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Chapter One 

Introduction 

 

1.1. Epidemiology of Brain Tumors: 

Primary tumours of the central nervous system (CNS) are relatively uncommon, accounting for 

only 2% of cancer deaths. However, the effect on the individual with a primary CNS tumour is 

frequently devastating, and brain tumours lead, on average, to a greater loss of life per patient than 

any other adult tumour. Primary CNS tumours affect patients of all ages, from childhood to old 

age, with a rising incidence from middle age onwards. In childhood, they are the commonest solid 

tumours (as opposed to leukaemias). The overall annual incidence is around 7 per 100 000 

population, giving approximately 4400 people newly diagnosed with a brain tumour in the UK 

each year. (Symonds et.al (2012)). 

An incidence of the brain tumors according to its tissue type as; an adult primary CNS tumors: 30–

35% meningioma, 20% GBM, 10% pituitary, 10% nerve sheath, 5% low-grade glioma, <5% 

anaplastic astrocytoma, <5% primary CNS lymphoma. Of adult gliomas, ~80% are high-grade and 

~20% are low-grade. Children: 20% of all pediatric tumors (second to ALL). Twenty percent JPA, 

15–20% malignant glioma/GBM, 15% medulloblastoma, 5–10% pituitary, 5–10% Ependymoma, 

<5% optic nerve glioma. Possible etiologic associations: rubber compounds, polyvinyl chloride, 

N-nitroso compounds, and polycyclic hydrocarbons. Prior ionizing RT has been associated with 

new meningiomas, gliomas, and sarcomas (~2% at 20-year), Charlotte et.al (2010). There is a huge 

range in outcome for patients with primary CNS tumours, from almost guaranteed cure in some 

conditions (e.g. germinoma) to almost guaranteed fatality in others (e.g. glioblastoma (GBM)).  

(Kubicky, et.al (2010)). 
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1.2. Genetics Aspect of Brain Cancer: 

NF-1: von Recklinghausen, chromosome 17q11.2, 1/3,500 live births, NF1 encodes 

neurofibromin, autosomal dominant, 50% germline, 50% new mutations, peripheral nerve sheath 

neurofibromas, café au lait spots, optic and intracranial gliomas, and bone abnormalities. NF-2: 

chromosome 22, 1/50,000 live births, NF2 encodes merlin, autosomal dominant, bilateral acoustic 

neuromas, gliomas, ependymomas, and meningiomas. Von Hippel-Lindau: chromosome 3, 

autosomal dominant, renal clear cell carcinoma, pheochromocytoma, hemangioblastoma, 

pancreatic tumors, and renal cysts. Tuberous sclerosis (Bourneville’s disease): TSC1 on 

chromosome 9, TSC2 on chromosome 16, autosomal dominant, subependymal giant cell 

astrocytoma, retinal and rectal hamartomas. Retinoblastoma: Rb tumor suppressor gene, 

chromosome 13. Li-Fraumeni syndrome: germline p53 mutation = breast, sarcoma, and brain CA. 

Turcot’s syndrome: primary brain tumors with colorectal CA. Neuroblastoma: N-myc implications 

commonly seen and serves as a prognostic factor. Kubicky, et.al (2010).  

1.3.  WHO Classification of Brain Tumors:  

Astrocytic Tumours: Pilocytic astrocytoma (WHO grade I); A relatively circumscribed, slowly 

growing, often cystic astrocytoma occurring in children and young adults, histologically 

characterized by a biphasic pattern with varying proportions of compacted bipolar cells associated 

with Rosenthal fibers and loose-textured multipolar cells associated with microcysts and 

eosinophilic granular bodies/hyaline droplets. Subependymal giant cell astrocytoma (WHO grade 

I); a benign, slowly growing tumour typically arising in the wall of the lateral ventricles and 

composed of large ganglioid astrocytes. Pleomorphic xanthoastrocytoma (WHO grade II); With a 

relatively favorable prognosis, typically encountered in children and young adults, with superficial 

location in the cerebral hemispheres and involvement of the meninges; characteristic histological 
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features include pleomorphic and lipidized cells expressing GFAP and often surrounded by a 

reticulin network as well as eosinophilic granular bodies. Diffuse astrocytoma (WHO grade II); a 

diffusely infiltrating astrocytoma that typically affects young adults and is characterized by a high 

degree of cellular differentiation and slow growth; the tumour occurs throughout the CNS but is 

preferentially located supratentorial and has an intrinsic tendency for malignant progression to 

anaplastic astrocytoma and, ultimately, glioblastoma. Anaplastic astrocytoma (WHO grade III): a 

diffusely infiltrating malignant astrocytoma that primarily affects adults, is preferentially located 

in the cerebral hemispheres, and is histologically characterized by nuclear atypia, increased 

cellularity and significant proliferative activity. The tumour may arise from diffuse astrocytoma 

WHO grade II or de novo, i.e. without evidence of a less malignant precursor lesion, and has an 

inherent tendency to undergo progression to glioblastoma. Glioblastoma (WHO grade IV); the 

most frequent primary brain tumour and the most malignant neoplasm with predominant astrocytic 

differentiation; histopathological features include nuclear atypia, cellular pleomorphism, mitotic 

activity, vascular thrombosis, microvascular proliferation and necrosis. It typically affects adults 

and is preferentially located in the cerebral hemispheres. Most glioblastomas manifest rapidly de 

novo, without recognizable precursor lesions (primary glioblastoma). Secondary glioblastomas 

develop slowly from diffuse astrocytoma WHO grade II or anaplastic astrocytoma (WHO grade 

III). Due to their invasive nature, glioblastomas cannot be completely resected, and despite 

progress in radio/chemotherapy, less than half of patients survive more than a year, with older age 

as the most significant adverse prognostic factor and Gliomatosis cerebri; a diffuse glioma (usually 

astrocytic) growth pattern consisting of exceptionally extensive infiltration of a large region of the 

central nervous system, with involvement of at least three cerebral lobes, usually with bilateral 

involvement of the cerebral hemispheres and/or deep gray matter, and frequent extension to the 
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brain stem, cerebellum, and even the spinal cord. Gliomatosis cerebri most commonly displays an 

astrocytic phenotype, although oligodendrogliomas and mixed oligoastrocytomas can also present 

with the gliomatosis cerebri growth pattern, (Kleihues et.al (2007)). 

 

Fig. 1.1. Intraoperative squash preparations of pilocytic astrocytoma showing (A) long, bipolar 

tumour cells and (B) a Rosenthal fiber. (C), (D) Typical biphasic pattern of compact, fiber-rich, 

GFAP-expressing areas and hypocellular areas with microcysts, lacking GFAP immunoreactivity. 

(Scheithauer et.al (2007)). 

 

Oligodendroglial Tumours: Oligodendroglioma (WHO grade II); a diffusely infiltrating, well-

differentiated glioma of adults, typically located in the cerebral hemispheres, composed of 

neoplastic cells morphologically resembling oligodendroglia and often harboring deletions of 

chromosomal arms 1p and 19q. Anaplastic oligodendroglioma (WHO grade III); an 

oligodendroglioma with focal or diffuse histological features of malignancy and a less favorable 

prognosis. Oligoastrocytoma (WHO grade II); a diffusely infiltrating glioma composed of a 

conspicuous mixture of two distinct neoplastic cell types morphologically resembling the tumour 

cells in oligodendroglioma and diffuse astrocytoma of WHO grade II. And Anaplastic 
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Oligoastrocytoma (WHO grade III); an oligoastrocytoma with histological features of malignancy, 

such as increased cellularity, nuclear atypia, pleomorphism and increased mitotic activity. 

(Reifenberger et.al (2007)). 

Ependymal Tumours: Subependymal (WHO grade I); A slowly growing, benign neoplasm, 

typically attached to a ventricular wall, composed of glial tumour cell clusters embedded in an 

abundant fibrillary matrix with frequent microcytic change. Myxopapillary ependymoma (WHO 

grade I); a slowly growing ependymal glioma with preferential manifestation in young adults and 

almost exclusive location in the region of the conus medullaris, cauda equina and filum terminale 

of the spinal cord; typically characterized histologically by tumour cells arranged in a papillary 

manner around vascularized myxoid stromal cores. Ependymoma (WHO grade II) a generally 

slowly growing tumour of children and young adults, originating from the wall of the ventricles 

or from the spinal canal and composed of neoplastic ependymal cells. And Anaplastic 

Ependymoma (WHO grade III); a malignant glioma of ependymal differentiation with accelerated 

growth and unfavorable clinical outcome, particularly in children; histologically characterized by 

high mitotic activity, often accompanied by microvascular proliferation and pseudopalisading 

necrosis. (Lendon et.al (2007)). 

Choroid Plexus Tumours: Choroid plexus papilloma (WHO grade I); a benign, ventricular 

papillary neoplasm derived from choroid plexus epithelium. Atypical choroid plexus papilloma 

(WHO grade II); a choroid plexus papilloma with increased mitotic activity and greater likehood 

of recurrence. Choroid plexus carcinoma (WHO grade III); a frankly malignant choroid plexus 

neoplasm. (Paulus and Brandner (2007)). 

Other Neuroepithelial Tumours: (a) Astroblastoma; A rare glial neoplasm mainly affecting 

children, adolescents and young adults, composed of GFAP-positive cells with broad, non- or 
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slightly-tapering processes radiating towards central blood vessels that often demonstrate 

sclerosis. (b) Chordoid glioma of the third ventricle (WHO grade II); a rare, slowly growing, non-

invasive, glial tumour located in the third ventricle of adults, histologically characterized by 

clusters and cords of epithelioid, GFAP-expressing tumour cells within a variably mucinous 

stroma typically containing a lympho-plasmacytic infiltrate. (c) Angiocentric glioma (WHO grade 

I); An epilepsy-associated, stable or slowly growing cerebral tumour primarily affecting children 

and young adults; histopathologically characterized by an angiocentric pattern of growth, 

monomorphous bipolar cells and features of ependymal differentiation. (Aldape and Rosenblum 

(2007)). 

Tumours of the Pineal Region: (a) Pineocytoma (WHO grade I); A rare, slowly growing, grossly 

demarcated pineal parenchymal neoplasm occurring mainly in adults and composed of relatively 

small, uniform, mature-appearing pineocytes often forming large pineocytomatous rosettes. (b) 

Pineal parenchymal tumour of intermediate differentiation (WHO grades II or III); A pineal 

parenchymal neoplasm of intermediate-grade malignancy, affecting all ages and composed of 

diffuse sheets or large lobules of uniform cells with mild to moderate nuclear atypia and low to 

moderate level mitotic activity. (c) Pineoblastoma (WHO grade IV); A highly malignant primitive 

embryonal tumour of the pineal gland, preferentially affecting children, frequently associated with 

CSF dissemination, and composed of dense, patternless sheets of small cells with round to 

somewhat irregular nuclei and scant cytoplasm. (d) Papillary tumour of the pineal region: A rare 

neuroepithelial tumour of the pineal region in adults, characterized by papillary architecture and 

epithelial cytology, immunopositivity for cytokeratin and ultrastructural features suggesting 

ependymal differentiation. (Nakazato et.al (2007)). 
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Fig. 1.2. (A) Large, haemorrhagic pineoblastoma. (B) Highly cellular pineoblastoma showing 

undifferentiated small cell histology. (Nakazato et.al (2007)). 

 

Embryonal Tumours: (a) Medulloblastoma (WHO grade IV); a malignant, invasive embryonal 

tumour of the cerebellum with preferential manifestation in children, predominantly neuronal 

differentiation, and an inherent tendency to metastasize via CSF pathways. (b) Central nervous 

system primitive neuroectodermal tumours (WHO grade IV); a heterogeneous group of tumours 

occurring predominantly in children and adolescents. They may arise in the cerebral hemispheres, 

brain stem or spinal cord, and are composed of undifferentiated or poorly differentiated 

neuroepithelial cells which may display divergent differentiation along neuronal, astrocytic, and 

ependymal lines. CNS/ supratentorial PNET is an embryonal tumour composed of undifferentiated 

or poorly differentiated neuroepithelial cells. Tumours with only neuronal differentiation are 

termed cerebral neuroblastomas or, if ganglion cells are also present, cerebral 

ganglioneuroblastomas. Tumours that recreate features of neural tube formation are termed 

medulloepitheliomas. Tumours with ependymoblastic rosettes are termed ependymoblastomas. 

Features common to all CNS PNET variants include early onset and aggressive clinical behavior. 

(c)Atypical teratoid/rhabdoid tumour (WHO grade IV); a highly malignant CNS tumour 

predominantly manifesting in young children, typically containing rhabdoid cells, often with 
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primitive neuroectodermal cells and with divergent differentiation along epithelial, mesenchymal, 

neuronal or glial lines; associated with inactivation of the INI1/hSNF5 gene in virtually all cases. 

(Giangaspero et.al (2007)). 

 
Fig 1.3. An Isochromosome 17q. This nucleus shows two sets of 3:1 (17q - red: 17p - green) signal  

Profiles indicating loss of 17p and gain of 17q. B MYC amplification. These nuclei show multiple 

clumped MYC signals (green). The red signals from centromere probes indicate chromosome 8 

copy number. Giangaspero et.al (2007). 

 

Fig 1.4. T1-weighted MRI of a large, hemispheric PNET with advanced neuronal differentiation 

(neuroblastoma). (Left)  T1-weighted gadolinium-enhanced MRI of a cystic medulloepitheliomas 

in the frontal lobe. (Right). (Giangaspero et.al (2007)). 
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Germ Cell Tumours: Morphological and immunophenotypic homologues of gonadal and other 

extra-neuraxial germ cell tumours; Germinoma, Mature teratoma, immature teratoma, Teratoma 

with malignant transformation, Yolk sac tumour (endodermal sinus tumour), embryonal 

carcinoma and Choriocarcinoma. (Rosenblum et.al (2007)). 

1.4. Assessment of Primary Disease: 

Gliomas may present with symptoms of raised intracranial pressure, including headache, nausea 

and vomiting, cognitive or behavioral problems, focal neurological deficits or epilepsy. Spinal 

cord gliomas can cause pain, weakness, or numbness in the extremities, and glioma of the optic 

nerve may present with visual loss. A full general and neurological examination is needed to detect 

extent of impairment. PS should be recorded. Early discussion is needed between neurologist, 

radiologist, neurosurgeon and oncologist to agree an appropriate plan for each individual. Since 

neurosurgical services are often located in specialized centers, videoconferencing can be very 

helpful. Whole brain or spinal CT will reveal the site of the tumour and show areas of low density 

(necrosis) or calcification. However, MRI with gadolinium enhancement is the investigation of 

choice. T1-weighted sequences show low signal density and T2-weighted a high signal density in 

comparison with the rest of the brain. For grade III tumours, a contrast enhanced CT will show a 

low density tumour with ring enhancement. There is heterogeneity within the tumour and 

associated oedema. For grade IV tumours, oedema will be seen outside the ring enhancement. 

Grade cannot be predicted accurately by imaging and 40 per cent of tumours diagnosed as LGG 

will be HGG after biopsy. PET and various functional MRI approaches may give additional 

information. Postoperative MRI is used to assess completeness of resection. If EBRT is given in a 

different hospital, good liaison between surgeon and oncologist following resection is important 

to maintain continuity of care for the patient. (Barrett et.al (2009)). 
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1.5. Imaging of Brain Tumors: 

Brain scan using Magnetic resonance imaging may require to diagnose variety  of the brain disease 

including: MS, Primary tumour assessment and/or metastatic disease, AIDS (toxoplasmosis), 

Infarction (cerebral vascular accident (CVA) versus transient ischemic attack (TIA)), 

Haemorrhage, Hearing loss, Visual disturbances, Infection, Trauma, Unexplained neurological 

symptoms or deficit, Preoperative planning, Radiation treatment planning, Follow-up (surgical or 

treatment). MRI: T1 pre and post gadolinium, T2, and FLAIR (fluid attenuation inversion 

recovery, removes increased CSF signal on T2). Tumor Enhancement with gadolinium correlates 

with breakdown of the blood–brain barrier (BBB). Tumor: high grade–increased signal on T1 

postgadolinium and T2 (T2 also shows edema). Low grade – increased signal on T2/FLAIR. Acute 

blood = increased signal on T1 pregadolinium. Post-op MRI should be performed within 48 h to 

document any residual disease after surgical intervention. JPA: enhancing nodule, highly vascular, 

50% associated with cysts, high uptake on PET. Grade 2 glioma: nonenhancing, hypointense on 

T1, hyperintense on T2/FLAIR, well-circumscribed, solid, round, calcifications associated with 

oligodendroglioma. Grade 3 glioma: enhancing with gadolinium, infiltrative, less well-defined 

borders, mass effect (sulcal effacement, midline shift, ventricular dilatation, and vasogenic 

edema). GBM: rim enhancing, central necrosis, irregular borders, and mass effect. Dural tail sign: 

this could represent tumor or increased vascularity, linear meningeal thickening and enhancement 

associated with some tumors adjacent to meninges, reported in 60% of meningioma, also seen in 

chloroma, lymphoma, and sarcoidosis. MR spectroscopy: NAA = neuronal marker, choline = 

marker of cellularity and cellular integrity, creatine = marker of cellular energy, lactate = marker 

of anaerobic metabolism. Tumor = increased choline, decreased creatine, decreased NAA. 

Necrosis = increased lactate, decreased choline, creatine, and NAA. Dynamic MR Perfusion: 
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astrocytoma = increased relative cerebral blood volume (CBV), generally increasing with grade. 

Oligodendroglioma = even low-grade, may have high CBV due to hypervascularity. Radiation 

necrosis and tumefactive demyelinating lesions = low CBV. The use of gadolinium-based MR 

contrast has been associated with development of nephrogenic systemic fibrosis (NSF) in patients 

with chronic kidney disease maintained on dialysis. For patients with GFR < 30, gadolinium-based 

MR contrast should be avoided. For patients with GFR of 30-100, use of contrast is determined on 

a case by case basis, based on institutional protocols. (Kuo et.al (2007)). 

1.6. Radiotherapy Treatment of Brain Tumors: 

The patient lies supine with the head immobilized in an individual Perspex or thermoplastic shell. 

More rigorous immobilization with a stereotactic frame and mouth bite is possible. It’s more 

important to use the CT scan for planning but MRI is more sensitive than CT scanning for 

demonstrating tumour extent. Tumours are non-enhancing with low signal intensity on T1-

weighted and high signal on T2. Active tumour lies mainly within areas of T2 hyperintensity but 

can extend up to 2 cm from it. Since MRI cannot be used for planning treatment alone, CT planning 

scans using intravenous contrast are taken with 1–3 mm slices from the vault to the base of the 

skull. Pre-and postoperative MR images are then co-registered with the CT planning scans and the 

target volumes delineated. (Barrett et.al (2009)). 

1.6.1. Target Volume Definition: 

GTV: Grade I–II: The initial preoperative GTV seen on T2-weighted MRI is outlined on fused 

MR/CT planning images and includes areas of peritumoural oedema shown as low density on CT 

scan. 
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Fig 1.5. Comparison of (left) CT and (right) fused T2-weighted MR/CT images for low grade 

glioma (G) to illustrate value of fusion. Note fluid in postoperative cavity anteriorly. (Barrett 

et.al (2009)). 

Grade III–IV: The GTV is delineated at the contrast-enhancing edge of the tumour (not oedema) 

on postsurgical gadolinium enhanced T1-weighted MRI scans fused with planning CT 

 

Fig 1.6. Comparison of (left) CT and (right) fused T1-weighted contrast-enhanced MR/CT 

images for high grade glioma (G) to illustrate value of fusion. (Barrett et.al (2009)). 
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For palliative treatment, the GTV includes gross visible tumour as seen on a CT planning scan. 

CTV: Two CTVs are defined according to dose to be delivered and reflect degree of infiltration 

dependent on tumour grade: Grade II: CTV54= GTV+15mm, Grade III: CTV45= GTV+ 25mm, 

CTV54= GTV+15mm. Grade IV: CTV50= GTV+25mm, CTV 60=GTV+15mm. For palliative 

treatments a single phase CTV margin of 15 mm is added. PTV= A 5 mm margin is added to the 

CTV taking into account departmental measurements of set-up accuracy. Volumes must be tailored 

to minimize dose to OAR, such as optic chiasm, and take account of natural barriers to spread such 

as bone and flax. OAR: These will vary according to the site of the primary tumour. They should 

be outlined and a PRV added. A clinical decision about relative risks and benefits is needed if 

PTVs and PRVs volumes overlap. Dose solutions: Conventional; simple coplanar beam 

arrangements or opposing beams defined on the simulator using 6 MV photons may be appropriate 

for palliative treatments, but CT scanning is needed to define the GTV. Conformal: Using CT 

scanning and MLCs, volumes are tailored to avoid as much normal tissue as possible. Three beam 

arrangements are often used which may be noncoplanar and should be wedged as appropriate to 

obtain a satisfactory dose distribution. Complex; Better dose homogeneity across the tumour may 

be achieved using forward planning IMRT with segmentation or ‘field in field’ arrangements. Full 

IMRT may produce optimal plans to meet normal tissue dose constraints if these would limit 

effective doses to tumour when long-term survival is expected (such as treatment of optic glioma 

in children). Dose-fractionation: Grade II/III; CTV 45=45 Gy in 25 daily fractions of 1.8 Gy given 

in 5 weeks, CTV 54= 9 Gy in 5 daily fractions of 1.8 Gy given in 1 week. Grade IV; CTV 50= 50 

Gy in 25 daily fractions given in 5 weeks. CTV 60= 10 Gy in 5 daily fractions given in 1 week. 

Adjustments to this treatment approach may be made in the light of known prognostic factors: 

Grade IV, PS 0–1 age <70, as above (60 Gy) with temozolomide 75mg/m2 daily throughout 
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treatment. Grade IV, PS 0–1 Age <65. 40 Gy in 15 daily fractions gives equivalent control rates 

to higher dose radiotherapy without temozolomide and may be preferred. Grade IV, PS 2 or age 

>70 or any palliative treatment 30 Gy in 6 fractions over 2 weeks. Other glial tumours 

Oligodendrogliomas are treated as described above, according to prognostic factors. Choroid 

plexus carcinomas may be treated palliatively with short-term improved control. With a dose of 

54 Gy, symptoms of gliomatosis cerebri may be improved for about 6 months. Medulloblastoma 

and infratentorial primitive neuroepithelial tumour; Data acquisition: Conventional 

immobilization by formerly the patient was treated prone with an individual facial support and a 

shell down over the shoulders to immobilise the head, neck and shoulders. And for Conformal 

immobilization; improved technology has now made it possible to treat the patient in the supine 

position and this is preferred as it is more comfortable and reproducible and is safer if general 

anaesthesia is required. The patient lies on a carbon-fibre couch top with neck extended with a 

vacuum molded bag to support the head and shoulders. An individually made Perspex or 

thermoplastic shell covers the face and shoulders and is attached onto the couch top. Indexed knee 

rests are used to ensure that the spine is straightened and hips are also fixed in a foam form. The 

sides of these hip rests act as arm rests to lift the arm above the spine. Anterior and lateral tattoos 

are placed at the point of hip fixation. (Barrett et.al (2009)). 

CT scanning: With the patient in the supine treatment position, whole body images are obtained 

with 5 mm slices from the vault of the skull to the bottom of the sacrum, with 3 mm slices through 

the primary tumour. Simulator: The initial volume includes the whole brain and extends to the 

inferior border of the third or fourth cervical vertebra to allow an adequate margin below the 

primary tumour in the posterior fossa, to facilitate the matching of the spinal beam and to avoid 
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the spinal beam exiting through the mouth. For Spine: The spine is treated from the fourth or fifth 

cervical vertebra to the fourth sacral foramina to include the theca and sacral nerve roots. 

Primary tumour: The volume is reduced to cover the primary tumour. Target volume definition 

Using CT scanning with co-registration of MR images, the GTV-T (preoperative extent of primary 

tumour and any residual disease after surgery) is outlined. Two CTVs are defined: CTV35 whole 

brain and spine. CTV54 posterior fossa, or GTV-T +1 cm margin. PTV is determined according 

to departmental protocols, usually: PTV =CTV +3–5 mm. All OAR for both CTV35 and 54 such 

as the ear, optic chiasm, pituitary, thyroid, lungs, kidneys, ovaries or testes are outlined for DVH 

evaluation. Conventional: For conventional treatment, opposing lateral beams with the lower 

border at C3–4 are applied to cover the whole brain, with a collimator rotation of 7–10° to match 

the divergence of the posterior spinal beam. A template is made to facilitate lead shielding of 

extracranial structures (such as eyes, teeth, etc.) or MLC shielding is designed. It is important to 

check that cribriform plate, anterior and temporal lobes are adequately treated. The lower border 

of the cranial field is tattooed. Lateral and postero-anterior simulator films of the vertebral column 

are then taken. The position of the spinal cord is marked on the lateral film and the dose at its 

central axis calculated over its entire length, which extends from the junction with the cranial field 

to the fourth sacral foramina. A wax compensator may be required to improve homogeneity over 

this length. The width of the spinal beam ranges from 4 cm in small children to 6 cm in adults (to 

cover the lateral spinal roots). For the second phase of treatment, the anterior border passes behind 

the posterior clinoid process avoiding the pituitary gland. The inferior border lies at the bottom of 

the first cervical vertebra, and the superior and posterior borders are set to cover the contents of 

the posterior fossa. (Barrett et.al (2009)). 
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Fig 1.7. Showed the tumor bed irradiation for in medulloblastoma radiotherapy treatment and its 

field margin, (Barrett et.al (2009)). 

 

Dose solutions: Complex: Beams are designed to cover first the whole brain and spine (CTV35) 

(Fig. 1.9) and then the posterior fossa (CTV54) defined on axial CT scans and are angled posteriorly 

to avoid the external auditory meatus and cochlea. MLC is used to shield the face. Multiple 

segmented beams are used to ensure a homogeneous dose throughout the length of the spine and 

to prevent overdose at sites of beam junction between skull and spine. Using beam segments, 

forward planned IMRT, asymmetrical jaws and dynamic wedges, several boost fields can be added 

to the posterior spine to top up areas of underdose. Tomotherapy™ may improve sparing of critical 

structures but there is concern about whole body dose, especially in children. Conformal: Whole 

brain irradiation is delivered using opposing lateral beams. By using MLC with 5 mm leaves if 

available, the face is shielded from the lateral beams and the Kidneys from the posterior spinal 

beam. Use of posterior oblique beams, rather than opposing laterals, for treatment to the posterior 

fossa, makes it possible to avoid the ears to reduce the likelihood of deafness. Barrette et.al (2009).  
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Fig 1.8. (upper left) image showed the spinal filed margin in 3DCRT, (upper right) image plain 

radiograph for lateral skull demonstrate the cranial filed borders, and lateral whole body CT 

reconstruction in the (lower) image demonstrate the filed irradiation in case of CSRT 3DCRT with 

border separation. (Barrett et.al (2009)). 
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Compensation may be applied at the skull vault and neck. If the uncompensated distribution of 

dose over the length of the spine exceeds the ICRU recommended limits of _7 per cent/_5 per cent, 

a physical compensator of aluminium, wax or Perspex may be used to even out the overdose 

superiorly and the underdose inferiorly. 

Conventional: Whole brain and posterior fossa; Treatment is given isocentrically using a linear 

accelerator and opposing lateral beams as defined in the simulator. The position of the lower 

cranial border is shifted by 1cm every seven treatments to change the level of the junction with the 

spinal field. Spinal field; Despite the use of an FSD extended up to 140 cm, two adjacent fields are 

commonly required to cover the spinal cord in adults and older children. Both this and the 

craniospinal beam junction are moved caudally every seven treatments. Using a 6 MV linear 

accelerator it is not possible to spare anterior abdominal structures but shielding can be used to 

cover the kidneys.  

Dose-fractionation; the doses in both phases of the cranial treatment are prescribed to the 

midplane of the posterior fossa volume. Doses received at the midplane of the whole brain volume 

are also documented. If there is a variation of more than _5 per cent between the two central doses, 

compensators must be used with the conventional technique. The spinal dose is prescribed to the 

central spinal axis (the middle of the spinal cord). 35 Gy to whole brain and spine in 21 daily 

fractions of 1.66 Gy given in 41⁄2 weeks. 19 Gy boost to posterior fossa in 12 daily fractions of 

1.6 Gy given in 21⁄2 weeks. 

Meningioma: CT scanning; With the patient immobilized, CT scans are obtained from the skull 

vault to the base of brain or the first cervical vertebra depending on site of origin of the tumour, 

with 1–3 mm slice thickness for fusion with MR images. Target volume definition: If surgery is 

not performed, the whole tumour with any spread along the meninges or through bone must be 
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encompassed within the GTV. Gadolinium-enhanced T2-weighted MR images are co-registered 

with CT planning scans and GTV delineated by contouring areas of enhancement. CTV is created 

by adding a 5mm margin. Normal barriers to spread (such as bone) may in fact be invaded and this 

must be taken into account if any editing of volumes is done. After macroscopic surgical removal, 

information from surgeon and pathologist must be taken into account in designing volumes. CTV 

is defined using presurgical MR images fused with CT scans to identify areas at greatest risk of 

recurrence, which are the point of attachment to the dura and any meningeal extensions, and 

intravascular or bony involvement. Invasion into the brain is rare and therefore volume of brain 

tissue included in the CTV should be minimal. A variable margin (from 1 mm to 5 mm) which 

will increase with grade of tumour should be added around these areas to allow for microscopic 

spread. A PTV margin is added according to departmental protocols and measurements and is 

usually 5 mm. OAR are defined according to the primary site and a PRV created and edited as 

appropriate. (Barrett et.al (2009)). 

Dose solutions: Conventional; Conventional planning and treatment with opposing beams only 

has a place in the palliative treatment of recurrent tumours where long-term control is not expected. 

And for Conformal; conformal planning and treatment delivery are essential because of the 

proximity of critical normal organs. An arrangement of three 6 MV beams is commonly used, 

chosen to avoid normal structures as much as possible with MLC shielding and wedges to improve 

dose distribution. Complex; Small meningiomas may be most appropriately treated by proton 

therapy or stereotactic techniques for which referral to a specialized treatment center may be 

necessary. For other tumours, a non-coplanar beam arrangement with appropriate MLC shielding 

and wedges should be used. The dose solution and treatment technique including: 60 Gy in 33 
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daily fractions of 1.8 Gy given in 61⁄2 weeks. Reduced doses of 51 Gy in 30 daily fractions of 1.7 

Gy over 6 weeks may be used for tumours adjacent to optic nerves, chiasm or spinal cord. 

1.7. Problem of the Study: 

The understanding of the cognitive process of human vision is constantly expanding, much has been 

learn from the experiment of the visual perception of the image information (Bruce et. al, (2003))  

although the use of CT and MRI in detection, diagnosis and treatment planning of  brain tumor is 

widely used in modern radiotherapy technology in determination of TV. The main issue is the 

detection of the microscopic tumor cell around its mass; which in general not change the signal 

intensity but it can change the textural pattern; therefore the use of texture analysis technique will 

make GTV and CTV definition very accurate to be used in treatment of brain tumor and also prevent 

recurrence. 

1.8. Objectives of the Study: 

1.8.1.  General Objective:  

The general objective of this study was to characterize the brain tumors in MRI images by using of 

image texture analysis in order to recognize the tumor and its surroundings by its texture feature. 

1.8.2. Specific Objectives:  

 To identify the region of interest (ROI). 

 To classify the extracted feature using k-mean and discriminate analysis.  

 To develop classification Map for brain tumors relative to the rest of brain tissue. 

 To delineate the radiotherapy GTVs based on selected feature for the brain glioma. 

 



21 
 

1.9. Significant of the Study: 

This study highlighted and evaluated the application of texture analysis of brain  tumor using image 

processing programs (IDL) and its techniques, once it need faster and accurate diagnostic modalities 

in this situation in order to have high diagnostic accuracy in assessing brain tumors and therefore 

using this scans to plan patient for radiotherapy procedure,  which need very accurate delineation of 

tumor edges in case of CTV and planning target volume in order to deliver sufficient dose to the both 

volumes and increase therapeutic ratio. 

1.10. Overview of the Study: 

This study was consist of five chapters, with chapter one is an introduction; introduce briefly this 

thesis and contained (epidemiology, specified pathology for brain tumors, techniques used in MRI 

scan and for treatment, problem of study also contain general, specific objectives, significant of study 

and the overview of the study). Chapter two was literature review about textural analysis in case of 

brain CT and MRI using different image processing techniques. Chapter three was described the 

methodology (material, method) was used to achieve the thesis result. Chapter four included 

presentation (result) of final study; chapter five was discussion, conclusion and recommendation for 

future scope in addition to references and appendices. 
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Chapter Two 

Literature Review 

2.1. Texture Analysis: 

Texture analysis refers to the branch of imaging science that is concerned with the description of 

characteristic image properties by textural features. However, there is no universally agreed-upon 

definition of what image texture is and in general different researchers use different definitions 

depending upon the particular area of application (Tuceryan & Jain, 1998). In this chapter texture 

is defined as the spatial variation of pixel intensities, which is a definition that is widely used and 

accepted in the field. The main image processing disciplines in which texture analysis techniques 

are used are classification, segmentation and synthesis. In image classification the goal is to 

classify different images or image regions into distinct groups (Pietikainen, 2000).  

Texture analysis methods are well suited to this because they provide unique information on the 

texture, or spatial variation of pixels, of the region where they are applied. In image segmentation 

problems the aim is to establish boundaries between different image regions (Mirmehdi et al., 

2008).  

By applying texture analysis methods to an image, and determining the precise location where 

texture feature values change significantly, boundaries between regions can be established. 

Synthesizing image texture is important in three-dimensional (3D) computer graphics applications 

where the goal is to generate highly complex and realistic looking surfaces. Fractals have proven 

to be a mathematically elegant means of generating textured surfaces through the iteration of 

concise equations (Pentland, 1984). Conversely the ability to accurately represent a textured 

surface by a concise set of fractal equations has led to significant advances in image compression 

applications using fractal methods (Distani et al., 2006)  
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An example of image classification is presented in Fig. 2.1 in which it is possible to uniquely 

identify the two different textures (left, grass; right, water) by eye. In Fig. 2.2 the image on the left 

is a composite image formed from eight Brodatz textures, all of which are represented in 

approximately equal proportions. The right image is a grey-level texture map showing the ideal 

segmentation of the textures (Weber, 2004). 

 

Fig. 2.1. Digital images of two visibly different textured regions extracted from the Brodatz texture database 

(Brodatz, 1966). Left, image of grass (1.2.01, D9 H.E.). Right, image of water (1.2.08, D38 H.E.) (Weber, 

2004). 

 

Fig. 2.2. Example of image segmentation using texture analysis to determine the boundary between distinct 

regions of texture. Left, mosaic image of eight Brodatz textures represented in approximately equal 

proportions. Right, grey-level texture map showing the ideal segmentation of the textures (Weber, 2004). 
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2.1.1. The Visual Perception of Texture: 

Much of our understanding of machine vision algorithms is a result of attempts to overcome the 

failings of the human visual system to detect certain textured patterns. This understanding has 

proven vital in evaluating and comparing the performance of human vision against machine-based 

texture analysis approaches. Julesz, an experimental psychologist, was an early pioneer in the 

visual perception of texture (Julesz, 1975). He was responsible for establishing authoritative data 

on the performance of the human vision system at discriminating certain classes of texture. He 

verified that discriminating between two image textures depends largely upon the difference in the 

second-order statistics of the textures. That is, for two textures with identical second-order 

statistics a deliberate amount of effort is required to discriminate between them. In contrast little 

effort is required when the second-order statistics of the textures are different. However, this 

observation does not extend to textures that differ in third- or higher-order statistics, which are not 

readily discriminated by eye. This is illustrated in Fig. 2.3 in which each of the main textured 

images (left and right) has a smaller area of similar, but subtly different, texture embedded within 

it. In the image on the left both the main and embedded areas have identical first-order statistics, 

however, their second-order statistics are different making it straightforward to discriminate both 

regions. In the image on the right both textures have identical first- and second-order statistics and 

therefore it is only after careful scrutiny that the different textured regions become visible. (Julesz, 

(1975)). 
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Fig. 2.3. The images on the left and right have a main area of texture embedded within which is a 

smaller area of similar, but subtly different, texture. In the left image both textures have the same 

first-order statistics and different second-order statistics, which makes it straightforward for an 

observer to distinguish between them. In the image on the right both textures have identical first- 

and second-order statistics and hence only after careful scrutiny are the different patterns visible 

(Julesz, 1975). 

Although our understanding of the cognitive process of human vision is constantly expanding 

much has been learned from experiments in the visual perception of digital image information 

(Bruce et al, 2003). Such work is vital, particularly in medical imaging where the misinterpretation 

of image information can have a serious impact on health (ICRU, 1999). This is particularly 

apparent in radiotherapy, the treatment of cancer by ionizing radiation, where the aim is to deliver 

as high a radiation dose as possible to diseased tissue whilst limiting the radiation dose to healthy 

tissue. Delineation of the tumour volume is based primarily on visual assessment of computerized 

tomographic (CT) and magnetic resonance (MR) image data by a radiation oncologist. Accurately 

defining the tumour, and potential areas of tumour involvement, on CT and MR data is a complex 

image interpretation process requiring considerable clinical experience. As a result significant 
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inter- and intra-clinician variability has been reported in the contouring of tumours of the lung, 

prostate, brain and esophagus (Weltens et al., 2001; Steenbakkers et al., 2005).  

This variability has been shown to be significant and heavily correlated with the digital imaging 

modality used and the image settings applied during the assessment. Texture analysis is presented 

here as a useful computational method for discriminating between pathologically different regions 

on medical images because it has been proven to perform better than human eyesight at 

discriminating certain classes of texture. (Julesz, (1975)).  

2.1.2. Statistical Approaches for Texture Analysis 

To examine an image using texture analysis the image is treated as a 3D textured surface. This is 

illustrated in Fig. 2.4 which shows the textured intensity surface representation of a (2D) medical 

image. In first-order statistical texture analysis, information on texture is extracted from the 

histogram of image intensity. This approach measures the frequency of a particular grey-level at a 

random image position and does not take into account correlations, or co-occurrences, between 

pixels. In second-order statistical texture analysis, information on texture is based on the 

probability of finding a pair of grey-levels at random distances and orientations over an entire 

image. Extension to higher-order statistics involves increasing the number of variables studied. 

Many conventional approaches used to study texture have concentrated on using 2D techniques to 

compute features relating to image texture. This traditional approach has been used extensively to 

describe different image textures by unique features and has found application in many disparate 

fields such as: discrimination of terrain from aerial photographs (Conners & Harlow, 1980); in 

vitro classification of tissue from intravascular ultrasound (Nailon, 1997); identification of prion 

protein distribution in cases of Creutzfeld-Jakob disease (CJD) (Nailon & Ironside, 2000); 

classification of pulmonary emphysema from lung on high-resolution CT images (Uppaluri et al., 
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1997; Xu et al., 2004; Xu et al., 2006); and  identifying normal and cancerous pathology 

(Karahaliou et al., 2008, Zhou et al., 2007; Yu et  a., 2009). Higher-order approaches have been 

used to localise thrombotic tissue in the aorta (Podda, 2005) and to determine if functional vascular 

information found in dynamic MR sequences exists on anatomical MR sequences (Winzenrieth, 

2006). Extension of these approaches to 3D is continuing to develop within the machine vision 

community. Several authors have reported the application of 2D texture analysis methods on a 

slice-by-slice basis through volumetric data, however, it has been reported that with this approach 

information may be lost (Kovalev et al., 2001; Kurani et al., 2004). Findings reported by Xu et al., 

on the use of 3D textural features for discriminating between smoking related lung pathology, 

demonstrate the power of this approach for this particular application (Xu et al., 2006). Kovalev 

et al., showed that an extended 3D co-occurrence matrix approach can be used for the classification 

and segmentation of diffuse brain lesions on MR image data (Kovalev et al., 2001).  

Texture analysis has also been used to identify unique pathology on multi-modality images of 

cancer patients. Using the local binary operator to analyze the weak underlying textures found in 

transrectal ultrasound images of the prostate, Kachouie and Fieguth demonstrated that the 

approach was suitable for segmentation of the prostate (Kachouie & Fieguth, 2007). In another 

cancer-related study of 48 normal images and 58 cancer images of the colon, Esgiar et al., 

demonstrated that by adding a fractal feature to traditional statistical features the sensitivity of the 

classification improved (Esgiar et al., 2002). 
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Fig. 2.4. Three-dimensional textured intensity surface representation of a medical image. A: Two-

dimensional MR image of the brain. B: Pixel values of the MR image plotted on the vertical axis to produce 

a 3D textured surface.  

 

With the proliferation of 3D medical image data of near isotropic quality there is an increasing 

demand for artificial intelligence methods capable of deriving quantitative measures relating to 

distinct pathology. The remaining sections of this chapter provide a review of statistical and fractal 

texture analysis approaches in the context of medical imaging and provide comprehensive real-

world examples, in the form of two case studies, on the use of these approaches in clinical practice. 

In case study 1 texture analysis is presented as a means of classifying distinct regions in cancer 

images, which could be developed further towards automatic classification. In case study 2 texture 

analysis is presented as an objective means of identifying the different patterns of prion protein 

found in variant CJD (vCJD) and sporadic CJD. Two contrasting methods are presented in the case 

studies for evaluating the performance of the texture analysis methodologies. (Nailon et.al (2010)) 
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2.1.2.1. First-Order Statistical Texture Analysis: 

First-order texture analysis measures use the image histogram, or pixel occurrence probability, to 

calculate texture. The main advantage of this approach is its simplicity through the use of standard 

descriptors (e.g. mean and variance) to characterize the data (Press, 1998). However, the power of 

the approach for discriminating between unique textures is limited in certain applications because 

the method does not consider the spatial relationship, and correlation, between pixels. For any 

surface, or image, grey-levels are in the range 0≤ i ≤ Ng -1, where Ng is the total number of distinct 

grey-levels. If N (i) is the number of pixels with intensity i and M is the total number of pixels in 

an image, it follows that the histogram, or pixel occurrence probability, is given by, 

 

In general seven features commonly used to describe the properties of the image histogram, and 

therefore image texture, are computed. These are: mean; variance; coarseness; skewness; kurtosis; 

energy; and entropy. 

2.1.2.2. Second-Order Statistical Texture Analysis 

The human visual system cannot discriminate between texture pairs with matching second order 

statistics (Julesz, 1975). The first machine-vision framework for calculating second-order or pixel 

co-occurrence texture information was developed for analyzing aerial photography images 

(Haralick et al., 1973).  

In this technique pixel co-occurrence matrices, which are commonly referred to as grey-tone 

spatial dependence matrices (GTSDM), are computed. The entries in a GTSDM are the probability 

of finding a pixel with grey-level i at a distance d and angle  from a pixel with a grey-level j. This 
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may be written more formally as P (i, j: d,). An essential component of this framework is that 

each pixel has eight nearest-neighbors connected to it, except at the periphery. As a result four 

GTSDMs are required to describe the texture content in the horizontal (Hp = 00), vertical (Pv=900) 

right- (PRD=450) and left diagonal (PLD= 1350) directions. This is illustrated in Fig. 5. 

 

Fig. 2.5. Eight nearest-neighbor pixels used in the GTSDM framework to describe pixel 

connectivity. Cells 1 and 5 show the horizontal (Hp), 4 and 8 the right-diagonal (PRD), 3 and 7 the 

vertical (Pv) and 2 and 6 the left-diagonal (PLD) nearest-neighbors. Haralick et al., 1973. 

An example of the calculation of a horizontal co-occurrence matrix (Hp) on a 4x4 image containing 

four unique grey-levels is shown in Fig. 2.6. A complete representation of image texture is 

contained in the co-occurrence matrices calculated in the four directions. Extracting information 

from these matrices using textural features, which are sensitive to specific elements of texture, 

provides unique information on the structure of the texture being investigated. Haralick et al., 

proposed a set of 14 local features specifically designed for this purpose (Haralick et al., 1973).  

In practice the information provided by certain features may be highly correlated or of limited 

practical use. A feature selection strategy is therefore useful with this approach to take account of 

redundant, or irrelevant, information. It is also interesting to note that prior to any processing the 
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GTSDMs, which are symmetric, can provide some useful information on the characteristics of the 

image being studied. For example, the co-occurrence matrix entries for a coarse texture will be 

heavily focused along the diagonals relative to the distance d between the pixels studied. 

 

Fig. 2.6. Simple example demonstrating the formation of a co-occurrence matrix from an image. 

Left, 4x4 image with four unique grey-levels. Right, the resulting horizontal co-occurrence 

matrix (PH). 

To illustrate the computational requirements of this framework, three of the 14 features proposed 

by Haralick et al., 1973, are presented in equations 2 to 4. 

Angular second moment, 

                                                                                          (2) 

Contrast, 

                                                           (3) 

 

Correlation, 

                                                                   (4) 



32 
 

Where, Nq is the number of distinct grey-levels in the input and µx, µy, σx and σy are the means 

and standard deviations of p’ (i, j). Throughout, p’ (i, j) P’ (i, j)/R, where P (i, j) is the average of 

(PH, PV, PLD and PRD) and R is the maximum number of resolution cells in a GTSDM. (Nailon et.al 

(2010)). 

2.1.2.3. Higher-Order Statistical Texture Analysis: 

The grey-level run length method (GLRLM) is based on the analysis of higher-order statistical 

information (Galloway, 1975). In this approach GLRLMs contain information on the run of a 

particular grey-level, or grey-level range, in a particular direction. The number of pixels contained 

within the run is the run-length. A coarse texture will therefore be dominated by relatively long 

runs whereas a fine texture will be populated by much shorter runs. The number of runs r´ with 

gray-level i, or lying within a grey-level range i, of run length j in a direction α is denoted by {R 

(α) = r´ (i, j| α)}. This is analogous to the GTSDM technique (Haralick et al., 1973) as four 

GTRLMs are commonly used to describe texture runs in the directions (00, 450,900 and 1350) on 

linearly adjacent pixels. An example of the calculation of a horizontal GLRLM is shown in Fig. 

2.7. 

 

Fig. 2.7. Simple example demonstrating the formation of a GLRLM. Left, 4 x4 image with four 

Unique grey-levels. Right, the resulting GLRLM in the direction 00. 
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A set of seven numerical texture measures are computed from the GTRLMs. Three of these 

measures are presented here to illustrate the computation of feature information using this 

framework. 

Short Run Emphasis, 

 

Long Run Emphasis, 

 

Grey-Level Distribution, 

 
Where g N is the maximum number of grey-levels, r N is the number of different run lengths in 

the matrix and, T serves as a normalizing factor in each of the run length equations.

 

2.1.2.4. Fourier Power Spectrum: 

Two-dimensional transforms have been used extensively in image processing to tackle problems 

such as image description and enhancement (Pratt, 1978). Of these, the Fourier transform is one 

of the most widely used (Gonzalez and Woods, 2001). Fourier analysis can be used to study the 

properties of textured scenes, for example the power spectrum reveals information on the 

coarseness/fineness (periodicity) and directionality of a texture. Texture directionality is preserved 
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in the power spectrum because it allows directional and non-directional components of the texture 

to be distinguished (Bajscy, 1973).  

These observations have given rise to two powerful approaches for extracting texture primitives 

from the Fourier power spectrum, namely, ring and wedge filters. Working from the origin of the 

power spectrum the coarseness/fineness is measured between rings of inner radius r1and r2. The 

size of the rings can be varied according to the application. The directionality of the texture is 

found by measuring the average power over wedge-shaped regions centered at the origin of the 

power spectrum. The size of the wedge ɸw=ɸ1-ɸ2 depends upon the application. Fig. 2.8. illustrates 

the extraction of ring and wedge filters from the Fourier power spectrum of a 32x32 test image 

consisting of black pixels everywhere except for a 3x3 region of white pixels centered at the origin. 

 

Fig. 2.8. Fourier power spectrum showing the extraction of ring and wedge filters. The spectrum 

was generated on a 32x32 test image consisting of black pixels everywhere except for a 3x3 region 

of white pixels cantered at the origin. 

In image analysis the Fourier transform F (u, v) is considered in its discrete form and the power 

spectrum P (u, v) is calculated from, 
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The average power contained in a ring centered at the origin with inner and outer radii R1 and 

R2 respectively, is given by the summation of the contributions along the direction ɸ, 

 

The contribution from a wedge of size ɸw is found from summation of the radial components 

within the wedge boundaries. That is, 

 

Where n is the window size. 

2.1.2.5. Fractal Texture Analysis: 

Until the introduction of fractals it was difficult to accurately describe, mathematically, complex 

real-world shapes such as mountains, coastlines, trees and clouds (Mandelbrot, 1977). Fractals 

provide a succinct and accurate method for describing natural objects that would previously have 

been described by spheres, cylinders and cubes. However, these descriptors are smooth, which 

makes modelling irregular natural scenes, or surfaces, very difficult. The popularity of fractals has 

grown considerably over the past three decades since the term was first coined by Mandelbrot to 

describe structures too complex for Euclidean geometry to describe by a single measure 

(Mandelbrot, 1977). The fractal dimension describes the degree of irregularity or texture of a 

surface. With this approach rougher, or more irregular, structures have a greater fractal dimension 

(Feder, 1988; Peitgen & Saupe, 1988; Peitgen et al., 1992). The property of self-similarity is one 

of the central concepts of fractal geometry (Turcotte, 1997).  
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An object is self-similar if it can be decomposed into smaller copies of itself. This fundamental 

property leads to the classification of fractals into two distinct groups, random and deterministic. 

A good example of self-similarity is exhibited by an aerial image of an irregular coastline structure 

that has the same appearance within a range of magnification factors. At each magnification the 

coastline will not look exactly the same but only similar. This particular feature is common to 

many classes of real-life random fractals, which are not exactly self-similar. These are referred to 

as being statistically self-similar. In contrast, objects that do not change their appearance when 

viewed under arbitrary magnification are termed strictly self-similar. These are termed 

deterministic fractals due to their consistency over a range of magnification scales. The fractal 

dimension describes the disorder of an object numerically, which in a sense is similar to the 

description of objects using standard Euclidean geometry. That is, the higher the dimension the 

more complicated the object. However, fractal descriptors allow the description of objects by non-

integer dimensions. A variety of techniques are used to estimate the fractal dimension of objects 

which, despite providing the same measure, can produce different fractal dimension values for 

analysis of the same object. This is due to the unique mechanism used by each technique to find 

the fractal dimension (Peitgen et al., 1992; Turcotte, 1997).  

Two approaches commonly used to calculate the fractal dimension of an image are discussed. The 

first is the box-counting approach (Peitgen et al., 1992). The second, which treats the input as a 

textured surface by plotting the intensity at each x and y position in the z plane, calculates the 

fractal dimension using the Korcak method (Russ, 1994). 

2.1.2.6. Fractal Dimension from Box-Counting: 

The box-counting dimension is closely related to the concept of self-similarity where a structure 

is sub-divided into smaller elements, each a smaller replica of the original structure. This sub-
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division characterizes the structure by a self-similarity, or fractal, dimension and is a useful tool 

for characterizing apparently random structures. This approach has been adopted in a variety of 

applications, for example in the characterization of high resolution satellite images (Yu et al., 

2007) and in the detection of cracks in CT images of wood (Li & Qi, 2007).  

The box-counting dimension b D of any bounded subset of A in R n , which is a set in Euclidean 

space, may be formally defined as follows (Stoyan & Stoyan, 1994; Peitgen & Saupe, 1988). Let 

N (A) r be the smallest number of sets of r that cover A. 

 

Then, provided that the limit exists. Subdividing Rn into a lattice of grid size rxr where r is 

continually reduced, it follows that N´R (A) is the number of grid elements that intersect A and Db 

(A) is, 

Provided that the limit exists. This implies that the box counting dimension Db (A) and 

N´R (A) are related by the following power law relation, 

 

Proof of this relation can be obtained by taking logs of both sides of equation (14) and 

rearranging to form equation (15), 

 

From equation (15) it is possible to make an analogy to the equation of a straight line, 
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Y= mx + c, where m is the slope of the line and c is the y intersect. The box-counting dimension is 

implemented by placing a bounded set A, in the form of a medical image, on to a grid formed from 

boxes of size rxr. Grid boxes containing some of the structure, which in the case of a medical 

image is represented by the grey-levels within a certain range, are next counted. The total number 

of boxes in the grid that contain some of the structure is N´R (A). The algorithm continues by 

altering r to progressively smaller sizes and counting N´R (A). The slope of the line fitted through 

the plot of log (1/r) against log (N´R (A)) is the fractal, or box-counting, dimension of the medical 

image region under investigation. 

2.1.2.7. Korcak Fractal Analysis: 

This approach uses the idea of a cross-section, or zeroset, through the surface or image to determine 

the fractal dimension (Russ, 1994). It is implemented by passing a horizontal plane through a 3 D 

surface in a vertical direction to produce an intersection profile. The points of the surface that lie 

above the horizontal plane are commonly referred to as islands and the remaining areas of the 

plane are lakes. This is equivalent to applying a threshold and measuring the area of the islands 

and lakes that lie above or below the surface. This is illustrated in Fig. 2.9 which shows the result 

of repeated thresholding on an image of the cerebellum for a case of vCJD. A log-log plot of the 

number of islands, or lakes, whose area exceeds A is fitted to a straight line (see Fig. 2.10). The 

slope of this line is used to calculate the fractal dimension. This approach is termed the Korcak 

method (Russ, 1994). 
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Figure 2.9. A. microscopic image showing the widespread deposition of prion protein in the 

cerebellum of the v CJD case. b. c. the result of gray-level thresholding. D. the image surface cut 

by plain or zeroset. Repeating the thresholding at many level and constructing the korcak plot of 

the cumulative number of island provide a measure of the fractural dimension.  

 

Fig. 2.10. Plot of fractal island area against cumulative number of islands acquired within the area. 

The slope of the straight line plotted through the data is used to determine the fractal dimension. 
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2.1.3. Feature Selection, Reduction and Classification: 

The texture analysis approaches presented in the preceding sections calculate features that describe 

properties of the image, or region, being studied. This information is next used in a pattern 

recognition system to classify the objects, or texture patterns of interest, into an appropriate 

number of categories or classes (Therrien, 1989). However, some of the features calculated may 

be highly correlated and some may contain irrelevant information. Feature selection is used to 

select a subset of features p s from a given set of p features such that Sp ≤ p and there is no 

significant degradation in the performance of the classification system (Therrien, 1989; Zongker 

& Jain, 1996; Stearns, 1976). The reduction of the feature set reduces the dimensionality of the 

classification problem and in some cases can increase the performance of the classification 

accuracy due to finite sample size effects (Jain & Chandrasekaran, 1982). Two powerful methods 

for reducing the number of features are presented. These are the sequential forward search (SFS) 

algorithm and its backward counterpart the sequential backward search (SBS) algorithm (Devijver 

& Kittler, 1982). The pattern recognition system must also be capable of partitioning, or clustering, 

the reduced feature set into classes of similar observations. The K-means algorithm belongs to the 

collection of multivariate methods used for classifying, or clustering, data and is presented because 

of its general applicability in classification problems (Therrien, 1989). 

2.1.3.1. Feature Selection Using the Sequential Forward Search Algorithm: 

The SFS algorithm is a bottom-up strategy for removing redundant or irrelevant features from the 

feature matrix (Devijver & Kittler, 1982). At each successive iteration the feature that produces 

the largest value of the selection criterion function J is added to the current feature set. Given a set 

of candidate features Y€R, a subset X€R is selected without significant degradation to the 

classification system (Jain & Zongker, 1997). The best subset X, 
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Of d features where (d≤D) is selected from the set, 

 

By optimizing the criterion function J, chosen here to be the estimated minimum probability of 

error. For the set of measurements taken from Y, ideally the probability of correct classification 

 ,with respect to any other combination, is given by ,(ל)

 

 

One of the disadvantages of the SFS approach is that it may suffer from nesting. That is, because 

features selected and included in the feature subset cannot be removed, already selected features 

determine the course of the remaining selection process. This has noticeable hazards since after 

further iterations a feature may become superfluous. Another limitation of the SFS approach is 

that in the case of two feature variables, which alone provide little discrimination but together are 

very effective, the SFS approach may never detect this combination. To overcome this problem it 

is useful to start with a full set of available features and eliminate them one at a time. This is the 

method adopted by the SBS approach. (Nailon et.al (2010)). 
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2.1.3.2. Feature Selection Using the Sequential Backward Search Algorithm: 

The SBS is a top down approach, which starts with the complete feature set and removes one 

feature at each successive iteration (Devijver & Kittler, 1982). The feature that is chosen to be 

removed is the feature that results in the smallest reduction in the value of the selection criterion 

function when it is removed. In general, the SBS algorithm requires more computation than the 

SFS algorithm because initially it considers the number of features in the complete set as forming 

the subset. Although the SBS overcomes some of the difficulties of the SFS approach the resulting 

feature subset is not guaranteed to be optimal. Furthermore, like its counterpart the SBS algorithm 

suffers from nesting because once a feature is selected it cannot be disregarded. Implementation 

of the SBS approach is analogous to the SFS approach detailed in SFS section. The SBS algorithm 

is computationally more expensive than the SFS algorithm, however, their performance is 

comparable. Despite the shortcomings of the SFS and SBS techniques they are powerful 

techniques for reducing the feature set of real-world pattern recognition problems (Nouza, 1995). 

2.1.4. Classification Using the K-means Algorithm: 

The general clustering problem is one of identifying clusters, or classes, of similar points. For the 

specific problem presented in this chapter this would involve clustering the features calculated on 

a specific image region into a unique cluster. The number of classes may be known or unknown 

depending on the particular problem. The K-means algorithm belongs to the collection of 

multivariate methods used for clustering data (Therrien, 1989; Hartigan, 1975; Duda et al., 2001). 

The algorithm starts with a partition of the observations into clusters. At each step the algorithm 

moves a case from one cluster to another if the move will increase the overall similarity within 

clusters. The algorithm ceases when the similarity within clusters can no longer be increased. 

Assuming that the number of clusters c N is known in advance the K-means technique may be 
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defined by the following three stages. Assuming that the number of clusters c N is known in 

advance the K-means technique may be defined by the following three stages. 

Stage 1 – Initialization: For the set of observations {Y= y1, y2, …….yN} to be classified into the 

set of classes ῼ = {Ԝ1, Ԝ2,…….Ԝn}, the algorithm starts with an arbitrary partition of the 

observations into Nc clusters and computes the mean vector of each cluster (µ1, µ2, µNc) using 

the Euclidean distance ||yi- µk ||
2 where µk is the sample mean of the kth cluster. 

Stage 2 - Nearest Mean: Assign each observation in Y to the cluster with the closest mean. 

Stage 3 - Update and Repeat: Update the mean vector for each cluster and repeat Stage 2 until the 

result produces no significant change in the cluster means. 

2.1.5. Texture Analysis of Radiotherapy Planning Target Volumes: 

Case study based information’s: In the first, a texture analysis approach was used to classify 

regions of distinct pathology on CT images acquired on eight bladder cancer patients. In the 

second, texture analysis was used to study the distribution of abnormal prion protein found in the 

molecular layer of the cerebellum of cases of vCJD and sporadic CJD. The goal of radiotherapy, 

the treatment of cancer with ionizing radiation, is to deliver as high a dose of radiation as possible 

to diseased tissue whilst sparing healthy tissue. In curative (radical) radiotherapy planning, 

delineation of the gross tumour volume (GTV) is primarily based on visual assessment of CT 

images by a radiation oncologist (Meyer, 2007). The accuracy therefore of the GTV is dependent 

upon the ability to visualise the tumour and as a result significant inter- and intra-clinician 

variability has been reported in the contouring of tumours of the prostate, lung, brain and 

oesophagus (Weltons et al., 2001; Steenbakkers et al., 2005). 

The aim of the work presented in this case study was to develop a texture analysis methodology 

capable of distinguishing between the distinct pathology of the GTV and other clinically relevant 
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regions on CT image data. For eight bladder patients (six male and two female), CT images were 

acquired at the radiotherapy planning stage and thereafter at regular intervals during treatment. All 

CT scans were acquired on a General Electric single slice CT scanner (IGE HiSpeed Fx/I, GE 

Medical Systems, Milwaukee, WI, USA). Seven patients were scanned with a 3 mm slice thickness 

and one patient with a 5 mm slice thickness. The repeat CT scans were registered against the 

corresponding planning reference CT scan to allow comparison of the same region on each image. 

Image features based on: the first-order histogram (N=7); second-order GTSDM (N=14); higher-

order GLRLM (N=5); and a bespoke box-counting fractal approach (N=1) were calculated on 

preidentified regions of the CT images of each patient (Nailon et al., 2008). Two classification 

environments were used to assess the performance of the approach in classifying the bladder, 

rectum and a region of multiple pathology on the axial, coronal and sagittal CT image planes. 

These were, in the first using all of the available features (N=27) and in the second using the best 

three features identified by the SFS approach. The classification results achieved are presented in 

Fig. 11. No significant discrimination was observed between the bladder, rectum and the region of 

multiple pathology on the axial, coronal and sagittal CT data using all of the available features 

(N=27). On the contrary, using the three best features identified by the SFS feature reduction 

approach, significant discrimination between the three pathological groups was possible. These 

results demonstrate the significant improvement in classification that can be achieved by removing 

features with little discriminatory power. Moreover the results demonstrate the effectiveness of 

texture analysis for classifying regions of interest, which may be difficult for the human observer 

to interpret. The features that were found to work best were all from the GTSDM approach. The 

feature produced by the bespoke box-counting fractal approach was not found to have significant 

discriminatory power. However, more research is required into the use of fractal methods in this 
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application area, particularly because assigning a single dimension to a whole region may not be 

appropriate (Mandelbrot, 1977).  

Furthermore, the fractal dimension calculation may have been influenced by the different 

distribution of grey-levels in the images due to variations in the amount of urine in the bladder and 

air in the rectum. Nailon et.al (2010) 

 

 

Fig. 2.11. Classification of the bladder, rectum and a region of multiple pathology identified as 

other on axial CT images through the pelvis using a texture analysis approach. Left (top: axial, 
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middle: coronal, bottom: sagittal) plots showing the result of using all available features to classify 

the bladder, rectum and other. Right (top: axial, middle: coronal, bottom: sagittal) plots showing 

classification of the bladder, rectum and other using the best three features identified by the SFS 

approach. Sammon mapping was used to generate 2D representations of the multi-dimensional 

feature space and aid visualization (Sammon, 1969). 

The approach was also found to be insensitive to CT resolution and slice thickness for the data set 

studied. It was also noticed that discrimination of the bladder, rectum and other region in the 

coronal and sagittal image planes was comparable to the discrimination obtained in the axial plane. 

This is encouraging given that the coronal and sagittal data sets were produced from the axial data 

and suffer a loss of resolution because of finite CT slice thickness in the axial data acquisition 

procedure.  
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2.2. Previous Study 

Abdallah and Hassan, (2014) aims to study the segmentation of brain in MRI images Using 

Watershed-based Technique and they stated that this was experimental study conducted to study 

segmentation of brain in MRI images using edge detection and morphology filters. For brain MRI 

images each film scanned using digitizer scanner then treated by using image processing program 

(MatLab), where the segmentation was studied. The scanned image was saved in a TIFF file format 

to preserve the quality of the image. Brain tissue can be easily detected in MRI image if the object 

has sufficient contrast from the background. We use edge detection and basic morphology tools to 

detect a brain. The segmentation of MRI images steps using detection and morphology filters were 

image reading, detection Entire brain, Dilation of the image, filling interior gaps inside the image, 

removal connected objects on borders and smoothen the object (brain). The results of this study 

were that it showed an alternate method for displaying the segmented object would be to place an 

outline around the segmented brain. Those filters approaches can help in removal of unwanted 

background information and increase diagnostic information of Brain MRI. 

Qurat-ul-ain et.al (1996) he stated that the brain tumor diagnosis is a very crucial task. This system 

provides an efficient and fast way for diagnosis of the brain tumor. Proposed system consists of 

multiple phases. First phase consists of texture feature extraction from brain MR images. Second 

phase classify brain images on the bases of these texture feature using ensemble base classifier. 

After classification tumor region is extracted from those images which are classified as malignant 

using two stage segmentation process. Segmentation consists of skull removal and tumor 

extraction phases. Quantitative results show that our proposed system performed very efficiently 

and accurately. We achieved accuracy of classification beyond 99%. Segmentation results also 

show that brain tumor region is extracted quite accurately. 
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Al-Kadi (2009) stated that medical imaging represents the utilization of technology in biology for 

the purpose of noninvasively revealing the internal structure of the organs of the human body. It 

is a way to improve the quality of the patient’s life through a more precise and rapid diagnosis, 

and with limited side-effects, leading to an effective overall treatment procedure. The main 

objective of this thesis is to propose novel tumour discrimination techniques that cover both micro 

and macro-scale textures encountered in computed tomography (CT) and digital microscopy (DM) 

modalities, respectively. Image texture can provide significant information on the (ab) normality 

of tissue, and this thesis expands this idea to tumour texture grading and classification. The fractal 

dimension (FD) as a texture measure was applied to contrast enhanced CT lung tumour images in 

an aim to improve tumour grading accuracy from conventional CT modality, and quantitative 

performance analysis showed an accuracy of 83.30% in distinguishing between advanced 

(aggressive) and early stage (non-aggressive) malignant tumours. A different approach was 

adopted for subtype discrimination of brain tumour DM images via a set of statistical and model-

based texture analysis algorithms. The combined Gaussian Markov random field and run-length 

matrix texture measures outperformed all other combinations, achieving an overall class 

assignment classification accuracy of 92.50%. Also two new histopathological multiresolution 

approaches based on applying the FD as the best bases selection for discrete wavelet packet 

transform, and when fused with the Gabor filters’ energy output improved the accuracy to 91.25% 

and 95.00%, respectively. While noise is quite common in all medical imaging modalities, the 

impact of noise on the applied texture measures was assessed as well. The developed lung and 

brain texture analysis techniques can improve the physician’s ability to detect and analyse 

pathologies leading for a more reliable diagnosis and treatment of disease. 
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Multi-feature class assignment for histopathological meningioma tumour images, and he stated 

that providing an improved technique which can assist pathologists in correctly classifying 

meningioma tumours with significant accuracy is our main objective. The proposed technique, 

which is based on optimum texture measure combination, inspects the separability of the RGB 

colour channels and selects the channel which best segments the cell nuclei of the histopathological 

images. The morphological gradient is applied to extract the region of interest for each subtype 

and for elimination of possible noise (e.g. cracks) which might occur during biopsy preparation. 

Meningioma texture features are extracted by four different texture measures (two model-based 

and two statistical-based) and then corresponding features are fused together in different 

combinations after excluding highly correlated features, and a Bayesian classifier was used for 

meningioma subtype discrimination. The combined Gaussian Markov random field and run-length 

matrix texture measures outperformed all other combinations in terms of quantitatively 

characterising the meningioma tissue, achieved an overall classification accuracy of 92.50%, 

improving from 83.75% which is the best accuracy achieved if the texture measures are used 

individually. Al-Kadi (2009) 

Al-Kadi (2009) also he was applying of multiresolution via wavelet transform and Gabor filters he 

was stating that with the heterogeneous or non-stationary nature of medical texture, using a single 

resolution approach for optimum classification might not suffice. In contrast a multiresolution 

wavelet packet analysis approach can decompose the input signal into a set of frequency subbands 

giving the opportunity to characterize the texture structure at the appropriate frequency channel. 

We propose an adaptive best bases algorithm for optimal bases selection for meningioma 

histopathological images, applying the fractal dimension (FD) as the bases selection criterion in a 

tree-structured manner. Thereby, the most significant subband that better identifies texture 
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discontinuities will only be chosen for further decomposition, and its fractal signature would 

represent the extracted feature vector for classification. The best basis selection using the FD 

outperformed the energy based selection approach, achieving an overall classification accuracy of 

91.25% as compared to 83.44% and 73.75% for the co-occurrence matrix and energy texture 

signatures; respectively. Another multiresolution approach was used as well, applying this time 

Gabor filters for feature extraction. The Gabor filter energy output of each magnitude response 

was combined with four other mono-resolution texture signatures ─ half model based and the other 

half statistical based ─ with and without cell nuclei segmentation. The highest classification 

accuracy of 95.00% was reached when combining the Gabor filters’ energy and the meningioma 

subimage fractal signature as a feature vector without performing any prior segmentation. This 

shows that the use of the FD with wavelet packet transform and Gabor filters assists in achieving 

an optimum classification. 

Georgiadis et.al (2006) stated that three dimensional texture analysis of volumetric brain MR 

images have been identified as an important indicator for discriminating among different brain 

pathologies. The aim of the present study was to evaluate the efficiency of three dimensional 

textural features using a pattern recognition system in the task of discriminating primary from 

metastatic brain tissues on T1 post-contrast MRI series. Employing a Siemens Sonata 1.5 Tesla 

MRI Unit (Siemens, Erlangen, Germany), 67 MR series were obtained from the Hellenic Air force 

Hospital with verified untreated intracranial tumors. The dataset comprised 21 cases with 

metastasis, 19 cases with meningioma, and 27 cases with glioma. From each case, only T1-

weighted post-contrast (Gadolinium) series, with Spin Echo (SE) sequence, Echo Time (TE = 

15ms), Repetition Time (TR = 500ms) and Slice Thickness (ST = 1.5mm), were used for further 

analysis. The reason for employing T1 post-contrast series is the increased diagnostic information 
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that they encapsulate in comparison to pre-contrast T1 or T2 weighted series. More specifically, 

contrast administration assists in the separation of tumor from oedema improving visualization, 

localization and tumor margin delineation. Contrast enhancement is intense because of the hi-

degree of Blood Brain Barrier (BBB) disruption. The pattern recognition system was designed 

employing a probabilistic neural network classifier, specially modified in order to integrate the 

non-linear least squares feature transformation logic in its discriminant function. The latter, in 

conjunction with using three dimensional textural features, enabled boosting up the performance 

of the system in discriminating primary from metastatic with accuracy of 95.52%. The proposed 

system might be used as an assisting tool for brain tumor characterization on volumetric MRI 

series. 

Mustaqeem et.al (2012) stated that an Efficient Brain Tumor Detection Algorithm Using 

Watershed & Thresholding Based Segmentation, and he was aims to During past few years, brain 

tumor segmentation in magnetic resonance imaging (MRI) has become an emergent research area 

in the field of medical imaging system. Brain tumor detection helps in finding the exact size and 

location of tumor. An efficient algorithm is proposed in this paper for tumor detection based on 

segmentation and morphological operators. Firstly quality of scanned image is enhanced and then 

morphological operators are applied to detect the tumor in the scanned image. The method used in 

this thesis was; Images are obtained using MRI scan and these scanned images are displayed in a 

two dimensional matrices having pixels as its elements. These matrices are dependent on matrix 

size and its field of view. Images are stored in MATLAB and displayed as a gray scale image of 

size 256*256. The entries of a gray scale image are ranging from 0 to 255, where 0 shows total 

black color and 255 shows pure white color. Entries between this ranges vary in intensity from 

black to white. The result of threshold segmentation applied on the images. This is basically the 
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area with the intensity values higher than the defined threshold. High intensity areas mostly 

comprises of tumors. So through threshold segmentation we can specify the location of tumor. 

Our future work is to extend our proposed method for color based segmentation of 3D images. For 

this purpose we need a classification method to organize three dimensional objects into separate 

feature classes, whose characteristics can help in diagnosis of brain diseases. 

Lalitha et.al (2013) study A Survey on Image Segmentation through Clustering Algorithm, the 

goal of this survey on different clustering techniques is to achieve image segmentation. Clustering 

can be termed here as a grouping of similar images. The purpose of clustering is to get meaningful 

result, effective storage and fast retrieval in various areas. The goal is to provide a self-contained 

review of the concepts and the mathematics underlying clustering techniques. Then the clustering 

methods are presented, divided into: hierarchical, partitioning, density-based, model-based, grid-

based, and soft-computing methods. The goal of this survey is to provide a comprehensive review 

of different clustering and image segmentation techniques. Due to the importance of image 

segmentation and clustering a number of algorithms have been proposed but based on the image 

that is inputted the algorithm should be chosen to get the best results. 

Karuna and Joshi (2013), Automatic detection and severity analysis of brain tumors using GUI 

in MATLAB and he was stated that Medical image processing is the most challenging and 

emerging field now a day’s processing of MRI images is one of the parts of this field. The 

quantitative analysis of MRI brain tumor allows obtaining useful key indicators of disease 

progression. This is a computer aided diagnosis systems for detecting malignant texture in 

biological study. This paper presents an approach in computer-aided diagnosis for early prediction 

of brain cancer using Texture features and neuro classification logic. This paper describes the 

proposed strategy for detection; extraction and classification of brain tumour from MRI scan 
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images of brain; which incorporates segmentation and morphological functions which are the basic 

functions of image processing. Here we detect the tumour, segment the tumour and we calculate 

the area of the tumour. Severity of the disease can be known, through classes of brain tumour 

which is done through neuro fuzzy classifier and creating a user friendly environment using GUI 

in MATLAB. In this research cases of 10 patients is taken and severity of disease is shown and 

different features of images are calculated. 

Bahl et.al (2014) He aims to evaluation of Yarn Quality in Fabric using Image Processing 

Techniques and he stated that the yarn quality estimate is a tough task in textile industries. In most 

of the cases, the task is accomplished by manual system. However, it is the classical problem in 

yarn based research where exact yarn quality production is ascertained based on mathematical yarn 

qualities like yarn diameter and length etc. In the existing work, it is observed that the yarn quality 

has been deduced based on yarn length and diameter only. But merely these parameters do not 

provide much blending permutations and combinations in order to produce different quality variant 

yarn production. In the presented work, it is proposed to derive more yarn quality parameters like, 

uniformity of yarn along the axis, thickness profile of yarn along the horizontal axis along with 

length and diameter. Image processing tools are applied here in order to get the yarn image and 

extract the yarn features. Further, for yarn quality estimation, a microscopic analysis requires a lot 

of manual efforts and time and that on compromising on uniformity of quality judgment. The 

manual analysis does not provide the ease of on-line testing of yarn quality as it is normally off-

line and not continuous. Therefore, in order to remove the difficulties in the existing system, a 

noval on-line testing of yarn quality using statistical analysis is proposed. In the presented work, 

it is proposed to derive yarn quality parameters like, uniformity of yarn along the axis, thickness 

profile of yarn along the horizontal axis along with length and diameter. A mathematical model is 
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proposed to be developed that could predict the fabric quality based on yarn quality determination. 

A global feature vector set of yarn quality is proposed to be compiled that can be standardized for 

yarn quality determination. By the method, a quantitative evaluation index is proposed for the yarn 

quality. The proposed work will provide the basis of further studies on quality of yarn evenness 

and evaluation of yarn appearance. 

Jose (2014) aims to study Texture Feature Extraction for Mammogram Images Using 

Biorthogonal Wavelet Filter via Lifting Scheme Feature extraction is an important part in Content-

based image retrieval (CBIR).It is an active research area over the past few decades. In this paper 

texture feature extraction of mammogram images are done. Biorthogonal wavelet filter via lifting 

scheme is used for the extraction of texture features. Maximum likelihood estimator (MLE) is used 

for texture feature estimation. Here Digital Database for Screening Mammography (DDSM) is 

used as the database. Here biorthogonal wavelets are used in the lifting scheme to get texture 

feature vectors of mammogram images. By using lifting scheme in all biorthogonal wavelets, 

predict and update filter coefficients are also got. These coefficients will be adapted later and thus 

we can find the optimal wavelet filter bank for increasing the retrieval performance of the retrieval 

system. By using lifting scheme methodology decomposition of images are done and thus got 

approximation and detail coefficients of image. 

Deswal and Sharma (2014) was aimed to identify the perceived qualities of texture and color in 

an building mathematical models for object, an optimized and efficient algorithm ‘A Fast HSV 

Image Color and Texture Detection Algorithm’ based on color intensity using Artificial 

Intelligence is presented in this paper. We used color intensity method over conventional method. 

The ‘Fast HSV Image Color and Texture Detection Algorithm’ focuses to integrate the detection 

of image color with detection of texture using AI and Color detection has been among the widest 
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research area in the field of computer science. In computer vision, there are several pre-existing 

color models for describing the specification of the colors such as RGB, CMY and HSV. This 

paper presents detection of color using HSV-based (hue, saturation, value) color model since it 

greatly decreases the size of color and grey-scale information of an image .This paper can be 

treated as a reference for getting in depth knowledge of the Color detection and texture detection. 

Wakchaure et.al (2014) aims to segment brain tumors on T2-Weighted MRI Images Using Multi-

parameter Feature Blocks, on the brain components (edema and necrosis) and internal structures 

of the brain in 3D MR images. For tumor segmentation we propose a framework that is a 

combination of region-based and boundary-based paradigms. In this framework, segment the brain 

using a method adapted for pathological cases and extract some global information on the tumor 

by symmetry based histogram analysis .The objective of this paper is to present an analytical 

method to detect lesions or tumors in digitized medical images for 3D visualization. This research 

opens a new window in the field of image processing by 3D Volume Representation of tumor 

through the use of Magnetic Resonant Imaging and an integrated software tool called 3D Slicer. 

The authors developed a tumor detection method using three parameters; edge (E), gray (G), and 

contrast (H) values. The method proposed here studied the EGH parameters in a supervised block 

of input images. These feature blocks were compared with standardized parameters (derived from 

normal template block) to detect abnormal occurrences, e.g. image block which contain lesions or 

tumor cells. The proposed method shows more precision among the others. Processing time is less. 

This will help the physicians in analyzing the brain tumors accurately and efficiently. 

Roy et.al (2012) studies the Detection and Quantification of Brain Tumor from MRI of Brain and 

its Symmetric Analysis and he stated that in this work a fully automatic algorithm to detect brain 

tumors by using symmetry analysis is proposed. Here we detect the tumor, segment the tumor and 
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calculate the area of the tumor. The quantitative analysis of MRI brain tumor allows obtaining 

useful key indicators of disease progression. The complex problem of segmenting tumor in MRI 

can be successfully addressed by considering modular and multi-step approaches mimicking the 

human visual inspection process. The tumor detection is often an essential preliminary phase to 

solve the segmentation problem successfully. The experiments showed good results also in 

complex situations. Segmentation of images embraces a significant position in the region of image 

processing. It becomes more and more significant while normally dealing with medical images; 

magnetic resonance (MR) imaging suggest more perfect information for medical examination than 

that of other medical images such as ultrasonic , CT images and X-ray. Tumor segmentation and 

area calculation from MRI data is an essential but fatigue, boring and time unbearable task when 

it completed manually by medical professional when evaluate with present day’s high speed 

computing machines which facilitate us to visual study the area and position of unnecessary 

tissues. 

Deepashree et.al (2014) Increasing use of World Wide Web and communication channels like 

mobile networking has increased the number of images used throughout the world. As processors 

become increasingly powerful, and memories become increasingly cheaper, the deployment of 

large image databases for a variety of applications have now become realizable. Databases of art 

works, satellite and medical imagery have been attracting more and more users in various 

professional fields; for example, geography, medicine, architecture, advertising, design, fashion, 

and publishing. Effectively and efficiently accessing desired images from large and varied image 

databases is now a necessity. Image mining is an extended branch of data mining that is concerned 

with the process of knowledge discovery concerning digital images. Image retrieval is the basic 

requirement task in the present scenario. Color Based Image Retrieval (CBIR) is the popular image 
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retrieval system by which the target image to be retrieved based on the useful features of the given 

image. The concepts of CBIR and Image mining combined to increase the speed of the image 

retrieval system. 

Gopinath (2012) stated that Medical Image Processing is one of the most challenging and 

emerging topics in today’s research field. Processing of Magnetic Resonance Imaging (MRI) is 

one of the parts in this field. In recent years, multispectral MRI has emerged as an alternative to 

Ultrasound (US) image modality for clear identification of cancer in Breast, Prostate and Liver 

etc,. In order to analyze a disease, Physicians consider MR imaging modality is the most efficient 

one for identification of cancer present in various organs. Therefore, analysis on MR imaging is 

required for efficient disease diagnosis. This paper describes the proposed strategy to detect and 

extraction of Prostate cancer cells from patient’s MRI scan image of the Prostate organ. This 

proposed method incorporates with some noise removal functions, segmentation and 

morphological functions which are considered to be the basic concepts of Image Processing. 

Detection and extraction of cancer cells from MRI Prostate image is done by using the MATLAB 

software. 

Laddha, and Ladhake (2014), A Review on Brain Tumor Detection Using Segmentation and 

Threshold Operations and they stated that the brain is the anterior most part of the central nervous 

system. The location of tumors in the brain is one of the factors that determine how a brain tumor 

effects an individual's functioning and what symptoms the tumor causes. Along with the Spinal 

cord, it forms the Central Nervous System (CNS). Brain tumor is an abnormal growth caused by 

cells reproducing themselves in an uncontrolled manner. Magnetic Resonance Imager (MRI) is the 

commonly used device for diagnosis. In MR images, the amount of data is too much for manual 

interpretation and analysis. During past few years, brain tumor segmentation in magnetic 
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resonance imaging (MRI) has become an emergent research area in the field of medical imaging 

system. Accurate detection of size and location of brain tumor plays a vital role in the diagnosis 

of tumor. An efficient algorithm is proposed for tumor detection based on segmentation and 

morphological operators. Firstly quality of scanned image is enhanced and then morphological 

operators are applied to detect the tumor in the scanned image. We also propose an efficient 

wavelet based algorithm for tumor detection which utilizes the complementary and redundant 

information from the Computed Tomography (CT) image and Magnetic Resonance Imaging 

(MRI) images. Hence this algorithm effectively uses the information provided by the CT image 

and MRI images there by providing a resultant fused image which increases the efficiency of tumor 

detection. 

Padma and Sukanesh (2011), Tumor classification and segmentation from brain computed 

tomography image data is an important but time consuming task performed manually by medical 

experts. Automating this process is challenging due to the high diversity in appearance of tumor 

tissue among different patients and in many cases, similarity between tumor and normal tissue. 

This paper deals with an efficient segmentation algorithm for extracting the brain tumors in 

computed tomography images using Support Vector Machine classifier. The objective of this work 

is to compare the dominant grey level run length feature extraction method with wavelet based 

texture feature extraction method and SGLDM method. A dominant gray level run length texture 

feature set is derived from the region of interest (ROI) of the image to be selected. The optimal 

texture features are selected using Genetic Algorithm. The selected optimal run length texture 

features are fed to the Support Vector Machine classifier (SVM) to classify and segment the tumor 

from brain CT images. The method is applied on real data of CT images of 120 images with normal 

and abnormal tumor images. The results are compared with radiologist labeled ground truth. 
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Quantitative analysis between ground truth and segmented tumor is presented in terms of 

classification accuracy. From the analysis and performance measures like classification accuracy, 

it is inferred that the brain tumor classification and segmentation is best done using SVM with 

dominant run length feature extraction method than SVM with wavelet based texture feature 

extraction method and SVM with SGLDM method. In this work, we have attempted to improve 

the computing efficiency as it selects the most suitable feature extraction method that can used for 

classification and segmentation of brain tumor in CT images efficiently and accurately. An average 

accuracy rate of above 97% was obtained using this classification and segmentation algorithm. 
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Chapter Three 

Methodology 

This study was aims to characterize the brain tumors in magnetic resonance images using image 

texture analysis, the data were collected form Radiation Oncology Department, Radiation and 

Isotopes Center of Khartoum (RICK), for 50 patient with brain tumors (glioma) underwent MR 

examination of brain. 

3.1. Material:  

The study executed using magnetic resonance imaging scanner; Signa HDxt 1.5T provides with 

advanced technology, such as: A proven, homogeneous 1.5T magnet delivering a full 48cm field 

of view. 16-channel RF. HD gradients engineered for high-fidelity to produce high accuracy 

waveforms. HD Reconstruction engineered for real-time, high-performance image generation. 

Advanced, high-definition applications such as Cube and IDEAL that help deliver images with 

premium quality and clarity. High-Density coils engineered with coil elements that are optimized 

for the anatomy and exam. GE Signa HDx 1.5T Technical Specifications; magnet: 1.5 Tesla, 

Superconducting, Clinical Application: Whole Body, Configuration: Compact Short Bore, Power 

Requirements: 480 or 380/415, Cooling System: Closed-loop water-cooled gradient, Cryogen Use: 

Less than 0.03 L/hr liquid helium, Spectroscopy: Possible, Synchronization: ECG/peripheral, 

respiratory gating, (SmartPrep, SmartStep), Pulse Sequences (Standard): SE, IR, 2D/3D GRE and 

SPGR, Angiography: 2D/3D TOF, 2D/3D Phase Contrast; 2D/3D FSE, 2D/3D FGRE and FSPGR, 

SSFP, FLAIR, EPI, Pulse Sequences (Optional): 2D/3D Fiesta, FGRET, Spiral, Tensor , imaging 

Modes: 2D single slice, multi slice, and 3D volume images, multi slab, cine, FOV: 1cm to 48cm 
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continuous, Slice Thickness: 2D 0.7mm to 20mm; 3D 0.1mm to 5mm, Display Matrix: 1028 x 

1024, Measuring Matrix: 128 x 512 steps 32 phase encode and Pixel Intensity 256 gray levels,  

 Also MDCT machine with 64-slice, detector array, fan beam shape, CT monitor in radiation 

oncology simulator. Image texture analysis programs, IDL Version 7.0.6, Microsoft Windows 

(Win32 x86 m32). (c) 2008, ITT Visual Information Solutions, Installation number: 

20111111.Licensed for use by: TEAM TBE  

 

Fig. (3.1) GE Signa HDx 1.5T that used to scan the patient with brain cancer 

3.2. Method of data collection: 

Technique: The patient under examination must perform MRI brain the technique 

performed to scan lesion; Axial T2–W FLAIR. The vast majority of intracranial lesions exhibit long 

T2 values. FLAIR is a similar sequence to STIR but in this case it uses a longer inversion time 

(approximately 2200ms) to suppress CSF and increase conspicuity of the lesion. The axial plane 

http://www.providianmedical.com/wp-content/gallery/ge-signa-hde-1-5t/ge-signa-hde-1-5t-mri.jpg
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is useful as it is comparable to CT (TE/TR/TI = 148 /9200ms /2200ms FOV = 22–25cm, Slice 

thickness/gap = 5/1mm). where the tumor appear to have relatively hypo intense area surround 

with hyper intense area due to pre-tumoral edema surround brain mass in case of T2 weighted 

images, also the flair axial T2, axial T1, coronal T2 and T1 AXIAL and sagittal with gadolinium 

contrast was done to assess the lesion and its surrounding structure and the multi-foculity of the 

tumors if existed. starting from the both with contrast images and without contrast images 

was used to determine tumor site and size and tumor relations was assessed using 

network and computer PACS system was used to visualize the images and patient 

diagnosis was extracted. 

 

Fig. (3.2) Axial IR T1-weighted image using a TI of 700ms with the level of the cuts demonstrated 

in sagittal T1 weighted images (left).  

Then the images prepared for the textural analysis throw DICOM viewer to select which 

images can be treated as IDL variable and then the processing can be achieved for 

classification purposes.    
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The following diagram showing the method of texture analysis and feature extraction 

programmatically performed with IDL: 

 

 

 

 

 

 

                                                                                                       DSGLD: diagonal feature   

                                                                                                       SGLD: second order function  

   FOS: first order function  

 

 

 

 

Fig. (3.3) block diagram demonstrating the steps used to classify the brain tissue using 

IDL. 
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Fig. (3.4) a block diagram showed an example of extracted feature from brain images  

3.2.1. Study Design: 

A prospective, analytical case control study used to classify and to characterize the brain 

tissue in patient with brain glioma. 

3.2.2. Area of the Study: 

This study conducted at Khartoum state hospitals, cancer diagnostic studies and Radiation 

and Isotopes Center of Khartoum (RICK), Radiation Oncology Department (ROD). 

3.2.3. Study Sample: 

The study sample was consisted of 50 patients with brain cancer and same number of 

normal brain for classification purpose (control group). 
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3.2.4. Duration of the study: 

This study conducted in period from January 2015 May 2016. 

3.2.5. Population of the Study: 

The population of this study was data set (brain MR Images), where the brain were free from disease 

for control cases and the test brain MRI images include patient diagnosed as having brain  tumour.  

The study include both gender with their age ranged from 18 years to 83years old. 

3.2.6. Inclusion Criteria: 

All patient with brain cancer who have MRI scan, who have suspicion of brain glioma rather 

than other histological type. 

3.2.7. Exclusion Criteria: 

All patient with negative contrast enhancement and patient underwent a surgical procedure and 

those having tendency of other brain histopathological type were excluded. 

3.2.8. Method of data analysis and presentation: 

After that MRI images were stored in computer disk were viewed by the Radiant, Ant DICOM viewer 

in computer to selected the axial images that suit the criteria of research population then uploaded 

into the computer based software Interactive Data Language (IDL) where the DICOM image 

converted to TIFF format to suit IDL platform in order to preserve the quality of the image. Then the 

image were read by IDL in TIFF format and the user clicks on areas represents the background, grey 

matter, white matter, CSF and tumour in case of test group; in these areas  a window 3×3, 5x5, 10x10, 

15x15, and 20x20 pixel were generated and textural feature for the classes center were generated. 

These textural features includes FOS; (coefficient of variation, stander deviation, variance, signal, 

energy, and entropy), second order statistics; Inertia, Inverse Difference Mom, Correlation, Sum 
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Average, Sum Entropy, Difference Entropy, sum variance Difference, average, information Measure 

of correlation-1, information Measure of correlation-2, mean of SGLD and variance of SGLD, and 

diagonal feature extracted from Co-occurrence matrix (from diagonal one to 14) was used. These 

features were assigned as classification center used by the Euclidian distances to classify the whole 

image. The algorithm scans the whole image using a window; 3×3 pixels and computes the above 

mentioned textural features and then computes the distance (the Euclidean distance) between the 

calculated features during the scanning and the class’s centers and assigns the window to the class 

with the lowest distance. Then the window interlaced one pixel and the same processes started over 

again till the entire image were classified and classification maps were generated. After all images 

were classified the data concerning the brain tissues (CSF, grey, and white matter) and tumour entered 

into SPSS with its classes to generate  a classification score using stepwise linear discriminate 

analysis; to select the most discriminate features that can be used in the classification of brain tissues 

in MRI images. Where scatter plot using discriminate function were generated as well as classification 

accuracy and linear discriminate function equations to classify the brain tissues into the previous 

classes without segmentation process for unseen images in routine work. The delineation of brain 

tumour done by furthers processing of the classification using region label function to segment the 

brain tumour from the other classes and convert the segmented brain tumour from classification map 

with pseudo-color to binary image to extract (segment) the brain tumour from the whole original 

image. Then by applying Sobel function the outline of the binary image was generated and the spatial 

location of the pixels was used to delineate the brain tumor on the original image using read line. 

3.2.9. Data collection variables: 

All brain images was collected including all sequences in case of MRI and with –without 

contrast images in case of computed tomography (CT) scan. Which include the higher order 
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textural feature extracted using SGLD co-occurrence matrix, which are;   Result:   The 

calculated texture measures as described below (1 by 8 matrix, Double) Entropy, Energy, Inertia, 

Inverse Difference Moment, Correlation, Sum Average, Sum Entropy, Difference Entropy, sum 

variance Difference, average, information Measure of correlation 1, information Measure of 

correlation 2, mean of SGLD and variance of SGLD., also FOS texture (mean, energy, entropy, 

variance, Skewness and kurtosis) and diagonal feature exstracted from Co-ocurance matrix (from 

diagonal one to 14) was used. 

 

Fig. 3.5. Showed the disc-top home page for IDL image processing 

 

3.2.10. Ethical approval: 

 There was official written permission to Khartoum state diagnostic centers to take the data. 

 No patient data will be disclose also the data was kept in personal computer with personal 

password. 
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Chapter Four 

Result 

This was an experimental study deals classification of brain tissue in patient with brain mass more 

closely related to brain glioma using image processing techniques by IDL, Interactive Data language 

program. The importance of this study was highlighted on evaluation of tumor extra marginal 

detection, increasing the diagnostic accuracy, therefore using this scans to plan patient for 

radiotherapy treatment and also delineation of GTV according to the intensity profile and the 

extracted feature. 

 
Fig 4.1. Classification scatter plot that created using linear discriminant analysis function 
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Table 4.1. Showed the window size related to its calcification accuracy and the test sensitivity and 

specificity. 

Window size  Calcification accuracy  Sensitivity  Specificity  

3x3 99.5 98.4% 100% 

(5x5) 98.5 95.7% 100% 

(10x10) 99.1 98.8% 99.3% 

(15x15) 98.1 94.3% 100% 

(20x20) 96.1 90.0% 98.8% 

 

 

Fig 4.2. Showed the scatter plot for the window size relative to the classification accuracy of 

each window used for texture calculation. 

 

Table 4.2. Showed the classification accuracy result using linear discriminant function, in which 

99.5% of original grouped cases correctly classified. 

Discriminant function and 

accuracy  

Class Predicted Group Membership Total 

CSF GW Tumor 

Original %  

 

CSF 100.0 .0 0.0 100.0 

GW 0.0 100.0 0.0 100.0 

tumor 0.0 1.6 98.4 100.0 

Cross-validated % CSF 100.0 .0 0.0 100.0 

GW 0.0 98.7 1.3 100.0 

tumor 0.0 4.7 95.3 100.0 
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Figure 4.3. Showed the calcification map created using selected feature of each class (Brain 

tissue {Gray and White matter}, Brain Glioma, CSF and Bone). 

 

Fig 4.4. GTV of Brain Glioma Drawn at axial FLAIR images using intensity profile (left), also the 

volume encompasses the tumor associated edema according to (Barrette et.al (2009)).  
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Fig 4.5. Simple error bar graph demonstrate the classification of brain tissue (gray and white 

matter, CSF and brain glioma) using difference average of SGLD 

 

 
Fig 4.6. Simple error bar graph showed the classification of brain tissue (gray and white matter, 

CSF and brain glioma) using mean from the first order statistics. 
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Fig 4.7. Simple error bar graph showed the classification of brain tissue (gray and white matter, 

CSF and brain glioma) using texture called entropy from FOS. 

 
Fig 4.8. Simple error bar graph showed the classification of brain tissue (gray and white matter, 

CSF and brain glioma) using texture called energy from FOS. 
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Fig 4.9. Simple error bar graph showed the classification of brain tissue (gray and white matter, 

CSF and brain glioma) using mean of SGLD. 

 

Equations should be used for classification purpose:  

CSF = (Difference average X 1.416) + (mean X 8.456) + (entropy X -0.993) -32.175____Eq (1) 

Gray and white matter = (difference average X 2.532) + (mean X 23.582) + (entropy X -2.747) - 

248.544       ______________________________________________________________Eq (2) 

Glioma = (difference average X 1.809) + (mean*25.716) + (entropy*-2.969) -315.083___Eq (3) 
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Chapter Five 

Discussion, Conclusion and Recommendations 

 

5.1 Discussion: 

The main image processing disciplines in which texture analysis techniques are used are 

classification, segmentation and synthesis. In image classification the goal is to classify different 

images or image regions into distinct groups (Pietikainen, 2000). This methods are well suited to 

this classification purposes because they provide unique information on the texture, or spatial 

variation of pixels, of the region where they are applied. This study aimed to classify the brain 

tissue for patients with brain glioma and to identify the tumor related to its surrounding tissue using 

its texture feature, in order to draw the target volume for radiotherapy treatment, for the bulk of 

the tumor in Magnetic Resonance Images using Interactive data language program (IDL), rather 

than the use of visual perception of human vision: (Julesz, 1975), who was establishing 

authoritative data on the performance of the human vision system at discriminating certain classes 

of texture, in order to develop a computer image processing program that can help in brain tumor 

diagnosis.  

Data were collected from Antalya Diagnostic Medical Center and cancer diagnostic center where 

the patients came to the clinic suffering from many cancer-associated morbidity which mainly 

include: headache, vision disturbance, sometimes with paralysis as well as associated syndromes. 

A successful clinical evaluation was carried out and laboratory investigation; including CBC and 

tumor marker were measured. 

MRI has superior role on assessing brain tissue lesions rather than CT where it can be fused with 

CT data for purpose of radiotherapy planning as stated by barrette et.al (2009), which is the best 

imaging modality used to diagnose benign and malignant lesions which was performed using high 
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resolution SIGNA-GE MR scanner (1.5 tessla). For patient with known brain glioma, the protocol 

included: sagittal T1, axial T2, axial FLAIR, axial T1, coronal T2, DWI, and sagittal and axial T1 

with gadolinium contrast enhancement which was used to scan and to characterize the brain 

glioma, then DICOM format image was extracted for all these sequences and the slices containing 

the tumor were selected for IDL analysis after creation of ‘tiff format’ IDL variable image. Then 

the program was written for purpose of texture calculation. 

Firstly the images was displayed on gray scale manner in range of pixel values from 0 up to 255 

(0 represent black region- 255 represent white region), image resizing was underwent, as well as 

image segmentation and background removal was took place also automatic image smoothing and 

filtering was done, this procedure was performed for all mentioned brain sequences, firstly in order 

to test which is better a histogram equalization function (where the pixels gray level was 

redistributed and the image sharpness and contrast increased) and we contentious with normal 

image enhancement and smoothing. Then the development of feature extraction program was 

undertaken for three type of texture feature as developed by Garelnabi et.al 2007.  

Texture analysis was presented here as a useful computational method for discriminating between 

pathologically different regions on medical images because it has been proven to perform better than 

human eyesight at discriminating certain classes of texture (Julesz, 1975). Presents statistical texture 

analysis through first-, second-, and diagonal feature techniques. First order, second order and 

diagonal feature were used to calculate the texture which composed total from 34 texture extracted 

from the images for 6 selected brain MRI sequences in order to test which is better for classification 

and brain tumor characterization using different window sizes which were 3x3, 5x5, 10x10, 15x15, 

and 20x20 pixel window size.  
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These feature included: Entropy, Energy, Inertia, Inverse Difference Mom, Correlation, Sum 

Average, Sum Entropy, Difference Entropy, sum variance Difference, average, information Measure 

of correlation 1, information Measure of correlation 2, mean of SGLD and variance of SGLD., also 

FOS texture (mean, energy, entropy, variance, Skewness and kurtosis) and diagonal feature extracted 

from Co-occurrence matrix (from diagonal one to 14) were used. But the diagonal feature reveal much 

more similarity and it is not adequate for small window like (5x5, 3x3, 10x10) and it can be used for 

higher windows. These feature were calculated for four different classes which were: (brain white 

and gray matter, CSF, image background and brain glioma) for six sequence in selected images for 

every sequence.  

This traditional approach has been used extensively to describe different image textures by unique 

features and has found application in many disparate fields such as: discrimination of terrain from 

aerial photographs (Conners & Harlow, 1980); in vitro classification of tissue from intravascular 

ultrasound (Nailon, 1997); identification of prion protein distribution in cases of Creutzfeld-Jakob 

disease (CJD) (Nailon & Ironside, 2000); classification of pulmonary emphysema from lung on high-

resolution CT images (Uppaluri et al., 1997; Xu et al., 2004; Xu et al., 2006); and identifying normal 

and cancerous pathology (Karahaliou et al., 2008, Zhou et al., 2007; Yu et a., 2009). Higher-order 

approaches have been used to localize thrombotic tissue in the aorta (Podda, 2005) and to determine 

if functional vascular information found in dynamic MR sequences exists on anatomical MR 

sequences (Winzenrieth, 2006). The T2-weighted images revealed low classification accuracy 

(54.5%) of original group and it cannot give better classification for this lesion possibly due to 

associated edema and lipophilic nature of some tumors that interfere with classification score, from 

these survey looking for better sequence for characterization purpose A FLAIR images were selected 

and then using different sizes of windows the textures were calculated starting with 20x20; (34) 
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different features were underwent linear discriminant analysis with step-wise function and the test 

revealed that the classification accuracy was (96.1%), with (90%) sensitivity and (98.8%) specificity, 

four significant feature were selected for classification which are inertia, sum average of co-

occurrence matrix, mean of pixel and image histogram (FOS), and energy (FOS).  

Then the same process was repeated for (15x15) window and the result showed the classification 

accuracy equal to (98.1%), with sensitivity of (94.3%) and specificity of (100%), as demonstrated in  

(figure (4.2) table (4.1)). Where the most significant selected feature was; sum average of co-

occurrence matrix, difference entropy, variance of SGLD, mean (FOS), skewness, kurtosis, and 

energy (FOS). Same process was repeated again for (10x10) window, with classification accuracy of 

(99.6%), sensitivity (98.1%), specificity of (99.3%), where the most selected feature were; sum 

entropy, mean, energy and entropy, as demonstrated in figure (4.2) table (4.1).  

Also 5x5 pixel size was tested and the result showed that the classification accuracy was (98.5%), 

sensitivity of (95.7%), and specificity of (100%) as in figure ((4.2) table (4.1)). 

Finally 3x3 pixel window revealed higher classification accuracy in this study for first order and 

second order statistics, where the diagonal features were excluded because of higher similarity 

noted within the images pixels relationship and the result showed that the classification accuracy 

equal to (99.5%) of original group classes was correctly classified for brain tissue and the brain 

glioma, with sensitivity of (98.4%) and specificity of 100% as in (figure (4.2) table (4.1)), and the 

most significant feature selected for classification was difference average of co- occurrence matrix, 

mean, and entropy from (FOS) (p<0.05, and CL=95%).  

Figure (4.1) demonstrated the classification map created by linear discriminant analysis presented 

with group centroid for all images for three different classes (brain gray and white matter, brain 

glioma and cerebrospinal fluids) and it revealed that the brain glioma had distinct a feature rather 
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than the other classes. But there was small similarity noted between the glial tumor and the rest of 

brain tissue which is possible due to same tissue of origin and better tumor grade, which give 

similar signal in some instances. 

A color map demonstrate each class with different color presented in figure (4.3) which was 

created using intensity profile function for four classes included background, for original images 

which were presented in figure (4.4), from this step the tumor margin and associated pre tumaral 

edema where clearly outlined and this can be used as GTV for radiotherapy treatment for further 

radiotherapy planning. 

When the scattered microscopic cells don’t change the signal intensity for visual perceptions but 

it can change the textural features (had its textural character) so that this process of outlining the 

marginal status of the tumor were considered more accurate from that drown by radiologist of 

radiation oncologist because it depend on the intensity of the received signal where the tumor 

irregularity was clearly and accurately outlined. From this result a simple error bar was used to 

demonstrate the classification result in figure (4.5). The difference average of co-occurrence 

matrix correlated with brain classes which differentiated the CSF form other brain tissue and tumor 

better than other features but there is no clear difference between the tumor and the rest of normal 

brain tissues.  A distinct classifications were noted by the mean of the gray level of image 

histogram where the range of pixel value for each class was clearly separated, as in figure (4.6) 

same result noted for entropy from SOF which demonstrate border separation between these 

classes. As demonstrated in figure (4.7). 

Finally this study revealed that the texture analysis method and techniques has an excellent 

classification properties in differentiations between the tissue of brain and brain glioma using small 

size pixel window because of small image dynamic range.  
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This study implies that 3x3 window gives a higher classification accuracy while the most 

significant features for classification included: Difference average of SGLD, Mean and entropy of 

FOS which can be used for estimation of class values by using of the following equations, which 

later can be developed as computer program facilitated to help in brain tumor detection and margin 

of GTV creation. The equations are: 
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5.2. Conclusion: 

Brain tumors is one of the major health problem today that affect majority of both younger and 

adults people all over the world, this study were carried out to characterize the brain glioma in 

Sudanese population by introduction of new method of CAD which known as texture analysis 

technique which used for extracting the information from the images using different techniques 

using simple matrix with different sizes. Extracting the information from these matrices using 

textural features, which are sensitive to specific elements of texture, provides unique information 

on the structure of the texture being investigated. Haralick et al., proposed a set of local features 

specifically designed for this purpose (Haralick et al., 1973). An analytical case control study 

underwent MRI scan using SIGNA-GE MR scanner for 50 patient with brain glioma and 50 normal 

patient, in Radiation Oncology Department at Radiation and Isotopes Center of Khartoum (RICK); 

in period from January 2015-febriury 2016, different textural feature was extracted using (3x3, 

5x5, 10x10, 15x15, 20x20) matrix window, which are FOS, SGLD feature, and diagonal feature 

for normal and cancerous samples, and the result showed that FOS and SGLD selected feature was 

used for classification using mentioned window sizes, discriminant analysis was used classify the 

brain tissue; the classification accuracy, sensitivity and specificity were (95.5%, 98.4% and 100%), 

(98.5%, 95.7% and 100%), (99.1%, 98.8% and 99.3%), (98.1%, 94.3% and 100%) and (96.1, 

90.0% and 98.8%) respectively at (P<0.05, and CL=95%). The result showed that (3x3) having 

higher classification accuracy than the rest possible because of small dynamic range of useful MRI 

images, the feature selected for classification from 3x3 window; were difference average of SGLD, 

mean of gray level of image histogram, and entropy, the diff average classify the CSF while mean 

and entropy was give clear classification and differentiation of tumor and other brain classes. 
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5.3. Recommendation:   

 The goal of image segmentation is a domain-independent decomposition of an image into 

distinct regions. Clustering concepts and image segmentation concepts have been analyzed. 

Image segmentation has become a very important task in today’s scenario. In the present 

day world computer vision has become an interdisciplinary field and its applications can 

be found in any area. Thus, to find an appropriate segmentation algorithm and clustering 

algorithm based on your application and the type of inputted image is very important. 

 Detection of cancer and its various type according to its textural feature may give an 

accurate differentiation between the tissue type and furthermore for grading and staging 

purposes. 

 For future scope this study can be done for all type of histopathological disease of brain 

tumor in collaboration with the biopsy result in order to classify the textures based on the 

histopathology and related feature. 

 Development of computer program that can be used in diagnosis of various tissue type of 

cancers it’s quite important but that it doesn’t mean forgetting the opinion of specialized 

persons in this filed but building up a new approaches that can help for accuracy of 

detection. 

 Using and creation of 3D image series it’s good for advance radiotherapy planning 

technique therefore application of texture feature for 3D images either created by the IDL 

or MRI or CT scanner it’s quite important facilitating the process of computer planning for 

radiotherapy patient.  
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Appendix (A): 

Table 5.1. Showed the calculated feature using 3x3 pixels window: 

entropy energy  enertia IDM  correlation  sum 

avarage  

sum 

entropy 

difference 

entropy 

sum 

variance  

diff 

avrage  

2.99145 0.14875 0.4 0.66 0.629791 1.9 1.83932 1.15486 2.068 0.3 

3.23935 0.1625 9.05 0.636729 0.14488 6.55 2.62326 1.65485 12.2024 1.65 

3.68418 0.0975 10.1 0.540362 0.256388 5.7 2.72535 1.90712 17.9855 1.9 

3.82193 0.0875 3 0.585882 0.783405 12.6 2.85199 1.82877 27.364 1 

3.36596 0.1225 0.75 0.605 0.559421 3.15 2.03932 1.32109 3.443 0.45 

3.36596 0.1225 0.95 0.615 0.468824 3.45 2.07493 1.37493 3.46212 0.55 

3.32193 0.12 6 0.498585 0.070244 2.8 1.99815 1.64717 7.384 1.4 

3.3087 0.1425 8.15 0.47622 0.31267 8.95 1.61767 1.06669 28.4065 0.95 

3.3087 0.1425 1.2 0.712941 0.642902 5.9 2.5765 1.33876 6.109 0.5 

3.43418 0.10875 3.4 0.571765 0.359921 5.1 2.03932 1.15486 8.588 0.9 

3.6087 0.0925 1.25 0.685 0.445558 3.15 2.6926 1.36229 3.43138 0.65 

2.51997 0.2525 0.55 0.795 0.664765 3.65 2.00388 1.10294 2.76137 0.35 

2.80161 0.185 0.6 0.72 0.401305 2.5 1.82668 1.23876 1.525 0.4 

3.73418 0.08375 2.3 0.49 0.407617 3.5 2.65754 1.65754 5.6 0.9 

3.58418 0.1025 3.05 0.664864 0.464692 5.45 2.67151 1.53876 9.37725 0.85 

3.34145 0.1325 2 0.572941 0.345994 4.3 2.09658 1.59658 4.612 0.7 

3.12193 0.1925 1.4 0.63 0.459589 6.2 1.87364 1.47095 7.194 0.6 

3.23418 0.12875 0.95 0.625 0.724324 2.75 2.2198 1.35486 6.275 0.45 

3.43418 0.10875 1.45 0.515 0.650643 4.35 2.28761 1.26114 10.4507 0.55 

3.67193 0.09375 4.65 0.614729 0.259906 5.95 2.68974 1.68705 8.50725 1.15 

3.68418 0.0925 1.8 0.301351 0.553634 3.9 1.31267 0.737186 29.1035 0.3 

3.44644 0.1325 1.4 0.532941 0.390742 3.9 1.70503 1.12664 7.627 0.5 

3.74644 0.0825 2.7 0.515882 0.524399 5.1 2.58205 1.65754 10.088 0.9 

3.23935 0.1625 2.7 0.603846 0.482127 4.5 2.17497 1.29658 12.2 0.7 

3.62193 0.0975 3 0.54 0.567325 4.9 2.68974 1.58778 10.989 1.1 

2.74546 0.23875 0.95 0.625 0.394713 2.25 1.73108 1.35486 2.275 0.45 

3.05161 0.16875 1.85 0.635 0.287441 1.75 2.26942 1.5493 3.68125 0.75 

3.54644 0.0975 4.35 0.398846 0.171875 3.35 2.08761 1.54278 7.56075 1.15 

3.74644 0.0825 2.7 0.515882 0.524399 5.1 2.58205 1.65754 10.088 0.9 

4.02193 0.0675 16.95 0.514693 0.248652 9.15 2.77364 1.71267 32.8691 2.25 

3.68418 0.0975 1.95 0.635 0.649485 6.35 2.72535 1.70712 9.81137 0.85 

3.54145 0.1125 0.85 0.615 0.713203 5.45 2.47706 1.39658 8.007 0.45 

3.09644 0.15875 0.9 0.69 0.41469 3.7 1.83876 1.23876 2.241 0.5 

2.79546 0.2375 1.3 0.626923 0.612333 6.1 1.49888 0.874372 10.327 0.3 

3.82193 0.0775 2.5 0.545882 0.500211 8.1 2.67364 1.64717 12.2485 0.9 

3.48418 0.1075 1.8 0.55 0.608534 3.7 2.33589 1.64717 9.0565 0.8 
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3.24644 0.1175 0.8 0.54 0.553885 4.4 2.04986 0.964386 10.032 0.4 

3.33418 0.11375 2.35 0.661923 0.385278 10.25 2.55199 1.48705 6.58125 0.75 

3.74644 0.0825 3.4 0.458824 0.273508 5.7 1.95883 1.43932 6.812 1.1 

3.52193 0.1125 3.25 0.468846 0.524606 4.65 2.18761 1.62535 12.9408 0.85 

3.92193 0.07 0.9 0.49 0.410455 2.9 2.08761 1.32535 4.767 0.5 

3.54145 0.1125 6.5 0.401538 0.492222 4.9 1.73932 1.19449 26.4855 0.9 

3.3087 0.1425 0.65 0.555 0.725452 5.25 1.91212 1.12664 8.21875 0.35 

3.42193 0.115 0.9 0.59 0.734823 5.3 2.35754 1.29658 9.192 0.5 

2.77821 0.18375 0.25 0.775 0.619803 1.45 2.09602 0.903967 1.53725 0.25 

3.73418 0.08375 0.8 0.58 0.554577 2.1 2.28205 1.39333 3.108 0.5 

2.53418 0.22375 1.8 0.37 0.194658 1.5 1.53932 0.994486 2.7375 0.6 

3.67193 0.09375 2.1 0.63 0.465032 4.4 2.75199 1.48705 6.404 0.8 

3.82193 0.0875 0.75 0.505 0.684718 4.45 2.32535 1.34986 8.20675 0.45 

2.89546 0.2325 0.45 0.735 0.636137 4.25 2.02552 1.15828 2.38125 0.35 

3.74644 0.0875 6 0.512 0.547006 6.8 2.58205 1.65754 23.112 1.2 

3.87193 0.07375 23.9 0.504742 0.570931 16.4 2.87364 1.84717 105.596 2.7 

4.02193 0.0675 42.9 0.546491 0.476074 18 3.18974 1.92877 127.5 3.5 

3.88418 0.0775 5.95 0.42061 0.517871 9.65 2.42535 1.54278 25.0908 1.15 

3.88418 0.0775 15.8 0.535805 0.556135 9.3 3.05199 1.92877 56.461 2.3 

4.02193 0.0675 13.95 0.417712 0.43609 13.15 2.52535 1.48761 47.3507 1.85 

3.88418 0.0775 10.6 0.469252 0.421596 15 2.53589 1.64717 31.85 2 

4.02193 0.0675 30.6 0.513505 0.53766 15 2.77364 1.51267 128.05 2.7 

3.82193 0.0775 10.15 0.522538 0.175121 13.85 2.98974 1.45328 16.9453 1.95 

3.88418 0.0775 19.65 0.412341 0.430688 12.05 2.14487 1.62535 58.2868 2.15 

3.0537 0.14375 1.5 0.59 0.306954 2.2 2.03932 1.21711 3.292 0.6 

4.02193 0.0675 10.2 0.544344 0.645485 11.2 3.18974 1.92877 50.016 1.8 

3.82193 0.0875 2.75 0.528846 0.610037 4.05 2.44145 1.36096 12.8469 0.75 

3.88418 0.0775 4.8 0.546787 0.639252 8.5 2.91425 1.79103 22.525 1.3 

3.73418 0.08375 6.8 0.47108 0.534108 8.5 2.6198 1.73108 25.7 1.5 

3.02193 0.1975 2 0.611351 0.704121 10.8 1.72535 0.874372 62.368 0.4 

3.67193 0.08375 9.65 0.456405 0.397776 8.95 1.94986 1.19888 29.1167 1.55 

3.72193 0.0925 17.65 0.526459 0.49114 9.65 2.18761 1.26439 64.9908 1.65 

3.53418 0.09375 1.35 0.465 0.630802 4.65 1.95541 0.928946 22.6785 0.45 

3.68418 0.0975 13.3 0.429421 0.183502 11.5 2.20157 1.85754 22.6 2.1 

3.24644 0.1425 0.85 0.327941 0.482067 2.15 1.52877 0.953283 10.054 0.25 

3.44644 0.1325 5.3 0.58267 0.707282 10.3 2.61425 1.5493 32.201 1.3 

3.54644 0.1075 0.65 0.495 0.607654 2.45 2.08761 1.36229 3.44675 0.45 

3.10161 0.1725 0.9 0.46 0.416589 3.4 1.19449 0.850594 6.738 0.3 

3.72193 0.0925 2.25 0.567941 0.833318 9.55 2.65754 1.45883 27.607 0.75 

3.34644 0.135 2.4 0.595882 0.665092 3.9 2.19815 1.27095 21.1085 0.8 

3.49145 0.11375 1.7 0.35 0.493864 3.3 1.79316 1.31767 6.854 0.7 
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3.29644 0.13875 1.1 0.71 0.710487 3.9 2.51425 1.23876 6.769 0.5 

3.78418 0.08 10.3 0.524703 0.722566 17.5 2.95199 1.62877 95.825 1.9 

3.58418 0.1025 4.25 0.457703 0.454995 4.35 2.22535 1.48761 11.8507 0.95 

3.58418 0.1025 1.3 0.72 0.742743 4.7 2.83034 1.45485 10.7055 0.6 

3.88418 0.0775 2.4 0.4 0.591846 5.9 2.42535 1.40503 12.347 0.9 

3.82193 0.0875 4.9 0.458688 0.585962 6.2 2.65754 1.75754 19.772 1.3 

2.21997 0.3025 0.85 0.527941 0.00288 0.35 1.16669 0.932193 0.8785 0.25 

3.19145 0.13875 0.85 0.575 0.628612 5.65 1.84487 1.02266 8.75075 0.35 

3.62193 0.0975 0.9 0.63 0.754466 9 2.48974 1.45004 8.6 0.6 

2.63418 0.21875 0.45 0.695 0.770383 1.65 1.8198 0.952257 4.383 0.25 

2.80161 0.185 0.4 0.47 0.10424 0.4 0.994486 0.850594 0.568 0.2 

3.82193 0.0775 4.75 0.540882 0.460657 5.25 3.10583 1.36229 15.2094 1.45 

3.92193 0.07 1.9 0.47 0.700525 6.6 2.42535 1.32535 21.072 0.7 

3.82193 0.0875 5.8 0.542703 0.31307 3.8 2.85199 1.62877 11.316 1.4 

2.64644 0.19 0.1 0.65 0.821149 2.3 1.64986 0.774372 4.023 0.1 

3.14644 0.1575 0.9 0.552941 0.573527 3.5 1.69602 1.04829 4.7625 0.3 

4.02193 0.0675 4.55 0.458846 0.353906 8.85 2.7198 1.75754 12.163 1.25 

3.88418 0.0775 2.4 0.492941 0.265226 4.3 2.15754 1.8198 4.612 0.9 

2.98418 0.2025 2.05 0.650882 0.653296 5.75 2.03589 1.32266 12.6281 0.65 

3.44644 0.1325 3.95 0.627805 0.720841 8.85 2.71425 1.53876 30.3953 1.05 

3.82193 0.0875 7.5 0.558923 0.533742 7.5 2.71425 1.92877 25.425 1.5 

3.68418 0.0875 1.5 0.63 0.839689 7.9 2.85199 1.62877 18.449 0.7 

3.1587 0.14875 0.8 0.54 0.416598 1.4 1.64986 0.964386 3.452 0.4 

3.82193 0.0875 4.95 0.460644 0.634095 11.75 2.18761 1.62535 40.8688 1.05 

2.99644 0.16375 1.7 0.755882 0.477057 2.9 1.98974 1.02459 4.849 0.5 

3.78418 0.08 3.3 0.461765 0.546413 6.9 2.28761 1.32535 30.207 0.9 

3.44145 0.1175 1.4 0.52 0.477136 4.3 2.27706 1.6198 5.012 0.7 

3.52193 0.1 1.1 0.61 0.395532 1.9 2.25754 1.29658 3.168 0.5 

3.49145 0.11375 2.3 0.535882 0.073395 4.6 1.76383 1.59333 3.308 0.8 

3.18418 0.1325 0.3 0.46 0.622099 2.4 1.63932 1.07706 3.948 0.2 

3.72193 0.0925 6.25 0.515634 0.24784 5.65 2.5198 1.39658 11.543 1.35 

3.68418 0.0875 5.1 0.42267 0.207272 3.4 2.00712 1.48761 8.472 1.2 

3.53418 0.09375 2.5 0.465882 0.36397 2.8 2.07151 1.18279 8.916 0.7 

3.67193 0.09375 4.25 0.588846 0.701253 8.75 2.68974 1.5493 33.2313 1.15 

3.42193 0.1175 4.25 0.528846 0.342395 3.15 2.48974 1.86327 9.73525 1.25 

3.48418 0.1075 2.65 0.395 0.138241 3.05 2.02535 1.36229 3.95675 0.95 

2.41387 0.21875 0.2 0.46 0.615165 1.5 1.07839 0.734498 2.425 0.1 

3.26596 0.1275 2.65 0.640882 0.356147 7.15 2.29103 1.40101 6.61525 0.85 

3.12193 0.13 0.5 0.47 0.444787 0.9 1.59316 1.19316 1.366 0.3 

3.33418 0.11375 0.3 0.7 0.837103 5.5 2.33589 0.995463 9.5125 0.3 

3.88418 0.0775 2.55 0.570882 0.336283 3.55 2.55199 1.72552 5.28725 0.95 
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2.77095 0.2 0.5 0.47 0.647239 3.7 1.61767 1.19316 9.334 0.3 

3.3087 0.1425 0.5 0.52 0.652042 3.1 1.53376 1.18279 3.5265 0.3 

3.02193 0.1975 2.05 0.604864 0.581239 11.25 1.72535 0.874372 48.7187 0.45 

3.68418 0.0875 3.05 0.464864 0.551598 7.85 2.38761 1.62535 25.3407 0.85 

3.58418 0.1025 3.1 0.583846 0.560161 4.5 2.38205 1.45883 12.2 0.8 

3.68418 0.0875 2.75 0.438846 0.3862 3.55 2.05541 1.29316 10.5065 0.65 

2.78418 0.2125 3.35 0.668846 -0.03392 1.75 1.98761 1.45485 3.13438 0.95 

2.31904 0.2625 0.85 0.375 0.482717 2.65 1.07839 1.07839 4.11625 0.35 

2.99644 0.14375 1.2 0.61 0.263063 1.4 1.99815 1.37168 2.146 0.6 

3.73418 0.08375 4.25 0.557703 0.39646 9.75 2.48205 1.53108 11.975 0.95 

3.44644 0.1325 1.9 0.365882 0.684039 4.2 1.97706 1.40157 20.322 0.6 

3.03935 0.1725 0.3 0.7 0.845891 4.8 1.99106 0.995463 17.204 0.3 

3.82193 0.0775 4.05 0.465769 0.674604 8.75 2.38761 1.48761 54.3188 0.95 

3.64145 0.1075 3 0.496 0.335338 10.7 2.00712 1.48761 19.563 0.7 

3.88418 0.0775 14 0.51322 0.72005 19.8 2.73589 1.84717 139.154 2 

3.74644 0.0875 6.65 0.429824 0.51641 11.05 2.58205 1.6198 29.927 1.55 

3.54145 0.11 13.8 0.603693 0.508712 13.3 2.70925 1.62877 45.821 1.8 

3.88418 0.0775 15.85 0.561625 0.592528 21.15 2.83034 1.84487 63.5614 2.35 

3.82193 0.0775 3.25 0.468846 0.712422 18.35 2.52535 1.62535 166.111 0.85 

3.82193 0.0875 2.75 0.476351 0.533277 8.15 2.18761 1.62535 24.8007 0.75 

4.02193 0.0675 17.25 0.559417 0.83847 24.85 3.18974 1.92877 209.975 2.25 

3.14644 0.1575 2.9 0.723846 0.861559 13.9 2.51425 1.02459 41.169 0.7 

3.47193 0.10375 2.2 0.625882 0.609079 6 2.38974 1.62877 10.6 0.8 

3.24644 0.1425 2 0.665882 0.753595 5.1 2.2765 1.48705 17.789 0.7 

3.03935 0.1725 2.1 0.535882 0.346899 2.5 1.84278 1.26439 7.375 0.6 

3.49145 0.11375 6.55 0.623703 0.497268 5.45 2.70925 1.68705 22.8772 1.25 

3.72193 0.0925 1.9 0.712941 0.723194 5.1 3.10583 1.45485 25.3895 0.7 

3.78418 0.08 7.3 0.471493 0.436944 9.6 2.73589 1.37168 22.716 1.7 

3.82193 0.0775 4.3 0.509729 0.748538 15.1 2.65754 1.65754 81.888 1.1 

3.52193 0.1 5.9 0.562 0.79055 13.5 2.45754 1.49658 99.2 1.1 

2.51096 0.28375 0.05 0.675 0.257842 0.95 1.26439 0.620064 5.47675 0.05 

2.82193 0.205 0.5 0.67 0.816054 4.3 1.85754 1.10656 7.912 0.3 

4.02193 0.0675 1.95 0.585 0.7181 5.95 3.08974 1.72552 20.8072 0.85 

3.02193 0.1975 1.15 0.645 0.573023 2.45 1.83108 1.20657 4.347 0.45 

3.3087 0.1425 2.1 0.575882 0.267355 4.5 2.00157 1.49658 4.4 0.7 

3.23418 0.12875 0.2 0.55 0.671887 1.5 1.87151 0.982787 1.7625 0.2 

3.34145 0.1325 1.4 0.672941 0.457386 4.6 2.32877 1.48705 4.124 0.6 

3.29145 0.13375 2.8 0.625882 0.470553 4.3 2.37151 1.68705 8.461 0.9 

2.98418 0.2025 1.15 0.685 0.370156 4.35 1.89103 1.40101 2.73525 0.55 

3.34644 0.135 1.4 0.63 0.520711 6 2.19815 1.47095 6.8 0.6 

2.36096 0.29 0.1 0.25 0.481183 0.8 1.09658 0.796578 2.812 0.1 
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2.92821 0.15 0.7 0.57 0.359732 3.8 1.76383 1.38205 1.972 0.5 

3.04644 0.1625 2.5 0.646923 0.691004 11.4 2.31425 1.33876 16.544 0.8 

1.91664 0.4425 0.6 0.83 0.58106 3.5 1.50055 0.668087 2.9375 0.3 

3.72193 0.0925 3.65 0.648846 0.666906 9.75 2.98974 1.53876 27.8813 0.95 

2.26924 0.33375 0.2 0.66 0.577181 2.5 0.884918 0.620064 1.275 0.1 

3.53418 0.10375 1.05 0.535 0.829495 8.55 2.08761 1.26114 40.6167 0.45 

4.02193 0.0675 3.55 0.478846 0.707253 9.15 2.5198 1.57706 35.283 1.05 

2.27095 0.3775 0.55 0.795 0.636488 2.75 1.75485 1.10294 3.60938 0.35 

3.72193 0.0925 2.4 0.6 0.765574 5.3 2.75199 1.3493 19.901 0.9 

2.9537 0.14875 0.55 0.645 0.322429 1.95 1.73722 1.21711 1.387 0.35 

2.29644 0.26875 0.45 0.495 0.906333 3.15 1.61767 1.06669 9.1585 0.25 

4.02193 0.0675 18.95 0.515344 0.759781 20.45 3.30583 1.90712 242.837 2.75 

3.72193 0.0925 6.55 0.601549 0.796353 13.85 2.88974 1.68705 165.945 1.35 

3.88418 0.0775 49.8 0.56428 0.352737 24.4 2.91425 1.79103 116.904 3.2 

3.44644 0.1325 6.55 0.651549 0.841189 14.35 2.83034 1.65485 215.731 1.35 

3.82193 0.0875 26.15 0.53463 0.687957 20.55 3.10583 2.04487 180.532 3.15 

3.88418 0.0775 21.05 0.48564 0.42076 18.15 2.95199 2.06327 56.0852 2.85 

3.47193 0.10375 18.35 0.464362 0.558204 13.05 2.35754 1.53108 73.387 2.35 

3.44644 0.1325 5.3 0.626652 0.306483 9.7 2.41425 1.68705 11.001 1.1 

3.87193 0.07375 5.5 0.618585 0.869661 16.6 3.08974 1.68705 89.584 1.2 

3.82193 0.0875 18.95 0.465344 0.68552 23.05 2.88974 1.92552 167.517 2.75 

4.02193 0.0675 136.2 0.501443 0.447374 32 3.05199 1.62877 397.2 7.2 

4.02193 0.0675 119.7 0.501954 0.426449 26.9 3.16809 1.84487 320.51 7.2 

4.02193 0.0675 134.25 0.503335 0.259124 18.85 3.10583 2.04487 233.361 7.15 

4.02193 0.0675 104.15 0.504169 0.334381 16.45 2.91425 1.92877 210.887 5.65 

4.02193 0.0675 102.05 0.50212 0.405742 30.75 2.98974 1.92877 260.731 6.15 

3.29145 0.12375 32.55 0.460799 -0.12179 4.25 2.04487 1.39888 27.0688 2.45 

3.17095 0.1475 1.5 0.69 0.860315 7.6 2.43876 1.26327 37.764 0.6 

3.88418 0.0775 5.15 0.573941 0.739298 13.65 2.91425 1.72877 60.1953 1.25 

3.88418 0.0775 8.6 0.543765 0.522044 9.9 2.91425 1.72877 32.989 1.7 

4.02193 0.0675 102.05 0.50212 0.405742 30.75 2.98974 1.92877 260.731 6.15 

3.15869 0.14875 0.9 0.702941 0.706859 8.9 2.14431 0.952257 10.648 0.3 

3.13418 0.13375 0.8 0.352941 0.301715 3.4 1.09103 0.746197 11.904 0.2 

3.34644 0.1175 1.3 0.56 0.343693 2.6 1.99106 1.37168 2.926 0.7 

3.54644 0.1075 1.85 0.435 0.231626 4.05 2.08761 1.60503 4.12675 0.75 

3.10161 0.1725 2.75 0.655 0.473159 8.95 2.48551 1.17937 8.04237 0.95 

3.72193 0.0925 54.6 0.504668 0.641824 41.3 2.65754 1.59658 282.772 3.7 

3.62193 0.0975 27.9 0.504342 0.13632 14.1 2.47364 1.64717 39.2685 2.9 

2.77193 0.20875 0.25 0.775 0.827622 2.85 2.08974 0.903967 2.91525 0.25 

2.83418 0.20875 0.3 0.31 0.563934 1 1.29103 1.04829 1.9 0.2 

3.3087 0.1425 0.3 0.61 0.740566 1.4 1.81212 1.02266 2.952 0.2 
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Continue….. 

mean 

SGLD 

VAR 

SGLD 

mean 1 variance 

1 

shkwness kurtosis energy 

1 

entropy 1 class 

0.95 0.785493 11.52 1.84333 0.5829 -0.76874 134.48 40.7290 1 

3.275 2.30502 12.56 6.84 0.464691 -0.9625 92.64 46.2235 1 

2.85 2.64979 11.88 15.5267 1.3646 2.41546 94.6 43.2414 1 

6.3 2.75518 15.76 15.8567 0.49688 0.240831 79.28 63.3856 1 

1.575 1.02384 10.64 3.32333 0.517012 -0.43105 116.4 36.5099 1 

1.725 1.05025 10.56 2.92333 0.478094 -0.18363 114.32 36.0985 1 

1.4 1.82921 10.88 8.02667 0.581151 -1.1381 95.36 37.9602 1 

4.475 3.0231 13.36 10.1567 -1.13125 1.22779 126.8 50.575 1 

2.95 1.35176 11.6 2.16667 -0.75253 0.625051 136.64 41.1534 1 

2.55 1.73118 10.56 4.25667 -0.62863 -1.02093 115.6 36.2051 1 

1.575 1.08182 7.84 1.39 -0.14364 -1.23833 62.8 23.4161 1 

1.825 0.909859 7.04 1.29 -0.07417 0.632893 50.8 19.9511 1 

1.25 0.728869 6.52 0.76 -0.42077 -0.77865 43.24 17.7187 1 

1.75 1.40535 7.72 3.04333 -0.30964 -1.36552 62.52 23.0473 1 

2.725 1.76262 10.44 4.50667 -0.25881 -0.96875 113.32 35.6386 1 

2.15 1.28569 14.36 4.40667 0.577754 -0.77135 149 55.4076 1 

3.1 1.46578 10.92 5.91 0.556964 0.005683 104.44 38.0297 1 

1.375 1.34397 9.2 3.25 0.286738 -1.35403 87.76 29.6975 1 

2.175 1.72487 9.44 7.17333 -0.15486 -0.99522 96 31.1258 1 

2.975 1.81365 10.8 4.33333 -0.43634 -1.00343 120.8 37.366 1 

1.95 2.77955 16.92 6.66 -1.46532 1.42639 77.64 69.3449 1 

1.95 1.50225 15.84 7.05667 0.280375 -1.26489 104.08 63.4363 1 

2.55 1.78802 7.84 5.22333 -0.23363 -0.99129 66.48 23.7804 1 

2.25 1.93003 9.68 7.56 0.621558 -1.41711 100.96 32.2202 1 

2.45 1.87009 11.28 5.54333 0.339267 -0.66174 112.08 39.7691 1 

1.125 0.897914 12.16 3.89 1.00666 -0.48331 110.64 44.0367 1 

0.875 1.17593 12.4 2.83333 0.744778 -0.8674 136 45.1938 1 

1.675 1.7256 11.36 5.07333 -0.34888 -1.31317 133.92 40.1476 1 

2.55 1.78802 7.84 5.22333 -0.23363 -0.99129 66.48 23.7804 1 

4.575 3.52913 13.4 17.6667 -0.15643 -1.47222 83.88 51.1284 1 

3.175 1.71474 6.28 22.0433 3.31847 12.2721 40.12 18.2955 1 

2.725 1.48804 12.04 4.04 -0.22973 -0.62883 148.84 43.4592 1 

1.85 0.886143 18.16 1.64 0.400049 -0.19669 75.36 76.0197 1 

2.65 1.5884 18.84 3.05667 -0.61889 -0.54347 122.36 79.9161 1 

0.725 0.66844 18 0.833333 0.630976 -0.4656 68.8 75.0904 1 

1.05 0.988433 12.92 2.91 0.602523 -0.8685 128.76 47.8472 1 

0.75 1.06507 12.64 2.49 -0.64434 -1.31636 162.16 46.4024 1 

2.2 1.45808 11.64 2.82333 -0.35964 -1.41194 138.2 41.3895 1 



94 
 

2.225 1.49639 12.72 2.87667 -0.46286 -0.45197 164.56 46.8314 1 

2.125 0.841316 12.48 1.01 -0.77516 -0.2971 156.72 45.5039               1 

3.4 2.69778 107.56 14.9233 0.122049 -0.90224 135.16 726.018        2 

8.2 5.68982 104.36 54.9067 -0.04713 -0.63527 79.08 700.144 2 

9 6.52687 112.68 54.81 -0.28019 -1.62681 103 768.376 2 

4.825 2.78571 91.12 27.0267 0.323817 -1.00499 116.32 593.368 2 

4.65 4.25032 92.4 40 0.804862 -0.20767 117.92 603.65 2 

6.575 3.91474 102.84 16.0567 -0.36862 -0.57109 156.92 687.518 2 

7.5 3.25768 83 13.4167 -1.04998 0.26343 123 529.242 2 

7.5 6.29782 86.2 67.5 0.173455 -1.37146 142.92 554.773 2 

6.925 2.60265 88.92 10.91 -0.07897 -0.44693 124.6 575.792 2 

6.025 4.41409 95.96 23.7067 -0.27194 -1.27262 148.2 632.007 2 

1.1 1.09453 75.76 2.27333 0.042344 -1.47877 120 473.018 2 

5.6 3.87995 82.04 22.7067 0.00281 -1.08511 157.8 521.823 2 

2.025 1.97464 66.76 8.69 0.225642 -1.62039 92.76 404.716 2 

4.25 2.61367 77.08 9.32667 -0.19904 -0.91014 113.48 483.244 2 

4.25 2.85044 76.24 14.7733 -0.12935 -1.07971 82.08 476.823 2 

5.4 4.01148 86.68 21.31 -0.72305 -0.42943 140.6 558.186 2 

4.475 3.11315 77.4 19.25 0.332468 -0.77693 80.28 485.799 2 

4.825 4.54535 72.88 25.9433 -0.46338 -1.60206 134.48 451.191 2 

2.325 2.45094 69.32 7.81 -0.87741 -0.63697 71.64 423.985 2 

5.75 2.99583 75.36 13.3233 -0.95864 -0.52843 131.6 470.049 2 

1.075 1.65106 72.48 3.76 -1.25478 0.26237 116.48 447.927 2 

5.15 3.0619 71.6 16.9167 0.026906 -0.44736 145.68 441.355 2 

1.225 1.01202 68.56 3.00667 0.202408 -1.44836 126.08 418.198 2 

1.7 1.38185 77.76 3.52333 -0.53691 -0.53994 59.6 488.439 2 

4.775 2.73208 77.6 8.25 -0.74746 -0.20798 100.72 487.246 2 

1.95 2.42428 78.4 12.9167 0.648309 -0.90269 137.84 493.467 2 

1.65 1.46236 77.76 4.35667 -0.32714 -1.3849 80.88 488.446 2 

1.95 1.40259 73.44 2.50667 -0.22719 -1.25665 132.48 455.241 2 

8.75 5.15085 71.8 31.6667 -0.27044 -1.2395 137.32 443.021 2 

2.175 2.00629 70.92 9.24333 0.141277 -1.63798 154.04 436.115 2 

2.35 1.73245 79.88 5.77667 0.895862 0.783384 109.24 504.872 2 

2.95 1.92009 77.68 12.6433 0.364905 -1.25034 127.6 487.902 2 

3.1 2.48355 74.24 15.5233 0.377633 -0.96379 150.48 461.481 2 

0.175 0.657362 72.8 10.25 0.393464 -1.76106 56.56 450.428 2 

2.825 1.54925 74.48 3.26 -0.29515 -0.61413 174.4 463.205 2 

4.5 1.5411 73.12 3.52667 -0.74599 0.450792 148 452.807 2 

0.7 1.03102 73.16 4.05667 0.289642 -1.57768 144.12 453.117 2 

5.875 3.38448 67.96 10.8733 -1.15766 0.173649 92.68 413.759 2 

1.45 1.27955 72.88 2.61 0.527385 -0.955 173.52 450.966 2 
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3.45 2.89426 76.88 14.36 -0.01682 -1.26968 138.72 481.747 2 

2.15 1.2661 75.04 2.37333 -0.32642 -1.37217 124.16 467.49 2 

0.95 1.03296 77.6 2.33333 0.323215 -1.47419 105.28 487.193 2 

2.3 1.18406 72.36 4.15667 0.378037 -0.59768 150.68 447.016 2 

1.2 1.03053 74.24 2.44 -0.32018 -0.84354 148.16 461.359 2 

2.825 2.10909 76.76 12.3567 0.522943 -0.91978 118.36 480.804 2 

1.7 1.84201 70.48 5.09333 -0.32986 -1.52643 128.8 432.737 2 

1.4 1.68938 76.52 5.34333 -0.38398 -1.51532 126.04 478.893 2 

4.375 3.0611 80.32 11.7267 -0.10658 -1.37813 144.48 508.341 2 

1.575 1.86984 74.6 6.5 0.706744 -0.69554 93 464.154 2 

1.525 1.28518 73.96 2.95667 -0.2241 -1.60094 137.88 459.221 2 

0.75 0.810093 72.16 0.89 -1.1603 0.549572 118.64 445.461 2 

2.1 2.35701 91.72 10.71 -0.50048 -1.10616 118.2 598.019 2 

2.4 2.09189 91.48 6.76 0.008211 -1.37588 152.36 596.078           2 

4.375 3.81997 160.56 29.5067 -0.03846 -1.02398 125.92 1176.55 3 

4.8 2.73934 120.08 11.7433 -0.57815 -1.0435 74 829.563 3 

7.55 4.64187 125.36 34.9067 -0.10414 -0.84037 40.48 873.944 3 

6.75 5.12591 124.24 45.1067 -0.22338 -1.10523 57.44 864.589 3 

0.475 1.17545 117.28 20.0433 0.876541 -1.02395 134.16 806.278 3 

2.15 1.45017 113.12 2.77667 -0.8043 -0.70739 142.16 771.689 3 

1.9 0.817313 120.6 1.08333 -0.89395 0.683668 55.8 833.845 3 

5.7 2.18197 137.56 5.34 -1.65868 2.37895 96.52 977.242 3 

1.75 0.940412 138.96 1.37333 0.37172 0.797922 121.44 989.197 3 

4.875 2.80763 145.04 12.54 0.260223 -0.70154 118.08 1041.49 3 

1.25 0.607248 138.92 0.493333 -0.59399 0.598963 119.72 988.851 3 

4.275 3.22749 136.96 10.9567 -1.11775 -0.38427 90.8 972.145 3 

4.575 3.11581 133.8 15.4167 -0.14194 -1.59196 48.44 945.234 3 

1.375 1.01973 139.68 2.06 1.3567 1.12598 128.16 995.367 3 

2.65 2.3612 142.48 9.76 0.577127 -0.81048 137.12 1019.44 3 

0.975 0.695881 136.68 1.56 0.590471 -0.54191 76.84 969.706 3 

1.575 1.54988 134.52 3.26 -0.92809 -0.74059 45.64 951.299 3 

10.225 8.08992 176 86.4167 0.552398 -0.82994 82.96 1313.2 3 

6.925 6.56687 173.88 81.0267 0.915492 -0.41889 83.56 1294.32 3 

12.2 6.4557 166 64 -0.52125 -0.19336 112.8 1224.53 3 

7.175 7.45455 172.92 76.2433 0.980879 -0.38839 83.96 1285.78 3 

10.275 7.18823 181.88 67.5267 0.15689 -1.28179 110.92 1365.6 3 

9.075 4.39133 190.32 29.8933 -0.76298 -0.63882 113.44 1441.27 3 

6.525 4.78897 186.88 31.11 -0.45878 -1.4877 127.76 1410.31 3 

4.85 2.01872 178.32 15.1433 1.28715 2.02897 140.24 1333.59 3 

8.3 4.87555 173.92 31.91 -0.48158 -0.91382 122 1294.49 3 

11.525 6.82765 178.24 77.2733 0.377836 -0.76438 99.68 1333.12 3 
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16 11.5477 194.08 198.993 0.044142 -1.54167 113.44 1475.82 3 

13.45 10.4906 185.16 172.473 0.437759 -1.13245 135.56 1395.38 3 

9.425 9.5866 180.16 152.307 0.742376 -0.96946 143.04 1350.54 3 

8.225 8.87464 177.2 169.583 1.04349 -0.50118 146.32 1324.2 3 

15.375 9.52341 178.2 181.75 0.526829 -0.58019 134.52 1333.16 3 

2.125 3.86066 165.96 67.8733 0.499767 -1.53153 113.48 1224.18 3 

3.8 3.13305 162.76 14.7733 -0.0228 -1.38603 85.8 1195.8 3 

6.825 4.04182 158.36 21.3233 -0.1141 -1.22918 102.52 1157.24 3 

4.95 3.22448 157.2 37.5 1.39084 1.8745 100.16 1147.17 3 

15.375 9.52341 178.2 181.75 0.526829 -0.58019 134.52 1333.16 3 

4.45 1.69912 112.92 3.32667 -1.27119 1.95622 138.44 770.04 3 

1.7 1.78213 117.16 5.55667 -0.31184 -0.32761 112.6 805.196 3 

1.3 1.02786 116.72 2.29333 0.458192 -0.60039 129.44 801.519 3 

2.025 1.22237 117.72 4.96 0.164911 -0.9776 110.44 809.85 3 

4.475 1.64259 119.92 4.41 -0.57266 0.479015 69.52 828.184 3 

20.65 9.18384 111.8 108.25 -1.1262 0.287996 110.36 761.473 3 

7.05 4.09782 112.8 22.9167 -0.55961 -1.41095 109.68 769.17 3 

1.425 0.889558 111.8 1.33333 0.374115 -1.092 89.64 760.782 3 

0.5 0.74162 113 1.41667 -0.71167 -1.1265 154.68 770.689 3 

0.7 0.901665 113 3.91667 0.526363 -1.34684 105.88 770.704 3 

  

Table 5.2: classification coefficient generated using selected feature of calculated texture by 5x5 

window: 

Classification 

Function Coefficients 
Class 

CSF Gray and White TUMOR 

IDM 65.396 59.654 65.248 

IMC2 16.326 22.609 27.512 

VARSGLD 3.157 1.748 .216 

mean1 .060 .511 .886 

variance1 -.173 -.255 -.274 

energy1 .111 .123 .102 

(Constant) -33.333 -52.863 -93.203 
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Table 5.3: classification result (accuracy) generated using selected feature of calculated texture 

by 5x5 window: 

Classification 

Results 
Class Predicted Group Membership Total 

CSF GW TUMOR 

Original Count CSF 50 0 0 50 

GW 0 80 0 80 

TUMOR 0 3 66 69 

% CSF 100.0 .0 .0 100.0 

GW .0 100.0 .0 100.0 

TUMOR .0 4.3 95.7 100.0 

a. 98.5% of original grouped cases correctly classified. 

 

Table 5.4: classification result (accuracy) generated using selected feature of calculated texture 

by 10x10 window: 

Classification Results 

  Class Predicted Group Membership Total 

  CSF TUMO GW 

Original Count CSF 75 0 0 75 

TUMO 0 69 1 70 

GW 0 1 79 80 

% CSF 100.0 .0 .0 100.0 

TUMO .0 98.6 1.4 100.0 

GW .0 1.3 98.8 100.0 

a. 99.1% of original grouped cases correctly classified. 

 

 

Table 5.5: classification coefficient generated using selected feature of calculated texture by 

10x10 window: 

Classification Function Coefficients 

 Class 

CSF TUMO GW 

Sum entropy 20.846 2.543 7.939 

mean1 14.667 47.996 43.363 

energy1 .422 .503 .565 

entropy1 -1.754 -5.567 -5.064 

(Constant) -114.902 -602.564 -501.084 

Fisher's linear discriminant functions 
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Fig. 5.1: Classification map generated by using of selected texture from 15x15 window size 

 

 

Table (5.6) Classification result and accuracy of 20x20 window size 

 

Classification Results 

  class Predicted Group Membership Total 

  CSF GW TUMOR 

Original Count CSF 60 0 0 60 

GW 0 80 0 80 

TUMOR 0 4 66 70 

% CSF 100.0 .0 .0 100.0 

GW .0 100.0 .0 100.0 

TUMOR .0 5.7 94.3 100.0 

a. 98.1% of original grouped cases correctly classified. 

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is 

classified by the functions derived from all cases other than that case. 

c. 98.1% of cross-validated grouped cases correctly classified. 
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Fig. 5.2: Classification map generated by using of selected texture from 20x20 window size 

 

 

Table (5.7) Classification result and accuracy of 20x20 window size 

 

Classification Result 

  class Predicted Group Membership Total 

  CSF GW TUMO 

Origina

l 

Coun

t 

CSF 79 0 0 79 

GW 0 78 2 80 

TUMO 0 7 63 70 

% CSF 100.0 .0 .0 100.0 

GW .0 97.5 2.5 100.0 

TUMO .0 10.0 90.0 100.0 

a. 96.1% of original grouped cases correctly classified. 
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Fig. 5.3. Demonstrate a heterogeneous brain mass [A] GTV definition based on tumor intensity profile, 

[B] Classification map based on intensity of brain tissue, [C] the original FLAIR image, [D] tumor margin 

drown by algorithm generated IDL program that can be used as radiotherapy GTV.  
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Appendix (B) 

Published Paper Attached Here: 


