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Chapter (2) 

Quaternions, Clifford Algebras, and Matrix Groups as Lie 

Groups. 
Now we will discuss algebras. 

Section (2.1): Quaternions, Clifford Algebras, and Matrix Groups 

as Lie Groups 
First 핂 will denote any field, although our main interest will be in the cases 

ℝ,ℂ. 

Definition (2.1.1): 
finite dimensional (associative and unital) algebra A is a finite dimensional 한-

vector space which is an associative and unital ring such that for all r; s ∈ 한  and 

a; b ∈ A, 

(푟푎)(푠푏) =  (푟푠)(푎푏). 

If A is a ring then A is a commutative 한 -algebra. 

If every non-zero element 핦 ∈ A is a unit, i.e., is invertible, then A is a division 

algebra. 

In this last equation, 푟푎 and 푠푏 are scalar products in the vector space structure, 

while (푟푠)(푎푏) is the scalar product of 푟푠 with the ring product 푎푏. 

Furthermore, if 1 ∈ 한 is the unit of A, for t ∈ 한, the element 푡1 ∈ A satisfies 

(푡1)푎 =  푡푎 =  푡(푎1) =  푎(푡1). 

If dim 한 A > 0, then 1 ≠ 0, and the function 

휂:한 → 퐴; 휂(푡) = 푇1 

is an injective ring homomorphism; we usually just write t for 휂 (t) = t1. 

Example (2.1.2): 
For 푛 ≥  1, Mn(한) is a 한-algebra. Here we have 휂 (t) = t ,ℂ is non-

commutative. 
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Example (2.1.3): 
The ring of complex numbers ℂ is an ℝ-algebra. Here we have 휂 (t) = t. C is 

commutative. Notice that ℂ is a commutative division algebra. 

A commutative division algebra is usually called a field while a non-

commutative division algebra is called a skew field. In French corps (~field) is 

often used in sense of possibly non-commutative division algebra. 

In any algebra, the set of units of A forms a group A* under multiplication, and 

this contains 한x. 

For A = Mn(한), Mn(한)x = GLn(한). 

Definition (2.1.4): 
Let 퐴,퐵 be two 한-algebras. A 한-linear transformation that is also a ring 

homomorphism is called a 한-algebra homomorphism or homomorphism of 한 -

algebras. 

A homomorphism of 한-algebras 휑: A → B which is also an isomorphism of 

rings or equivalently of 한-vector spaces is called isomorphism of 한-algebras. 

Notice that the unit 휂: 한 → A is always a homomorphism of 한-algebras. There 

are obvious notions of kernel and image for such homomorphisms, and of 

subalgebra. 

Definition (2.1.5): 
Given two 한-algebras 퐴,퐵, their direct product has underlying set 퐴 푥 퐵 with 

sum and product 

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)  , (a1, b1)(a2, b2) = (a1a2, b1b2). 

The zero is (0,0) while the unit is (1,1). 

It is easy to see that there is an isomorphism of 한 -algebras A x B ≅ B x A. 

Given a 한-algebra A, it is also possible to consider the ring Mn(A) consisting of 

푚 푥 푚 matrices with entries in A; this is also a 한-algebra of dimension 

DimkMm(A) = m2dimK A. 
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It is often the case that a 한-algebra A contains a subalgebra한1⊆ A which is also 

a field. In that case A can be viewed as a over 한1 in two different ways, 

corresponding to left and right multiplication by elements of 한1. Then for t ∈

한1, 푎 ∈ A, 

(퐿푒푓푡 푠푐푎푙푎푟 푚푢푙푡푖푝푙푖푐푎푡푖표푛) → 푡.푎 =  푡푎; 

(푅푖푔ℎ푡 푠푐푎푙푎푟 푚푢푙푡푖푝푙푖푐푎푡푖표푛) → 푎. 푡 =  푎푡. 

These give different 한1-vector space structures unless all elements of 한1 

commute with all elements of A, in which case 한1 is said to be a central subfield 

of A. We sometimes write 한1A and 퐴한  to indicate which structure is being 

considered. 한1 is itself a finite dimensional commutative 한-algebra of some 

dimension 푑푖푚한한1. 

Proposition (2.1.6): 
Each of the 한1-vector spacesk1 A and 퐴한  is finite dimensional and in fact 

dimk A = dimk1 (k1A) dimk한1 = dimk한 A|1 dimk한: 

Example (2.1.7): 
Let 한 = ℝ and A = M2(ℝ), so dimR A = 4. Let 

한1 =
푥 푦
−푦 푥 :푥, 푦 ∈ ℝ ⊆ 푀 (ℝ) 

Then 한1≅ ℂ so is a subfield of M2(ℝ), but it is not a central subfield. Also dimk1 

A = 2. 

Example (2.1.8): 
Let 한 = ℝ and A = M2(ℂ), so dimR A = 8. Let 

한1 =
푥 푦
−푦 푥 : 푥, 푦 ∈ ℝ ⊆ 푀 (ℂ) 

Then 한1≅ 핔 so is subfield of M2(ℂ), but it is not a central subfield. Here dimk1 A 

= 4. 

Given a 한-algebra A and a subfield  한1⊆A containing 한 (possibly equal to 한), 

an element 푎 ∈  퐴 acts on A by left multiplication: 

푎 .푢 =  푎푢 (푢 ∈  퐴). 
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This is always a 한-linear transformation of A, and if we view A as the 한1vector 

space A 한1, it is always a 한1-linear transformation. Given a 한1-basis 

{v1,……,vm} for A 한1, there is an 푚 푥 푚 matrix 휌(a) with entries in 한1 defined 

by 

휆(푎)푣 = 휆(푎) 푣  

It is easy to check that 

휆:퐴 → 푀 (푘 ); 푎 ↦ 휆(푎) 

is a homomorphism of 한-algebras, called the left regular representation of A 

over 한1 with respect to the basis {v1,…, vm}. 

Lemma (2.1.9): 
휆A →Mm(한1) has trivial kernel ker휆 = 0, hence it is an injection. 

Proof: 
If a ∈ker휆 then 휆 (a)(1) = 0, giving a1 = 0, so a = 0. 

Definition (2.1.10): 
The 한-algebra A is simple if it has only one proper two sided ideal, namely (0), 

hence every non-trivial |-algebra homomorphism 휃: A →B is an injection. 

Proposition (2.1.11): 
Let 한 be a field. 

i) For a division algebra 픻 over 한, 픻 is simple. 

ii) For a simple 한 -algebra A, Mn(A) is simple. In particular, Mn(한) is a simple 

한 -algebra. 

On restricting the left regular representation to the group of units of Ax, 

we obtain an injective group homomorphism 

휆 :퐴 → 퐺퐿 (한 ); 휆 (푎)(푢) = 푎푢, 

where 한1⊆ A is a subfield containing 한 and we have chosen a 한1-basis of  퐴한  

Because 

퐴 ≅ 푖푚휆 ≤ 퐺퐿 (한1) 
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Ax and its subgroups give groups of matrices. 

Given a 한-basis of A, we obtain a group homomorphism 

푝 : AX→ 퐺퐿 (푘);푝 (a)(u)=푣푎  

We can combine 휆  and 휌  to obtain two further group homomorphisms 

휆  푥 휌 : 퐴  푥 퐴 → 퐺퐿 (한); 휆  푥 휌 (푎,푏)(푢) = 푎푢푏  

Δ:퐴 → 퐺퐿 (한); Δ(푎)(푢) = 푎푢푎  

Notice that these have non-trivial kernels, 

Ker 휑 : 휌  = {(1,1),(-1,-1)}, Ker ∆ = {1,-1} 

In the following we will discuss linear algebra over a division algebra 

let 픻 be a finite dimensional division algebra over a field 한. 

Definition (2.1.12): 
A (right) 픻-vector space V is a right 픻-module, i.e., an abelian group with a 

right scalar multiplication by elements of 픻 so that for 푢;  푣 ∈ V , 푥;  푦 ∈ 픻, 

v(xy) = (vx)y, 

v(x + y) = vx + vy, 

(u + v)x = ux + vx, 

v1 = v: 

All the obvious notions of 픻-linear transformations, subspaces, kernels and 

images make sense as do notions of spanning set and linear independence over 

픻. 

Theorem (2.1.13): 
Let V be a 픻 -vector space. Then V has a 픻-basis. 

If V has a finite spanning set over 픻 then it has a finite 픻 -basis; furthermore 

any two such finite bases have the same number of elements. 

Definition (2.1.14): 
A 픻 -vector space V with a finite basis is called finite dimensional and the 

number of elements in a basis is called the dimension of V over 픻, denoted 

dimD V . 
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For n > 1, we can view 픻n as the set of 푛 푥 1 column vectors with entries in 픻 

and this becomes a 픻 -vector space with the obvious scalar multiplication 
푧
푧
⋮
푧

푥 =

푧 푥
푧 푥
⋮
푧 푥

 

Proposition (2.1.15): 
Let V,W be two finite dimensional vector spaces over 픻, of dimensions dimD V 

= m, dimDW = n and with bases {v1; : : : ; vm}, {w1; : : : ;wn}. Then a 픻-linear 

transformation 휆: V →W is given by 

휑(푣 ) = 푤 푎  

For unique elements 푎 ∈ 픻 Hence if 

휑 푣 푥 = 푤 푦 , 

Then 
푦1
푦2
⋮
푦푛

=

푎 푎 ⋯ 푥
푎 푎 ⋯ 푥
⋮ ⋱ ⋱ ⋮
푎 푎 ⋯ 푥

푥
푥
⋮
푥

 

In particular, for V=픻m and W=픻n, every 픻-linear transformation is obtained in 

this way from left multiplication by a fixed matrix. 

This is of course analogous to what happens over a field except that we are 

careful to keep the scalar action on the right and the matrix action on the left. 

We will be mainly interested in linear transformations which we will identify 

with the corresponding matrices. If 휃: 픻k→: 픻k and 휑픻m→ 픻n are 픻-linear 

transformations with corresponding matrices [휃] , [휑], then 

                                         [휃]  [휑]= [휃Ο휑],                                       (2.1)       

Also, the identity and zero functions Id; 0: 픻m→  픻m have [Id] = Im and [0] = 

Om. 
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Notice that given a 픻-linear transformation 휑: V→W, we can 'forget' the 픻-

structure and just view it as a 한-linear transformation. Given 픻-bases {v1…, vm}, 

{w1,…..,wn} and a basis {b1, …, bd} say for 픻, the elements 

vrbt (r = 1, …. ,m , t = 1 , …. d), 

wsbt (s = 1, …, n , t = 1 , … d) 

form 한-bases for V;W as 한-vector spaces. 

We denote the set of all 푚 푥 푛 matrices with entries in 픻 by Mm,n(픻) and Mn(픻) 

= Mn,n(픻). Then Mn(픻) is a 한-algebra of dimension dim Mn(한) = n2dimk픻. The 

group of units of Mn(픻) is denoted GLn(픻). However, for non-commutative 픻 

there is no determinant function so we cannot define an analogue of the special 

linear group. We can however use the left regular representation to overcome 

this problem with the aid of some algebra. 

Proposition (2.1.16): 
Let A be algebra over a field 픻 and B ⊆ A a finite dimensional subalgebra. If 

u∈ B is a unit in A then 푢 ∈ B, hence u is a unit in B. 

Proof: 
 Since B is finite dimensional, the powers uk (k≥0) are linearly dependent over 

한, so for some tr∈ 한 (r = 0,….,ℯ ) with 휏ℯ ≠ 0 and ℯ ≥ 1, there is a relation 

푡 푢 = 0
ℯ

 

If we choose k suitably and multiply by a non-zero scalar, then we can assume 

that 

푢 − 푡 푢 = 0.
ℯ

 

If v is the inverse of 푢 in A, then multiplication by vk+1 gives 

푣 − 푡 푢 = 0.
ℯ

 

from which we obtain 
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푣 − 푡 푢 ∈ 퐵
ℯ

 

For a division algebra 픻, each matrix A ∈Mn(픻) acts by multiplication on the 

left of 픻n. For any subfield 한1⊆  픻 containing 핂, A induces a (right) 핂1-linear 

transformation, 

Dn→Dn; x →Ax 

If we choose a 한1-basis for 픻, A gives rise to a matrix AA∈Mnd(핂1) where d = 

dimk1픻핂  . It is easy to see that the function ⋀: Mn(픻) →Mnd(핂1) ; ⋀(A) = ⋀A. 

is a ring homomorphism with ker⋀ = 0. This allows us to identify Mn(픻) with 

the subring im⋀ ⊆ Mnd(핂1). 

We see that A is invertible in Mn(픻) if and only if ⋀A is invertible in Mnd(핂1). 

But the latter is true if and only if det⋀A∈ 0. 

Hence to determine invertibility of A ∈Mn(픻), it suffices to consider det ⋀A 

using a subfield 핂1. The resulting function 

Rdet 핂1 : Mn(픻) → 핂1; Rdet 핂1 (A) = ⋀A. 

is called the 핂1-reduced determinant of Mn(픻) and is a group homomorphism. It 

is actually true that det⋀A∈ 핂1, not just in 핂1, although we will not prove this 

here. 

Proposition (2.1.17): 
A ∈Mn(픻) is invertible if and only if Rdet 핂1≠ 0 for some subfield 핂1⊆

픻 containing 핂1. 

In the following we will discuss Quaternions 

Proposition (2.1.18): 
If A is a finite dimensional commutative ℝ-division algebra then either A = 

ℝ or there is an isomorphism of ℝ -algebras A ≠ C. 

Proof: 
Let 훼. Since A is a finite dimensional ℝ -vector space, the powers 

1, 훼 ,훼 , … .훼 … must be linearly dependent, say 
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t0 + t1 훼 + … + tm 훼m = 0               (2.2) 

for some tj∈ ℝ with m > 1 and tm≠ 0. We can choose m to be minimal with 

these properties. If t0 = 0, then 

t1 + t2 훼 + t3 훼2 + …. + tm 훼m-1 = 0 

contradicting minimality; so t0≠ 0. In fact, the polynomial 푃(푋) = t0 + t1X +… 

+ tmXm∈ ℝ [X] is irreducible since if 푃(푋) = 푃 (푋)푃 (푋) then since A is a 

division algebra, either 푃 (훼) = 0 or 푃 (훼) = 0, which would contradict 

minimality if both deg 푃 (푋) > 0 and deg 푃 (푋) > 0. 

Consider the ℝ-subspace 

ℝ(훼) = 푠 훼  

Then ℝ(훼) is easily seen to be a ℝ-subalgebra of A. The elements 1, 훼, 훼 , 

훼 form a basis by Equation (2.2), hence dimRℝ(훼) = m. 

Let 훾 ∈ C be any complex root of the irreducible polynomial t0 + t1X +…+ 

tmXm∈ ℝ [X] which certainly exists by the Fundamental Theorem of Algebra. 

There is an R-linear transformation which is actually an injection, 

휑:ℝ(훼)→ ℂ;  휑 ∑ 푠 훼 ) = ∑ 푠 훾  

It is easy to see that this is actually an R-algebra homomorphism. Hence 휑ℝ(훼) 

⊆ ℂ is a subalgebra. 

But as dimRℂ = 2, this implies that m = dimRℝ(훼) ≤ 2. If m = 1, then by 

Equation (2.2), 훼 ∈ ℝ. If m = 2, then 휑:ℝ(훼) = ℂ. 

So either dimR A = 1 and A = ℝ, or dimR A > 1 and we can choose an 훼 ∈ A 

with ℂ ≠  ℝ(훼). This means that we can view A as a finite dimensional ℂ-

algebra. Now for any 훽 ∈ A there is polynomial 

q(X) = u0 + u1X +…+ 푢ℯ푋ℯ휖ℂ [X] 

with ℯ> 1 and 푢ℯ ≠ 0. Again choosing ℯ to be minimal with this property, q(X) 

is irreducible. But then since q(X) has a root in ℂ, ℯ = 1 and 훽 ∈ ℂ. This shows 

that A = ℂ whenever dimR A > 1. 
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The above proof actually shows that if A is a finite dimensional ℝ-

division algebra, then either A = ℝ or there is a subalgebra isomorphic to ℂ. 

However, the question of what finite  dimensional ℝ -division algebras exist is 

less easy to decide. In fact there is only one other up to isomorphism, the skew 

field of quaternions ℍ. We will now show how to construct this skew field. 

Let 

ℍ = 푧 푤
−푤 푧 : 푧,푤 ∈  ℂ ⊆ 푀 (ℂ) 

It is easy to see that H is a subring of M2(ℂ) and is in fact an ℝ-subalgebra 

where we view M2(ℂ) as an ℝ-algebra of dimension 8. It also contains a copy of 

C, namely the ℝ-subalgebra 
푧 0
0 푧 : 푧 ∈   ℂ ⊆ ℍ 

However, ℍ is not a C-algebra since for example 
푖 0
0 −푗

0 1
−1 0 = 0 푖

푖 0 = − 0 1
−1 0

푖 0
0 −푖 ≠ 0 1

−1 0
푖 0
0 −푖  

 

Notice that if 푧,푤 ∈ ℂ, then 푧 =  0 =  푤 if and only if |푧| + |푤| = 0. We 

have 

푧 휔
−휔 푧

푧 −휔
휔 푧

=
|푧| + |휔| 0

0 |푧| + |휔|  

Hence 푧 휔
−휔 푧 is invertible if and only if 푧 휔

−휔 푧 ≠ 0; furthermore in that 

case, 

푧 휔
−휔 푧 =

⎣
⎢
⎢
⎢
⎡

푧
|푧| + |휔|

−휔
|푧| + |휔|

휔
|푧| + |휔|

푧
|푧| + |휔| ⎦

⎥
⎥
⎥
⎤
 

 

which is in ℍ. So an element of ℍ is invertible in H if and only if it is invertible 

as a matrix. Notice that 

SU(2) = {A ∈ H : detA = 1} ≤Hx 
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It is useful to define on H a norm 
푧 휔
−휔 푧 = 푑푒푡 푧 휔

−휔 푧 = |푧| + |휔|  

Then 

Su(2)={A∈  ℍ:|퐴| =} ≤ ℍ  

As an ℝ-basis of ℍ  we have the matrices 

1 = 퐼, 푖 = 푖 0
0 −푖 , 푗 = 0 1

−1 0 ,푘 = 0 푖
푖 0  

These satisfy the equations 

i2 = j2 = k2 = -1, ij = k = - k = -ij = -kj; ki = j = -ik: 

This should be compared with the vector product on ℝ3 From now on we will 

write quaternions in the form 

푞 =  푥푖 +  푗 +  푧푘 +  푡1 (푥, 푦, 푧, 푡 ∈  푅): 

q is a pure quaternion if and only if 푡 =  0, 푞 is a real quaternion if and only if 

푥 =  푦 =  푧 =  0. We can identify the pure quaternion 푥푖 + 푦푗 + 푧푘 with the 

element xe1+ye2+ze3∈  ℝ3. Using this identification we see that the scalar and 

vector products on ℝ3 are related to quaternion multiplication by the following. 

Proposition (2.1.19): 
For two pure quaternions q1 = x1i + y1j + z1k, q2 = x2i + y2j + z2k, 

q1q2 = -(x1i + y1j + z1k) (x2i + y2j + z2k) + (x1i + y1j + z1k)_(x2i + y2j + z2k). 

In particular, q1q2 is a pure quaternion if and only if q1 and q2 are orthogonal, in 

which case q1q2 is orthogonal to each of them. 

The following result summarises the general situation about solutions of 

X2 + 1 = 0. 

Proposition (2.1.20): 
The quaternion q = 푥푖 + 푗 + 푧푘 + 푡1 satisfies q2 +1 = 0 if and only if t = 0 and 

x2 + y2 + z2 = 1. 

Proof. This easily follows from Proposition 3.19. 

There is a quaternionic analogue of complex conjugation, namely 
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q = xi + j + zk + t1 ⟼ 푞 = 푞∗  = -xi - j - zk + t1. 

This is `almost' a ring homomorphism ℍ → ℍ, in fact it satisfies 

(푞 +  푞 ) = 푞1 + 푞2;    (2.3a) 

(푞 푞 ) = 푞1푞2 ;                                (2.3b) 

푞 = q ⇔  q is real quaternion;   (2.3c) 

푞 = -q ⇔q is a pure quaternion:                   (2.3d) 

Because of Equation (2.3b) this is called a homomorphism of skew rings or 

anti-homomorphism of rings. 

The inverse of a non-zero quaternion 푞 can be written as 

푞 =
( )

푔 =  
( )

    (2.4) 

The real quantity 푞푞 is the square of the length of the corresponding vector, 

|푔| = 푔푔 = 푥 + 푦 + 푧 + 푡  

For z = with u, v ∈ R , z = u1- vi is the usual complex conjugation. 

In terms of the matrix description of ℍ, quaternionic conjugation is given by 

hermitian conjugation, 
푧 휔
−휔 푧 ↦ 푧 휔

−휔 푧
∗

= 푧 −휔
휔 푧

 

From now on we will write 

1 = 1, i = I, j = j, k = k. 

Now we will discuss Quaternionic matrix groups 

The above norm | | on ℍ extends to a norm on ℍn, viewed as a right H-vector 

space. We can define an quaternionic inner product on ℍ by 

푧.푦 = 푧∗푦 = 푥 푦푟, 

Where we define the quaternionic conjugate of a vector by 
푥
푥
⋮
푥

=[푥 푥 … . 푥 ] 
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Similarly, for any matrix [훼  ] over ℍ we can define [훼  ] *= [훼  ] 

The length of x ∈ ℍ n is defined to be 

|푥| = √푥∗푥 = |푥 |  

We can also define a norm on Mn(ℍ) i.e., for A ∈ Mn(ℍ), 

‖퐴‖ = 푠푢푝
|퐴푥|
|푋| : 0 ≠ 푥 ∈ ℍ  

There is also a resulting metric on Mn(ℍ), 

(퐴,퐵) ↦  ‖퐴 −  퐵‖ 

and we can use this to do analysis on Mn(ℍ). The multiplication map Mn(ℍ) x 

Mn(ℍ) →Mn(ℍ) is again continuous, and the group of invertible elements 

GLn(ℍ) ⊆Mn(ℍ) is actually an open subset. 

This can be proved using either of the reduced determinants 

푅푑푒푡ℝ ∶  푀 (ℍ) →  ℝ,푅푑푒푡 ∶  푀 (ℍ) → ℂ, 

each of which is continuous. By Proposition (2.1.17), 

GLn(ℍ) = Mn(ℍ) - 푅푑푒푡   0.                           (2.5a ) 

GLn(ℍ) = Mn(ℍ) - 푅푑푒푡   0 .                             (2.5b ) 

In either case we see that GLn(ℍ) is an open subset of Mn(ℍ). It is also possible 

to show that the images of embeddings GLn(ℍ) → GL4n(ℝ) and GLn(ℍ) → 

GL2n(ℂ) are closed. So GLn(ℍ) and its closed subgroups are real and complex 

matrix groups. 

The 푛 푥 푛 quaternionic symplectic group is 

푆푝(푛) = {퐴 ∈  퐺퐿 (ℍ): 퐴∗퐴 =  퐼} ≤ 퐺퐿 (ℍ). 

These are easily seen to satisfy 

푆푝(푛) = {퐴 ∈  퐺퐿 (ℍ): ∀푥. 푦 ∈  ℍ ,퐴푥.퐴푦 = 푥.푦}. 

These groups 푆푝(푛) form another infinite family of compact connected matrix 

groups along with familiar examples such as 푆푂(푛),푈(푛), 푆푈(푛). There are 
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further examples, the spinor groups 푆푝푖푛(푛) whose description involves the real 

Clifford algebras 퐶퐿 . 

Now we will discuss The real Clifford algebras, 

The sequence of real division algebras ℝ,ℂ,ℍ can be extended by introducing 

the real Clifford algebras Cl , where 

Cl0 = ℝ , Cl1 = ℂ, Cl2 = ℍ ,  dimR = 2n 

There are also complex Clifford algebras, but we will not discuss these. The 

theory of Clifford algebras and spinor groups is central in modern differential 

geometry and topology, particularly Index Theory. It also appears in Quantum 

Theory in connection with the Dirac operator. There is also a theory of Clifford 

Analysis in which the complex numbers are replaced by a Clifford algebra and a 

suitable class of analytic functions are studied; a motivation for this lies in the 

above applications. 

We begin by describing Cln as an ℝ-vector space and then explain what the 

product looks like in terms of a particular basis. There are elements e1, e2, …  

en∈Cln for which 

푒 푒 = −푒 푒  , 푖푓 푠 ≠ 푟.
 푒 =  −1                                                   (2.6 푎)     

Moreover, the elements ei1ei2  for increasing sequences 1 ≤ i1< i2< … <ir≤ n 

with 0 ≤ r ≤ n, form an ℝ-basis for Cln. Thus 

푑푖푚ℝ퐶푙  =  2         (2.6b)      

When r = 0, the element 
1 2

 eir i ie e  is taken to be 1. 

Proposition (2.1.21): 
There are isomorphisms of ℝ-algebras 

퐶1 ≅ 퐶 , 퐶푙 ≅ ℍ 

Proof: 
For Cl1, the function 

퐶푙 → ℂ; 푥 + 푦푒1 ↦ 푥 + 푦푖 (푥, 푦 ∈ ℝ), 
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is an ℝ -linear ring isomorphism. 

Similarly, for Cl2, the function 

Cl2→ ℍ; t1 + xe1 + ye2 + ze1e2→ t1 + xi + yj + zk (t,x,y,z∈ ℝ); 

is an R-linear ring isomorphism. 

We can order the basis monomials in the 푒푟 by declaring ei1ei2 

to be number 

1 + 2i1-1 + 2i2-1 + … + 2ir-1, 

which should be interpreted as 1 when 푟 =  0. Every integer 푘 in the range 1 ≤

 푘 6 2푛 has a unique binary expansion 

k = k0 + 2k1 +… + 2jkj +… + 2nkn, 

where each kj = 0,1. This provides a one-one correspondence between such 

numbers k and the basis monomials of Cln. Here are the basis orderings for the 

first few Clifford algebras. 

Cl1 : 1,e1; Cl2 : 1,e1; e2; e1e2; Cl3 : 1; e1, e2, e1e2, e3, e1e3, e2e3; e1e2e3. 

Using the left regular representation over ℝ associated with this basis of Cln, we 

can realiseCln as a subalgebra of M2n(ℝ). 

Example (2.1.22): 
For Cl1 we have the basis {1, e1} and we find that 

휌(0) = 푙 ,푝(푒1) = 0 −1
1 0  

So the general formula is 

휌(푥 + 푦푒1) =
푥 −푦
푦 푥 (푥,푦 ∈ ℝ) 

For Cl2 the basis {1, e1, e2, e1e2} leads to a realization in M4(ℝ) for which 휌(1) = I4 

and 

휌( ) =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

,휌  
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0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

, 휌

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 

In all cases the matrices 휌(ei1ei2…eir) are generalized permutation matrices all of 

whose entries are entries 0, ±and exactly on non-zero entry in each row and 

column. These are always orthogonal matrices of determinant 1. 

These Clifford algebras have an important universal property which actually 

characterises them. 

First notice that there is an ℝ-linear transformation 

푗푛:ℝ → 퐶푙 ; 푗푛 푥 푒 = 푥 푒  

By an easy calculation, 

푗푛 푥 푒 = − 푥 = − 푥 푒   (2.7) 

Theorem (2.1.23): (The Universal Property of Clifford Algebras) 
Let A be a ℝ-algebra and f : ℝn→Aanℝ-linear transformation for which 

f(x)2 = -|푥|21. 

Then there is a unique homomorphism of ℝ-algebras F :Cln→ A for which F _jn 

= f, i.e., for all x ∈ ℝn, 

퐹 푗 (푥) =  푓(푥). 

Proof: 
The homomorphism F is defined by setting 퐹(푒푟) = 푓(푒푟) and showing that it 

extends to a ring homomorphism on Cln. 

Example (2.1.24): 
There is an ℝ-linear transformation 

훼0 ∶ ℝ  → 퐶푙  ;  훼0(푥) = −푗 (푥) = 푗 ( 푥). 

Then 
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α 0(x)2 = jn(-x)2 = -|푥|2, 

so by the Theorem there is a unique homomorphism of ℝ-algebras 훼: Cln→Cln 

for which 

훼 (jn(x)) = 훼0(x). 

Since jn(er) = er, this implies 

훼 (er) = -er. 

Notice that for 1 ≤ i1 < i2 < , … <ik≤ n, 

훼 (ei1ei2, …eik ) = (-1)k
ei1ei2 … eik

푒 푒 … 푒  푖푓 푘 푖푠 푒푣푒푛 
−푒 푒 …푒  푖푓 푘 푘푠 표푑푑 

It is easy to see that 훼 is an isomorphism and hence an automorphism. 

This automorphism 훼: Cln→Cln is often called the canonical automorphism of 

Cln. 

Clifford algebras. Consider the ℝ-algebra M2(ℍ) of dimension 

16. Then we can define an ℝ-linear transformation 

휃 :ℝ → 푀 (ℍ): 휃 ( ) = 

푥 푖 + 푥 푗 + 푥 푘 푥 푘
푥 푘 푥 푖 + 푥 푗 − 푥 푘 " 

Direct calculation shows that 휃4 satisfies the condition of Theorem (2.1.23) 

hence there is a unique ℝ-algebra homomorphism ⊝4 : Cl4→ M2(ℍ) with ⊝4  j4 

= 휃4. This is in fact an isomorphism of ℝ -algebras, so 

Cl4 ≅ M2(ℍ): 

Since ℝ ⊆ ℝ2⊆ ℝ3⊆ ℝ4 we obtain compatible homomorphisms 

⊝1 : Cl1→M2(ℍ); ⊝2 : Cl2→M2(ℍ), ⊝3 : Cl3→ M2(ℍ); 

which have images 

 

im⊝1 = {zI2 : z ∈ C}. 

im⊝2 = {qI2 : q ∈ H}, 

im⊝3 = 푞 0
0 푞 :푞 푞 ∈ ℍ  
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This shows that there is an isomorphism of ℝ-algebras 

Cl3≠ ℍ 푥 ℍ, 

Where the latter is the direct product of Definition (2.1.5) We also have 

퐺퐿 ≅ 푀 (ℂ),퐺퐿  ≅  푀 (ℝ)퐺퐿  ≅  푀 (ℝ)푥 푀 ℝ 

After this we have the following periodicity result, where Mm(Cln) denotes the 

ring of 푚 푥 푚 matrices with entries in Cln. 

Theorem (2.1.25):  
For n > 0,  

Cln+8≅= M16(Cln). 

First there is a conjugation (   ) : Cln→Cln defined by 

푒 푒 , … 푒  = (-1)푘 , … ei1 

whenever 1 ≤ i1< i2< … <ik≤ n, and satisfying 

푥 +  푦 = 푥 + 푦, 

푡푥푡푥, 

for 푥, 푦 ∈  퐶푙n and t ∈ ℝ. Notice that this is not a ring homomorphism Cln→Cln 

since for example whenever 푟 <  푠, 

푒 푒  = eser = -eres = − 푒 푒 ≠eres. 

However, it is a ring anti-homomorphism in the sense that for all 

                                          푥, 푦 ∈  퐶푙n,       (2.8) 

When n = 1, 2 this agrees with the conjugations already defined in ℂ and ℍ. 

Second there is the canonical automorphism훼:Cln→Cln defined in Example 

(2.1.24). 
We can use 훼 to define a ±-grading on Cln: 

퐶  = {u ∈Cln : 훼 (u) = u} , 퐶푙 n = {u ∈Cln : 훼(u) = -u}. 

Proposition (2.1.26): 
i) Every element 푣 ∈  퐶푙n can be unique expressed in the form v = v++v- where 

v+∈ 퐶 and v-∈ 퐶  . Hence as an ℝ-vector space, Cln = 퐶푙  ⊕퐶퐿 . 

ii) This decomposition is multiplicative in the sense that 
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푢푣 ∈ 퐶    푖푓 푢, 푣 ∈  퐶퐿  표푟 푢 푣 ∈ 퐶  , 

푢푣, 푣푢 ∈ 퐶푙  if u ∈  퐶  푎푛푑 푣 ∈  퐶  

Proof: 
i) The elements 

푣 =
1
2
푣 + 훼(푣푣)   ,푣 =

1
2
푣 − 훼(푣) . 

satisfy 훼 (v+) =v+, 훼(v-) = -v- and v = v+ + v-. This expression is easily found to 

be the unique one with these properties and defines the stated vector space 

direct sum decomposition. 

Notice that for bases of 퐶푙± we have the monomials 

ej1 … ej2m∈ 퐶퐿  (1 ≤ j1 < … < j2m≤ 푛). 

ej1, … ej2m+1∈ 퐶푙  (1 ≤ j1 < … < j2m+1≤ n).           (2.9) 

Finally, we introduce an inner product. and a norm | |on Cln by defining the 

distinct monomials ei1ei2 eik with 1 ≤ i1< i2< … <ik≤ n to be an orthonormal 

basis, i.e. 

푒 푒 … 푒  . 푒 푒 … 푒  = 1   푖푓  ℓ = 푘 푎푛푑 푖 =  푗  푓표푟 푎푙푙 푟 
0 표푡ℎ푒푟푤푖푠푒 

 

A more illuminating way to define is by the formula 

푢.푣. = 푅푒(푢 푣 + 푣 푢 ),        (2.10) 

Where for 휔 ∈Cln we define its real part Re휔 to be the coefficient of 1 when w 

is expanded as an ℝ-linear combination of the basis monomials ei1 …eir with 1 

≤ i1< …<ir≤ n and 0 ≤ r. It can be shown that for any 푢,푣 ∈  퐶푙n and w ∈jnRn, 

(푤푢), (푤푣)  =  ⌈휔⌉ (푢 _ 푣). .                               (2.11) 

In particular, when ⌈휔⌉ = 1 left multiplication by 휔 defines an ℝ-linear 

transformation on Cln which is an isometry. The norm | |gives rise to a metric 

onCln. This makes the group of units 퐶푙  into a topological group while the 

above embeddings of Cln into matrix rings are all continuous. This implies that 

퐶퐿  is a matrix group. Unfortunately, they are not norm preserving. For 
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example,2+e1e2e3∈Cl3 has |2 + |=√5,but the corresponding matrix in 

M8(ℝ) has norm√3. However, by defining for each 휔 ∈Cln 

|푤|  = {푤푥}: 푥 ∈ 퐶퐿 , |푥|  =  1}, 

we obtain another equivalent norm on Cln for which the above embedding Cln→ 

M2n(ℝ) does preserve norms. For 휔 ∈jnℝn we do have ‖푤‖ = |푤| and more 

generally, for w1…wk∈jnℝn, 

‖w …푤 ‖ = |w … w | = |w | … |w | 

For 푥, 푦 ∈  퐶푙 , 

‖푥푦‖ ≤ ‖푥‖‖푦‖ 

without equality in general. 

In the following we will study The spinor groups we will describe the compact 

connected spinor groups Spin(n) which are groups of units in the Clifford 

algebras Cln. Moreover, there are surjective Lie homomorphisms Spin(푛)→

푆푂(푛)each of whose kernels have two elements. 

We begin by using the injective linear transformation jn : ℝn→Cln to 

identify ℝn with a subspace of Cln, i.e., 

푥 푒 ↔ 푖푗( 푥 푒 ) = 푥 푒  

Notice that ℝn⊆ 퐶푙 C , so for x ∈ ℝn, u ∈ 퐶  and 푣  ∈ 퐶퐿  

푥푢,푢푥 ∈  퐶 . 푥푣,푣푥 ∈ 퐶퐿       (2.12) 

is the unit sphere nCl ⊆ nℝInside of  

∑ 푥 푒 (∑ 푥 = 1}{=} = 1 |푥| nℝ2 x {=  1-nS  

Lemma (2.1.27): 
푙C ∈u , nClis a unit in u . Then nCl⊆ 1-nS ∈u Let   

Proof: 
nℝ ∈u Since  

,) = 12|푢|-(-=  2u-) = u-(u= u )u-(  

so (-u) is the inverse of u. Notice that -u ∈ ℂ 
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we have 1-nℂ ∈ k, …,u1uMore generally, for  

(2.13)                    푢 …푢= 1u …kuk1)-= ( 1-)ku…1u(                                        

Definition (2.1.28): 
The pinor group Pin(푛) is th e subgroup of 퐶푙  n generated by the elements of 

ℂ , 

퐶푙 ≤} 1-nℂ ∈ ru 0, >k :  ku… 1u{) = nPin(  

with  nCl) is a topological group and is bounded as a subset of nNotice that Pin(

respect to the metric introduced in the last section. It is in fact a closed subgroup 

of 퐶푙   and so is a matrix group; in fact it is even compact. We will show that 

in an interesting fashion. We will require the following useful  nℝacts on  (푛)Pin

result. 

Lemma (2.1.29): 
, then= 0 푢 . 푣. If nCl ⊆ nℝ 푢,푣 ∈let  

푢푣 =  −푢푣. 

Proof: 
, we obtainℝ ∈ s, yrxwith ∑ 푦 푒  = v and  ∑ 푥 푒=  푢Writing  

푣푢 = 푦 푥 푒 푒  

푦 푥 푒 (푥 푦 − 푥 푦 )푒 푒  

 

= 1 푦 푥 − (푥 푦 − 푥 푦 )푒 푒  

= 푢.푣 − (푥 푦 − 푥 푦 )푒 푒  
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= − (푥 푦 − 푥 푦 )푒 푒  

= 푢.푣 − (푥 푦 − 푥 푦 )푒 푒  

= − 푥 푦 푒 푒  

= −푢푣. 

,nℝ ∈ 푥and  1-nS ∈u For  

훼(푢)푥푢  =  ( − 푢)푥(− 푢) =  푢푥푢. 

If 푢. 푥 = 0, then by Lemma (2.1.29), 

                         훼(푢)푥푢  =  −푢 푥 = −(−1)푥 = 푥.                         (2.14푎) 

, thenR ∈t for some  푡푢=  푥1. On the other hand, if -= |푢|-=  2uSince  

                                  훼(푢)푥푢  =  푡푢 푢 = − 푡푢                          (2.14b)  

This allows us to define a function .nℝ 훼 (푢)푥푢  ∈So in particular  

휌푢:ℝ → ℝ ;휌푢(푥) = 훼(푢)푥푢 = 푢푥푢. 
-nS ∈ r…u1ufor  ru…1u= u ; if (푢)푥푢, we can consider  (푛)Pin ∈ 푢Similarly for 

, we have1 

푥푢 …푢)r…u1(u 훼=  푢(u)x α  

)1u… rur1)-((x)ru …1ur1)-= ((  

     (2.15)                          .    nR                                          = 휌 휊… 휊휌 (푥) ∈     

So there is a linear transformation 

휌푢: ℝ → ℝ  ;휌푢(푥) =  훼(푢)푥푢 

Proposition (2.1.30): 
For u ∈ Pin(n), 휌푢 : ℝ → ℝ  is an isometry, i.e., an element of O(n). 

Since each 휌푢 ∈ O(n) we actually have a continuous homomorphism 

휌: 푃푖푛(푛)  → (푛);  휌(푢)  =  휌푢:  

Proposition 휌: Pin(n) →O(n) is surjective with kernel ker 휌 = {1,-1}. 
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follows by using the standard fact that every element 

of O(n) is a composition of reections in hyperplanes. 

. ThennI= u 휌, i.e., 휌ker  ∈ ku… 1u= u , 1-nS ∈ k, …u1uSuppose that for some  

. ku휌det …1u휌) = det  ku휌…1u휌= det(u 휌1 = det   

must be even, k 1. These facts imply -=  ru휌is a reection and so has det  ru휌Each 

u ∈ 퐶푙   and then by Equation (2.13), 

.푢=  1u … ku=  1-u  

we have nℝ ∈ 푥So for any  

,1-푥 =  휌(푥) =  푢푥푢  

which implies that 

푥푢 =  푢푥. 

For each r = 1, … , n we can write 

푢 =  푎  +  푒 푏  =  (푎 + 푒 푏  ) +  (푎 + 푒 ), 

in their expansions in terms of the monomial  redo not involve  nCl ∈ r, brawhere 

we obtain re= x bases of Equation (2.9). On taking  

.re)rbre+  ra) = (rbre+  ra(re  

giving 

re)rbre+  ra(re-=  rbre+  ra  

rerbr 2 e - rerare-=  

rbre - rar -2e푒-=  

rbre - ra=   

푏 ) + (푎 − 푒 푏re -푎= ( 

, rbre = ra=   

= 0 and  rb. Thus we have sere-=  rese, re ≠ sewhere we use the fact that for each 

. R ∈t 1 for some t= u , so r. But this applies for all redoes not involve  ra= u so 

Since 푢 = t1, 

푡 1 =  푢푢  = (−1)   =  1, 
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by Equation (2.13) and the fact that k is even. This shows that t = ± and so u = 

±1. 

For 푛 ≥  1, the spinor groups are defined by 

푆푝푖푛(푛) =  휌 1 푆푂(푛) ≤  푃푖푛(푛). 

Theorem (2.1.31): 
Spin(n) is a compact, path connected, closed normal subgroup of Pin(n), 

satisfying 

                                         Spin(n) =   Pin (n) ∩ CL                                  (2.16a)  

)(2.16b                     ,            )nSpin( re∪) n) = Spin(nPin(                                    

for any r = 1, … , n. 

) nSpin( 휋is trivial, ) nSpin(the fundamental group of 3  >n Furthermore, when 

= 1. 

Proof: 
is path  nCl ⊆ nR ⊆ 1-nSWe only discuss connectivity. Recall that the sphere 

connected. 

we must  1-nS ∈ ku…1u= u . Now for an element 1-nS ∈ 0uChoose a base point 

have k even, say k = 2m. In fact, we might as well take m to be even since u = 

. Then there are continuous paths1-nS ∈w for any w )w-(u 

휌푟 ∶  [0,1] → 푆  (푟 =  1, …  2푚), 

: Then. ru(1) = rpand  0u(0) = rpfor which  

)t(m2p ) …t(1p) = t(p → 푆  : [0,1] p  

is a continuous path in Pin(n) with 

푝(0) =  푢  =  (−1) =  1, 푝(1) =  푢, 

But t ⟼ 푝 (푝(t)) is a continuous path in O(n) with 푝(푝(0)) ∈ SO(n), hence 푝(푝 

(t)) ∈ SO(n) for all t. This shows that 푝 is a path in Spin(n). So every element u 

∈ Spin(n) can be connected to 1 and therefore Spin(n) is path connected. 
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The final statement involves homotopy theory and is not proved here. It should 

and in fact the map } 1-1,{ ≅) nSO( 휋3,  >n be compared with the fact that for 

is a universal covering. 

The double covering maps 푝: Spin(n) →SO(n) generalize the case of SU(2) → 

SO(3). 

) nSpin( ⊆ uNthere is an open neighbourhood  ∈u In fact, around each element 

is a homeomorphism, and actually a diffeomorphism.  uN → uN: 푝for which 

This implies the following. 

Proposition (2.1.32): 

The derivative d 푝: spin(n) → so(n) is an isomorphism of R-Lie algebras and 

푑푖푚 푆푝푖푛(푛)  =  푑푖푚 푆푂(푛)  = 푛
2  

In the following we will discuss The centres of spinor groups 

Recall that for a group G the centre of G is 

퐶(퐺) = {푐 ∈  퐺 ∶  ∀푔 ∈  퐺;  푔푐 =  푐푔}. 

3 we have >n ) with n. It is well known that for groups SO(G ⊲) GThen C( 

Proposition (2.1.33): 
퐹표푟 푛 ≥  3, 

퐶 푆푂(푛) = {푡푙 ∶  푡 =  ±1, 푡  =  1} =
{1 } 푖푓 푛 푖푠 표푑푑

{±1 } 푖푓 푛 푖푠 푒푣푒푛 

Proposition (2.1.34): 
For n ≥ 3 

퐶 푆푝푖푛(푛) =
{±1} 푖푓 푛 푖푠 표푑푑

{±1, ±푒 … 푒  } 푖푓 푖푛 ≡ 2 푚표푑 4.
{±1, ±푒 … 푒 } 푖푓 푛 ≡ 0 푚표푑 4.

 

⎩
⎪
⎨

⎪
⎧

푧
2  푖푓 푛 푖푠 표푑푑 

푧
4

 푖푓푛 ≡ 2 푚표푑 4.

푥푧
2

 푖푓푛 = 0 푚표푑 4.
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Proof: 
If g ∈ C(Spin(n)), then since 휌: Spin(n) → SO(n), 휌(g) ∈ C(SO(n)). As ±1 ∈ 

C(Spin(n)), this gives |퐶(푆푝푖푛(푛))|=  2| 퐶(푆푂(푛))| and indeed 

퐶 푆푝푖푛(푛) = 휌  퐶 푆푂(푛) . 

For n even, 

(−1)= 푒… −1 푒=  ne … 1ene….  1e=  2)ne…  1e±( 

Since 

푛 + 1
2 =

(푛 + 1)푛
2

 ≡
0 푚표푑 2 푖푓 푛 ≡ 2 푚표푑 4,
1 푚표푑 2 푖푓 푛 ≡ 0 푚표푑 4 , 

this implies 

(±푒 …푒 ) =
1 푖푓 푛 ≡ 2 푚표푑푒 4,
−1 푖푓 푛 ≡ 0  푚표푑푒 4, 

Hence for n even, the multiplicative order of ±푒 … . 푒  is 1 or 2 depending on 

the congruence class of n modulo 4. This gives the stated groups. 

We remark that Spin(1) and Spin(2) are abelian. 

In the following we will discuss finite subgroups of spinor groups Each 

orthogonal group O(n) and SO(n) contains finite subgroups. For example, when 

n = 2, 3, these correspond to symmetry groups of compact plane figures and 

while elements of direct isometries, ) are often called nsolids. Elements of SO(

= 3 is explored in the Problem n . The case of indirect isometriesare called  -)nO(

Set for this chapter. Here we make some remarks about the symmetric and 

alternating groups. 

is the group of all  nSsymmetric group 1 the  >n Recall that for each 

 ≤ nAalternating group = 1, … n. The corresponding n permutations of the set 

evenis the subgroup consisting of all  nS 

 → nS)=1 where sign : 휎sign(for which  nS ∈ 휎permutations, i.e., the elements 

{±1}  is the sign homomorphism. 

by linear transformations: n핂act on  nS, we can make |For a field  
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휎

푥
푥
⋮
푥

=

푥 ( )
푥 ( )

⋮
푥 ( )

 

Notice that 휎(er) = 푒 ( ). The matrix [휎] of the linear transformation induced by 

's has all its entries 0 or 1, with exactly one 1 in rewith respect to the basis of  휎

each row and column. For example, when n = 3, 

[(123)] =
0 0 1
1 0 0
0 1 0

, [(1,3)] =
0 0 1
0 1 0
1 0 0

 

When 핂 = ℝ each of these matrices is orthogonal, while when 핂 = ℂ it is 

) n) or U(nas the subgroup of O( n푆we can view  푛unitary. For a given 

consisting of all such matrices which are usually called permutation matrices. 

Proposition (2.1.35): 
,nS ∈ 휎For  

푠푖푔푛(휎) =  푑푒푡([휎]). 

Hence we have 

퐴푛 =
푆푂(푛) ∩ 푆  푖푓 푘 = 푅
푆푢(푛) ∩ 푆  푖푓 푘 = 퐶  

is a simple group. nA5,  >n Recall that if  

) nPin( ≤=  nS 1-휌= 푆) is onto, there are finite subgroups nO( →) n: Pin(휌As 

n 푆:휌surjective homomorphisms ) for which there are nSpin(푝 ≤=퐴and 

1. Note that ±whose kernels contain the two elements  nA→ n퐴: 휌and  nS→

4, there are no homomorphisms r:  ≥n !, However, for 푛= 퐴!, while n =2 푆

= Id. 휌 ∘  휏for which  n퐴 → nA, t: nS → nS 

 

 

 

 

 

푆  푆  

푆  

퐴  퐴  

퐴  

r r 

휌 휌 푖푑  
푖푑  
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Similar considerations apply to other finite subgroups of O(n). 

In 퐶퐿  n we have a subgroup En consisting of all the elements 

±푒 … 푒 (1 ≤ 푖 < ⋯ < 푖 ≤ 푛, 0 ≤ 푟) 

: 휌1, its image under ±and as it contains  +1n= 2|퐸 |The order of this group is 

) is also the nE= C( |{±1}|. In fact, n= 2퐸of order  nE휌= n 퐸) is nO( →) nPin(

-. Every nonis abeliann 퐸1 and so -=  푒 푒jeiecommutator subgroup since 

elementary ) is an nO( ≤ n퐸1, hence - =푒has order 2 since n 퐸trivial element in 

) is a nO( ∈) re(휌. Each element n2)/Zi.e., it is isomorphic to (group, -2

generalized permutation matrices with all its non-zero entries on the main 

diagonal. There is also a subgroup 퐸 = 푝퐸 ≤ 푆푂(푛) of order 2  where 

퐸 = 퐸 ∩ 푆푝푖푛 (푛) 

).Zis isomorphic to (퐸  In fact /n2-퐸  and nEThese groups    

are non-abelian and fit into exact sequences of the form 

1 →
푧
2 → 퐸 →

푧
2 → 1, 1 → 푧/2 → 퐸 → (푧/2) → 1 

or  nE2 is equal to the centre of the corresponding group /Zin which each kernel 

퐸   This means they are extraspecial 2-groups. 
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Section (2.2) : Matrix Groups as Lie Groups  
Now  we will discuss the basic ideas of smooth manifolds and Lie groups. 

Definition (2.2.1): 
if smooth is open, is called  kmR ⊆ kVwhere each  2V → 1V: g A continuous map 

it is infinitely differentiable. A smooth map g is a diffeomorphism if it has 

inverse 푔  which is also smooth. smooth.  

Definition (2.2.2): 
Let M be a separable Hausdorff topological space. 

are open subsets, is  nR ⊆V and M  ⊆U where  푓 ∶  푈 →  푉A homeomorphism 

called an n-chart for U.  

If U = {푈 U: 훼 ∈ A} is an open covering of M and 픉 = {푓 → 푉 } is a 

collection of charts, then ℱ is called an atlas for M if, whenever 푈 ∩ 푈 U≠0  

푓 ∘ 푓 :푓 (푈 ∩ 푈 ) → 푓 (푈 ∩ 푈 ) 

is a diffeomorphism. 

 

 

 

 

 

 

 

We will sometimes denote an atlas by (M,U, ℱ) and refer to it as a smooth 

manifold of dimension 푛 or smooth 푛-manifold. 

Definition (2.2.3): 
Let (M,U,ℱ) and (푈 ,푈 , 푓 ) be atlases on topological spaces M and 푀’. A 

smooth map h: (M,U,ℱ)→  (푈 ,푈 , 푓 ) is a continuous map ℎ: 푀 →  푀  such 

that for each pair 훼, 훼 with ℎ(푈 ) ∩ 푈  ≠  휃 , the composite 

푓 ∘ ℎ ∘ 푓 : 푓 (ℎ 푈 → 푉  

푈 ∩ 푈  

푓훼 (푈 ∩ 푈 ) 푓 →푈 ∩푈  

푓훼  

푓 푓훼  

푓  
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is smooth.  

푓 (ℎ 푈 )
∘ ∘
⎯⎯⎯⎯⎯ 푉             

 

 

 

In the following we will discuss Tangent spaces and derivatives  

Let (M,U, ℱ) be a smooth n-manifold and p ∈ M .훾 Let  : (a,b) → M be a 

continuous curve with 훼 < 0 < b.  

Definition (2.2.4): 
is differentiable at t ∈ (푎, 푏) if for every chart f : U → V with 훾(t) ∈ U, the curve 

f ∘ 훾  : (푎, 푏) → V is differentiable at t ∈ (푎, 푏), i.e., (f ∘ 훾 )’ (t) exists. 훾 is 

smooth at t ∈ (a; b) if all the derivatives of f ∘ 훾  exists at t.  

The curve  훾  is differentiable if it is differentiable at all points in (푎, 푏). 

Similarly 훾 is smooth if it is smooth at all points in (푎, 푏).  

Lemma (2.2.5): 
and suppose that 0U ∈) t( 훾be a chart with  0V→ 0U:  0fLet  

∩ 푓 푣 → 푣)a, b: (  ∘ 훾 0f  

is differentiable/smooth at t. Then for any chart 푓 ∶  푈 →  푉 with 훾 (t) ∈ U 

f∘ 훾   : (a, b)∩ 푓 V → V  

is differentiable/smooth at t. 

Proof: 
The smooth composite 푓 ∘ 훼  is defined on a subinterval of (푎, 푏) containing t 

and there is the usual Chain or Function of a Function Rule for the derivative of 

the composite 

                                 (푓훾) (푡) = 퐽푎푐 ∘ ∘ ( ) ( ∘ ) ( )                             (2.19)      

Here, for a differentiable function 

푓  푓′  

ℎ 푈  ℎ(푈 ) ∩푈  
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ℎ:푤 → 푤 ;ℎ(푥) =
ℎ ( )
⋮

ℎ ( )

 

 

isJacobian matrix , the 1W ∈x open subsets, and  2mR ⊆ 2Wand  1mR ⊆ 1Wwith  

퐽푎푐 (푥) =
휕ℎ
휕푥

(푥) ∈ 푀 , (푅) 

:  0fis differentiable at 0, then for any (and hence every) chart  훾and  휌(0) = 훾If 

. In nR ∈)’(0)  훾f= ( 0v, there is a derivative vector 0U ∈(0)  훾with  0V → 0U

passing to another chart f : U →V with 훾 (0) ∈ U by Equation (2.19) we have 

(푓훾) (0) = 퐽푎푐 푓 ∘ 훾(0) (푓 ∘ 훾) (0). 

, pat M to the manifold M pTtangent space In order to define the notion of the 

we consider all pairs of the form 

((f 훾)’(0), f : U → V )  

where 훾(0) = p ∈ U, and then impose an equivalence relation ~ under which 

.)2V → 2U:  2f )’(0), 훾2f((~ ) 1V → 1U:  1f )’(0), 훾1f(( 

Since 

 훾) (0)1f퐽푎푐 푓1 (0) ()’(0) =  훾2f( 

we can also write this as 

,)2V →2U 퐽푎푐 ( ) ,푓 :(~ ) 1V → 1U:  1f v,( 

whenever there is a curve 훼 in M for which 

(0) = v 훾)′1f(p, (0) = 훾  

and we will sometimes denote the M pThe set of equivalence classes is T

equivalence class of (v, f : U →V ) by [v, f : U→ V ]. 

Proposition (2.2.6): 
.nvector space of dimension -Ris an M pT, M ∈p For  
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Proof: 
with M p, we can identify the elements of TU ∈p with 푓: 푈 →  푉 For any chart 

arises as the derivative of a  nR ∈Every  (푣, 푓: 푈 →  푉 ).objects of the form 

curve 훾 : (-휀, 휀) → V for which 훾(0) = 푓(푝). For example for small enough ",  

we could take  

훾(푡) =  푓(푝) +  푡푣. 

There is an associated curve in M, 

훾 ∶  (−휀, 휀)  →  푀;  훾(푡)  =  푓 (푡) 

by nRwith M p. So using such a chart we can identify Tp(0) = 훾for which  

[푣,푓 ∶ 푈 →  푉 ] ↔ 푣.  

is a vector space and that the above correspondence is a M phis shows that TT

linear isomorphism. 

Let h: (푀,푈,ℱ) →  (푀 ,푈 ,ℱ ) be a smooth map between manifolds of 

dimensions 푛,푛 . For p ∈ M, consider a pair of charts with p∈ 푈  and h(p) ∈

푈 . Since ℎ , = 푓 ,∘ ℎ ∘ 푓 

is differentiable, the Jacobian matrix 퐽푎푐 (푓 (푝) has an associated R-linear 

transformation 

푑 ℎ : 푅  →  푅 ;  푑 ℎ (푥) =  퐽푎푐ℎ 푓 (푝) 푥. 

It is easy to verify that this passes to equivalence classes to give a well defined 

R-linear transformation 

.푀′)p(hT →M p: T phd   

Proposition (2.2.7): 
Let ℎ: (푀,풰,ℱ)  →  (푀′풰′,ℱ′) and 푔: (푀′,풰′,ℱ′)  →  (푀′′풰′′,ℱ′′) be smooth 

maps between manifolds 푀,푀 ,푀′′ of dimensions 푛,푛 ,푛′′. 

.푀′)p(hT→M p: Tphdlinear transformation -Rthere is an M  ∈p For each a)  

b) For each p ∈ M, 

푑 ( ) ∘ 푑ℎ푝 = 푑(푔 ∘ ℎ)푝 

c) For the identity map 퐼푑: 푀 →  푀 푎푛푑 푝 ∈  푀 
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MpT= Id pd Id  

Definition (2.2.8): 
Let (푀,풰,ℱ) be a manifold of dimension 푛. A subset N ⊆ M is a submanifold 

of dimension k if for every p ∈ N there is an open neighbourhood 푈 ∈  푀 of p 

and an n-chart 푓 ∶ 푈 →  푉such that 

U. ∩N ) = kR ∩V (1-f ∈p   

For such an N we can form k-charts of the form 

푓∘ ∶  푁 ∩  푈 !  푉 →  푅 푓∘(푥)  =  푓(푥): 

We will denote this manifold by (푁,푈풰 ,ℱ 푁,퐹푁). The following result is 

immediate. 

Proposition (2.2.9): 
For a submanifold 푁 ⊆  푀 of dimension k, the inclusion function incl : 푁 →

injection.is an M pT →N p: T pd incl, N ∈p is smooth and for every  푀  

The next result allows us to recognise submanifolds as inverse images of points 

under smooth mappings. 

Theorem (2.2.10): 
(Implicit Function Theorem for manifolds). Let ℎ: (푀,푈,ℱ) !  (푀 ,푈 ,퐹′) be 

a smooth map between manifolds of dimensions 푛,푛′. Suppose that for some q 

is M ⊆N. Then q1-h= 푝 ∈  푁 is surjective for every  푀′)p(hT→Mp: T푑 ℎ푝 , 푀′ ∈

submanifold of dimension 푛 –  푛′ and the tangent space at 푝 ∈  푁 is given by 

.phd  = ker 푇  푁 

Theorem (2.2.11): 

(Inverse Function Theorem for manifolds). Let h: (M,풰,ℱ) → (푀 ,푈 ,ℱ′) be a 

 ∈p . Suppose that for some 푛,푛′smooth map between manifolds of dimensions 

is an isomorphism. Then there is an open  푀′)p(hT→M p: T phd , M

neighbourhood U ⊆ M of p and an open neighbourhood V ⊆  푀′ of ℎ(푝) such 

that ℎ푈 = 푉 and the restriction of ℎ to the map ℎ : 푈 →  푉 is diffreomorphism. 
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linear isomorphism and -Ris an  )p(hT → 푇: 푑 ℎ푝 In particular, the derivative 

푛 =  푛′. 

When this occurs we say that ℎ is locally a diffeomorphism at 푝. 

Example (2.2.12): 
). ThenR(nGL→) R(nConsider the exponential function exp: M 

X:) = X(Od exp  

Hence exp is locally a diffeomorphism at O. 

In the following Lie groups 

Definition (2.2.13): 
Let G be a smooth manifold which is also a topological group with 

multiplication map mult : 퐺  푥 퐺 →  퐺 and inverse map inv: 퐺  →  퐺 and view 

퐺 →  퐺 as the product manifold. Then G is a Lie group if mult; inv are smooth 

maps. 

Definition (2.2.14): 
Let G be a Lie group. A closed subgroup 퐻 ≤  퐺 that is also a submanifold is 

called a Lie subgroup of G. It is then automatic that the restrictions to H of the 

multiplication and inverse maps on G are smooth, hence H is also a Lie group. 

is a G and when G  gthere is a tangent space TG 2 g , at each GFor a Lie group 

G  1= Tg matrix group this agrees with the tangent space. We adopt the notation 

for the tangent space at the identity of G. A smooth homomorphism of Lie 

groups 퐺 →  퐻 has the properties of a Lie homomorphism. 

For a Lie group G, let g ∈ G. There are following three functions are of great 

importance. 

gx.) = x(g; LG →G :  gL (Left multiplication)   

xg.) = x(g; RG→G :  gR (Right multiplication) 

.1-gxg) = x(g; xG→G :  gx (Conjugation)  

Proposition (2.2.15): 
are all diffreomorphisms with inverses gx, gR, gL, the maps G ∈g For  
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퐿 = 퐿 ,푅 = 푅 ,휒 = 휒  

Proof: 
harts for 퐺 푥 퐺 have the form 

2,Vx 1V → 2Ux 1 U: 2휑 x 1휑  

 휇푈 푥푈  ,⊆  푊 ⊆  퐺. Now suppose that Gare charts for  kV→kU: k휑where 

where there is a chart 휃:W →Z. By assumption, the composition 

→ 푧 2x v 1v휃 ∘ 휇 ∘ (휑 푥휑 ):=  1-)휃 ∘ 휇 ∘ (휑 푥휑 

, we have2U ∈x and  1U ∈g , so if 휇(푔, 푥)) = x(gis smooth. Then L 

∘ 휑 ) ∘ 휑 (푥) gL 휃 ∘(1- 휃) = x(gL  

But then it is clear that 

→ 푧2 :v휃 ∘ 휑  

but treating the first variable 1-)휑 푥휑(휃 ∘ 휇 ∘is smooth since it is obtained from 

as a constant. 

, notice thatgx. For gA similar argument deals with R 

,gL ∘ g= R gR ∘ g= L g풳  

and a composite of smooth maps is smooth. 

 gare worth studying. Since LG  ∈The derivatives of these maps at the identity 1 

1-gand R 1-gare diffeomorphisms with inverses   L gand R 

G gT →G  1= Tg :  1)gd(R, 1)gd(L  

are R-linear isomorphisms. We can use this to identify every tangent space of G 

linear isomorphism-Rxes 1, so it induces an fi gx. The conjugation map gwith  

.g →g :  1)gx= d( gAd  

This is the adjoint action of g ∈ G on g. For G a matrix group. 

There is also a natural Lie bracket [ , ] defined on g, making it into an R-Lie 

algebra. The construction follows that for matrix groups. 
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Theorem (2.2.16):  
Let 퐺 ,퐻 be Lie groups and 휑: G →H a Lie homomorphism. Then the derivative 

is a homomorphism of Lie algebras. In particular, if G ≤ H is a Lie subgroup, 

the inclusion map incl : G→H induces an injection of Lie algebras d incl : g →h.  

Now we study Some examples of Lie groups. 

Example (2.2.17): 
) is a Lie group.핂(n, GLℝ,ℂ=  핂For  

Proof: 
 2n 핂) we identify with 핂(n) is an open subset where as usual M핂(nM ⊆) 핂(nGL

) and the identity function 핂(nGL ⊆U . For charts we take the open sets 

). So the 핂(n) is just M핂(nGL ∈A . The tangent space at each point 퐼푑: 푈 →  푈

notions of tangent space and is agree here. The multiplication and inverse maps 

are obviously smooth as they are defined by polynomial and rational functions 

). 핂(nbetween open subsets of M 

Example (2.2.18): 
) is a Lie group.핂(n, GLℝ,ℂ =핂For  

we have 

)핂(nGL ⊆1  1-) = det핂(nSL  

is a smooth manifold of dimension  핂is continuous.  핂 →) 핂(nWhere det: GL

and det is smooth. In order to R  ∈r at each  ℝ=  ℝ rwith tangent space T 핂 Rdim

 ℝ →) 핂(n: M Aapply Theorem 4.10, we will first show that the derivative d det

-: (훼). To do this, consider a smooth curve 핂(nGL ∈A for every  is surjective

(0) using the 0_. We calculate the derivative on A(0) = 훼) with 핂(nGL →) 휀, 휀

formula 

d푑푒푡 (훼′(0)) = ( )

     |
  

The modified curve 

훼( ) 1-A=  훼∘( )); 핂(nGL →)휀,휀-: ( 0훼  
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satisfis 훼 (0) = I implies 

푑푑푒푡 (훼 (0)) =
푑푑푒푡훼 ( )

푑푡   |푡 = 0
= 푡푟훼 (0) 

Hence we have 

푑 푑푒푡 (훼 (0)) =   ( ( ))
      |

=det A ( ( ))
      |

= det퐴 푡푟훼 (0) 

linear transformation- 핂is the  ASo d det 

.)X1-Atr(A) = detX(Ad det →  핂)핂(n: M Adetd   

) and it is also surjective since tr is. In 핂(nslA=  AThe kernel of this is ker d det

) is 핂(nGL→) 핂(n). By Theorem (2.2.10), SL핂(nSL ∈A particular this is true for 

a submanifold and so is a Lie subgroup. Again we find that the two notions of 

tangent space and dimension agree. 

There is a useful general principle at work in this last proof. Although we state 

the following two results for matrix groups, it is worth noting that they still 

replaced by an arbitrary Lie group.) is ℝ(napply when GL 

Proposition  (2.2.19): 
be a smooth function and suppose M →) ℝ(n: GLF Let . (Left Translation Trick)

) ℝ(nGL ∈A . Let )ℝ(nGL ∈C for all ) C(F) = BC(Fsatisfies ) ℝ(nGL ∈B that 

with d FA surjective. 

Then d FBA is surjective. 

Proof: 
), is a diffeomorphism, and ℝ(nGL →) ℝ(n: GL B, LG ∈B Left multiplication by 

) isℝ(nGL ∈A its derivative at  

푑(퐿퐵) ∶  푀푛(푅)  → 푀푛(푅);  푑 퐿퐵(푋)  =  퐵푋 

). Thenℝ(nas a function on GLF =  BL ∘F By assumption,  

d FBA(X)  = d FBA(B(B-1X)) 

= d FBA ∘ d(LB)A(B-1X) 

= d(F ∘ LB)A(B-1X) 

= d FA(B-1X): 
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) is surjective, this proves the result.R(non M 1-BSince left multiplication by  

Proposition (2.2.20): 
smooth  훼M be a matrix subgroup, ) ℝ(nGL ≤G Let . (Identity Check Trick)

. M ∈q for some G = q 1-Fa smooth function with M  →) ℝ(n: GLF manifold and 

is I Fd . If )ℝ(nGL ∈C for all ) C(F) = BC(F, G ∈B Suppose that for every 

.gA=  AFker d and G  ∈A is surjective for all  AFd surjective then  

Example (2.2.21): 
).ℝ(n) is a Lie subgroup of GLnO( 

Proof: 
) as the solution set of a family of ℝ(nGL ⊆) nRecall that we can specify O(

. I= A TAvariables arising from the matrix equation  2npolynomial equations in 

equations in the entries of the matrix 푛 + 푛
2 = 푛 + 1

2  In fact, the following 

] are sufficient:ija= [A  

훼 − 1 = 0(1 ≤ 푟 ≤ 푛), 푎 푎 = 0(1 ≤ 푟 < 푠 ≤ 푛) 

: F We combine the left hand sides of these in some order to give a function 

for example → ℝ) ℝ(nGL 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 훼 − 1

⋮

훼 − 1

훼 − 1

⋮

푎 ( ) ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

ℝ →) ℝ(n: MA FWe need to investigate the derivative d  
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d FA is surjective for all A ∈ O(n), it is sufficient to check the case A = I. The 

matrix 2x n푛 + 1
2is the I ] = ija= [A at F Jacobian matrix of  

푑퐹

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2 0 0 0 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 0 0 0 … 0 2
0 1 1 0 … 0 0
⋮ ⋱ ⋮ ⋮
0 1 0 ⋯ 0 1 0
⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

th row has a 2 corresponding to the r rows, the n Where in the top block of 

and in the bottom block, each row has a 1 in each column  rravariable 

+ n . The rank of this matrix is r < swith  sr, arsacorresponding to one of the pair 

surjective. It is also true thatis  1Fd so푛
2 = 푛 + 1

2   

:)n(o) = ℝ(nSym-= Sk IFker d   

) is a Lie subgroup This example is typical of what ℝ(nGL ≤) nHence O(

.)ℝ(nGL happens for any matrix group that is a Lie subgroup of 

Theorem (2.2.22): 
be a matrix group which is also a submanifold, hence a Lie ) ℝ(nGL ≤G Let 

subgroup. Then the tangent space to G at I agrees with the Lie algebra g and the 

.gA= G  AT; more generally, Gdim is G dimension of the smooth manifold  

In the rest of this  sections, our goal will be to prove the following important 

result. 

Theorem (2.2.23): 
.)ℝ(nGLis a Lie subgroup of  퐺be a matrix subgroup. Then ) ℝ(nGL ≤G Let  

The following more general result also holds but we will not give a proof. 

Theorem (2.2.24): 
Let G ≤ H be a closed subgroup of a Lie group H. Then G is a Lie subgroup of 

H. 
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In the following we will discuss some useful formula in matrix groups 

so thatr ) be a closed matrix subgroup. Choose ℝ(nGL ≤G Let  

2)). /; 1O()R(nMexp(N ∈) B) exp(A) then exp(O,r()R(nMN ∈ 퐴,퐵1/2 and if  ≤< r 0 

for which )R(nM ∈C ), there is a unique r; O()R(nMSince exp is injective on N 

푒푥푝(퐴) 푒푥푝(퐵)  =  푒푥푝(퐶)                                    (2.20)    

We also set 

푆 =  퐶 − 퐴 −  퐵 −
1
2

[퐴,퐵] ∈ 푀 (푅)                  (2.21)   

Proposition (2.2.25): 
‖푆‖ satisfies 

‖푆‖ ≤ 65(‖퐴‖ + ‖퐵‖)  

Proof: 
) we haveR(nM ∈X For  

푒푥푝(푋) =  퐼 +  푋 +  푅 (푋), 

Where the remainder term R1(X) is given by 

푅 (푥) =
1
푘! 푥  

Hence, 

‖푅 (푥)‖ ≤ ‖푋‖
1
푘!
‖푥‖  

Since ‖퐶‖ < 1/2, 

‖푅 (퐶)‖ < ‖퐶‖                               (2.22)        

Similarly 

푒푥푝(퐶) =  푒푥푝(퐴)푒푥푝(퐵) =  퐼 +  퐴 +  퐵 +  푅 (퐴,퐵), 

Where 

‖푅 (퐴,퐵)‖ ≤
1
푘!

푘
푟
‖퐴‖ ‖퐵‖ =

(‖퐴‖ + ‖퐵‖)
푘!  

≤ (‖퐴‖+ ‖퐵‖)  
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giving 

since ‖퐴‖ + ‖퐵‖< 1. 

Combining the two ways of writing exp(C), we have 

      (2.23)                                ) C(1R -) A,B(1R+ B + A = C  

and so 

‖퐶‖ ≤ ‖퐴‖ + ‖퐵‖ + ‖푅 (퐴,퐵)‖ + ‖푅 퐶‖ 

< ‖퐴‖ + ‖퐵‖+ (‖퐴‖ + ‖퐵‖) + ‖퐶‖  

≤ 2 ‖퐴‖+ ‖퐵‖ +
1
2
‖퐶‖  

 

since ‖퐴‖, ‖퐵‖, ‖퐶‖ ≤ 1/2. Finally this gives 

‖퐶‖ ≤ 4(‖퐴‖+ ‖퐵‖). 

Equation (2.23) Also gives 

‖퐶 − 퐴푐퐵‖ ≤ ‖푅 (퐴,퐵)‖ + ‖푅 퐶‖ 

≤ (‖퐴‖+ ‖퐵‖) + (4‖퐴‖ + ‖퐵‖)  

Giving 

‖퐶 − 퐴 = 퐵‖ = 17(‖퐴‖‖퐵‖)                                  (2.24)       

Now we will refine these estimates further. Write 

exp(푐) = 1 + 퐶 +
1
2
퐶 + 푅 (푐) 

Where 

푅 (퐶) =
1
푘!
≤

1
3
‖퐶‖  

which satisfies the estimate 

푅 (푐) ≤
1
3

 

since ‖퐶‖ ≤ 1. With the aid of Equation (2.21) we obtain 

exp(푐) = 1 + 퐴 + 퐵 +
1
2

[퐴,퐵] + 푆 +
1
2퐶 + 푅 (퐶) 
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= 1 + 퐴 + 퐵 +
1
2

[퐴,퐵] +
1
2

(퐴 + 퐵) + 푇 

= 1 + 퐴 + 퐵 + (퐴 + 2퐴퐵 + 퐵 ) + 푇                         (2.25)    

Where 

푇 = 푆 +
1
2

(푐 − (퐴)퐵) + 푅 (퐶)                       (2.26)    

Also 

푒푥표(퐴) exp(퐵) = 1 + 퐴 + 퐵 +
1
2

(퐴 + 2퐴퐵 + 퐵 ) + 푅 (퐴,퐵)        (2.27) 

푅 (퐴,퐵) =
1
푘!

푘
푟 퐴 퐵 , 

which satisfies 

‖푅 (퐴,퐵)‖ ≤
1
3

(‖퐴‖+ ‖퐴‖)  

Since ‖퐴‖ + ‖퐵‖ ≤ 1 

Comparing Equations (2,26) and (2,27), and using(2,20) we see that 

(c)2R –) 2C -2((A+B))(A,B)+2S=R 

Taking norms we have 

‖푆‖ ≤ ‖푅 퐴,퐵)‖ +
1
2

(퐴 + 퐵)(퐴 + 퐵 − 퐶) − (퐴 + 퐵 − 퐶)‖+‖‖푅 퐶‖ 

≤
1
3

(‖퐴‖+ ‖퐴‖) +
1
2

(‖퐴‖+ ‖퐵‖ + ‖퐶‖) 퐴 + 퐵 − 퐶 +
1
3

 

≤
1
3

(‖퐴‖ + ‖퐴‖) +
5
2

(‖퐴‖+ ‖퐵‖). 17 (퐴 + 퐵 − 퐶 +
1
3

 

≤ 65(‖퐴‖+ ‖퐵‖) . 

yielding the estimate  

‖푆‖ ≤ 65(‖퐴‖ + ‖퐵‖)                               (2.28)       

Theorem (2.2.26): 
, then the following identities are satisfied.)R(nM ∈ 푈,푉If  

[Trotter Product Formula] 
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exp(푈 + 푉) = lim
→

(exp
1
푟
푢 exp

1
푟
푣 ) 

[Commutator Formula] :  

exp([푢,푣]) = lim
→

(exp u exp v exp − u exp v))   

Proof: 

 For large r we may take A = 푢 푎푛푑 B = 푣 and apply Equation (2.21) to give  

)rC) = exp(V )/r) exp((1U)/rexp((1 

with  

퐶 −
1
푟

(푢 + 푣) ≤
17(‖푈‖ + ‖푉‖)

푟
 

As r→ ∞  

In the following we will discuss not all Lie groups are matrix groups.  

For completeness we describe the simplest example of a Lie group which is not 

a matrix group. In fact there are finitely many related examples of such 

is particularly  Heisand the example we will discuss  nHeisHeisenberg groups 

important in Quantum Physics.  

is defined as follows. Recall the group  nHeisHeisenberg group , the 푛 ≥  3For 

form), whose elements have the ℝ(nreal unipotent matrices SUT 푛 푥 푛of   

⎣
⎢
⎢
⎢
⎢
⎡
1 푎 ⋯ ⋯ ⋯ 푎
0 1 푎 ⋱ ⋱ 푎
0 0 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 1 푎 ⋮
⋮ ⋮ ⋱ 0 1 푎
0 0 … 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

 

) consists of the matrices of the ℝ(n) of SUTℝ(nsut. The Lie algebra ℝ ∈ ijawith 

form  
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⎣
⎢
⎢
⎢
⎢
⎡
0 푡 ⋯ ⋯ ⋯ 푡
0 0 푡 ⋱ ⋱ 푎
0 0 ⋱ ⋱ ⋱ ⋮
⋮ ⋮ ⋱ 0 푡 ⋮
⋮ ⋮ ⋱ 0 0 푡
0 0 … 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

. It is a 푛
2  = n) with dimSUTℝ(nis a matrix subgroup of GL n. SUTℝ ∈ ijtwith 

nice algebraic exercise to show that the following hold in general. 

Proposition (2.2.27):  
 ∈]  ija[consists of all the matrices  nSUTof ) nC(SUT, the centre 푛 ≥  3For 

is ) nC(SUT. Furthermore, n= j and = 1 i except when = 0  ijawith n Heis

.nSUTsubgroup of  contained in the commutator  

). Under this nC(SUT ≅ ℝNotice that there is an isomorphism of Lie groups 

corresponds to the matrices with  ℝ ⊆ ℤisomorphism, the subgroup of integers 

.nSUT⊲ n ℤ(in fact central) subgroup  and these form a discrete normal ℤ ∈ n1a 

We can form the quotient group  

.n  ℤ/ n= SUT nHeis  

This has the quotient space topology and as Zn is a discrete subgroup, the 

is a local homeomorphism. This can be used to  nHeis→ n: SUTq quotient map 

defined on small open  nis also a Lie group since charts for SUT nshow that Heis

is the n. The Lie algebra of Heisnsets will give rise to charts for Heis 

.nsut=  nheis, i.e., nsame as that of SUT 

Proposition (2.2.28):  
of q consists of the image under  nHeisof ) nC(Heis, the centre 푛 ≥  3For 

is contained in the commutator subgroup of ) nC(Heis. Furthermore, )nC(SUT

.nHeis 

is isomorphic to the circle group n  ℤ=)n) = C(SUTnNotice that C(Heis 

T = {z ∈ ℂ :|푧| = 1}  

with the correspondence coming from the map 

R → T; t ↔ 푒 .  
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When n = 3, there is a surjective Lie homomorphism 

 

푝: 푆푈푇 → ℝ ;
1 푥 푡
0 1 푦
0 0 1

→
푥
푦  

 

, there is an induced 휌ker  ≤ 3). Since Z3= C(SUT 휌whose kernel is ker 

. In this case 푞 =  푝o  푝for which  2R → 3: Heispsurjective Lie homomorphism 

is given byT  ≅) nthe isomorphism C(Heis  
1 0 푡
0 1 0
0 0 1

푧 ↔ 푒  

From now on we will write [푥,푦, 2 ] for the element  
1 푥 푡
0 1 푦
0 0 1

푧 ∈  퐻푒푖푠  

푧 ∈and  푥, 푦 ∈  ℝwith  [푥,푦, 푧]has the form  3Thus a general element of Heis

 푇. The identity element is 1 = [0, 0,1]. The element 2  
1 푥 푡
0 1 푦
0 0 1

 

.(푥,푦, 푡)will be denoted  3heisof the Lie algebra  

Proposition (2.2.29): 
are given by 3HeisMultiplication, inverses and commutators in   

[푥 ,푦 , 푧 ][푥 ,푦 , 푧 ] = 푥 + 푥 + 푦 + 푦 , 푧 푧 , 

[푥,푦, 푧] = −푥, 푥푦, 푧 푒  

[푥 , 푦 , 푧 ][푥 , 푦 , 푧 ][푥 , 푦 , 푧 ] = 0,0, 푒 ( ) 

The Lie bracket in heis3 is given by 

:)2x1y - 2y1x 0, )] = (0,2, t2, y2x(, )1, t1, y1x[(  
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and occurs algebra ) Lie(Heisenberg is often called a  3heisThe Lie algebra 

throughout Quantum Physics. It is essentially the same as the Lie algebra of 

operators on differentiable functions 푓 ∶  ℝ →  ℝ spanned by 1; q given by 

1푓(푥) = 푓(푥); 푝푓(푥) = ( ), 푔푓(푥) = 푥푓(푥)  

The non-trivial commutator involving these three operators is given by the 

canonical commutation rela-tion 

[p, q] = pq - qp = 1.  

-1) a basis with the only non 0, (0, 0) , 0, (1 , 0) , 0, he elements (1, 3heisIn 

trivial commutator [(1, 0, 0) , (1, 0, 0)] = (0, 0, 1). 

Theorem (2.2.30):  
with trivial kernel ) C(nGL → 3: Heis휑There are no continuous homomorphisms 

ker 휑 = 1.  

Proof: 
) is a continuous homomorphism with trivial C(nGL→ 3: Heis휑Suppose that  

, the 3Heis ∈g is minimal with this property. For each n kernel and suppose that 

.nC) acts on vectors in g( 휑matrix   

topological has a T as above. Then T ) with the circle 3We will identify C(Heis

T 6  〈푧 〉element whose powers form a cyclic subgroup  ; this is an0zgenerator 

whose closure is T. For now we point out that for any irrational number r ∈ R, 

the following is true: for any real number s ∈ R and any 휀 > 0, there are integers 

p; q ∈ Z such that  

|푠  푝푟  푞|  <  휀. 

This implies that 푒  is a topological generator of T since its powers are dense.  

Let 휆 be an eigenvalue for the matrix 휑(z0), with eigenvector v. If necessary 

1, then > |휆|1. If  > 휆, we may assume that  푧with 0 zreplacing   

휑 푧 푣 = 휑(푧0) 푣 = 휆 푣 

and so  

휑 푧 ≥ ‖휆‖ . 
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Thus 휑 푧 → ∞ as k → ∞, implying that 휑T is unbounded. But 휑 is 

continuous and T is compact hence 휑T is bounded. So in fact |‖휆‖| = 1. 

we have 3Heis 푔 ∈), for any 3C(Heis ∈ 0zis a homomorphism and  휑Since  

;v)g( 휆 휑= v )0z(  휑)g( 휑= v )0gz( 휑= v )g0z(휑= v )g( 휑)0z(휑  

. If 휆) for the eigenvalue 0z( 휑) is another eigenvector of g( 휑which shows that 

we set 

}.0=  vk)휆-) 0z( 휑1 s.t. ( >k ∃:  nC ∈v {=  푉  

is a vector subspace which is also closed under the actions of all  nC 푉 ⊆then 

1 to be the largest number for  > 0k. Choose 3Heis ∈g ) with g( 휑the matrices 

satisfying 푉 ∈ 0vwhich there is a vector  

.0 ≠ 0v1-0k) 휆1 -) 0z( 휑( 0, =  0vnI)휆1 –) 0z( 휑( 

for which ∈V ∈v , u, there are vectors 1 > 0kIf  

.v휆= v )0z( 휑 v,+ u 휆= u )0z( 휑  

Then 

v1-k휆k+ u k휆= u k)0z( 휑= u 푧 ) (휑 

and since |휆|= 1,  

휑(푧 ) = 휑푧표 ≥ |휆 + 푘 | → ∞ 

 

is  푉= 1 and  0kis bounded. So T  휑. This also contradicts the fact that → ∞k as 

just the eigenspace for the eigenvalue 휆. This argument actually proves the 

following important general result, which in particular applies to finite groups 

viewed as zero-dimensional compact Lie groups. 

Proposition (2.2.31):  
-a continuous homomor) C(nGL →G : 휌up and be a compact Lie groG Let 

phism. Then for any g ∈ G, 휌 (g) is diagonalizable.  

 → 3: Heis 휃, we obtain a continuous homomorphism 푉On choosing a basis for 

also has the T . By continuity, every element of dI휆) =0z(휃) for which C(dGL
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and we can assume n = d , we must have n. By minimality of dIform (scalar)

.nI휆) = 0z(휑  

 ∈z By the equation for commutators in Proposition 4.34, every element 

, hence3in Heis 1-h1-ghg= z is a commutator  3Heis ≤T  

,) = 11-h1-ghg( 휑) = z( 휑det   

and  dI)z(휇) = z(휑, T ∈z are homomorphisms. So for every 휑and  since det

is path connected, T is continuous. But  xC →T: 휇= 1, where the function  d)z(휇

so 휇(z) = 1 for every z ∈ T. Hence for each z ∈ T, the only eigenvalue of 휑 (z) 

is 1. This shows that T ≤ ker 휑, contradicting the assumption that ker 휑 is 

trivial.  

 nA modification of this argument works for each of the Heisenberg groups Heis

(푛 ≥  3), showing that none of them is a matrix group. 

 

 

  


