ∙ સ = 0 
Using this result plus the hydrostatic approximation (3.36) may be rewritten as 
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                        ߱ =
߲
ݐ߲

+ ܄ ∙ સ − g(3.37)                                            ݓߩ 
 
Comparing the magnitudes of the three terms on the right in  Equation(3.37), we 
find that for synoptic-scale motions 
 

                                      ∂p/ ∂t  ~ 10hPa dିଵ 
 

V ∙ ∇୮~(1 m sିଵ)(1Pa kmିଵ) ~1hPa dିଵ  
 

                                            gρ୵ ~ 100 hPa dିଵ 
 
Thus, it is quite a good approximation to let 
 

                                                              ω = −ρg୵                                                 (3.38) 
 
(і) The Kinematic Method 
 
One method of deducing the vertical velocity is based on integrating the continuity 
equation in the vertical. Integration of  Equation (3.5) with respect to pressure from 
a reference level pୱto any level p yields 
 

()߱ = (௦)߱ − න ൬
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲
൰

݀ = (௦)߱ + ௦) − ( ቆ

〈ݑ〉߲
ݔ߲

+
〈ݒ〉߲
ݕ߲

ቇ


 (3.39)


ೞ
 

 
Here the angle brackets denote a pressure-weighted vertical average 
 
 

〈 〉  ≡ ) − ௦)ିଵන ݀( )


ೞ
 

 
With the aid of  Equation (3.38), the averaged form of  Equation (3.39) can be 
rewritten as 
 

(ݖ)ݓ                   =
(௦ݖ)ݓ(௦)ߩ

(ݖ)ߩ
−
௦ − 
݃(ݖ)ߩ

ቆ
〈ݑ〉߲
ݔ߲

+
〈ݒ〉߲
ݕ߲

ቇ                             (3.40) 

 
where ݖ and ݖ௦ are the heights of pressure levels   and  ௦ , respectively. 
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Application of  Equation (3.40) to infer the vertical velocity field requires 
knowledge of the horizontal divergence. In order to determine the horizontal 
divergence, the partial derivatives ߲ݔ߲/ݑ and ߲ݕ߲/ݒ are generally estimated from 
the fields of u and v by using finite difference approximations (see Section 13.3.1). 
For example, to determine the divergence of the horizontal velocity at the point ݔ, 
  in Fig. (3.10) we writeݕ
 

ݑ߲
ݔ߲

+
ݒ߲
ݕ߲

≈
ݔ)ݑ + ݀) − ݔ)ݑ − ݀)

2݀
+
ݕ)ݒ + ݀) − ݕ)ݒ − ݀)

2݀
            (3.41) 

 
However, for synoptic-scale motions in midlatitudes, the horizontal velocity is 
nearly in geostrophic equilibrium. Except for the small effect due to the variation 
of the Coriolis parameter (see Problem 3.19), the geostrophic wind is 
nondivergent; that is, ߲ݔ߲/ݑ and ߲ݕ߲/ݒ are nearly equal in magnitude but 
opposite in sign. Thus, the horizontal divergence is due primarily to the small 
departures of the wind from geostrophic balance (i.e., the ageostrophic wind).A 
10% error in evaluating one of the wind components in Equation (3.41) can easily 
cause the estimated divergence to be in error by 100%. For this reason, the 
continuity equation method is not recommended for estimating the vertical motion 
field from observed horizontal winds. 
 

 
 

Fig. (3.10):  Grid for estimation of the horizontal divergence. 
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(іі) The Adiabatic Method 
 
A second method for inferring vertical velocities, which is not so sensitive to 
errors in the measured horizontal velocities, is based on the thermodynamic energy 
equation. If the diabatic heating J is small compared to the other terms in the heat 
balance,Equation  (3.6) yields 

߱ = ܵିଵ ൬
߲ܶ
ݐ߲

+ ݑ
߲ܶ
ݔ߲

+ ݒ
߲ܶ
ݐ߲
൰                                                  (3.42) 

 
     Because temperature advection can usually be estimated quite accurately in 
midlatitudes by using geostrophic winds, the adiabatic method can be applied 
when only geopotential and temperature data are available. A disadvantage of 
the adiabatic method is that the local rate of change of temperature is required. 
Unless observations are taken at close intervals in time, it may be difficult to 
accurately estimate ߲ܶ /߲ݐ over a wide area. This method is also rather inaccurate 
in situations where strong diabatic heating is present, such as storms in which 
heavy rainfall occurs over a large area.  
      In the following we study the Surface Pressure Tendency.The development of a 
negative surface pressure tendency is a classic warning of an approaching cyclonic 
weather disturbance.A simple expression that relates the surface pressure tendency 
to the wind field, and hence in theory might be used as the basis for short-range 
forecasts, can be obtained by taking the limit  →  0 in 
Equation(3.39) to get 
 

(௦)߱ = −න (∇ ∙ ݀(ܸ

ೞ



                                                                     (3.43) 

 
followed by substituting from Equation (3.37) to yield 
 

              
௦߲
ݐ߲

≈ −න ߘ) ∙                                                    ݀(ܸ

ೞ



        (3.44) 

 
      According to  Equation (3.44),  the surface pressure tendency at a given point 
is determined by the total convergence of mass into the vertical column of 
atmosphere  above that point. This result is a direct consequence of the hydrostatic 
assumption, which implies that the pressure at a point is determined solely by the 
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weight of the column of air above that point.Temperature changes in the air 
column will affect the heights of upper level pressure surfaces, but not the surface 
pressure.In addition, there is a strong tendency for vertical compensation. Thus, 
when there is convergence in the lower troposphere there is divergence aloft, and 
vice versa. The net integrated convergence or divergence is then a small residual in 
the vertical integral of a poorly determined quantity. 
     Nevertheless, Equation (3.44) does have qualitative value as an aid in 
understanding the origin of surface pressure changes, and the relationship of such 
changes to the horizontal divergence. This can be illustrated by considering (as one 
possible example) the development of a thermal cyclone. We suppose that a heat 
source generates a local warm anomaly in the midtroposphere (Fig. 3.11a). Then 
according to the hypsometric  Equation (3.34), the heights of the upper level 
pressure surfaces are raised above the warm anomaly, resulting in a horizontal 
pressure gradient force 
 
 

 
 
 
Fig.( 3.11):  Adjustment of surface pressure to a midtropospheric heat source. Dashed lines indicate 
                      isobars. (a) Initial height increase at upper level pressure surface. (b) Surface response to 
                      upper level divergence. 
 
 
at the upper levels, which drives a divergent upper level wind. By Equation (3.44) 
this upper level divergence will initially cause the surface pressure to decrease, 
thus generating a surface low below the warm anomaly (Fig. 3.11b). The 
horizontal pressure gradient associated with the surface low then drives a low-level 
convergence and vertical circulation, which tends to compensate the upper level 
divergence. The degree of compensation between upper divergence and lower 
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convergence will determine whether the surface pressure continues to fall, remains 
steady, or rises. 
      The thermally driven circulation of the above example is by no means the only 
type of circulation possible (e.g., cold core cyclones are important synoptic-scale 
features). However, it does provide insight into how dynamical processes at upper 
levels are communicated to the surface and how the surface and upper troposphere 
are dynamically connected through the divergent circulation.  
      Equation (3.44) is a lower boundary condition that determines the evolution 
of pressure at constant height. If the isobaric coordinate system of dynamical 
Equations (3.2), (3.5), (3.6), and (3.27) is used as the set of governing equations, 
the lower boundary condition should be expressed in terms of the evolution of 
geopotential (or geopotential height) at constant pressure. Such an expression can 
be obtained simply by expanding DΦ/Dt in isobaric coordinates 
 

߲Φ
ݐ߲

= ୟ܄− ∙ સΦ − ߱
߲Φ
߲

 

 
and substituting from Equation (3.27) and  Equation(3.43) to get 
 

߲Φ௦

ݐ߲
≈ −

ܴ ௦ܶ

௦
න (સ ∙ ݀(܄

ೞ



                                   (3.45) 

 
where we have again neglected advection by the ageostrophic wind. 
In practice the boundary condition (3.45) is difficult to use because it should 
be applied at pressure ps , which is itself changing in time and space. In simple 
models it is usual to assume that ps is constant (usually 1000 hPa) and to let 
߱ =  0 at ௦, For modern forecast models, an alternative coordinate system is 
generally employed in which the lower boundary is always a coordinate surface. 
      In the following we study the Applications. Here we discuss three instructive 
applications in which the present approach proved useful: 

(і) Semi-Geostrophic Theory 
 
Weather fronts are examples for atmospheric flow structures that feature 
anisotropic horizontal scalings. When viewed from above, one may think of a front 
as being a narrow band of activity centered about some smooth, large scale curve. 
All flow variables are expected to vary substantially over relatively short distances 
normal to the front, while they vary on scales comparable to the characteristic 
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length of the curve’s geometry in the tangential direction.An appropriate ansatz to 
capture this structural behavior in an asymptotic 
analysis, borrowed from WKB theories, geometrical optics/acoustics, or the theory 
of thin flames in combustion, could read 
 

,࢞,ݐ)ܷ ;ݖ (ߝ = ܷ() ቆߝଶ ,
Φ(ߝଶ࢞)

ߝ
, ,࢞ଶߝ ቇݖ



                                             (3.46) 

 
Here Φ(∙) is a scalar function, which by the scaling of its argument, εଶ࢞,in 
Equation(3.46)  will have a characteristic scale comparable to the internal Rossby 
deformation radius ܮ . The scaled coordinate  ζ = Φ/ε  will then resolve rapid 
variations of the solution that occur between levelsets Φ = Φ +  The front  .(ߝ)ܱ
will thus be centered about the level set Φ(εଶ࢞) ≡ Φ and have a characteristic 
thickness of order ݈ = ܱ(εL୧). According to Equations: 
 

Ro୦౩ౙ = O(ε), 
 

Roభ = O(1), 
 

Ro = O(ε) 
 

Ro = O(εଶ), 
 
this is the characteristic length Lଵ for which the Rossby number would be of order 
unity. 
    With the abbreviations 

߬ = εଶt  , ζ =
Φ(εଶ࢞)

ε
, ࢄ = εଶ(3.47)              ,࢞ 

 
the partial derivatives in the governing Equations : 
 

௧ݒ + ݒ ∙ ݒ∇ + Ω × ݒ +
1
ߩ
∇ = ܵ௩ −  ݃

 
௧  + ݒ ∙ ∇ + ∇ߛ ∙ ݒ = ܵ                                            (∗) 

 
௧ߠ                     + ݒ ∙ ߠ∇ = ܵఏ 
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Here ݒ, ,  are the fluid flow velocity, the (thermodynamic) pressure, and the ߠ
fluid’s potential temperature.  ߛ is the isentropic exponent, assumed to be constant. 
Ω, ݃ are the vector of earth rotation and the acceleration of gravity, k is a radial 
unit vector, pointing away from the earth’s center. The source terms  ܵ௩. ܵ, ܵఏSu, 
are abbreviations for molecular or turbulent transport terms, for effective energy 
source terms from radiation, latent heat release from condensation of water vapor,  
The potential temperature is a variable, closely related to thermodynamic. Become 
 

            ߲௧ = εଶ߲த 
 

∇=  ε σ ߲ + εଶ∇ +  ௭                (3.48)߲
 
where ߪ = |∇Φ| and  =  ∇Φ/|∇Φ| .  
 
       A somewhat subtle issue in semi-geostrophic theory is the scaling of the 
velocity components. It is assumed that they scale in proportion with the 
characteristic length for their associated spatial direction. Thus one allows only the 
flow velocity tangential to the front to be of order ݑ, i.e., ݒ ∙ = ݐ  ,(ݑ)ܱ 
where (ࢄ)࢚ is the tangential unit vector to a level set Φ = const.. For the normal 
and vertical components this assumption implies ࢜ · =    ܱ(ε ݑ ), and ࢜ ∙ = 
 ܱ(εଶݑ). Accordingly, the velocity field is represented as 
 

࢜ = ࢚()ݒ + ε൫ݒ(ଵ)࢚ + ൯(ଵ)ݑ + εଶ൫ݒ(ଶ)࢚ + (ଶ)ݑ + ൯(ଶ)ݓ + ⋯       (3.49) 
 
       It is now straight-forward to insert the Equations (3.46)–(3.49) into the 
governing equations from Equations (∗) and to collect the following leading order 
set of equations. Using the replacements 
 

  ൫ߠ(ସ), ൯()ߩ/(ସ) →  (ߨ,ߠ)
 

൫ݑ(ଵ), ൯(ଶ)ݓ,()ݒ → ,ݑ)  (3.50)                                  (ݓ,ݒ
 

               (ܵఏ
(), ܵ௩

(ଶ)) → (ܵఏ ,ܵ௩) 
 
we obtain the semi-geostrophic approximation  
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ݒ݂− + ߪ
ߨ߲
ߞ߲

= 0 

 
ݒܦ
ݐܦ

+ (ଵ)ݑ݂ +
ߨ߲
ߟ߲

= ܵ௩          

 
ߨ߲
ݖ߲

− ߠ = 0                                                (3.51) 
 

   
ݑ߲
ߞ߲

+
ݒ߲
ߟ߲

+
1
ߩ

߲
ݖ߲

(ݓߩ) = 0,                       

 
Here ߩ(ݖ) is the background density stratification corresponding to a homentropic 
Atmosphere 

ܦ
߬ܦ

=
߲
߲߬

+ ݒ
߲
ߟ߲

+ ߪݑ
߲
ߞ߲

+ ݓ
߲
ݖ߲

 ,                             (3.52) 

And 
߲
ߟ߲

= ݐ ∙ ∇ 

 
Lower order expansion functions, such as ߠ(ଶ), ,(ଶ) and  ,(ଷ)ߠ  which do not,(ଷ)
explicitly appear here, can be shown not to participate in the dynamics within a 
narrow front if the assumed time scaling is to be observed. 
    The semi-geostrophic equations are used in a range of contexts, including 
theories for the formation and structure of strong weather fronts.The key difference 
between these and the quasi-geostrophic equations is that only one of the 
horizontal velocity components, ݒ, is in geostrophic balance. The velocity 
component normal to the front is, in contrast, the result of a balance between the 
Coriolis force, the pressure gradient, and the fluid particle acceleration along the 
front. The semi-geostrophic equations have, however, several attractive 
mathematical features, which are reviewed and extensively discussed . 
 
(ііі) Synoptic-Planetary Interactions in the Tropics 
 
Here we summarize recent joint work with A.J. Majda addressing scale 
interactions in the tropics. A hierarchy of reduced model equations describing a 
range of possible flow regimes is derived by Majda and Klein [2003] using 
systematic multiple scales expansions. One particularly interesting regime involves 
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interactions between the equatorial synoptic and the planetary scales. Here we 
review the flow regime and the key results of the analysis for this regime. For 
details the reader may consult the original reference. 
    Now we study the Expansion scheme and scaling considerations,The multiple 
scales expansion scheme for this regime reads 
  

Φ(ݔ,ݐ, ;ݖ (ߝ = ఈ()ߝ ߝ



Φ()(ߝହ/ଶݐ, ,ݔହ/ଶߝ ,ݔ/ଶߝ  (3,53)            (ݖ

 
where ߙ =  0 for Φ ∈ ,} ,ߠ ,ߩ and α ,{ݑ = 1/2  for   Φ = ,ݓ ܵఏ, ܵ௩. Here ݓ,࢛ are 
the horizontal and vertical flow velocity components, respectively, and the 
coordinates ࢞ =  denote the zonal (along the equator) and meridional (ݕ,ݔ) 
(north-south) horizontal coordinates. As we will see shortly, this scheme merges 
the single scale expansion for equatorial geostrophic motions, 
 

Φ(ݔ,ݐ, ;ݖ (ߝ = ఈ()ߝ ߝ



Φ()(ߝହ/ଶݐ, ,ݔହ/ଶߝ  (3,54)                                    (ݖ

 
with a scheme that resolves planetary scale equatorial waves 
 
                    Φ(ݔ,ݐ, ;ݖ (ߝ = ఈ()ߝ ߝ



Φ()(ߝହ/ଶݐ, ,ݔ/ଶߝ ,ݕହ/ଶߝ  (3,55)                    (ݖ

The characteristic horizontal length scale accessed by the first scheme in Equation 
(3,39) is the internal Rossby deformation radius for near-equatorial flows. To 
verify this, we reconsider the relation  ܮ~

ேೞ
Ω

 from  Equation ܮ~
ேೞ
Ω

  . Near the 
equator, the earth rotation frequency Ω must be replaced with characteristic value 
of the vertical component f =   ∙ Ω  =  Ω sin∅ of the earth rotation vector, where 
∅ is the longitude. In terms of the arclength in the meridional direction, ݕ, we 
have ∅ =  y/a, where a is the earth’s radius. Anticipating that ܮ ≪  ܽ, which 
remains to be verified, we have sin∅ = ߚ , whereܮߚ~݂  /ܽ,  andܮ ~   Ω/ܽ. As a 
consequence, 

~ܮ
ܰ
ܮߚ

, ݎ
ܮ
ℎ௦

~ඨ
ܰ
Ω

ܽ
ℎ௦

   ହ/ଶ                              (3.56)ିߝ~

 
The last estimate follows from Equations : 
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ܰ = ඨ݃
ߠ
ߠ߲
ݖ߲

~
1

ఈାଵߝ
Ω 

 with α = 1, and Equation : 

~ଵܮ
1
ߝ
ℎ௦ ~ܮ, 

1
ଷߝ

 
 
which stated that  ܰ/Ω~ିߝଶ  and  ܽ/ℎ௦~ିߝଷ. We verify that ܮ  ≪  ܽ, even 
though the difference is merely of order εଵ/ଶ. Equation (3.56) shows that the 
scaling anticipated in (3.53) and  Equation(3.54) in fact accesses the internal 
Rossby deformation radius  ܮ.The second expansion scheme in Equation (3.55) 
accesses even larger (planetary) scales via the coordinate 
 

ܺ = ݔ/ଷߝ =
\ݔ

ܮ
     with  ܮ =  /ଶℎ௦                              (3.57)ିߝ

 
Notice that this expansion assumes anisotropic scalings along and normal to the 
equator. This is compatible with theories of equatorial wave motions which reveal 
confinement of near-tropical dynamics between about −30and 30degrees 
latitude.The non-dimensional time coordinate in Equations (3.53) and (3.55) may 
be re-written in two different ways: 
 

ݐହ/ଶߝ = ହ/ଶߝ \ݐ

ℎ௦/ݑ
=

\ݐ

ݑ/ܮ
=

\ݐ

/ܿܮ
                      (3.58) 

 
Where  t\  again denotes the dimensional time variable, and ciref  ܿ~ܰ Nℎௌ  is 
the characteristic speed of internal gravity waves with vertical scale comparable to 
ℎௌ . This dual representation shows that, on the one hand, the chosen time 
coordinate resolves advection with the flow velocity uref over synoptic distances 
comparable to ܮ. On the other hand, it also resolves internal gravity waves 
travelling at speeds ciref over planetary distances of the order ܮ . As a 
consequence, the multiple scales expansion from  Equation (3.38) is suited to 
describe direct interactions of these very different phenomena on one and the same 
time scale. 
     In the following we present the Intra-Seasonal Planetary Equatorial Synoptic 
Dynamics (IPESD), To simplify the notation, we will use the following 
replacements in the rest of this Section: 
 



88 
 

൫ߠ(ଶ),ߠ(ଷ), ൯()ߩ/(ସ),()ߩ/(ଷ) → ൫Θଶ,ߨ,ߨ,ߠ\൯            
 

((ଷ)ݓ,(ଶ)ݓ,(ଵ)࢛,()࢛)          → ൫ݓ,ݓ,\࢛,࢛\൯   
 (3.59) 

       (ܵఏ
(ସ), ܵఏ

(ହ), ௨ࡿ
(ଵ),ࡿ௨

(ଶ)) → (ܵఏ ,ܵఏ
\ ௨ࡿ, ௨ࡿ,

\ ) 
 

,ݐହ/ଶߝ)                ,ݔହ/ଶߝ (ݐ/ଶߝ → ( ௌܶ ௌࢄ, , ௌܺ), 
where ࢄௌ  =  ( ௌܺ , ௌܻ). 
 
        Now we present the Synoptic motions With the abbreviations from Equation 
(3.59), the leading order set of equations describing motions on the smaller of the 
considered scales (which is still as large as 2000km) reads 
 

      ߲௭ߨ =  ߠ
 

ݓ   
ଶ߆݀
ݖ݀

= ܵఏ  
 

ݒݕߚ−  + ߲௫ߨ = ܵ௨                                                  (3.60) 
 

ݑݕߚ + ߲௬ߨ = ܵ௩ 
 

 ߲௫(ߩݑ) + ߲௬(ߩݒ) + ߲௭(ߩݓ) = 0 .                                      
 
These equations describe, in this sequence, hydrostatic balance in the vertical 
direction, the generation of vertical motions by heat sources forcing particles to 
move towards their individual levels of neutral buoyancy, horizontal geostrophic 
balance in the zonal (ݔ) and meridional (ݕ) directions, and mass conservation. 
       The Equations in (3.60) may be considered as the three-dimensional version 
of the Matsuno-Webster-Gill type of models, who derived models for steady 
forced synoptic scale motions near the equator in the context of the shallow water 
approximation demonstrates that these equations reproduce typical quasi-steady 
large scale near-equatorial flow patterns when some physically reasonable closures 
for the source terms are assumed. His examples include qualitative models for the 
important “Hadley” and “Walker” circulations.  
    For given source terms  ܵఏ, ܵ௨, ܵ௩ the system in Equation (3.60) is linear in 
,ݑ ,ߨ,ݓ,ݒ  General solutions, in this case, are superpositions of particular and .ߠ
homogeneous solutions. One particular solution ݑ , ߨ,ݓ,ݒ ,  is determinedߠ
by, 
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ݓ          =
ܵఏ

ݖ݀/ଶ߆݀
 , ݑ =

1
ߚ
൫ܵ௩,௫ − ܵ௨,௬൯ +

ݕ
ߩ
൬
ܵఏߩ

ݖ݀/ଶ߆݀
൰
௭

,                (3.61) 

 

߲௫ݑ = −߲௬ݒ −
1
ߩ
߲௭(ߩݓ)  with  ݑݕߚതതതത = ܵ௩തതത,                    (3.62)  

 
߲௫ߨ = ܵ௨ − ݒݕߚ
߲௬ߨ = ܵ௩ + ൠݑݕߚ     with   ߨതതതത(ݐ, 0, (ݖ ≡ 0                              (3.63) 

 
ߠ = ߲௭ߨ                        (3.64) 

 
Homogeneous solutions to Equation (3.45) satisfy, 
 

= ݒ ݓ  ≡ ,ߠ)   ,0 (ߨ,ݑ = ,ݐ)(ܲ,ܷ,߆)  ,ݕ  (3.65)                    ,(ݖ
 

where Θ,ܷ,ܲ are arbitrary except for the constraints 
 

߲௬ܲ = ,ܷݕߚ− ߲௭ܲ =  (3.66)                       ߆
 
     Now we discuss the Planetary waves  As pointed out in conjunction with 
Equation (3.50), the equation system for the synoptic scales determines solutions 
only up to a zonal (along the equator) shear flow. In the present context of a 
multiple scales expansion, this zonal shear flow may still not depend on x, but it 
may well depend on the planetary scale coordinate  ܺ, and multiple scales 
asymptotic techniques should allow us to derive evolution equations for these large 
scale averaged mean motions. In fact, the following system is derived by Majda 
and Klein [2003], 

௧ܦ         
തതതതܷ + ߲ܲ − ഥ́ݒݕߚ = ܵ௨´തതത − ௧ܦ

ݑതതതതതതത 
 

௧ܦ                    
തതതതΘ + ݓ ´തതത ݀Θଶ

ݖ݀
= ܵఏ

´തതത − ௧ܦ
ߠതതതതതതത 

 
ܷݕߚ + ߲௬ܲ = 0                                            (3.67) 

 
                        ߲ܲ = Θ 

߲ܷ + ߲௬ݒഥ́ +
1
ߩ
߲௭൫ߩݓ ´തതത൯ = 0  ,                 
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Where 
௧ܦ          

 = ߲௧ + ߲௫ݑ + ߲௬ݒ + ߲௭ݓ                            
 (3.68) 

௧ܦ
തതതത = ߲௧ + തതതത߲௬ݒ +  തതതത߲௭ݓ

 
 
These equations are the three-dimensional analogue of the linear equatorial long 
wave equations, supplemented with the net large scale effects of the synoptic scale 
transport as represented by the terms, ܦ௧

ݑതതതതതതത ,ܦ௧
ߠതതതതതതതത and with advection by the 

mean synoptic meridional velocity ݒ.തതതത 
 
(ііі ) Balancing Numerical  Methods for Nearly Hydrostatic Motions 
 
    This section summarizes a quite different development that was motivated by 
our asymptotic considerations for atmospheric flows. address a nagging numerical 
issue associated with the (asymptotically) dominant balance 
 
 

 
Fig.(3.12): Archimedes’ principle for the gravity source term. 

between pressure forces and the gravitational acceleration in most realistic 
atmosphere flow regimes. 
    Consider the vertical component of the momentum balance in the dimensionless  
 governing equations , i.e. 
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௧ݓ + ࢛ ∙ ݓߘ + ௭ݓݓ + ∗ଷߨߝ ∙ (Ω × (ݒ +
1
ସߝ
൬

1
ߩ
߲
ݖ߲

+ 1൰ = ܵ௪         (3.69) 

Suppose further that we had adopted a numerical discretization of all terms that 
is second order accurate in terms of the (vertical) space discretization parameter 
ℎ =   ℎ௦. Then the numerical truncation error induced by the two terms/ݖ∆ 
Equation(3.69) multiplied by 1/εସ would read 
 

δ୬୳୫. = ܱ ቆ
hଶ

εସ
ቇ .                                         (3.70) 

 
Current production runs with numerical weather forecasting or climate simulation 
codes use around 30 grid layers to resolve the vertical direction, so that h ~1/30. 
Our earlier estimates indicate that ε~ 1/7 . . . 1/6, so that 
 

ℎଶ

ସߝ
= ܱ(1)                                              (3.71) 

 
under realistic conditions for up-to-date computational simulations of atmospheric 
flows. We conclude that the computed vertical accelerations will be highly 
inaccurate, unless special measures are taken to ensure that the limiting situation of 
hydrostatic balance is adequately captured by the numerical discretization. 
      In the following we illusterate the Archimedes’ principle for the gravity source 
term: Figure(3.12) displays a general control volume that might serve as the ith 
grid cell ܿ for our finite volume method. A straight-forward second order 
approximation of the gravity source term for such a volume would read  
 

න ݔଶ݀ߩ = |ܿ|ߩ + (ଶߜ)ܱ


                                       (3.72) 

 
where ρ୧ is the compcomputed cell-averaged density and |ci| is the cell’s volume, 
and δ = diam(c୧) is its characteristic diameter. In the context of conservative finite 
volume methods the integral of the pressure gradient over the volume is discretized 
as 

න ݔଶ݀∇ = ර ߪ݀ = ܣ,,, + (ଶߜ)ܱ
డ

                    (3.73) 
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where ܣ, , , , ݊, are the length (area) of the jth section of the i th control 
volume’s boundary, and approximations to the pressure and outward unit normal 
vector on that cell interface section. As indicated, these approximations are 
secondorder accurate in terms of δ. But this alone is insufficient to properly 
capture the hydrostatic limit, because the magnitude of the truncation errors is 
independent of whether the flow state is or is not close to hydrostatic.  
To overcome this difficulty we observe that the vector − may be interpreted as 
the gradient of a virtual hydrostatic pressure distribution, i.e., 

 
 =  ௬.                                                      (3.74)−

 
The gravity source term may then be rewritten as 

න ݔଶ݀∇ = ර ߪ݀௬ = −ܣ,,
௬n, + (ଶߜ)ܱ

డ
                                 (3.75) 

As a consequence, the sum of the gravity source term and the pressure gradient is 
Discretizeda 

න ∇) + ݔଶ݀(ߩ = ර ߪ݀௬ = −ܣ,൫, − ,
௬൯, + ܱ൫ߜଶฮ −    ,ฮ൯

 
డ

 

(3.76) 

where the  ,
௬ = 

௬(ݖ)  are values of a locally reconstructed virtual hydrostatic 
pressure distribution evaluated at the grid cell interface centers.  This modification 
will not change the approximation order of the scheme, which is still of second 
order for suitable formulations of the hydrostatic pressure distribution   (ݖ). Yet, 
we observe that the numerical approximate expression for the sum of the two terms 
now vanishes identically when the  ,  match the  ,

௬  , i.e., when the pressure is 
hydrostatic in the sense of    . Even if the approximate construction of  
is inexact, so that ฮ − ฮ ↛ 0  as the hydrostatic limit is approached, the 
truncation error will be ܱ൫ߜଶฮ −  and thus reduced as ,(ଶߜ)ܱ ฮ൯ instead of
much as we manage to reproduclocalvertical balance.  
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 Chapter (4) 

Circulation,Vorticity and Some Models 

Section(4.1) :Circulation and Vorticity 

    In classical mechanics the principle of conservation of angular momentum is 
often invoked in the analysis of motions that involve rotation. This principle 
provides a powerful constraint on the behavior of rotating objects. Analogous 
conservation laws also apply to the rotational field of a fluid. However, it should 
be obvious that in a continuous medium, such as the atmosphere, the definition of 
“rotation” is subtler than that for rotation of a solid object. 
Circulation and vorticity are the two primary measures of rotation in a fluid. 
Circulation, which is a scalar integral quantity, is a macroscopic measure of 
rotation for a finite area of the fluid. Vorticity, however, is a vector field that gives 
a microscopic measure of the rotation at any point in the fluid. 
In the following we study the circulation theorem.The circulation, C, about a 
closed contour in a fluid is defined as the line integral evaluated along the contour 
of the component of the velocity vector that is locally tangent to the contour: 
 

ܥ ≡ රܷ ∙ ܫ݀ = රหܷหܿߙݏ ݈݀ 

 
 
 

 
 
 
 

       Fig.( 4.1 ): Circulation about a closed contour. 
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where (ݏ)ܫ is a position vector extending from the origin to the point ݔ)ݏ, ,ݕ  on (ݖ
the contour C, and dl represents the limit of δl = l(s+δs)-l(s) as δs → 0. Hence, 
as indicated in Fig.( 4.1), dI is a displacement vector locally tangent to the contour. 
By convention the circulation is taken to be positive if C >  0 for 
counterclockwise integration around the contour.That circulation is a measure of 
rotation is demonstrated readily by considering a circular ring of fluid of radius R 
in solid-body rotation at angular velocity ᅿ about the z axis. In this case, 
 U =  Ω ×  R, where R is the distance from the axis of rotation to the ring of fluid. 
Thus the circulation about the ring is given by 
 

ܥ ≡ රܷ ∙ ܫ݀ = න ߣଶܴ݀ߗ = ଶܴߨߗ2
ଶగ



 

 
In this case the circulation is just 2π times the angular momentum of the fluid ring 
about the axis of rotation. Alternatively, note that C/(πR2) =  2Ω so that the 
circulation divided by the area enclosed by the loop is just twice the angular speed 
of rotation of the ring. Unlike angular momentum or angular velocity, circulation 
can be computed without reference to an axis of rotation; it can thus be used to 
characterize fluid rotation in situations where “angular velocity” is not defined 
easily. The circulation theorem is obtained by taking the line integral of Newton’s 
second law for a closed chain of fluid particles. In the absolute coordinate system 
the result (neglecting viscous forces) is 
 

ර
ఈܷఈܦ
ݐܦ

∙ ܫ݀ = −ර
∇ ∙ ܫ݀
ߩ

− ර∇ Φ ݀(4.1)                                  ܫ  
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where the gravitational force g is represented as the gradient of the geopotential ᅂ, 
defined so that – ∇ᅂ = g = -gk. The integrand on the left-hand side can be  
rewritten as 
 

ఈܷఈܦ
ݐܦ

∙ ܫ݀ =
ܦ
ݐܦ

(ܷఈ ∙ (ܫ݀ − ܷఈ ∙
ఈܦ
ݐܦ

 (ܫ݀)
 
or after observing that since I is a position vector, 
 

ഀூ
௧

≡ ܷఈ, 
 

ఈܷఈܦ
ݐܦ

∙ ܫ݀ =
ܦ
ݐܦ

(ܷఈ ∙ (ܫ݀ − ܷఈ ∙ ܷ݀ఈ                                (4.2) 
 
Substituting (4.2) into (4.1) and using the fact that the line integral about a closed 
loop of a perfect differential is zero, so that 
 

ර∇Φ ∙ ܫ݀ = ර݀Φ = 0 

 
and noting that 
 

රܷఈ ∙ ܷ݀ఈ =
1
2
ර݀(ܷఈ ∙ ܷఈ) = 0 

 
we obtain the circulation theorem: 
 

ఈܥܦ
ݐܦ

=
ܦ
ݐܦ

රܷఈ ∙ ܫ݀ = −රିߩଵ  (4.3)                                 ݀

 
The term on the right-hand side in Equation(4.3) is called the solenoidal term. For 
abarotropic fluid, the density is a function only of pressure, and the solenoidal term 
is zero. Thus, in a barotropic fluid the absolute circulation is conserved following 
the motion. This result, called Kelvin’s circulation theorem, is a fluid analog of 
angular momentum conservation in solid-body mechanics. 
For meteorological analysis, it is more convenient to work with the relative 
circulation C rather than the absolute circulation, as a portion of the absolute 
circulationCୣ, is due to the rotation of the earth about its axis. To compute Cୣ,we 
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apply Stokes’ theorem to the vector Uୣ, where Uୣ = Ω ×  r is the velocity of the 
earth at the position r: 
 

Cୣ = රUୣ ∙ dI = ඵ(∇ × Uୣ).ܖ dA


 

 
where A is the area enclosed by the contour and the unit normal n is defined by the 
counterclockwise sense of the line integration using the “right-hand screw rule.” 
Thus, for the contour of Fig.(4.1), n would be directed out of the page. If the line 
integral is computed in the horizontal plane, n is directed along the local vertical 
(see Fig. 4.2). Now, by a vector identity  
 

∇  ×  ܷ =  ∇ × × ߗ) (ݎ  = ∇ × ߗ ) ×  ܴ) 
 

                                                 = ∇ߗ  ∙ ܴ =  ߗ2
 
so that (∇  ×  Uୣ)  ∙ n =  2Ωsin φ ≡  f is just the Coriolis parameter. Hence, the 
circulation in the horizontal plane due to the rotation of the earth is 
 

Cୣ = 2Ω〈sinφ〉A = 2ΩAୣ                                          
 
where 〈sin φ〉 denotes an average over the area element ܣ  and  ܣ is the projection 
of ܣ in the equatorial plane as illustrated in Fig.(4.2). Thus, the relative circulation 
may be expressed as 
 

ܥ = ఈܥ − ܥ = ఈܥ −                                                  (4.4)ܣߗ2
 

Differentiating (4.4) following the motion and substituting from Equation (4.3) we 
obtain the Bjerknes circulation theorem: 
 

ܥܦ
ݐܦ

= −ර
݀
ߩ
− ߗ2

ܣܦ
ݐܦ

                                                   (4.5) 

 
For a barotropic fluid,Equation (4.5) can be integrated following the motion from 
an initial state (designated by subscript 1) to a final state (designated by subscript 
2), yielding the circulation change 
 

ଶܥ  − ଵܥ   =  −2Ω (Aଶ sin φଶ  −  Aଵ sin φଵ)                   (4.6) 
 



97 
 

 

  
 

Fig.( 4.2): Area ܣ subtended on the equatorial plane by horizontal area ܣ centered at latitude φ. 
 

Equation (4.6) indicates that in a barotropic fluid the relative circulation for a 
closed chain of fluid particles will be changed if either the horizontal area enclosed 
by the loop changes or the latitude changes. Furthermore, a negative absolute 
circulation in the Northern Hemisphere can develop only if a closed chain of fluid 
particles is advected across the equator from the Southern Hemisphere.  
Example. Suppose that the air within a circular region of radius 100 km centered at 
the equator is initially motionless with respect to the earth. If this circular air mass 
were moved to the North Pole along an isobaric surface preserving its area, the 
circulation about the circumference would be 
 

= ܥ (2/ߨ)ଶ[sinݎߨߗ2−   −  sin(0)] 
 

Thus the mean tangential velocity at the radius r = 100 km would be 
 

ܸ = (ݎߨ2)/ܥ   = ≈ ݎߗ−   ଵିݏ ݉ 7− 
 

The negative sign here indicates that the air has acquired anticyclonic relative 
circulation. In a baroclinic fluid, circulation may be generated by the pressure-
density solenoid term in Equation(4.3). This process can be illustrated effectively 
by considering the development of a sea breeze circulation, as shown in Fig.(4.3). 
For the situation depicted, the mean temperature in the air over the ocean is colder 
than the mean temperature over the adjoining land. Thus, if the pressure is uniform 
at ground level, the isobaric surfaces above the ground will slope downward 
toward the 
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Fig.( 4.3 ):   Application of the circulation theorem to the sea breeze problem. The closed heavy solid  
                     line is the loop about which the circulation is to be evaluated. Dashed lines indicate surfaces 
                     of constant density. 
 
ocean while the isopycnic surfaces (surfaces of constant density) will slope 
downward toward the land. To compute the acceleration as a result of the 
intersection of the pressure-density surfaces, we apply the circulation theorem by 
integrating around a circuit in a vertical plane perpendicular to the coastline. 
Substituting the ideal gas law into Equation (4.3) we obtain 
 

ఈܥܦ
ݐܦ

= −රܴܶ݀ ln  

 
For the circuit shown in Fig.(4.3) there is a contribution to the line integral only for 
the vertical segments of the loop, as the horizontal segments are taken at constant 
pressure. The resulting rate of increase in the circulation is 
 

ఈܥܦ
ݐܦ

= ܴ ln ൬

ଵ
൰ ൫Ťଶ − Ťଵ൯ > 0 

 
Letting 〈ݒ〉be the mean tangential velocity along the circuit, we find that 
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〈ݒ〉ܦ
ݐܦ

=
ܴ ln(/ଵ)

2(ℎ + (ܮ ൫Ťଶ − Ťଵ൯                           (4.7) 

 
If we let   =  1000 ℎܲܽ, ଵ  =  900 ℎܲܽ,Ťଶ − Ťଵ  =  10ܿ, 
= ܮ  20 ݇݉, and ℎ =  1 km, Equation(4.7) yields an acceleration of about  7 ×
 10ିଷ ݉ିݏଵ. In the absence of frictional retarding forces, this would produce a 
wind speed of  25 m ିݏଵ in about 1 ℎ. In reality, as the wind speed increases, the 
frictional force reduces the acceleration rate, and temperature advection reduces 
the land–sea temperature contrast so that a balance is obtained between the 
generation of kinetic energy by the pressure-density solenoids and frictional 
dissipation. 
Now we discuss the vorticity ,Vorticity, the microscopic measure of rotation in a 
fluid, is a vector field defined as the curl of velocity. The absolute vorticity ߱ఈ is 
the curl of the absolute velocity, whereas the relative vorticity ߱ is the curl of the 
relative velocity: 
 

߱ఈ ≡ ∇ × ܷఈ  ,   ߱ ≡ ∇ × ܷ 
 
so that in Cartesian coordinates, 
 

߱ = ൬
ݓ߲
ݕ߲

−
ݒ߲
ݖ߲

,
ݑ߲
ݖ߲

−
ݓ߲
ݔ߲

,
ݒ߲
ݔ߲

−
ݑ߲
ݕ߲
൰ 

 
In large-scale dynamic meteorology, we are in general concerned only with the 
vertical components of absolute and relative vorticity, which are designated by ߟ 
and  , respectively. 
 

≡ ߟ  ݇ ∙ (∇  ×  ܷఈ), ≡ ߞ  ݇ ∙ (∇  ×  ܷ) 
 

In the remainder, η and ߞ are referred to as absolute and relative vorticities, 
respectively, without adding the explicit modifier “vertical component of.” 
Regions of positive ߞ are associated with cyclonic storms in the Northern 
Hemisphere; regions of negative ߞ are associated with cyclonic storms in the 
Southern Hemisphere. Thus, the distribution of relative vorticity is an excellent 
diagnostic for weather analysis. Absolute vorticity tends to be conserved following 
the motion at midtropospheric levels.The difference between absolute and relative 
vorticity is planetary vorticity, which is just the local vertical component of the 
vorticity of the earth due to its rotation;  ݇ ∙ ∇ × ܷ = ≡ ߮ ݊݅ݏߗ2   ݂ .Thus, ߟ =
ߞ  + ݂ or, in Cartesian coordinates, 
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ߞ =
ݒ߲
ݔ߲

−
ݑ߲
ݕ߲

 , ߟ =
ݒ߲
ݔ߲

−
ݑ߲
ݕ߲

+ ݂ 

 
The relationship between relative vorticity and relative circulation ܥ discussed in 
the previous section can be clearly seen by considering an alternative approach in 
which the vertical component of vorticity is defined as the circulation about a 
closed contour in the horizontal plane divided by the area enclosed, in the limit 
where the area approaches zero: 
 

ߞ ≡ lim
→

൬රܸ ∙ ൰ܫ݀  ଵ                                            (4.8)ିܣ

 
This latter definition makes explicit the relationship between circulation and 
vorticity discussed in the introduction to this chapter. The equivalence of these two 
definitions of ζ is shown easily by considering the circulation about a rectangular 
element of area δxδy in the (ݕ,ݔ) plane as shown in Fig.(4.4). Evaluating ܸ ∙  ܫ݀
for each side of the rectangle in Fig.(4.4) yields the circulation 
 

ܥߜ = ݔߜݑ + ൬ݒ +
ݒ߲
ݔ߲

൰ݔߜ ݕߜ − ൬ݑ +
ݑ߲
ݕ߲

൰ݕߜ ݔߜ −  ݕߜݒ

 

                                                                  = ൬
ݒ߲
ݔ߲

−
ݑ߲
ݕ߲
൰  ݕߜݔߜ

 
Dividing through by the area ܣߜ =  gives ݕߜݔߜ 
 

ܥߜ
ܣߜ

= ൬
ݒ߲
ݔ߲

−
ݑ߲
ݕ߲
൰ ≡  ߞ  
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Fig.( 4.4):  Relationship between circulation and vorticity for an area element in the horizontal plane. 

 
In more general terms the relationship between vorticity and circulation is given 
simply by Stokes’ theorem applied to the velocity vector: 
 

රܷ ∙ ܫ݀ = ඵ൫∇ × ܷ൯ ∙ ܣ݀ ݊


 

 
Here ܣ is the area enclosed by the contour and ݊ is a unit normal to the area 
element ݀ܣ (positive in the right-hand sense). Thus, Stokes’theorem states that the 
circulation about any closed loop is equal to the integral of the normal component 
of vorticity over the area enclosed by the contour. Hence, for a finite area, 
circulation divided by area gives the average normal component of vorticity in the 
region. As a consequence, the vorticity of a fluid in solid-body rotation is just 
twice the angular velocity of rotation. Vorticity may thus be regarded as a measure 
of the local angular velocity of the fluid. 
In the following we study the Vorticity in Natural Coordinates, Physical 
interpretation of vorticity is facilitated by considering the vertical component of 
vorticity in the natural coordinate system . If we compute the circulation about the 
infinitesimal contour shown in Fig. (4.5), we obtain 
 

ܥߜ = ݏߜ]ܸ + [(ݏߜ)݀ − ൬ܸ +
߲ܸ
߲݊

൰݊ߜ  ݏߜ
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Fig.( 4.5 ): Circulation for an infinitesimal loop 
                     in the natural coordinate system. 

 
However, from Fig.(4.5), ݀(ݏߜ)  =  is the angular change in the ߚߜ where ,݊ߜߚߜ 
wind direction in the distance ݏߜ. Hence, 
 

ܥߜ = ൬−
߲ܸ
߲݊

+ ܸ
ߚߜ
ݏߜ
൰  ݏߜ݊ߜ

 
or, in the limit ݊ߜ, → ݏߜ 0 
 

ζ = lim
ఋ,ఋ௦→

ܥߜ
(ݏߜ݊ߜ)

= −
߲ܸ
߲݊

+
ܸ
ܴ௦

                              (4.9) 

 
whereܴ௦ is the radius of curvature of the streamlines [Eq. (3.20)]. It is nowapparent 
that the net vertical vorticity component is the result of the sum of two parts: (1) 
the rate of change of wind speed normal to the direction of flow – ߲ܸ/߲݊, called 
the shear vorticity; and (2) the turning of the wind along a streamline ܸ/ܴ௦ , called 
the curvature vorticity. Thus, even straight-line motion may have vorticity if the 
speed changes normal to the flowaxis. For example, in the jet stream shown 
schematically in Fig. (4.6a), there will be cyclonic relative vorticity north of the 
velocity maximum and anticyclonic relative vorticity to the south (Northern 
Hemisphere conditions) as is recognized easily when the turning of a small paddle 
wheel placed in the flow is considered. The lower of the two paddle wheels in 
Fig.4.6a will turn in aclockwise direction (anticyclonically) because the wind force 
on the blades north of its axis of rotation is stronger than the force on the blades to 
the south of the axis.The upper wheel will, of course, experience a 
counterclockwise (cyclonic) turning.Thus, the poleward and equatorward sides of a 
westerly jetstream are referred to as the cyclonic and anticyclonic shear sides, 
respectively. 
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Conversely, curved flowmay have zero vorticity provided that the shear vorticity is 
equal and opposite to the curvature vorticity. This is the case in the example shown 
in Fig.(4.6b) where a frictionless fluid with zero relative vorticity upstream flows 
around a bend in a canal. The fluid along the inner boundary on the curve flows 
faster in just the right proportion so that the paddle wheel does not turn. 
 
 
 
 

 
 
  
 
 
 
    Fig. (4.6 ): Two types of two-dimensional flow: 
                       (a) linear shear flow with vorticity and 
                      (b) curved flow with zero vorticity.  

 
 
      Now we study the potential vorticity,With the aid of the ideal gas law(1.17), 
the definition of potential temperature can be expressed as a relationship between 
pressure and density for a surface of constant ߠ: 
 

ߩ = 
ೡ
(ܴߠ)ିଵ(௦)ோ/  
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Hence, on an isentropic surface, density is a function of pressure alone, and the 
solenoidal term in the circulation theorem vanishes; 
 

ර
݀
ߩ
ߙ ර݀(ଵିೡ/) = 0 

 
Thus, for adiabatic flow the circulation computed for a closed chain of fluid 
parcels on a constant ߠ surface reduces to the same form as in a barotropic fluid; 
that is, it satisfies Kelvin’s circulation theorem, which may be expressed as 
 

ܦ
ݐܦ

ܥ) + (߮݊݅ݏ ܣߜߗ2 = 0                                                (4.10) 
 
where ܥ is evaluated for a closed loop encompassing the area ܣߜ on an isentropic 
surface. If the isentropic surface is approximately horizontal, and it is recalled from  
Equation(4.8) that ܥ ≈  then for an infinitesimal parcel of air (4.10) implies ,ܣߜߞ 
that 
 

+ ߠߞ)ܣߜ  ݂ )  =  (4.11)                                                        ݐݏ݊ܥ 
 

where ߠߞ designates the vertical component of relative vorticity evaluated on an 
isentropic surface and ݂ =  is the Coriolis parameter. Suppose that the ߮ ݊݅ݏߗ2 
parcel of Equation (4.11) is confined between potential temperature surfaces ߠ 
and ߠ + – which are separated by a pressure interval ,ߠߜ  .as shown in Fig.(4.7) ߜ
The mass of the parcel, ܯߜ =  must be conserved following the ,ܣߜ(g/ߜ−) 
motion. Therefore, 
 

ܣߜ = −
݃ܯߜ
ߜ

= ൬−
ߠߜ
ߜ
൰ ൬
݃ܯߜ
ߠߜ

൰ = ݐݏ݊ܿ × ݃ ൬−
ߠߜ
ߜ
൰                

 
as both ܯߜ and ߠߜ are constants. Substituting into Equation (4.11) to eliminate ܣߜ 
and taking the ݈݅݉݅ߜ ݐ →  0, we obtain 
 

 ≡ ఏߞ) + ݂) ൬−݃
ߠ߲
߲
൰ =  (4.12)                                    ݐݏ݊ܿ

 
The quantity P [units: ܭ ݇gିଵ ݉ଶିݏଵ] is the isentropic coordinate form of Ertel’s 
potential vorticity. It is defined with a minus sign so that its value is normally 
positive in the Northern Hemisphere. 
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According to Equation (4.12), potential vorticity is conserved following the motion 
in adiabatic frictionless flow. The term potential vorticity is used, as shown later, 
in connection with several other mathematical expressions. In essence, however, 
 
 

 
 

Fig. (4.7): A cylindrical column of air moving adiabatically, conserving potential vorticity. 
 
potential vorticity is always in some sense a measure of the ratio of the absolute 
vorticity to the effective depth of the vortex. In Equation (4.12), for example, the 
effective depth is just the differential distance between potential temperature 
surfaces measured in pressure units (−߲߲/ߠ). 
In a homogeneous incompressible fluid, potential vorticity conservation takes a 
somewhat simpler form. In this case, because density is a constant, the horizontal 
area must be inversely proportional to the depth, ℎ, of the fluid parcel: 
 

ܣߜ = ଵି(ℎߩ)ܯ =  ℎ/ݐݏ݊ܿ
 
where ℎ is the depth of the parcel. Substituting to eliminate ܣߜ in Equation (4.11) 
yields  
 

+ ߞ  ݂ 
ℎ

=
ߟ
ℎ

=  (4.13)                                            ݐݏ݊ܥ 
 

where ߞ is here evaluated at constant height. 
     If the depth, ℎ, is constant, Equation (4.13) states that absolute vorticity is 
conserved following the motion. Conservation of absolute vorticity following the 
motion provides a strong constraint on the flow, as can be shown by a simple 
example. Suppose that at a certain point (ݔ,  ) the flow is in the zonal directionݕ
and the relative vorticity vanishes so that ݔ)ߟ, (ݕ   =  ݂. Then, if absolute 
vorticity is conserved, the motion at any point along a parcel trajectory that passes 
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through (ݔ, ߞ  ) must satisfyݕ + ݂ =  ݂. Because f increases toward the north, 
trajectories that curve northward in the downstream direction must have 
= ߞ   ݂ − ݂ <  0, whereas trajectories that curve southward must have 
= ߞ   ݂  − ݂ > 0. However,as indicated in Fig. (4.8), if the flow is westerly, 
northward curvature downstream impliesߞ > 0, whereas southward curvature 
implies ߞ < 0. Thus, westerly zonal flow must remain purely zonal if absolute 
vorticity is to be conserved following the motion. The easterly flow case, also 
shown in Fig. (4.8), is just the opposite. Northward and southward curvatures are 
associated with negative and positive relative vorticities, respectively. Hence, an 
easterly current can curve either to the north or to the south and still conserve 
absolute vorticity.When the depth of the fluid changes following the motion, it is 
potential vorticity that is conserved. However, again Equation (4.13) indicates that 
westerly and easterly flows behave differently. The situation for westerly flow 
impinging on an infinitely long 
 

 
 

Fig. (4.8 ): Absolute vorticity conservation for curved flow trajectories. 
 

 
 
 



107 
 

 
Fig. (4.9):  Schematic view of westerly flow over a topographic barrier: (a) the depth of a fluid column 
                    as a function of ݔ and (b) the trajectory of a parcel in the (ݕ,ݔ) plane. 
 
topographic barrier is shown in Fig. (4.9). In Fig. (4.9a), a vertical cross section of 
the flow is shown. We suppose that upstream of the mountain barrier the flow is a 
uniform zonal flow so that ߞ =  0. If the flow is adiabatic, each column of air of 
depth h confined between the potential temperature surfaces ߠ and ߠ  +  ߠߜ 
remains between those surfaces as it crosses the barrier. For this reason, a potential 
temperature surface ߠ near the ground must approximately follow the ground 
contours. A potential temperature surface ߠ  +  several kilometers above the ߠߜ 
ground will also be deflected vertically. However, due to pressure forces produced 
by interaction of the flow with the topographic barrier, the vertical displacement at 
upper levels is spread horizontally; it extends upstream and downstream of the 
barrier and has smaller amplitude in the vertical than the displacement near the 
ground (see Figs.(4.9) and (4.10). As a result of the vertical displacement of the 
upper level isentropes, there is a vertical stretching of air columns upstream of the 
topographic barrier. (For motions of large horizontal scale, the upstream stretching 
is quite small.) This stretching causes h to increase, and hence from Equation(4.13) 
 must become positive in order to conserve potential vorticity.Thus, an air column ߞ
turns cyclonically as it approaches the mountain barrier. This cyclonic curvature 
causes a poleward drift so that f also increases, which reduces the change in ߞ 
required for potential vorticity conservation. As the column begins to cross the 
barrier, its vertical extent decreases; the relative vorticity must then become 
negative. Thus, the air column will acquire anticyclonic vorticity and move 
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southward as shown in the ݔ,  plane profile in Fig. (4.9b). When the air column ݕ
has passed over the barrier and returned to its original depth, it will be south of its 
original latitude so that f will be smaller and the relative vorticity must be positive. 
Thus, the trajectory must have cyclonic 
 

 
 
 

Fig. (4.10):  As in Fig. (4.9), but for easterly flow. 
 
curvature and the column will be deflected poleward. When the parcel  
returns to its original latitude, it will still have a poleward velocity component and 
will continue poleward gradually, acquiring anticyclonic curvature until its 
direction is again reversed. The parcel will then move downstream, conserving 
potential vorticity by following awave-like trajectory in the horizontal plane. 
Therefore, steady westerly flow over a large-scale ridge will result in a cyclonic 
flow pattern immediately to the east of the barrier (the lee side trough) followed by 
an alternating series of ridges and troughs downstream.The situation for easterly 
flowimpinging on a mountain barrier is quite different. As indicated schematically 
in Fig. (4.10b), upstream stretching leads to a cyclonic turning of the flow, as in the 
westerly case. For easterly flow this cyclonic turning creates an equatorward 
component of motion. As the column moves westward and equatorward over the 
barrier, its depth contracts and its absolute vorticity must then decrease so that 
potential vorticity can be conserved. This reduction in absolute vorticity arises both 
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from development of anticyclonic relative vorticity and from a decrease in ݂ due to 
the equatorward motion. The anticyclonic relative vorticity gradually turns the 
column so that when it reaches the top of the barrier it is headed westward. As it 
continues westward down the barrier, conserving potential vorticity, the process is 
simply reversed with the result that some distance downstream from the mountain 
barrier the air column again is moving westward at its original latitude. Thus, the 
dependence of the Coriolis parameter on latitude creates a dramatic difference 
between westerly and easterly flow over large-scale topographic barriers. In the 
case of a westerly wind, the barrier generates a wavelike disturbance in the 
streamlines that extends far downstream. However, in the  
 
 
 
 
 
 
 
 
Fig. (4.11 ): Dependence of depth on radius in 
                      a rotating cylindrical vessel. 

 
 
 

 
 
 
case of an easterly wind, the disturbance in the streamlines damps out away from 
the barrier.The situation described above, which assumes that the mountain barrier 
is infinitely long in the meridional direction, is highly idealized. In reality, because 
static stability tends to suppress vertical motions, large-scale flows in statically 
stable environments are blocked by topographic barriers and are forced to flow 
around mountains rather than over them. However, whether fluid columns go over 
or around topographic barriers, the potential vorticity conservation constraint still 
must be satisfied.The Rossby potential vorticity conservation law, Equation(4.13), 
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indicates that in a barotropic fluid, a change in the depth is dynamically analogous 
to a change in the Coriolis parameter. This can be demonstrated easily in a rotating 
cylindrical vessel filled with water. For solid-body rotation the equilibrium shape 
of the free surface, determined by a balance between the radial pressure gradient 
and centrifugal forces, is parabolic. Thus, as shown in Fig. (4.11), if a column of 
fluid moves radially outward, it must stretch vertically. According to Equation 
(4.13), the relative vorticity must then increase to keep the ratio  (ߞ + ݂ )/ℎ 
constant. The same resultwould apply if a column of fluid on a rotating sphere 
were moved equatorward without a change in depth. In this case, ߞ would have to 
increase to offset the decrease of  . Therefore, in a barotropic fluid, a decrease of 
depth with increasing latitude has the same effect on the relative vorticity as the 
increase of the Coriolis force with latitude. 
     Now we stuydthe vorticity equation,The previous section discussed the time 
evolution of the vertical component of vorticity for the special case of adiabatic 
frictionless flow. This section uses the equations of motion to derive an equation 
for the time rate of change of vorticity without limiting the validity to adiabatic 
motion. 
      In the following we study the Cartesian Coordinate Form ,For motions of 
synoptic scale, the vorticity equation can be derived using the approximate 
horizontal momentum Equations (2.24) and (2.25). We differentiate the zonal 
component equation with respect to ݕ and the meridional component Equation 
with respect to ݔ: 
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ݕ߲

൬
ݑ߲
ݐ߲

+ ݑ
ݑ߲
ݔ߲

+ ݒ
ݑ߲
ݕ߲

+ ݓ
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ߩ
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ݔ߲
൰             (4.14) 
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൰              (4.15) 

 
Subtracting Equation (4.14) from Equation(4.15) and recalling that ߞ = − ݔ߲/ݒ߲ 
 we obtain the vorticity Equation ,ݕ߲/ݑ߲ 
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                                    =
1
ଶߩ
൬
ߩ߲
ݔ߲

߲
ݕ߲

−
ߩ߲
ݕ߲

߲
ݔ߲
൰       (4.16) 

 
Using the fact that the Coriolis parameter depends only on y so that 
 
௧

=  Equation(4.16) may be rewritten in the form ,(ݕ݀/݂݀)ݒ   
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       +
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൬
ߩ߲
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߲
ݕ߲

−
ߩ߲
ݕ߲

߲
ݔ߲
൰     (4.17) 

 
Equation (4.17) states that the rate of change of the absolute vorticity following the 
motion is given by the sum of the three terms on the right, called the divergence 
term, the tilting or twisting term, and the solenoidal term, respectively. The 
concentration or dilution of vorticity by the divergence field [the first term on the 
right in Equation (4.17)] is the fluid analog of the change in angular velocity 
resulting from a change in the moment of inertia of a solid body when angular 
momentum is conserved. If the horizontal flow is divergent, the area enclosed by a 
chain of fluid parcels will increase with time and if circulation is to be conserved, 
the average absolute vorticity of the enclosed fluid must decrease (i.e., the vorticity 
will be diluted). If, however, the flow is convergent, the area enclosed by a chain 
of fluid parcels will decrease with time and the vorticity will be concentrated. 
This mechanism for changing vorticity following the motion is very important in 
synoptic-scale disturbances.The second term on the right in Equation(4.17) 
represents vertical vorticity generated by the tilting of horizontally oriented 
components of vorticity into the vertical by  
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Fig.( 4.12 ): Vorticity generation by the tilting of a horizontal vorticity vector (double arrow). 

 
anonuniform vertical motion field. This mechanism is illustrated in Fig. (4.12), 
which shows a region where the y component of velocity is increasing with height 
so that there is a component of shear vorticity oriented in the negative ݔ direction 
as indicated by the double arrow. If at the same time there is a vertical motion field 
in which w decreases with increasing ݔ, advection by the vertical motion will tend 
to tilt the vorticity vector initially oriented parallel to x so that it has a component 
in the vertical. Thus, if ߲ݖ߲/ݒ >  0 and ߲ݔ߲/ݓ <  0, there will be a generation of 
positive vertical vorticity. Finally, the third term on the right in Equation(4.17) is 
just the microscopic equivalent of the solenoidal term in the circulation theorem 
(4.5). To show this equivalence,we may apply Stokes’ theorem to the solenoidal 
term to get 

−ර݀ ߙ ≡ −ර∇ߙ ∙ ܫ݀ = −ඵ∇ × ∇ߙ) ∙ (ܣ݀ ݇


 

 
where ܣ is the horizontal area bounded by the curve ܫ. Applying the vector identity 
∇  × (∇ߙ)   ≡ × ߙ∇   the equation becomes ,∇ 
 

−ර݀ߙ = −ඵ(∇ߙ × (∇ ∙ ܣ݀݇


 

However, the solenoidal term in the vorticity equation can be written 
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ݔ߲

߲
ݕ߲

−
ߙ߲
ݕ߲

߲
ݔ߲
൰ = ߙ∇)− × (∇ ∙ ݇ 

 
Thus, the solenoidal term in the vorticity equation is just the limit of the solenoidal 
term in the circulation theorem divided by the area when the area goes to zero. 
Now we discussThe Vorticity Equation in Isobaric Coordinates, A somewhat 
simpler form of the vorticity Equation arises when the motion is referred to the 
isobaric coordinate system. This equation can be derived in vector form by 
operating on the momentum Equation (3.2) with the vector operator ݇ ∙ ∇ ×, where 
∇ now indicates the horizontal gradient on a surface of constant pressure. However, 
to facilitate this process it is desirable to first use the vector identity 
 

(ܸ ∙ ∇)ܸ = ∇ ൬
ܸ ∙ ܸ

2
൰ + ݇ߞ × ܸ                                            (4.18) 

 
Where ߞ = ݇ ∙ (∇ × ܸ), to rewrite Equation(3.2) as 
 

߲ܸ
ݐ߲

= −∇൬
ܸ ∙ ܸ

2
+ ൰ߔ − ߞ) + ݂)݇ × ܸ − ߱

߲ܸ
߲

                       (4.19) 

 
We now apply the operator ݇ ∙ ∇ × to Equation(4.19). Using the facts that for any 
scalar ܣ,∇ × ܣ = 0 and for any vectors ܽ,ܾ, 
 

                      ∇ × (ܽ × ܾ) = (∇ ∙ ܾ)ܽ − (ܽ ∙ ∇)ܾ 
 

     −(∇ ∙ ܽ)ܾ + (ܾ ∙ ∇)ܽ                    (4.20)  
 
we can eliminate the first term on the right and simplify the second term so that the 
resulting vorticity equation becomes 
 

ߞ߲
ݐ߲

= −ܸ ∙ ߞ)∇ + ݂) −߱
ߞ߲
߲

                                          

 

ߞ)− + ݂)∇ ∙ ܸ + ݇ ∙ ൬
߲ܸ
߲

× ∇߱൰                             (4.21) 

 
Comparing Equations(4.17) and (4.21), we see that in the isobaric system there is 
no vorticity generation by pressure-density solenoids. This difference arises 
because in the isobaric system, horizontal partial derivatives are computed with p 
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held constant so that the vertical component of vorticity is ߞ = − ݔ߲/ݒ߲) 
=  whereas in height coordinates it is (ݕ߲/ݑ߲  − ݔ߲/ݒ߲)   In practice . ݖ(ݕ߲/ݑ߲ 
the difference is generally unimportant because as shown in the next section, the 
solenoidalterm is usually sufficiently small so that it can be neglected for synoptic-
scale  motions. 
        In the following we study the Scale Analysis of the Vorticity Equation, the 
equations of motion were simplified for synoptic-scale motions by evaluating the 
order of magnitude of various terms. The same technique can also be applied to the 
vorticity equation. Characteristic scales for the field variables based on typical 
observed magnitudes for synoptic-scale motions are chosen as follows: 
 
                             ܷ ∼  ଵhorizontal scaleିݏ 10݉ 
 
                             ܹ ∼  ଵ vertical scaleିݏ ݉ܿ 1 
 
∽ ܮ                               106 ݉ length scale 
 
∽ ܪ                               104 ݉ depth scale 
 
∽ ߜ                               10 hPa horizontal pressure scale 
 
∽ ߩ                                1 ݇݃ ݉ିଷ mean density 
 
∽ ߩ/ߩߜ                               10ିଶ fractional density fluctuation 
 
∽ ܷ/ܮ                                time scale ݏ 105 
 
                              ݂  ∼  10ିସ ିݏଵ Coriolis parameter 
 
∽ ߚ                                10ିଵଵ ݉ିଵ ିݏଵ “beta” parameter 
 
Again we have chosen an advective time scale because the vorticity pattern, like 
the pressure pattern, tends to move at a speed comparable to the horizontal wind 
speed. Using these scales to evaluate the magnitude of the terms in Equation(4.16), 
we first note that 
 

ߞ = ݔ߲/ݒ߲ − ݕ߲/ݑ߲ ≲ ܮ/ܷ ∼ 10ିହିݏଵ 
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where the inequality in this expression means less than or equal to in order of 
magnitude. Thus, 
 

ߞ
݂
≲

ܷ
( ݂ܮ) ≡ ܴ ∼ 10ିଵ 

 
For midlatitude synoptic-scale systems, the relative vorticity is often small (order 
Rossby number) compared to the planetary vorticity. For such systems, ߞ may be 
neglected compared to f in the divergence term in the vorticity Equation 
 

ߞ) + ݔ߲/ݑ߲)(݂ + (ݕ߲/ݒ߲ ≈ ݔ߲/ݑ߲)݂ +  (ݕ߲/ݒ߲
 

This approximation does not apply near the center of intense cyclonic storms. 
In such systems |ߞ/݂|  ∼  1, and the relative vorticity should be retained. 
The magnitudes of the various terms in Equation(4.16) can now be estimated as 
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The inequality is used in the last three terms because in each case it is possible that 
the two parts of the expression might partially cancel so that the actual magnitude 
would be less than indicated. In fact, this must be the case for the divergence term 
(the fourth in the list) because if ߲ݔ߲/ݑ and ߲ݕ߲/ݒ were not nearly equal and 
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opposite, the divergence term would be an order of magnitude greater than any 
other term and the equation could not be satisfied. Therefore, scale analysis of the 
vorticity equation indicates that synoptic-scale motions must be quasi-non 
divergent.The divergence term will be small enough to be balanced by the vorticity 
advection terms only if 
 

ฬ൬
ݑ߲
ݔ߲

+
ݒ߲
ݕ߲
൰ฬ ≲ 10ିିݏଵ 

 
so that the horizontal divergence must be small compared to the vorticity in 
synoptic-scale systems. From the aforementioned scalings and the definition of the 
Rossby number, we see that 
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Thus the ratio of the horizontal divergence to the relative vorticity is the same 
magnitude as the ratio of relative vorticity to planetary vorticity. 
Retaining only the terms of order 10ିଵ ିݏଶ in the vorticity equation yields the 
approximate form valid for synoptic-scale motions, 
 

+ (ζܦ  f )
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Where 
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As mentioned earlier, Equation(4.22a) is not accurate in intense cyclonic storms. 
For these the relative vorticity should be retained in the divergence term: 
 

(ζܦ + ݂)
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Equation (4.22a) states that the change of absolute vorticity following the 
horizontal motion on the synoptic scale is given approximately by the 
concentration or dilution of planetary vorticity caused by the convergence or 
divergence of the horizontal flow, respectively. In Equation(4.22b), however, it is 
the concentration or dilution of absolute vorticity that leads to changes in absolute 
vorticity following the motion.The form of the vorticity equation given in 
Equation(4.22b) also indicates why cyclonic disturbances can be much more 
intense than anticyclones. For a fixed amplitude of convergence, relative vorticity 
will increase, and the factor (ߞ +  ݂ ) becomes larger, which leads to even higher 
rates of increase in the relative vorticity. For a fixed rate of divergence, however, 
relative vorticity will decrease, but when ߞ → −݂ , the divergence term on the right 
approaches zero and the relative vorticity cannot become more negative no matter 
how strong the divergence. The approximate forms given in Equations (4.22a) and 
(4.22b) do not remain valid, however, in the vicinity of atmospheric fronts. The 
horizontal scale of variation in frontal zones is only ~100 ݇݉, and the vertical 
velocity scale is ∼  ଵ. For these scales, vertical advection, tilting, andିݏ ݉ܿ 10
solenoidal terms all may become as large as the divergence term. 
 
Section(4.2) :Modeling Equations Of Atmosphere-Ocean 
 
      Now we study vorticity in barotropic fluids.A model that has proved useful for 
elucidating some aspects of the horizontal structure of large-scale atmospheric 
motions is the barotropic model. In the most general version of this model, the 
atmosphere is represented as a homogeneous incompressible fluid of variable 
depth, ℎ(ݔ, ,ݕ (ݐ  = ଶݖ  −  ଵ are the heights of the upper and lowerݖ ଶandݖ ଵ, whereݖ
boundaries, respectively. In this model, a special form of potential vorticity is 
conserved following the motion. A simpler situation arises if the fluid depth is 
constant. In that case it is absolute vorticity that is conserved following the motion. 
      In the following we present The Barotropic (Rossby) Potential Vorticity 
Equation .For a homogeneous incompressible fluid, the continuity Equation 
simplifies to ∇ ∙ ܷ =  0 or, in Cartesian coordinates, 
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so that the vorticity Equation (4.22b) may be written 
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       Letting the vorticity in Equation (4.23) be approximated by the geostrophic 
vorticity ߞ and the wind by the geostrophic wind (ݑ, ݒ), we can integrate 
vertically from ݖଵ to ݖଶ to get 
 

ℎ
ߞ൫ܦ + ݂൯

ݐܦ
= ൫ߞ + ݂൯[ݓ(ݖଶ) −  (4.24)                               [(ଵݖ)ݓ

However, because  
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−
ଵݖܦ
ݐܦ

=
ℎܦ
ݐܦ

                                      (4.25) 

 
Substituting from Equation(4.25) into Equation (4.24) we get 
 

1
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Or 
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which implies that 
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ቆ
ߞ + ݂
ℎ

ቇ = 0                                         (4.26) 

 
This is just the potential vorticity conservation theorem for a barotropic fluid, The 
quantity conserved following the motion in Equation (4.26) is the Rossby potential 
vorticity. 
      Now we studyThe Barotropic Vorticity Equation. If the flow is purely 
horizontal (ݓ =  0), as is the case for barotropic flow in a fluid of constant depth, 
the divergence term vanishes in Equation (4.23) and we obtain the barotropic 
vorticity equation 
 

                                                           
ߞ൫ܦ + ݂൯

ݐܦ
= 0                                       (4.27)   
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which states that absolute vorticity is conserved following the horizontal motion. 
More generally, absolute vorticity is conserved for any fluid layer in which the 
divergence of the horizontal wind vanishes, without the requirement that the flow 
be geostrophic. For horizontal motion that is nondivergent (߲ݔ߲/ݑ + ݕ߲/ݒ߲ =  0), 
the flow field can be represented by a streamfunction ߰ (ݔ,  defined so that the (ݕ
velocity components are given as ݑ = ,ݕ߲/߲߰−  = ݒ  The vorticity is .ݔ߲/߲߰+ 
then given by 
 

= ߞ − ݔ߲/ݒ߲  = ݕ߲/ݑ߲   ߲ଶ߰/߲ݔଶ  +  ߲ଶ߰/߲ݕଶ  ≡  ∇ଶ߰ 
 

Thus, the velocity field and the vorticity can both be represented in terms of the 
variation of the single scalar field ߰ (ݔ,  and Equation (4.27) can be written as a ,(ݕ
prognostic Equation for vorticity in the form: 
 

                       
߲
ݐ߲
∇ଶ߰ = −Vట ∙ ∇(∇ଶ߰ + ݂)                                             (4.28) 

 
where Vట ≡  ݇ × ∇߰ is a nondivergent horizontal wind. Equation (4.28) states 
that the local tendency of relative vorticity is given by the advection of absolute 
vorticity. This equation can be solved numerically to predict the evolution of the 
streamfunction, and hence of the vorticity and wind fields. 
Because the flowin the midtroposphere is often nearly nondivergent on the 
synoptic scale, Equation (4.28) provides a surprisingly good model for short-term 
forecasts of the synoptic-scale 500-hPa flow field. 
       Now we discuss Equations of Motion in Isentropic Coordinates 
If the atmosphere is stably stratified so that potential temperature ߠ is a 
monotonically increasing function of height, ߠ may be used as an independent 
vertical coordinate. The vertical “velocity” in this coordinate system is just  
≡ ߠ   Thus, adiabatic motions are two dimensional when viewed in an . ݐܦ/ߠܦ 
isentropic coordinate frame. An infinitesimal control volume in isentropic 
coordinates with crosssectional area ܣߜ and vertical extent ߠߜ has a mass 
 

= ܯߜ = ݖߜܣߜߩ  ܣߜ  ൬−
ߜ
g
൰ =

ܣߜ
g
൬−

߲
ߠ߲
൰ ߠߜ =  (4.29)                 ߠߜܣߜߪ

 
Here the “density” in (ݕ,ݔ,  space (i.e., as shown in Fig. 4.7 the quantity that (ߠ
when multiplied by the “volume” element ߠߜܣߜ yields the mass element ܯߜ) is 
defined as 
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ߪ                                 ≡ −gିଵ
߲
ߠ߲

                                                             (4.30) 
 
The horizontal momentum equation in isentropic coordinates may be obtained by 
transforming the isobaric form Equation (4.19) to yield 
 

    
߲V
ݐ߲

+ ∇ఏ ൬
V ∙ V

2
+ ߰൰ + ఏߞ) + ݂ )݇ × V = ߠ̇−

߲V
ߠ߲

+ ܨ                    (4.31) 
 
where ∇ఏ is the gradient on an isentropic surface, ߞఏ  ≡  ݇ ∙ ∇ఏ ×  ܸ is the 
isentropic relative vorticity originally introduced in Equation (4.11), and  
 ߰ ≡ ܿܶ + Φ is the Montgomery streamfunction . We have included a frictional 
term ܨ on the right-hand side, along with the diabatic vertical advection term. The 
continuity equation can be derived with the aid of Equation (4.29) .  
The result is 

ߪ߲
ݐ߲

+ ∇ఏ ∙ (Vߪ) = −
߲
ߠ߲

 (4.32)                                ̇(ߠߪ)
 
The ߰ and ߪ fields are linked through the pressure field by the hydrostatic 
equation, which in the isentropic system takes the form 
 

߲ ߰ 
ߠ߲

= ()∏ ≡ ܿ ൬

௦
൰
ோ\

= ܿ
ܶ
ߠ

                                   (4.33) 

 
where ∏ is called the Exner function. Equations (4.30)–(4.33) form a closed set 
for prediction of V, ߪ, ߰ , and , provided that ˙ θ and ܨ are known. 
       Now we illusterate The Potential Vorticity Equation, If we take ݇ ∙ ∇ఏߠ ×
Equation(4.31) and rearrange the resulting terms, we obtain the isentropic 
vorticity equation: 
 

෩ܦ
ݐܦ

ఏߞ) + ݂ ) + ఏߞ) + ݂ )∇ఏ ∙ V = ݇ ∙ ∇ఏ × ൬ܨ − ߠ̇
߲V
ߠ߲
൰                  (4.34) 

 
where  

෩ܦ
ݐܦ

=
߲
ݐ߲

+ ܸ ∙ ∇ఏ 
 
is the total derivative following the horizontal motion on an isentropic surface. 
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Noting that ିߪଶ߲ݐ߲/ߪ =  we can rewrite Equation (4.32) in the form ,ݐ߲/ଵିߪ߲−
 

෩ܦ
ݐܦ

(ଵିߪ) − ఏ∇(ଵିߪ) ∙ ܸ = ଶିߪ
߲
ߠ߲

൫ߠ̇ߪ൯                          (4.35) 
 
Multiplying each term in Equation(4.34) by ିߪଵand in Equation (4.35) by(ߞఏ + ݂ ) 
and adding, we obtain the desired conservation law: 
 

෪ܲܦ
ݐܦ

=
߲ܲ
ݐ߲

+ V ∙ ∇ఏܲ =
ܲ
ߪ
߲
ߠ߲

൫ߠ̇ߪ൯ + ଵ݇ିߪ ∙ ∇ఏ × ൬ܨ − ߠ̇
߲V
ߠ߲
൰           (4.36) 

 
where ܲ ≡ ఏߞ)  +  .is the Ertel potential vorticity defined in Equation(4.12) ߪ/( ݂ 
If the diabatic and frictional terms on the right-hand side of Equation (4.36) can be 
evaluated, it is possible to determine the evolution of ܲ following the horizontal 
motion on an isentropic surface. When the diabatic and frictional terms are small, 
potential vorticity is approximately conserved following the motion on isentropic 
surfaces.Weather disturbances that have sharp gradients in dynamical fields, such 
as jets and fronts, are associated with large anomalies in the Ertel potential 
vorticity. In the upper troposphere such anomalies tend to be advected rapidly 
under nearly adiabatic conditions. Thus, the potential vorticity anomaly patterns 
are conserved materially on isentropic surfaces. This material conservation 
propertymakes potential vorticity anomalies particularly useful in identifying and 
tracing the evolution of meteorological disturbances. 
        Now we study Integral Constraints on Isentropic Vorticity.The isentropic 
vorticity Equation (4.34) can be written in the form 
 

ఏߞ߲
ݐ߲

= ∇ఏ ∙ ఏߞ)] +  ݂ )V] + ݇ ∙ ∇ఏ × ൬ܨ − ߠ̇
߲V
ߠ߲
൰                              (4.37) 

 
Using the fact that any vector A satisfies the relationship 
 

k ・ (∇ఏ ×  A)  =  ∇ఏ ∙  (A ×  k) 
 
we can rewrite Equation (4.37) in the form 

ఏߞ߲
ݐ߲

= −∇ఏ ∙ (ߞఏ +  ݂ )V − ൬ܨ − ߠ̇
߲V
ߠ߲
൰൨ × ݇                               (4.38) 

 
Equation (4.38) expresses the remarkable fact that isentropic vorticity can only be 
changed by the divergence or convergence of the horizontal flux vector in brackets 
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on the right-hand side. The vorticity cannot be changed by vertical transfer across 
the isentropes. Furthermore, integration of  Equation(4.38) over the area of an 
isentropic surface and application of the divergence theorem show that for an 
isentrope that does not intersect the surface of the earth the global average of ߞఏ is 
constant. Furthermore, integration of  ߞఏ over the sphere shows that the global 
average ߞఏ is exactly zero. Vorticity on such an isentrope is neither created nor 
destroyed; it is merely concentrated or diluted by horizontal fluxes along the 
isentropes. 
      In the following we study the modeling ,and we start with the primitive 
equations (PEs) of the atmosphere . physical laws governing the motion and states 
of  the atmosphere and ocean can be described by the general equations 
hydrodynamics and thermodynamics. Using a non inertial coordinate system 
rotating with the earth, these equations can be written as follows:  
 

߲ ሬܸ⃗
ݐ߲

+ ሬܸ⃗ ∙ ∇ଷ ሬܸ⃗ + 2Ωሬሬ⃗ × ሬܸ⃗ − gሬ⃗ +
1
ߩ
ଷ݀݊ܽݎ݃ =  ,ሬሬ⃗ெܦ

 
ߩ߲
ݐ߲

+ divଷ(ܸߩ)ሬሬሬሬ⃗ = 0,     
 

                                  ܿ௩
డ்
డ௧

+ ܿ௩ ሬܸ⃗ ∙ ∇ଷܶ + 
ఘ
∇ଷ ሬܸ⃗ = ࣫ + ுᇲܦ                                 (4.39) 

 
ݍ߲
ݐ߲

+ ሬܸ⃗ ∙ ∇ଷݍ =
ܵ
ߩ

+  ᇱܦ

 
 =  .ܶߩܴ

 
Here the  first equation is the momentum equation, the second is the continuity 
equation, the third is the first law of thermodynamics, the fourth is the diffusion 
equation for the humidity, and the last is the equation of state for an ideal gas. the 
unknown functions are the three ˗dimension velocity field ሬܸ⃗ , the density 
function ߩ, the pressure function ,the temperature function ܶ,and the specific 
humidity function . moreover ,in the above equations, Ωሬሬ⃗  stands for the angular 
velocity of earth, gሬ⃗  the gravity, ܴ the gas conistant, ܿ௩ the specific heat at constant 
volume ܦሬሬ⃗ெ the viscosity terms, ܦு the temperature diffusion, ࣫ the heat flux per 
unit density at the unit time interval, which includes molecule or turbulent, 
radiative and evaporative heating , and ܵ the differences of the rates of the 
evaporation and condensation . 
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       These equations are normally for too complicated; simplifications form both 
the physical and mathematical points of view are necessary.There are essentially 
two characteristics of both the atmosphere and ocean, which are used in 
simplifying the equations. The first one is that for large scale geophysical flows, 
the ratio between the vertical and horizontal scales is very small; this leads to the 
primitive equations (PEs) of both the atmosphere and the ocean, which are the 
basic equations for these two fluids. More precisely, the PEs are obtained from the 
general equations of hydrodynamics and thermodynamics of the compressible 
atmosphere, by approximating the momentum equation in the vertical direction 
with the hydrostatic equation: 

߲
ݖ߲

=  g                                                        (4.40)ߩ−
 
This hydrostatic equation is based on the ratio between the vertical and horizontal 
scale being small. Here ݎ is the density, g the gravitational constant, and ݖ = ݎ − ܽ 
height above the sea level, ݎ the radial distance, and ܽ the mean radius of the earth. 
Equation (4.40) expresses the fact that  is a decreasing function along the vertical 
so that one can use  instead of ݖ as the vertical variable. Motivated by this 
hydrostatic approximation, we can introduce a generalized vertical coordinate 
system s-system given by 

ݏ = ,߮,ߠ)ݏ ,ݖ  (4.41)                                         ,(ݐ
 
where ݏ is a strict monotonic function of ݖ. Then the basic equations of the large-
scale atmospheric motion in the ݏ-system are 
 

               
ݒ߲
ݐ߲

+ ݒ ∙ ∇௦ݒ + ݏ̇
ݒ߲
ݏ߲

+ ݂݇ × ݒ +
1
ߩ
∇௦ݖ =                            ,ெܦ

 
߲
ݏ߲

ݏ߲
ݖ߲

+ gߩ = 0                                                                 
 

         
߲
ݏ߲
൬
߲
ݏ߲
൰
௦

+ ∇௦ ∙ ൬ݒ
߲
ݏ߲
൰ +

߲
ݏ߲
൬̇ݏ
߲
ݏ߲
൰ = 0,                                  (4.42) 

                            ܿ௩
߲ܶ
ݐ߲

+ ܿ௩ݒ.∇௦ܶ + ܿ௩̇ݏ
߲ܶ
ݏ߲

+
1
ߩ
൬
߲
ݐ߲

+ ݒ ∙ ∇௦ + ݏ̇
߲
ݏ߲
൰ = ࣫ +  ,ுܦ

ݍ߲
ݐ߲

+ ݒ ∙ ∇௦ݍ + ݏ̇
ݍ߲
ݏ߲

=
ݏ
ߩ

+                              .ܦ

Some common s-systems inmeteorology are respectively the p-system(the pressure 
coordinate), the ߪ-system (the transformed pressure coordinate), the ߠ-system (the 
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isentropic coordinate), and the ݖ-system (the topographic coordinate or 
transformed height coordinate). sometimes the pressure coordinate is denoted by ߟ, 
and the terrain-following by ߪ. 
    For simplicity, here we discuss only the case with the coordinate transformation 
from (ߠ,߮, ,߮,ߠ) to (ݖ  The basic equations of the atmosphere are then the .(
Primitive Equations (PEs) of the atmosphere in the p-coordinate system. As they 
appear in classical meteorology books ,the  PEs  are given by 
 

               
ݒ߲
ݐ߲

+ ݒ ∙ ݒ∇ + ߱
ݒ߲
ݏ߲

+ 2Ω cosߠ × ݒ + ∇Φ =                     ,ெܦ
 

߲Φ
߲

+
ܴܶ


= 0                                                                     

 

         divݒ +
߲߱
߲

= 0,                                                                                  (4.43) 

 

                        
߲ܶ
ݐ߲

+ ܶ∇.ݒ + ߱ ൬
݇ܶ
߲

−
߲ܶ
߲
൰ =

෨࣫ௗ
ܿ

+
෨࣫
ܿ

+                            ,ுܦ

 
ݍ߲
ݐ߲

+ ݒ ∙ ݍ∇ + ߱
ݍ߲
ݏ߲

= ܧ − ܥ +                              .ܦ
 
where ܦெ is the dissipation term for momentum and ܦு and ܦ are diffusion terms 
for heat and moisture, respectively, E and C are the rates of evaporation and 
condensation due to cloud processes, ܿ the heat capacity, and ෨࣫ௗ and ෨࣫ the 
net radiative heating and the heating due to condensation processes, respectively. 
We use the pressure coordinate system(,߮,ߠ)where 0)ߠ < ߠ <   and (ߨ
߮(0 < ߮ <  the pressure of  are the colatitude and longitude variables, and (ߨ2
the air. The nondynamical processes ෨࣫ௗ, ෨࣫ , E and ܥ are called model 
physics. Furthermore, the unknown functions are the horizontal velocity v, the 
vertical velocity ߱ =  the geopotential Φ, the temperature ܶ, and the ,ݐ݀/݀
specific humidity q. The operators div and ∇ are the two dimensional operators on 
the sphere. 
     Now we study the Ocean models.The sea water is almost an incompressible 
fluid, leading to the Boussinesq approximation, i.e., a variable density is only 
recognized in the buoyancy term and the equation of state. The resulting equations 
are called the Boussinesq equations given as follows 
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ݒ߲
ݐ߲

+ ∇௩ݒ + ߱
ݒ߲
ݖ߲

+
1
ߩ

gradߩ + ݂݇ × ݒ − ݒ∆ߤ − ݒ
߲ଶݒ
ଶݖ߲

= 0, 

 

                   
ݓ߲
ݐ߲

+ ∇௩ݓ + ݓ
ݓ߲
ݖ߲

+
1
ߩ
ߩ߲
ݖ߲

+
ߩ
ߩ

g − ݓ∆ߤ − ݒ
߲ଶݓ
ଶݖ߲

= 0,              

 

       divݒ +
ݓ߲
ݖ߲

= 0,                                                                                     (4.44) 
 

  
߲ܶ
ݐ߲

+ ∇௩ܶ + ݓ
߲ܶ
ݏ߲

− ܶ∆்ߤ − ்ݒ
߲ଶܶ
ଶݖ߲

= 0,                         
 

ݏ߲
ݐ߲

+ ∇௩ݏ + ݓ
ݏ߲
ݖ߲

− ݏ∆௦ߤ − ௦ݒ
߲ଶݏ
ଶݖ߲

= 0,                           
 

ߩ = ൫1ߩ − ܶ)்ߚ − തܶ) + ݏ)௦ߚ −                            ,)൯ݏ̅
 
 
where v is the horizontal velocity field, w the vertical velocity, and  S the salinity. 
The sixth equation in (4.44) is an empirical equation for the density function based 
on thelinear approximation. In general, density r is a nonlinear function of T, S,and 
p.With higher approximations, one will encounter additional mathematical 
difficulties although the nonlinear equation of state is essential for some elements 
of ocean circulation (e.g.,cabbeling). 
    As in the atmospheric case, the hydrostatic assumption is usually used, leading 
to the  PEs for the large-scale ocean: 
 

                       
ݒ߲
ݐ߲

+ ∇௩ݒ + ߱
ݒ߲
ݖ߲

+
1
ߩ
∇ + ݂݇ × ݒ − ݒ௩∆ߤ − ௩ݒ

߲ଶݒ
ଶݖ߲

= 0,       

 

  
߲
ݖ߲

=                                                                              , gߩ−
 

        divݒ +
ݓ߲
ݖ߲

= 0,                                                                                    (4.45) 
 

   
߲ܶ
ݐ߲

+ ∇௩ܶ + ݓ
߲ܶ
ݖ߲

− ܶ∆்ߤ − ்ݒ
߲ଶܶ
ଶݖ߲

= 0,                         
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ݏ߲
ݐ߲

+ ∇௩ݏ + ݓ
ݏ߲
ݖ߲

− ݏ∆௦ߤ − ௦ݒ
߲ଶݏ
ଶݖ߲

= 0,                             
 

ߩ = ൫1ߩ − ܶ)்ߚ − തܶ) + ݏ)௦ߚ −                            .)൯ݏ̅
 
Also, we note that if the hydrostatic assumption is made first, the Boussinesq 
approximation is not really necessary. 
      In the following we illusterate the Some theoretical and computational issues 
for the PEs, and we start with  the Dynamical systems perspective of the models 
From the mathematical point of view, we can put the models in the previous in the 
perspective of infinite-dimensional dynamical systems as follows: 
 

߮௧ + ߮ܣ + ܴ(߮) =  ,ܨ
(4.46) 

߮ ∣௧ୀ= ߮, 
 
defined on an infinite-dimensional phase space H. Here A:H→H is an unbounded 
linear operator, ܴ:ܪ →  is the forcing term, and  ߮ is ܨ ,is a nonlinear operator ܪ
the initial data. 
     We remark here that the linear operator can usually be written as ܣ = ଵܣ +  ,ଶܣ
where ܣଵ stands for the irreversible diabatic linear processes of energy dissipation, 
and ܣଶfor the reversible adiabatic linear processes of energy conversation. The 
nonlinear term ܴ(߮) represents the reversible adiabatic nonlinear processes of 
energy conversation. The properties of these operators reflect directly the essential 
characteristics of two kinds of basic processes with entirely different physical 
meanings. 
    The above formulation is often achieved by (a) establishing a proper functional 
setting of the model, and (b) proving the existence and uniqueness of the solutions. 
    Here after we demonstrate the procedurewith the PEs. Due to some technical 
reasons, some minor and physically reasonable modifications of the PEs are made. 
In particular, we assume that the model physics, ෨࣫ௗ, ෨࣫ , E and ܥ are given 
functions of location and time.  
 

ெܦ =                                               ,ݒଵܮ−
 

෨࣫ௗ
ܿ

+
෨࣫
ܿ

+ ுܦ = ଶܶܮ− + ்ܳ ,        

(4.47) 
ܧ − ܥ + ܦ = ଷܮ− + ᆱ ,                   
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ܮ = ∇ߤ− − ݒ
߲
߲

ቆ൬
g

൰()ܴܶ
ଶ ߲
߲
ቇ, 

 
where ߤ   are horizontal and vertical viscosity and diffusion coefficients, ∆ is theݒ,
Laplace operator on the sphere, ்ܳ and ܳ are treated as given functions, and തܶ() 
a given temperature profile, which can be considered as the climate average of ܶ. 
The boundary conditions for the PEs are given by 
 

߲
߲

,ܶ,ݒ) (ݍ = ቀߛ௦(ݒ௦ − ௦൫ߙ,(ݒ ෨ܶ௦ − ܶ൯,ߙ(ݍ௦ − ቁ(ݍ ,߱ = 0  at   = ܲ 

(4.48) 
߲
߲

(ݍ,ܶ,ݒ) = 0,߱ = ݐܽ 0 =  

 
The second and third equations (4.43) are diagnostic ones; integrating themin p-
direction,we obtain 
 

න div(´)ݒ


బ
´݀ = 0                     

 

߱ = (ݒ)ܹ = −න divݒ൫´൯


బ
´݀ = 0                        (4.49) 

 

Φ = Φ௦ + න
(´)ܴܶ
´

´݀



 

 
Then the PEs are equivalent to the following functional formulation: 

ݑ߲
ݐ߲

+ ᴧ(ݒ)ݑ + (ݑ)ܲ + ݑܮ + (∇Φ௦, 0,0) = (0,்࣫,࣫) 
(4.50) 

divන ݀ݒ


బ
= 0, 

where 

ݑ = ,(ݍ,ܶ,ݒ) ᴧ(ݒ)ݑ = ∇௩ݑ + (ݒ)ܹ
ݑ߲
߲

, 
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                        .the lower order terms ݑܲ corresponds to the viscosity and diffusion terms, and ݑܮ
We solve then the PEs in some infinite-dimensional phase spaces H and V. In 
particular,we use 

ଵܪ = ቊݒ ∈ ଶܮ ∣ divන ݖ݀ݒ = 0


బ
ቋ 

 
as the phase space for the horizontal velocity v. Thenwe project in the phase space. 
Using this projection, the unknown function Φ௦ plays a role as a Lagrangian 
multiplier, which can be recovered by the following decomposition: 
 

ଶܮ =  , ଵୄܪ⊕ଵܪ
 

ଵୄܪ = ݒ} ∈ ଶܮ ∣ ݒ = ∇Φ௦,Φ௦ ∈  .{ଵ(ܵଶ)ܪ
 
Then the PEs are equivalent to an infinite-dimensional dynamical system as 
equation (4.46). 
    With the above formulation, for example, we encounter the following new 
nonlocalStokes problem: 

− △ ݒ + ∇Φ௦ =  ݂ , 
(4.51) 

div ∫ ݀ݒ
బ

= 0, 
 

supplemented with suitable boundary conditions. From the mathematical point of 
view,all techniques for the regularity of solutions are local. But our problem here is 
nonlocal;the regularity of the solutions for this problem can be obtained using 
Nirenberg’s finite difference quotient method . 
    Othermodels such as the PEs of the ocean and the coupled atmosphere-ocean 
models can be viewed as infinite-dimensional dynamical systems in the form of 
equation(4.46)). 
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