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Abstract: 
 
The exchange rate is one of the macro-economic variables that have an impact 

on macroeconomic with its different sectors and the Exchange rate policy is one 

the most important policies that adopted by some countries to solve some of the 

economic problems. 

Therefore we must stand on timeline impact of the exchange rate in Sudan and 

build a predictive model for predicting exchange rates in Sudan. It requires 

finding suitable models to the nature of commercial time-series data. We must 

judge these models that they can represent the data, in this research we apply 

the Autoregressive conditional models conditioned by non- Homogenization on 

the exchange rates in Sudan to provide a predictive model 

Data collection was based on the monthly readings of exchange rates in Sudan 

in the period from 1/1/1999 to 31/12/2013  

Issued by the Central System of Statistics and the Bank of Sudan 

Where he used a form of GARCH symmetric and asymmetric models to predict 

the best model in addition to the ARIMA and Autoregressive conditional 

Heteroskedasticity models conditioned by non - Homogenization Using the 

normal distribution and distribution of (t-student). 

1- The summary statistics indicate that the returns series have monthly 

positive mean (0.0051) while the volatility is (0.013) without loss of 

generality the mean grows at linear rate while the volatility grows 

approximately at square root rate. 
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2- The returns series of the exchange rate shows positive skewness this 

implies that the series of exchange rate is flatter to the right 

3- The kurtosis value is the higher than the normal and this suggest that the 

kurtosis curve of the exchange rate return series is leptokurtic. 

4- The coefficient in the condition variance equation GARCH(1,1) the α 

significant and β not significant and the (α+β) is greater than one 

suggesting that the condition variance process is explosive. 

5- The coefficient (risk premium) of in the mean equation is positive of the 

market which indicate the mean of the return sequence depend on past 

innovation and the past conditional variance. 

6- The estimation of EGARCH(1,1) model for return series of exchange rate 

the γ is negative and significant meaning that return series have 

asymmetry and has greater impact of negative shocks indicate that the 

conditional variance has leverage effect and asymmetry of negative 

shocks. 

7- The result indicate that the forecasting performance of the GJR-

GARCH(1,1) and DGE-GARCH(1,1) models especially when fat-tailed 

asymmetric conditional distribution are taken into account in the 

conditional volatility is better than the GARCH(1,1) model. 

8- However the comparison between the models with normal and student-t 

distribution shows that according to the different measures used for 

evaluating the performance of volatility forecasts the DGE-GARCH(1,1) 

model provides the best forecasts. 

9- It is a found that the student-t distribution is more appropriates for 

modeling and forecasting exchange rate return volatility. 
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مستخلصال  

عهي الالحصاد انكهي تمطاعاجّ  جأثيشانكهية ٔانحي نٓا  لالحصاديةااٌ سعش انصشف يٍ انًحغيشات   

 الالحصاديةانًخحهفّ ٔسياسة سعش انصشف يٍ اْى انسياسات انحي جحثُاْا انذٔل نعلاج تعض انًشاكم 

اٌ ٔتُاء ًَٕرج جُثؤئي ٔتانحاني كاٌ لاتذ يٍ انٕلٕف عهي الاثش انضيُي عهي سعش انصشف في انسٕد

 انحداسية انضيُيةٔنهحُثؤ تاسعاس انصشف في انسٕداٌ يحطهة ايداد ًَارج يُاسثّ نطثيعة تياَات انسلاسم 

ٔفي ْزِ انثحث َطثك ًَارج الاَحذاس  .جًثم انثياَاتاٌ ْٔزِ انًُارج لاتذ اٌ َحكى عهيٓا تآَا يًكٍ 

 ف في انسٕداٌ نحمذيى ًَٕرج جُثؤئي.اجي انًششٔطّ تعذو انحداَس عهي اسعاس انصشزان

 1/1/1999انصشف في انسٕداٌ في انفحشِ يٍ  لاسعاس انشٓشيةت اجى خًع انثياَات تالاعحًاد عهي انمشاء

و انصادسِ يٍ اندٓاص انًشكضي نلاحصاء ٔتُك انسٕداٌ 31/12/2013ححي   

رج تالاضافة نًُارج اسيًا انًحًاثهّ ٔانغيش يحًاثهّ نهحُثؤ تأفضم ًَٕ GARCHحيث اسحخذيث ًَارج 

 سحيٕدَث( -ٔالاَحذاس انزاجي انًششٔط تعذو انحداَس تاسحخذاو انحٕصيع انطثيعي ٔجٕصيع )ت

 انُحائح :

َحائح الاحصاءات انٕصفيّ جشيش اني اٌ سهسهة عٕائذ اسعاس انصشف انشٓشيّ يٕخثّ  -1

انحمهثات جًُٕ جمشيثاً ( ٔاٌ انًحٕسظ يًُٕ تًعذل خطي ايا 0.013( تيًُا انحمهثات )0.0051ب)

 تًعذل اندزس انحشتيعي

يٍ خلال ليًة الانحٕاء اٌ سهسهة عٕائذ اسعاس انصشف جًيم اني اندّٓ انيًُي ٔاٌ ليًة انحفشطح  -2

 اكثش يٍ انميًّ الاعحياديّ نهحٕصيع انطثيعي يًا يذل عهي اٌ شكم انسهسهّ يحذب

غيش يعُٕية  βُٕية احصائياً تيًُا يع αنهًعهًة  GARCH(1,1يعايم يعادنة انحثايٍ انششطي ) -3

 ٔيدًٕع انًعهًحاٌ اكثش يٍ انٕاحذ ٔ رنك يذل عهي اٌ عًهية انحثايٍ انششطي لاتهّ نلاَفداس

يعايلات )انخطش الاتحذائي ( في يعادنة انًحٕسظ يٕخثة نسٕق اسعاس انصشف ٔجشيش اني اٌ  -4

 ششطي سهسهة عٕائذ سعش انصشف جعحًذ عهي اتحكاس انًاضي ٔانحثايٍ ان

ليًحٓا سانثّ ٔيعُٕية يًا يذل عهي ٔخٕد  γَدذ اٌ انًعهًة   EGARCH(1,1)تحمذيش ًَٕرج  -5

 انصذيات انسانثّ نسٕق اسعاس انصشف في انسٕداٌ
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خاصةً GJR-GARCH(1,1)  ٔDEG-GARCH(1,1)انُحائح جشيش اني اٌ انحُثؤ تًُٕرخي  -6

 GARCH(1,1)تحٕصيع سًيك انضيم غيش انًحًاثم افضم يٍ ًَٕرج 

سحيٕدَث نهحُثؤ تحمهثات  -نهحٕصيع انطثيعي ٔجٕصيع ت GARCHعُذ انًماسَة تيٍ ًَارج  -7

 افضم ًَٕرج نهحُثؤ DEG-GARCH(1,1)الاسعاس َدذ اٌ ًَٕرج 

 سحيٕدَث ْٕ افضم جٕصيع نًُارج انحُثؤ تحمهثات اسعاس انصشف في انسٕداٌ -اٌ جٕصيع ت -8
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1-1 Introduction: 

The economic crisis has had a differentiated impact on the world economies and 

on their trade, thereby changing trade patterns significantly in some cases. In the 

context of low employment related to recession, some policy makers are 

wanting to stimulate their exports, thereby hoping to improve their trade and 

current account balances Policy makers interested in implementing such 

policies have taken a closer look at exchange rate movements. Simply stated, 

depreciation of a country‟s currency makes its exports cheaper and its imports 

more costly. In the reality of a globalised economy, however, industries are 

vertically integrated, and exported products contain a large proportion of 

imported components. Imported components therefore become more costly 

for any given exporter and are not necessarily substitutable with domestically-

produced products. 

In addition, exchange rate levels have important implications for debt servicing 

and foreign investment flows. A depreciation in a country‟s currency implies 

that the nominal value of debt denominated in foreign currencies increases 

relative to the country‟s resources in local currency whereas its local-currency 

denominated debt decreases in value for foreign creditors. Capital investments 

become cheaper to foreign investors when the currency is depreciated, which is 

particularly important for large conomies that attract capital investments like the 
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United States and, to a lesser extent, the European Union? If depreciation is the 

result of a loss of confidence in the economy, however, foreign investors may 

be more hesitant to invest. Exchange rate changes affect firms within a given 

country differently. 

 Firms face a number of risks when engaging in international trade, in particular 

economic and commercial risks that are determined by macroeconomic 

conditions over which they have little control, such as exchange rates and their 

volatility. Risk management tools are available to help firms mitigate the impact 

of such risks, especially in the short term.These techniques for securing 

exchange rate risk are sometimes complex, however, and do not cover all 

commercial and financial operations. Besides, such tools may not be available 

to all firms, and the cost of using them may be significant, especially for small 

firms and in situations of high volatility. 

 

 There has been considerable volatility (and uncertainty) in the past few years in 

mature and emerging financial markets worldwide. Most investors and financial 

analysts are concerned about the uncertainty of the returns on their investment 

assets, caused by the variability in speculative market prices (and market risk) 

and the instability of business performance (Alexander, 1999). Recent 

developments in financial econometrics require the use of quantitative models 

that are able to explain the attitude of investors not only towards expected 

returns and risks, but towards volatility as well. Hence, market participants 
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should be aware of the need to manage risks associated with volatility. This 

requires models that are capable of dealing with the volatility of the market (and 

the series). Due to unexpected events, uncertainties in prices (and returns) and 

the non-constant variance in the financial markets, financial analysts started to 

model and explain the behavior of exchange rate returns and volatility using 

time series econometric models. One of the most prominent tools for capturing 

such changing variance was the Autoregressive  Conditional Heteroskedasticity 

(ARCH) process is based on the assumption that the recent past gives 

information about one period forecast variance. In (1982) Engle proposed a 

volatility process with time varying conditional variance, which is 

Autoregressive Conditional Heteroskedasticity (ARCH) process.  Four years 

after Engel‟s introduced the ARCH process, Bollerslev 1986, proposed the 

Generalized ARCH (GARCH) models as a natural solution to the problem with 

the high ARCH orders, these models are based on an infinite ARCH 

specification and it allows to dramatically reducing the number of estimated 

parameters from an infinite number to just a few. In ARCH / GARCH models 

the conditional variance is expressed as a linear function of past squared 

innovations and earlier calculated conditional variances.  

The usual assumptions of linear models are the disturbance terms    distributed 

as a normal distribution with mean zero, constant variance and      are 

uncorrelated, i.e.          , E(          
       (    )          

 ). This research will briefly consider the case when the disturbance terms    are 
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vary over time, which means the errors      doesn't have an equal Variance 

(Heteroskedasticity) which, can be caused by incorrect specification or use of 

the wrong functional form. Many economic time series exhibit periods of 

unusually large volatility followed by periods of relative tranquility, common 

examples of these such as a series include stock prices, foreign exchange rates 

and other prices determined in financial markets are known as their variance is 

seems to be vary over time.  

This research aims at modelling and forecasting exchange rate volatility in the 

Sudan using Generalized Autoregressive Conditional Heteroskedasticity 

GARCH models as well as understanding exchange rates behavior to monetary 

policy and international trade. 

1-2 Exchange Rate in the Sudan: 

Since independence Sudan has experienced poor economic performance 

attributed to external as well as domestic factors particularly Policy failure and 

resource mismanagement. However the economic performance has improved 

since early 1990s when the government initiated the three -year national 

economic salvation (NESP 1990-1992) and the comprehensive national strategy 

(CNS 1992-2000) programs. The programs focused on key issue such as 

liberalization of trade and foreign exchange regimes sound monetary and fiscal 

policies phrasing out of price controls and privatization of public corporations 

(UN 2003) 
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Exchange rate is defined as the rate at which one native currency unit exchanges 

for one unit of internationality traded currency.  

Exchange rate policy is one of the most important price policy tools and it is 

directly linked to the current account situation of the country. 

 In 1990 Sudan adopted a policy of a floating exchange rate the multiple and 

highly over valued exchange rate was replaced by a unified exchange rate.  

  In 1992-1993 the exchange rate began to revalue and the government   re 

introduced the multiple exchange rate system. 

Accordingly there were three exchange rates an exchange rate for exports 

determined by the Bank of Sudan and exchange rate for imports determined by 

committee of government banks representatives an exchange rate for individual 

foreign accounts determined by three markets  

1-3 Real Exchange Rate:  

The real exchange rate is the critical variable (along with the rate of interest) in 

determining the capital account. As we shall see, this is because the real 

exchange rate is the relative price of goods across countries. Hence changes in 

the real exchange rate affect the competitiveness of traded goods. 

The nominal exchange rate is refered to the SDG price of foreign exchange.  As 

with most variables in economics we distinguish between the nominal and real 

values, the real exchange rate measures the cost of foreign goods relative to 

domestic goods. It gives a measure of competitiveness, and it is a useful 

variable for explaining trade behavior and national income. 
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1-3-1 Definition 

The real exchange rate Q can be divided by: 

               Q =
   

 
 

Where   is the price level in the foreign country. An appreciation of the 

real exchange rate indicates that the foreign price (in Sudanese pound SDG) of a 

bundle of goods has risen relative to the domestic price. If the real exchange 

rate appreciates it means that the real value of the SDG has depreciated; that is, 

the purchasing power of the SDG has fallen in relative terms. Notice that to 

define the real exchange rate we need to specify the price levels. If the baskets 

of goods in the domestic and foreign countries were the same this would be 

straightforward; in practice, they are not.  We typically use some broad measure 

of the price level, such as the GDP deflator or the CPI. It should be noted that 

this means that P will place a relatively heavy weight on goods produced and 

consumed domestically, while P* will likewise place a relatively heavier weight 

on goods produced in the foreign country.  

1-4 Research Problems: 

Forecasting exchange rate in the Sudan requires finding models that reasonably 

represents it. In the literature several methods for constructing a financial time 

series models were suggested. However the suitability of any of these methods 

to a given time - series data has to be judged on the basis of its fit to that data.  
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1-5 Objectives Research: 

The primary objective of the study is to fit appropriate GARCH model to 

estimate volatility of exchange rate in the Sudan. The study aims at: 

• To investigate the volatility pattern of emerging Sudan stock market 

using symmetric and asymmetric models 

• To identify the presence of leverage effect in monthly return series of 

stock market using asymmetric models 

• To analyse the appropriateness of Generalized Autoregressive Conditional 

Heteroskedastic (GARCH) family models that capture the important facts about 

the index returns and fits more appropriate 

1-6 Research Hypotheses: 

This research examines the relative ability of various ARCH / GARCH models 

to construct accurate predictions for exchange rate volatility in the Sudan.  

The null hypotheses that there are no significant difference when using 

Autoregressive Conditional Heteroskedasticity models such as ARCH, 

GARCH, IGARCH, GARCH-M, EGARCH,PGARCH and TGARCH models 

when each is used to forecast the exchange rate volatility in the Sudan.  

Against the alternative hypotheses that there are a significant difference when 

using Autoregressive Conditional Heteroskedasticity models such as ARCH, 
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GARCH, IGARCH, GARCH-M, EGARCH,PGARCH and TGARCH models 

when each is used to forecast the exchange rate volatility in the Sudan. 

1-7 Research Data: 

Monthly readings of Exchange rate in the Sudan covered the period from 

01/01/1999 to 31/12/2013 will use in the analysis of this research. The data 

obtained from Central Bureau of Statistics, Bank of Sudan and Khartoum stock 

market. 

1-8 Research Methodology: 

In this study we briefly present the models specification, conditional 

distributions and forecasting criteria‟s as well as data set we use to model the 

SDG/US Dollars Exchange rate returns volatility in the Sudan economy. This 

article analyses the volatility of the Sudan exchange rate using various volatility 

models such as Autoregressive Integrated Moving Average (ARIMA), GARCH 

(1,1), GARCH-M (1,1), which will be used for testing symmetric volatility and 

EGARCH(1,1), TGARCH(1,1) and PGARCH (1,1) for modelling asymmetric 

volatility these models will be shortly discussed and GARCH, the Glosten, 

Jagannathan and Runkle (GJR) GARCH, Asymmetric Power Autoregressive 

conditional Heteroskedasticity APARCH model of Ding et.al (1993) as well as 

the conditional distributions such as normal and Student-t distributions. In this 

study three different criteria‟s, Mean Squared Error (MSE), Mean Absolute 
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Error (MAE) and Adjusted Mean Absolute Percentage Error (AMAPE) are used 

to evaluate the forecasting performance for the conditional Heteroskedasticity 

models. 

1-9 Research Organization: 

This research will be organized as follows: chapter one devoted to presenting 

problem, objective and the organization of the research. Chapter two devoted to 

review the basic concept of time series models and some other statistical 

methods. Chapter three devoted to review the characteristics of validity, 

structure of a model, volatility models that includes Autoregressive Conditional 

Heteroskedasticity models family for instance ARCH, GARCH, IGARCH, and 

GARCH-M, EGARCH models, describing the estimation methods of volatility 

models such as maximum likelihood estimation and models evaluation criteria. 

Chapter four will tackle the analysis and evaluate the data so as to estimate, test 

and forecasting the future values of Exchange rate. And finally the last chapter 

will sum up the findings of the research and point out some assumptions of 

future research in forecasting volatility of Exchange rate. 

1-10 Literature Review: 

To capture the volatility in financial time series, a comprehensive empirical 

analysis of the returns and conditional variance of the financial time series have 
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been carried out using autoregressive conditional Heteroskedasticity models. 

Bellow a literature review of these studies: 

Sharaf Obaid, Abdalla Suliman(2013).Estimating Stock Returns Volatility of 

Khartoum Stock Exchange through GARCH Models this study modeled and 

estimated stock returns volatility of Khartoum Stock Exchange (KSE) index 

using symmetric and asymmetric GARCH family models namelyGARCH (1,1)  

GARCH-M (1,1) EGARCH (1,1) and GJR-GRACH (1,1) models, they carried 

out that  based on daily closing prices over the period from Jan 2006 to Aug 

2010 ,that high volatility processing present in KSE index return series. The 

results also provided evidence on the existence of risk premium and indicate the 

presence of leverage effect in the KSE index returns series our findings indicate 

the student-t is the most favored distribution for all models estimated. 

Mohd Aminal Islam (2013) Estimating Volatility of Stock  Index Returns by 

using Symmetric GARCH Models, this study was utilize Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models to estimate 

volatility of financial asset returns of three Asian markets namely kualalampur 

composite index (KLCI) of Malaysia Jakarta Stock Exchange Composite Index 

(JKSE) of Indonesia and straits Times index (STI) of Singapore. Two 

symmetric GARCH models with imposing names such as the GARCH (1,1) and 

the GARCH-in-Mean or GARCH-M (1,1) are considered in this study. They 

were cover the period 2007-2012 comprising daily Observations of 1477 for 
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KLCI. 1461 for JKSE and 1493 for STI excluding the public holidays we 

choose to apply GARCH models as they are especially suitable for high 

frequency financial market data such as stock returns which has a time-varying 

variance unlike the linear structural models.  

GARCH models are found useful in explaining a number of important features 

commonly observed in most financial time series. 

Ahmed El sheikh M. Ahmed and Suliman Zakaria (2013) 

  Modeling stock Market volatility using GARCH Models Evidence from 

Sudan, they used the Generalized Autoregressive conditional Heteroskedasticity 

Models to estimate volatility (conditional variance). 

In the daily returns of the principal stock exchange of Sudan namely Khartoum 

stock Exchange (KSE) over the period from 2006 to 2010 daily Observations of 

1326 for (KSE). The models include both symmetric and asymmetric models 

that capture the most common stylized facts about index returns such as 

volatility clustering and leverage effect the empirical result show that the 

conditional variance process is highly persistent (explosive process) and provide 

evidence on the existence of risk premium of the KSE index return series which 

support the positive correlation hypothesis between volatility and the expected 

stock returns was findings also show that the asymmetric models provide better 

fit than the symmetric models; which confirms .The presence of leverage effect. 
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These results in general explain that high volatility of index return series is 

present in Sudanese stock market over the sample period. 
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2-1 Introduction: 

Analysis of time series enables us to build a mathematical model that helps in 

explaining past and present behavior of the series. Also it helps in forecasting 

future values of the series. The analysis of time series is used in many 

applications, for instance on the field of economics, business, engineering, 

medicine, agriculture, sales, export, import, stock market analysis, quality 

control, census analysis and environment. There are two types of time series 

models, firstly, univariate time series models, such as, univariate Box-Jenkins 

models and exponential smoothing models, secondly, multivariate time series 

models, such as transfer function and intervention analysis models. Time series 

models have been widely used in the construction of forecasting models, to 

achieve accurate forecasting that helps in development, planning and decision 

making.      

The analysis of time series is of value in many applications such as economic 

forecasting, financial forecasting, sales forecasting, stock market analysis, 

quality control, census analysis and many more. 

2-2 Time series: 

     The time series can be defined as a set of observations that are generated 

sequentially among the time for a specific phenomena any time series is 

associated with an ordered data through ordered times that is data is correlated . 
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we denote    is the time series observations where t = 1,2,3, …, n (n is number 

of observation) 

2-3 Time series objectives: 

There are many objectives of time series analysis, the most representative of 

these are: 

1-To get precise description for the process which generates the time series 

data. 

2-To build a mathematical explanation, demonstration and presentation the 

behavior of the series according to the previous observation. 

3-To use the results of the estimated model of the previous data for speculating 

and forecasting the future values of the series. 

4-To control the process which generates the time series by checking what can 

happens if the model parameters can be changing 

2-4 Time series models:     

According to the number of variables, the time series models are classified as 

follows: 

1- Univariate Time series models, in these kinds of models, the present and past 

values of one time series values are used to construct the model. 

2-Multivariate Time series models, these kinds of models contains more than 

one variable in order to explain the dynamic relationship among the variables 
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including in the model, examples of these models are transfer function models. 

Multivariate time series models and intervention analysis models,   these are 

models similar to regression models that consist of dependent variable and more 

than one independent variables. 

2-5 Analysis of time series: 

A time series     has four basic components, these are: 

General Trend, Seasonal Variations, Cyclical components and Irregular 

components. Any time series can have some or all of the following components: 

1. Trend component (T) 

2. Cyclical component (C) 

3. Seasonal component (S) 

4. Irregular component (I) 

These components may be combined in different ways. It is usually assumed 

that they are either multiplicative or additive models i.e. 

                ……………………...………………………………(2-1) 

               ..………………………………...…………………(2-2) 

To correct for the trend in the first case one divides the first expression by the 

trend (T). In the second case it is subtracted. 
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Below is a brief review about each component. 

2-5-1 Trend component: 

The trend is the long term pattern of a time series. A trend can be positive or 

negative depending on whether the time series exhibits an increasing long term 

pattern or a decreasing long term pattern. If a time series does not show an 

increasing or decreasing pattern then the series is stationary in the mean. The 

general trend of time series is sometimes expressed as a linear, nonlinear and 

exponential equation. 

2-5-1-1 Modeling trend: 

The simple linear function of trend equation of a time series           can be 

expressed as simple linear function as follows: 

                 ,……………….….………………………….(2-3) 

which provides a good description of the trend. The variable t is constructed 

artificially and is called time trend.    is the intercept, it is the value of the trend 

at time; (time = 0),    is the slope; it is positive if the trend is increasing and 

negative if the trend is decreeing. 

In business, finance and economics, linear trends are typically increasing, 

corresponding to growth. 
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Sometimes trend appears nonlinear, or curved like the quadratic trend equation 

which takes the form: 

                        ,….…………...……………...…. (2-4) 

 A variety of different nonlinear quadratic trend shapes are possible, depending 

on the signs of the coefficients. 

Other types of nonlinear trend is the exponential trend or log linear trend, this 

type of trend is very common in business, finance and economics because 

economic variables often display roughly constant growth rates, if the trend is 

characterized by constant growth at rate   , then the trend equation takes the 

form: 

                 ,……………………….…...……………………….(2-5) 

The above equation can be written as an exponential form as follows: 

                        ,……………….……..……...……….(2-6) 

2-5-1-2 Estimating trend models: 

To estimates the various trend models to the data on a time series    by the least 

square regression using statistical software to find out: 

 ̂        
 

∑ [        ]  
     ,………………….……....……………(2-7) 
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Where   denotes the set of parameters to be estimated. A linear trend for 

instance, has 

                 ,…………………..…….………………………(2-8) 

 And 

          

In which the computer finds: 

(  ̂   ̂)        
     

∑ [             ]  
    ,……………...…..……..(2-9) 

Similarly, in the quadratic trend form, the computer find out: 

(  ̂   ̂   ̂)        
        

∑ [                     ]
  

    ,...…….(2-10) 

Moreover the exponential trend can be estimated in two ways. Firstly, estimate 

directly from the exponential representation as follows: 

(  ̂   ̂)        
     

∑ [             ]
  

    ,……………….…...……..(2-11) 

Alternatively, because the nonlinear exponential trend is nevertheless linear in 

logs, it can be estimated by regressing        on an intercept and time, thus to 

find out: 

(  ̂   ̂)        
     

∑ [                 ]  
    ,………….…….…(2-12) 
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The fitted values from the above regression are the fitted values of    , so they 

must be transfer to antilog to get the fitted value of     

2-5-1-3 Forecasting trend: 

Given the linear trend model, which holds for any time t is expressed as:  

                 ,………………….….……….………………(2-13) 

The future values of trend at time t+h, are given from the prediction equation: 

    ̂    ̂    ̂        ,………………….…….…..………..……….(2-14) 

To form confidence intervals, the trend regression error terms are assumed to be 

normally distributed random variable, in which case 95% confidence intervals 

are obtained from the equations: 

    ̂         ,.……….……………………………………………..(2-15) 

Where   is the standard deviation of the disturbance in the trend regression. 

2-5-2 Seasonal component: 

Seasonality occurs when the time series exhibits regular fluctuations during the 

same month (or months) every year, or during the same quarter every year.  
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2-5-2-1 Modeling seasonality: 

A key technique for modeling seasonality is regression on seasonal dummies. 

Lets be the number of seasons in a year, then s=4 for quarterly data, s=12 for 

monthly data and so forth. 

To construct s seasonal dummy variables, each of which indicates the season of 

interest. If there are four seasons i.e. s=4, if               then: 

  =(1,0,0,0; 1,0,0,0; 1,0,0,0; .,.,.,) 

  =(0,1,0,0; 0,1,0,0; 0,1,0,0; .,.,.,.,) 

  =(0,0,1,0; 0,0,1,0; 0,0,1,0; .,.,.,.,) 

  =(0,0,0,1; 0,0,0,1; 0,0,0,1; .,.,.,.,) 

  indicates the first quarter, (it is 1 in the first quarter and 0 otherwise), 

  indicates the second quarter, (it is 1 in the second quarter and 0 otherwise), 

and so on. 

The pure seasonal dummy model is expressed as follows: 

   ∑   
 
          ,………………………..………………………..(2-16) 

where   ‟s are the seasonal factors, they summarize the seasonal pattern over 

the year. In the absence of seasonality, the      are all the same, so the seasonal 

dummies drop from the model, and instead simply an intercept in the usual way. 
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Trend may be included as well, in which case the model is takes the form: 

           ∑   
 
          ,…..…………...…………………….(2-17) 

2-5-2-2 Forecasting seasonality: 

As pure trend models discussed earlier, the construction of h step ahead forecast 

is expressed as follows: 

               ∑   
 
              ,……………..………...….(2-18) 

The confidence intervals of the forecast values are given by: 

    ̂          ,………...…..………………………………………..(2-19) 

where   is the standard error of the regression. 

2-5-3 Cyclical component: 

Any pattern showing an up and down movement around a given trend is 

considered as a cyclical pattern. A cyclical variations is one of the time series 

component, it exist when the data are influenced by the long term variation such 

as economic fluctuates, business cycles, growth periods, drought periods….etc 

2-5-4 Irregular component: 

This component is unpredictable. Every time-series has some unpredictable 

component that makes it a random variable. In prediction, the objective is to 
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model all the components to the point that the only component that remains 

unexplained is the random component. 

2-6 Stationarity: 

Stationarity plays a central part in time series analysis, because it replaces in a 

natural way the hypothesis of independent and identically distributed (iid) 

observations in standard statistics. 

To analyze and forecast from time series the series must be stationary when it 

satisfies the following conditions: 

1-The mean is fixed that means E (       where E (    is the expected value 

of    and    is the mean of observation of     

 2- The variance is fixed that means   
 = Var        –     

where          
  is the variance of       

3- The auto-covariance function depends only on the time difference lag that 

means  

                                 where     is the covariance between  

   and         and k = 1,2,3,…,
 

 
 . 

The conditions (1) and (2) mean that the mean and variance of series    are not 

change with passing time while condition (3) means that if we divide the series 

into two parts, and  ̂ calculated from the first part then this value is not 
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different from which is calculated from the second part this means  ̂  are 

independent on k and dependent only on the different time between the 

corresponding two lags. 

If   ,    ,   , …,   is a value of time series    and X  ,  ̂ 
 
 ,  ̂  are estimations  

of μ ,   
  ,and    as respectively that  

  X  = 
 

 
∑   

 
    

 ̂ =          
 = 

 

   
∑       ̅   

    

 ̂ = 
 

   
∑      ̅        ̅  

    ……………………………………(2-20) 

2-7 The Autocorrelation Function (ACF): 

An important tool that helps in detecting stationarity and identifying models for 

time-series data   is the autocorrelation coefficient .The autocorrelation 

coefficient is used to measure the strong relation between the value of series in 

different time period the mathematical syntax for autocorrelation function is 

  = 
              

                  
  = 

  

  
       k = 1,2,3,…,

 

 
 ……………(2-21) 

So the variance of stationary series is fixed and equal for all different time 

period and estimated as: 

   = 
  ̂

  ̂

……………………………………………………………(2-22) 
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Where     ̂    is variance of series observation    . 

2-8 The partial Autocorrelation Function (PACF): 

A second important tool used in identifying models of time series is the partial 

autocorrelation .The partial  autocorrelation coefficient of order   measures the 

correlation between  values   periods apart when the effect of time lags 

           is kept constant. When the partial autocorrelation coefficient is 

looked at as a function of   it is called the partial autocorrelation function 

(PACF) to estimate the partial autocorrelation of order  , fit an autoregressive 

model of order            . The last coefficient of the independent variable in 

the fitted model is an estimate of the partial autocorrelation coefficient of lag  , 

the coefficient is computed as follows: 

    
   ∑           

   
   

  ∑         
   
   

  ,…………..………………………..……….…(2-23) 

                        , j=2,3,…,k-1 ,…………………………..(2-24) 

2-9 Test of Stationarity: 

  When n is large it is found that      is distributed as normal with mean zero and 

variance  
 

 
  , so that confidence limits of   are: 

    
 

 

 

  
  ̂        

 

 

 

  
 ……………………………..…..………..(2-25) 
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 Where SE(  ) = 
 

  
  (is the standard deviation of    ) this above equation 

becomes  

 
    

  
  ̂    

    

  
 …………………………………………………..(2-26) 

With 95% confidence level when all    lies between two limits or at most the 

first and second autocorrelation coefficient (         lies outside the above two 

limits then the original series is stationary , also another test of stationarity is 

Box-Pierce Q statistic which given   

 Q = (n-d)∑    
 
   …………………..………………..……….……..(2-27) 

 Where d is the number of differences and m is the maximum number of 

autocorrelation coefficients (    at lag k. 

Then Q will be compared with tabulated chi square χ² with m –p –q degree of 

freedom and significance level (α ) where q is the order of moving average 

model and p is the order of autoregressive model hence the hypothesis is : 

   : series is not stationary or is not random if Q            then    will be 

accepted and if Q            then    will be rejected  

2-10 Achieving of the Stationarity: 

They are many methods which are used to transform the non-stationary series to 

stationary series which are:  
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1- Logarithmic and square root transformation: 

We can use two methods when the variance of series changes with processing 

time, the logarithmic transformation can be used efficiency when the variance 

of series is associated with a mean of series and the mean of the series is 

increased and decreased by fixed rate so in the logarithmic transformation the 

observation    (original date of series ) can be represent as         and also 

we represent the square root transformation  as    √   

2- Differencing Method 

In this method we can use the symbol   the back shift operator so we can define 

the first differences of the series   as   
                      ,= 

          Then we deal with the new series   
  which has (n-1) values compute 

the autocorrelation coefficient of the series    and compute Q-statistic to test 

the stationarity  if the new series still are not stationary we compute the second 

differences as 

  
                                          ………..(2-28) 

Then we deal with the series   
    which has (n-2) values compute the 

autocorrelation coefficient of the series   
  and compute Q-statistic to test 

stationary after taking the first or the second differences 
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2-11 Box- Jenkins Models: 

Box and Jenkins (1976) first introduced are very important to analyze the time 

series and used to forecast for specific phenomena in future these models are 

divided to seasonal and non-seasonal models. The non-seasonal models used to 

represent two types of series stationary and non-stationary series and some of 

these models are: 

1. Autoregressive models 

2. Moving average models 

3. Autoregressive and moving average models 

4. Autoregressive integrated moving average models 

In the above models the random error (say    ) must satisfy the following 

conditions: 

a. E (        for all t=1,2,3,…,n 

b. Var (  )  = E    
       for all t=1,2,3,…,n 

c.    is distributed as normal with mean zero and variance      

d. E((              for all k=1,2,3,…,
 

 
 (means that the current error is 

independent from the previous error) 

e. E((               k=1,2,3,…,
 

 
 (means that the current error is independent 

from the previous observations) 



 

30 
 

2-11-1 Autoregressive Model: 

In the autoregressive model the current value    in the time series is expressed 

as a linear combination of the previous values, and an unexplained portion   we 

assume that the value of    is taken as the deviation from its mean i.e we can 

define    as      The Autoregressive model of order p is denoted by     . 

A typical autoregressive model of order   takes the form: 

                                         ,……...…(2-29) 

where the                 is the jth autoregressive parameter and     is the error 

term at time  . 

The    
   are assumed to be independently normally distributed random variable 

with mean zero and constant variance   
 .We can also write the above model in 

term of B as follows:  

                         ,………………………...……(2-30) 

For example of AR(p) models we take model for order one which is called 

AR(1) and its can be written as : 

  1 -1  t t tz z a     ………………………………………(2-31) 
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Properties of AR(1) model 

a- Mean 

E(                      

             
 

               

             
 

           

Where 

                      ………………….…………..……(2-32) 

b- Variance  

                 
   

         
 

          

    = E(  
     

              
   

   =    
       

                    
   

   =   
             

  ………………………………………..…..(2-33) 

if the series is stationary the variance (   = variance        then 

 

2

0 2

1

var( ) =
1

a
tz


 



, ………………..…………….……….(2-34) 

since the variance is positive so   
       |  |    is the stationary condition 

if       the variance (    become infinite  so the series is not stationary 
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c- Covariance 

                               k = 1,2,… 
 

 
 

               =   [                ] 

     =       
             

      =         

      =      …………………………………………….…..…………..(2-35) 

                 [                ] 

         =                      

        =   
     …………………………………………………..………(2-36) 

In general       
       k = 1,2,… 

 

 
 ……………..………….………(2-37) 

d- Autocorrelation 

   
  

  
  = 

  
   

  
=    

 k = 1,2,… 
 

 
     ………………………..….……..(2-38) 

2-11-2 Moving Average Model: 

In these models the first current value of the time series is expressed as a linear 

combination of the current and previous errors in the moving average model of 

order   denoted by       the current observation   is expressed as a linear 
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combination of the random disturbances going back   periods, its equation can 

be written as follows: 

                                             ,…..….......(2-39) 

Where         are the moving average parameters, it may be positive or 

negative. The random disturbances                        are assumed to be 

independently normally distributed random variables with mean zero and 

constant variance   
 . We can also write the model in term of B in deviation 

from the mean as follows: 

                         ,……………………………….(2-40) 

Or simply  

  ̃         ,…………………………………………………………….(2-41) 

Properties of MA(1) model 

a- Mean 

E(                       

                   ………………………………………………(2-42) 

              

b- Variance  

                      
                  



 

34 
 

                     = E(  
                   

   

                      =    
        

                    
   

                       =   
   

           
   

                     = (1+  
    

 ……………………………………..………(2-43) 

c- Covariance 

               =   [                        ] 

   =     
                        

         ) 

        = 0-0-    
 +0 

        = -    
 ……………………………………..………...…….……(2-44) 

               =   [                          ] 

   =     
                               ) 

     =   
                                         ……..….…(2-45) 

                 0       -      0   -      0   = 0 

 

In general  

   {
     

     
              

…………………………………..……....……(2-46) 
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d- Autocorrelation 

   
  

  
 {

   

    
     

           
……………….…………………….…..……(2-47) 

2-11-3 Autoregressive Moving Average Model: 

A natural extension of the autoregressive and moving average models to 

combine both models such as mixed process are referred as autoregressive 

models for order p and q and these denote by ARMA(p,q) which are expressed 

by  

                                          ,…….…(2-48) 

where                are the autoregressive parameters,                 and    is the 

error term at time    

Simply the above model can be expressed as follows: 

      ̃         ,………………………………..…………..………(2-49) 

The above model is briefly referred to as            

Properties of ARMA(1,1) model 

a- Mean 

E(                          

                    =                           ………………………(2-50) 
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=         0       -        0          +         0 = 0 

b- Variance 

                      
                        

     
       

     
        

       
                              

              

     
      

   
    

         
                

       
     = (1+  

          
  

   
     

          
 

     
  

 …………………………………………………..(2-51) 

c- Covariance 

              =   [                        ] 

=         
                             

=          
 + 0 

   
  (    

       )  
         

      
 

     
  

………………..………………..(2-52) 

   
[       

       
         

      
 

     
  

 

        
[                ]   

 

     
  

 ………………….……………………….(2-53) 

  =            =   [                        ] 



 

37 
 

=                                     

  =                

  =       ……………………………………….……………………(2-54) 

In general   

  =             k = 2,3,…
 

 
  , ……………………………..…….…(2-55) 

d-  Autocorrelation 

   
  

  
 {

                

    
       

             

                                 
 

 

  ……………..….…..(2-56) 

2-11-4 Autoregressive Integrated Moving Average Model 

The AR, MA and ARMA models assume stationary series. If the time series is 

nonstationary we can have a model which reflects this fact. This model which is 

called an ARIMA model and written as Autoregressive Integrated- Moving 

Average and denoted by              represents ARMA model with 

nonstationarity. In general it takes the form: 

                    ,……………………………….…….(2-57) 

where        is the dth order difference.   

               ,………………...………………………..…..(2-58) 
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This is the model that calls for the dth order difference of the time series in 

order to make it stationary. in ARIMA (p,d,q)    

p = order of the autoregressive process,  

d= degree of differencing employed,  

q= order of moving average process   . 

In practice the value of p, d and q rarely exceed 2 (they are usually 0 or 1). 

2-12 Box-Jenkins Methodology: 

In general Box-Jenkins popularized a three-stage method aimed at selecting an 

appropriate (parsimonious) ARIMA model for the purpose of estimating and 

forecasting a univariate time series.  

Three stages are: (a) identification, (b) estimation, and (c) diagnostic checking.. 

2-12-1 Identification of the Model: 

A comparison of the sample ACF and PACF to those of various theoretical 

ARIMA processes may suggest several plausible models. If the series is non-

stationary the ACF of the series will not die down or show signs of decay at all. 

A common stationarity inducing transformation is to take logarithms and then 

first difference of the series. 
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Once we have achieved stationarity, the next step is identify the p and q orders 

of the ARIMA model 

Table (2-1) 

ARIMA(p,d,q) model ACF PACF 

AR(1) Declines gradually Cuts off to zero after lag 1 

AR(2) Declines gradually Cuts off to zero after lag 2 

MA(1) Cuts off to zero after lag 1 Declines gradually 

MA(2) Cuts off to zero after lag 2 Declines gradually 

ARMA(p,q) Declines gradually Declines gradually 

AR(p) Declines gradually Cuts off to zero after lag p 

MA(q) Cuts off to zero after lag q Declines gradually 

 

Some time‟s the autocorrelation and the partial autocorrelation function does 

not give clear patterns to identify suitable model to time series data, in this case, 

it is necessary to guess different numbers of ARIMA models and compare them 

in order to select a suitable and parsimonious model to fit the data using model 

selecting criteria such as MAE, RMSE, AIC, BIC, and Std Error 
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2-12-2 Parameters Estimation:  

After we identify the model and it is degree then we estimate their parameters 

they are many methods used in estimation and the most important of them is the 

maximum likelihood method which is used to estimate the parameters of mixed 

model ARIMA(p,d,q) here we can describe the cumulative function with stable 

data is  

           
        

 

       
        

   
   ………………………….…..…(2-59) 

Where  

S( , ) = SSE  = ∑   ̂
 
     = ∑    

 
          

is the sum squares of residuals   ̂ and    
  

   

 
 

The mean sum squares of residuals if we take Ln for two sides of above 

equation then the equation become as 

             
   = 

  

 
Ln(2   

   
      

   
                       -60) 

When we take the partial derivation for the equation above with respect to 

  
      and the equaling the derivative with zero we can obtain the 

estimator    
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2-12-3 Diagnostic Checking: 

In the diagnostic checking stage we examine the goodness of fit of model. 

We must be careful here to avoid over fitting. (the procedure of adding another 

coefficient in appropriate) 

Before we using the model to calculate the future forecasting we must check the 

validity and performance of the model that is done by two methods  

a- Akaike‟s Information  Criteria (AIC)  

     In 1973 Akaike introduced and information criteria which used to identify 

the best model to the data this criteria define as  

AIC(k) = n Ln  
 +2k  ………………………………………………….(2-61) 

Where k is full order of model (k = p+d+q ),   
  is the error variance of the 

model and n is the number of original observations, then compute AIC for each 

model and select the best model which has the minimum AIC(k) 

b- Residual Analysis 

In this method firstly we must compute the estimated error from the ARIMA 

model after identification and estimation parameters i.e  ̂       ̂ then we 

compute the autocorrelations coefficients for the residuals as 

  = 
∑   ̂   ̂   

 
   

∑   
  

   
  ……………………………………………………….(2-62) 
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The special statistic that we use here are the Box-Piece statistic (BP)were 

proved that in 1970 the autocorrelation coefficient for residuals is normally 

distributed with mean zero and variance 
 

 
 where n is the size of sample then  

     ∑   
    ̂  

     …………………………………………..……..(2-63) 

The value of      is compared with the value of    that is proceeded by an 

area (    ) under    distribution with    degrees of freedom. We conclude 

randomness if     is less than this value.   

Also there is a possibility to use Ljung – Box test statistic which takes the form 

          ∑
  

    ̂ 

     

 
   ………………………………………………(2-64) 

Under the null hypothesis of no autocorrelation,         
 distribution. Using 

this distribution, the null hypothesis is rejected if the calculated         
  at 

α significant level, which implies that the model is insufficient or could perhaps, 

be miss specified or not suitable for the data. In general if an estimate seems to 

be not significantly different from zero its corresponding parameter may be 

dropped from the model. Small standard errors are indication of stability and 

precision of the estimate. 

2-13 Forecasting: 

Forecasting is very important in time series so after reaching the fit model of 

series process, we can use this model to forecast the series observation in the 
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future in this section we study  how to use ARIMA models in forecasting we 

assume that n refers to current period of time about which we compute the 

forecasting we want to forecast the value      that does not happen yet where h 

is called forecasting horizon   (h) refers to forecasting value we get in n time 

period for     observation which happens after h time periods we try to find a 

method of forecasting with point and explain how to construct forecasting 

interval about this point as we said before    (h) refers to forecasting value we 

get in n time period for     observation which happens at n+h time period so 

we can define the forecasting error by  

  (h) =             …………………………………………………..(2-65) 

And the requirement is to find small value for expected square errors therefore 

E   (h))² =E(               …………………..……..………………(2.66) 

The above equation checks the good forecasting which has minimum expected 

square error. 

2-13-1 Forecasting with Minimum Mean Square Errors: 

We explain that the arithmetic mean for forecasting distribution makes the 

expected value of mean square errors as minimum, that means there is not other 

forecasting leads to minimum expected of mean square errors than arithmetic 

mean we assume that    is the expected value     that we are forecasting n 

period i.e 
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          ……………………………………….……………..…(2.67). 

Suppose that m is another forecasting to       such that m =      where d 

refers to the difference between m and    by using forecasting point m , we 

find the expected value of forecasting square errors as: 

E        m)² =E(              ……………………………..….(2-68). 

We can rewrite the right side of above equation then the equation becomes  

E        m)² =E(               E(            ……..….(2-69). 

From the above equation the quantity    E(         equals to zero 

according to equation (2.60), d² the non-negative quantity and when d=0 the  

above equation should be minimum and the quantity  E(           is the 

mean of forecasting of square errors and m =            is a good 

forecasting with      value because the mean of forecasting square error 

corresponding to it minimum and enough we can compute the mean to 

distribute forecasting which is         as follows: Assume that    is 

ARMA(p,q) stationary process and we describe this process according equation 

in the time period t=n+h has the flowing 

                                                      ,….…(2-70) 

So we can estimate the expected value for the variable      in above equation 

by using the variable information until n period as below: 
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1- Replace the previous and current error      for all value j 0 by real 

residuals i.e. E (            j = 0,1,2,… 

2- Replace the coming error      where  0     which does not happen 

by expected value (        

3- Replace the coming observation     where  0 ˂ j ˂ h  with it forecasting 

value         i.e. E(                j = 1,2,… 

4- Replace the previous and current observations        for all values j 0 

with real value E (               j = 1,2,… 

2-13-2 Forecasting and Model forecasting Intervals: 

In addition to finding a good forecasting point we may want to measure 

uncertainly about this point so we find the standard error for forecasting error 

and construct forecasting interval. To compute the standard errors for 

forecasting error we firstly express ARMA process with respect to random 

variables in the period t=n+h then 

                                                ,………….…(2-71) 

Where     … are the memory coefficients which its value depends on the kind 

of ARIMA models used .We can use the equation (2.64) to fit a good 

forecasting       using previous and current residuals that for 

     =                  ,              ……………………………….(2-71) 
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From equation (2.64) and depending on equation (2.70) and equation (2.71) the 

forecasting error for h coming period is expressed by: 

                                …………………………….……(2-72) 

From above equation we conclude that               and regardless 

conclude that the forecasting errors for one period (First step) is  

          ………………………………………………………....…..(2-73) 

The expected value of forecasting error is 

E[     ]   [                         ]   ………….………….…(2-74) 

And the variance of forecasting errors is 

Var(        E[     ]   [                              ]…………(2-75) 

      = (1+  
    

        
     

  

                            =   
    ∑   

    
   ) 

                            =   
 ∑   

    
   …………………………………………(2-78) 

From above equation we observe that the variance of forecasting error did not 

decreasing by increasing of forecasting horizon h where  

Var(                      
 ∑   

     
   ≥0 …………………………..(2-79) 
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If we assume that the random variable    distributed normally we can determine 

that       is distributed normally with mean        and var[     ]  The 

forecasting interval for the value       with 95% confidence level for the large 

sample 

             [     ]…………………………………………....….(2-80) 

Where   [     ]is the standard error of forecasting error 

2-13-3 Forecasting of MA (1) model: 

To forecast for MA(1) model we can use as: 

                     ……………………………..…………..(2-81) 

If h=1                     

We observe that the value of     which happen is n+1 period is unknown in n 

periods so we replaced     by it mean zero when used in n periods. 

The forecasting for one period (h=1) 

                                    ……….…….…(2-82) 

The forecast for two periods (h=2) is 

                                 …………………..…(2-83) 
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In general the forecasting for MA(1) is 

      {
          

     
     ………………………………….……(2-84) 

The variance for forecasting errors interval of MA(1) express as: 

             √    ……………………………………….…..(2-85) 

2-13-4 Forecasting of AR (1) model: 

The forecasting of AR(1)model we can use as: 

                      …………………………..………..(2-86) 

The forecast for one period is 

                                   ……...……(2-87) 

The forecast for two periods is 

                                        …..(2-88) 

In general the forecasting for AR(1) is 

      {
          

               
     ……………………………(2-89) 

The forecasting interval of AR(1) model is express as: 

             √        
     

      
………………………..(2-90) 
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2-13-5 Forecasting of ARMA (1,1) model: 

The forecasting of ARMA(1,1)model is express as: 

                             ………………….………(2.91) 

The forecast for one period is 

                                    ………….….(2.92) 

             

The forecast for two periods is 

                                    ………………(2.93) 

           

In general the forecasting for ARMA(1,1) model is 

      {
               

               
     ………………………………(2.94) 

We note that      which is directly influenced by previous errors. 

The forecasting interval of ARMA(1,1) express as: 

             √              
    

     
      

 ………………..(2.95) 
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  3-1 Introduction: 

The volatility is the measurement of variation among the prices of financial time 

series data. Accurate forecasting volatility is an important tool for investors to 

make the right investment decisions and also helps researchers to better 

understand the change in the financial market. Time series models are the main 

methodologies for forecasting volatility in financial data. Some conventional 

time series models are based on the assumption of homoscedasticity, which 

means the variance of error terms of expected values remain the same at any 

given time. However, under the real circumstances, the variance of error terms 

actually varies all the time, which implies that heteroskedasticity, exists in the 

data. In order to capture more accurate forecasting results, Robert F Engle 

(1982) proposed the Autoregressive Conditional Heteroskedasticity (ARCH) 

model which states that the variance in the data at time t depends on the 

previous time t-1. Tim Bollerslev (1986) generalized the ARCH model and 

named the model as the Generalized ARCH (GARCH) model which allows for 

a more flexible lag structure and it bears much resemblance to the extension of 

the standard times series autoregressive (AR) process to the general 

autoregressive moving average (ARMA) process. 

During the last two decades, the ARCH and GARCH models have been the 

most popular methods for the researchers, analysts, and investors to forecast 

volatility. 
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Moreover, some scholars have also developed variant forms of the GARCH 

model. For example, Nelson (1991) proposed the exponential GARCH 

(EGARCH) model, and Engle and Bollerslev (1986) proposed the Integrated 

GARCH (IGARCH) model. Ding, Ganger, and Engle (1993) first mentioned the 

Power GARCH (PGARCH) model, while Glosten, Jaganathan and Runkle 

(1993) and Zakoian (1994) and developed the Threshold GARHC (TGARCH) 

model. Lastly, Engle and Ng (1993) first proposed the Quadratic GARCH 

(QGARCH) model. 

Estimation of the parameters in the above models is mostly based on the 

Likelihood approach.Ardia (2007) used the Bayesians approach to address 

parameter estimation in the GARCH model. 

In this research, we consider the traditional GARCH model, as well as other 

extensions of the GARCH model. Both the likelihood and the Bayesian 

approaches for model fitting are considered. In what follows, we briefly present 

these models and discuss the estimation methods using both likelihood and 

Bayesians approaches 

 

3-2 Financial Time Series Characteristics: 

 

3-2-1 Volatility 

Volatility is a measure of the dispersion in a probability density. The variance is 

a measure of the dispersion of the density function around its mean. The 

standard deviation, ζ, which is the square root of the variance, is the most 
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common measure of dispersion for a random variable (Alexander, 2001), as it is 

measured in the same units as the original data (Sheppard, 2009a). 

Volatility is a key parameter used in many financial applications. It measures 

the size of the errors made in modeling returns and other financial variables. It 

is very hard to predict it correctly and consistently. Forecasting volatility is an 

important area of research in financial markets. ARCH, GARCH and stochastic 

volatility models are the main tools to model and forecast volatility. There were 

a lot of effort exerted to improve volatility models, since better forecasts is 

translated in better pricing of options and better risk management. 

3-2-2 A platykurtic 

A platykurtic means that the distribution has a kurtosis value less than that of a 

standard normal distribution. This type of distribution has a fat midrange on 

either side of the mean and a low peak. 

3-2-3 A leptokurtic 

A leptokurtic means that the distribution has a kurtosis value greater than that of 

a standard, normal distribution which gives the distribution a high peak, a thin 

midrange and fat (heavy) tails. 

3-2-4 Mesokurtic Distributions 

Mesokurtic distributions means that the distribution has a kurtosis value equals 

to that of standard normal distribution. 
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3-2-5 Volatility Clustering 

It is as well known fact that financial market volatility tends to cluster. This 

means that volatile periods tend to persist for some time before the market 

returns to the normality (Poon, 2005). Mandelbrot (1963, p.418) for example 

points out that “large changes tend to be followed by large changes - of either 

sign - and small changes tend to be followed by small changes, This effect can 

visually be seen when plotting a series of returns through time. A plot of the 

returns, together with statistical tests, show that financial returns are not 

independently identically distributed through time (Bollerslev et al., 1993). The 

positive and negative disturbances given by the time-to-time changes become a 

part of the information set used to construct variance forecasts for the coming 

period. This means that large shocks of either sign can have an influence on the 

forecasts for several periods to come. When the clustering is significant, the 

time series is said to display autoregressive conditional heteroskedasticity 

(Alexander, 2001). The effect becomes more pronounced the higher the 

frequency of the sample data is. The consequence of volatility clustering is that 

future volatility can be predicted by past and current volatility. 

Rob Engle‟s (1982) ARCH model, which will be described later, captures this 

kind of volatility persistence. There is a close relationship between clustering 

and thick tails. The volatility clustering is a type of heteroskedasticity and 

accounts for some of the excess kurtosis typically observed in the distribution of 

a financial time series. Another part of the excess kurtosis can be due to the 
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presence of a non-normal asset distribution, e.g. the Student‟s t distribution, 

which happens to have fat tails. 

3-2-6 Leverage Effects 

The leverage effect refers to the tendency of volatility to increase if the previous 

days returns are negative. (Bollerslev et al., 1993) indicated that, changes in 

stock prices are negatively correlated with changes in stock volatility. A fall in 

stock price causes leverage and financial risk of a firm with outstanding debt 

and equity to increase. For time series exhibiting leverage effects, asymmetric 

GARCH models should be applied because the asymmetry cannot be captured 

by symmetric GARCH models. Asymmetric GARCH models will be presented 

later. 

3-2-7 Long Memory 

Long memory in volatility occurs when the effects of volatility shocks 

decay slowly, which is often detected by the autocorrelation of measures of 

volatility. The practical explanation is that historical event has a long and 

lasting effect. Fama & French (1988) and Poterba & Summers (1988) 

discovered positive correlation in short term and negative correlation in long 

term of stock returns. The significance of the phenomenon is that the 

existence of “long memory” enables to predict the returns. 

3-2-8 Thick Tails 

Mandelbrot (1963) and Fama (1965) both document the fact that asset returns 

tend to be leptokurtic, i.e. the time series of returns exhibit fatter tails than a 
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normal (Gaussian) distribution. A normal distribution has a skewness equal to 

zero and a kurtosis equal to three. Mandelbrot (1963, p.394) finds that “the 

empirical distributions of price changes are usually too „peaked‟ to be relative to 

samples from Gaussian populations”. The kurtosis of a time-series measures the 

tail thickness. Excess kurtosis, that is kurtosis above 3, implies that the 

distribution has a sharper peak and fatter tails than a normal distribution. On the 

other hand, a low kurtosis implies that the distribution has a rounder peak and 

shorter, thinner tails. 

A negative skewness, for instance, tells us that the distribution will have a 

longer left tail than a right tail. In other words, a negative skewness indicates 

extreme losses, while a positive skewness indicates extreme gains. The kurtosis 

and skewness are very sensitive to outliers in the time-series. By removing 

extreme outliers, both the kurtosis and the skewness will drop significantly 

(Poon, 2005).  

On being accurate about forecasting asset price return volatility.  

3-3 Returns Model: 

Since the first decades of the 20th century, asset returns have been assumed to 

form an independently and identically distributed (i.i.d) random process with 

zero mean and constant variance. Bachelier (1900) was the first to contribute to 

the theoretical random walk model for the analysis of speculative prices. For 

                 denoting discrete time series and                    

denoting the process of the continuously compounded returns, defined by  



 

57 
 

       (
  

    
)                    ,………………………………….. (3.1) 

the early literature viewed the system that generates the asset price process as a 

fully unpredictable random walk process: 

              ……………………………………………….….….…..(3.2)               

            Where    has a zero-mean and i.i.d. normal distribution. However, 

the assumptions of normality, independence and homoscedasticity do not 

always hold with real data. 

It is assumes that for the return indexes which follow a martingale process, 

given by the following equation: 

            ………………………………………………….………….(3.3) 

Where   the mean value of the return    is a random component of the model, 

not autocorrelation in time, with zero mean value. Further more    may be 

considerd as stochastic process. To sum up, the return in the present will be 

equal to the mean value of       i.e. the expected value of       based on past 

information, plus the veriance of the error term. 

3-4 Measures of Skewness and Kurtosis: 

3-4-1 Skewness 

Observations of the empirical distribution of   often show that the distribution 

is leptokurtic. Another property that deviates from the so often assumed 

Gaussian distribution is that the empirical distribution is not symmetric. 

Skewness defines the degree of asymmetry of a distribution and several types of 
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skewness are defined. The Fisher skewness(the most common type of skewness, 

usually referred to simply as skewness) is defined by: 

Let                be a set of independent and identically distributed 

random samples with mean μ, median M and variance   . The classical 

estimates of skewness SK, and Kurtosis KR are given as follows:  

   
 

 
∑  

    

 
   

    …………………………………………….………..(3.4) 

Positive skewness indicates a long right tail, negative skewness indicates long 

left tail and zero skewness indicates a symmetry around the mean. 

3-4-2 Kurtosis 

The observations of the time series     have a distribution, which often is 

assumed to be normal (Gaussian) distribution. However, empirical studies of 

practically any financial time series show that this is not quite correct. One way 

to quantify this property is to look at the kurtosis of the distributions. Kurtosis is 

a measure of the extent to which observed data fall near the centre of a 

distribution or in the tails: 

   
 

 
∑  

    

 
   

 …………………………………………………………..(3.5) 

The kurtosis for the normal distribution is three, positive excess kurtosis 

indicates flatness (long, fat tails) and negative excess kurtosis indicates 

peakedness 

where 

   
 

 
∑   

 
   ………………………………………………………………(3.6) 
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and 

   
 

 
∑         

   ………………………………………………………(3.7) 

3-4-3 The Jarque–Bera (JB) Test Statistic 

Let                be samples randomly selected from a Gaussian 

distribution. Using the above notation for skewness and kurtosis, the Jarque-

Bera (JB) test statistic is expressed as follows: 

   
 

 
    

 

  
   ……………………………………………………..(3.8) 

where T is the number of observations. Under the null hypothesis of 

independent normally distributed random variable, the Jarque–Bera (JB) test 

statistic is distributed as a chi-square distribution with 2 degrees of freedom in 

large samples.                                                                                                                                                                     

3-5 Mean and Variance Equation: 

The mean equation can be written as a function of exogenous variables with an 

error term. Since ζt
2
 the one-period ahead forecast variance based on past 

information, it is called the conditional variance. The conditional variance 

equation specified as a function of three terms these are: 

A constant term ω, news about volatility from the previous period, measured as 

the lag of the squared residual from εt-1
2
 the mean equation (the ARCH term) 

and last period's forecast variance ζt-1
2
 (the GARCH term). 
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The mean equation can be written as a function of exogenous variables with an 

error term. For the univariate time series data     the mean equation can be 

described by the process: 

        |         ,…………………………………………………..(3.9) 

Where   |   denote the conditional expectation operator,      the information 

set at time     and    the residuals of time series, it describes uncorrelated 

disturbances with zero mean and plays the role of the unpredictable part of the 

time series. In this research the mean equation can be model as one of the above 

discussed time series ARIMA model: 

3-6 The volatility Models: Generalized Autoregressive Conditional 

Heteroskedasticity Models Family: 

Over the years, the GARCH family has become more efficient in fitting the 

volatility data. They consist of the second order moment that measures the time-

variant of the volatility data. The initial studies by Engle (1982) and Bollerslev 

(1986) turn out to be the better models for volatility (financial) data as the 

residuals of the data form fatter tailed. The maximum likelihood estimation 

(MLE), is a natural approach to employ, when the standardized residual is 

normal distributed Bollerslev and Wooldridge (1992), Horvath and Liese (2004) 

and many more advocated that the linear model of the conditional variance has 

its limitation and the GARCH itself may fail to fit some financial data 

especially in high frequency data. This leads to empirical findings that indicate 

the weakness of imposing ordinary GARCH model; subsequent development 
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and modification of GARCH include the following: Nelson (1990) found that 

EGARCH the conditional variance being exponentially distributed, Engle et al 

(1987) with their ARCH-M, Engle and Rivera (1991) with semi parametric 

ARCH, Engle and Bollerslev (1986) with Integrated GARCH (IGARCH), 

Engle et al (1990) with factor-ARCH, Baillie et al (1996) with Fractionally 

GARCH (FIGARCH) and Bollerslev and Ghysels (1996) with Periodic ARCH. 

All these found that GARCH family has good fit for many econometric data and 

this tool is now widely used to explain some current economic situation. The 

most popular financial economic data that have been considered in various 

studies are inflation uncertainty, stock returns, and exchange rates. Several 

models with various assumption of distributions and techniques of estimates of 

parameters have been introduced.  

The properties of ordinary linear GARCH family models and its method of 

parameter estimation are discussed. The properties of GARCH models can be 

found in Engle (1982), Bollerslev (1986), Weiss (1986) and Hamilton (1994). 

The use of these models in analyzing volatility in time series data can be 

referred to Zivot and Wang (2001).  

Engle (1982) and Bollerslev (1986) provide a detail account on the method of 

maximum likelihood of estimation (MLE) for ordinary ARCH and GARCH 

parameters respectively. Bollerslev (1986) and Fiorentini et al (1996) employ 

the Berndt, Hall, Hall, and Hausman (BHHH) algorithm introduced by Berndt et 
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al (1974), to speed up the iterative part so that convergence of the objective 

function can be achieved in less iteration. 

Empirically, a wide range of financial and economic phenomena exhibit the 

clustering of volatilities. A variety of volatility models are used in financial time 

series models, among these ARCH / GARCH framework proved to be very 

successful in predicting volatility changes. The ARCH-type models used in this 

research are defined in terms of the distribution of a dynamic linear regression 

model.  

In this section a brief review of heteroskedasticity models will be considered. 

3-6-1 Autoregressive Conditional Heteroskedasticity Models (ARCH 

models): 

One of the earliest time series models for heteroskedasticity is the 

Autoregressive Conditional Heteroskedasticity (ARCH) models. ARCH models 

are specifically designed to model and forecast conditional variances. To 

generate the autoregressive conditional heteroskedasticity process the 

conditional variance of the error term is expressed as a function of its past 

values squared as follows: 

  |             ,……………......………………………………………(3.10) 

      √     ,…………………….………...………………………………(3.11) 

  
    ∑   

 
       

  ,……………………………………………………..(3.12) 
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Where    is the unconditional shock,   is an independently identically 

distribution random variable (conditional) shock with mean zero and variance 1, 

and   
  denotes the conditional variance of the information set     ,and 

𝛅                             and               are necessary 

to make   
  positive and covariance stationary. 

3-6-1-1 Properties of ARCH Models 

 A simple form of autoregressive conditional heteroskedasticity model is ARCH 

which takes the form:  

           
  ,…………………………..……………………….……(3.13) 

Where     ,         

First, the unconditional mean:   

E (    = E [E (  |     ] = E [       ] = 0,………………..…..…….…..(3.14) 

Secondly, the unconditional variance obtained as: 

Var (  )  = E (  
 ) = E [E (  

 |     ] ,…………………....…………..……(3.15) 

               = E (        
 ) =          

 ). ,……………………..….….(3.16) 

Thirdly, the unconditional kurtosis: 

In some applications, higher order moments of    is needed, for instance, to 

study its tail behavior, the fourth moment of    is required. To obtain that: 

    
 |       [    

 |     ] ,………………………………………….(3.17) 

Therefore, 
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    [    

 |     ]             
      [           

    

  
     

 ],……………………..……………………………………………(3.18) 

By substituting          
   in the above equation gives: 

    [                 
   ],………………...……………..…(3.19) 

=    (   
  

    
)     

    ,……………………………....……....…(3.20) 

Consequently, 

   
         

            
  

 ,…………………………..……………….……….(3.21) 

Since the fourth moment of     is positive, so    must satisfy the condition: 

     
    ,………………………………..………..……….………( 3.22) 

that is:      
     .  

The unconditional kurtosis of    is then: 

 (  
 )

[       ] 
  

        

            
  

 
       

  
  

    
 

     
    ,……………..…….(3.23) 

Thus, the excess kurtosis of    is positive and the tail distribution of    is heavier 

than that of normal distribution. 

3-6-2 Generalized Autoregressive Conditional Heteroskedasticity Models 

(GARCH models): 

Bollerslev (1986) proposed a useful extension known as generalized ARCH 

(GARCH) process. In GARCH model the conditional variance of return series 

is expressed as a function of constant, past news about volatility (    
   terms 
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and past forecast variance (    
 ) terms. In the GARCH (p,q) the conditional 

variance is expressed as follows: 

      √   ,……………………….……………...………………………..(3.24) 

  
    ∑   

 
       

  ∑   
 
       

  ,……………………..…………….…(3.25) 

 Where    is independently identicaly distrebuted random variable with mean 

zero and variance 1,    ,                        ∑  
         
            

3-6-2-1 Properties of GARCH Models 

Firstly, the unconditional mean:   

E (    = E [E (  |     ] = E [       ] = 0 ,……………….………….….(3.26) 

Secondly, the unconditional variance obtained as: 

Var (  )  = E (  
 ) = E [E (  

 |     ] ,……………………..………..……..(3.27) 

               = E (        
 ) =          

 ) ,……………….……..….…..(3.28) 

Since Var (  ) = E (  
 ) 

Therefore 

In the GARCH (1.1) model it‟s found that: 

         
 

       
 ,…………………………..………………….……….(3.29) 

Thirdly, the unconditional kurtosis: 

In some applications, higher order moments of    is needed, for instance, to 

study its tail behavior, the fourth moment of    is required. To obtain that: 

 (  
 )

[       ] 
 

 [          ]

              
    ,…………………………….……..…….(3.30) 
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consequently, similar to ARCH models, the tail distribution of a GARCH (1,1) 

model is heavier than that of a normal distribution. 

The above properties continue to hold for all ARCH/GARCH family models 

however, the formulas become more complicated for higher order of these 

models. 

3-6-3 The Threshold GARCH (TGARCH) Model: 

Another volatility model commonly used to handle leverage effects in the 

TARCH or Threshold ARCH and Threshold GARCH were introduced 

independently by Zakoïan (1994) and Glosten, Jaganathan, and Runkle (1993). 

The generalized specification for the conditional variance can be express as: 

     ∑   
 
       

  ∑   
 
           

  ∑   
 
        ,……..………(3.31) 

Where      if      and       otherwise. 

Adverse market conditions and bad news (    
   ) such as frost, drought, or 

political instability has an impact of (α+γ). Good news about the demand and 

supply conditions in the commodity market (    
   ) has an impact of α. 

3-6-4 The Exponential GARCH (EGARCH) Model: 

EGARCH model is one of the asymmetric models which is developed by 

Nelson (1991). The EGARCH (p, q) models the effect of recent residuals is 

exponential rather than quadratic. The variance equation of this model can be 

expressed as follows: 
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Log (  
 ) =     |

  

√    
 

|    
    

    
    log (    

 ) ,……………….……..(3.32) 

A symmetry is achived when     . The impact of good news such as new 

market infrastructure is captured by ( 
     

√    
 

    while the impact of bad news 

such as political stabilities or unfavorable weather is expressed by (
     

√    
 

  . A 

negative and significant    is an evidence of a symmetry and greater impact of 

negative shocks on price volatility. 

3-6-5 The Integrated GARCH (IGARCH) Models: 

If the polynomial of the GARCH model has a unit root, then there is an 

IGARCH models. A key feature of IGARCH is that the impact of past squared 

shocks  

       
      

 for i > 0.,……………………………………….………..(3.33) 

The IGARCH phenomenon might be caused by occasional level shifts in 

volatility. The actual cause of persistence in volatility deserves a careful 

investigation. 

3-6-6 GARCH-in-Mean (GARCH-M) Model: 

In finance, the return of a securaty may depend on its volatility. To model such 

a phenomenon, GARCH-M model developed by Engle, 

Lilien, and Robins (1987), where "M" stands for GARCH in the mean. This 
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model is an extension of the basic GARCH framework which allows the 

conditional mean of a sequence to depends on its conditional variance or 

standard deviation. A simple GARCH (1,1) -M  model can be written as:  

        
     ,……………...…………………………………..…….(3.34) 

  
         

 +β    
  ,………………………..……………..………….(3.35) 

Where ,   and   are constants. The parameter    is called the risk premium 

parameter. Apositive   indicate that the return is positively related to its 

volatility. Other specification of risk premium have also been used in the 

literature, including  

        
    ,……………………………...………………….….…..(3.36) 

And also  

           
    ,……………………………………………….……(3.37) 

The formulation of GARCH-M model in the above equation implies that there 

are serial correlations in the return series   . These serial correlations are 

introduced by those in the volatility process {  
 }. 

3-6-7 Glaston, Jagannathan and Runkle Generalized Autoregressive 

Conditional Heteroskedasticity (GJR models): 

This model is known as GJR GARCH models, proposed by Glaston, 

Jagannathan &Runkle (1993), are capable of capturing the symmetric effect in 

regard to the conditional volatility. The variance equation in the GJR (p,q) 

model is specified as follows: 
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    ∑   

 
       

  ∑   
 
       

       
      ,…………..………..(3.38) 

where                     i==1,2,…..p,j=1.2……q,  

  is an indicator dummy variable that takes the value 1  if       < 0) and zero 

otherwise. 

The impact of   
  on the conditional variance   

  in this model is different when 

   is positive or negative. The negative innovations (bad news) have a higher 

impact than positive ones. When      is positive, the total contribution to the 

volatility of innovation is      
 ; when      is negative, the total contribution to 

the volatility of innovation is (   )    
 .  

 would expect to be positive, so that the (bad news) has larger impact, in this 

case there is a leverage effect.  

3-6-8 The Power ARCH (PARCH) Model: 

The Asymmetric Power Autoregressive Conditional Heteroskedasticity 

(APARCH) model proposed by Ding, Granger and Engle (1993) is a model that 

nests several other popular univariate parameterizations and therefore allows the 

data to determine the true form of asymmetry (Harris and Sollis, 2003). It 

extends TARCH and GJR-GARCH models in the sense that non-linearity in the 

conditional variance is directly parameterized through a parameter δ. It thus 

gives a greater flexibility when modeling the memory of volatility, the variance 

equation of this model is given by: 

  
    ∑   

 
   |    |           ∑   

 
       

 ,…..…………….…(3.39) 
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where                                         i=1,2,…,p, 

j=1,2,….,q. 

The model is couples the flexibility of varying exponent with the asymmetry 

coefficient, moreover The APARCH includes other ARCH extensions as special 

cases. 

3-6-9 Component ARCH (C-GARCH) Model: 

An alternative specification for the conditional volatility process is Component 

Autoregressive Conditional Heteroskedasticity models. The conditional 

variance in the CGARCH models is given by: 

  
   ̅  ∑   

 
        

   ̅  ∑   
 
        

   ̅  ,………….…….…..(3.40) 

∑   
     

      ∑   
 
        

        ∑   
 
        

       ,.....……(3.41) 

     ∑   
 
            ∑   

 
        

      
  ,…..……………..(3.42) 

Where   ̅̅̅the mean constant is over time,   is the validity and    is the time 

varing long run volatility. 

3-7 Testing for Autoregressive Conditional Heteroskedasticity Effects: 

For ease in notation, let          be the residuals of the mean equation. The 

squired series   
  is then used to check for conditional hertoskedastisity which is 

also known as ARCH effect. Two tests are available. The first test is to apply 

the Ljung –Box statistics     to the    
  series, McLeod and Li (1983). The null 

hypothesis is that the first   lags of autocorrelation function of the   
  series are 
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zero. The second test for conditional hetroskedastisity is the Lagrange 

Multiplier test of Engle (1982).  

When the ARCH effects are suspected, the null hypothesis of homoskedasticity 

of the model which takes the form: 

  
    ∑     

  
    ,………………………………………………………(3.43) 

is: 

                 ,…………………………………………….(3.44) 

                ,…………………………………..…………(3.45) 

i.e. 

  
        ,……………………………………………………………..(3.46) 

Using OLS is an appropriate estimator, based on its squared residuals, Engle 

(1982) showed that on the null and alternative hypothesis, that: 

                 ,………………….………………………….(3.47) 

                ,…………………………….……………….(3.48) 

          
  ,…….………………………..…………………………(3.49) 

Where T is the number of squared residuals included in the regression and   is 

the sample multiple correlation coefficients. Under the null hypothesis, the test 

is asymptotically distributed as a chi-square distribution with M degrees of 

freedom. If the value of the test statistic is greater than the critical value from 

the     
 distribution, then reject the null hypothesis, and vice versa. 
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This test is equivalent to the usual F statistic for testing                 

in the linear regression equation of the form: 

  
    ∑     

    
                              ,…………..………….(3.50) 

Where    denote the error term,   is a prespecified positive integer, and   is the 

sample size. Specifically, the null hypothesis is  

                 ,…………………………....……………….(3.51) 

Let 

     ∑   
       

      ,…………………………...…..……………..(3.52) 

where 

   
 

 
 ∑   

  
    ,………………………………….……………..………..(3.53) 

is the sample mean of   
  , and  

     ∑  ̂ 
  

      ,…………………………………………...…………(3.54) 

Where  ̂  is the least square residual of the prior linear regression, then the 

statistic test: 

  
             

             
 ,…………………………………….....……………..(3.55) 

which is asymptotically distributed as a chi-squared distribution with   degrees 

of freedom under the null hypothesis. The decision rule is to reject the null 

hypothesis if     
     or the                             . 
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3-8 Estimation of the Autoregressive Conditional Heteroskedasticity 

Models: 

There exists more than one method for estimating parameters in GARCH 

models with unknown innovation distributions. The quasi maximum likelihood 

estimator facilitated by hypothetically assuming the innovation distribution to 

be Gaussian is arguably the most frequently used estimator in practice, which 

simply call the Gaussian maximum likelihood estimator (GMLE). 

To be able to predict the volatility for a time series, one first has to fit the 

GARCH-model to the time series data. This is done via estimation of the 

parameters in the tentative model. The most common and standard method of 

this estimation is the maximum-likelihood estimation (MLE). 

3-8-1 Maximum-Likelihood Estimation (MLE) 

Under the assumptions of a conditional normal distribution of   . The 

maximum-likelihood estimation works as follows: 

Let,            assumes to be random observations from a distribution 

    
       that depends on the unknown parameter   (where   [ω, 

                 ] in the GARCH (p,q) case) with the parameter space. 

   has the probability distribution function      
         where     

        denotes 

the probability that 𝜺 =𝜺, thus P(𝜺 =𝜺). 
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Supposing that the probability function is known (except from the unknown 

parameters) it is possible to estimate the unknown parameters  ‟s by putting up 

the likelihood function which is denoted by (L( ), and takes the form: 

    
    |        

 

     
      

 

 

  
 

  
   ,…………………………….……(3.56)  

with the large number of observation T, the Likelihood function of the above 

distribution is written as : 

     ∏   
 
       |         ………………………….….…………….(3.57) 

Therefore 

      
 

     
     * 

 

 
∑

  
 

  
 

 
   +   ………………...…….……..…..…(3.58) 

      
 

   
       

 

    * 
 

 
∑

  
 

  
 

 
   +   ………………………...….…(3.59) 

The logarithm of the above form is called the Log-Likelihood function, which is 

expressed as follows: 

         
 

 
     

 

 
∑

  
 

  
 

 
    ,……………………..……..…...……(3.60) 

Where 

     
 

   
  ,……………..……………………………….….…………(3.61) 

The Maximum likelihood parameter estimation is based on choosing values for  

  so as to maximise the likelihood function. That is, the MLE of  , which 

denoted as  ̂, is the solution to the maximized problem for observations          ,  

 

i.e.: 
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 ̂                  ,………………………..……………….………..(3.62) 

Where  ̂ is the value of the argument of the likelihood, selected from anywhere 

in the parameter space that maximizes the value of the likelihood after given the 

sample of observations. 

Consider a simple GARCH(1,1) specification: 

         ,……………………………………………...…….………….(3.63) 

        ,………………………..………………………….……….….…(3.64) 

  
          

        
  ,…….….………………….....…………….....(3.65) 

Since the errors are assumed to be conditionally i.i.d, maximum likelihood is a 

natural choice to estimate the unknown parameters, 𝜽 which contain both mean 

and variance parameters. 

The normal likelihood for T independent variables is given by the following 

formulation: 

       ∏      
  

     
 

       
        

   
   ,…………………....….…..….(3.66) 

and the normal log-likelihood function is given by: 

L(r;  ) = ∑  
 

 

 
          

 

 
     

   
        

   
 ,….……………..…….…(3.67) 

If the mean is set to zero, the log-likelihood simplifies to: 

L(r;  ) = ∑  
 

 

 
          

 

 
     

   
  

 

   
  ,…………..….………….…(3.68) 

and is maximized by solving the first order conditions: 

       

   
  = ∑

 

   
 

 
    

  
 

   
   ………………………….....…………(3.69) 
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which can be written to provide some insight into the estimation of ARCH 

models, 

       

   
  

 

 
∑

 

  
 

 
    

  
 

  
     ,………………….……………………..(3.70) 

This expression clarifies that the parameters of the volatility are chosen to make 

(
  

 

  
   ) as close to zero as possible. 

The derivatives take forms: 

    
  

  
     

     
 

  
  ,………………………………………..…….…..…(3.71) 

    
  

   
     

    
     

 

   
 ,…………………………….………………...…(3.72) 

    
  

   
     

    
     

 

   
 ,……………………………………….…..…….(3.73) 

The above equations provide the necessary formulas to implement the score of 

the log-likelihood. 

3-8-2 The Gaussian Maximum-Likelihood Estimation 

Let,            assumes to be random observations from a distribution 

    
       that depends on the unknown parameter   (where   [ω, 

                 ] in the GARCH (p,q) case) with the parameter space. 

   has the probability distribution function      
         where     

        denotes 

the probability that 𝜺 =𝜺, thus P(𝜺 =𝜺).The Gaussian maximum-likelihood  
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Estimation (QMLE) is given by: 

                        ∑
 

√    
 ̃

 
         

  
 

   
 ̃
  ,……………….(3.74) 

Where  
 ̃are defined recursively, for       by 

  
 ̃    

 ̃      ∑       
  ∑   

 
     

 ̃
   

  
    ,…………………....…(3.75) 

For instance, the initial values can be chosen as: 

  
        

    
 ̃        

 ̃    ,……..……..………………….(3.76) 

or 

  
        

    
 ̃        

 ̃    
  ,…………………..………..…(3.77) 

A QMLE of   is defined as any measurable solution  ̂ of  

 ̂        
   

            
   

 ̃     ,………………..…………..………(3.78) 

where 

 ̃        ∑  ̃ 
 
   and ̃   ̃     

  
 

  
 ̃

      
 ̃ 

Lee and Hansen (1994) and Lumsdaine (1996) proved that the local QMLE is 

consistent and asymptotically normal, assuming           
          which 

is the necessary and sufficient condition for strict stationarity. However, Lee 

and Hansen (1994) required that all the conditional expectation of    
      

with       
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3-8-3 Fat-Tailed Maximum-Likelihood Estimation 

An alternative way of dealing with non-Gaussian errors is to assume a 

distribution that reflects the features of the data better than the normal 

distribution, and estimate the parameters using this distribution in the likelihood 

function instead of the Gaussian. Thus, the problem with the calculation of 

unobservable values is yet present in this model. When choosing a distribution 

for the innovations, QQ-plots can be very helpful. In this thesis two 

distributions, apart from the Gaussian, are considered; the Student-t Distribution 

(t-Distribution) and the Generalized Error Distribution (GED). 

The likelihood functions for two distributional assumptions are: 

* the log-likelihood function for the Student-t distribution 

    ∑   
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*the log-likelihood-function for the GED 
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Whereis the gamma function, and 

λ = (
 

 
 
   

 

 
 

  
 

 
 

)

 

 

 

These log-likelihood functions are maximized with respect to the unknown 

parameters (the same procedure as in the Gaussian quasi MLE case). 



 

79 
 

3-9  Distribution Assumptions: 

 

As discussed earlier, observations of the financial time series {  } have a 

distribution that one often assumes to be normal (Gaussian) but, as shown in, 

they often tend to be leptokurtic (fat tailed). QQ-plots have been shown to be 

good tools when deciding what distribution to use. In this thesis the fat tailed 

Student-t distribution and the GED are considered. The GED can be both 

leptokurtic and platykurtic depending on the chosen degree of freedom. 

Here follows some further information about these distributions 

3-9-1 Normal Distribution 

The standard GARCH (p, q) model introduced by Tim Bollerslev (1986) is with 

normal distributed error   =     ,   ~  iid(0,1) . Use maximum log-likelihood 

method to estimate the parameter in the standard GARCH model, given the 

error following the Gaussian and we can get the log-likelihood function: 

   
   |      ∏

 

     

 
         

 

 

  
 

  
   =   ∏

 

     

 
        

  
 

 
…..…(3.81)      

                      =   
 

 
∑ [              

 
     

 ] 

         Where   
  

  
 

  
     is independently and identically distributed 

3-9-2 Student’s t-Distribution 

  As mentioned before, GARCH model often does not allow asymmetry 

and is not sufficiently fat-tailed to capture the excess kurtosis found in most 

financial return data. This has led to a search for more flexible conditional 

distribution (non-normal distributions) to replace the conditional normal 
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assumption. Bollerslev (1987) was the first combined the GARCH models with 

a standardized Student‟s t-distribution with v > 2 degrees of freedom whose 

density is given by: 

……………………..(3.82)2
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Where         be the standardized error,Γ(v) is the gamma function , v is the 

parameter that measures the tail thickness. 

3-9-3 Generalized Error Distribution 

Nelson (1991) suggested the use of the generalized error distribution 

(GED) 
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Where  is the tail-thickness parameter and   2/1)/2(
)/3(/)/1(2 





. When

2 , t  is standard normally distributed. For 2 , the distribution of t  has 

thicker tails than the normal distribution (e.g., for t ,1  has double 

exponential distribution) while for 2  the distribution of t  has thinner tails 

than the normal distribution (e.g., for  , t  has a uniform distribution on the 

interval ( 3,3 ),. The conditional kurtosis is given by 
2

))/1(/())/5()/1((   . 
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Notice that the choice of a density has a particular impact on some 

models, for example in EGARCH the value of tE depends on the density 

function for the standard normal distribution 

)( itE  = 


2
,  …………………………………………………….(3.84) 

for student-t distribution 
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for GED  
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3-10 Forecasting: 

The forecasts of the Autoregressive Conditional Heteroskedasticity models 

(ARCH) model can be obtained recursively as those of an Autoregressive 

models (AR) model.  Consider an ARCH (p) model. At the forecast origin  , 

the one-step ahead forecast of     
 is given by: 

  
            

              
 ,…………………………….……(3.87) 

The two-step ahead forecast is: 

  
            

                 
 ,……………………..………(3.88) 
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and the ℓ-step ahead forecast for     
  is: 

  
        ∑     

      
 
    ,………………………...………………(3.89) 

where   
     )=      

  if        

3-10-1 Evaluation of Volatility Forecasts 

A fundamental concern in forecasting is the measure of forecasting error for 

given data set and given forecasting method. Accuracy can be defined as 

“goodness of fit” or how well the forecasting model is able to reproduce data 

that is already known (Makridakis and Wheelwright, 1989). 

The forecasting ability of GARCH models has been comprehensively discusses 

by Poon and Granger (2001). However Anderson and Bollerslev (1997) pointed 

out that squired daily returns may not be the proper measure to assess the 

forecasting performance of the different GARCH models for the conditional 

variance. The objective of applied econometrics is often to find the superior 

forecasting model. According to Gonzales-Rivera et al. (2004) the task of 

comparing the relative performance of different volatility models is built on 

either a statistical loss function or an economic loss function. Statistical loss 

functions are based on moments of forecast errors, and include statistics such as 

the mean error (ME), the root mean square error statistics such as the mean 

error (ME), the root mean square error (RMSE), the mean absolute error (MAE) 

and the mean absolute percent error (MAPE), the following formulas are the 

statistical measures considered to assess forecasting ability: 
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3-10-2 Mean Squared Error 

As a measure of desperation of forecast error, statisticians have taken the 

average of the squared individual errors. The smaller the MSE value, the more 

stable the model. However, interpreting the MSE value can be misleading, for 

the mean squared error will be accentuate large error terms. It can be describes 

as: 

    
 

   
∑   ̂ 

    
      

    ,………………………...…………………..(3.90) 

3-10-3 Mean Absolute Error 

This error measurement is the average of the absolute value of the error without 

regard to whether the error was an overestimate or underestimates (Krajewski 

and Ritzman, 1993), its equation takes the form: 

    
 

   
∑ |   

    ̂ 
    

 | ,……………………………………………..(3.91) 

3-10-4 Adjusted Mean Absolute Percentage Error 

Mean Absolute Percentage Error is regarded as a better error measurement than 

MSE because it does not accentuate large errors, it can be written as:  

      
 

   
∑ |

 ̂ 
    

 

 ̂ 
    

 
   
   | ,………………………………….…………(3.92) 

where h is the number of head steps, s is the sample size,   ̂ 
  is the forecasted 

variance and   
  is the actual variance. 

Mean: 

The best model would be the one that minimizes such a function of the forecast 

errors. 
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3-10-5 Akaiake Information Criteria 

The Akaiake Information Criterion or AIC is effectively an estimate of the out 

of sample forecast error variance, it is used to select among competing 

forecasting models, the model that have smallest AIC (is the best), the formula 

is as follows: 

       ̂  
  

 
 ,……………………………………………………….(3.93) 

3-10-6 Schwarz Information Criteria  

The Schwarz Information Criterion, or Sic is an alternative to the AIC with the 

same interpretation, the formula is denoted as follows:   

        ̂  
 

 
    ,………………………………..……………………(3.94) 

where 

 ̂  
 

 
∑         

    ,……………………………...…………………….(3.95) 

T is the number of observations; k is the number of parameters  
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4-1 Introduction: 

This chapter empirically examines vital characteristics of the exchange rate data 

in the Sudan in order to perform an appropriate model for modeling and 

forecasting exchange rate volatility in the Sudan.  

4-2  Data: 

The data will be used in the analysis of this research are monthly readings of 

Exchange Rate in the Sudan covered the period from 01/01/1999 to 31/12/2013 

obtained from Central Bureau of Statistics, Bank of Sudan and Khartoum Stock 

market and then transformed into logarithmic return series. The corresponding 

transform price series into monthly logarithmic return are calculated by using 

the formula:                   where     is the exchange rate and    denotes 

the returns 

4-3 Examining Exchange Rate and Modeling: 

This section examines empirically a vital characteristic of exchange rate prices 

in relation to volatility, persistence, changes in volatility and asymmetry in 

volatility prices of prices. Figure (1) Plots of return Exchange rate series: 

Monthly data (from 1/1/1999 to 31/12/2013). 

Figure (4-1) illustrates monthly of return Exchange rate Monthly data plot.It can 

be seen that the mean of the return Exchange rate is about constant however, the 

variance clearly exhibit volatility clustering 
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Figure (4-1) The plot return Exchange prices Monthly data (from1/1/1999 to 31/12/2013). 
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Source:Eviews 8 

 

4-4 Descriptive Statistics: 

Table (4-2): Summary Statistics of Exchange rate Returns (SDG/ USA ($)) 

Source :Eviews 8 

 

The summary statistics of this study is presented in table (4-2).This indicates 

that the returns series have monthly positive mean of (0.0051) while the 

monthly volatility is (0.013),without loss of generality the mean grows at a 

linear rate while the volatility grows approximately at a square root rate. The 

lowest monthly returns correspond to (-0.076) and the best monthly exchange 

rate returns is (0.373). The returns series of the exchange rate shows positive 

skewness. This implies that the series is flatter to the right. The kurtosis value is 

Sample 

size 
Mean S.Dev Min. Max. Skew. Kurt. J.B P-value 

178 0.0051 0.036 -0.076 0.373 6.717 62.241 27521.52 0.000 
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higher than the normal value of perfectly normal distribution in which value for 

skewness is „zero‟ and kurtosisis „three‟ and this suggest that the kurtosis curve 

of the exchange rate return series is leptokurtic. The results of this study reveal 

that, the series is not normally distributed. Our empirical result is consistent 

with the Jarque-Bera (JB) tests obtained above which is used to assess whether 

the given series is normally distributed or not. Here, the null hypothesis is that 

the series is normally distributed. Results of JB test find that the null hypothesis 

is rejected for the return series and suggest that the observed series are not 

normally distributed 

4-5 Testing for Stationarity: 

To investigate whether the daily price index and its returns are stationary series, 

the Augmented Dickey–Fuller (ADF) test (Dickey and Fuller, 1981) has been 

applied. Thereby, the lag length has been selected automatically based on the 

Schwarz information criterion with a preset maximum lag length of 13. The 

results are reported in Table (4-2). 

Figure (4-3) Augmented Dickey-Fuller test 

Null Hypothesis: RT has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=13) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -10.60353  0.0000 

Test critical values: 1% level  -3.467205  

 5% level  -2.877636  

 10% level  -2.575430  
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The Augmented Dickey-fuller of unit root test (ADF) with trend, intercept and 

lag difference of 1 result, results conclude that exchange rate retun series has a 

unit root.The ADF test were also applied to the first difference of exchange rate 

retun series from figure (4-3) the result illustrate that the absolute value of the 

ADF test (10.60353)is greater than the 1%, 5% and 10% critical values in 

absolute terms (3.467205 ,2.877636 and 2.575430) respectively this result 

conclude that the transformed into logarithmic return series is stationary 

The ACF and PACF plot in Figure (4-4) shows no significant peaks, also all           

Q-statistics shows no significant ACF, this result confirm that the first 

difference of exchange rate series is stationary. 
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Figure (4-4) Correlogram of first difference of exchange rate series  
Date: 09/24/15   Time: 20:19    

Sample: 1999M01 2013M12      

Included observations: 179     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 
       
              .|**    |        .|**    | 1 0.216 0.216 8.5053 0.004 

       .|.     |        .|.     | 2 0.001 -0.048 8.5057 0.014 

       .|.     |        .|.     | 3 0.020 0.031 8.5758 0.035 

       .|.     |        .|.     | 4 -0.036 -0.050 8.8185 0.066 

       .|.     |        .|.     | 5 0.002 0.024 8.8194 0.116 

       .|.     |        .|.     | 6 0.009 0.001 8.8351 0.183 

       .|.     |        .|.     | 7 -0.001 -0.001 8.8355 0.265 

       .|.     |        .|.     | 8 -0.005 -0.007 8.8397 0.356 

       .|.     |        .|.     | 9 -0.010 -0.007 8.8589 0.450 

       .|.     |        .|.     | 10 -0.009 -0.005 8.8731 0.544 

       .|.     |        .|.     | 11 -0.009 -0.007 8.8901 0.632 

       .|.     |        .|.     | 12 -0.023 -0.021 8.9966 0.703 

       .|.     |        .|.     | 13 0.015 0.025 9.0395 0.770 

       .|.     |        .|.     | 14 0.045 0.037 9.4408 0.802 

       .|**    |        .|**    | 15 0.277 0.276 24.607 0.055 

       .|*     |        .|*     | 16 0.200 0.090 32.560 0.008 

       .|.     |        .|.     | 17 0.032 -0.011 32.769 0.012 

       .|.     |        .|.     | 18 0.065 0.064 33.608 0.014 

       .|*     |        .|*     | 19 0.170 0.185 39.489 0.004 

       *|.     |        *|.     | 20 -0.099 -0.183 41.499 0.003 

       .|.     |        .|*     | 21 0.007 0.076 41.508 0.005 

       .|.     |        .|.     | 22 0.006 -0.025 41.516 0.007 

       .|.     |        .|.     | 23 0.018 0.059 41.584 0.010 

       .|.     |        .|.     | 24 0.042 0.006 41.953 0.013 

       .|.     |        .|.     | 25 0.045 0.069 42.383 0.016 

       .|.     |        .|.     | 26 -0.002 -0.029 42.384 0.022 

       .|.     |        .|.     | 27 -0.003 0.039 42.386 0.030 

       .|.     |        .|.     | 28 -0.005 -0.018 42.391 0.040 

       .|.     |        .|.     | 29 -0.013 -0.014 42.429 0.051 

       .|.     |        *|.     | 30 -0.016 -0.115 42.485 0.065 

       .|.     |        .|.     | 31 0.042 0.013 42.876 0.076 

       .|.     |        .|.     | 32 0.035 -0.026 43.145 0.090 

       *|.     |        *|.     | 33 -0.079 -0.123 44.526 0.087 

       .|.     |        *|.     | 34 0.014 -0.079 44.571 0.106 

       .|.     |        .|.     | 35 -0.014 0.029 44.614 0.128 

       .|.     |        .|.     | 36 0.009 0.024 44.632 0.153 
       

 

4-6 Exchange Rate Model Identification: 

Since correlogram of retun sieres of exchange rate does not give much help in 

identifying an appropriate model, thus numerous ARIMA models are suggested 

to fit exchange rate return sieres in the Sudan.  Table (4-3) bellow shows the 

suggested models and their corresponding AIC and BIC criteria. 
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 Numerous statistical criterion for assessing the goodness of fit to time series 

models have been introduced, Akiaka‟s (1987) information criteria and 

Schwartz‟s (1978) Bayesian criteria are useful tools for comparing models with 

different parameters number, the model with smallest AIC or SBC is considered 

best. Several ARIMA (p,d,q) models have been suggested with the objective of 

identifying which of these models is adequate to fit buying exchange return 

series, the suggested ARIMA models and their corresponding AIC,SBC values 

are stated as follows:    

Table (4-3) ARIMA (p,d,q). 

ARIMA (p,d,q). AIC SBC 

ARIMA ( 1,1,0) -3. 812939 -3.777189 

ARIMA ( 0,1,1) -3.811039 -3.775426 

ARIMA ( 1,1,1) -3.805022 -3.751397 

ARIMA ( 1,1,2) -3.794413 -3.722912 

ARIMA ( 2,1,1) -3.835265 -3.763488 

ARIMA ( 2,1,2) -3.824261 -3.734539 

Source : return Exchange prices Monthly data (from1/1/1999 to 31/12/2013) 

A closer look to table (4-3) it can be seen that ARIMA (1,1,2) model have 

smallest value of AIC and BSC criteria. In this model it is assumed that the 

exchange rate data is subject to autoregressive of order1, differing 1, and 

moving average of order 2.  

4-7 Testing for Heteroskedasticity 

Figure (4-5). ARCH-LM Test for residuals of ARIMA(1,1,2) 
 

Note:       : There are no ARCH effects in the residual series 

 

Heteroskedasticity Test: ARCH   
     
     F-statistic 6.180302     Prob. F(1,175) 0.0139 

Obs*R-squared 6.037707     Prob. Chi-Square(1) 0.0140 
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 The ARCH-LM test results in Figure (4-5) provide strong evidence for 

rejecting the null hypothesis. Rejecting     is an indication of the existence of 

ARCH effects in the residuals series of the mean equation and therefore the 

variance of the returns series indicates are non-constant 

Table(4-4) Estimation results of different GARCH models Exchange rate Returns (SDG/ USA) 

Source :Eviews 8 

In the results for the variance equation reported in Table (4-4) provides the 

estimates of the GARCH (1,1) model for return series of  exchange rate  in 

Sudan. The estimation result shown that the coefficients in the conditional 

variance equation the α significant and β not significant at 5% significant level. 

The sum of ARCH and GARCH coefficients (α+β) = 5.46 (persistence 

Coefficients GARCH (1,1) 
GARCH-M 

(1,1) 

EGARCH 

(1,1) 

TGARCH 

(1,1) 

PGARCH 

(1,1) 

Mu(μ) 
0.038 14.53 -0.0007 0.002 0.003 

0.019 0.999 0.209 0.504 0.36 

Ar1(φ) 
0.997 1.000 0.599 0.506 0.451 

0.000 0.000 0.000 0.124 0.149 

 Ma(θ₁) 
-0.852 -0.679 -0.605 -0.069 -0.032 

0.000 0.000 0.000 0.839 0.897 

Ma(θ₂) 
-0.139 -0.271 0.022 0.004 0.002 

0.005 0.000 0.319 0.982 0.99 

Omega (ω) 
0.00001 0.00003 -15.107 0.0002 0.0006 

0.906 _ 0.000 0.000 0.863 

Alpha (α₁) 
5.452 0.117 0.689 1.442 0.918 

0.000 0.000 0.000 0.006 0.0007 

Beta(β₁) 
0.008 0.882 -0.075 -0.841 -0.197 

0.325 0.000 0.042 0.136 0.094 

Gamma() 
  -0.806 -0.027 -0.043 

  0.000 0.557 0.739 

Delta (δ) 
    1.804 

    0.198 

 5.46 0.999 0.614 0.601 0.721 
Log likelihood 506.08 507.5 468.83 467.15 464.77 

ARCH-LM test 0.012 25.66 5.42 1.22 1.766 
 0.912 0.000 0.0198 0.269 0.183 
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coefficients) in the GARCH (1,1) model  is the greater than one, suggesting that 

the conditional variance process is explosive. the ARCH-LM for lagged 

conditional variance and squared disturbance is 0.012, under     
  the null 

hypothesis is accepted since the p- value is 0.912 where it has greater than 5% 

of significance level. Means that the Accept the null hypothesis at the same 

condition. Therefore the ARCH-LM test on the residuals of this model indicates 

that the conditional heteroskedasticity is not present. 

The GARCH-M (1,1) model is estimated by allowing the mean equation of the 

return series to depend on a function of the conditional variance. From 

estimation results in Table (4- 4) the estimated coefficient (risk premium) of Rt 

in the mean equation is positive for the markets, which indicates that the mean 

of the return sequence depends on past innovations and the past conditional 

variance.  

From Table (4-4 )the estimates of the EGARCH (1,1) model for return series of  

exchange rate, the estimation results shows that; the estimates   is negative and 

significant, meaning that returns series have asymmetry and has greater impact 

of negative shocks on the return series of exchange rate volatility. Moreover, the 

estimates β = -0.075 is significantly at 5% significant level which is an 

indication of not persistence of volatility. In addition the estimates   is 

statistically significant while    is statistically significant,     indicating that 

the conditional variance has leverage effect. Furthermore  ≠0; meaning that an 
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asymmetry of negative shocks on the conditional variance is present. The 

ARCH-LM for lagged conditional variance and squared disturbance is 5.42, 

under     
  the null hypothesis is rejected since the p- value is 0.019 where it has 

less than 5% of significance level the null hypothesis is rejected This result 

indicates that the ARCH effect occur in the residuals of EGARCH (1,1) model 

this model is adequate to presents return series of   exchange rate. 

From above table demonstrate the estimation result of the TGARCH (1,1) for 

return series of  exchange rate model. It can be seen that the ARCH is statistical 

significant and GARCH term is not statistical significant. The sum of ARCH 

and GARCH is equal to 0.601 less than one indicating that volatility shocks is 

quite persistent. Moreover, the symmetry term in the TGARCH (1,1) model γ = 

-0.027 it is not statistically significant at 5% significant level, means that the 

conditional variance has not a leverage effect , Adverse market conditions and 

bad news such as, the effect of risk management policies and political 

instabilities has an impact of     = 1.415. Good news about demand and 

supply conditions in the price of exchange rate market has an impact of   = 

1.442  the ARCH-LM for one lag difference of residuals squared is 1.22, under 

    
  the null hypothesis is not rejected since the p- value is 0.269where it has 

greater than 5% of significance level. Accept the null hypothesis Therefore the 

ARCH-LM test on the residuals of this model this results confirm that the 

model is appropriate 
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From table (4-4) demonstrate the estimates of the APARCH (1,1) model for 

returns exchange rate series, the estimated power term δ = 1.8 is not statistically 

significant at 5%significant level. Moreover the a symmetry term   in the 

APARCH (1,1) model is not statistically significant at 5%significant level. In 

addition     0.043 is less than zero; this means that the conditional variance 

has not a symmetric term on the price volatility. The output on the ARCH test 

as shown in table(4- 4) signifies that the null hypothesis did not rejected, that 

there is no ARCH effect in the residuals, because of the insignificant squared 

residual term (p-value of 0.183 is more than 0.05 level of significance). This 

result confirms that the APGARCH (1,1) model for  returns exchange rate series 

model is adequate. 
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Table(4- 5) 

 Parameter Estimation of the ARIMA (1,1, 2)-GARCH (1, 1), GJR (1, 1) and 

DGE (1, 1) Models with the Conditional 

 
Source :Eviews 8 

Table (4-5) presents the parameter estimation results of ARIMA (1,1,2) , 

GARCH (1, 1), GJR-GARCH (1, 1) and DGE-GARCH (1, 1) models with the 

 
GARCH GJR-GARCH DEG-GARCH 

Conditional 
Distribution 

Normal Student-t Normal Student-t Normal Student-t 

Mu(μ) 
0.048 -0.00011 0.002 -7.82E-05 0.003 -4.29E-05 

0.053 0.4221 0.474 0.2887 0.3602 0.99 

Ar1(φ) 
0.998 0.372 0.394 0.351 0.45 0.38 

0.000 0.000 0.466 0.000 0.14 0.000 

 Ma(θ₁) 
-0.883 -0.042 0.056 -0.081 -0.032 -0.049 

0.000 0.336 0.991 0.011 0.89 0.042 

Ma(θ₂) 
-0.109 0.00048 0.009 -0.008 0.002 0.0026 

0.035 0.975 0.971 0.375 0.99 0.364 

Omega (ω) 
1.26E-07 2.05E-06 0.0002 6.55E-07 0.00065 0.0016 

0.908 0.007 0.000 0.0134 0.863 0.605 

Alpha (α₁) 
5.272 2.022 0.842 7.233 0.918 6.957 

0.000 0.0292 0.000 0.039 0.0007 0.352 

Beta(β₁) 
0.006 -0.0015 -0.168 -0.125 -0.197 -0.155 

0.5007 0.6735 0.101 0.192 0.094 0.127 

Gamma(γ₁) 
  -0.028 -0.002 -0.043 0.015 

  0.376 0.604 0.739 0.602 

Delta (δ) 
  2 2 1.8 0.893 

    0.198 0.0018 

Shape (v ) 
   2.253  2.025 

   0.000  0.000 
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normal and, student‟s-t distributions and their corresponding p-values. The 

results show that the parameters estimated in these three models are all  

significant under the given conditional distributions except for the coefficients 

of Mu. Under the student‟s- t distribution, the sum of the GARCH parameter 

estimates (       is greater than 1, implying that the volatility rate model is 

strictly stationary GARCH model is less than 1, which indicates that the model 

is well fitted. For the normal distribution  the sum of the GARCHparameter is 

less than 1 for the GJR-GARCH and DGE-GARCH models with the which also 

show that the shocks in volatility is limited and stationary and the model is well 

fitted, the sum is greater than1 in case of the GARCH model. The leverage 

effect term (gamma) in both the GJR model and the DGE is not statistically 

significant but it is negative, implying that negative shocks results to a higher 

next period 

conditional variance thanpositive shocks of the same sign, it indicates that the  

bad news (negative shocks) effects the volatility more than the good news. The 

table shows that the estimated δof the DGE -GARCH model under the normal 

distribution is 1.8 is not significant which is significantly in student-t 

distribution. 
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Table (4-6) Analysis of standardized residuals and fitted parameters 

Source :Eviews 8 

 

The coefficients reported as shown in the table(4-6) are the maximum 

likelihood estimates of the parameters and the p-values are in parentheses for 

the ARIMA (1,1,2) - GARCH (1,1), GJR-GARCH (1, 1) and DGE-GARCH (1, 

1), models. The estimation results of the models with the conditional 

 Normal Student-t Normal Student-t Normal Student-t 

Log likelihood 504.885 675.582 466.085 695.039 464.773 708.127 

Jarque – Bera 

Test 

4134.971 36547.94 7546.622 42675.11 
8051.47

7 
50508.8 

0.000 0.000 0.000 0.000 0.000 0.000 

Ljung- Box 

Test  

R (Q10) 

12.69 1.2776 3.3783 0.3547 4.1727 0.0376 

0.08 0.989 0.848 1.000 0.76 1.000 

Ljung- Box 

Test  

R (Q15) 

20.483 17.563 16.566 18.276 17.43 20.51 

0.058 0.130 0.167 0.108 0.134 0.058 

Ljung- Box 

Test  

R (Q20) 

32.424 42.635 37.737 45.818 39.782 45.216 

0.013 0.001 0.003 0.000 0.001 0.000 

Ljung- Box 

Test  

Rᶺ2 (Q10) 

1.462 0.2803 2.9889 0.2483 2.2772 0.2189 

0.999 1.000 0.982 1.000 0.994 1.000 

Ljung- Box 

Test  

Rᶺ2 (Q15) 

3.533 8.3468 13.078 8.2591 11.666 9.013 

0.999 0.909 0.596 0.913 0.704 0.877 

Ljung- Box 

Test  

Rᶺ2 (Q20) 

41.934 26.456 35.174 27.357 33.795 22.171 

0.003 0.151 0.019 0.126 0.028 0.331 

LM Arch Test 
0.0167 0.0317 2.404 0.0293 1.7665 0.025 

0.897 0.858 0.1224 0.864 0.183 0.874 

AIC -5.594 -7.5009 -5.147 -7.7088 -5.121 -7.844 

BIC -5.469 -7.357 -5.004 -7.547 -4.960 -7.665 

 
GARCH GJR-GARCH DEG-GARCH 
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distributions, including log-likelihood value, the Box-Pierce statistics of lags 10, 

15 and 20 of the standardized and squared standardized residuals, the Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), the 

ARCH test and their respective p-values are listed in Table 3. Comparing the 

log-likelihood, the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values among these models DGE-GARCH and 

GJR-GARCH models better estimate the exchange rate return series than the 

GARCH model with the Student t-distribution assumption gives better results. 

The results also show that the student‟s t-distribution outperforms the normal 

distribution, discussed in this chapter. With these models, DEG-GARCH with 

Student t-distribution gives the highest log-likelihood value of 708.124. The 

AIC and BIC values of the GARCH and DEG -GARCH models under the three 

conditional distribution gives the lowest values when compared to the GJR-

GARCH and GARCH models and that the DEG -GARCH model with the 

student‟s t-distribution provides the smallest values of AIC (-7.884) and BIC (- 

7.665) respectively, this implies that DEG -GARCH model under the student‟s 

t-distribution provides a better fit for the monthly exchange rate returns 

according to this criterions. 

The table shown the t-statistics and p-values are in parentheses for ARIMA (1,1, 

2)- GARCH(1,1),GJR(1,1) and DGE(1, 1) models.(AIC) represent Akaike 

Information Criterion, (BIC) is Bayesian Information Criterion (BIC), Ljung-

Box Test R (Standardized Residuals and Ljung-Box TestR^2 (Square 
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Standardized Residual) The Jarque-Bera statistic to test the null hypothesis of 

whether the standardized residuals are normally distributed. The results 

presented in table 3 show that the standardized residuals are leptokurtic and the 

Jarque-Bera statistic strongly rejects the hypothesis of normal distribution 

which means that the fat-tailed asymmetric conditional distributions outperform 

the normal for modeling and forecasting the exchange rates volatility returns. 

The Ljung Box tests for the residuals have p-values that are statistically not 

significant indicating that no serial correlation exists except twentieth-order. 

The Ljung-Box statistics for up to twentieth-order serial correlation of squared 

residuals are not significant suggesting that no significance correlation exist. As 

for the LM-ARCH test the results reveals that the conditional heteroskedasticity 

that existed in the exchange rate returns time series have successfully removed, 

indicating that no significant appearance of the ARCH effect 

 

4-8 Forecasting: 

 

      The forecasting ability of the GARCH models has been discussed precisely 

by Poon and Granger (2003). We use the Eviews 8 to evaluate a five step ahead 

forecast using 180 observations for the monthly exchange rate returns. The 

forecasts are evaluated using three different measures which provide robustness 

in choosing the optimal predicts models for the return series 
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Table (4-7) 

Forecasting Analysis for the Exchange rate returns with the Conditional distributions 

Source:Eviews 8 

The results, as shown in the table (4-7) above, indicate that the forecasting 

performance of the GJR-GARCH and DGE-GARCH models, especially when 

fat-tailed asymmetric conditional distributions are taken into account in the 

conditional volatility, is better than the GARCH model. However, the 

comparison between the models with normal and student-t distributions shows 

that, according to the different measures used for evaluating the performance of 

volatility forecasts, the DEG –GARCH model provides the best forecasts and 

clearly outperforms GJR-GARCH and GARCH models and the DGE-GARCH 

model provides less satisfactory forecast results while the poorest forecast 

results was registered for the GARCH model. Moreover, it is found that the 

Student-t distribution is more appropriate for modeling and forecasting the 

exchange rate returns volatility. 

 

 

Exchange 

rate 

returns 

GARCH GJR-GARCH DEG-GARCH 

(SDG 

/USA($) Normal Student Normal Student Normal Student 

MSE 
0.00406 0.001354 0.001337 0.001354 0.001334 0.001353 

MAE 
0.058991 0.011101 0.012129 0.011098 0.012587 0.011080 

AMAPE 
8582.155 90.45945 372.7228 87.82762 491.7924 83.77597 
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CHAPTER FIVE 

 

 

 

5-1 Conclusion 

5-2 Recommendations 
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5-1 Conclusion: 

Modelling and forecasting the volatility of returns series in stock markets has 

become fertile field of empirical research in financial markets. This is simply 

because volatility is considered as an important concept in many economic and 

financial applications like asset pricing; risk management and portfolio 

allocation this thesis attempts to explore the comparative ability of different 

statistical and econometric volatility forecasting models in the context of 

exchange rate market. A total of five different models were considered in this 

study and comparative with normal and student-t distribution. The volatility of 

the exchange rate returns in Sudan have been modeled by using a Generalized 

Autoregressive Conditional heteroskedasticity (GARCH) models including both 

symmetric and asymmetric models that captures most common stylized facts 

about index returns such as volatility clustering and leverage effect, these 

models are GARCH(1,1), GARCH-M(1,1), exponential GARCH(1,1), threshold 

GARCH(1,1) and power GARCH(1,1). Based on the empirical results 

presented, the following can be concluded: 

10- The summary statistics indicate that the returns series have monthly 

positive mean (0.0051) while the volatility is (0.013) without loss of 

generality the mean grows at linear rate while the volatility grows 

approximately at square root rate. 
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11- The returns series of the exchange rate shows positive skewness this 

implies that the series of exchange rate is flatter to the right 

12- The kurtosis value is the higher than the normal and this suggest that the 

kurtosis curve of the exchange rate return series is leptokurtic. 

13- The coefficient in the condition variance equation GARCH(1,1) the α 

significant and β not significant and the (α+β) is greater than one 

suggesting that the condition variance process is explosive. 

14- The coefficient (risk premium) of Rt in the mean equation is positive of 

the market which indicate the mean of the return sequence depend on past 

innovation and the past conditional variance. 

15- The estimation of  EGARCH(1,1) model for return series of exchange 

rate the γ is negative and significant meaning that return series have 

asymmetry and has greater impact of negative shocks indicate that the 

conditional variance has leverage effect and asymmetry of negative shocks. 

16- The result indicate that the forecasting performance of the GJR-

GARCH(1,1) and DGE-GARCH(1,1) models especially when fat-tailed 

asymmetric conditional distribution are taken into account in the 

conditional volatility is better than the GARC(1,1) model. 

17- However the comparison between the models with normal and student-t 

distribution shows that according to the different measures used for 

evaluating the performance of volatility forecasts the DGE-GARCH(1,1) 

model provides the best forecasts. 
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18- It is a found that the student-t distribution is more appropriates for 

modeling and forecasting exchange rate return volatility. 

5-2 Recommendations: 

Following the analysis and conclusions presented above, somesuggestion 

concerning future research in the area may be made to fill thegap: 

1- The study applied Generalized Autoregressive Conditional heteroskedasticity 

(GARCH) models including both symmetric and asymmetric modelsfor only 

monthly returnsof exchangerates, and revealed the presence of time-

varyingMore research is needed to see whether this appliesalso to other time 

periods e.g. daily, weekly, quartly. 

2- There is the possibility that a wide range of factors may relevant inexplaining 

the stock returns volatility such as good prices, money supply, 

real activity,  political risks,……..,etc. To find the effects ofthese factors on 

stock return volatility further research is require 

3- It should be noted that this research was concerned on suitability of 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

approaches to model and forecastExchange rate in the Sudan. In terms of 

limitations, future research should be done for a hybrid method, specifically 

combines ARIMA with GARCH, non linear time series approaches for instance, 

artificial neural network (ANN) models as well as multivariate GARCH 
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models. More over GARCH models could be applied to other types of 

economic sectors. 

The above points are just a few interesting fields for further research. 

Volatility forecasts and its related subjects will most certainly continue to 

attract a lot of empirical work in future. 
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Annex 

Monthly readings of Exchange-Rate covered the period from 1/1/ 1999 to 31/12/2013  

      

Month 

Year 

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

January 

 
2.2649 2.569 2.5684 2.6069 2.609 2.5932 2.4999 2.2986 2.0004 2.0416 2.2163 2.2330 2.5004 2.6702 4.398 

February 

 
2.4011 2.5684 2.6085 2.6096 2.6063 2.5904 2.4973 2.2907 2.0018 2.0188 2.2423 2.2306 2.6015 2.6702 4.398 

March 

 
2.4431 2.5677 2.5661 2.6103 2.6049 2.5883 2.4904 2.2658 2.0005 2.0214 2.2868 2.2281 2.7747 2.6702 4.398 

April 

 
2.4791 2.5663 2.5666 2.6123 2.604 2.5873 2.4866 2.2383 2.0002 2.0235 2.3199 2.2255 2.6814 2.6702 4.398 

May 

 
2.5187 2.5667 2.5671 2.6144 2.6029 2.588 2.483 212.2 2.0007 2.0324 2.3502 2.2261 2.6702 2.6702 4.398 

June 

 
2.5572 2.567 2.5675 2.6207 2.601 2.5885 2.468 2.1852 2.0006 2.0526 2.367 2.3113 2.6702 3.0322 4.398 

July 

 
2.5699 2.5652 2.5675 2.6315 2.6014 2.5864 2.4502 2.1519 2.0002 2.0623 2.3857 2.3666 2.6702 4.4037 4.398 

August 

 
2.5708 2.5608 2.5732 2.634 2.6035 2.5818 2.4197 2.1232 2.0006 2.07561 2.4462 2.3668 2.6702 4.398 4.398 

September 

 2.5747 2.5614 2.5764 2.6355 2.6046 2.5771 2.3971 2190.2 2.0218 2.1262 2.3519 2.3668 2.6702 4.398 4.6875 

October 

 
2.5745 2.5628 2.5868 2.6359 2.6048 2.5528 2.351 2190.2 2.0466 2.18101 2.1932 2.3668 2.6702 4.398 5.6717 

November 

 
2.5718 2.5664 2.6102 2.6322 2.6022 2.5271 2.3173 2190.0 2.026 2.2041 2.2554 2.1932 2.6702 4.398 5.6814 

December 
2.5702 2.5674 2.6067 2.6179 2.5971 2.5147 2.301 2.0198 2.0286 2.1897 2.2359 2.4800 2.6702 4.398 5.6816 

Source: Bank of Sudan and Central Bureau of Statistics  
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Appendix: 

 

Figure (4-2) Augmented Dickey-Fuller Unit Root Test on Exchange rate series 

Null Hypothesis: P has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=13) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic  2.416686  1.0000 

Test critical values: 1% level  -3.466994  

 5% level  -2.877544  

 10% level  -2.575381  
     
     *MacKinnon (1996) one-sided p-values.  

     

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(P)   

Method: Least Squares   

Date: 09/24/15   Time: 23:00   

Sample (adjusted): 1999M02 2013M12  

Included observations: 179 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     P(-1) 0.035842 0.014831 2.416686 0.0167 

C -0.075203 0.040278 -1.867102 0.0635 
     
     R-squared 0.031942     Mean dependent var 0.019088 

Adjusted R-squared 0.026473     S.D. dependent var 0.135613 

S.E. of regression 0.133806     Akaike info criterion -1.173740 

Sum squared resid 3.169019     Schwarz criterion -1.138127 

Log likelihood 107.0497     Hannan-Quinn criter. -1.159299 

F-statistic 5.840370     Durbin-Watson stat 1.668076 

Prob(F-statistic) 0.016678    
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Figure (4-6) Augmented Dickey-Fuller Unit Root Test on Exchange returns 

series 

Null Hypothesis: PC has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=13) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -10.70231  0.0000 

Test critical values: 1% level  -3.467205  

 5% level  -2.877636  

 10% level  -2.575430  
     
     *MacKinnon (1996) one-sided p-values.  

     

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(PC)   

Method: Least Squares   

Date: 09/24/15   Time: 22:24   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     PC(-1) -0.783803 0.073237 -10.70231 0.0000 

C 0.004301 0.003117 1.380220 0.1693 
     
     R-squared 0.394230     Mean dependent var -0.000338 

Adjusted R-squared 0.390788     S.D. dependent var 0.052754 

S.E. of regression 0.041175     Akaike info criterion -3.530780 

Sum squared resid 0.298392     Schwarz criterion -3.495030 

Log likelihood 316.2395     Hannan-Quinn criter. -3.516283 

F-statistic 114.5393     Durbin-Watson stat 1.979214 

Prob(F-statistic) 0.000000    
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Figure (4-7) Parameter Estimation of an ARIMA (1,1,0) 

Dependent Variable: RT   

Method: Least Squares   

Date: 05/29/16   Time: 11:45   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 3 iterations  

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.004743 0.003464 1.369035 0.1727 

AR(1) 0.226312 0.072965 3.101638 0.0022 

     
     R-squared 0.051827     Mean dependent var 0.004839 

Adjusted R-squared 0.046440     S.D. dependent var 0.036618 

S.E. of regression 0.035758     Akaike info criterion -3.812939 

Sum squared resid 0.225034     Schwarz criterion -3.777189 

Log likelihood 341.3516     Hannan-Quinn criter. -3.798441 

F-statistic 9.620160     Durbin-Watson stat 1.978127 

Prob(F-statistic) 0.002242    

     
     Inverted AR Roots       .23   

     
      

Figure (4-8) Parameter Estimation of an ARIMA (0,1,1) 

Dependent Variable: RT   

Method: Least Squares   

Date: 05/29/16   Time: 11:48   

Sample (adjusted): 1999M02 2013M12  

Included observations: 179 after adjustments  

Convergence achieved after 6 iterations  

MA Backcast: 1999M01   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.005196 0.003341 1.554870 0.1218 

MA(1) 0.250204 0.072798 3.436958 0.0007 

     
     R-squared 0.055919     Mean dependent var 0.005138 

Adjusted R-squared 0.050585     S.D. dependent var 0.036734 

S.E. of regression 0.035793     Akaike info criterion -3.811039 

Sum squared resid 0.226757     Schwarz criterion -3.775426 

Log likelihood 343.0880     Hannan-Quinn criter. -3.796598 

F-statistic 10.48382     Durbin-Watson stat 2.007965 

Prob(F-statistic) 0.001438    

     
     Inverted MA Roots      -.25   
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Figure (4-9) Parameter Estimation of an ARIMA (1,1,1) 

 

Dependent Variable: RT   

Method: Least Squares   

Date: 05/29/16   Time: 11:47   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 11 iterations  

MA Backcast: 1999M02   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.004891 0.003289 1.487162 0.1388 

AR(1) -0.078334 0.288020 -0.271972 0.7860 

MA(1) 0.322465 0.275634 1.169904 0.2436 

     
     R-squared 0.054969     Mean dependent var 0.004839 

Adjusted R-squared 0.044169     S.D. dependent var 0.036618 

S.E. of regression 0.035800     Akaike info criterion -3.805022 

Sum squared resid 0.224288     Schwarz criterion -3.751397 

Log likelihood 341.6470     Hannan-Quinn criter. -3.783276 

F-statistic 5.089551     Durbin-Watson stat 2.003110 

Prob(F-statistic) 0.007104    

     
     Inverted AR Roots      -.08   

Inverted MA Roots      -.32   
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Figure (4-10) Parameter Estimation of an ARIMA (1,1,2) 

Dependent Variable: RT   

Method: Least Squares   

Date: 05/29/16   Time: 11:50   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 10 iterations  

MA Backcast: 1999M01 1999M02   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.004722 0.003334 1.416301 0.1585 

AR(1) 0.290732 0.625609 0.464719 0.6427 

MA(1) -0.047137 0.629846 -0.074839 0.9404 

MA(2) -0.079862 0.169638 -0.470780 0.6384 

     
     R-squared 0.055561     Mean dependent var 0.004839 

Adjusted R-squared 0.039277     S.D. dependent var 0.036618 

S.E. of regression 0.035892     Akaike info criterion -3.794413 

Sum squared resid 0.224148     Schwarz criterion -3.722912 

Log likelihood 341.7027     Hannan-Quinn criter. -3.765417 

F-statistic 3.412106     Durbin-Watson stat 2.005977 

Prob(F-statistic) 0.018781    

     
     Inverted AR Roots .29   

Inverted MA Roots       .31          -.26  
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Figure (4-11) Parameter Estimation of an ARIMA (2,1,1) 

Dependent Variable: RT   

Method: Least Squares   

Date: 05/29/16   Time: 11:52   

Sample (adjusted): 1999M04 2013M12  

Included observations: 177 after adjustments  

Convergence achieved after 17 iterations  

MA Backcast: 1999M03   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.004441 0.003407 1.303463 0.1941 

AR(1) -0.703097 0.075250 -9.343428 0.0000 

AR(2) 0.157533 0.075446 2.088011 0.0383 

MA(1) 0.993007 0.006458 153.7580 0.0000 

     
     R-squared 0.098091     Mean dependent var 0.004768 

Adjusted R-squared 0.082451     S.D. dependent var 0.036710 

S.E. of regression 0.035164     Akaike info criterion -3.835265 

Sum squared resid 0.213912     Schwarz criterion -3.763488 

Log likelihood 343.4210     Hannan-Quinn criter. -3.806155 

F-statistic 6.271804     Durbin-Watson stat 2.005670 

Prob(F-statistic) 0.000459    

     
     Inverted AR Roots       .18          -.88  

Inverted MA Roots      -.99   
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Figure (4-12) Parameter Estimation of an ARIMA (2,1,2) 

Dependent Variable: RT   

Method: Least Squares   

Date: 05/29/16   Time: 11:53   

Sample (adjusted): 1999M04 2013M12  

Included observations: 177 after adjustments  

Convergence achieved after 13 iterations  

MA Backcast: 1999M02 1999M03   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.004466 0.003473 1.285832 0.2002 

AR(1) -0.608478 0.451665 -1.347190 0.1797 

AR(2) 0.236453 0.378088 0.625393 0.5325 

MA(1) 0.895287 0.463007 1.933635 0.0548 

MA(2) -0.097366 0.461078 -0.211170 0.8330 

     
     R-squared 0.098357     Mean dependent var 0.004768 

Adjusted R-squared 0.077389     S.D. dependent var 0.036710 

S.E. of regression 0.035261     Akaike info criterion -3.824261 

Sum squared resid 0.213849     Schwarz criterion -3.734539 

Log likelihood 343.4471     Hannan-Quinn criter. -3.787873 

F-statistic 4.690729     Durbin-Watson stat 1.998152 

Prob(F-statistic) 0.001285    

     
     Inverted AR Roots       .27          -.88  

Inverted MA Roots       .10          -.99  
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Figure (4-13) Estimation parameters of GARCH (1,1) 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/01/16   Time: 15:33   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 49 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.038449 0.016460 2.335948 0.0195 

AR(1) 0.997768 0.000881 1132.227 0.0000 

MA(1) -0.852568 0.051117 -16.67864 0.0000 

MA(2) -0.139888 0.050600 -2.764604 0.0057 
     
      Variance Equation   
     
     C 1.31E-07 1.12E-06 0.117030 0.9068 

RESID(-1)^2 5.452500 0.437139 12.47315 0.0000 

GARCH(-1) 0.008452 0.008590 0.983988 0.3251 
     
     R-squared 0.062740     Mean dependent var 0.004839 

Adjusted R-squared 0.046580     S.D. dependent var 0.036618 

S.E. of regression 0.035755     Akaike info criterion -5.607740 

Sum squared resid 0.222444     Schwarz criterion -5.482613 

Log likelihood 506.0888     Hannan-Quinn criter. -5.556997 

Durbin-Watson stat 1.849759    
     
     Inverted AR Roots       1.00   

Inverted MA Roots       .99          -.14  
     
     

 

 

 

Figure (4-14) ARCH LM test on GARCH (1,1) model 

Heteroskedasticity Test: ARCH   
     
     F-statistic 0.012019     Prob. F(1,175) 0.9128 

Obs*R-squared 0.012156     Prob. Chi-Square(1) 0.9122 
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Figure (4-15) Estimation parameters of EGARCH (1,1) 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/01/16   Time: 15:35   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 43 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(5) + C(6)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(7) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(8)*LOG(GARCH(-1)) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C -0.000767 0.000610 -1.255623 0.2093 

AR(1) 0.599041 0.030728 19.49493 0.0000 

MA(1) -0.605905 0.063558 -9.533080 0.0000 

MA(2) 0.022571 0.022652 0.996437 0.3190 
     
      Variance Equation   
     
     C(5) -15.10780 0.124333 -121.5108 0.0000 

C(6) 0.689774 0.041855 16.47991 0.0000 

C(7) -0.075748 0.037295 -2.031057 0.0422 

C(8) -0.806909 0.006544 -123.2994 0.0000 
     
     R-squared -0.022317     Mean dependent var 0.004839 

Adjusted R-squared -0.039944     S.D. dependent var 0.036618 

S.E. of regression 0.037342     Akaike info criterion -5.177893 

Sum squared resid 0.242631     Schwarz criterion -5.034892 

Log likelihood 468.8325     Hannan-Quinn criter. -5.119902 

Durbin-Watson stat 1.514683    
     
     Inverted AR Roots       .60   

Inverted MA Roots       .57           .04  
     
     

 
 

 

 

Figure (4-16) ARCH LM test on EGARCH (1,1) model 

 

Heteroskedasticity Test: ARCH   
     
     F-statistic 5.535514     Prob. F(1,175) 0.0197 

Obs*R-squared 5.427110     Prob. Chi-Square(1) 0.0198 
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Figure (4-17) Estimation parameters of APARCH (1,1) model 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/01/16   Time: 15:37   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Failure to improve Likelihood after 33 iterations 

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

@SQRT(GARCH)^C(9) = C(5) + C(6)*(ABS(RESID(-1)) - C(7)*RESID( 

        -1))^C(9) + C(8)*@SQRT(GARCH(-1))^C(9) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.003082 0.003369 0.914933 0.3602 

AR(1) 0.451778 0.313039 1.443203 0.1490 

MA(1) -0.032673 0.253721 -0.128776 0.8975 

MA(2) 0.002733 0.232577 0.011753 0.9906 
     
      Variance Equation   
     
     C(5) 0.000655 0.003809 0.172055 0.8634 

C(6) 0.918552 0.270347 3.397678 0.0007 

C(7) -0.197651 0.118333 -1.670297 0.0949 

C(8) -0.043835 0.131930 -0.332262 0.7397 

C(9) 1.804122 1.403332 1.285599 0.1986 
     
     R-squared 0.010270     Mean dependent var 0.004839 

Adjusted R-squared -0.006795     S.D. dependent var 0.036618 

S.E. of regression 0.036742     Akaike info criterion -5.121045 

Sum squared resid 0.234897     Schwarz criterion -4.960168 

Log likelihood 464.7730     Hannan-Quinn criter. -5.055805 

Durbin-Watson stat 2.305904    
     
     Inverted AR Roots       .45   

Inverted MA Roots  .02-.05i      .02+.05i  
     
     

 
 
 
 
 

Figure (4-18) ARCH LM test on APARCH (1,1) model 

Heteroskedasticity Test: ARCH   
     
     F-statistic 1.764225     Prob. F(1,175) 0.1858 

Obs*R-squared 1.766579     Prob. Chi-Square(1) 0.1838 
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Figure (4-19) Estimation parameters of TGARCH (1,1) model 

 
Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/01/16   Time: 15:41   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 45 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*RESID(-1)^2*(RESID(-1)<0) + 

        C(8)*GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.002201 0.003298 0.667380 0.5045 

AR(1) 0.506841 0.329913 1.536287 0.1245 

MA(1) -0.069281 0.342482 -0.202292 0.8397 

MA(2) 0.004778 0.217589 0.021960 0.9825 
     
      Variance Equation   
     
     C 0.000268 1.71E-05 15.70029 0.0000 

RESID(-1)^2 1.442378 0.531462 2.713983 0.0066 

RESID(-1)^2*(RESID(-1)<0) -0.841730 0.564719 -1.490529 0.1361 

GARCH(-1) -0.027821 0.047401 -0.586926 0.5573 
     
     R-squared -0.002686     Mean dependent var 0.004839 

Adjusted R-squared -0.019974     S.D. dependent var 0.036618 

S.E. of regression 0.036982     Akaike info criterion -5.159068 

Sum squared resid 0.237972     Schwarz criterion -5.016067 

Log likelihood 467.1571     Hannan-Quinn criter. -5.101077 

Durbin-Watson stat 2.321562    
     
     Inverted AR Roots       .51   

Inverted MA Roots  .03+.06i      .03-.06i  
     
     

 
 
 
 
 

Figure (4-20) ARCH LM test on TGARCH (1,1) model 

 

Heteroskedasticity Test: ARCH   
     
     F-statistic 1.215661     Prob. F(1,175) 0.2717 

Obs*R-squared 1.221072     Prob. Chi-Square(1) 0.2692 
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Figure (4-21) Estimation parameters of Component ARCH (1,1) model 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/01/16   Time: 15:46   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 26 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

Q = C(5) + C(6)*(Q(-1) - C(5)) + C(7)*(RESID(-1)^2 - GARCH(-1))  

GARCH = Q + C(8) * (RESID(-1)^2 - Q(-1)) + C(9)*(GARCH(-1) - Q(-1)) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 0.002531 0.003323 0.761525 0.4463 

AR(1) 0.119622 0.961306 0.124436 0.9010 

MA(1) 0.093069 0.974823 0.095473 0.9239 

MA(2) 0.022932 0.202190 0.113417 0.9097 
     
      Variance Equation   
     
     C(5) 0.000564 3.82E-05 14.76191 0.0000 

C(6) 0.221740 0.300145 0.738777 0.4600 

C(7) 0.080495 0.011658 6.904767 0.0000 

C(8) 0.073633 0.005013 14.68846 0.0000 

C(9) -0.179860 0.360903 -0.498360 0.6182 
     
     R-squared 0.048483     Mean dependent var 0.004839 

Adjusted R-squared 0.032077     S.D. dependent var 0.036618 

S.E. of regression 0.036026     Akaike info criterion -4.637040 

Sum squared resid 0.225828     Schwarz criterion -4.476163 

Log likelihood 421.6966     Hannan-Quinn criter. -4.571800 

Durbin-Watson stat 1.947993    
     
     Inverted AR Roots       .12   

Inverted MA Roots -.05+.14i     -.05-.14i  
 
 
 
 

Figure (4-22) ARCH LM test on Component ARCH (1,1) model 

 

Heteroskedasticity Test: ARCH   
     
     F-statistic 38.10034     Prob. F(1,175) 0.0000 

Obs*R-squared 31.64594     Prob. Chi-Square(1) 0.0000 
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Figure (4-23) Estimation parameters of GARCH-M(1.1)  ) model 

 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Normal distribution 

Date: 06/01/16   Time: 16:00   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 41 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

GARCH = 0.0012750136671*(1 - C(5) - C(6))  + C(5)*RESID(-1)^2 + C(6) 

        *GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C 14.53483 23352.47 0.000622 0.9995 

AR(1) 1.000007 0.010631 94.06838 0.0000 

MA(1) -0.679863 0.030529 -22.26975 0.0000 

MA(2) -0.271186 0.029126 -9.310915 0.0000 
     
      Variance Equation   
     
     C 3.87E-07     --     --     -- 

RESID(-1)^2 0.117539 0.000629 186.7393 0.0000 

GARCH(-1) 0.882158 0.000536 1646.798 0.0000 
     
     R-squared 0.043743     Mean dependent var 0.004839 

Adjusted R-squared 0.027256     S.D. dependent var 0.036618 

S.E. of regression 0.036115     Akaike info criterion -5.634926 

Sum squared resid 0.226952     Schwarz criterion -5.527674 

Log likelihood 507.5084     Hannan-Quinn criter. -5.591432 

Durbin-Watson stat 2.139980    
     
     Inverted AR Roots       1.00   

 Estimated AR process is nonstationary 

Inverted MA Roots       .96          -.28  
     
     

 

 

 

Figure (4-24) ARCH LM test on GARCH-M (1,1) model 

 

Heteroskedasticity Test: ARCH   
     
     F-statistic 29.67396     Prob. F(1,175) 0.0000 

Obs*R-squared 25.66174     Prob. Chi-Square(1) 0.0000 
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Figure (4-25) Estimation parameters of GARCH(1,1)  ) model 
Student's t distribution 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Student's t distribution 

Date: 02/06/16   Time: 15:07   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 27 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C -0.000115 0.000143 -0.802774 0.4221 

AR(1) 0.372570 0.026692 13.95811 0.0000 

MA(1) -0.042051 0.043731 -0.961580 0.3363 

MA(2) 0.000480 0.015722 0.030556 0.9756 
     
      Variance Equation   
     
     C 2.05E-06 7.59E-07 2.694730 0.0070 

RESID(-1)^2 2.022671 0.927461 2.180870 0.0292 

GARCH(-1) -0.001590 0.003774 -0.421288 0.6735 
     
     T-DIST. DOF 2.287487 0.153527 14.89959 0.0000 
     
     R-squared 0.031229     Mean dependent var 0.004839 

Adjusted R-squared 0.014526     S.D. dependent var 0.036618 

S.E. of regression 0.036351     Akaike info criterion -7.500926 

Sum squared resid 0.229922     Schwarz criterion -7.357925 

Log likelihood 675.5824     Hannan-Quinn criter. -7.442935 

Durbin-Watson stat 2.149576    
     
     Inverted AR Roots       .37   

Inverted MA Roots       .02           .02  
     
     

 

 

Figure (4-26) ARCH LM test on GARCH (1,1) model 

Heteroskedasticity Test: ARCH   
     
     F-statistic 0.031420     Prob. F(1,175) 0.8595 

Obs*R-squared 0.031773     Prob. Chi-Square(1) 0.8585 
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Figure (4-27) Estimation parameters of APARCH(1,1)  ) model 

Student's t distribution 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Student's t distribution 

Date: 02/06/16   Time: 15:24   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 52 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

@SQRT(GARCH)^C(9) = C(5) + C(6)*(ABS(RESID(-1)) - C(7)*RESID( 

        -1))^C(9) + C(8)*@SQRT(GARCH(-1))^C(9) 
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C -4.29E-08 1.57E-05 -0.002728 0.9978 

AR(1) 0.380958 0.024603 15.48400 0.0000 

MA(1) -0.049849 0.024573 -2.028573 0.0425 

MA(2) 0.002635 0.002904 0.907564 0.3641 
     
      Variance Equation   
     
     C(5) 0.001671 0.003233 0.516923 0.6052 

C(6) 6.957140 7.479854 0.930117 0.3523 

C(7) -0.155892 0.102206 -1.525280 0.1272 

C(8) 0.015149 0.029121 0.520222 0.6029 

C(9) 0.893790 0.286698 3.117533 0.0018 
     
     T-DIST. DOF 2.025636 0.041077 49.31374 0.0000 
     
     R-squared 0.030704     Mean dependent var 0.004839 

Adjusted R-squared 0.013992     S.D. dependent var 0.036618 

S.E. of regression 0.036361     Akaike info criterion -7.844127 

Sum squared resid 0.230047     Schwarz criterion -7.665376 

Log likelihood 708.1273     Hannan-Quinn criter. -7.771639 

Durbin-Watson stat 2.150631    
     
     Inverted AR Roots       .38   

Inverted MA Roots  .02-.04i      .02+.04i  
     

 

 

 

Figure (4-28) ARCH LM test on APARCH (1,1) model 

Heteroskedasticity Test: ARCH   
     
     F-statistic 0.024801     Prob. F(1,175) 0.8750 

Obs*R-squared 0.025081     Prob. Chi-Square(1) 0.8742 
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Figure (4-29) Estimation parameters of GJR- GARCH(1,1)  ) model 

Student's t distribution 

 

Dependent Variable: RT   

Method: ML - ARCH (Marquardt) - Student's t distribution 

Date: 02/06/16   Time: 15:42   

Sample (adjusted): 1999M03 2013M12  

Included observations: 178 after adjustments  

Convergence achieved after 40 iterations  

MA Backcast: 1999M01 1999M02   

Presample variance: backcast (parameter = 0.7) 

GARCH = C(5) + C(6)*(ABS(RESID(-1)) - C(7)*RESID(-1))^2 + C(8) 

        *GARCH(-1)   
     
     Variable Coefficient Std. Error z-Statistic Prob.   
     
     C -7.82E-05 7.37E-05 -1.060885 0.2887 

AR(1) 0.351250 0.018432 19.05652 0.0000 

MA(1) -0.081387 0.032262 -2.522711 0.0116 

MA(2) -0.008677 0.009796 -0.885829 0.3757 
     
      Variance Equation   
     
     C(5) 6.55E-07 2.65E-07 2.473207 0.0134 

C(6) 7.233805 3.518592 2.055880 0.0398 

C(7) -0.125300 0.096085 -1.304058 0.1922 

C(8) -0.002121 0.004093 -0.518284 0.6043 
     
     T-DIST. DOF 2.253724 0.139430 16.16389 0.0000 
     
     R-squared 0.039633     Mean dependent var 0.004839 

Adjusted R-squared 0.023074     S.D. dependent var 0.036618 

S.E. of regression 0.036193     Akaike info criterion -7.708311 

Sum squared resid 0.227928     Schwarz criterion -7.547435 

Log likelihood 695.0397     Hannan-Quinn criter. -7.643071 

Durbin-Watson stat 2.039945    
     
     Inverted AR Roots       .35   

Inverted MA Roots       .14          -.06  
     
     

 

 

Figure (4-30) ARCH LM test onGJR- GARCH (1,1) model 

 

Heteroskedasticity Test: ARCH   
     
     F-statistic 0.029022     Prob. F(1,175) 0.8649 

Obs*R-squared 0.029349     Prob. Chi-Square(1) 0.8640 
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Figure (4-31) Forecast with GARCH(1.1)model 

Normal distribution 

Forecast: RTF 
Actual: RT 

Forecast sample: 1999M01 2013M12 
Adjusted sample: 1999M03 2013M12 

Included observations: 178 
  
  Root Mean Squared Error 0.063775 

Mean Absolute Error      0.058991 
Mean Absolute Percentage Error 8582.155 

Theil Inequality Coefficient  0.679456 
     Bias Proportion         0.669529 
     Variance Proportion  0.314371 

     Covariance Proportion  0.016100 
  
   

 
 
 

Figure (4-32) Forecast with GARCH(1.1)model 

Student's t distribution 

 
Forecast: RTF 

Actual: RT 
Forecast sample: 1999M01 2013M12 
Adjusted sample: 1999M03 2013M12 

Included observations: 178 
  
  Root Mean Squared Error 0.036805 

Mean Absolute Error      0.011101 
Mean Absolute Percentage Error 90.45945 

Theil Inequality Coefficient  0.953848 
     Bias Proportion         0.016715 
     Variance Proportion  0.892241 

     Covariance Proportion  0.091044 
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Figure (4-33) Forecast with APARCH(1.1)model 

Normal distribution 

 

Forecast: RTF 

Actual: RT 

Forecast sample: 1999M01 2013M12 

Adjusted sample: 1999M03 2013M12 

Included observations: 178 
  
  Root Mean Squared Error 0.036528 

Mean Absolute Error      0.012587 

Mean Absolute Percentage Error 491.7924 

Theil Inequality Coefficient  0.895979 

     Bias Proportion         0.001687 

     Variance Proportion  0.888489 

     Covariance Proportion  0.109824 
  
  
  

 

 

Figure (4-34) Forecast with APARCH(1.1)model 

Student's t distribution 

 

Forecast: RTF 

Actual: RT 

Forecast sample: 1999M01 2013M12 

Adjusted sample: 1999M03 2013M12 

Included observations: 178 
  
  Root Mean Squared Error 0.036789 

Mean Absolute Error      0.011080 

Mean Absolute Percentage Error 83.77597 

Theil Inequality Coefficient  0.952184 

     Bias Proportion         0.015886 

     Variance Proportion  0.890835 

     Covariance Proportion  0.093279 
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Figure (4-35) Forecast with GJR-GARCH(1.1)model 

Normal distribution 

 

Forecast: RTF 

Actual: RT 

Forecast sample: 1999M01 2013M12 

Adjusted sample: 1999M03 2013M12 

Included observations: 178 
  
  Root Mean Squared Error 0.036572 

Mean Absolute Error      0.012129 

Mean Absolute Percentage Error 372.7228 

Theil Inequality Coefficient  0.916753 

     Bias Proportion         0.004167 

     Variance Proportion  0.901391 

     Covariance Proportion  0.094442 
  
  
  

 

 

 

 

 

Figure (4-36) Forecast with GJR-GARCH(1.1)model 

Student's t distribution 

 

Forecast: RTF 

Actual: RT 

Forecast sample: 1999M01 2013M12 

Adjusted sample: 1999M03 2013M12 

Included observations: 178 
  
  Root Mean Squared Error 0.036802 

Mean Absolute Error      0.011098 

Mean Absolute Percentage Error 87.82762 

Theil Inequality Coefficient  0.956605 

     Bias Proportion         0.016582 

     Variance Proportion  0.898314 

     Covariance Proportion  0.085104 
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Figure (4-37) Correlogram of first difference of Exchange rate series 
 

Date: 09/24/15   Time: 20:19    

Sample: 1999M01 2013M12      

Included observations: 179     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 
       
              .|**    |        .|**    | 1 0.216 0.216 8.5053 0.004 

       .|.     |        .|.     | 2 0.001 -0.048 8.5057 0.014 

       .|.     |        .|.     | 3 0.020 0.031 8.5758 0.035 

       .|.     |        .|.     | 4 -0.036 -0.050 8.8185 0.066 

       .|.     |        .|.     | 5 0.002 0.024 8.8194 0.116 

       .|.     |        .|.     | 6 0.009 0.001 8.8351 0.183 

       .|.     |        .|.     | 7 -0.001 -0.001 8.8355 0.265 

       .|.     |        .|.     | 8 -0.005 -0.007 8.8397 0.356 

       .|.     |        .|.     | 9 -0.010 -0.007 8.8589 0.450 

       .|.     |        .|.     | 10 -0.009 -0.005 8.8731 0.544 

       .|.     |        .|.     | 11 -0.009 -0.007 8.8901 0.632 

       .|.     |        .|.     | 12 -0.023 -0.021 8.9966 0.703 

       .|.     |        .|.     | 13 0.015 0.025 9.0395 0.770 

       .|.     |        .|.     | 14 0.045 0.037 9.4408 0.802 

       .|**    |        .|**    | 15 0.277 0.276 24.607 0.055 

       .|*     |        .|*     | 16 0.200 0.090 32.560 0.008 

       .|.     |        .|.     | 17 0.032 -0.011 32.769 0.012 

       .|.     |        .|.     | 18 0.065 0.064 33.608 0.014 

       .|*     |        .|*     | 19 0.170 0.185 39.489 0.004 

       *|.     |        *|.     | 20 -0.099 -0.183 41.499 0.003 

       .|.     |        .|*     | 21 0.007 0.076 41.508 0.005 

       .|.     |        .|.     | 22 0.006 -0.025 41.516 0.007 

       .|.     |        .|.     | 23 0.018 0.059 41.584 0.010 

       .|.     |        .|.     | 24 0.042 0.006 41.953 0.013 

       .|.     |        .|.     | 25 0.045 0.069 42.383 0.016 

       .|.     |        .|.     | 26 -0.002 -0.029 42.384 0.022 

       .|.     |        .|.     | 27 -0.003 0.039 42.386 0.030 

       .|.     |        .|.     | 28 -0.005 -0.018 42.391 0.040 

       .|.     |        .|.     | 29 -0.013 -0.014 42.429 0.051 

       .|.     |        *|.     | 30 -0.016 -0.115 42.485 0.065 

       .|.     |        .|.     | 31 0.042 0.013 42.876 0.076 

       .|.     |        .|.     | 32 0.035 -0.026 43.145 0.090 

       *|.     |        *|.     | 33 -0.079 -0.123 44.526 0.087 

       .|.     |        *|.     | 34 0.014 -0.079 44.571 0.106 

       .|.     |        .|.     | 35 -0.014 0.029 44.614 0.128 

       .|.     |        .|.     | 36 0.009 0.024 44.632 0.153 
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Figure (4-38) Residuals Correlogram of GARCH (1,1) 

Date: 02/06/16   Time: 15:05    

Sample: 1999M01 2013M12      

Included observations: 178     

Q-statistic probabilities adjusted for 3 ARMA terms  
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|*     |        .|*     | 1 0.170 0.170 5.2587  

       .|.     |        .|.     | 2 0.066 0.038 6.0538  

       .|.     |        .|.     | 3 0.051 0.035 6.5372  

       .|.     |        .|.     | 4 0.002 -0.015 6.5377 0.011 

       .|.     |        .|.     | 5 -0.025 -0.028 6.6573 0.036 

       .|.     |        .|.     | 6 0.047 0.056 7.0680 0.070 

       .|.     |        .|.     | 7 0.050 0.038 7.5296 0.110 

       .|*     |        .|*     | 8 0.097 0.084 9.3131 0.097 

       .|*     |        .|.     | 9 0.089 0.054 10.826 0.094 

       .|*     |        .|.     | 10 0.099 0.067 12.690 0.080 

       .|*     |        .|*     | 11 0.128 0.098 15.840 0.045 

       .|.     |        .|.     | 12 0.071 0.029 16.805 0.052 

       .|.     |        .|.     | 13 0.060 0.037 17.498 0.064 

       .|*     |        .|.     | 14 0.089 0.066 19.058 0.060 

       .|*     |        .|.     | 15 0.085 0.058 20.483 0.058 

       .|*     |        .|*     | 16 0.132 0.105 23.944 0.032 

       .|.     |        .|.     | 17 0.054 -0.004 24.521 0.040 

       .|.     |        .|.     | 18 0.019 -0.018 24.591 0.056 

       *|.     |       **|.     | 19 -0.191 -0.240 31.979 0.010 

       .|.     |        .|.     | 20 -0.047 -0.021 32.424 0.013 

       .|.     |        .|.     | 21 0.045 0.042 32.842 0.017 

       .|.     |        .|.     | 22 0.021 -0.021 32.932 0.024 

       .|*     |        .|.     | 23 0.082 0.038 34.326 0.024 

       .|*     |        .|*     | 24 0.160 0.083 39.642 0.008 

       .|.     |        *|.     | 25 -0.006 -0.082 39.649 0.012 

       *|.     |        *|.     | 26 -0.130 -0.181 43.209 0.007 

       *|.     |        *|.     | 27 -0.084 -0.076 44.716 0.006 

       .|.     |        .|.     | 28 -0.066 -0.028 45.634 0.007 

       .|.     |        .|.     | 29 -0.050 -0.009 46.168 0.009 

       .|.     |        .|.     | 30 0.012 0.055 46.199 0.012 

       .|.     |        .|.     | 31 0.021 0.010 46.294 0.016 

       .|.     |        .|.     | 32 -0.018 -0.062 46.365 0.022 

       .|.     |        .|.     | 33 0.030 0.041 46.561 0.027 

       *|.     |        *|.     | 34 -0.067 -0.067 47.574 0.029 

       .|.     |        .|.     | 35 -0.060 0.009 48.393 0.032 

       .|.     |        .|.     | 36 -0.059 0.004 49.175 0.035 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-39) The correlogram of standardized residuals squared for GARCH (1,1) 

Date: 02/22/16   Time: 14:02    

Sample: 1999M01 2013M12      

Included observations: 178     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 -0.010 -0.010 0.0171 0.896 

       .|.     |        .|.     | 2 -0.033 -0.033 0.2128 0.899 

       .|.     |        .|.     | 3 -0.023 -0.024 0.3096 0.958 

       .|.     |        .|.     | 4 -0.024 -0.026 0.4159 0.981 

       .|.     |        .|.     | 5 0.052 0.050 0.9111 0.969 

       .|.     |        .|.     | 6 -0.027 -0.029 1.0499 0.984 

       .|.     |        .|.     | 7 -0.026 -0.025 1.1780 0.991 

       .|.     |        .|.     | 8 -0.024 -0.024 1.2831 0.996 

       .|.     |        .|.     | 9 -0.025 -0.027 1.4062 0.998 

       .|.     |        .|.     | 10 -0.017 -0.025 1.4623 0.999 

       .|.     |        .|.     | 11 -0.019 -0.021 1.5288 1.000 

       .|.     |        .|.     | 12 -0.025 -0.028 1.6503 1.000 

       .|.     |        .|.     | 13 -0.030 -0.033 1.8209 1.000 

       .|.     |        .|.     | 14 -0.020 -0.025 1.9025 1.000 

       .|*     |        .|*     | 15 0.091 0.086 3.5339 0.999 

       .|.     |        .|.     | 16 -0.005 -0.009 3.5387 0.999 

       .|.     |        .|.     | 17 -0.034 -0.032 3.7696 1.000 

       .|.     |        .|.     | 18 -0.023 -0.023 3.8780 1.000 

       .|***   |        .|***   | 19 0.435 0.442 41.925 0.002 

       .|.     |        .|.     | 20 -0.007 -0.023 41.934 0.003 

       .|.     |        .|.     | 21 -0.009 0.014 41.949 0.004 

       .|.     |        .|.     | 22 -0.016 0.004 42.001 0.006 

       .|.     |        .|.     | 23 -0.013 0.036 42.036 0.009 

       .|*     |        .|.     | 24 0.095 0.057 43.929 0.008 

       .|.     |        .|.     | 25 -0.019 0.003 44.004 0.011 

       .|.     |        .|.     | 26 0.034 0.067 44.243 0.014 

       .|.     |        .|.     | 27 -0.007 0.019 44.252 0.019 

       .|.     |        .|.     | 28 -0.015 0.019 44.301 0.026 

       .|.     |        .|.     | 29 0.003 0.024 44.304 0.034 

       .|.     |        .|.     | 30 -0.019 -0.009 44.384 0.044 

       .|.     |        .|.     | 31 -0.018 -0.003 44.457 0.056 

       .|.     |        .|.     | 32 -0.018 0.012 44.529 0.069 

       .|.     |        .|.     | 33 0.012 0.064 44.560 0.086 

       .|*     |        .|.     | 34 0.108 0.031 47.139 0.066 

       .|.     |        .|.     | 35 -0.006 0.004 47.146 0.082 

       .|.     |        .|.     | 36 -0.022 0.013 47.254 0.099 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-40) Residuals Correlogram of GARCH(1,1) 

- Student's t distribution 

Date: 02/06/16   Time: 15:08    

Sample: 1999M01 2013M12      

Included observations: 178     

Q-statistic probabilities adjusted for 3 ARMA terms  
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 0.011 0.011 0.0224  

       .|.     |        .|.     | 2 -0.007 -0.007 0.0316  

       .|.     |        .|.     | 3 -0.005 -0.005 0.0358  

       .|.     |        .|.     | 4 -0.007 -0.007 0.0441 0.834 

       *|.     |        *|.     | 5 -0.081 -0.081 1.2734 0.529 

       .|.     |        .|.     | 6 -0.002 0.000 1.2739 0.735 

       .|.     |        .|.     | 7 -0.000 -0.002 1.2739 0.866 

       .|.     |        .|.     | 8 0.003 0.003 1.2760 0.937 

       .|.     |        .|.     | 9 0.002 0.001 1.2765 0.973 

       .|.     |        .|.     | 10 0.002 -0.004 1.2776 0.989 

       .|.     |        .|.     | 11 0.002 0.002 1.2783 0.996 

       .|.     |        .|.     | 12 -0.000 -0.001 1.2784 0.998 

       .|.     |        .|.     | 13 0.001 0.002 1.2788 0.999 

       .|.     |        .|.     | 14 0.005 0.005 1.2829 1.000 

       .|**    |        .|**    | 15 0.288 0.290 17.563 0.130 

       .|.     |        .|.     | 16 0.011 0.007 17.588 0.174 

       .|.     |        .|.     | 17 -0.004 0.000 17.592 0.226 

       .|.     |        .|.     | 18 -0.005 -0.001 17.596 0.285 

     ***|.     |      ***|.     | 19 -0.352 -0.383 42.617 0.000 

       .|.     |        .|.     | 20 -0.009 0.055 42.635 0.001 

       .|.     |        .|.     | 21 0.005 0.000 42.641 0.001 

       .|.     |        .|.     | 22 -0.003 -0.006 42.643 0.001 

       .|.     |        .|.     | 23 0.018 0.064 42.708 0.002 

       .|*     |        .|*     | 24 0.142 0.095 46.897 0.001 

       .|.     |        .|.     | 25 0.007 -0.002 46.906 0.002 

       .|.     |        .|.     | 26 -0.016 -0.020 46.957 0.002 

       .|.     |        .|.     | 27 -0.011 -0.020 46.985 0.003 

       .|.     |        .|.     | 28 -0.004 -0.028 46.989 0.005 

       .|.     |        .|.     | 29 -0.006 0.034 46.995 0.007 

       .|.     |        *|.     | 30 -0.006 -0.110 47.004 0.010 

       .|.     |        .|.     | 31 0.004 0.006 47.008 0.014 

       .|.     |        .|.     | 32 -0.006 0.000 47.017 0.019 

       .|.     |        .|.     | 33 0.012 -0.001 47.048 0.025 

       *|.     |        .|*     | 34 -0.162 0.077 52.877 0.008 

       .|.     |        .|.     | 35 -0.003 -0.019 52.879 0.012 

       .|.     |        .|.     | 36 0.005 0.002 52.885 0.015 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-41) The correlogram of standardized residuals squared for GARCH(1,1) 

- Student's t distribution 

Date: 02/22/16   Time: 14:04    

Sample: 1999M01 2013M12      

Included observations: 178     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 -0.013 -0.013 0.0325 0.857 

       .|.     |        .|.     | 2 -0.014 -0.014 0.0681 0.967 

       .|.     |        .|.     | 3 -0.014 -0.014 0.1042 0.991 

       .|.     |        .|.     | 4 -0.012 -0.013 0.1310 0.998 

       .|.     |        .|.     | 5 0.005 0.004 0.1356 1.000 

       .|.     |        .|.     | 6 -0.012 -0.013 0.1635 1.000 

       .|.     |        .|.     | 7 -0.012 -0.013 0.1920 1.000 

       .|.     |        .|.     | 8 -0.012 -0.013 0.2210 1.000 

       .|.     |        .|.     | 9 -0.012 -0.013 0.2504 1.000 

       .|.     |        .|.     | 10 -0.013 -0.014 0.2803 1.000 

       .|.     |        .|.     | 11 -0.013 -0.014 0.3110 1.000 

       .|.     |        .|.     | 12 -0.013 -0.014 0.3421 1.000 

       .|.     |        .|.     | 13 -0.013 -0.015 0.3738 1.000 

       .|.     |        .|.     | 14 -0.013 -0.015 0.4050 1.000 

       .|*     |        .|*     | 15 0.201 0.199 8.3468 0.909 

       .|.     |        .|.     | 16 -0.013 -0.009 8.3778 0.937 

       .|.     |        .|.     | 17 -0.013 -0.010 8.4120 0.957 

       .|.     |        .|.     | 18 -0.013 -0.010 8.4452 0.971 

       .|**    |        .|**    | 19 0.299 0.315 26.451 0.118 

       .|.     |        .|.     | 20 -0.005 -0.004 26.456 0.151 

       .|.     |        .|.     | 21 -0.005 0.004 26.461 0.189 

       .|.     |        .|.     | 22 -0.005 0.004 26.467 0.232 

       .|.     |        .|.     | 23 -0.005 0.028 26.472 0.279 

       .|.     |        .|.     | 24 0.042 0.047 26.848 0.312 

       .|.     |        .|.     | 25 -0.005 0.006 26.854 0.363 

       .|.     |        .|.     | 26 -0.005 0.006 26.860 0.417 

       .|.     |        .|.     | 27 -0.005 0.008 26.866 0.471 

       .|.     |        .|.     | 28 -0.006 0.012 26.873 0.525 

       .|.     |        .|.     | 29 -0.006 0.008 26.880 0.578 

       .|.     |        .|.     | 30 -0.006 -0.046 26.887 0.629 

       .|.     |        .|.     | 31 -0.006 0.005 26.895 0.677 

       .|.     |        .|.     | 32 -0.006 0.006 26.902 0.722 

       .|.     |        .|.     | 33 -0.005 0.008 26.909 0.764 

       .|.     |        .|.     | 34 0.071 -0.065 28.039 0.754 

       .|.     |        .|.     | 35 -0.006 0.002 28.047 0.792 

       .|.     |        .|.     | 36 -0.006 0.001 28.056 0.825 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-42) Residuals Correlogram of APARCH(1,1) 

Normal distribution 

Date: 02/06/16   Time: 15:23    

Sample: 1999M01 2013M12      

Included observations: 178     

Q-statistic probabilities adjusted for 3 ARMA terms  
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|*     |        .|*     | 1 0.092 0.092 1.5238  

       .|.     |        .|.     | 2 -0.032 -0.041 1.7122  

       .|.     |        .|.     | 3 0.009 0.016 1.7267  

       *|.     |        *|.     | 4 -0.103 -0.108 3.6816 0.055 

       .|.     |        .|.     | 5 -0.011 0.010 3.7047 0.157 

       .|.     |        .|.     | 6 0.032 0.024 3.8948 0.273 

       .|.     |        .|.     | 7 0.017 0.015 3.9475 0.413 

       .|.     |        .|.     | 8 0.021 0.009 4.0293 0.545 

       .|.     |        .|.     | 9 0.004 0.001 4.0330 0.672 

       .|.     |        .|.     | 10 0.027 0.034 4.1727 0.760 

       .|.     |        .|.     | 11 0.006 0.003 4.1786 0.841 

       .|.     |        .|.     | 12 -0.056 -0.053 4.7782 0.853 

       .|*     |        .|*     | 13 0.078 0.090 5.9583 0.819 

       .|.     |        .|.     | 14 0.046 0.031 6.3684 0.848 

       .|**    |        .|**    | 15 0.237 0.248 17.430 0.134 

       .|**    |        .|*     | 16 0.245 0.205 29.296 0.006 

       .|.     |        .|.     | 17 -0.028 -0.025 29.455 0.009 

       .|*     |        .|*     | 18 0.111 0.160 31.943 0.007 

       *|.     |        *|.     | 19 -0.172 -0.179 37.914 0.002 

       *|.     |        .|.     | 20 -0.096 -0.012 39.782 0.001 

       .|.     |        .|.     | 21 0.021 -0.021 39.873 0.002 

       .|.     |        .|.     | 22 -0.048 -0.060 40.349 0.003 

       .|.     |        .|.     | 23 0.066 0.054 41.251 0.003 

       .|*     |        .|.     | 24 0.108 0.067 43.680 0.003 

       .|.     |        .|.     | 25 0.026 0.035 43.817 0.004 

       .|.     |        *|.     | 26 -0.044 -0.074 44.234 0.005 

       .|.     |        .|.     | 27 -0.005 0.025 44.238 0.007 

       .|.     |        .|.     | 28 -0.008 -0.032 44.254 0.010 

       .|.     |        *|.     | 29 -0.021 -0.091 44.350 0.014 

       .|.     |        .|.     | 30 0.014 -0.037 44.394 0.019 

       .|*     |        .|.     | 31 0.099 -0.059 46.528 0.015 

       .|.     |        .|.     | 32 -0.030 -0.061 46.731 0.020 

       .|.     |        .|.     | 33 -0.001 -0.017 46.731 0.026 

       *|.     |        *|.     | 34 -0.075 -0.102 47.998 0.026 

       *|.     |        .|*     | 35 -0.067 0.090 49.010 0.028 

       .|.     |        .|.     | 36 0.034 0.011 49.265 0.034 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-43) The correlogram of standardized residuals squared for APARCH(1,1) 

Normal distribution 

Date: 02/22/16   Time: 14:08    

Sample: 1999M01 2013M12      

Included observations: 178     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|*     |        .|*     | 1 0.100 0.100 1.8063 0.179 

       .|.     |        .|.     | 2 -0.017 -0.028 1.8620 0.394 

       .|.     |        .|.     | 3 -0.007 -0.003 1.8716 0.599 

       .|.     |        .|.     | 4 -0.005 -0.004 1.8757 0.759 

       .|.     |        .|.     | 5 0.008 0.009 1.8888 0.864 

       .|.     |        .|.     | 6 -0.017 -0.019 1.9435 0.925 

       .|.     |        .|.     | 7 -0.023 -0.019 2.0410 0.958 

       .|.     |        .|.     | 8 -0.020 -0.016 2.1146 0.977 

       .|.     |        .|.     | 9 -0.020 -0.017 2.1870 0.988 

       .|.     |        .|.     | 10 -0.022 -0.020 2.2772 0.994 

       .|.     |        .|.     | 11 -0.022 -0.019 2.3674 0.997 

       .|.     |        .|.     | 12 -0.015 -0.013 2.4131 0.998 

       .|.     |        .|.     | 13 -0.013 -0.012 2.4463 0.999 

       .|.     |        .|.     | 14 0.032 0.033 2.6412 1.000 

       .|**    |        .|*     | 15 0.214 0.209 11.666 0.704 

       .|*     |        .|.     | 16 0.086 0.048 13.136 0.663 

       .|.     |        .|.     | 17 -0.017 -0.022 13.192 0.723 

       .|.     |        .|*     | 18 0.066 0.077 14.067 0.725 

       .|**    |        .|**    | 19 0.312 0.320 33.732 0.020 

       .|.     |        .|.     | 20 0.018 -0.037 33.795 0.028 

       .|.     |        .|.     | 21 -0.011 0.007 33.818 0.038 

       .|.     |        .|.     | 22 -0.003 0.027 33.820 0.051 

       .|.     |        .|.     | 23 -0.005 0.024 33.826 0.068 

       .|.     |        .|.     | 24 0.054 0.063 34.424 0.077 

       .|.     |        .|.     | 25 -0.008 0.006 34.436 0.099 

       .|.     |        .|.     | 26 -0.007 0.022 34.445 0.124 

       .|.     |        .|.     | 27 -0.013 0.007 34.481 0.153 

       .|.     |        .|.     | 28 -0.013 0.011 34.520 0.184 

       .|.     |        .|.     | 29 -0.010 -0.003 34.540 0.220 

       .|.     |        .|.     | 30 -0.008 -0.047 34.553 0.259 

       .|.     |        .|.     | 31 0.018 0.002 34.621 0.299 

       .|.     |        .|.     | 32 0.013 0.024 34.659 0.342 

       .|.     |        .|.     | 33 0.059 0.026 35.423 0.355 

       .|*     |        .|.     | 34 0.094 -0.063 37.408 0.315 

       .|.     |        .|.     | 35 0.015 -0.026 37.461 0.357 

       .|.     |        .|.     | 36 -0.009 0.011 37.479 0.401 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-44) Residuals Correlogram of APARCH(1,1) 

Student's t distribution 

Date: 02/06/16   Time: 15:26    

Sample: 1999M01 2013M12      

Included observations: 178     

Q-statistic probabilities adjusted for 3 ARMA terms  
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 -0.003 -0.003 0.0013  

       .|.     |        .|.     | 2 -0.004 -0.004 0.0042  

       .|.     |        .|.     | 3 -0.004 -0.004 0.0070  

       .|.     |        .|.     | 4 -0.002 -0.002 0.0080 0.929 

       .|.     |        .|.     | 5 -0.012 -0.012 0.0342 0.983 

       .|.     |        .|.     | 6 -0.002 -0.002 0.0349 0.998 

       .|.     |        .|.     | 7 -0.002 -0.002 0.0356 1.000 

       .|.     |        .|.     | 8 -0.002 -0.002 0.0361 1.000 

       .|.     |        .|.     | 9 -0.002 -0.002 0.0368 1.000 

       .|.     |        .|.     | 10 -0.002 -0.002 0.0376 1.000 

       .|.     |        .|.     | 11 -0.002 -0.002 0.0383 1.000 

       .|.     |        .|.     | 12 -0.002 -0.002 0.0393 1.000 

       .|.     |        .|.     | 13 -0.002 -0.002 0.0400 1.000 

       .|.     |        .|.     | 14 -0.002 -0.002 0.0405 1.000 

       .|**    |        .|**    | 15 0.323 0.323 20.510 0.058 

       .|.     |        .|.     | 16 -0.001 0.001 20.510 0.083 

       .|.     |        .|.     | 17 -0.003 -0.000 20.512 0.115 

       .|.     |        .|.     | 18 -0.002 0.001 20.512 0.153 

     ***|.     |      ***|.     | 19 -0.350 -0.390 45.216 0.000 

       .|.     |        .|.     | 20 0.000 0.008 45.216 0.000 

       .|.     |        .|.     | 21 0.001 -0.000 45.216 0.000 

       .|.     |        .|.     | 22 0.001 -0.001 45.216 0.001 

       .|.     |        .|.     | 23 0.003 0.061 45.218 0.001 

       .|.     |        .|.     | 24 0.020 0.015 45.302 0.002 

       .|.     |        .|.     | 25 0.002 0.001 45.303 0.002 

       .|.     |        .|.     | 26 -0.000 0.000 45.303 0.004 

       .|.     |        .|.     | 27 0.000 -0.009 45.303 0.005 

       .|.     |        .|.     | 28 0.001 -0.004 45.303 0.008 

       .|.     |        .|.     | 29 0.001 0.003 45.303 0.011 

       .|.     |        *|.     | 30 0.001 -0.138 45.303 0.015 

       .|.     |        .|.     | 31 0.002 0.004 45.304 0.021 

       .|.     |        .|.     | 32 0.000 0.001 45.304 0.027 

       .|.     |        .|.     | 33 0.002 -0.002 45.305 0.036 

       *|.     |        .|*     | 34 -0.174 0.112 52.013 0.010 

       .|.     |        .|.     | 35 0.001 -0.004 52.013 0.014 

       .|.     |        .|.     | 36 0.002 -0.001 52.014 0.019 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-45) The correlogram of standardized residuals squared for APARCH(1,1) 

Student's t distribution 

Date: 02/22/16   Time: 14:11    

Sample: 1999M01 2013M12      

Included observations: 178     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 -0.012 -0.012 0.0256 0.873 

       .|.     |        .|.     | 2 -0.012 -0.012 0.0517 0.974 

       .|.     |        .|.     | 3 -0.012 -0.012 0.0783 0.994 

       .|.     |        .|.     | 4 -0.010 -0.011 0.0974 0.999 

       .|.     |        .|.     | 5 -0.010 -0.011 0.1160 1.000 

       .|.     |        .|.     | 6 -0.010 -0.011 0.1358 1.000 

       .|.     |        .|.     | 7 -0.010 -0.011 0.1560 1.000 

       .|.     |        .|.     | 8 -0.010 -0.011 0.1766 1.000 

       .|.     |        .|.     | 9 -0.011 -0.012 0.1975 1.000 

       .|.     |        .|.     | 10 -0.011 -0.012 0.2189 1.000 

       .|.     |        .|.     | 11 -0.011 -0.012 0.2406 1.000 

       .|.     |        .|.     | 12 -0.011 -0.012 0.2628 1.000 

       .|.     |        .|.     | 13 -0.011 -0.012 0.2854 1.000 

       .|.     |        .|.     | 14 -0.011 -0.013 0.3083 1.000 

       .|*     |        .|*     | 15 0.210 0.209 9.0138 0.877 

       .|.     |        .|.     | 16 -0.011 -0.008 9.0377 0.912 

       .|.     |        .|.     | 17 -0.011 -0.008 9.0619 0.938 

       .|.     |        .|.     | 18 -0.011 -0.008 9.0867 0.958 

       .|**    |        .|**    | 19 0.255 0.270 22.168 0.276 

       .|.     |        .|.     | 20 -0.004 0.004 22.171 0.331 

       .|.     |        .|.     | 21 -0.004 0.004 22.174 0.390 

       .|.     |        .|.     | 22 -0.004 0.004 22.177 0.449 

       .|.     |        .|.     | 23 -0.004 0.021 22.180 0.509 

       .|.     |        .|.     | 24 -0.003 0.005 22.182 0.568 

       .|.     |        .|.     | 25 -0.004 0.004 22.185 0.625 

       .|.     |        .|.     | 26 -0.004 0.005 22.188 0.678 

       .|.     |        .|.     | 27 -0.004 0.006 22.192 0.728 

       .|.     |        .|.     | 28 -0.004 0.005 22.195 0.772 

       .|.     |        .|.     | 29 -0.004 0.005 22.199 0.812 

       .|.     |        .|.     | 30 -0.004 -0.050 22.203 0.847 

       .|.     |        .|.     | 31 -0.004 0.004 22.207 0.876 

       .|.     |        .|.     | 32 -0.004 0.004 22.211 0.902 

       .|.     |        .|.     | 33 -0.004 0.004 22.216 0.923 

       .|.     |        .|.     | 34 0.060 -0.061 23.028 0.923 

       .|.     |        .|.     | 35 -0.005 -0.001 23.033 0.940 

       .|.     |        .|.     | 36 -0.005 -0.001 23.038 0.954 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-46) Residuals Correlogram of GJR-GARCH (1.1) 

Normal distribution 

Date: 02/06/16   Time: 15:34    

Sample: 1999M01 2013M12      

Included observations: 178     

Q-statistic probabilities adjusted for 3 ARMA terms  
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|*     |        .|*     | 1 0.103 0.103 1.9191  

       .|.     |        .|.     | 2 -0.031 -0.042 2.0985  

       .|.     |        .|.     | 3 0.031 0.040 2.2790  

       .|.     |        *|.     | 4 -0.057 -0.067 2.8802 0.090 

       .|.     |        .|.     | 5 -0.008 0.009 2.8914 0.236 

       .|.     |        .|.     | 6 0.034 0.028 3.1026 0.376 

       .|.     |        .|.     | 7 0.018 0.016 3.1601 0.531 

       .|.     |        .|.     | 8 0.019 0.014 3.2247 0.665 

       .|.     |        .|.     | 9 0.005 0.001 3.2304 0.779 

       .|.     |        .|.     | 10 0.028 0.032 3.3783 0.848 

       .|.     |        .|.     | 11 0.029 0.024 3.5446 0.896 

       .|.     |        .|.     | 12 -0.041 -0.044 3.8683 0.920 

       .|*     |        .|*     | 13 0.077 0.088 5.0225 0.890 

       .|.     |        .|.     | 14 0.047 0.026 5.4603 0.907 

       .|**    |        .|**    | 15 0.238 0.250 16.566 0.167 

       .|**    |        .|*     | 16 0.250 0.206 28.916 0.007 

       .|.     |        .|.     | 17 -0.030 -0.043 29.099 0.010 

       .|*     |        .|*     | 18 0.105 0.142 31.306 0.008 

       *|.     |        *|.     | 19 -0.154 -0.195 36.116 0.003 

       *|.     |        .|.     | 20 -0.089 -0.018 37.737 0.003 

       .|.     |        .|.     | 21 0.022 -0.024 37.833 0.004 

       .|.     |        .|.     | 22 -0.027 -0.045 37.987 0.006 

       .|.     |        .|.     | 23 0.039 0.042 38.302 0.008 

       .|*     |        .|.     | 24 0.104 0.070 40.572 0.006 

       .|.     |        .|.     | 25 0.026 0.031 40.715 0.009 

       .|.     |        *|.     | 26 -0.047 -0.083 41.187 0.011 

       .|.     |        .|.     | 27 -0.005 0.007 41.192 0.016 

       .|.     |        .|.     | 28 0.004 -0.025 41.195 0.022 

       .|.     |        *|.     | 29 -0.023 -0.098 41.314 0.029 

       .|.     |        .|.     | 30 0.010 -0.023 41.335 0.038 

       .|*     |        .|.     | 31 0.095 -0.063 43.286 0.033 

       .|.     |        .|.     | 32 -0.035 -0.059 43.560 0.040 

       .|.     |        .|.     | 33 -0.010 -0.009 43.581 0.052 

       *|.     |        *|.     | 34 -0.075 -0.097 44.835 0.052 

       .|.     |        .|*     | 35 -0.061 0.097 45.676 0.055 

       .|.     |        .|.     | 36 0.029 0.011 45.866 0.068 
       
       

*Probabilities may not be valid for this equation specification. 

 

 

 

 

 



 

143 
 

Figure (4-47) The correlogram of standardized residuals squared for of GJR-GARCH (1.1) 

Normal distribution  

Date: 02/22/16   Time: 14:13    

Sample: 1999M01 2013M12      

Included observations: 178     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|*     |        .|*     | 1 0.117 0.117 2.4580 0.117 

       .|.     |        .|.     | 2 -0.018 -0.032 2.5197 0.284 

       .|.     |        .|.     | 3 -0.011 -0.005 2.5403 0.468 

       .|.     |        .|.     | 4 -0.014 -0.013 2.5776 0.631 

       .|.     |        .|.     | 5 0.008 0.011 2.5891 0.763 

       .|.     |        .|.     | 6 -0.017 -0.020 2.6441 0.852 

       .|.     |        .|.     | 7 -0.023 -0.019 2.7452 0.908 

       .|.     |        .|.     | 8 -0.020 -0.017 2.8229 0.945 

       .|.     |        .|.     | 9 -0.020 -0.016 2.8952 0.968 

       .|.     |        .|.     | 10 -0.022 -0.020 2.9889 0.982 

       .|.     |        .|.     | 11 -0.025 -0.021 3.1046 0.989 

       .|.     |        .|.     | 12 -0.017 -0.013 3.1588 0.994 

       .|.     |        .|.     | 13 -0.013 -0.012 3.1895 0.997 

       .|.     |        .|.     | 14 0.036 0.037 3.4477 0.998 

       .|**    |        .|**    | 15 0.221 0.214 13.078 0.596 

       .|*     |        .|.     | 16 0.096 0.050 14.899 0.532 

       .|.     |        .|.     | 17 -0.017 -0.025 14.956 0.599 

       .|.     |        .|*     | 18 0.069 0.084 15.921 0.598 

       .|**    |        .|**    | 19 0.308 0.319 35.080 0.014 

       .|.     |        .|.     | 20 0.022 -0.041 35.174 0.019 

       .|.     |        .|.     | 21 -0.011 0.009 35.198 0.027 

       .|.     |        .|.     | 22 -0.006 0.028 35.205 0.037 

       .|.     |        .|.     | 23 -0.010 0.026 35.226 0.049 

       .|.     |        .|.     | 24 0.054 0.063 35.826 0.057 

       .|.     |        .|.     | 25 -0.007 0.006 35.835 0.074 

       .|.     |        .|.     | 26 -0.007 0.024 35.844 0.095 

       .|.     |        .|.     | 27 -0.013 0.008 35.881 0.118 

       .|.     |        .|.     | 28 -0.015 0.011 35.927 0.144 

       .|.     |        .|.     | 29 -0.010 -0.004 35.948 0.175 

       .|.     |        .|.     | 30 -0.006 -0.048 35.957 0.209 

       .|.     |        .|.     | 31 0.017 -0.003 36.020 0.245 

       .|.     |        .|.     | 32 0.016 0.026 36.074 0.284 

       .|.     |        .|.     | 33 0.064 0.027 36.966 0.291 

       .|*     |        *|.     | 34 0.097 -0.068 39.077 0.252 

       .|.     |        .|.     | 35 0.020 -0.025 39.167 0.288 

       .|.     |        .|.     | 36 -0.010 0.012 39.190 0.329 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-48) Residuals Correlogram of GJR-GARCH (1.1) 

Student's t distribution 

Date: 02/06/16   Time: 15:43    

Sample: 1999M01 2013M12      

Included observations: 178     

Q-statistic probabilities adjusted for 3 ARMA terms  
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 0.000 0.000 3.E-05  

       .|.     |        .|.     | 2 -0.004 -0.004 0.0032  

       .|.     |        .|.     | 3 -0.005 -0.005 0.0074  

       .|.     |        .|.     | 4 -0.004 -0.004 0.0105 0.918 

       .|.     |        .|.     | 5 -0.043 -0.043 0.3534 0.838 

       .|.     |        .|.     | 6 -0.002 -0.002 0.3539 0.950 

       .|.     |        .|.     | 7 -0.001 -0.001 0.3540 0.986 

       .|.     |        .|.     | 8 0.001 0.000 0.3541 0.997 

       .|.     |        .|.     | 9 -0.001 -0.001 0.3542 0.999 

       .|.     |        .|.     | 10 -0.002 -0.004 0.3547 1.000 

       .|.     |        .|.     | 11 -0.002 -0.002 0.3554 1.000 

       .|.     |        .|.     | 12 -0.002 -0.002 0.3562 1.000 

       .|.     |        .|.     | 13 -0.001 -0.001 0.3564 1.000 

       .|.     |        .|.     | 14 -0.000 -0.000 0.3564 1.000 

       .|**    |        .|**    | 15 0.302 0.302 18.276 0.108 

       .|.     |        .|.     | 16 0.003 0.003 18.277 0.147 

       .|.     |        .|.     | 17 -0.003 -0.001 18.279 0.194 

       .|.     |        .|.     | 18 -0.001 0.002 18.279 0.248 

     ***|.     |      ***|.     | 19 -0.370 -0.405 45.817 0.000 

       .|.     |        .|.     | 20 -0.002 0.031 45.818 0.000 

       .|.     |        .|.     | 21 0.001 -0.001 45.819 0.000 

       .|.     |        .|.     | 22 -0.001 -0.004 45.819 0.001 

       .|.     |        .|.     | 23 0.005 0.062 45.824 0.001 

       .|.     |        .|.     | 24 0.071 0.044 46.860 0.001 

       .|.     |        .|.     | 25 0.003 -0.000 46.862 0.002 

       .|.     |        .|.     | 26 -0.004 -0.004 46.865 0.002 

       .|.     |        .|.     | 27 -0.003 -0.012 46.867 0.003 

       .|.     |        .|.     | 28 -0.001 -0.014 46.868 0.005 

       .|.     |        .|.     | 29 -0.001 0.015 46.868 0.007 

       .|.     |        *|.     | 30 -0.002 -0.124 46.869 0.010 

       .|.     |        .|.     | 31 0.003 0.006 46.871 0.014 

       .|.     |        .|.     | 32 -0.002 0.002 46.872 0.019 

       .|.     |        .|.     | 33 0.005 -0.006 46.878 0.026 

       *|.     |        .|*     | 34 -0.181 0.092 54.167 0.006 

       .|.     |        .|.     | 35 -0.000 -0.013 54.167 0.008 

       .|.     |        .|.     | 36 0.003 0.001 54.169 0.012 
       
       

*Probabilities may not be valid for this equation specification. 
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Figure (4-49)The correlogram of standardized residuals squared for GJR-

GARCH (1.1) 

Student's t distribution 

Date: 02/22/16   Time: 14:14    

Sample: 1999M01 2013M12      

Included observations: 178     
       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob* 
       
              .|.     |        .|.     | 1 -0.013 -0.013 0.0300 0.862 

       .|.     |        .|.     | 2 -0.013 -0.013 0.0607 0.970 

       .|.     |        .|.     | 3 -0.013 -0.013 0.0919 0.993 

       .|.     |        .|.     | 4 -0.011 -0.012 0.1149 0.998 

       .|.     |        .|.     | 5 -0.007 -0.008 0.1246 1.000 

       .|.     |        .|.     | 6 -0.011 -0.012 0.1484 1.000 

       .|.     |        .|.     | 7 -0.011 -0.012 0.1727 1.000 

       .|.     |        .|.     | 8 -0.011 -0.012 0.1974 1.000 

       .|.     |        .|.     | 9 -0.012 -0.013 0.2226 1.000 

       .|.     |        .|.     | 10 -0.012 -0.013 0.2483 1.000 

       .|.     |        .|.     | 11 -0.012 -0.013 0.2745 1.000 

       .|.     |        .|.     | 12 -0.012 -0.013 0.3011 1.000 

       .|.     |        .|.     | 13 -0.012 -0.014 0.3282 1.000 

       .|.     |        .|.     | 14 -0.012 -0.014 0.3557 1.000 

       .|*     |        .|*     | 15 0.201 0.199 8.2591 0.913 

       .|.     |        .|.     | 16 -0.012 -0.009 8.2875 0.940 

       .|.     |        .|.     | 17 -0.012 -0.009 8.3166 0.959 

       .|.     |        .|.     | 18 -0.012 -0.009 8.3462 0.973 

       .|**    |        .|**    | 19 0.307 0.323 27.353 0.097 

       .|.     |        .|.     | 20 -0.005 0.002 27.357 0.126 

       .|.     |        .|.     | 21 -0.005 0.004 27.361 0.159 

       .|.     |        .|.     | 22 -0.005 0.005 27.365 0.198 

       .|.     |        .|.     | 23 -0.005 0.029 27.370 0.241 

       .|.     |        .|.     | 24 0.006 0.014 27.378 0.287 

       .|.     |        .|.     | 25 -0.005 0.005 27.383 0.337 

       .|.     |        .|.     | 26 -0.005 0.005 27.388 0.389 

       .|.     |        .|.     | 27 -0.005 0.007 27.393 0.443 

       .|.     |        .|.     | 28 -0.005 0.007 27.398 0.497 

       .|.     |        .|.     | 29 -0.005 0.006 27.404 0.550 

       .|.     |        .|.     | 30 -0.005 -0.046 27.410 0.602 

       .|.     |        .|.     | 31 -0.005 0.005 27.416 0.651 

       .|.     |        .|.     | 32 -0.005 0.005 27.422 0.698 

       .|.     |        .|.     | 33 -0.005 0.005 27.428 0.741 

       .|.     |        *|.     | 34 0.073 -0.068 28.614 0.729 

       .|.     |        .|.     | 35 -0.006 0.000 28.621 0.768 

       .|.     |        .|.     | 36 -0.006 -0.000 28.628 0.804 
       
       

*Probabilities may not be valid for this equation specification. 

 

 


