Chapter (2)
Quaternions, Clifford Algebras, and Matrix Groups as Lie

Groups.
Now we will discuss algebras.

Section (2.1): Quaternions, Clifford Algebras, and Matrix Groups

as Lie Groups
First K will denote any field, although our main interest will be in the cases
R, C.
Definition (2.1.1):
finite dimensional (associative and unital) algebra A is a finite dimensional k-
vector space which is an associative and unital ring such that forall r; s€ k and
a;beA,
(ra)(sb) = (rs)(ab).
If Alis aring then A is a commutative k -algebra.
If every non-zero element ww € A is a unit, i.e., is invertible, then A is a division
algebra.
In this last equation, ra and sb are scalar products in the vector space structure,
while (rs)(ab) is the scalar product of rs with the ring product ab.
Furthermore, if 1 € k is the unit of A, for t € k, the element t1 € A satisfies
(tDa = ta = t(al) = a(td).
If dimk A >0, then 1 # 0, and the function
nk-An(t)=T1
is an injective ring homomorphism; we usually just write t for n (t) = t1.
Example (2.1.2):
Forn > 1, Mn(k) is a k-algebra. Here we have n (t) =t,C is non-

commutative.
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Example (2.1.3):

The ring of complex numbers C is an R-algebra. Here we have n (t) =t. C is
commutative. Notice that C is a commutative division algebra.

A commutative division algebra is usually called a field while a non-
commutative division algebra is called a skew field. In French corps (~field) is
often used in sense of possibly non-commutative division algebra.

In any algebra, the set of units of A forms a group A" under multiplication, and
this contains k*.

For A = Mn(k), Mn(k)* = GLa(k).

Definition (2.1.4):

Let A, B be two k-algebras. A k-linear transformation that is also a ring
homomorphism is called a k-algebra homomorphism or homomorphism of k -
algebras.

A homomorphism of k-algebras ¢: A — B which is also an isomorphism of
rings or equivalently of k-vector spaces is called isomorphism of k-algebras.
Notice that the unit n: k — A is always a homomorphism of k-algebras. There
are obvious notions of kernel and image for such homomorphisms, and of
subalgebra.

Definition (2.1.5):

Given two k-algebras A, B, their direct product has underlying set A x B with
sum and product

(a1, b1) + (az, b2) = (a1 + az, b1 + b2) , (a1, b1)(az, b2) = (aiaz, biby).

The zero is (0,0) while the unit is (1,1).

It is easy to see that there is an isomorphism of k -algebras Ax B = B x A.
Given a k-algebra A, it is also possible to consider the ring Mn(A) consisting of
m x m matrices with entries in A; this is also a k-algebra of dimension
DimMm(A) = m2dimk A.
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It is often the case that a kk-algebra A contains a subalgebrak:< A which is also
a field. In that case A can be viewed as a over ki in two different ways,
corresponding to left and right multiplication by elements of ki. Then fort €
ki, a € A,

(Left scalar multiplication) - t.a = ta;

(Right scalar multiplication) - a.t = at.
These give different ki-vector space structures unless all elements of ki
commute with all elements of A, in which case ki is said to be a central subfield
of A. We sometimes write k1A and Ay, to indicate which structure is being
considered. ki is itself a finite dimensional commutative k-algebra of some
dimension dimy k.
Proposition (2.1.6):
Each of the ki-vector spaceski A and Ay is finite dimensional and in fact

dimk A = dimis (ktA) dimilks = dimk A|L dimik:

Example (2.1.7):
Let k = R and A = M2(R), so dimr A = 4. Let

ki :{[_xy M:xye R} € M,(R)
Then ki= C so is a subfield of M2(R), but it is not a central subfield. Also dimi
A=2.

Example (2.1.8):

Let k = R and A = M2(C), so dimr A = 8. Let

ks :{[_xy *]ixy e R} € My(©)
Then ki= c so is subfield of M2(C), but it is not a central subfield. Here dimi A
=4,

Given a k-algebra A and a subfield kiSA containing k (possibly equal to k),
an elementa € A acts on A by left multiplication:

a.u = au(u € A).
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This is always a k-linear transformation of A, and if we view A as the kivector
space A ki, it is always a ki-linear transformation. Given a ki-basis

{vi,...... ,Vm} for A ki, there is an m x m matrix p(a) with entries in k1 defined

HOTEDY IS
r=1

It is easy to check that
1A - My (ky);a = A(a)
is a homomorphism of k-algebras, called the left regular representation of A
over ki with respect to the basis {vi,..., Vm}.
Lemma (2.1.9):
AA —-Mnm(k1) has trivial kernel kerA =0, hence it is an injection.
Proof:
If a ekerA then A (a)(1) =0, givingal =0,s0a=0.
Definition (2.1.10):
The k-algebra A is simple if it has only one proper two sided ideal, namely (0),
hence every non-trivial |-algebra homomorphism 8: A —B is an injection.
Proposition (2.1.11):
Let k be a field.
i) For a division algebra D over k, D is simple.
if) For a simple k -algebra A, Mn(A) is simple. In particular, Mn(k) is a simple
k -algebra.
On restricting the left regular representation to the group of units of A%,
we obtain an injective group homomorphism
A A* - GL, (K, ); 2*(a)(u) = au,
where ki< A is a subfield containing k and we have chosen a ki-basis of Ay,
Because
A* = imA* < GL,, (k)
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AXand its subgroups give groups of matrices.
Given a k-basis of A, we obtain a group homomorphism
p*: A% GLy(k); p*(@)(u)=va™
We can combine A* and p* to obtain two further group homomorphisms
A x p*: A x A* > GL,(Kk); 2* x p*(a,b)(u) = aub™?
A: A* - GL,(k); A(a)(w) = aua™?
Notice that these have non-trivial kernels,
Ker ¢*: p* = {(1,1),(-1,-1)}, Ker A = {1,-1}
In the following we will discuss linear algebra over a division algebra
let D be a finite dimensional division algebra over a field k.
Definition (2.1.12):
A (right) D-vector space V is a right ID-module, i.e., an abelian group with a
right scalar multiplication by elements of D so that foru; v €V, x; y € D,
v(xy) = (vx)y,
V(X +Y) = vX + vy,
(u + V)X = ux + vx,
vl=v:
All the obvious notions of D-linear transformations, subspaces, kernels and
images make sense as do notions of spanning set and linear independence over
D.
Theorem (2.1.13):

Let V be aD -vector space. Then V has a ID-basis.

If V has a finite spanning set over D then it has a finite D -basis; furthermore
any two such finite bases have the same number of elements.

Definition (2.1.14):

A D -vector space V with a finite basis is called finite dimensional and the
number of elements in a basis is called the dimension of V over D, denoted
dimp V.
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Forn > 1, we can view D" as the set of n x 1 column vectors with entries in D

and this becomes a D -vector space with the obvious scalar multiplication

Zq Z1X

3 A

Zn ZnX
Proposition (2.1.15):

Let V,W be two finite dimensional vector spaces over D, of dimensions dimp V

transformation A: V -W is given by

n
(P(Uj) = Z Wrarj
r=1

For unique elements a;; € D Hence if

yl a1 Az o X1 [*%1
y2| _[A21 Q22 - X||X2
yn An1 An2 " XpllXn

In particular, for V=D™ and W=D", every D-linear transformation is obtained in

Then

this way from left multiplication by a fixed matrix.
This is of course analogous to what happens over a field except that we are
careful to keep the scalar action on the right and the matrix action on the left.
We will be mainly interested in linear transformations which we will identify
with the corresponding matrices. If 8: D*—: D¥ and @ID™— D" are D-linear
transformations with corresponding matrices [6] , [¢], then

[6] [#]=[604¢], (2.1)
Also, the identity and zero functions Id; 0: D™— D™ have [Id] = Im and [0] =
Om.

62



Notice that given a D-linear transformation ¢: V—-W, we can 'forget’ the D-
structure and just view it as a k-linear transformation. Given D-bases {vi..., Vm},
{wi,.....,wn} and a basis {bs, ..., bq} say for D, the elements

vibe (r=1,.....m,t=1,....d),

wsbe (s=1,...,n,t=1,..d)

form k-bases for V;W as k-vector spaces.
We denote the set of all m x n matrices with entries in D by Mmn(ID) and mn(ID)
= Mnn(D). Then Mn(ID) is a k-algebra of dimension dim Mn(k) = n?dimyD. The
group of units of Mn(ID) is denoted GLn(ID). However, for non-commutative D
there is no determinant function so we cannot define an analogue of the special
linear group. We can however use the left regular representation to overcome
this problem with the aid of some algebra.
Proposition (2.1.16):
Let A be algebra over a field D and B € A a finite dimensional subalgebra. If
U€E B is a unitin A thenu™! € B, hence u is a unit in B.

Proof:

Since B is finite dimensional, the powers uk (k=0) are linearly dependent over

k, so for some t.€ k (r=0,....,e ) with t, #= 0 and e = 1, there is a relation

e
Z t,u" =0
r=0
If we choose k suitably and multiply by a non-zero scalar, then we can assume
that

e
uk — Z t;u” =0.
r=k+1

If v is the inverse of u in A, then multiplication by v** gives

e

v— Z t,u" k"1 =0,

r=k+1

from which we obtain
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e

v — Z t,u" *leB

r=k+1

For a division algebra D, each matrix A eMn(ID) acts by multiplication on the
left of D". For any subfield kiS DD containing K, A induces a (right) Ki-linear
transformation,
D"->D"; x ->AX

If we choose a ki-basis for D, A gives rise to a matrix AAEMna(IK1) where d =
dimuDg, . It is easy to see that the function A: Mn(ID) »Mnd(K1) ; A(A) = Aa.
is a ring homomorphism with kerA = 0. This allows us to identify Mn(ID) with
the subring imA € Mna(KKy).
We see that A is invertible in My(ID) if and only if Aa is invertible in Mna(IK1).
But the latter is true if and only if detAa€ 0.
Hence to determine invertibility of A eMn(ID), it suffices to consider det Aa
using a subfield Ki. The resulting function

Rdet K1 : Mn(ID) — K1; Rdet K1 (A) = Aa.
is called the IKi1-reduced determinant of Mn(ID) and is a group homomorphism. It
is actually true that detAa€ Kz, not just in K1, although we will not prove this
here.
Proposition (2.1.17):
A eMy(D) is invertible if and only if Rdet K1 0 for some subfield K:S
D containing K;.
In the following we will discuss Quaternions
Proposition (2.1.18):
If A'is a finite dimensional commutative R-division algebra then either A =
R or there is an isomorphism of R -algebras A # C.
Proof:
Let a. Since A is a finite dimensional R -vector space, the powers

1, a,a? ...ak .. mustbe linearly dependent, say
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tottia+t...+tha™=0 (2.2)
for some tie R with m > 1 and tm# 0. We can choose m to be minimal with
these properties. If to = 0, then

b+ba+tza?+....+tha™=0
contradicting minimality; so to# 0. In fact, the polynomial P(X) =to + t:X +...
+ tmX™Me R [X] is irreducible since if P(X) = P;(X)P,(X) then since Ais a
division algebra, either P, (a) = 0 or P,(a) = 0, which would contradict
minimality if both deg P;(X) > 0 and deg P,(X) > 0.
Consider the R-subspace

k

R(a) = Z sjaj

j=0
Then R(a) is easily seen to be a R-subalgebra of A. The elements 1, a, a2,
a™ form a basis by Equation (2.2), hence dimgR(a) = m.
Let y € C be any complex root of the irreducible polynomial to + t1X +...+
tmX™e R [X] which certainly exists by the Fundamental Theorem of Algebra.
There is an R-linear transformation which is actually an injection,

@:R(@)~ C ¢ X5t sal) = Bt s/
It is easy to see that this is actually an R-algebra homomorphism. Hence pR(a)
C C is a subalgebra.
But as dimrC = 2, this implies that m = dimrR(a) < 2. If m = 1, then by
Equation (2.2), « € R. If m = 2, then ¢: R(a) = C.
So either dimgr A=1and A =R, ordimg A> 1 and we can choose ana € A
with C # R(a). This means that we can view A as a finite dimensional C-
algebra. Now for any § € A there is polynomial

q(X) =uo + uX +...+ u X¢eC [X]

with e> 1 and u, # 0. Again choosing e to be minimal with this property, q(X)
is irreducible. But then since q(X) hasaroot in C, e =1 and 8 € C. This shows
that A = C whenever dimgr A > 1.
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The above proof actually shows that if A is a finite dimensional R-
division algebra, then either A = R or there is a subalgebra isomorphic to C.
However, the question of what finite dimensional R -division algebras exist is
less easy to decide. In fact there is only one other up to isomorphism, the skew
field of quaternions H. We will now show how to construct this skew field.
Let

H = {[% ‘g]:z,w € (C} c M,(C)
It is easy to see that H is a subring of M2(C) and is in fact an R-subalgebra
where we view M2(C) as an R-algebra of dimension 8. It also contains a copy of
C, namely the R-subalgebra
2 9ze cjem

However, H is not a C-algebra since for example
0 _ . .
o A% o= ol=-15 ollo 2J=15 ollo 5

Notice that if z,w € C,thenz = 0 = w if and only if |z]? + |w|?= 0. We

have

_ 2 2
[—Zw %)] [% Zw] - [|Z| ;lwl |z]? —8 |w|2]

Hence [_Z_w (‘E)]is invertible if and only if [% %)] # 0; furthermore in that

Case,

which is in H. So an element of H is invertible in H if and only if it is invertible
as a matrix. Notice that
SU(2) ={A € H : detA =1} <H*
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It is useful to define on H a norm

1% 4= der] %5 %)=+ tor
Then
Su(2)={Ae H:|4| =} < H*

As an R-basis of H* we have the matrices

] A PR B S v
These satisfy the equations
i2=j2=k?=-1,ij=k = - k=-ij = -kj; ki = = -ik:
This should be compared with the vector product on R® From now on we will
write quaternions in the form

q=xi+j+ zk +tl(x,yzt € R):

q is a pure quaternion if and only if t = 0O, q is a real quaternion if and only if
x = y = z = 0. We can identify the pure quaternion xi + yj + zk with the
element Xe1+yeo+ze3€ R3. Using this identification we see that the scalar and
vector products on R?® are related to quaternion multiplication by the following.
Proposition (2.1.19):
For two pure quaternions qu = Xai + Yyij + z1K, 02 = Xai + Yy2] + z2K,
Q102 = -(X1i + y1j + z1K) (Xai + y2j + 22K) + (Xai + y1j + 21K)_ (X2l + Y2 + 22K).
In particular, qi02 is a pure quaternion if and only if g1 and gz are orthogonal, in
which case gi032 is orthogonal to each of them.
The following result summarises the general situation about solutions of
X2+1=0.
Proposition (2.1.20):
The quaternion q = xi + j + zk + t1 satisfies q> +1 = 0 if and only if t = 0 and
X2 +y?+272=1.
Proof. This easily follows from Proposition 3.19.

There is a quaternionic analogue of complex conjugation, namely
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q=xitj+zk+tl—qg=q" =-xi-j-zk+1l.

This is “almost' a ring homomorphism H — H, in fact it satisfies

(@1 + 42) =1+ q2; (2.3a)
(9192) = 9192 ; (2.3b)
q =q < (qisreal quaternion; (2.3c)
q = -g <q is a pure quaternion: (2.3d)

Because of Equation (2.3b) this is called a homomorphism of skew rings or
anti-homomorphism of rings.

The inverse of a non-zero quaternion g can be written as

-1 — L_ — i
T ~w»?d~ W (2.4)

The real quantity qq is the square of the length of the corresponding vector,

g1 =Vgg = ryEraie e
For z =with u, v € R, z=ul- vi is the usual complex conjugation.
In terms of the matrix description of H, quaternionic conjugation is given by

hermitian conjugation,
z w z wl* _ [z —-w
[—a E]H[—B z] —[5 Z]
From now on we will write
1=1,i=lj=j,k=k
Now we will discuss Quaternionic matrix groups

The above norm | | on H extends to a norm on H", viewed as a right H-vector

space. We can define an quaternionic inner product on H by

n
z.y=z"y= Z Xy YT,
r=1

Where we define the quaternionic conjugate of a vector by

X1

Xy — _
! [FER, T

Xn
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Similarly, for any matrix [a;; ] over H we can define [a;; ] = [aji ]

The length of x € H " is defined to be

Ix] = Vx*x =

We can also define a norm on My(H) i.e., for A € Mn(H),

| A]l :sup{@'o + X E ]HI"}
X1

There is also a resulting metric on Mn(H),
(4,B) » |lA— Bl
and we can use this to do analysis on My(H). The multiplication map Mn(H) x
Mn(H) —Mn(H) is again continuous, and the group of invertible elements
GLn(H) SMn(H) is actually an open subset.
This can be proved using either of the reduced determinants
Rdety : M,(H) » R,Rdet.: M,(H) - C,

each of which is continuous. By Proposition (2.1.17),

GLn(H) = Mp(H) - Rdet; ! 0. (2.5a)

GLn(H) = Mn(H) - Rdet;1 0. (2.5b)
In either case we see that GLn(IH) is an open subset of Mn(H). It is also possible
to show that the images of embeddings GLn(H) — GLan(R) and GLn(H) —
GL2n(C) are closed. So GLn(H) and its closed subgroups are real and complex
matrix groups.
The n x n quaternionic symplectic group is

Sp(n) ={4 € GL,,(H): A*A = I} < GL, (H).
These are easily seen to satisfy
Sp(n) ={A € GL,,(H):vVx.y € H" Ax.Ay = x.y}.

These groups Sp(n) form another infinite family of compact connected matrix

groups along with familiar examples such as SO(n), U(n), SU(n). There are
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further examples, the spinor groups Spin(n) whose description involves the real
Clifford algebras CL,,.
Now we will discuss The real Clifford algebras,
The sequence of real division algebras R, C, H can be extended by introducing
the real Clifford algebras Cl,,, where

Clo=R,Clh=C,Clhb=H, dimg=2"
There are also complex Clifford algebras, but we will not discuss these. The
theory of Clifford algebras and spinor groups is central in modern differential
geometry and topology, particularly Index Theory. It also appears in Quantum
Theory in connection with the Dirac operator. There is also a theory of Clifford
Analysis in which the complex numbers are replaced by a Clifford algebra and a
suitable class of analytic functions are studied; a motivation for this lies in the
above applications.
We begin by describing Cl, as an R-vector space and then explain what the
product looks like in terms of a particular basis. There are elements e, e, ...
en€Cl, for which

{eser = —ese,, If S #T. (2.6 a)

e? = —1
Moreover, the elements eiieiz for increasing sequences 1 < i1< i< ... <ir< n
with 0 < r < n, form an R-basis for Cl,. Thus

dimgCl, = 2" (2.6b)
Whenr =0, the element g g, eir is taken to be 1.
Proposition (2.1.21):
There are isomorphisms of R-algebras
Cl,=C,Cl,=H

Proof:
For Cly, the function

Cly > Cix+yel»x+yi(x,y €R),
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is an R -linear ring isomorphism.
Similarly, for Cly, the function
Clo— H; t1 + Xe1 + Ye2 + Ze1€2— t1 + Xi + yj + zK (t,x,y,Z€ R);
is an R-linear ring isomorphism.
We can order the basis monomials in the er by declaring eiiei
to be number
1+ 201 4 gizl 4 Dirl

which should be interpreted as 1 when r = 0. Every integer k intherange 1 <
k 6 2n has a unique binary expansion

k =ko + 2ky +... + 2)k; +... + 2"k,
where each kj = 0,1. This provides a one-one correspondence between such
numbers k and the basis monomials of Cl,. Here are the basis orderings for the
first few Clifford algebras.
Cli: 1,e1; Clo: 1e1:e2: 01025 Clz i 1;et, 02, ele2, €3, eles, e2e3: ele2e3.
Using the left regular representation over R associated with this basis of Cln, we

can realiseCly as a subalgebra of Man(R).
Example (2.1.22):

For Cl1 we have the basis {1, e:} and we find that

p() =Ly =[] ']

So the general formula is

perye)=[) J]xyem

For Clz the basis {1, e1, e2, e1e2} leads to a realization in Ms(R) for which p(1) = I4

and
O -1 0 O
12 0 0 O
p(el) - O O O _1 'peZ
O 0 1 O
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0 0 -1 0 00 0 -1
0o 0 0 1 00 -1 0
1 0 0 o|Pr2lo0 1 0 o
0 -1 0 0 10 0 0

In all cases the matrices p(eirei...€ir) are generalized permutation matrices all of
whose entries are entries 0, =and exactly on non-zero entry in each row and
column. These are always orthogonal matrices of determinant 1.

These Clifford algebras have an important universal property which actually
characterises them.

First notice that there is an R-linear transformation

n n
jn:R™ - Cl,; jn (Z xrer> = Z X,€,

r=1 r=1

By an easy calculation,

n 2 n
jn(Zxrer> :—fo:—
r=1

r=1

2
27)

n

r=1

Theorem (2.1.23): (The Universal Property of Clifford Algebras)
Let A be a R-algebra and f : R"—AanR-linear transformation for which
f(x)2 = -[x|?1.
Then there is a unique homomorphism of R-algebras F :Cl,— A for which F _ja
=f, i.e, forall x € R",
F(jn(0) = f(x).
Proof:
The homomorphism F is defined by setting F(er) = f(er) and showing that it
extends to a ring homomorphism on Cl.
Example (2.1.24):
There is an R-linear transformation
a0 : R™ - CL,; a0(x) = —j,(x) = j,(Bx).
Then
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a 0(x)* = jn(-x)? = -|x/?,
so by the Theorem there is a uniqgue homomorphism of R-algebras a: Cl-—Clh
for which
a (jn(x)) = ao(X).
Since jn(er) = ey, this implies
a (er) = -ér.
Notice thatfor1 < il1<i2 <, ... <ik< n,

a (ei€iz, ...€k ) = (-1)Xeiteiz ... eik{fielieliezi;..eiigi,ififkliskiv;;d

It is easy to see that « is an isomorphism and hence an automorphism.

This automorphism a: Cl,—Clx is often called the canonical automorphism of
Cln.

Clifford algebras. Consider the R-algebra Mz(H) of dimension

16. Then we can define an R-linear transformation

.2 . =
0, R - MZ(]HI)' 94(x1e1+x2e2+x3e3+x4e4) -
x4k x1i+x2j—X3k

Direct calculation shows that 84 satisfies the condition of Theorem (2.1.23)
hence there is a unique R-algebra homomorphism @4 : Cls— M2(H) with ©4 ja
= 4. This is in fact an isomorphism of R -algebras, so

Cls = M(H):

Since R € R?C R3C R* we obtain compatible homomorphisms

O1: Cli=»Mz(H); @2 : Cla=>M2(H), @3 : Cls— M2(H);

which have images

im©1={zl.:z e C}.
iIm®2={ql2:qe€ H},

INSE: :{

g1 O | . }
: e H
0 qs q1492
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This shows that there is an isomorphism of R-algebras
Cls# H x H,
Where the latter is the direct product of Definition (2.1.5) We also have

GLs = M;(C),GL; = Mg(R)GL, = Mg(R)x M;R
After this we have the following periodicity result, where Mm(Cly) denotes the
ring of m x m matrices with entries in Cl.
Theorem (2.1.25):
Forn >0,

Cliwe== M16(Cly).

First there is a conjugation () : Cl.—Cl, defined by
€i1€iz, .- € = (-1)k

eixeik—1, - Gl

whenever 1 < i1< i2< ... <ik< n, and satisfying

X +y=x+y,
txtx,
forx,y € Cl,andt € R. Notice that this is not a ring homomorphism Cl,—Cl,
since for example whenever r < s,
e,6; = Bser = -e18s = — e,.e5 FErEs.

However, it is a ring anti-homomorphism in the sense that for all

x,y € Cln, (2.8)
When n =1, 2 this agrees with the conjugations already defined in C and H.
Second there is the canonical automorphisma:Cl,—Clx defined in Example
(2.1.24).
We can use a to define a £-grading on Clx:
Cr={ueCly:a (u)=u}, Clyn={u€eCly: a(u) = -u}.
Proposition (2.1.26):
i) Every element v € Cl, can be unique expressed in the form v = v*+v- where
v*e C,fand ve C,; . Hence as an R-vector space, Cl,= Cl} & CL;,.

if) This decomposition is multiplicative in the sense that
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uv € Cy if u,v € CLjoruv €C,,
uv,vu € Clt ifue Crandv € C;?t
Proof:

i) The elements

vt = %(v + a(vv)) v = %(v — a(v)).

satisfy a (v") =v*, a(v) = -v and v = v* + v". This expression is easily found to
be the unique one with these properties and defines the stated vector space
direct sum decomposition.
Notice that for bases of CI;; we have the monomials
&1 ... €gm€ CLE (1 < jl < ... <jm< n).

ej1, ... €2Mle CIL (1 <j1< ... <jomnrZ n). (2.9)
Finally, we introduce an inner product. and a norm| |on Cln by defining the
distinct monomials eiieiz eik with 1 < i1< i< ... <ix< n to be an orthonormal
basis, i.e.

1 if £ =kandi. = j, forallr

€i1€i2 - €ik - €i1€i2 - ik = { 0 otherwise

A more illuminating way to define is by the formula

u.v.:%Re(ﬂv+5u), (2.10)
Where for w €Cln we define its real part Rew to be the coefficient of 1 when w
is expanded as an R-linear combination of the basis monomials eiz ...eir with 1
< i< ..<ir<nand0 <r. It can be shown that for any u,v € Cl,and w €jiR",

(wu), (wv) = [w]*(u_v).. (2.11)

In particular, when [w] = 1 left multiplication by w defines an R-linear
transformation on Cl, which is an isometry. The norm | |gives rise to a metric
onCln. This makes the group of units CL; into a topological group while the
above embeddings of Cl, into matrix rings are all continuous. This implies that

CLy, is a matrix group. Unfortunately, they are not norm preserving. For
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example,2+e1e263€CI° has |2 + ,10203|=V5,but the corresponding matrix in
Ms(R) has norm+v/3. However, by defining for each w €Cln
lw| ={wx}:x € CL,,, |x|] = 1},
we obtain another equivalent norm on Cl, for which the above embedding Cl,—
M2n(R) does preserve norms. For w €jaR" we do have ||w|| = |w| and more
generally, for wi...wk€jnR",
Wy wiell = Iwy o will = Twy ] o
Forx,y € Cl,,
eyl < [lxlyll

without equality in general.
In the following we will study The spinor groups we will describe the compact
connected spinor groups Spin(n) which are groups of units in the Clifford
algebras Cln. Moreover, there are surjective Lie homomorphisms Spin(n)—
S0 (n)each of whose kernels have two elements.

We begin by using the injective linear transformation j, : R"—Cl, to
identify R" with a subspace of Cly, i.e.,

n n n
e e i xre =3 e
r=1 r=1

r=1

Notice that R"c Cl,,C,soforxe R, ue C,f andv €CL,

xu,ux € C,.xv,vx € CL} (2.12)
Inside of R" € Cl, is the unit sphere

Snt={x2R"|x| =1} =37, x,e, (X7 =1 %7 =1}

Lemma (2.1.27):
Let u € S™ €Cln. Then uis a unitin Cln, u € CI%
Proof:
Sinceu € R"

(uu=u(u) =-u?=-(lul’) =1,
so (-u) is the inverse of u. Notice that -u € C* 1

76



More generally, for ug, ...,ux € C"! we have
(U... k)t = (-1)Kuk... U1 =uq ..y (2.13)

Definition (2.1.28):
The pinor group Pin(n) is th e subgroup of CL} n generated by the elements of
(Cn—1'

Pin(n) = {u1... uk : k>0,ur e C"} < CLX
Notice that Pin(n) is a topological group and is bounded as a subset of Cl, with
respect to the metric introduced in the last section. It is in fact a closed subgroup
of CL¥ and so is a matrix group; in fact it is even compact. We will show that
Pin(n) acts on R" in an interesting fashion. We will require the following useful

result.
Lemma (2.1.29):
letu,v e R"S Clh. If u.v =0, then
uv = —uv.
Proof:

Writing u = }*_, x,.e, and v = }.*_; y,.e, with X, ys € R, we obtain

n n
vu = Z Z Vs Xr€sey
s=r r=1

n
Z Yxxrez Z(xSYr - ers)eres
r=1

r<s

n
=1 Z VrXy — Z(err - ers)eres
r=1

r<s

=u.v-—- Z(xSYr - ers)eres

r<s
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= - Z(xSYr - ers)eres

r<s

=u.v-—- Z(xSYr - ers)eres

r<s
n n
= - Z Z XrYs€reés
r=1 s=1
= —Uuv.

Foru e S™ and x € R",
axu = ( —wx(— u) = uxu.

If u.x =0, then by Lemma (2.1.29),

a(xu = —u?x = —(-1x = x. (2.14a)
Since u? = -|u|? =-1. On the other hand, if x = tu for some t € R, then
a(u)xu = tu’u = — tu (2.14b)

So in particular @ (u)xu € R" This allows us to define a function
pu: R™ - R™; pu(x) = a(u)xu = uxu.
Similarly for u € Pin(n), we can consider (u)xw; if u=ul...ur for us...ur € Sn-
1 we have
o (U)Xu = a (U1...U)xuq ... Uy
= ((-1)"uz... unx((-1)'ur ...u1)
= Pu10 .. 0pyr(x) €R". (2.15)
So there is a linear transformation
pu: R™ - R™; pu(x) = a(u)xu
Proposition (2.1.30):
For u € Pin(n), pu : R™ — R™ is an isometry, i.e., an element of O(n).
Since each pu € O(n) we actually have a continuous homomorphism
p: Pin(n) — (n); p(u) = pu:
Proposition p: Pin(n) =0O(n) is surjective with kernel ker p = {1,-1}.
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follows by using the standard fact that every element
of O(n) is a composition of reections in hyperplanes.
Suppose that for some ui, ...ux € Sn%, u = us... Uk € ker p, i.e., pu = In. Then
1 = det pu = det(pu1...puk ) = det pu1...det pu .
Each pur is a reection and so has det pur = -1. These facts imply k must be even,
u € ClF and then by Equation (2.13),
ul=ux..u1=1u.
So for any x € R" we have
x = p(x) = uxu 4
which implies that
Xu = ux.
Foreachr=1, ..., n we can write
u = a, + e;b. = (af +e.bz) + (a7 +e;),
where ar, br € Cln do not involve e in their expansions in terms of the monomial
bases of Equation (2.9). On taking x = er we obtain
er(ar + ebr) = (ar + erbr)er.
giving
ar + e/br = -er(ar + erbr)er
= -erarer - €21 brer
= -e2eo-r ar - ey
=ar- ebr
=(ar-eb 1)+ (ay — by
=ar=err,
where we use the fact that for each es # er, eser = -eres. Thus we have by = 0 and
S0 U = ar does not involve er. But this applies for all r, so u = t1 for some t € R.

Since u =t1,
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by Equation (2.13) and the fact that k is even. This shows thatt = £ and sou =
+1.
Forn > 1, the spinor groups are defined by
Spin(n) = p~1150(n) < Pin(n).
Theorem (2.1.31):
Spin(n) is a compact, path connected, closed normal subgroup of Pin(n),
satisfying
Spin(n) = Pin (n) n CL}, (2.16a)
Pin(n) = Spin(n) Uer Spin(n), (2.16b)
foranyr=1,...,n.
Furthermore, when n > 3 the fundamental group of Spin(n) is trivial, ; Spin(n)
=1
Proof:
We only discuss connectivity. Recall that the sphere Sn't € R" € Cl, is path
connected.
Choose a base point uo € Snt. Now for an element u = us...ux € Snt we must
have k even, say k = 2m. In fact, we might as well take m to be even since u =
u(-w)w for any w € Sn’t. Then there are continuous paths
pr: [01] - S™1(r = 1,.. 2m),
for which pr(0) = uo and pr(1) = ur. Then :
p: [0,1] = S™* p(t) = pa(t) ... pam(t)
is a continuous path in Pin(n) with
p(0) = ug™ = (=)™ = 1,p(D) = u,
But t — p (p(t)) is a continuous path in O(n) with p(p(0)) € SO(n), hence p(p
(t)) € SO(n) for all t. This shows that p is a path in Spin(n). So every element u

€ Spin(n) can be connected to 1 and therefore Spin(n) is path connected.
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The final statement involves homotopy theory and is not proved here. It should
be compared with the fact that for n > 3, m; SO(n) = {1,-1} and in fact the map
is a universal covering.
The double covering maps p: Spin(n) =SO(n) generalize the case of SU(2) —
SO(3).
In fact, around each element u € there is an open neighbourhood Ny € Spin(n)
for which p: Ny = Ny is a homeomorphism, and actually a diffeomorphism.
This implies the following.
Proposition (2.1.32):
The derivative d p: spin(n) — so(n) is an isomorphism of R-Lie algebras and
dim Spin(n) = dim SO(n) = (721)

In the following we will discuss The centres of spinor groups
Recall that for a group G the centre of G is

C(G)={c € G: Vg € G, gc = cg}.
Then C(G) < G. It is well known that for groups SO(n) with n > 3 we have
Proposition (2.1.33):
Forn = 3,

n _ a1 ({1}if nisodd
C(SO(n)) = {tly : ¢ = +1,t" = 1}_{{ﬂn} o ts aven
Proposition (2.1.34):
Forn>3

{£1}if nis odd
C(Spin(n)) =<{{x1 e, ..e, }if in =2mod 4.
{£1,xe, ...e,}if n =0mod 4.

( Z. .
zlfnlSOdd

A

z
7 ifn =2modA4.

EJCZ
kZT ifn = 0mod 4.
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Proof:

If g € C(Spin(n)), then since p: Spin(n) = SO(n), p(g) € C(SO(n)). As =1 €

C(Spin(n)), this gives |C(Spin(n))|= 2| €(SO(n))| and indeed
C(Spin(n)) = p~tc(So(n)).

For n even,
(n) (n+1)
(e1...en2=e1 .. en1..en=—1\2/eZ .. ef= (—1)\ 2
Since
(n+1) _(+Dn _ (Omod 2if n =2mod 4,
2 N 2 _{1mod2ifn =0mod 4,
this implies

lifn =2mode4
” ’
(iel en) - {_1 lf n =0 mode 4,

Hence for n even, the multiplicative order of xe; ....e, is 1 or 2 depending on
the congruence class of n modulo 4. This gives the stated groups.

We remark that Spin(1) and Spin(2) are abelian.

In the following we will discuss finite subgroups of spinor groups Each
orthogonal group O(n) and SO(n) contains finite subgroups. For example, when
n = 2, 3, these correspond to symmetry groups of compact plane figures and
solids. Elements of SO(n) are often called direct isometries, while elements of
O(n) are called indirect isometries. The case of n = 3 is explored in the Problem
Set for this chapter. Here we make some remarks about the symmetric and
alternating groups.

Recall that for each n > 1 the symmetric group S is the group of all
permutations of the set n = 1, ... n. The corresponding alternating group An <
Sn is the subgroup consisting of all even

permutations, i.e., the elements o € Sy for which sign(a)=1 where sign : Sp =
{x1} is the sign homomorphism.

For a field |, we can make Sn act on K" by linear transformations:
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X1 Xo-1(1)
X5 Xo-2(2)
ol.|— :
Xn Xo—1(n)
Notice that o(er) = es(-). The matrix [o] of the linear transformation induced by
o with respect to the basis of e/'s has all its entries 0 or 1, with exactly one 1 in

each row and column. For example, when n = 3,

0 0 1 0 0 1
[(123)]:l1 0 o‘,[(l,s)]:lo 1 o‘
010 1 00

When KK = R each of these matrices is orthogonal, while when K = C it is
unitary. For a given n we can view S, as the subgroup of O(n) or U(n)

consisting of all such matrices which are usually called permutation matrices.
Proposition (2.1.35):
For g € S,

sign(o) = det([o]).
Hence we have

A = so(n)nsS,if k=R
_{Su(n)nSnifk: C

Recall that if n > 5, An is a simple group.

As p: Pin(n) = O(n) is onto, there are finite subgroups S,,= p* Sn = < Pin(n)
and 4,,=p~14» <Spin(n) for which there are surjective homomorphisms p:Sn
—Snand p: An =An whose kernels contain the two elements +1. Note that
|S.|=2 n!, while |4,,|=n!, However, for n > 4, there are no homomorphisms r:

Sh— Sn, t: An = Anfor which p o 7=1d.

Sn — S, A, Ay
"d\ l ' '
S, iden

Ay
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Similar considerations apply to other finite subgroups of O(n).

In CL%, n we have a subgroup En consisting of all the elements
xejj.ep(l<i;<-<i,<n0<7)

The order of this group is |E,|= 2™ and as it contains =1, its image under p:

Pin(n) - O(n) is En = pE, of order |E,|= 2n. In fact, [{£1}| = C(Ex) is also the

commutator subgroup since eigje; * ej‘1 = -1 and so En is abelian. Every non-

trivial element in En has order 2 since e?= -1, hence En < O(n) is an elementary
2-group, i.e., it is isomorphic to (Z/2)". Each element p(er) € O(n) is a

generalized permutation matrices with all its non-zero entries on the main

—0
diagonal. There is also a subgroup E,, = pEX < SO(n) of order 2"~ where
EX = E, n Spin (n)

—0
These groups Enand E2-2"In fact E,, is isomorphic to (2).

are non-abelian and fit into exact sequences of the form

n

z z
1—>§—>En—>(§) >1,1-52/2->E) > @@/2)"1>1

in which each kernel Z/2 is equal to the centre of the corresponding group En or

E? This means they are extraspecial 2-groups.
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Section (2.2) : Matrix Groups as Lie Groups
Now we will discuss the basic ideas of smooth manifolds and Lie groups.
Definition (2.2.1):
A continuous map g : V1 — V2 where each Vk € R™ is open, is called smooth if
it is infinitely differentiable. A smooth map g is a diffeomorphism if it has
smooth. inverse g~ which is also smooth.
Definition (2.2.2):
Let M be a separable Hausdorff topological space.
A homeomorphism f: U — V where U € M and V < R"are open subsets, is
called an n-chart for U.
If U={U,U: a € A} is an open coveringof Mand & ={f, = V,}isa
collection of charts, then F is called an atlas for M if, whenever U, N UgU%0
foofa i fa(Ua N Up) = fz(Uq N Up)

is a diffeomorphism.

Uy N Ug

fs
fa'

»

f(l(UanUﬁ) fﬁ_,UanUﬁ
fofa

We will sometimes denote an atlas by (M,U, F) and refer to it as a smooth
manifold of dimension n or smooth n-manifold.

Definition (2.2.3):

Let (M,U,F)and (U',U’, f") be atlases on topological spaces M and M’. A
smooth map h: (M,U,F)— (U’,U’, f') is a continuous map h: M - M’ such
that for each pair a, a’'with h(U,) N U, + 8 ,the composite

fafroh°fa fa(h™ 1U -V
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IS smooth.

_ fa’u°h°fa_1
fa(h 1U(;f’) V(Z,’
fa_l '(;1
h~1U,, ’ h(Ug) NUg

In the following we win uiseuss Tangent spaces and derivatives
Let (M,U, F) be a smooth n-manifold andp € M .y Let : (a,b) > M be a
continuous curve with @ <0 <b.
Definition (2.2.4):
is differentiable at t € (a, b) if for every chart f : U — V with y(t) € U, the curve
foy :(a,b) —» Visdifferentiable att € (a, b), i.e., (foy )’ () exists. y is
smooth att € (a; b) if all the derivatives of f o  exists at t.
The curve y is differentiable if it is differentiable at all points in (a, b).
Similarly y is smooth if it is smooth at all points in (a, b).
Lemma (2.2.5):
Let fo : Uo = Vo be a chart with y (t) € Uo and suppose that
fooy :(a, b)n f3lvy - v,
is differentiable/smooth at t. Then forany chart f : U — V withy (t) e U
foy (@ bnflv-vVv
is differentiable/smooth at t.
Proof:
The smooth composite f o a is defined on a subinterval of (a, b) containing t
and there is the usual Chain or Function of a Function Rule for the derivative of
the composite
(fr) (@) = Jacs. 1 (roy ) (rony' ) (2.19)

Here, for a differentiable function
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hi)
h:wy; = wy; h(x) = :

hmz (x)

with W1 € R™ and W, € R™ open subsets, and x € W1, the Jacobian matrix is

oh;
Jacy(x) = [a (x)] € Mz mi(R)

If y(0) = p and y is differentiable at 0, then for any (and hence every) chart fo :
Uo = Vo with y (0) € Uy, there is a derivative vector vo = (f y)’(0) € R™ In
passing to another chart f : U -V with y (0) € U by Equation (2.19) we have
(fr)'(0) = Jacp1(f 2 ¥ (0))(f ¥)'(0).
In order to define the notion of the tangent space TpM to the manifold M at p,
we consider all pairs of the form
((fy)'(0), f:U->V)
where y(0) = p € U, and then impose an equivalence relation ~ under which
((fty)’(0), f1 : U1 > V1) ~ ((f27)’(0), f2 : U2 = V2).
Since

(f27)'(0) = Jacys51 (£1,(0)) (fry)' (0)
we can also write this as
(v, fi: U1 > Vy) ~ (]acf2f1-1(f1(p))v’f2: Uo— V2),

whenever there is a curve a in M for which

y(©0) =p, (f1y)'(0) =v
The set of equivalence classes is TpM and we will sometimes denote the
equivalence class of (v, f: U -V ) by [v,f: U->V].
Proposition (2.2.6):

For p € M, TyM is an R-vector space of dimension n.
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Proof:
For any chart f: U — V with p € U, we can identify the elements of TpM with
objects of the form (v, f: U — V). Every € R"arises as the derivative of a
curvey : (-g, &) = V for which y(0) = f (p). For example for small enough ",
we could take

y(@©) = f(p)+ tv.
There is an associated curve in M,

y: (-&€) » M;y(t) = f77(1)

for which y(0) = p. So using such a chart we can identify ToM with R" by

[v,f:U - V]ew.
This shows that T,M is a vector space and that the above correspondence is a
linear isomorphism.
Leth: (M,U,F) » (M',U’,F") be a smooth map between manifolds of
dimensions n,n’. For p € M, consider a pair of charts with pe U, and h(p) €
U.s.Since hyr g = foroho fit
is differentiable, the Jacobian matrix Jac;,,(f (p) has an associated R-linear
transformation

d hgg: R* = RY; d hga(x) = Jachyo(foa(0))x.

It is easy to verify that this passes to equivalence classes to give a well defined
R-linear transformation

d hp: ToM - ThpM'.
Proposition (2.2.7):
Leth: (M, U,F) » (MU, F')and g: (MU', F') - (M"U",F") be smooth
maps between manifolds M, M', M"" of dimensions n,n’, n"".
a) For each p € M there is an R-linear transformation dhy: ToM > ThpM'.
b) For each p € M,

dgn@p) ° dhp = d(g o h)p

c) For the identitymapIld: M — Mandp € M
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d Idp = Idtpm
Definition (2.2.8):
Let (M, U, F) be a manifold of dimension n. A subset N € M is a submanifold
of dimension k if for every p € N there is an open neighbourhood U € M of p
and an n-chart f : U — Vsuch that
pefiVNARY)=NNU.
For such an N we can form k-charts of the form
£ NNU 'V > RA(x) = f(x):
We will denote this manifold by (N, UUy, FyN, FN). The following result is
immediate.
Proposition (2.2.9):
For a submanifold N € M of dimension k, the inclusion functionincl : N -
M is smooth and for every p € N, d inclp : ToN — TpM is an injection.
The next result allows us to recognise submanifolds as inverse images of points
under smooth mappings.
Theorem (2.2.10):
(Implicit Function Theorem for manifolds). Let h: (M,U,F) ! (M',U',F') be
a smooth map between manifolds of dimensions n,n'. Suppose that for some q
€ M', d hp : ToM—-TnpM' is surjective for every p € N =h'lg. Then NEM is
submanifold of dimension n — n' and the tangent space atp € N is given by
T,, N =kerd hy.
Theorem (2.2.11):
(Inverse Function Theorem for manifolds). Let h: (M, U, F) » (M',U',F") be a
smooth map between manifolds of dimensions n,n’. Suppose that for some p €
M, d hp : ToM ->ThM' is an isomorphism. Then there is an open
neighbourhood U € M of p and an open neighbourhood V € M’ of h(p) such
that hU = V and the restriction of h to the map hy: U — V is diffreomorphism.
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In particular, the derivative d hp : T, - Th) is an R-linear isomorphism and
n =n"
When this occurs we say that h is locally a diffeomorphism at p.
Example (2.2.12):
Consider the exponential function exp: Ma(R) =GLn(R). Then
d expo(X) = X:
Hence exp is locally a diffeomorphism at O.
In the following Lie groups
Definition (2.2.13):
Let G be a smooth manifold which is also a topological group with
multiplication map mult: G x G — G and inverse map inv: G — G and view
G — G as the product manifold. Then G is a Lie group if mult; inv are smooth
maps.
Definition (2.2.14):
Let G be a Lie group. A closed subgroup H < G that is also a submanifold is
called a Lie subgroup of G. It is then automatic that the restrictions to H of the
multiplication and inverse maps on G are smooth, hence H is also a Lie group.
For a Lie group G, at each g 2 G there is a tangent space T¢ G and when G is a
matrix group this agrees with the tangent space. We adopt the notationg =T1 G
for the tangent space at the identity of G. A smooth homomorphism of Lie
groups G — H has the properties of a Lie homomorphism.
For a Lie group G, let g € G. There are following three functions are of great
importance.
(Left multiplication) Lg: G — G; Lg(x) = gx.
(Right multiplication) Rg: G —=G; Rg(x) = xg.
(Conjugation) xq : G -»G; Xg(X) = gxg™.
Proposition (2.2.15):

For g € G, the maps Lg, Ry, Xq are all diffreomorphisms with inverses
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Ly' = Lg-1Rg" =Ry Xg" = Xg1
Proof:
harts for G x G have the form
@1 X @2: U1x Uz - Vix V2,
where @« :Uk—Vk are charts for G. Now suppose that uU;xU, , € W < G
where there is a chart 8:W —Z. By assumption, the composition
0 oo (prxpr)t=00po(prixp;)vixve >z
is smooth. Then Lg(x) = u(g, x), so if g € U1 and x € Uy, we have
Lg(x) =6 40 o Lyo @3) o p2(x)
But then it is clear that
0oqplivo— z
is smooth since it is obtained from 6 o u o(¢,x¢@,)*but treating the first variable
as a constant.
A similar argument deals with Rq. For xg, notice that
Xg=LgoRg=Rge Ly,
and a composite of smooth maps is smooth.
The derivatives of these maps at the identity 1 € G are worth studying. Since Lg
and Rgq are diffeomorphisms with inverses Lg.1 and Rg-1
d(Lg)1, d(Rg)1:9=T1G > T¢gG
are R-linear isomorphisms. We can use this to identify every tangent space of G
with g. The conjugation map Xg fixes 1, so it induces an R-linear isomorphism
Adg=d(xg)1:9— 0.
This is the adjoint action of g € G on g. For G a matrix group.
There is also a natural Lie bracket [, ] defined on g, making it into an R-Lie

algebra. The construction follows that for matrix groups.

91



Theorem (2.2.16):
Let G, H be Lie groups and ¢: G —H a Lie homomorphism. Then the derivative
is a homomorphism of Lie algebras. In particular, if G < H is a Lie subgroup,
the inclusion map incl : G—H induces an injection of Lie algebras d incl : g —h.
Now we study Some examples of Lie groups.
Example (2.2.17):
For K = R, C, GLn(K) is a Lie group.
Proof:
GLn(K) € Mn(K) is an open subset where as usual Mq(K) we identify with KK
. For charts we take the open sets U € GLy(K) and the identity function
Id: U — U. The tangent space at each point A € GLn(KK) is just Mn(K). So the
notions of tangent space and is agree here. The multiplication and inverse maps
are obviously smooth as they are defined by polynomial and rational functions
between open subsets of Mn(IK).
Example (2.2.18):
For K= R, C, GLn(K) is a Lie group.
we have

SLn(K) = det? 1 € GLA(K)
Where det: GLn(KK) — K is continuous. K is a smooth manifold of dimension
dimgr K with tangent space Tr R = R at each r € R and det is smooth. In order to
apply Theorem 4.10, we will first show that the derivative d deta : Ma(K) - R
is surjective for every A € GLy(KK). To do this, consider a smooth curve a: (-
€, €) = GLa(K) with a(0) = A. We calculate the derivative on _0(0) using the

formula

ddetqr)
dat |i=0

ddet,(a'(0)) =

The modified curve
ao: (-€,€)= GLa(K); aory = At gy
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satisfis a(0) = I implies

, ddetao(t) ,
ddetl(aO(O)) = m = tTOfO(O)
Hence we have
d det,(a'(0)) = dgthiff)):det A‘ﬁLﬁ?) = det A tra),(0)

So d deta is the K -linear transformation
d deta : Mn(K)— K d deta(X) = detatr(A1X).
The kernel of this is ker d deta = Asla(IK) and it is also surjective since tr is. In
particular this is true for A € SLn(KK). By Theorem (2.2.10), SLn(K) - GLn(K) is
a submanifold and so is a Lie subgroup. Again we find that the two notions of
tangent space and dimension agree.
There is a useful general principle at work in this last proof. Although we state
the following two results for matrix groups, it is worth noting that they still
apply when GLx(RR) is replaced by an arbitrary Lie group.
Proposition (2.2.19):
(Left Translation Trick). Let F : GLy(R) =M be a smooth function and suppose
that B € GLx(R) satisfies F(BC) = F(C) for all C € GL(R). Let A € GLA(R)
with d FA surjective.
Then d FBA is surjective.
Proof:
Left multiplication by B € G, Lg : GLn(R) — GLn(R), is a diffeomorphism, and
its derivative at A € GLq(R) is
d(LB) : Mn(R) - Mn(R); d LB(X) = BX

By assumption, F o L = F as a function on GLn(R). Then
d Fea(X) =d Fsa(B(B-1X))

= d Faa o d(Ls)a(BX)

= d(F o Le)A(B*X)

=d Fa(BX):
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Since left multiplication by B on Mn(R) is surjective, this proves the result,
Proposition (2.2.20):

(Identity Check Trick). Let G < GLn(R) be a matrix subgroup, M a smooth
manifold and F : GLs(R) -» M a smooth function with F1qg = G for some g € M.
Suppose that for every B € G, F(BC) = F(C) for all C € GLn(R). If d Fl is
surjective then d Fa is surjective for all A € G and ker d Fa = Ag.

Example (2.2.21):

O(n) is a Lie subgroup of GLn(R).

Proof:

Recall that we can specify O(n) € GLn(R) as the solution set of a family of

polynomial equations in n? variables arising from the matrix equation ATA = 1.

In fact, the following n + (721) = (n _2'_ 1) equations in the entries of the matrix

A = [aj] are sufficient:

n

n
Z“/%r_lzo(lSTS"),ZakrakSZO(1Sr<SSn)
k=1 k=1

We combine the left hand sides of these in some order to give a function F :

n+1

GLn(R) = R( 2 )forexample

_ n .
k=1

Zn az —1
kn
k=1
n
Zk:l aklakn - 1

Zn .
Ak(n-1)a
L k=1 kn m
n+1)

We need to investigate the derivative d FA : Mn(R) — R( 2
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d FA is surjective for all A € O(n), it is sufficient to check the case A =1. The

Jacobian matrix of F at A = [ajj] = | is the (n _2F 1)x n? matrix
2 0 0 0 - 0 O
O 0o 0o 0 .. 02
o1 0 -~ 0 10
0o 0 o0 - 1 1 o

Where in the top block of n rows, the r th row has a 2 corresponding to the
variable ar and in the bottom block, each row has a 1 in each column

corresponding to one of the pair ars, asr with r <'s. The rank of this matrix is n +

(721) = (n ;- 1) so dF1 is surjective. It is also true that

ker d Fi = Sk-Symn(R) = o(n):
Hence O(n) < GLq(R) is a Lie subgroup This example is typical of what
happens for any matrix group that is a Lie subgroup of GLa(R).
Theorem (2.2.22):

Let G < GLn(R) be a matrix group which is also a submanifold, hence a Lie
subgroup. Then the tangent space to G at | agrees with the Lie algebra g and the
dimension of the smooth manifold G is dim G; more generally, Ta G = Aq.

In the rest of this sections, our goal will be to prove the following important

result.

Theorem (2.2.23):
Let G < GLA(R) be a matrix subgroup. Then G is a Lie subgroup of GLa(R).

The following more general result also holds but we will not give a proof.
Theorem (2.2.24):

Let G < H be aclosed subgroup of a Lie group H. Then G is a Lie subgroup of
H.
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In the following we will discuss some useful formula in matrix groups

Let G < GLn(R) be a closed matrix subgroup. Choose r so that

0<r<1/2and if A, B € Nunwr)(O,r) then exp(A) exp(B) € exp(Nmnr)(O; 1/2)).

Since exp is injective on Nwvnr)(O; 1), there is a unigue C € M) for which
exp(A) exp(B) = exp(C) (2.20)

We also set
1
S = C—A—B—E[A,B]eMn(R) (2.21)

Proposition (2.2.25):
||S|| satisfies
ISl < e5(llAll + 11B11)?
Proof:
For X € Mn(R) we have
exp(X) =1 + X + R, (X),
Where the remainder term R1(X) is given by

1
Ri(x) = ka
k<2
Hence,
2 1 k-1
IR GOIl < IIXI2 ) —
k<2
Since ||C|| < 1/2,
1RO < lic? (222)
Similarly
exp(C) = exp(A)exp(B) =1 + A + B + R,(A,B),
Where
k
LN (kY g arpapier) = 5 (AT IBID
IR: (4, Bl < ZF(Z (Y narrupiier ) = > ==
k=2 r=0 k=2

< (Al + 11B11)?
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giving
since ||A|l + || B||< 1.
Combining the two ways of writing exp(C), we have
C=A+B +Ri(AB)-Ri(C) (2.23)
and so
ICII < [[All + IBIl + IRy (A, B)Il + IR, CI
< Al + 1IBIl + (1Al + IBI)? + |IC]I?

1 2
<2(l14ll+ IBIl +5 lIC11?)

since [|A]l, | B]l, [IC|| < 1/2. Finally this gives
ICIl < 4(llAll + IBID).
Equation (2.23) Also gives
IC — AcBll < lIR1(4, B)Il + [IR,CIl
< (I1All+ 11BID? + (4llAll + 1I1BI)?
Giving
IC — A =Bl =17(lAllBID? (2.24)

Now we will refine these estimates further. Write
1
exp(c)=1+C+ ECZ + R,(c)

Where

1 1
R,(CO)= ) —=<=ICI?
(0 =) =<3l
k=3
which satisfies the estimate

13
R <=
2(0) <5

since ||C|| < 1. With the aid of Equation (2.21) we obtain

1 1
exp(c) :1+A+B+§[A,B]+S+§CZ+R2(C)
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1 1
= 1+A+B+§[A,B]+§(A+B)2+T
:1+A+B+§(A2+2AB+BZ)+T (2.25)
Where
1
T = 5+§(c2 — (A)B)? + R,(C) (2.26)

Also

1
exo(A)exp(B) =1+ A+ B+ > (A2 +2AB +B?)+R,(A,B) (2.27)

ran =Y 5(5 ()

k=3 r=0
which satisfies
IR(4. B < 5 411+ 141
Since ||[A|| + |IB]| <1
Comparing Equations (2,26) and (2,27), and using(2,20) we see that
S=R2(A,B)+§((A+B))2- C?) - Ry(C)

Taking norms we have

1
ISII < IR, 4, B)l +§(A +B)(A+B—C)— (A+ B = OlI+lRCI

3

, 1 1
< S (141l + 1AID* + 5 1Al + 1B+ el 4+ B - ¢ +3

3

Wl P

1 5 1
< S (1Al + 141D° + 2 (Al + 1B1).17 |4+ B - ¢ + 3

< 65(llAll + [1BID?.
yielding the estimate
ISl < e5(llAll + [I1B1))? (2.28)
Theorem (2.2.26):

If U,V € Mn(R), then the following identities are satisfied.
[Trotter Product Formula]
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. 1 1
exp(U + V) = lim (exp <(—) u> exp <(—) v))

r-m r r

[Commutator Formula] :
T 1 1 1 1

exp([u,v]) = rILrpn(exp ((;) u) exp ((;) v) exp (— (;) u) exp (;) V)
Proof:
For large r we may take A :%u and B :%v and apply Equation (2.21) to give

exp((1/r)U) exp((1/r)V ) = exp(Cr)

with

c, — (%) (u+ v)” < 17(JlUll + IvI1)?

12

ASr— oo

In the following we will discuss not all Lie groups are matrix groups.

For completeness we describe the simplest example of a Lie group which is not
a matrix group. In fact there are finitely many related examples of such
Heisenberg groups Heis, and the example we will discuss Heis; is particularly
important in Quantum Physics.

Forn > 3, the Heisenberg group Heisn is defined as follows. Recall the group

of n x n real unipotent matrices SUTn(RR), whose elements have the form

1 ap A1n |
0O 1 ayy - Arn

0 0 . )

: 1 apn-2n-1

: : .0 1 An—1n
0 O .. 0 0 1

with ajj € R. The Lie algebra sutn(R) of SUTn(RR) consists of the matrices of the

form
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o
o

tz 1 . ., aZn

0 th-2n-1 :

E H ‘. O O tn—ln
0o 0 .. O 0 0 -
with tjj € R. SUT, is a matrix subgroup of GLn(R) with dimSUT, =(

n

2).Itisa

nice algebraic exercise to show that the following hold in general.
Proposition (2.2.27):
Forn > 3, the centre C(SUThx) of SUT, consists of all the matrices [aij ] €
Heisnwith aij = 0 except when i = 1 and j = n. Furthermore, C(SUTh) is
contained in the commutator subgroup of SUTh.
Notice that there is an isomorphism of Lie groups R = C(SUT:). Under this
isomorphism, the subgroup of integers Z < R corresponds to the matrices with
ain € Z and these form a discrete normal (in fact central) subgroup Z » <SUTh.
We can form the quotient group

Heisn=SUTn/ Zn.
This has the quotient space topology and as Zn is a discrete subgroup, the
quotient map g : SUTn —Heisn is a local homeomorphism. This can be used to
show that Heisn is also a Lie group since charts for SUTn defined on small open
sets will give rise to charts for Heisn. The Lie algebra of Heisn is the
same as that of SUTn, i.e., heisn = suth.
Proposition (2.2.28):
Forn > 3, the centre C(Heisn) of Heisn consists of the image under g of
C(SUTh). Furthermore, C(Heisn) is contained in the commutator subgroup of
Heisn.
Notice that C(Heisn) = C(SUTn)= Z n is isomorphic to the circle group

T={zeC:|z| =1}
with the correspondence coming from the map

RoT,te eq.
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When n = 3, there is a surjective Lie homomorphism

1 x ¢t

0 13]-[]

p:SUT; - R?;

whose kernel is ker p = C(SUT3). Since Zz < ker p, there is an induced
surjective Lie homomorphism p: Heiss » R2 for whichp 0 ¢ = p. In this case
the isomorphism C(Heisn) = T is given by

10 t |
0 1 0‘23962””‘
0O 0 1

From now on we will write [x, y, 22’“""] for the element

1 x t

lO 1 y‘ Z3 € Heis;
0 0 1

Thus a general element of Heiss has the form [x,y, z] with x,y € Rand z €

T. The identity element is 1 = [0, 0,1]. The element 2

1 x t

IO 1 y‘

0 0 1
of the Lie algebra heiss will be denoted (x, y, t).
Proposition (2.2.29):
Multiplication, inverses and commutators in Heiss are given by

[, 1, 241[%2, 2, 22] = [x1 +x, Yy, Y, lezezﬂixlyz]v

[x y,z] 1 — [_x Xy, z -1 mey]

[x1, y1, 21102, ¥, 25 (x5, ¥2, 2,1 71=[0,0, e2™H(WXY2-y1x2)
The Lie bracket in heis3 is given by
[(X1, y1, t1), (X2, Y2, 12)] = (0, O, X1y2 - y1x2):

101



The Lie algebra heiss is often called a Heisenberg (Lie) algebra and occurs
throughout Quantum Physics. It is essentially the same as the Lie algebra of

operators on differentiable functions f : R — R spanned by 1; q given by

1£(x) = £(x); pf (¥) =2L2, gF(x) = xf (x)

dx
The non-trivial commutator involving these three operators is given by the

canonical commutation rela-tion
[p,al =pg-gp=1.
In heisz he elements (1, 0,0), (1,0, 0), (0, 0, 1) a basis with the only non-
trivial commutator [(1, 0, 0) , (1, 0, 0)] = (0, 0, 1).
Theorem (2.2.30):
There are no continuous homomorphisms ¢: Heiss = GLn(C) with trivial kernel
ker ¢ = 1.
Proof:
Suppose that ¢: Heiss =GLn(C) is a continuous homomorphism with trivial
kernel and suppose that n is minimal with this property. For each g € Heiss, the
matrix ¢ (g) acts on vectors in C".
We will identify C(Heiss) with the circle T as above. Then T has a topological
generator zo; this is an element whose powers form a cyclic subgroup (z,) 6 T
whose closure is T. For now we point out that for any irrational number r € R,
the following is true: for any real number s € R and any € > 0, there are integers
p; q € Z such that
s pr ql < e
This implies that e2™'" is a topological generator of T since its powers are dense.
Let A be an eigenvalue for the matrix ¢(z0), with eigenvector v. If necessary
replacing z0 with z51 , we may assume that 2 > 1. If |A] > 1, then
o(z¥)v = p(20)kv = A*v
and so
lo() = -
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Thus ¢(z%) - o as k - oo, implying that ¢ T is unbounded. But ¢ is
continuous and T is compact hence ¢T is bounded. So in fact |||A]|] = 1.
Since ¢ is a homomorphism and zo € C(Heiss), for any g € Heisz we have
@ (20) p(9)V = @(z209)v = ¢ (920)v = ¢ (9) ¢ (20)v =2 ¢ (9)V;
which shows that ¢ (g) is another eigenvector of ¢ (zo) for the eigenvalue A. If
we set

V,={veC":3k>1s.t. (¢ () -AL) =0}
then V; < Cn is a vector subspace which is also closed under the actions of all
the matrices ¢ (g) with g € Heisz. Choose ko > 1 to be the largest number for
which there is a vector vo € V; satisfying
(o (20) = 11,))™0 =0, (¢ (z0) - 21, )<lvo # 0.
If ko > 1, there are vectors u, v € V€ for which

@ (Zo)u= AU +V, @ (Z0)Vv = Av.

Then
0(zK) u= ¢ (z0)ku = 2u + kKA¥v
and since |A|=1,

||(p(z(’)‘)|| = ||(pzok|| > |, + k,| > o

as k — oo. This also contradicts the fact that ¢ T is bounded. So ko =1 and V, is
just the eigenspace for the eigenvalue A. This argument actually proves the
following important general result, which in particular applies to finite groups
viewed as zero-dimensional compact Lie groups.

Proposition (2.2.31):

Let G be a compact Lie group and p: G = GLn(C) a continuous homomor-
phism. Then for any g € G, p () is diagonalizable.

On choosing a basis for V3, we obtain a continuous homomorphism 6 : Heiss —

GL4(C) for which 6(zo) =Alq. By continuity, every element of T also has the
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form (scalar)ld. By minimality of n, we must have d = n and we can assume
¢(20) = Al
By the equation for commutators in Proposition 4.34, every element z €
T < Heisz is a commutator z = ghg*h in Heiss, hence

det ¢ (z) = ¢ (ghg*h™) =1,
since det and gare homomorphisms. So for every z € T, ¢(z) = u(z)lqs and
u(z)a = 1, where the function u: T— C*is continuous. But T is path connected,
so u(z) = 1 for every z € T. Hence for each z € T, the only eigenvalue of ¢ (2)
is 1. This shows that T < ker ¢, contradicting the assumption that ker ¢ is
trivial.
A modification of this argument works for each of the Heisenberg groups Heisn

(n = 3), showing that none of them is a matrix group.
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