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Abstract 
  We give the global and Strichartz estimates for the Schr표̈dinger maximal operators, 
end point maximal and the local smoothing  estimates for Schr표̈dinger equation. The 
singular continuous and pure point spectrum of self-adjoint extensions and 
Laplaceians of fractul graphs are shown with the spectral Localization in the 
hierarchical Anderson model. The radial positive definite function with bases of 
subspaces, property of x-positive definiteness, general Cwikel-Lieb-Rozenblum and 
Lieb-Thirring inequalities are investigated. The space time estimates and the negative 
spectrum of the three dimentional hierarchical Schr표̈dinger operaters with pure point 
spectrum interactions are discussed.   
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  الخلاصة
 ؛ لاجل المؤثرات الاعظمیة لشرودنجر واعظمیة النقطة الاخیرةزالعالمیة وستریشارتاعطینا التقدیرات    

وتقدیرات الملسان الموضعي لمعادلة شرودنجر . اوضحنا الاستمراریة الشاذة وطیف النقطة البحت , لتمدیدات 

رارشیكال اندرسون. ج ھیذالذاتي واللابلسینات والبیانات الكسریة مع الموضوعیة الطیفیة في نمو ـــالمرافق 

الموجبة   ــ  xتمت مناقشة الدالة المحددة الموجبة الاحادیة مع الاساس للفضاء الجزئي والخاصیة المحددة 

ثیرنج.درسنا تقدیرات زمان المكان والطیف السالب لمؤثرات  –روزنبلم و لیب  –لیب  –ومتباینات سویكل 

  طیف النقطة البحت.ھیرارشیكال شرودنجر للابعاد الثلاثة مع تدخلات 
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Introduction 

 
In higher dimensions, we show that sup 푒 ∆푓 and sup 푒 ∆푓  are bounded from 퐻 (푅 ) to 

퐿 (푅 ) only if 푠 ≥ − ( ).We also show that the Schrödinger maximal operator sup 푒 ∆푓 is 

bounded from퐻 (푅 ) to퐿 (푅 )when푠 > 푠  if and only if it is bounded from퐻 (푅 ) to 퐿 (푅 ) 
when 푠 > 2푠 . A corollary isthat sup 푒 ∆푓 is bounded from퐻 (푅 ) to 퐿 (푅 )when s >3/4. 

 
When n = 2, we unconditionally improve the rangefor which the mixed norm estimates hold.We 
shall show that a symmetric operator with infinite deficiency indices and some gap has self-adjoint 
extensions with non-empty singular continuous spectrum. 
 
We establish the pure point spectrum of Laplacians o two point self-similar fractal graph.We show 
that a large class of hierarchical Anderson models withspectral dimension푑 ≥ 2 has only pure point 
spectrum. 
 
We strengthen the fixed time estimates due to Fefferman and Stein, and Miyachi. As anessential 
tool we establish sharp퐿  space-time estimates (local in time) for the samerange of p.We show 
mixed norm space-time estimates for solutions of the Schrodingerequation, with initial data in퐿  
Sobolev (or Besov) spaces, and clarify the relation withadjoint restriction. 
 
A number of results on radial positive definite functions on푅  related to Schoenberg’s integral 
representationtheorem are obtained. They are applied to the study of spectral properties of self-
adjoint realizationsof two- and three-dimensional Schrödinger operators with countably many point 
interactions. 
 
These classical inequalities allow one to estimate the number of negative eigen-values and the sums 
푆 = ∑|훾 |  for a wide class of Schrodinger operators. We provide a detailed proof of these 
inequalities for operators on functions in metric spaces using the classical Lieb approach based on 
the Kac-Feynman formula. The main goal is a new set of examples which include perturbations of 
the Anderson operator, operators on free, nilpotent and solvable groups, operators on quantum 
graphs, Markov processes with independent increments. Since the spectral dimension of the 
operator under consideration can be an arbitrary positive number, the model allows a continuous 
phase transitionfrom recurrent to transient underlying Markov process. This transition is also 
studied. 
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Chapter 1  
Global and Local Smoothing Estimates 

The Schrödinger equation, 푖휕 푢 + ∆푢 = 0, in 푅 , with initial datum f contained in a Sobolev 
space 퐻 (푅 ), has solution 푒 ∆푓. We give sharp conditions under which sup 푒 ∆푓 isbounded from 

퐻 (푅)to퐿 (푅) for all q, and give sharp conditions under which sup 푒 ∆푓 is bounded from 퐻 (푅) 

to 퐿 (푅) for all푞 ≠ 2.We show that the Schrödinger operator푒 ∆ is bounded from 푊 , (푅 )to 

퐿 (푅 × [0, 1])for all훼 > 2푛 − − and푞 ≥ 2 + ( ). this is almost sharp with respect to the 
Sobolev index. 
 
Section (1.1): Schrödinger Maximal Operator and Global Estimates:  
The Schrödinger equation, 푖휕 푢 + ∆푢 = 0, in 푅 , with initial datum f contained in a Sobolev 
space 퐻 (푅 ), has solution 푒 ∆푓which can be formally written as 

푒 ∆푓(푥) = 푓(휉)푒 ∙ | | 푑휉 .                                          (1) 

We will consider the Schrödinger maximal operators 푆∗and 푆∗∗, defined by 
푆∗푓 = sup 푒 ∆푓 and푆∗∗푓 = sup

∈
푒 ∆푓 . 

The minimal regularity of 푓under which 푒 ∆푓converges almost everywhere to 푓, as 푡tends to zero, 
has been studied extensively. By standard arguments, the problem reduces to the minimal value of s 
for which 

‖푆∗푓‖ ( ) ≤ 퐶 , , ‖푓‖ ( )                                               (2) 
holds, where 퐵 is the unit ball in 푅 . 
In two dimensions, that is one spatial dimension, Carleson [4] (see also [10]) showed that (2) holds 
when 푠 ≥ 1/4. Dahlberg and Kenig [6] showed that this is sharp in the sense that it is not true when 
푠 < 1/4. 
In three dimensions, significant contributions have been made by Bourgain [1, 2], Moyua, Vargas 
and Vega [12, 13], and Tao and Vargas [21, 22]. The best known result is due to Lee [11] who 
showed that (2) holds when 푠 > 3/8. 
In higher dimensions, Sjölin [15] and Vega [23, 24] independently showed that (2) holds when 푠 >
1/2. It is conjectured that, in all dimensions, the minimal value of 푠for which (2) holds is 1/4. 
Replacing the unit ball 퐵 in (2) by the whole space 푅 , we consider the global estimates 

‖푆∗푓‖ ( ) ≤ 퐶 , , ‖푓‖ ( )                                                   (3) 
and 

‖푆∗∗푓‖ ( ) ≤ 퐶 , , ‖푓‖ ( ).                                                  (4) 

In one spatial dimension, Kenig, Ponce and Vega [9] proved that (4) holds when 푞 = 4 and 푠 = . 
This was extended by Gülkan [7] who proved that (4) holds when 푞 ∈ [4,∞) if and only if 푠 ≥
1/2− 1/푞, and it is well known that (4) holds when 푞 = ∞if and only if 푠 > 1/2 (see [19]). Sjölin 
[16] proved that if 푞 = 2, then (4) does not hold for any푠, and we will show that this is also the case 
when 푞 ∈ (2,4). Thus, we have the following theorem. 
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Theorem (1.1.1)[25]:Let푛 = 1. Then (4) holds if and only if q ∈ [4,∞)and푠 ≥ 1/2− 1/푞, or 푞 =
∞and푠 > 1/2. 
The following theorem extends a result of Vega [23, 8] (see also [17]) by the endpoint 푠 = 1/푞in 
the range 푞 ∈ (2,4). 
Theorem (1.1.2)[25]:Let 푛 = 1and푞 ∈ (2,∞): Then (3) holds if and only if 푠 ≥ max{1/푞, 1/2−
1/푞}. 
Vega [23, 8] (see also [16]) proved that (3) holds when 푞 = 2 and 푠 > 1/2, and this is not true 
when 푞 = 2 and 푠 < 1/2, or for any value of s when 푞 < 2. As in Theorem (1.1.1), when 푞 = ∞, 
(3) holds if and only if 푠 > 1/2 (see [19]). Thus, in order to have complete results in Theorem 
(1.1.2), the only case that remains undecided is 푞 = 2, 푠 = 1/2. 
In higher dimensions, we show that (3) holds only if 

푠 ≥
푛

2(푛 + 1) . 

We note that the minimal 푠is thus strictly greater than 1/4 when 푛 ≥ 2. A plausible conjecture is 
that these are indeed the minimal values of 푠that can appear in (3). 
Throughout, 퐶will denote an absolute constant whose value may change from line to line. 
First, we consider one spatial dimension, and extend the argument of Carleson as in [14]. We 
employ the Kolmogorov–Seliverstov–Plessner method and the following two lemmas. The first is 
proved by a very slight modification of a lemma due to Sjölin [20]; The second is proved by 
refining the ideas of Carleson. 
Lemma (1.1.3)[25]:Let 푥, 푡 ∈ 푅and 훼 ∈ [1/2,1). Then there is a constant 퐶 such that 

푒
(1 + |휉|) 푑휉 ≤

퐶
|푥| . 

Lemma (1.1.4)[25]:Let 푥 ∈ 푅, 푡 ∈ [−1,1]and 훼 ∈ [1/2,1]. Then there is a constant 퐶 such that  

푒
(1 + |휉|) 푑휉 ≤

퐶
|푥| . 

Proof.Splitting the integral in two and taking the complex conjugate if necessary we can suppose 
that 푥 > 0, and consider the integral over (0,∞). When 푥 ≤ 4 and 훼 < 1, we are done by Lemma 
(1.1.3), so we can suppose that 푥 ≥ 4 and 1/푥 ≤ 퐶/푥 . 
When 푡 ≤ 0, there exist 푐 , 푐 ∈ (0,1) such that 

푒
(1 + |휉|) 푑휉 ≤ cos 2휋(푥휉 − 푡휉 ) 푑휉 + sin 2휋(푥휉 − 푡휉 ) 푑휉 , 

by the Bonnet form of the second mean value theorem for integrals. The derivative of the phase, 
푥 − 2푡휉, is monotone, and bounded below by푥, so by van der Corput’s lemma, 

푒
(1 + |휉|) 푑휉 ≤

퐶
푥 ≤

퐶
푥 . 

and we are done. 
Now we suppose that 푡 > 0, and make the change of variables휉 → 휉 + 1, so that 
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푒
(1 + |휉|) 푑휉 =

푒 ( )

휉 푑휉 . 

As 푥 + 2푡 > 푥, it will suffice to show that 

푒
휉 푑휉 ≤

퐶
푥 . 

Changing variables again, 휉 → √푡휉, and denoting 2퐴 = 푥/√푡, we are required toshow that 

1

√푡

푒
휉 푑휉

√

≤
퐶
푥 . 

Note that 퐴 > 2, as we have that 푥 ≥ 4. 
Consider first the integral over √푡,퐴/2 . By the change of variables, 휉 → 퐴휉, we are required to 
show that 

1
푥

푒 /

휉 푑휉

/

/

≤
퐶
푥 . 

The derivative of the phase, 2 − 2휉/퐴 , is bounded below by one on (푥/2,퐴 /2), so that, by the 
mean value theorem and van der Corput’s lemma, 

1
푥

푒 /

휉 푑휉

/

/

≤
퐶
푥 ≤

퐶
푥 , 

and we are done. 
Finally, we are required to show that 

1

√푡

푒
휉 푑휉

/

≤
퐶
푥 . 

By the mean value theorem, and the fact that modulus of the second derivative of the phase is 
bounded below by one, 

1

√푡

푒
휉 푑휉

/

≤
퐶√푡
푥 푒 푑휉

/

≤
퐶
푥 , 

and we are done.  
The following theorem is an endpoint improvement of result of Vega [23, 8] (see also [17]) 

in the range (2; 4). 
Theorem (1.1.5)[25]:Let 푛 = 1. If 푞 ∈ [4,∞)and 푠 ≥ 1/2− 1/푞, then (4) holds. If 푞 ∈ (2,∞)and 
푠 ≥ max{1/푞, 1/2− 1/푞}, then (3) holds. 
Proof.By duality, it will suffice to show that 

푒 ( )∆푓(푥)푤(푥)푑푥 ≤ 퐶 ‖푓‖ ( )‖푤‖ ( )
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for all positive 푤 ∈ 퐿 (푅), where the measurable function 푡maps into 푅 when weare considering 
the bound (4) and into (0,1) when we consider (3). 

By Fubini’s theorem and the Cauchy–Schwarz inequality, the left hand side of this 
inequality is bounded by 

푓(휉) (1 + |휉|) 푑휉 푒 ( ) 푤(푥)푑푥
푑휉

(1 + |휉|) . 

Thus, by writing the squared integral as a double integral, it will suffice to show that 

푒 ( ) ( ) ( ) 푤(푥)푤(푦)푑푥푑푦
푑휉

(1 + |휉|) ≤ 퐶 ‖푤‖
( )

.      (5) 

By Lemma (1.1.3), we have 

푒 ( ) ( ) ( )

(1 + |휉|) 푑휉 ≤
퐶

|푥 − 푦|  

when 푡takes values in 푅, and 2푠 ∈ [1/2,1), and by Lemmas (1.1.3) and (1.1.4), we have 

푒 ( ) ( ) ( )

(1 + |휉|) 푑휉 ≤
퐶

|푥 − 푦| { , } 

when 푡takes values in (0,1). Thus, by Fubini’s theorem, the left hand side of (5) is bounded by a 
constant multiple of 

푤(푥)푤(푦)
|푥 − 푦| 푑푥푑푦 

in the first case, and  

푤(푥)푤(푦)
|푥 − 푦| { , } 푑푥푑푦 

in the second. Finally, by Hölder’s inequality and the Hardy–Littlewood–Sobolev inequality, these 
are bounded by 

‖푤‖ ( )

푤(푥)
|푥 −∙| 푑푥

( )

≤ 퐶 ‖푤‖
( )

, 

where 푠 = 1/2− 1/푞and 푞 ≥ 4 when we are considering the bound in (4), and 

‖푤‖ ( )

푤(푥)
|푥 −∙| { , } 푑푥

( )

≤ 퐶 ‖푤‖
( )

, 

where 푠 = max{1/푞, 1/2− 1/푞}and 푞 > 2 when we consider (3).  
In higher dimensions, we simply interpret the known results. By modifying very slightly the proof 
of Theorem 2.2 in [21] due to Tao and Vargas, the following result is proved using bilinear 
restriction estimates. 
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Theorem (1.1.6)[25]:Let 푞 ∈ 2 + ,∞ ,푝 ∈ max 푞,
( )

,∞ , and 푠 > 푛 − − . 

Then there exists a constant 퐶 , , ,  such that 
푒 ∆푓 , ( ) ≤ 퐶 , , , ‖푓‖ ( ). 

As usual, we define 휕 by휕 푔(휏) = (2휋|휏|) 푔(휏), where 훼 > 0. Observingthat 휕 푒 ∆푓 = 푒 ∆푓 , 
where b 푓 (휉) = (4휋 |휉| ) 푓(휉), and applying the Sobolevimbedding theorem with 훼 > 1/푝, we 
recover their theorem in the following corollary. 

Corollary(1.1.7)[25]:If q ∈ 2 + ,∞  and s > n(1/2− 1/q), then (3) and (4) hold. 
We will see below that these kind of global bounds do not hold when 푞 < 2. Thus, for 
completeness, we provide sufficient conditions, albeit not sharp, for the remaining values of 푞in (3). 

Theorem (1.1.8) [25]:If푞 ∈ 2,2 + and s > 3/q − 1/2, then (3) holds. 
Proof.Carbery [3] and Cowling [5] independently proved that if 푞 = 2 and 푠 > 1, then (3) holds. 
Considering 퐻 to be a weighted 퐿 space, we can interpolate between this and the bound in 
Corollary 1 to get the result.  
We consider one spatial dimension and complete the proof of Theorem (1.1.1). The novelty in the 
following is that if 푛 = 1 and 푞 ∈ (2,4), then (4) cannot hold for any value of 푠. 
Theorem (1.1.9)[25]:Let 푛 = 1. If (4) holds, then 푞 ∈ [4,∞)and 푠 ≥ 1/2− 1/푞, or 푞 = ∞ and 
푠 > 1/2. 
The following theorem is due to Sjölin [17], but it will also follow easily from the following proof 
of Theorem (1.1.9). 
Theorem (1.1.10)[25]:Let 푛 = 1. If (3) holds then 푞 ∈ [2,∞)and 푠 ≥ max{1/푞, 1/2− 1/푞}, or 
푞 = ∞ and 푠 > 1/2. 
Proof.By a change of variables, 

푆∗∗푓(푥) = sup
∈

1
2휋 푓

휉
2휋 푒 푑휉 . 

Define 퐴 = 푁,푁 + 푁 , where 푁 ≫ 1 and 휆 ∈ (−∞, 1], and consider 푓 defined by푓 (휉/2휋) =

푒 휒 (휉). We will show that for a range of values of 푥, a time 푡(푥) can be chosen so that the 
phase, 

휙 (휉) = 푥 − 푁 휉 − 푡(푥)휉 , 
is roughly constant on 퐴. With the phase roughly constant, we have 

푆∗∗푓 (푥) ≥ 퐶 푒 ( ) 푑휉 ≥ 퐶|퐴|. 

As 퐴is an interval of length 푁 , in order to insure that the phase is roughly constant, we impose the 
condition 휙′ (휉) ≤ 푁 on 퐴. This insures that for all 푁 and 휆, there exists a 휃 such that 

휃 − 1/2 ≤ 휙 (휉) ≤ 휃 + 1/2. 
As 휙′ (휉) = 푥 − 푁 − 2푡(푥)휉, the condition can be rewritten as 

푥 − 2푁
2휉 ≤ 푡(푥) ≤

푥
2휉 

for all 휉 ∈ 퐴. Define 푎and 푏by 
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푎(푥) = sup
∈

푥 − 2푁
2휉 and   푏(푥) = inf

∈

푥
2휉 . 

To be able to choose the time 푡(푥) we require that 푎(푥) ≤ 푏(푥). This is clear when 푥 ∈ 0,2푁 , 
so we suppose that 푥 > 2푁 . Now, when 푥 > 2푁 , 

푎(푥) =
푥 − 2푁

2푁 and   푏(푥) =
푥

2(푁 + 푁 ) , 

so that we can choose a 푡(푥) when 
푥 − 2푁

2푁 ≤
푥

2(푁 + 푁 ) . 

This condition can be rewritten as 푥 ≤ 2푁 + 2푁 , so we will consider the set 퐸 = 0,푁 . 
As 푆∗∗푓 ≥ 퐶|퐴|on 퐸, we see that 

‖푆∗∗푓 ‖ ( ) ≥ 퐶|퐴||퐸| / . 
On the other hand, 

‖푓 ‖ ( ) ≤ 퐶 (1 + |휉|) ≤ 퐶|퐴| / 1 + 푁 + 푁 , 

so that, as ‖푆∗∗푓 ‖ ( ) ≤ 퐶‖푓 ‖ ( ), we have 
|퐴||퐸| / ≤ 퐶|퐴| / 1 + 푁 + 푁 . 

Recalling that |퐴| = 푁 and |퐸| = 푁 , we see that 

푁 푁 ≤ 퐶푁 , 
so that, letting 푁tend to infinity, 

푠 ≥
1
푞 + 휆

1
2−

2
푞  

for all 휆 ∈ (−∞, 1]. When 푞 < 4, we let 휆tend to −∞to obtain a contradiction for all 푠. Letting 휆 =
1 we recover the fact that 푠 ≥ 1/2− 1/푞. 
Finally, by a well–known counterexample (see [19]), 푠 > 1/2 is necessary when 푞 = ∞, and we are 
done. 
In order to prove results for 푆∗, we have the added requirement that 

[푎(푥),푏(푥)]∩ (0,1) ≠ ∅ 
for all 푥 ∈ 퐸. We have that 푎(푥) < 1 when 

푥 − 2푁
2푁 < 1, 

which we rewrite as 
푥 < 2푁 + 2푁 . 

When 휆 < 0, this is an added restriction so we reanalyze in this case. Redefining a smaller 퐸 =
0,2푁 + 2푁 , we see that 

푁 / 푁 + 푁
/
≤ 퐶푁  

for all 휆 ∈ (−∞, 0], so that, letting 푁tend to infinity, 

푠 ≥
1
푞 +

휆
2                                                                  (6) 
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and 

푠 ≥ 휆
1
2 −

1
푞 .                                                           (7) 

When 푞 < 2, we see by (7) that, letting 휆tend to −∞, we have a contradiction for all 푠. If we let 휆 =
0 in (6), we see that 푠 ≥ 1/푞, and from before, when 휆 = 1, we have that 푠 ≥ 1/2− 1/푞. 
Again, by the well-known counterexample (see [19]), 푠 > 1/2 is necessary when 푞 = ∞, and so we 
are done.  
Remark (1.1.11)[25]: We note that taking 휆 = 1/2 in the above proof, 퐸 = [0,1], the time 푡(푥) can 
be chosen to be a member of (0,1) for all 푥 ∈ 퐸, and 푠 ≥ 1/4 for all 푞, so we recover the fact that 
푠 ≥ 1/4 is necessary in (2). It is easy to generalize this to higher dimensions. Indeed, it can be 
shown that 푔defined by 

푔 = 2 휒 , ×[ , / ] , 

where 훼 ∈ (2푠 + 1/2,1) and 푠 < 1/4, is a member of 퐻 (푅 ) such that 푒 ∆푔diverges on the set 
[8/9,1] as 푡tends to zero. 
We now consider higher dimensions. A corollary of the following theorems is that the minimal 
value of 푠that can appear in (3) or (4) is greater than or equal to −

( )
. Again, both theorems 

will follow from the same proof. 
It can be seen by scaling that if 푞 < 2 or 푠 < 푛(1/2− 1/푞), then (4) does not hold. Theorem 
(1.1.12) is that if 푞 ∈ (2,2 + 2/푛), then (4) cannot hold for any value of 푠. That 푞cannot equal 2 is 
due to Sjölin [16]. 

Theorem (1.1.12) [25]:If (4) holds, then 푞 ∈ 2 + ,∞ and 푠 ≥ 푛(1/2− 1/푞), or 푞 = ∞and 푠 >
푛/2. 
Theorem (1.1.13) [25]:If (3) holds, then 푞 ∈ [2,∞)and 푠 ≥ max{1/푞,푛(1/2− 1/푞)}, or 푞 = ∞ 
and 푠 > 푛/2. 
Proof.We consider 푆∗∗and argue as in the proof of Theorem (1.1.9). Define 퐴by 

퐴 = 푁,푁 + 푁 , 
where 푁 ≫ 1 and 휆 ∈ (−∞, 1], and consider 푓 defined by푓 (휉/2휋) = 푒 ∙ 휒 (휉), where 푁 =
푁 , … ,푁 . 

In order to show that the phase in (1) is roughly constant on 퐴, we will need that the partial 
derivatives of the phase are small. we require that 

푥 − 푁 − 2푡(푥)휉 ≤ 푁 , 
for all 푗 = 1, … , 푛. Rewriting this condition, for each 푥we need to choose a 푡(푥) so that 

푥 − 2푁
2휉 ≤ 푡(푥) ≤

푥
2휉  

for all 휉 ∈ 퐴and 푗 = 1, … , 푛. Define 푎and 푏by 

푎(푥) = sup sup
∈

푥 − 2푁
2휉 and    푏(푥) = inf inf

∈

푥
2휉 . 

To be able to choose the time 푡(푥) we need that 푎(푥) ≤ 푏(푥). As before, we require that 푥 ≥ 0 and 
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푥 − 2푁
2푁 ≤

푥
2(푁 + 푁 ) , 

for all 푗, 푘 = 1, … , 푛. We rewrite this as 

0 ≤ 푥 ≤ 2푁 +
푁

2(푁 + 푁 ) 푥  

for all 푗, 푘 = 1, … , 푛. Now, the set 퐸defined by these conditions, is the convex solid body with 
vertices (0, … ,0), 2 푁 + 푁 (1, … ,1), and 2푁 푒 for all 푗 = 1, … , 푛, where 푒 are the 
standard basis vectors. Thus, 

|퐸| ≥ 퐶푁 ( )푁 . 
As 푆∗∗∗푓 ≥ 퐶|퐴|on 퐸, we see that 

‖푆∗∗푓 ‖ ( ) ≥ 퐶|퐴||퐸| / . 
As before, 

‖푓 ‖ ( ) ≤ 퐶 (1 + |휉|)

/

≤ 퐶|퐴| / 1 + 푁 + 푁 , 

so that, as ‖푠∗∗푓 ‖ ( ) ≤ 퐶‖푓 ‖ ( ), we have 

퐶|퐴||퐸| / ≤ 퐶|퐴| / 1 + 푁 + 푁 . 

Recalling that |퐴| = 푁 and |퐸| ≥ 퐶푁 ( ) , we see that 

푁 푁
( )

≤ 퐶푁  
for all 휆 ∈ (−∞, 1], so that 

푠 ≥
1
푞 + 휆

푛
2 −

푛 + 1
푞 . 

When 푞 < 2 + 2/푛, we let 휆tend to −∞to obtain a contradiction for all 푠, and letting 휆 = 1 we 
recover the fact that 푠 ≥ 푛(1/2− 1/푞). We also note for later thatby letting 휆 = 0, we have 푠 ≥
1/푞. 
By a well-known counterexample (see [19]), 푠 > 푛/2 is necessary when 푞 = ∞, so we have 
finished the proof of Theorem (1.1.12). 
In order to prove results for 푆∗, we have the added requirement that 

[푎(푥),푏(푥)]∩ (0,1) ≠ ∅ 
for all 푥 ∈ 퐸. Now, we can ensure that 푎(푥) < 1 when 

푥 − 2푁
2푁 < 1 

for all 푗 = 1 …푛, which we rewrite as 
푥 < 2푁 + 2푁. 

When 휆 < 0, this is an added restriction so we reanalyze the case when 휆tends to negative infinity. 
As before, we consider the set 퐸defined by 

0 ≤ 푥 ≤ 2푁 + min
푁푥

푁 + 푁 , 2푁  

for all 푗, 푘 = 1 …푛. It is clear from here that 
|퐸| ≥ 퐶푁 , 

so that, as before, 
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푁 / 푁 / ≤ 퐶푁 . 
Letting 푁tend to infinity, we have 

푠 ≥ 푛휆
1
2−

1
푞 , 

so that when 푞 < 2, we can let 휆tend to −∞to obtain a contradiction for all 푠. 
From before we have that 푠 ≥ 푛(1/2− 1/푞) and 푠 ≥ 1/푞are necessary conditions, and by the 
well-known counterexample (see [19]), 푠 > 푛/2 is necessary when 푞 = ∞, and so we are done.  
 
Section (1.2): Schrödinger Equation and Local Smoothing Estimate: 
The solution to the wave equation, 휕 푢 = ∆푢, with initial data 푢(·, 0) = 푓and 푢 (·, 0) = 0,can be 
formally written as the real part of 

푒 √ ∆푓(푥) = 푓(휉)푒 ( · | |)푑휉
ℝ

.                                                                              (8) 

Let ‖·‖ , denote the inhomogeneous Sobolev norm with 훼derivatives in 퐿 (ℝ ). J.C. Peral [39] 
proved that for any fixed time 푡and 푞 ∈ (1,∞), 

푒 √ ∆푓
(ℝ )

≤ 퐶 , ‖푓‖ ,  

for all 훼 ≥ (푛 − 1) − , and this is sharp. Sogge [41] conjectured that 

푒 √ ∆푓
(ℝ ×[ , ])

≤ 퐶 , ‖푓‖ ,  

for all훼 > (푛 − 1) − − and푞 > 2 + . This is known as the local smoothing conjecture 

due to the potential gain of 1/푞derivatives. 
In two spatial dimensions, Mockenhaupt, Seeger and Sogge [38] showed that the local smoothing 
estimate holds at the critical exponent 푞 = 4 for all 훼 > 1/8, and this was improved by Bourgain 
[2], Tao and Vargas [22], and Wolff [45] to 훼 > 5/44. 
Moving away from the critical exponent, but remaining in two spatial dimensions, Wolff [44] 
proved the (almost) sharp estimate in the range 푞 > 74, and Łaba andWolff [33] generalized this to 
higher dimensions. Garrigós and Seeger [32] have recently refined their arguments, so that, in 
higher dimensions for example, the (almost) sharp estimate holds in the range 

푞 > 2 +
8

푛 − 3 1 −
1

푛 + 1 . 

The Schrödinger equation, 푖휕 푢 + ∆푢 = 0, with initial datum 푓has solution 푒 ∆푓which can be 
formally written as 

                   푒 ∆푓(푥) = 푓(휉)푒 · | | 푑휉
ℝ

.                                                                                  (9) 

Miyachi [37] (see also [31]) proved that for any fixed time 푡and 푞 ∈ (1,∞), 
푒 ∆푓 (ℝ ) ≤ 퐶 , ‖푓‖ ,  

for all 훼 ≥ 2푛 − , and this is sharp. When 푛 ≥ 2, square function estimates (see [27, 34, 36]) 

yield 
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푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 , ‖푓‖ ,  

for all 훼 > 2푛 − − and 푞 > 2 + 4/푛. We see that averaging locally in time yields a gain of 

2/푞derivatives. 
We extend the range of 푞by taking advantage of all 푛 + 1 dimensions of curvature. This also allows 
us to treat the 푛 = 1 case for which we obtain almost sharp estimates. In higher dimensions, it may 
be possible to extend the range to 푞 > 2 + 2/푛, and we shall see later that this would follow from 
the restriction conjecture for paraboloids. 

Theorem (1.2.1) [46]: Let 푞 > 2 + and 훼 > 2푛 − − . Then there exists a constant 

퐶 , suchthat 
푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 , ‖푓‖ , . 

 
Fig. 1. Region of local smoothing in Corollary (1. 2. 2) 

Although there is a formal similarity between this and the estimates of Wolff et al., the question for 
the Schrödinger equation is not as deep, and the arguments will bear no resemblance. An obvious 
difference is that the wave operator, for finite time, is a local operator, whereas the Schrödinger 
operator is not. We will see however, that one can decompose the initial data so that the 
Schrödinger operator, for finite time, may essentially be treated as a local operator. 
Before proceeding further, we should mention that there are estimates for the Schrödinger equation, 
independently due to Sjölin [15], Vega [23, 24], and Constantin and Saut [29], which are more 
deserving of the description ‘local smoothing.’ They proved that 

푒 ∆푓 (픹 ×[ , ]) ≤ 퐶 ‖푓‖ / (ℝ ), 

where 픹 is the unit ball in ℝ , and ‖·‖ (ℝ )denotes ‖·‖ , . Thus, the solution is locally half a 
derivative smoother than the initial datum. We will see later that this is equivalent up to endpoints 
with the global estimate 

푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 ‖푓‖ (ℝ ), 

which we will refer to as simply the conservation of charge. 
Interpolating between this and the bound in Theorem (1. 2. 1)yields the following corollary. In one 
spatial dimension, it is almost sharp in the range 푞 ∈ [1,∞], and in higher dimensions it is almost 

sharp in the ranges 푞 ∈ [1, 2]and 푞 ∈ 2 + ,∞ . 

Corollary (1.2.2)[46]: Let 푞 ∈ [1,∞]and 훼 > max 2푛 − , (푛 − 1) − , 2푛 − − . 

Thenthere exists a constant 퐶 , such that 
푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 , ‖푓‖ ,  
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(see fig 1) 
We will consider the minimal value of 푠for which 

sup 푒 ∆푓
(픹 )

≤ 퐶 , ‖푓‖ (ℝ )                                       (10) 

holds. By standard arguments, the estimate implies the almost everywhere convergence of 푒 ∆푓to 
푓, as 푡tends to zero. The minimal 푠for which the global bound 

sup 푒 ∆푓
(ℝ )

≤ 퐶 , ‖푓‖ (ℝ )                                       (11) 

holds, has also been considered in connection with the well-posedness of certain initial value 
problems (see [8]). 
In one spatial dimension, Carleson, Kenig and Ruiz [4, 10] showed that (10) holds when 푠 ≥ 1/4, 
and Dahlberg and Kenig [6] showed that this is sharp. Vega [8, 23] (see also [16]) showed that the 
global bound (4) holds when 푠 > 1/2, and this is also sharp. 
In higher dimensions, it was independently proven by Sjölin [15] and Vega [24] that (10) holds 
when 푠 > 1/2, and the bound cannot hold when 푠 < 1/4. Carbery [3] and Cowling [5] 
independently showed that (11) holds when 푠 > 1, and in this case, the bound cannot hold when 
푠 < 1/2. It is conjectured that, the minimal value of s for which (10) holds is 1/4, and the minimal 
value for which (11) holds is 1/2. 
We will put these results and conjectures in proving the following theorem. 
Theorem (1.2.3) [46]: (10) holds for s > s ⇔(11) holds for s > 2s . 
In two spatial dimensions, more was known for the local bound than for the global bound. Bourgain 
[1] showed that there exists an s strictly less that 1/2 for which (10) holds, and this was improved 
by Moyua, Vargas and Vega [13], and Tao and Vargas [21, 22]. The best known result is due to 푆. 
Lee [11], who showed that (10) holds when 푠 > 3/8. 
Therefore, as a consequence of the equivalence, we have the following corollary, which improves 
the result of Carbery and Cowling in two spatial dimensions. 
Corollary (1.2.4)[46]: For all 푠 > 3/4, there exists a constant 퐶 such that 

sup 푒 ∆푓
ℝ

≤ 퐶 ‖푓‖ ℝ . 

The result of Cowling also holds when the Laplacian is replaced by a more general class of 
operators that includes 

□ = 휕 − 휕 ± 휕 ± ⋯± 휕 . 
For physical applications of the nonelliptic Schrödinger equation, see for example [42]. We will 
also prove the equivalence in this case, so that, by a local result of Vargas, Vega and [14], the global 
result of Cowling is almost sharp. We state this as a corollary. 
Corollary (1.2.5) [46]: For all 푠 > 1, there exists a constant 퐶 such that 

sup 푒 □푓
ℝ

≤ 퐶 ‖푓‖ (ℝ ), 

and this is not true when 푠 < 1. 
Throughout, 푐and 퐶will denote positive constants that may depend on the dimensions and 
exponents of the Sobolev spaces. It will be made explicit when they depend on other factors like, 
for example, the Sobolev index. Their values may change from line to line. The following are 
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notations that will be used frequently: 

퐿 ℝ ,퐿 (퐼) : The Lebesgue space with norms ∫ ∫ |푓(푥, 푡)| 푑푡
/
푑푥ℝ

/

. 

푊 , (ℝ ): The inhomogeneous Sobolev space with 훼derivatives in 퐿 (ℝ ). 
‖·‖ , : The inhomogeneous Sobolev norm with 훼derivatives in 퐿 (ℝ ). 
퐻 (ℝ ) ≔ 푊 , (ℝ ). 
□ = 휕 − 휕 ± 휕 ± ⋯± 휕 . 
픹 ≔ {푥 ∈ ℝ : |푥| ≤ 1}. 
픸 ≔ {푥 ∈ ℝ : 1/2 ≤ |푥| ≤ 1}. 
퐵 ≔ {푥 ∈ ℝ : |푥| ≤ 푅}. 
퐴 ≔ {푥 ∈ ℝ : 푅/2 ≤ |푥| ≤ 푅}. 
휒 : the indicator function of 퐵 . 

휑 (푥) ≔ 푅 1 + | | . 
퐿 푓 ≔ 휑 ∗ 휑 ∗ 휑 ∗ |푓|. 
푣 : a member of the lattice 푅 ℤ . 
푥 : a member of the lattice 푅 ℤ . 
푇 ≔ (푥, 푡) ∈ ℝ × [0,푅 ]: 푥 − 푥 + 4휋푡푣 ≤ 푅 . 
{푄 } ∈ℕ: a partition of ℝ into cubes of side 푅 , centred at 푥 ∈ 푅 ℤ . 
휓: a positive and smooth function, supported in 퐵√ . 
휂̂: a positive and smooth function, supported in 픹 , and equal to 1 at the origin. 
Let 휂̂be a positive and smooth function supported in 픹 , and denote by휂̂  the scaledversion 

휂̂ · . Correspondingly, we let 휂  denote its inverse Fourier transform 푅 휂(푅 ·). Weconsider 
initial data 푓 defined by 

푓 (휉) = 푒 | | 휂̂ (휉)
(1 + |휉| ) / . 

We note that 

‖푓 ‖ , = 푒 ∆휂
(ℝ )

, 

and by a change of variables, 

푒 ∆휂 (푥) = 푅 휂̂(휉)푒 · | | 푑휉
ℝ

. 

When |푥| > 2휋푅, by repeated integration by parts, there exists constants 퐶 such that 

푒 ∆휂 (푥) ≤ 퐶
|푥|

2휋푅                                                                        (12) 

for all 푁 ∈ ℕ. When |푥| ≤ 2휋푅, by the dispersive estimate, 

푒 ∆휂 (푥) ≤ 퐶‖휂 ‖ (ℝ ) ≤ 퐶.                                                             (13) 
Combining these two bounds, we see that 

‖푓 ‖ , = 푒 ∆휂
(ℝ )

≤ 퐶푅 .                                                               (14) 
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On the other hand, by a change of variables, 

푒 ∆푓 (푥) =
휂̂

(1 + |휉| ) / 푒 · | | 푑휉
ℝ

 

= 푅
휂̂(휉)

+ |휉|
/ 푒 · | | 푑휉

ℝ

, 

so when |푥| ≤ and 푡 − ≤ , we have 푒 ∆푓 (푥) ≤ 퐶푅 . Thus, 

푒 ∆푓 (ℝ ×[ , ]) ≥ 퐶푅 푅 , 

and combining this with (14), we see that for 
푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 ‖푓‖ , (15) 

to hold, it is necessary that 훼 ≥ 푛 1 − − − . 

By considering 푓 defined by푓 = 휂̂ , we reverse the previous focusing example. Note thatthe 
rapid decay (12) and upper bound (13) remain true for all 푡 ∈ [1/2, 1]. This forces 푒 ∆푓 ≥ 푐on a 
set of measure 푐푅 as otherwise the conservation of charge would be violated. We see that 

푒 ∆푓 (ℝ ×[ , ]) ≥ 퐶푅 , 

and as ‖푓 ‖ , ≤ 퐶푅 푅 , for (15) to hold it is also necessary that 훼 ≥ 푛 + − 1 . 

Finally, we consider initial data 푓 defined by푓 (휉) = 휂̂ 푅 휉 − (푅, . . . ,푅) , where 휆 ≥ 1, so that 

푒 ∆푓 (푥) = 휂̂ 푅 휉 − (푅, . . . ,푅) 푒 · | | 푑 휉. 

One can calculate that 2휋훻 (푥 · 휉 − 2휋푡|휉| ) ≤  in the region defined by 

|푥| ≤
푅

100 , |푡| ≤
1

1000 , and|휉 − (푅, . . . ,푅)| ≤
1
푅 , 

so that the phase is almost constant for each pair (푥, 푡)in the region. Thus, 

푒 ∆푓 (ℝ ×[ , ]) ≥ 퐶푅 푅 , 

and combining this with 

‖푓 ‖ , ≤ 푅 푅 , 
we see that 

훼 ≥ 휆푛
1
푞 −

1
푟 . 

Setting 휆 = 1 and letting 휆 → ∞yield the necessary conditions 훼 ≥ 푛 − and 푞 ≥ 푟, 

respectively. 
In particular, ignoring endpoint issues, one may hope that 

푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 ‖푓‖ ,  

for all 훼 > max 2푛 − , 0, 2푛 − − . 
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As in the arguments of Fefferman [30], Bourgain [2], Wolff [45], Tao [21], and others, we 
decompose the solution of the Schrödinger equation into wave packets at scale 푅 ≫ 1. 
Fix a positive and smooth function 휓, supported in 퐵√ , such that 

휓 휉 − 푅 푣 = 1, 

where 푣 ∈ 푅 ℤ .We also fix a positive and smooth 휂̂, supported in 픹 , that satisfies 휂̂(0) = 1,so 
that, by the Poisson summation formula, 

휂 푥 −
푥
푅 = 1, 

where 푥 ∈ 푅 ℤ . Now for any Schwartz function 푓, we define 푓 and 푓 implicitly in the 
following decomposition: 

푓(휉) = 푓 (휉) = 휓 푅 휉 − 푣 푓(휉),                                           (16) 

푓(푥) = 푓 (푥)
,

= 휂
푥 − 푥
푅 푓 (푥)

,

.                                         (17) 

Note that 푓 is supported in the ball of radius √푛 + 1 푅  with centre 푣 . 
We also partition ℝ into cubes 푄 of side 푅 , centred at 푥 ∈ 푅 ℤ , and define the function 휑  by 

휑 (푥) = 푅 1 +
|푥|
푅 , 

and the operator 퐿  by 
퐿 푓 = 휑 ∗ 휑 ∗ 휑 ∗ |푓|. 

We state a slightly refined version of a lemma which can be found in [21], or more explicitly in 
[35], where we replace the Hardy–Littlewood maximal operator by a convolution operator. It is 
clear from their proofs that this is permissible. 
Lemma (1.2.6)[46]: Let 푡 ∈ [0,푅 ]. Then for all 푁 ∈ ℕthere exists a constant 퐶 such that 

푒 ∆푓 (푥) ≤ 퐶 휑 ∗ 푓 (푥 ) 1 +
푥 − 푥 + 4휋푡푣

푅 . 

We note that when 푡 ∈ [0,푅 ], the wave packets 푒 ∆푓 are essentially supported in the tubes 
푇 defined by 

푇 = (푥, 푡) ∈ ℝ × [0,푅 ]:푥 − 푥 + 4휋푡푣 ≤ 푅 . 
Lemma (1.2.7)[46]: For all 푓frequency supported in 픹 and 휀 > 0, there exists functions 
푓 , 푓 satisfying 

(i) ‖푓 ‖ (ℝ ) ≤ 퐶푅 푓 (ℝ ) 

for all 푝 ≤ 푞, 
(ii) ∑ 푓 (ℝ ) ≤ 퐶푅 ‖푓‖ (ℝ ), 

and for all 푙,푁 ∈ ℕand (푥, 푡) ∈ 푄 × [0,푅 ], 
(iii) 푒 ∆푓(푥) ≤ 푒 ∆푓 (푥) + 퐶 푅 퐿 푓(푥). 
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Proof. We decompose the solution into wave packets, 푒 ∆푓 = ∑ 푒 ∆푓, , at scale 푅 . We recall 
that 

푓 (푥) = 휂
푥 − 푥
푅 푓 (푥), 

and we define 푓 by 

푓 (푥) = |휂| / 푥 − 푥
푅 푓 (푥). 

As 휂decays rapidly and ∑ 휂 푥 − = 1, it is easy to see that 

|휂| / 푥 −
푥
푅 ≤ 퐶, 

so that 

푓

(ℝ )

≤ 퐶 푓
, (ℝ )

≤ 퐶‖푓‖ (ℝ ).                            (18) 

As supp 푓 ⊂ 픹 , we have that the 푣 ’s are contained in a slight enlargement of 픹 . Thus, the tubes 
푇 make angles with the spatial hyperplane which are uniformly bounded below. Letting 
푅 푄 denote the cube of side 푅 with centre 푥 , we write 

푓 = 푓
: ∩ ∅

, 

so that 푒 ∆푓 consists of the wave packets that pass through or near to 푄 × [0,푅 ]. Similarly, we 
define 푓 by 

푓 = 푓
: ∩ ∅

. 

To prove property (i), we note that 

|푓 (푥)| = 휂
푥 − 푥
푅 푓(푥)

: ∩ ∅

 

≤ 퐶 1 +
|푥 − 푥 |
푅

|휂| / 푥 − 푥
푅 푓(푥)

: ∩ ∅

 

= 퐶 1 +
|푥 − 푥 |
푅 푓 (푥)  

for some large 푀 ∈ ℕ, so that, by Hölder, 

‖푓‖ (ℝ ) ≤ 퐶푅 ( ) 푓 (ℝ ). 

To prove property (ii), we note that a cube 푄 can intersect 푅 푄 for at most 2푅 different cubes 푄 , 
so that 

푓 (ℝ ) ≤ 퐶 푓

(ℝ ): ∩ ∅
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              ≤ 퐶푅 푓

(ℝ )

. 

Thus, by (18), we see that 

푓 (ℝ ) ≤ 퐶푅 ‖푓‖ (ℝ ). 

To prove property (iii), we consider the pointwise bound 

푒 ∆푓 ≤ 푒 ∆푓 + 푒 ∆푓
: ∩ ∅

.                                          (19) 

By construction and Lemma (1.2.6), 

푒 ∆푓 (푥)
: ∩ ∅

≤ 퐶 푅
휑 ∗ 푓 (푥 )

|푥 − 푥 |
: | |

 

for all (푥, 푡) ∈ 푄 × [0,푅 ], and all 푁 ∈ ℕ. Choosing an 푁 > (4푛 + 푁)/휀 + 2푛, we have 

푒 ∆푓 (푥)
: ∩ ∅

≤ 퐶 푅
휑 ∗ 푓 (푥 )

|푥 − 푥 |
: | |

 

for all 푁 ∈ ℕ. Now, by (16), 
푓 ≤ 푅 휓(푅 ·) ∗ |푓| ≤ 퐶휑 ∗ |푓|, 

so that 

푒 ∆푓 (푥)
: ∩ ∅

≤ 퐶 푅
휑 ∗ 휑 ∗ |푓|(푥 )

|푥 − 푥 |
: | |

. 

Now, it is easy to see that 
휑 ∗ 휑 ∗ |푓|(푥) ≈ 휑 ∗ 휑 ∗ |푓|(푥 ) 

when |푥 − 푥 | ≤ √푛푅 , so that 
휑 ∗ 휑 ∗ |푓|(푥 )

|푥 − 푥 |
: | |

≤ 퐶휑 ∗ 휑 ∗ 휑 ∗ |푓|(푥 ) 

                                                                 ≤ 퐶휑 ∗ 휑 ∗ 휑 ∗ |푓|(푥) 
for all 푥 ∈ 푄 . Substituting into (19), we have 

푒 ∆푓(푥) ≤ 푒 ∆푓 (푥) + 퐶 푅 휑 ∗ 휑 ∗ 휑 ∗ |푓|(푥) 
for all (푥, 푡) ∈ 푄 × [0,푅 ], and we are done.  
Lemma (1.2.8) [46]: Let 푞 ≥ 푝 ≥ 푝 and 퐼 ⊂ [0,푅 ]. Suppose that 

푒 ∆푓 , ( ) ≤ 퐶푅 ‖푓‖ (ℝ ) 

whenever 푅 ≫ 1, and 푓is frequency supported in 픹 . Then for all 휀 > 0, 

푒 ∆푓 , ( ) ≤ 퐶 푅 ‖푓‖ (ℝ ). 

Proof. By Lemma (1.2.7), for all 휀 > 0, there exists functions 푓 and 푓 such that 
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‖푓 ‖ (ℝ ) ≤ 퐶푅 푓 (ℝ ),                                           (20) 

푓 (ℝ ) ≤ 퐶푅 ‖푓‖ (ℝ ),                                                                    (21) 

and for all 푁, 푙 ∈ ℕ and (푥, 푡) ∈ 푄 × [0,푅 ], 
푒 ∆푓(푥) ≤ 푒 ∆푓 (푥) + 퐶 푅 퐿 푓(푥). 

We use these pointwise bounds on cubes, to obtain an 퐿 ℝ ,퐿 (퐼) bound. We have 

푒 ∆푓 ℝ , ( ) = 푒 ∆푓 , ( )  

≤ 푒 ∆푓 + 퐶 푅 퐿 푓 , ( ) ,       

and using the fact that ‖푔 + ℎ‖ ≤ 2 (‖푔‖ + ‖ℎ‖ ), we see that 

푒 ∆푓 ℝ , ( ) ≤ 퐶 푒 ∆푓 , ( ) + 퐶 푅 ‖퐿 푓‖
, ( )

. 

Now, byYoung’s inequality, 

‖퐿 푓‖
, ( )

≤ 푅 ‖휑 ∗ 휑 ∗ 휑 ∗ |푓|‖ (ℝ ) 

      ≤ 퐶푅 ‖푓‖ (ℝ ), 
so that 

푒 ∆푓 ℝ , ( ) ≤ 퐶 푒 ∆푓 , ( ) + 퐶 푅 ‖푓‖ (ℝ ).          (22) 

By translation invariance and the hypothesis, 
푒 ∆푓 , ( ) ≤ 퐶푅 ‖푓‖ (ℝ ) 

for all 푙 ∈ ℕ, and combining this with (20), 

푒 ∆푓 , ( ) ≤ 퐶푅 푓 (ℝ ).                    (23) 

On the other hand, as supp 푓 ⊂ 픹 and 푝 ≤ 푞, by Bernstein’s inequality, 
‖푓‖ (ℝ ) ≤ 퐶‖푓‖ (ℝ ).                                            (24) 

Substituting (23) and (24) into (22), we see that 

푒 ∆푓 ℝ , ( ) ≤ 퐶푅 푓 (ℝ ) + 퐶 푅 ‖푓‖ (ℝ ) . 

Finally, as 푞 ≥ 푝 , by convexity, 

푓 (ℝ ) ≤ 푓 (ℝ )

/

, 

so that, by (21), we can sum to obtain the required bound.  
 
We denote by퐿 (푞 → 푞)the estimate 

푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶 푓 (ℝ ) 

for all 훼 > 2푛 − − . 
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We denote by푅∗(푝 → 푞)the (adjoint) restriction estimate 
푒 ∆푓 ℝ ≤ 퐶 푓 (ℝ ), 

where 푝 = . It is conjectured that 푅∗(푝 → 푞)holds for all> 2 + , and it has been provenin the 

affirmative by Tao [32] in the range 푞 > 2 + . 
Theorem (1.2.9)[46]: 푅∗(푝 → 푞) ⇒ 퐿푆(푞 → 푞). 
Proof. Suppose first that supp 푓 ⊂ 픹 . Considering (9), we see that 푒 ∆푓can be viewed as the 
convolution of 푓with the Fourier transform of 푒 | | , so that we can also write 

푒 ∆푓(푥) =
1

(4휋푖푡)
푓(푦)푒

| |
푑푦

ℝ

.                                                         (25) 

As in [28], we ‘complete the square’ in (9), and compare the representations, so that 

푒 ∆푓(푥) =
푐 /

푡 / 푒 ∆푓
푐푥
푡 .                                                               (26) 

Making a ‘pseudo-conformal’ change of variables, we have 

푒 ∆푓 × / , ≤ 퐶푅 푒 ∆푓
·
푡 × / ,

 

                                      ≤ 퐶푅
( )

푒 ∆푓 픹 . 

Now, by hypothesis, 
푒 ∆푓 픹 ≤ 퐶‖푓‖ (ℝ ), 

where 푝 =  , so that 

푒 ∆푓 × / , ≤ 퐶푅
( )

‖푓‖ (ℝ ). 

Thus, by Lemma (1. 2. 8) 

푒 ∆푓 ℝ × / , ≤ 퐶푅
( )

‖푓‖ (ℝ ) 

                       = 퐶푅 ‖푓‖ (ℝ ). 
Finally we scale, so that 

푒 ∆푓 ℝ × , ≤ 퐶2 푅 ‖푓‖ (ℝ ) 

whenever supp 푓 ⊂ 퐵 with 푘 ≥ 0. Summing, we see that 

푒 ∆푓 (ℝ ×[ , ]) ≤ 퐶푅 ‖푓‖ (ℝ ) 

whenever supp 푓 ⊂ 퐵 , and the proof is completed with the standard Littlewood–Paley arguments. 
We consider the local bound, 

푒 ∆푓 (픹 , [ , ]) ≤ 퐶 ‖푓‖ (ℝ ),                                                       (27) 

and the global bound, 
푒 ∆푓 (ℝ , [ , ]) ≤ 퐶 ‖푓‖ (ℝ ).                                                      (28) 

Theorem (1.2.10) [46]: Let 푞, 푟 ≥ 2. Then (27) holds for all 푠 > 푠 if and only if (28) holds for all 
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> 2푠 − 푛 − +  . 

Letting 푞 = 2 and 푟 = ∞, we obtain Theorem (1.2.3). Letting 푞 = 푟 = 2, we see the equivalence up 
to endpoints of the conservation of charge and the local smoothing theorem of Sjölin, Vega, and 
Constantin and Saut, mentioned. 
We will need the following lemma due to Lee. 
Lemma (1.2.11)[46]: (See [31].) Let 푞, 푟 ≥ 2. Suppose that 

푒 ∆푓 ( , [ , ]) ≤ 퐶푅 ‖푓‖ (ℝ ), 

whenever 푅 ≫ 1, and 푓is frequency supported in 픸 . Then for all 휀 > 0, 
푒 ∆푓 , , ≤ 퐶 푅 ‖푓‖ (ℝ ). 

By the standard Littlewood–Paley arguments and scaling, to prove Theorem (1.2.10), it will suffice 
to prove the following theorem, where (ii) and (iii) correspond to (27) and (28), respectively. 
Theorem (1.2.12) [46]: Let 푞, 푟 ≥ 2, and consider functions 푓which are frequency supported in 
픸 . Then the following bounds are equivalent: 

(i) 푒 ∆푓 ( , [ , ]) ≤ 퐶푅 ‖푓‖ (ℝ )for all 푅 ≫ 1and 푠 > 푠 , 

(ii) 푒 ∆푓 , , ≤ 퐶푅 ‖푓‖ (ℝ )for all 푅 ≫ 1and 푠 > 푠 , 

(iii) 푒 ∆푓 ℝ , , ≤ 퐶푅 ‖푓‖ (ℝ )for all 푅 ≫ 1and 푠 > 푠 . 

Proof. By changing variables 푅 → 푅 /  in (iii), we see that (ii) and (iii) trivially imply (i). Thus, it 
will suffice to show that (i) implies (ii) and (iii). Now, (i) implies (ii) is precisely the content of 
Lemma (1.2.11). Similarly, by changing variables and letting 푝 = 푝 = 2 and 퐼 = [0,푅 ] in 
Lemma (1.2.8), we see that (i) implies (iii).  
By the local result of Lee [11], mentioned, and Theorem (1.2.10) with 푞and 푟taken to be 2 and ∞, 
respectively, we obtain the following corollary. 
Corollary (1.2.13)[46]: For all 푠 > 3/4, there exists a constant 퐶 such that 

sup 푒 ∆푓
ℝ

≤ 퐶 ‖푓‖ ℝ . 

We note that as (28) cannot hold for any value of 푠when 푞 < 2 (see for example [25]), there can be 
no such equivalence when푞 < 2. Letting 푟 = ∞, we also see that the necessary conditions for (28) 
to hold given in [25], are equivalent to the necessary conditions for (27) to hold given in [40]. 
The generalised Schrödinger equation, 푖휕 푢 + 휙(퐷)푢 = 0, where 휙(퐷)푢 = 휙(휉)푢(휉)and 휙(휉)is 
real, has solution 푒 ( )푓which can be formally written as 

푒 ( )푓(푥) = 푓(휉)푒 · ( )푑휉 . 

In the local case, Kenig, Ponce and Vega [9] showed that if there are at most 푁 ∈ ℕ solutions to 
휙(휉 , . . . , 휉 ,푥, 휉 , . . . , 휉 ) = 푟                                                                    (29) 

for all 휉 ∈ ℝ , 푟 ∈ ℝ, 푘 = 0, . . . ,푛 − 1, and 
|휙(휉)|

|훻휙(휉)| ≤ 퐶(1 + |휉| ) , 

then for 푠 > 푠 , 
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sup 푒 ( )푓
(픹 )

≤ 퐶 ‖푓‖ (ℝ ).                                                        (30) 

In the global case, Cowling [5] showed that if |휙(휉)| ≤ 퐶(1 + |휉| ) , then for 푠 > 푠 , 

sup 푒 ( )푓
(ℝ )

≤ 퐶 ‖푓‖ (ℝ ).                                                   (31) 

In particular, both these results hold for smooth 휙that are homogeneous of degree 푚 ≥ 1. The 
injectivity condition (29) is fulfilled and 

|휙(휉)|
|훻휙(휉)| ≤ 퐶(1 + |휉| ) / , 

so that (30) holds for all 푠 > 1/2. On the other hand |휙(휉)| ≤ 퐶(1 + |휉| ) / , so that (31) holds 
for all 푠 > 푚/2. 

For such 휙, these results are again equivalent. Indeed, for any휙satisfying |퐷 휙(휉)| ≤
퐶 |휉| | |, where |훼| ≤ 2, and |훻휙(휉)| ≥ 퐶 |휉| , there is an equivalence. 

We consider the local bound, 
푒 ( )푓 (픹 , [ , ]) ≤ 퐶 ‖푓‖ (ℝ ),                                                            (32) 

and the global bound, 
푒 ( )푓 (ℝ , [ , ]) ≤ 퐶 ‖푓‖ (ℝ ).                                              (33) 

By scaling, it will suffice to consider 푒 ( )푓defined by 

푒 ( )푓 = 푓(휉)푒 · ( )푑휉 , 

where 휙 = 푅 휙(푅 ·),푓is supported in 픸 and 푡 ∈ [0,푅 ]. It is easy to see that |퐷 휙 (휉)| ≤
퐶 |휉| | |and |훻휙 (휉)| ≥ 퐶 |휉|  for all 푅, so that 훻휙 푣 ≈ 푣 . 
Now, Lemma (1.2.6) generalises to 휙such that |퐷 휙(휉)| ≤ 퐶 |휉| | |for |훼| ≤ 2 (see [35]). The 
2푣 is replaced by훻휙 푣 , and the constants depend only on 퐶 . 
To prove versions of Lemmas (1.2.7) and (1.2.8) with 푒 ( )푓in place of 푒 ∆푓, only the 
numerology changes. The important point is that the tubes make angles with the spatial plane which 
are uniformly bounded away from zero, which we have insured by requiring that |훻휙 (휉)| ≤ 퐶  for 
all 휉 ∈ 픸 . 
Lemma (1.2.11) can be similarly generalised. The important point there is that the tubes make 
angles with the 푡-axis which are uniformly bounded away from zero, which we have insured by 
requiring that |훻휙 (휉)| ≥ 퐶  for all 휉 ∈ 픸 . 
Thus, considering 푓frequency supported in 픸 , and 푞, 푟 ≥ 2, the following bounds are equivalent: 

(i) 푒 ( )푓 ( , [ , ]) ≤ 퐶푅 ‖푓‖ (ℝ )for all 푅 ≫ 1and 푠 > 푠 , 

(ii) 푒 ( )푓 ( , [ , ]) ≤ 퐶푅 ‖푓‖ (ℝ )for all 푅 ≫ 1and 푠 > 푠 , 

(iii) 푒 ( )푓 (ℝ , [ , ]) ≤ 퐶푅 ‖푓‖ (ℝ )for all 푅 ≫ 1and 푠 > 푠 . 

By scaling and the usual arguments of Littlewood and Paley, this yields the following theorem. 
Theorem (1.2.14) [46]: Let 푞, 푟 ≥ 2. Suppose that|퐷 휙(휉)| ≤ 퐶 |휉| | |and |훻휙(휉)| ≥
퐶 |휉| forall 휉 ∈ ℝ \{0}, where |훼| ≤ 2and푚 > 1. Then (32) holds for all 푠 > 푠 if and only if 
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(33) holdsfor all 푠 > 푚푠 − (푚 − 1) 푛 − − . 

A corollary of this and the generalised result of Lee [19], is that Corollary (1.2.13) also holds for the 
generalised Schrödinger equation; where |퐷 휙(휉)| ≤ 퐶|휉| | |and |훻휙(휉)| ≥ 퐶 |휉|, and the 
Hessian of 휙has two nonzero eigenvalues of the same sign. 
For completeness, we note that when 푚 ≤ 1, we no longer need Lemma (1.2.11), so that we have 
the following theorem. 
 
Theorem (1.2.15) [46]: Let 푞 ≥ 2and suppose that |퐷 휙(휉)| ≤ 퐶 |휉| | |for all 휉 ∈ ℝ \{0}, 
where |훼| ≤ 2and 푚 ≤ 1. Then (32) holds for all 푠 > 푠 if and only if (33) holds for all 푠 > 푠 . 
In particular, we consider 휙(휉) = (2휋|휉|) so that 휙(퐷) = (−∆) /  with 푚 ∈ (0, 1). The 
conditions of Theorem (1.2.15) are fulfilled, and we see that global bounds are equivalent to local 
bounds. 
We consider the nonelliptic Schrödinger equation; where 휙is defined by 휙(휉) = −4휋 (휉 − 휉 ±
휉 ±· · · ±휉 ), and 

휙(퐷) == 휕 − 휕 ± 휕 ±· · · ±휕 . 
Note that the conditions of Theorem (1.2.14) are fulfilled with 푚 = 2. Vargas, Vega and the author 
[14] showed that, in this case, the bound of Kenig, Ponce and Vega is almost sharp, in the sense that 

sup 푒 □푓
(픹 )

≤ 퐶 ‖푓‖ (ℝ ) 

does not hold when 푠 < 1/2. 
Therefore, by Theorem (1.2.14), we see that the bound of Cowling is similarly sharp, and we state 
this as a corollary. 
Corollary (1.2.16) [46]: For all 푠 > 1, there exists a constant 퐶 such that 

sup 푒 □푓
(ℝ )

≤ 퐶 ‖푓‖ (ℝ ), 

and this is not true when 푠 < 1. 
Theorem (1.2.9) also generalises to the nonelliptic case, so the well-known Stein–Tomas–Strichartz 
estimate yields an almost sharp local smoothing estimate in the range 푞 ≥ 2 + 4/푛. In two spatial 
dimensions, by a restriction theorem independently due to Vargas [43] and Lee [35], we have the 
result in the range 푞 ≥ 10/3. 
Corollary (1.2.17) [210]. Let n = 1. If ϵ ≥ 0 and 4ϵ + 15ϵ ≥ 0, then (4) holds. If ϵ > 0and  

+ ϵ ≥ max{1/(2 + ϵ),1/2− 1/(2 + ϵ)}, then (3) holds. 

Proof. By duality, it will suffice to show that      

e ( )∆f(x)w(x)dx ≤ C( )‖f‖
( )
‖w‖ ( )′( )

 

for all positive w ∈ L( )′(R), where the measurable function t maps into R when we are 

considering the bound (4) and into (0,1) when we consider (3). 
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By Fubini’s theorem and the Cauchy–Schwarz inequality, the left hand side of this inequality is 

bounded by 

f(ξ) (1 + |ξ|) ( )dξ e ( ) w(x)dx
dξ

(1 + |ξ|) ( )
. 

Thus, by writing the squared integral as a double integral, it will suffice to show that 

e ( ) ( ∈) w(x)w(x − ϵ)dxd(x− ϵ)
dξ

(1 + |ξ|) ( )
≤ C ‖w‖ ( )′( )

.    (5) 

By Lemma 1, we have 

e  ( ) ( )

(1 + |ξ|) ( )
dξ ≤

C
|ϵ|  

when(1 − ϵ) takes values in R, and − ≤ ϵ < 0, and by Lemmas 1 and 2, we have  

e  ( ) ( )

(1 + |ξ|) ( )
dξ ≤

C
|ϵ| ( ), ( )

 

when(ϵ) takes values in0 < 휖 < 1 Thus, by Fubini’s theorem, the left hand side of (5) is bounded 

by a constant multiple of 

w(x)w(x − ϵ)

|ϵ| ( )
dxd(x − ϵ) 

in the first case, and  

w(x)w(x − ϵ)
|ϵ| {( ), } dxd(x − ϵ) 

In the second. Finally, by Hölder’s inequality and the Hardy–Littlewood–Sobolev inequality, these 

are bounded by 

‖w‖ ( )′( )

w(x)
|x −∙| dx

( )( )

≤ C( )‖w‖ ( )′( )
, 

Where ϵ + 2ϵ+ 1 = 0 and ϵ ≥ 2 when we are considering the bound in (4), and 

‖w‖ ( )′( )

w(x)

|x −∙| ( ) ( )
dx

( )( )

≤ C( )‖w‖ ( )′( )
, 

Where + ϵ = max{1/(2 + ϵ),1/2− 1/(2 + ϵ)} and (2+∈) > 2 when we consider (3). 
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in [21] due to Tao and Vargas, the following result is proved using bilinear restriction estimates. 
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Chapter 2 
Strichartz Estimates and Singular Continuous Spectrum 

We consider the Schrödinger operatore ∆ acting on initial datafin H .We show that an affirmative 
answer to a question of Carleson, concerning the sharp range of s forwhichlim

→
e ∆  f(x) =

f(x) a. e. x ∈ R ,would imply an affirmativeanswer to a question of Planchon, concerning the sharp 
range of q and r for whiche ∆ is bounded in L (R , L (R). We have shown that every kind of 
absolutely continuous spectrum within a gap 퐽 of H can be generated by a self-adjoint extension퐻~ 
of퐻, cf. [61. 
 
Section (2.1): The Schrödinger Maximal Operator 
The Schrödinger equation, 푖휕 푢 + ∆푢 = 0, in ℝ , with initial datum 푓in the Sobolev space 
퐻̇ (ℝ ), has solution 푒 ∆푓which can be formally written as 

푒 ∆푓(푥) = 푓(휉)푒 ∙ | | 푑휉
ℝ

.                                   (1) 

We define the dimensional or scaling relation 푠(푞, 푟)by 

푠(푞, 푟) = 푛
1
2−

1
푞 −

2
푟 . 

Stein [55], Tomas [58], Strichartz [56], Ginibre and Velo [47], and Keel and Tao [49] have all 
played a role in proving the following theorem. 
Theorem (2.1.1)[ 59 ]: [49] Let 푞 ∈ [2,∞), 푟 ∈ [2,∞]and + ≤ . Then 

푒 ∆푓 ℝ, (ℝ ) ≤ 퐶‖푓‖ ̇ ( , )(ℝ ). 

The theorem is sharp in the sense that it is not true when 푞 < 2, 푟 < 2, or + > .When 푞 = ∞, 

the estimate holds only occasionally (see [51,19]). 
Changing the order of the integrals, the problem is more difficult. We will ignore the subtle 
endpoint questions. In connection with his work on the cubic semilinear Schrödinger equation, 
Planchon [52] asked whether the following is true: 

Conjecture(2.1.2) [59] Let 푞 ∈ ( ) ,∞ , 푟 ∈ [2,∞)and + < . Then 

푒 ∆푓 (ℝ , (ℝ)) ≤ 퐶‖푓‖ ̇ ( , )(ℝ ). 

In one spatial dimension, this had already been proven in the affirmative, including the endpoints, 
by Kenig, Ponce and Vega [9, 23]. 
In higher dimensions, arguments originally due to Tao and Vargas [22] which were then refined by 
Planchon [52] (see also [25]), can be combined with Tao’s bilinear restriction estimate [21] to yield 

the conjecture in the range 푞 > ( ). When 푞 > 푟, the endpoints can be included, and the key 
bound follows from the original Stein–Tomas theorem (see [48,52,23]). Note that 푠(푞, 푟)can be 
negative in this range. 
We will prove that the conjecture would follow from a positive resolution of a question of Carleson 
concerning the sharp range of 푠for which 
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lim
→
푒 ∆푓(푥) = 푓(푥),    a.e. 푥 ∈ ℝ ,      푓 ∈ 퐻 (ℝ ). 

By standard arguments, the convergence follows from the estimate 

sup 푒 ∆푓
(픹 )

≤ 퐶 ‖푓‖ (ℝ ),                                               (A) 

where 픹 is the unit ball in ℝ . If we restrict time to a sequence, then the convergence and a 
nonendpoint version of the maximal estimate are equivalent (see [54]). 
Conjecture (2.1.3) [59] (A) holds for all 푠 > 1/4. 
In one spatial dimension, the convergence was originally proven by Carleson [4] via an 퐿 -estimate, 
and Kenig and Ruiz [10] showed that (A) holds for all 푠 ≥ 1/4. Dahlberg and Kenig [6] showed 
that this is sharp in the sense that (A) cannot hold when푠 < 1/4. 
In two spatial dimensions, significant contributions were made by Bourgain [1,2], Moyua et al. [12, 
13], and Tao and Vargas [21 - 22]. The best known result is due to Lee [11] who showed that (A) 
holds when 푠 > 3/8. 
In higher dimensions, significant contributions were made by Carbery [3] and Cowling [5]. The best 
known result is independently due to Sjölin [15] and Vega [24] who showed that (A) holds when 
푠 > 1/2. 
We rewrite estimate (A) as 

sup 푒 ∆푓
(픹 )

≤ 퐶‖푓‖ / (ℝ ),                                          (퐴 ) 

where 휅 ≥ 0, and define the dual exponents 푞 and 푞 by 

푞 =
푛 + 1 + 8휅
푛 + 4휅 and푞 =

푛 + 1 + 8휅
1 + 4휅 . 

 
Theorem (2.1.4) [59] Let 푞 ∈ (2푞 ,∞], 푟 ∈ (2푞 ,∞)and + + < . If (퐴 ) holds,then 

푒 ∆푓 (ℝ , (ℝ)) ≤ 퐶‖푓‖ ̇ ( , )(ℝ ). 

Note that 2푞 and both tend to ( )as 휅tends to zero. Comparing with Conjecture (2.1.2), we see 

that (푞, 푟)can approach the endpoint ( ) ,∞ ; 

Corollary (2.1.5)[59]: Conjecture(2.1.3)⇒ Conjecture (2.1.3). 
Combining the identity퐷 푒 ∆푓 = 푒 ∆퐷 푓with Sobolev embedding, Theorem (2.1.1) also yields 
estimates for the maximal operator. Indeed, applying Hölder to obtain local퐿 -bounds, we see that 

(퐴 ) ⇒    (퐴 ), 휅 > 푛
1
2−

1
2푞 −

1
4 . 

There is an improvement in regularity when휅 > (푛 − 1)/8. Taking 푛 = 2 and iterating, we can 
suppress 휅to be arbitrarily close to 1/8, which recovers Lee’s result. 
We see that a global version holds; 
Corollary (2.1.6)[59]: Let 푞 > 16/5. Then for all 푠 > 1 − 2/푞, 

sup
∈ℝ

푒 ∆푓
ℝ

≤ 퐶 ‖푓‖ ℝ . 

Taking more care with the range of 푟, we will also improve Planchon’s estimate. 
Theorem (2.1.7)[59]: Let 푛 = 2. Then Conjecture 1 is true for 푞 > 16/5. 
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To illustrate, this is a nonendpoint version of 
푒 ∆푓 / ℝ , (ℝ) ≤ 퐶‖푓‖ ̇ / ℝ . 

We follow the approach of Lee in that we adapt the proof of Tao’s bilinear theorem [21], rather than 
applying the estimate directly. 
Throughout, 푐and 퐶will denote positive constants that may depend on the dimensions and 
exponents of the Lebesgue spaces. The constants 퐶will sometimes depend on the small parameters 
휀, 훿and 훽, but never on the functions 푓or 푔, and never on the large parameters 푅or 푁. It will 
occasionally be made explicit when they depend on other factors like the Sobolev index. Their 
values may change from line to line. The following are notations that will be used frequently: 
 

퐿 ℝ ,퐿 (퐼) : the Lebesgue space with norms ∫ ∫ |푓(푥, 푡)| 푑푡
/
푑푥ℝ

/

 

퐷 : the derivative defined by퐷 푔(휉) = (2휋|휉|) 푔(휉) 
퐻̇ (ℝ ): the homogeneous Sobolev space with 푠derivatives in 퐿 (ℝ ) 
퐻 (ℝ ): the inhomogeneous Sobolev space with 푠derivatives in 퐿 (ℝ ) 
픹 ≔ {푥 ∈ ℝ : |푥| ≤ 1} 
퐵 (푁푒 ) ≔ {휉 ∈ ℝ : |휉 − 푁푒 | ≤ 1} 
휉 : a member of the lattice 푅 / ℤ  
푥 : a member of the lattice 푅 / ℤ  
푇 ≔ (푥, 푡) ∈ ℝ × [0,푅] ∶ 푥 − 푥 + 4휋푡휉 ≤ 푅 / . 
푄 ≔ [−푅/4,푅/4] × . . .× [−푅/4,푅/4] 
푃 (푙) ≔ {(푥, 푡) ∈ ℝ × [푅/2,푅] ∶ 푥 − (푙푅/2 + 4휋푡푁)푒 ∈ 푄 } 
푠(푞, 푟) ≔ 푛(1/2− 1/푞)− 2/푟 

푞 ≔
푛 + 1 + 8휅
푛 + 4휅  

휓: a positive and smooth function, supported in 퐵√ . 
휂̂: a positive and smooth function, supported in 픹 , and equal to 1 at the origin. 
The following lemma provides convenient estimates with which we will interpolate. 
Lemma (2.1.8)[59]: For all 푁 ≫ 1, 푟 ≥ 2, and 푓 frequency supported in 퐵 (푁푒 ), 

푒 ∆푓 ℝ , (ℝ) ≤ 퐶푁 / ‖푓‖ (ℝ ). 

 
Proof.We suppose that 푛 ≥ 2; the 1-dimensional case was proven in [9]. By interpolation with the 
trivial 퐿 -estimate, we may also take 푟 = 2. By writing the square as a double integral, 

푒 ∆푓(푥)
(ℝ) = 푓(휉)푓(푦)푒 ∙( ) | | | | 푑휉푑푦푑푡

ℝℝℝ

, 

so that, by an application of Fubini, and integrating in 푡, 

푒 ∆푓(푥)
(ℝ) ≤

푓(휉)푓(푦)
||휉| − |푦| |푑휉푑푦

ℝℝ

. 

Writing |휉| − |푦| = (휉 + 푦) ∙ (휉 − 푦), and recalling that 푦, 휉 ∈ 퐵 (푁푒 ), we see that 
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푓(휉)푓(푦)
||휉| − |푦| | 푑휉푑푦

ℝℝ

≤
퐶
푁

푓(휉)푓(푦)
|휉 − 푦| 푑휉푑푦

ℝℝ

. 

Thus, by the Hardy–Littlewood–Sobolev inequality, 

푒 ∆푓(푥)
(ℝ) ≤ 퐶푁 푓

(ℝ )
, 

and, as supp 푓 ⊂ 퐵 (푁푒 ), by Hölder and Plancherel we complete the proof. 
As in the arguments of Fefferman [30], Bourgain [26], Wolff [45], Tao [21], and Lee [11], we 
decompose into wave-packets at scale 푅 ≫ 1. 
Fix a positive and smooth function 휓, supported in 퐵√ , such that 

휓 휉 − 푅 / 휉 = 1, 

where 휉 ∈ 푅 / ℤ . We also fix a positive and smooth function 휂̂, supported in 픹 and equal to 
one at the origin, so that by the Poisson summation formula, 

휂 푥 −
푥
푅 / = 1, 

where 푥 ∈ 푅 / ℤ . Now, for any Schwartz function 푓we have the decompositions 

푓(휉) = 푓 (휉) = 휓 푅 / 휉 − 휉 푓(휉),                             (2) 

푓(푥) = 푓 (푥)
,

= 휂
푥 − 푥
푅 / 푓 (푥)

,

.                                      (3) 

Note that 푓 is supported in the ball of radius √푛 + 1 푅 /  with centre 휉 . 
We recall the Hardy–Littlewood maximal operator 푀 ∶ 퐿 (ℝ ) → 퐿 (ℝ ) defined by 

푀푓(푥) = sup
1

|퐵 | |푓(푦 − 푥)|푑푦 . 

For a proof of the following lemma see [21] or [35]. 
Lemma (2.1.9)[59]: Let 푡 ∈ [−푅,푅]. Then for all 퐾 ∈ ℕthere exist constants 퐶 , such that 

푒 ∆푓 (푥) ≤ 퐶 푀푓 (푥 ) 1 +
|푥 − 푥 + 4휋푡휉

푅 / . 

We note that when 푡 ∈ [0,푅], the wave-packets 푒 ∆푓 are essentially supported in the tubes 푇 with 
direction 4휋휉 , 1 defined by 

푇 = (푥, 푡) ∈ ℝ × [0,푅] ∶ 푥 − 푥 + 4휋푡휉 ≤ 푅 / . 
We see that a translation of the frequency support of the data corresponds to an affine translation of 
the essential supports of the wave-packets. 
Similarly, for 푙 ∈ ℤ, we define parallelepipeds 푃 (푙)by 

푃 (푙) = {(푥, 푡) ∈ ℝ × [푅/2,푅] ∶ 푥 − (푙푅/2 + 4휋푡푁)푒 ∈ 푄 }, 
where 푄 is the 푛-dimensional cube of side 푅/2, centred at the origin. Note that when 휉 ∈
퐵 (푁푒 ), the tubes and parallelepipeds point approximately in the same direction. 
Definition (2.1.10)[59]: We say that 퐸  and 퐸  are 1-separated if they are measurable sets that 
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satisfy 
inf{|휉 − 휉 | ∶ 휉 ∈ 퐸 , 휉 ∈ 퐸 } ≥ 1/2. 

The following lemma is a key ingredient. It allows us to deduce estimates on balls from estimates 
restricted to parallelepipeds. We will see later that parallelepipeds are the natural domain on which 
to attack the problem. 
Lemma (2.1.11)[59]: Let 푟 ≥ 푞 and 훼 ≥ − . Suppose that 

푒 ∆푓푒 ∆푔 ( ) ≤ 퐶푅 푁 ‖푓‖ ‖푔‖  

whenever 푅,푁 ≫ 1, and 푓,푔 are supported on 1-separated subsets of 퐵 (푁푒 ). Then 
푒 ∆푓푒 ∆푔 ( , [ / , ]) ≤ 퐶푅 푁 ‖푓‖ ‖푔‖ . 

 
Proof.We decompose the solution into wave-packets at scale 푅, 

푒 ∆푓 = 푒 ∆푓
,

. 

Letting 푃 denote the short, fat tubes defined by 
푃 = {(푥, 푡) ∈ ℝ × [푅/2,푅] ∶ |푥 − (푙푅/2 + 4휋푡푁)푒 | ≤ 50푅}, 

where 푙 ∈ ℤ, we write 

푓 = 푓
, ∶ ∩ ∅

, 

so that 푒 ∆푓 consists of the wave-packets that pass near to 푃 (푙). As the tubes and the 
parallelepipeds point in essentially the same direction, a tube 푇 can intersect 푃  for at most a 
constant number of 푙, so we note for later that 

‖푓‖ (ℝ ) ≤ 퐶 푓
(ℝ )

, ∶ ∩ ∅

 

     ≤ 퐶 푓
(ℝ )

,

 

≤ 퐶‖푓‖ (ℝ ), 
and we will refer to this as almost orthogonality. 

We consider the pointwise bound 

푒 ∆푓 ≤ 푒 ∆푓 + 푒 ∆푓
, ∶ ∩ ∅

,                                  (4) 

and use the rapid decay to show that the last term is of negligible size on 푃 (푙). 
Writing 푥 = 푥 − 4휋푡푁푒 , we have 푥 − 푥 + 4휋푡휉 ≈ |푥 − 푥 |whenever (푥, 푡) ∈ 푃 (푙)and 
푇 ∩ 푃 = ∅, so by Lemma (2.1.9), 

푒 ∆푓 (푥)
, ∶ ∩ ∅

≤ 퐶 푅 / 푀푓 (푥 )
|푥̅ − 푥 |

∶| ̅ |

/

 

for all 퐾 ∈ ℕ. Choosing 퐾 sufficiently large, we see that for all 퐾 ∈ ℕ, 
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푒 ∆푓 (푥)
, ∶ ∩ ∅

≤ 퐶 푅
푀푓 (푥 )

|푥̅ − 푥 |
∶| ̅ |

/

.                (5) 

Writing 휓 = 푅 / 휓 푅 / ∙ , by (2) we have 
푓 = |휓 ∗ 푓|,                                                         (6) 

so that 푀푓 (푥 ) ≈ 푀푓 (푥 )whenever |푥 − 푥 | ≤ √푛푅 / . Now observe that 

푀푓 (푥 )
|푥̅ − 푥 |

∶| ̅ |

≤ 퐶푅 / 1 +
|∙|
푅 / ∗ 푀푓 (푥̅) 

≤ 퐶푀푀푓 (푥̅),                                                            (7) 
so the error term is not only going to be small, but also square integrable. Substituting (6) and (7) 
into (5), 

푒 ∆푓 (푥)
, ∶ ∩ ∅

≤ 퐶 푅 푀푀[휓 ∗ 푓](푥), 

and substituting this into (4), we see that for all 퐾 ∈ ℕ there exist 퐶 such that 
푒 ∆푓(푥) ≤ 푒 ∆푓 (푥) + 퐶 푅 푀푀[휓 ∗ 푓](푥 − 4휋푡푁푒 ) 

whenever (푥, 푡) ∈ 푃 (푙). 
We use these pointwise bounds on parallelepipeds, to obtain an 퐿 (푄 , 퐿 [푅/2,푅])bound. Fix a 
large 퐾and define 퐿푓(푥, 푡) ≔ 푅 푀푀[휓 ∗ 푓](푥 − 4휋푡푁푒 ). We also write 푃 (푙): = 푄 ×
[푅/2,푅] ∩ 푃 (푙), so that by concavity 
푒 ∆푓푒 ∆푔 ( , [ / , ]) 

≤ 푒 ∆푓푒 ∆푔 ( )  

            ≤ 퐶 푒 ∆푓 + 퐿푓 푒 ∆푔 + 퐿푔 ( )  

≤ 퐶 푒 ∆푓 푒 ∆푔 ( ) + 퐿푓푒 ∆푔 ( )  

+ 푒 ∆푓퐿푔 ( ) + ‖퐿푓 퐿푔‖ ( ) .                           (8) 

Now, by two applications of Hölder, 

‖퐿푓‖
×[ / , ]∩ ( )

≤ 퐶푅 ‖퐿푓‖ ( )  

≤ 퐶푅 푁 ‖퐿푓‖ ( )  

By summing up, applying Fubini and making an affine change of variables, 

‖퐿푓‖ ( ) ≤ 퐶푅 ‖푀푀[휓 ∗ 푓]‖ (ℝ ) 

                  ≤ 퐶푅 ‖푓‖ (ℝ ), 
where the second inequality is by the Hardy–Littlewood maximal theorem and Young’s inequality. 
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As 푓is supported in 퐵 (푁푒 ), together with Bernstein’s inequality, these estimates yield 

‖퐿푓‖ ( ) ≤ 퐶푅 푁 ‖푓‖ (ℝ ). 

We have the same inequality for 푔, so that, by two applications of Cauchy–Schwarz, 

‖퐿푓 퐿푔‖ ( ) ≤ 퐶푅 푁 ‖푓‖ ‖푔‖ . 

On the other hand, by Hölder and Lemma (2.1.8), 

푒 ∆푓 ( ) ≤ 퐶푅 푒 ∆푓 ℝ  

                      ≤ 퐶푅 푁 ‖푓‖ . 
Thus, by two applications of Cauchy–Schwarz, 

푒 ∆푓퐿푔 ( ) ≤ 퐶푅 푁 푒 ∆푓 ( )
‖ ‖

/

 

                                 ≤ 퐶푅 푁 ‖푓 ‖
/

‖푔‖  

              ≤ 퐶푅 푁 ‖푓‖ ‖푔‖ , 
where in the third inequality we have used convexity and the almost orthogonality derived earlier. 
Similarly, we have 

퐿푓푒 ∆푔 ( ) ≤ 퐶푅 푁 ‖푓‖ ‖푔‖ . 

Finally, by spatial translation invariance and the hypothesis, 
푒 ∆푓푒 ∆푔 ( ) ≤ 퐶푅 푁 ‖푓‖ ‖푔 ‖ , 

so that, by Cauchy–Schwarz, 

푒 ∆푓푒 ∆푔 ( ) ≤ 퐶푅 푁 ‖푓 ‖
/

‖푔 ‖
/

 

            ≤ 퐶푅 푁 ‖푓‖ ‖푔‖ , 
again using convexity and the almost orthogonality. 

Comparing the terms in (8), we see that 
푒 ∆푓푒 ∆푔 ( , [ / , ]) ≤ 푅 푁 ‖푓‖ ‖푔‖ , 

and we are done. 
The following mixed norm ‘epsilon removal’ lemma is due to Lee and Vargas [50] (see also [2,57]). 
In their work, the spatial integral is evaluated before the temporal integral and as such the estimates 
are invariant under translation on the frequency side. A careful reading of the proof reveals that only 
small changes are required to reverse the order. 
Lemma (2.1.12)[59]: Suppose that for all 휀 > 0and 훼 > − , 

푒 ∆푓푒 ∆푔 , [ / , ] ≤ 퐶 , 푅 푁 ‖푓‖ ‖푔‖  

whenever 푅,푁 ≫ 1, and 푓,푔 are supported on 1-separated subsets of 퐵 (푁푒 ). Then provided that 
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> , 푞 1− > 푞 1− , and 훼 > − , 

푒 ∆푓푒 ∆푔 ℝ ≤ 퐶 , , 푁 ‖푓‖ ‖푔‖ . 

 
Proof.The proof is the same as that of Lemma 4.4 and Remark 4.5 in [50], with the following 
changes: 
The measures 푑휎 are replaced by the canonical pull-back measure on 

{(휉,−2휋|휉| ) ∈ ℝ : 휉 ∈ 퐵 (푁푒 )} 
which we denote by푑휎 . By a well-known calculation, 

푑휎 (푥, 푡) = 푒 ∆ 휒 (푁푒 )
∨

(푥) ≤ 퐶(1 + |푥 − 4휋푡푁푒 | + |푡|) /  

                                                             ≤ 퐶푁 / (1 + |푥| + |푡|) / . 
We replace the estimate 

푒 ∆푓푒 ∆푔 ( ) ≤ 퐶 푅 ‖푓‖ ‖푔‖  

for all 푛 + 1 dimensional cubes 푄of side length 푅/2, by 
푒 ∆푓푒 ∆푔 ( ) ≤ 퐶 , 푅 푁 ‖푓‖ ‖푔‖ (9) 

for all 훼 > − , which follows from the hypothesis and translation invariance. The estimate 

푒 ∆푓푒 ∆푔 ℝ ≤ ‖푓‖ ‖푔‖ , 

is replaced with 
푒 ∆푓푒 ∆푔 ℝ ≤ 퐶푁 ‖푓‖ (ℝ )‖푔‖ (ℝ ) 

= 퐶푁 ‖푓‖ ‖푔‖ ,                                  (10) 
Which follows by Cauchy-Schwarz from Lemma (2.1.8). The third interpolation point is unchanged 

푒 ∆푓푒 ∆푔 ℝ ≤ 퐶‖푓‖ ‖푔‖  

= 퐶푁 ‖푓‖ ‖푔‖ .                    (11) 
Interpolating between (9), (10), and (11), we note that 

훼 ≔ 휃훼 + (1 − 휃)훼  

                                  ≥ 휃
1
푞 −

1
푟 + (1 − 휃)

1
푞 −

1
푟  

                              =
휃
푞 +

1 − 휃
푞 −

휃
푟 +

1− 휃
푟  

=:
1
푞 −

1
푟 , 

so that the powers of 푁behave as desired. 
We will require a version of the previous lemma for dealing with nonsharp powers of 푁. Note that 
the interpolation points with 푞 = ∞of the previous proof are 훼-improving so that the following 
lemma follows in the same way. 
Lemma (2.1.13)[59]: Suppose that for some 훼 > 0and for all 휀 > 0, 

푒 ∆푓푒 ∆푔 , [ / , ] ≤ 퐶 푅 푁 ‖푓‖ ‖푔‖  

whenever푅,푁 ≫ 1, and푓,푔are supported on1-separated subsets of퐵 (푁푒 ). Then provided that >
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,푞 1 − > 푞 1− , and 훼 > 훼 , 

푒 ∆푓푒 ∆푔 ℝ ≤ 퐶 , , 푁 ‖푓‖ ‖푔‖ . 

By the globalizing lemmas, it will suffice to prove local estimates. 
 Definition (2.1.14)[59]: Let 푅∗(2 × 2 → 푞, 푟,훼,훽)denote the estimate 

푒 ∆푓푒 ∆푔 ( ) ≤ 퐶푅 푁 ‖푓‖ ‖푔‖  

whenever 푅,푁 ≫ 1,푓,푔are supported on 1-separated subsets of 퐵 (푁푒 ), and 푃 is a parallelepiped 
of side 푅/2 and direction (4휋푁푒 , 1). 
Recall the notional estimate 

sup 푒 ∆푓
(픹 )

≤ 퐶‖푓‖ / ,                                   (퐴 ) 

and the dual exponents 푞 and 푞 defined by 

푞 =
푛 + 1 + 8휅
푛 + 4휅 and푞 =

푛 + 1 + 8휅
1 + 4휅 . 

Theorem (2.1.15)[59]: Suppose that(퐴 )holds. Then for all푞 > 푞 , 푟 > 푞 and훼 > − , 

푒 ∆푓푒 ∆푔 ℝ , (ℝ) ≤ 퐶 푁 ‖푓‖ ‖푔‖  

whenever푁 ≫ 1, and푓,푔are supported on 1-separated subsets of퐵 (푁푒 ). 
Proof.As 푓is frequency supported in 퐵 (푁푒 ), it is easy to calculate that the temporal Fourier 
transform of 푒 ∆푓is supported in an interval of length 퐶푁. Similarly this is true for 푒 ∆푓푒 ∆푔, so 
that by Bernstein’s inequality, 

푒 ∆푓푒 ∆푔 (ℝ) ≤ 퐶푁 푒 ∆푓푒 ∆푔 (ℝ). 

Thus, by Lemmas (2.1.11) and (2.1.13), it will be enough to show that 

푒 ∆푓푒 ∆푔
( )

≤ 퐶 푅 푁 ‖푓‖ ‖푔‖                         (12) 

whenever 푅 ≫ 1,훽 > 0, and 푃 is of side 푅/2 and direction (4휋푁푒 , 1). 
We proceed by induction on scales. As 푃 is contained in a cuboid, with long side 4휋푅푁, and short 
side 푅, by Hölder, 

푒 ∆푓푒 ∆푔
( )

≤ 퐶(푅 푁) 푒 ∆푓푒 ∆푔
ℝ

 

                  ≤ 퐶(푅 푁) ‖푓‖ ‖푔‖ , 
where the second inequality is by Cauchy–Schwarz, Fubini, and the linear Strichartz estimates of 
Theorem (2.1.11). Thus we have 푅∗(2 × 2 → 푞 ,푞 , (푛 − 1)/푞 ,훽)for some large 훽. In fact we 
have a better power of 훼here than the (푛 − 1)/푞 that we get in the induction step. From now on we 
denote (푛 − 1)/푞 by훼 . It will suffice to prove 

푅∗(2 × 2 → 푞 , 푞 ,훼 ,훽) ⇒ 푅∗(2 × 2 → 푞 ,푞 ,훼 , max{(1 − 훿)훽, 푐훿} + 휀) 
for all 훿and휀 > 0, where 푐is independent of 훿and 휀, as (12)would follow by iteration. 
First we consider the problem when the frequency supports are close to the origin. We define 푓and 
푔by 

푓 = 푓(휉 − 푁푒 )and푔 = 푔(휉 − 푁푒 ), 
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and we break up the solutions into wave-packets at scale 푅, so that 

푒 ∆푓 = 푒 ∆푓
,

and푒 ∆푔 = 푒 ∆푔
,

. 

Recall that the wave-packets 푒 ∆푓 are essentially supported on tubes 푇 , and we denote the tubes 
associated to 푒 ∆푔 by푇 .We also cover the cube 푄 × [푅/2,푅] by cubes 푃 ∈ 풫of side 푅 . The 
following orthogonality lemma is the key ingredient of Tao’s bilinear restriction theorem. 
Lemma (2.1.16)[59]: [21] There exists a relationship ∼between tubes 푇  and cubes 푃 such that, 
for all tubes 푇 , 

#           푃 ∈ 풫:푇 ∼ 푃 ≤ 퐶푅 ,                                                         (13) 
and for a constant c independent of훿and휀, 

푒 ∆푓
∼

푒 ∆푔
≁

( )

≤ 퐶푅 ‖푓‖ ‖푔‖ , 

and 

푒 ∆푓
≁

푒 ∆푔
≁

( )

≤ 퐶푅 ‖푓‖ ‖푔‖ . 

see [21] for the precise definition of the relation ∼. It can be thought of as saying that the wave-
packets are concentrated on the cubes. 
As a translation of the frequency supports corresponds to an affine translation of the spatial support, 
returning to the original problem, we can suppose that 푃 is the affine translation of 푄 × [푅/
2,푅]under the mapping 푥 → 푥 + 4휋푡푁푒 . We cover this by parallelepipeds 푃 ∈ 풫that correspond 
to the cubes 푃under the same affine translation. Similarly we break up the solutions into wave-
packets with associated tubes 푇 and 푇 , that correspond to 푇 and 푇 under the affine translation. 
Thus, we have the induced relation 푇 ∼ 푃if 푇 ∼ 푃. 
As we have covered 푃 by smaller parallelepipeds 푃, by the triangle inequality, it will suffice to 
show 

푒 ∆푓 푒 ∆푔

( )
∈풫

≤ 퐶 푅 {( ) , } 푁 ‖푓‖ ‖푔‖ . 

By the triangle inequality again, it will suffice to bound the ‘local’ part, 

푒 ∆푓
~

푒 ∆푔
~

( )
∈풫

 

and the ‘global’ parts, 

푒 ∆푓
~

푒 ∆푔
≁

( )
∈풫

, 
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푒 ∆푓
≁

푒 ∆푔
~

( )
∈풫

, 

푒 ∆푓
≁

푒 ∆푔
≁

( )
∈풫

. 

To bound the local part, we simply invoke the induction hypothesis; 

푒 ∆푓
~

푒 ∆푔
≁

( )
∈풫

 

≤ 퐶푅( ) 푁 푓
~

푔
≁∈풫

 

                                ≤ 퐶푅( ) 푁 푓
~∈풫

/

푔
≁∈풫

/

 

≤ 퐶푅( ) 푁 ‖푓‖ ‖푔‖ , 
where the second inequality is by Cauchy–Schwarz, and the third by (13) and almost orthogonality. 
This bound is acceptable. 
Considering the first global part, by Fubini and the affine change of variables 푥 → 푥 + 4휋푡푁푒 , 
followed by Lemma (2.1.16), we have 

푒 ∆푓
~

푒 ∆푔
≁

( )

≤ 퐶푅 ‖푓‖ ‖푔‖ .         (14) 

On the other hand, by scaling and the hypothesis, 

푒 ∆푓
~ ( )

≤ 퐶(푅푁 ) / 푓
~

 

                                   ≤ 퐶(푅푁 ) / ‖푓‖ . 
Similarly 

푒 ∆푔
≁ ( )

≤  퐶(푅푁 ) / ‖푔‖ , 

so that by Cauchy–Schwarz, 

푒 ∆푓
~

푒 ∆푔
≁

( )

≤ 퐶(푅푁 ) / ‖푓‖ ‖푔‖ .                   (15) 

Interpolating between (14) and (15), using Hölder, gives 
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푒 ∆푓
~

푒 ∆푔
≁

( )

≤ 퐶푅 푁 ‖푓‖ ‖푔‖ , 

so that, by summing, 

푒 ∆푓
~

푒 ∆푔
≁

( )

≤ 퐶푅( ) 푁 ‖푓‖ ‖푔‖ , 

 
which is acceptable. The other two global parts are bounded in the same way, which completes the 
proof. 
We now pass to the unconditional result in which the powers of 푁are improved. we will see that 
this improvement allows us to obtain the almost optimal range of 푟in Theorem (2.1.15). A 
refinement of Lemma (2.1.12), which preserved the precise powers of 푁, would allow 훼to equal 
1/푞 − 1/푟in the following. 

Theorem (2.1.17)[59]: Suppose that 푞 ∈ , and + < 3. Then for all 훼 > − , 

푒 ∆푓푒 ∆푔 ℝ , (ℝ) ≤ 퐶 푁 ‖푓‖ ‖푔‖  

whenever푁 ≫ 1, and푓,푔are supported on1-separated subsetsof퐵 (푁푒 ). 
Proof.Combining the bilinear theorem of Tao [28] with Bernstein’s inequality as before, we see that 

푒 ∆푓푒 ∆푔 ℝ , (ℝ) ≤ 퐶푁 ‖푓‖ ‖푔‖                                          (16) 

for all 푟 ≥ 푞 > 5/3. Now, by interpolation combined with Lemmas (2.1.11) and (2.1.12), it will 
suffice to show that 

푒 ∆푓푒 ∆푔 / ( ) ≤ 퐶푅 푁 / ‖푓‖ ‖푔‖  

whenever 푅 ≫ 1,훽 > 0, and 푃 has side 푅/2 and direction (4휋푁푒 , 1). 
Again, we proceed by induction on scales. As 푃 is contained in a cuboid, with long side 

4휋푅푁, and short side 푅, by Hölder, 
푒 ∆푓푒 ∆푔 / ( ) ≤ 퐶(푅 푁) / 푒 ∆푓푒 ∆푔 / ℝ , 

so that by (16), we have 
푒 ∆푓푒 ∆푔 / ( ) ≤ 퐶(푅 푁) / ‖푓‖ ‖푔‖ . 

We see that 푅∗(2 × 2 → 8/5, 2, 1/8,훽)holds for a large 훽. Therefore, by iterating,it will suffice to 
prove that 

푅∗(2 × 2 → 8/5, 2, 1/8,훽) ⇒ 푅∗(2 × 2 → 8/5, 2, 1/8, max{(1 − 훿)훽, 푐훿} + 휀) 
for all 훿and 휀 > 0, where the constant 푐is independent of 훿and 휀. 

As before, we cover 푃 by smaller parallelepipeds 푃, so that it will suffice to bound the local 
part, 

푒 ∆푓
~

푒 ∆푔
~ / ( )

∈풫

, 

which is dealt with via the induction hypothesis, and the global parts of type 
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푒 ∆푓
~

푒 ∆푔
≁ / ( )

∈풫

. 

By Hölder, followed by Fubini and the affine change of variables 푥 → 푥 + 4휋푡푁푒 , 

푒 ∆푓
~

푒 ∆푔
≁ / ( )

 

                                ≤ (푅 푁) / 푒 ∆푓
~

푒 ∆푔
≁

( )

, 

so that by Lemma (2.1.16), 

푒 ∆푓
~

푒 ∆푔
≁ / ( )

≤ 퐶푅 푁 / ‖푓‖ ‖푔‖ , 

where the constant 푐is independent of 훿and 휀. Summing, this yields 

푒 ∆푓
~

푒 ∆푔
≁ / ( )

∈풫

≤ 퐶푅( ) 푁 / ‖푓‖ ‖푔‖ , 

which is acceptable. The other two global parts are bounded in the same way, which completes the 
proof. 
The following lemma is a simple consequence of the Littlewood–Paley inequality (see [24]). Let 
휗 ∈ 퐶 (ℝ)and 휙 = 휗(2휋| ∙ | )satisfy 

휗(4 | ∙ |) = 1     and 휙(2 | ∙ |) = 1. 

Defining 푓 by푓 = 휙(2 | ∙ |)푓, it can be calculated that 

휗(4 |휏|) 푒 ∆푓
∧ (휏)

∨
(푡) = 푒 ∆푓 . 

Lemma (2.1.18)[59]: Let 푞 ∈ [2,∞]and 푟 ∈ [2,∞). Then 

푒 ∆푓 ℝ , (ℝ) ≤ 퐶 푒 ∆푓 ℝ , (ℝ) . 

We are now in a position to prove the linear estimates. There are two types of restriction on 푟; those 
which come from the restriction on 푟in the bilinear theorem are generally less restrictive than those 
related to the power of 푁. 
Theorem (2.1.19)[59]: Let 푞 ∈ (2푞 ,∞],푟 ∈ (2푞 ,∞)and + + < . If (퐴 ) holds,then 

푒 ∆푓 ℝ , (ℝ) ≤ 퐶‖푓‖ ̇ ( , )(ℝ ). 

Proof.By scaling and Lemma (2.1.18), it will suffice to prove that 
푒 ∆푓 ℝ ≤ 퐶‖푓‖ (ℝ ) 

whenever 푓is supported in {1/2 ≤ |휉| ≤ 1}. In order to apply our bilinear theorem, we square the 
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integral, so that 
푒 ∆푓 ℝ = 푒 ∆푓 푒 ∆푓 / / ℝ . 

Now, for each 푗 ∈ ℕ we can break up the support of 푓into dyadic cubes 휏 of side2 . We write 
휏 ∼ 휏 if 휏 and 휏 have adjacent parents, but are not adjacent.Writing 푓 = ∑ 푓 , where 푓 =
푓 , we have 

푒 ∆푓(푥)푒 ∆푓(푥) = 푓(휉)푓(푦)푒 ∙( ) | | | | 푑휉푑푦 

= 푓 (휉)푓 (푦)푒 ∙( ) | | | | 푑휉푑푦
, , : ∼

 

= 푒 ∆푓 (푥)푒 ∆푓 (푥)
, , : ∼

. 

By the triangle inequality, we see that 

푒 ∆푓 ℝ ≤ 푒 ∆푓 (푥)푒 ∆푓 (푥) / / ℝ
, , : ∼

. 

Now, scaling out, applying Theorem (2.1.15) taking into account the rotational symmetry, then 
scaling in again, we see that 

푒 ∆푓 ℝ ≤ 퐶 2 2 푓 (ℝ ) 푓
(ℝ )

, , : ∼

 

for all 훼 > − , where 푞 > 2푞 and 푟 > 2푞 . 

Finally, as supp 푓 , supp 푓 ⊂ supp 푓  for some 푘 , we have 

푓 (ℝ ) 푓
(ℝ )

, : ∼

≤ 퐶‖푓‖ (ℝ ), 

and the sum in 푗converges by hypothesis, which completes the proof. 
Observe that if the power of 푁in the bilinear estimate was improved to 훼 > 1/푞 − 1/푟, then we 
would obtain the almost sharp restriction, + < , in thelinear estimates. We state this 

formally. 
Definition (2.1.20)[59]: Let 푅∗(2 × 2 → 푞, 푟)denote the estimate 

푒 ∆푓 푒 ∆푔 ℝ , (ℝ) ≤ 퐶 푁 ‖푓‖ ‖푔‖  

whenever 푁 ≫ 1,훼 > − , and 푓,푔are supported on 1-separated subsets of 퐵 (푁푒 ). 

Definition (2.1.21)[59]: Let 푅∗(2 → 푞, 푟)denote the estimate 
푒 ∆푓 ℝ , (ℝ) ≤ 퐶‖푓‖ (ℝ ) 

whenever 푓is supported in {1/2 ≤ |휉| ≤ 1}. 

Lemma (2.1.22)[59]: Let + < . Then 푅∗ 2 × 2 → , ⇒ 푅∗(2 → 푞, 푟). 

It remains to prove Theorem (2.1.7). By scaling and Lemma (2.1.18), it suffices to consider 
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functions with frequency support in the unit annulus. Combining Theorem (2.1.17) with Lemma 
(2.1.22), we note that the condition 8/푞 + 2/푟 < 3 that comes from the former is less restrictive 
than 3/푞 + 1/푟 < 1 which comes from the latter, and we are done 
Section (2.2): Self-adjoint Extensions and Singular Continuous Spectrum: 
In [66] and [68] by Friedrichs and Krein it has been shown that every closed symmetric operator 퐻 
in a Hilbert 퓀 space with gap 퐽 has a self-adjoint extension 퐻 such that 퐽 is contained in the 
resolvent set of 퐻; an open interval (a,b) is called a gap of 퐻 if 

퐻 −
푎 + 푏

2 푓 ≧
푏 − 푎

2
‖푓‖,      푓 ∈ 퐷(퐻),   푖푓 − ∞ < 푎 < 푏 < ∞, 

(퐻푓, 푓) ≧ 푏‖푓‖ , 푓 ∈ 퐷(퐻),     푖푓 − ∞ = 푎 < 푏 < ∞. 
Moreover Krein has found that if in addition 퐻 has finite deficiency indices (푛, 푛), then within the 
gap 퐽 the spectrum of every self-adjoint extension consists of a finite number of eigenvalues such 
that the sum of their multiplicities does not exceed 푛, cf. [68], Conversely, if {휆 } , 1 ≦ 푠 < ∞, is 
an arbitrary sequence of points of 퐽 and {푝 }  is an arbitrary sequence of positive integers obeying 
Σ 푝 ≦ 푛, then there exists a self-adjoint extension 퐻 of 퐻 such that within the gap 퐽 the spectrum 
of 퐻 coincides with the points 휆  which are eigenvalues of multiplicity푝 , 1 ≦ 푗 ≦ 푠[68], So the 
problem which spectrum can the self-adjoint extensions have within the gap is completely solved 
for finite deficiency indices. 
In [62, 63, 64] and [69] an attempt was made to extend these results to the case of infinite 
deficiency indices. It turned out that Theorem 23 of [68] has a straightforward generalization. Let 풻 
be a countable set within the gap 퐽 and let 푝: 풻 → N ∪ (풩 ) be an arbitrary function. Then there 
exists a self-adjoint extension 퐻of 퐻 such that 휎 퐻 ∩ 퐽 = 풻, the multiplicity of each eigenvalue 
휆 ∈ 풻 equals 푝(휆) and no point of the gap 퐽 belongs to the continuous spectrum of 퐻. In other 
words, any pure point spectrum can be generated within the gap 퐽 by choosing an appropriate 
extension. Here 휎 (⋅) denotes the set of eigenvalues of an operator. 
However, provided the deficiency indices of 퐻 are infinite it seems naturally to believe that other 
kinds of spectra (singular and absolutely continuous spectra) can arise within the gap 퐽. In fact, for a 
large class of operators 퐻, including all symmetric operators with infinite deficiency indices and 
compact resolvent, we have shown that every kind of absolutely continuous spectrum within a gap 퐽 
of H can be generated by a self-adjoint extension퐻 of 퐻, cf. [61. we shall show that a symmetric 
operator with infinite deficiency indices and some gap has self-adjoint extensions with non-empty 
singular continuous spectrum.  
Theorem (2.2.1) [70]: (A. Gordon [67]; R. del Rio, N. Makarov, B. Simon [65], Theorem 3) Let A 
be a self-adjoint operator and g a cyclic vector of A. Then the set{훼 ∈ 푅:퐴 + 훼(푔,⋅)푔휎(퐴) has no 
eigenvaue in  휎(퐴)}is a dense 퐺  subset of R. 
we shall give a proof of the existence of the auxiliary operator 퐻  which is more simple and much 
shorter than our original proof in [62]. Moreover we shall need the mentioned result by A. Gordon 
and by R. del Rio, N. Makarov and B. Simon only in a very special case. Instead to show that this 
result can be used in our situation we shall give a short direct proof that the operator 퐻  has the 
required spectral properties. 
In our very special case we get absence of eigenvalues in 퐽 ∩ 퐽 even for every훼 ∈≠ 0. 
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Finally we mention that Theorem (2.2.3) allow only to generate so-called “fat” singular continuous 
spectrum by extensions, i.e., singular continuous spectrum which coincides with the closure of its 
inner points. For spectrum which does not have this property (so-called “thin” spectrum) we cannot 
make any conclusions, we cannot generate singular continuous spectrum which is a Cantor set. The 
problem is that for thin sets the used proof technique does not allow to decide whether the generated 
spectrum is really singular continuous or results from the closure of the discrete spectrum which is 
outside the thin set.  
Lemma (2.2.2) [70] Let 퐻 be a symmetric operator in some separable Hilbert space 풽. Let 푏 he a 
strictly positive real number and 퐽 = (−푏,푏) or 퐽 = (−∞,푏). Suppose that 퐽 is a gap of 퐻. For 
every휆 ∈ 퐽푙푒푡푃 : ker(퐻∗) → ker(퐻∗ − 휆) be the mapping given by 

푃 푓 ≔ 푃 ( ∗ )푓,   푓 ∈ ker(퐻∗),                                               (17) 
where 푃ℓ denote the orthogonal projection in 풽 onto the subspace ℓ. Then for every휆 ∈ 퐽 the 

mapping 푃  is bijective and 

푃 푔 ≦
푏 + |휆|
푏 − |휆|‖푔‖, 푔 ∈ ran(푃 ),                                  (18) 

when 퐽 = (−푏, 푏) and  

푃 푔 ≦ max
푏

푏 − 휆 ,
푏 − 휆
푏 ,푔 ∈ 푟푎푛(푃 ),                            (19) 

When 퐽 = (−∞,푏). 
Proof. Since 퐽 is a gap of 퐻 the symmetric operator 퐻 has a self-adjoint extension 퐻 such that 퐽 ∩
휎 퐻 = ∅, e.g., the Friedericsh and the Krein extension of 퐻 in the case when 퐽 = (−∞,푏) and 퐽 =
(−푏, 푏), respectively. Note that 

퐹(푡)푑(퐸(푡)푓,푔) = 0 

for all 푓,푔 ∈ 풽 and every Borel-measurable function 퐹 where {퐸(푡)} ∈퐑 denotes the spectral family 
of the self-adjoint operator 퐻. 

Let 휆 ∈ 퐽. Let 푓 ∈ ker(퐻∗) = 푟푎푛푘(퐻) ,푓 ≠ 0 and 푔 ∈ 퐷(퐻). We have  

퐻 퐻 − 휆 푓, (퐻 − 휆)푔 =
푡

푡 − 휆
(푡 − 휆)푑(퐸(푡)푓,푔) = 푡푑(퐸(푡)푓,푔) = (푓,퐻푔) = 0 

Thus 푓:퐻 퐻 − 휆 푓 ∈ 푟푎푛(퐻 − 휆) ker(퐻∗ − 휆) and consequently we have  

‖푃 푓‖ ≥
푓
푓

, 푓 =
∫ 푡/(푡 − 휆)푑‖퐸(푡)푓‖∖

∫ 푡/(푡 − 휆)
∖ 푑‖퐸(푡)푓‖

/ .                  (20) 

Since  
푏

푏 + |휆| ≦
푡

푡 − 휆 ≦
푏

푏 − |휆| ,                        푡 ∈ R ∖ 퐽, 

when 퐽 = (−푏, 푏) and  

min 1,
푏

푏 − 휆 ≦
푡

푡 − 휆 ≦ max 1,
푏

푏 − 휆 , 푡 ∈ R ∖ 퐽, 

when 퐽 = (−∞,푏) this implies that 
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‖푃 푓‖ ≧
푏 − |휆|
푏 + |휆| ‖푓‖(21) 

and  

‖푃 푓‖ ≧
min{1, 푏/(푏 − 휆)}
max{1,푏/(푏 − 휆)} ‖푓‖(22) 

when 퐽 = (−푏, 푏) and 퐽 = (−∞,푏), respectively. Thus 푃  is invertible and (18) and (19) hold. 
By (21) and (22) the operator 푃  has a trivial kernel and a range. Hence it remains to show that 푓 ∈
ker(퐻∗ − 휆) and (푓, ℎ) = 0 for each ℎ ∈ ker(퐻∗)yields 푓 = 0. Since  

퐷(퐻∗) = 퐷 퐻 + ker(퐻∗), 
we obtain elements 푔 ∈ ker(퐻∗) such that 푓 = 푔 + 푘. By퐻∗푓 = 휆푓 and (푓, ℎ) = 0, ℎ ∈ ker(퐻∗), 
we find 퐻∗푓 ∈ 푟푎푛(퐻). Hence one gets 퐻∗푓 = 퐻 ∈ 푟푎푛(퐻). However, this yields 푔 ∈ 퐷(퐻). 
Using that we obtain. 

(퐻 − 휆)푔 = 휆푘. 
Since 푘 ∈ ker(퐻∗) we have 

(퐻푔, (퐻 − 휆)푔) = ‖퐻푔‖ − 휆(퐻푔,푔) = 0 
which implies  

‖퐻푔‖ ≦ |휆|‖푔‖. 
Let |휆| < 푏. Since 푏‖푔‖ ≦ 퐻  we immediately find.  

푏‖푔‖ ≦ ‖퐻푔‖ ≦ |휆|‖푔‖ 
which proves 푔 = 0. If 휆 ≦ −푏, then the result is obvious. Therefore 푘 = 0 and 푓 = 0. 
Theorem (2.2.3) [70]: Let 퐻 be a symmetric operator in some Hilbert space 풻. Suppose that the 
operator 퐻 has some gap 퐽 and infinite deficiency indices. Let 퐽  be any open subset of 퐽. Then 퐻 
has a seif-adjoint extension 퐻 with the following properties: 

휎 퐻 ∩ 퐽 = 휎 퐻 ∩ 퐽 ∩ 퐽. 
휎 퐻 ∩ 퐽 = ∅. 
퐻 has no eigenvalue in 퐽 ∩ 퐽. 

Here 휎, 휎 ,휎  and 휎  denote the spectrum, the absolutely continuous, the singular continuous 
and the essential spectrum, respectively. 푆 denotes the closure of the set 푆. 
Without loss of generality we assume 0 ∈ 퐽. First one constructs an auxiliary invertible self-adjoint 
extension 퐻  of 퐻 such that 퐻  has pure point spectrum within the gap 퐽 of 퐻, the eigenvalues 
of 퐻  within 퐽 are simple and form a dense subset of 퐽 . Then one chooses a vector 푔 ∈ 푟푎푛(퐻)  
such that (푔, 푒) ≠ 0 for every eigenvector 푒 of 퐻  corresponding to an eigenvalue in 퐽 and shows 
that the operator 퐻 + 훼(푔,⋅)푔 is invertible and its inverse 퐻  is a seif-adjoint extension of 퐻 for 
every real number 훼. Finally one proves that for every훼 in some dense 퐺 -subset of R the operator 
퐻  has the required spectral properties. This easily follows from the following recent result by A. 
Gordon resp. by R. del Rio, N. Makarov and B. Simon. 
Proof.Since 퐻 has a self-adjoint extension 퐻 such that the gap 퐽 is contained in the resolvent set of 
퐻 the theorem is true (with 퐻 = 퐻) in the special case when 퐽 = ∅. Moreover we may assume that 
퐽 = (−푏, 푏) or 퐽 = (−∞,푏) for some strictly positive real number푏. 
It suffices to show that there exists a self-adjoint extension 퐻 of 퐻 such that 휎 퐻 ∩ 퐽 = 퐽 ∩
퐽, 휎 퐻 ∩ 퐽 = ∅ and 퐻 has no eigenvalue in 퐽 ∩ 퐽. In fact, then on the one hand every휆 ∈ 퐽  



41 
 

belongs to the singular continuous spectrum of 퐻 and consequently we have 퐽 ∩ 휎 퐻 , on the 
other hand we have 휎 퐻 ⊂ 휎 퐻  and consequently휎 퐻 ∩ 퐽 ⊂ 퐽 . 
We chose any square summable sequence {훼 } ∈퐍 of numbers such that 훼 ≠ 0 for every푛 ∈ N and 
any sequence {휂 } ∈퐍 in 퐽 ≔ {1/푡: 푡 ∈ 퐽 , 푡 ≠ 0} such that 휂 ≠ 휂  for 푛 ≠ 푚 and for every휂 ∈
퐽 . 

|휂 − 휂| < |훼 |(23) 
for infinitely many푛 ∈ 푁. 
Such sequences always exist. For instance we start with a partion Γ  of the real axis into intervals 
[푘,푘 + 1),푘 ∈ 푍. Dividing the intervals [푘,푘 + 1) into two intervals [푘,푘 + ) and [푘 + , 푘 + 1) 
into two subintervals of half length we get a further partions Γ . Repeating this procedure again and 
we obtain a sequence of partions {Γ } ∈퐍. Choosing now from the intersection of 퐽  with the 
intervals of the partion Γ , provided this intersection is not empty, points we get for each 푙 ∈ N a 
sequence of points {휂 } ∈퐙. Obviously all those points 휂  can be chosen different from each 
other. Making a suitable renumeration of the sequence {휂 } ∈퐍, ∈풁 we find the desired sequence 
{휂 } ∈퐍 of 퐽 .  
For notational brevity we put 휆 ≔ 1/휂  and 푝 ≔ 푃  for every 푛 ∈ 푁 where for every휆 ∈ 퐽 the 
linear mapping 푃 : ker(퐻∗) → ker(퐻∗ − 휆) is given by (17). 
We choose any푒 ∈ ker(퐻∗ − 휆 ) such that‖푒 ‖ = 1. Let푛 ∈ 푁 and suppose that 푒 ∈
ker 퐻∗ − 휆 , 1 ≦ 푗 ≦ 푛, have been chosen. Then we choose any푒 ∈ ker(퐻∗ − 휆 ) such that 
‖푒 ‖ = 1, 

푒 ⊥ 푒 ,         푒 ⊥ 푝 푒 , 
푝 푒 ⊥ 푝 푒 ,      푝 푒 ⊥ 푒  

1 ≦ 푗 ≦ 푛. Since, by Lemma (2.2.2), for every휆 ∈ 퐽 the linear mapping 푃  is bijective and 
consequently the space ker(퐻∗ − 휆) is infinite dimensional each of these choices is possible. we 
get, by induction, an orthonormal system {푒 } ∈퐍 with the following properties: 

푒 ∈ ker(퐻∗ − 휆 ),     푛 ∈ N,                                                            (24) 
(푔 ,푔 ) = 0 = (푔 , 푒 )푓표푟푛 ≠ 푚(25) 

where  
푔 ≔ 푝 푒 ,        푛 ∈ N.                                                                     (26) 

Next we shall show that there exists an auxiliary self-adjoint extensions 퐻  of 퐻 with the 
following properties: 

(i) 퐻  has a pure point spectrum within 퐽. 
(ii) 휆  is a simple eigenvalue of 퐻  and 푒  a corresponding eigenvctor for every푛 ∈ 푁. 
(iii) 휎 (퐻 ) ∩ 퐽 = {휆 :푛 ∈ N}. 

Since {휆 :푛 ∈ N} is a dense subset of 퐽  and 휆 ≠ 0 for every푛 ∈ N it follows from (i) and (iii) that 
such an operator also satisfies 

(iv) 휎 (퐻 ) ∩ 퐽 = 퐽 ∩ 퐽. 
(v) 퐻  is invertible. 

We denote by풽  the closure of the span of the span of {푒 :푛 ∈ N} and by푀 the self-adjoint 
operator in the Hilbert space 풽  given by 
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퐷(푀) ≔ 훽 푒 : (1 + 휆 )|훽 | < ∞ , 

푀 훽 푒 ≔ 휆 훽 푒 ,       (1 + 휆 )|훽 | < ∞. 

Obviously the operator 푀 has a pure point spectrum, 휆  is a simple eigenvlaue of 푀 and 푒  a 
corresponding eigenvector for every푛 ∈ N. 

휎 (푀) = {휆 :푛 ∈ N} 
and  

(푀푓, 푓) ≦ 푏‖푓‖ ,     푓 ∈ 퐷(푀)(27) 
in the case when 퐽 = (−∞,푏) and 

‖푀푓‖ ≦ 푏‖푓‖,        푓 ∈ 퐷(푀), 
in the case when 퐽 = (−푏,푏). 

푀 is a restriction of 퐻∗since 푒 ∈ ker(퐻∗ − 휆 ) for every푛 ∈ N and 퐻∗ is a closed operator. Thus 
we can define an extension 퐻  of 퐻 by 

퐷(퐻 ) ≔ 퐷(퐻) ∔퐷(푀),    퐻 푔 ≔ 퐻∗푔,   푔 ∈ 퐷(퐻 ). 
A short computation shows that 퐻  is a symmetric operator. 
Let 푓 ∈ 퐷(퐻 ). For every푛 ∈ N we have  

(퐻 푓, 푒 )− (푓,푀푒 ) = 휆 (푓, 푒 ). 
Thus 

휆 |(푓, 푒 )| = 푃풽 퐻 푓 < ∞. 

Hence 푃풽 푓 ∈ 퐷(푀). For every푛 ∈ N we have  
푃풽 퐻 푓, 푒 = (푓,푀푒 ) = 푀푃풽 푓, 푒  

Thus  
푃풽 퐻 푓 = 푀푃풽 푓,          푓 ∈ 퐷(퐻 ). 

This implies that the operator 퐻  can be written in the form  
퐻 = 푀⨁퐺 , 

where the symmetric operator 퐺  in the Hilbert space 풽  is given by 
퐺 ≔ 퐻| ∩풽 . 

We shall show by contradiction that the gap 퐽 of 퐻 is also a gap of 퐺 . We shall give the proof for 
퐽 = (−∞,푏). The proof in the other case is virtually the same. Suppose that  

(퐺 푓,푓) < 푏‖푓‖ (28) 
for some 푓 ∈ 퐷(퐺 ). We choose 푔 ∈ 퐷(퐻) and ℎ ∈ 퐷(푀) such that 푓 = 푔 + ℎ. Then we have 

(퐻푔,푔) = (퐻 (푓 − ℎ),푓 − ℎ) = (퐺 푓,푓) + (푀ℎ, ℎ) < 푏‖푓‖ + 푏‖ℎ‖ = 푏‖푓 − ℎ‖ = 푏‖푔‖ . 
Here we have used that 퐻 = 푀⨁퐺 , as well as our assumption (27) and (28). Thus the assumption 
(28) leads to a contradiction to the hypothesis that (−∞,푏) is a gap of 퐻. Thus 퐽 is also a gap of 퐺 . 

Since 퐽 is a gap of symmetric operator 퐺  in 풽  there exists a self-adjoint operator 퐺 in 풽  
such that 퐺 ⊂ 퐺 and 휎(퐺) ∩ 퐽 = ∅. We put 

퐻 ≔ 푀⨁퐺. 
Obviously퐻  has the required properties. 
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We put 

푔 ≔ 훼
푔
‖푔 ‖ , 

where the 푔 ,푛 ∈ N, are given by (26) and the 훼 ,푛 ∈ N, are any numbers different from zero such 
that the sequence {훼 } ∈퐍 is square summabe (23) holds. Since, by (25), {푔 /‖푔 ‖} ∈퐍 is an 
orthonormal system the series converges and 푔 is well-defined. Since 푔 ∈ ker(퐻∗) for every푛 ∈ N 
and ker(퐻∗) is closed we have that 푔 ∈ ker(퐻∗).  
Obviously푔 ≠ 0. 
 we choose any훼 ∈ R,훼 ≠ 0. Since along with 퐻  also the inverse 퐻  of 퐻  is a self-adjoint 
operator and 훼 ∈ R,훼 ≠. Since along with 퐻  also the inverse 퐻  of 퐻  a self-adjoint 
operator and 훼(푔, . ) is a bounded self-adjoint operator the sum 퐻 + 훼(푔, . )푔 is also self-adjoint. 
Let ℎ ∈ 퐷(퐻 ) be such that  

퐻 ℎ + 훼(푔, ℎ)푔 = 0. 
Then (푔, ℎ)푔 ∈ 푟푎푛(퐻 ) = 퐷(퐻 ). If 푔 would be in 퐷(퐻 ) then we would have 퐻 푔 =
퐻∗푔 = 0 with is impossible since 퐻  is invertible. Thus we have (푔, ℎ) = 0. It follows that 
퐻 ℎ = 0 which implies that ℎ = 0. Thus we have shown that the operator 퐻 + 훼(푔,⋅)푔 is 
invertible. Along with this operator also it’s inverse 

퐻 ≔ (퐻 + 훼(푔,∙)푔)  
is self-adjoint 
Let ℎ ∈ 퐷(퐻 ) = 푟푎푛(퐻). Since 퐻 ⊂ 퐻  and 푔 ∈ ker(퐻∗) = 푟푎푛(퐻)  we have that 퐻 ℎ =
퐻 ℎ = 퐻 ℎ. Thus 퐻 is a self-adjoint extension of 퐻. Since the resolvent difference 퐻 − 퐻  
of the self-ajoint operator 퐻 and 퐻  is nuclear we have that 휎 퐻 = 휎 (퐻 ) and 휎 퐻 =
휎 (퐻 ). In particular, we have  

휎 퐻 ∩ 퐽 = ∅,        휎 퐻 ∩ 퐽 = 퐽 ∩ 퐽. 
Thus we have only to show that 퐻 has no eigenvalue in 퐽 ∩ 퐽. 
The point zero is not an eigenvalue of 퐻 since 퐻 is invertible. Let 휆 ∈ 퐽 ∩ 퐽 and 휆 ≠ 0. We have 
only to show that 휂 ≔ 1/휆 is not an eigenvalue of 퐻 . Let ℎ ∈ 퐷 퐻 = 퐷(퐻 ) and 

퐻 ℎ = 퐻 ℎ + 훼(푔, ℎ)푔 = 휂ℎ. 
By taking the scalar product with 푒  we get from the last realtion that  

휂 (푒 ,ℎ) + 훼(푔, ℎ)
훼
‖푔 ‖ = 휂(푒 ,ℎ) 

for every푛 ∈ N. Thus we have  

|휂 −||푒 ,ℎ| = |훼(푔,ℎ)|
|훼 |
‖푔 ‖ ,    푛 ∈ N.                               (29) 

By (23), there exists a subsequence 휂
∈퐍

 of {휂 } ∈퐍 such that  

휂 − 휂 < 훼 , 푗 ∈ N.                                                        (30) 
By (18) resp. (19) in the Lemma (2.2.2) and (26) there exists a finite constant 푐 such that  

푔 < 푐,    푗 ∈ N.                                                                     (31) 

Since ∑ |푒 ,ℎ| = 푃풽 ℎ < ∞ it follows from (29), (30) and (31) that 



44 
 

(푔,ℎ) = 0. 
Thus we have 

퐻 ℎ = 휂ℎ. 
Since the only eigenvlues of operator 퐻  in 퐽  are the numbers 휂 , 푛 ∈ N, and 휂  is a simple 
eigenvalue 퐻  with corresponding eigenvector 푒  for every푛 ∈ N this implies that ℎ = 푎푒  for 
some constant 푎 and some 푛 ∈ N. Since  

0 = (푔,ℎ) = 푎
푎
‖푔 ‖ 

It follows that 푎 = 0 and ℎ = 0. Thus 휂 is not an eigenvalue of the operator 퐻  and the theorem is 
proven. 
Example (2.2.4) [70]: Let Ω be a bounded non-empty domain in R , 푑 > 1. Then the minimal 
Laplacian on Ω, i.e. the operator −Δ  in 퐿 (Ω) given by 

퐷 −∆ ≔ 퐶 (Ω), 
−∆ 푓 ≔ −∆푓,       푓 ∈ 퐶 (Ω), 

Is a symmetric operator with infinite deficiency indices. Here 퐶 (Ω) denotes the space of infinitely 
differentiable functions with compact support in Ω. Thus, by Theorem (2.2.3), there exist self-
adjoint realizations of the Laplacian on Ω, i.e. self-adjoint extension of −∆ , with non-empty 
singular continuous spectrum. Thus (the proof of) Theorem (2.2.3) enables us to construct self-
adoint realizations of the Laplacian on a bounded domain Ω in 푑 , 푑 > 1, with spectral properties 
very different from the properties of the self-adjoint realizations investigated before. 
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Chapter 3 
Pure point Spectrum and Spectral Localization 

 
All eigenvalues have infinite multiplicity and acountable system of orthonormal eigenfunctions with 
compact support is the corresponding Hilbert space. 
 
Section (3.1): The Laplacians on Fractal Graphs: 
Considerable attention has been paid by graph theorists to the study of spectra of the difference 
Laplacians on infinite graphs. We refer to Mohar and Woess [82], which is an excellent survey of 
this theory, Explicit computational results about the spectrum of the Laplacians are known only 
when the graph under consideration satisfies certain kind of regularity property that leads to the 
existence of the absolutely continuous spectrum (see [82, 71]). 
If we study fractal or disordered materials and the difference Laplacians are some discrete 
approximations, we should expect the spectrum to be pure point. 
The first result is [83] where the spectrum of the Laplacian on the Sierpinski lattice is considered, 
an application of the very interesting Renormalization Group method to this case was given by 
Bellissard in [73]. 
We study the spectrum of Lablacians on so-called two-point self-similar fractal graphs (TPSG) (we 
mean the Lablacians which correspond to the adjacency matrix and the simple random walk). A 
good example of such a kind of graphs is modified Koch graph which can beconsidered as the 
discrete approximation of the fractal set, namely the modified Koch curve [789]. 
We will show that if the TPSG has an infinite number of cycles and the length of these cycles 
approaches infinity, then the spectrum of the Laplacians is pure point. 
The problem of the description of the spectrum as a set in IR is not trivial as shown by the example 
of the modified Koch graph. The spectrum for this graph is the union of two sets. The first set is the 
Julia set of the rational function 

푅(푧) = 9푧(푧 − 1) 푧 − 푧 − (푧 − ) . 
This is a Cantor set of Lebesgue measure zero which may be obtained as a closure of a countable set 
of eigenvalues of the Laplacian with infinite multiplicity. The second set is a discrete countable set 
of eigenvalues with infinite multiplicity which has the limit points in the first set. 
We note the new property of the eigenfunction of the Laplacians on TPSG: a countable system of 
orthonormal eigenfunction with compact support is complete in the Hilbert space where this 
operator is defined. 
We consider in Theorem (3.1.11) the Anderson localization for the Schrodinger operator with 
Bernoulli potential on TPSG. It was proven that any eigenvalue of the Laplacian is an eigenvalue of 
infinite multiplicity of the Schrodinger operator for any coupling constant. Unfortunately, we 
cannot prove that the spectrum of such operator is pure point. However, we note that Aizenman and 
Mo1chanov [72] proved the localization of the spectrum in the standard Anderson model for 
suffiently large disorders on general graphs. 
The two-point self-similar fractal graphs can be considered as nested pre-fractals with two essential 
fixed points introduced by Lindstrom [78]. We also note that some questions about the integrated 
density of states of the Laplacian on fractal graphs were studied in [80, 75]. 
Some special examples of TPSG were considered in physical models (see [85, 74]) 
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i. Let G = (V, E) be a connected infinite locally finite graph, with vertex set V and edge set E. We 
suppose that the degree d, of all vertices x E V is finite. 
Let A = A(G)be the adjacency matrix of the graph G and P =  P( G)  =  (PII. , . ) U, vEV be the 
transition matrix, where 

P , = a , d⁄  
And a , , is the number of edges between N and E. 
 Associated with each of the preceding two matrices are the difference Laplacians 

∆ = D(G)− A(G)                                                            (1) 
And 

∆ = I(G)− P(G)                                                              (2) 
Where D(G) is the diagonal matrix of d. , x ∈ V, and I(G) is the identity matrix over V 
Let us introduce the space of functions on V 

I (V) = f(x), x ∈ V; |f(x)| < ∞
∈

    (3) 

With inner product 
(g, f) = |f(x)| < ∞

∈

 

And 

픩#(V) = f(x), x ∈ V; |f(x)| < ∞
∈

                                                (4) 

With inner product 
(g, f) = d |f(x)| < ∞

∈

 

If the function deg(x) = d. , x ∈ V is bonded, then the operators ∆  and ∆  are self-adjoint bounded 
operators in I (V) and 픩#(V), respectively. 
ii. Let us introduce so-called two point self-similar graphs. Suppose M = (V , E ) and  G =
(V , E ) are finite connected graphs and M is an ordered graph. We fix some e ϵE , which is not a 
loop, and vertices α,βϵV  and a , β ϵV , a ≠ β, a ≠ β . 
Informally speaking, the construction of a TPSG G is as follows: to get G  from M and G  
we replace every edge (a, b)ϵE , a, bϵV , by a copy of G  such that a  goes to a and  
β  to b. Then we take a = a,β =  β and proceed by induction. If a graph G = V , E . 
with fixed vertices a , β , V  is defined then the graph G is obtained by replacement 
of every edge (a, b) ofM by the copy of G  such that a  goes to a and β  goes 
 to b. The vertices a , β  are the vertices  a,β after this replacement.     
We can assume that G ⊆ G  is the copy corsponding to e  and define infinit graph G = ⋃ G . 
Let us give a more formal.   
Definition (3.1.1) [86]: A graph G is called TPSG with model graph M and infinite graph G  if the 
following holds: 

(i) There are finite subgraphs G , G , G , … such that G ⊆ G , n ≥ 0 and G = ⋃ G . 
(ii) For any n ≥ 0 and eϵE  there is graph homomorphism Ψ ∶ G → G  such that 

G = ⋃ Ψ (G ) and Ψ  is inclusion of G  to G . 
(iii) For all n ≥ 0 there are two vertices α , β ϵV  such that Ψ  restricted to G \{α ,β } is a 

one-to-one mapping for every eϵE . Moreover Ψ (V \{α , β }) ∩ Ψ (V \{α ,β }) =
∅ if e ≠ e . 
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(iv)  For n ≥ 1, there is an injection K ∶ V → V  such that α = K (α),β = K (β) and 
for every edge e = (α, b)ϵE , Ψ (α ) = K (α), Ψ (β ) = K (b). 

We say that the vertices 훼 ,훽  are the boundary vertices of 퐺 , i.e., 휕퐺 = {훼 ,훽 } and interior 
vertices of 퐺 . 
Remark (3.1.2) [86]: One we can see the vertices 훼 ,훽  are the boundary vertices of 퐺 , i.e., 
휕퐺 = {훼 ,훽 } and int 퐺 = 푉 \{훼 ,훽 } are interior vertices of 퐺  are given. 
Suppose 푀 dose not have loops and 퐺  is just two vertices and one edge. Then two-point self-
similar graphs are in one-to-one correspondence to so-called post-critically finite (p.c.f) self-similar 
sets with post-critically for such p.c.f. sets. However, 퐺 is not a p.c.f. set since the limiting 
procedures in these two cases are different. The definition of a p.c.f. set can be found in [76] or 
[77]. 
3. We need some auxiliary result on the structure of graph 퐺. 
Definition (3.1.3) [86]: Two different vertices 푥 and 푦 of graph 훤 are equivalent if there is 
automorphisim 휑 of 훤 such that휑(푥) = 푦,휑(푦) = 푥. 
By induction it is easy to prove the following lemma. 
Lemma (3.1.4) [86]:if the vetices   훼 ,훽 휖푉  and 훼 ,훽 휖훽  are equivalent in  푀 and 퐺 , 
respectively, then vertices 훼 ,훽  are equivalent in 퐺  for all 푛. 
Remark (3.1.5) [86]:We will suppose in what follows that 푀 and 퐺  satisfy assumptions of Lemma 
1.1 We call such graph 퐺 symmetric. In this case the graph퐺 does not depend in orientation of 푀.  
 Although our results are valid for nonsymmetrical graphs (with some additional assumption on the 
orientation of 푀) we do not consider such graphs for the sake of simplicity. 
Let us introduce the graph 푀 = (푉 ,퐸 )퐺  which can be obtained in the same way as 퐺  if we take 
the graph 푀 instead of 퐺  and the vertices훼,훽 play the role of  훼 ,훽 . 
We define the graph 퐺  by replacement of every edge of 푀 by the copy of 퐺  such that for every 
edge (훼, 푏)휖퐸 , 훼, 푏휖푉  we say 푥  goes to 훼 and 훽  to 푏. 
 
iii. we neet some axillary result on structure of graph G.  
Lemma (3.1.6) [86]:The graphs 퐺  and 퐺  are isomorphic. 
Proof. By definition 퐺  can be written as 

퐺 = 훹 (퐺 )                                                                        (5) 

Where the maps 훹  have the same properties as 훹  in definition (3.1.1) The proof follows by 
induction. 
Let us introduce the space 픩 (푋) by 픩 (푋) = {푓휖픩 (푉) ∶ 푓(푥) = 0 푓표푟푥휖푉\푋}, where 푋 ⊂ 푉. 픩#(푋) 
is defined analogously. By ∆ (푋),∆ (푋) we denote the restriction of ∆ ,∆  to 픩 (푋), 픩#(푋). More 
precisely, ∆ . 푃, where 푃 is orthogonal projector to 픩 (푋) or 픩#(푋). We will call this operators the 
Laplacians with zero boundary conditions on 푉\푋. For simplicity, we denote the Laplacians with 
zero boundary conditions on 휕퐺  by ∆ (푛) and ∆ (푛). 
By Lemma (3.1.4) there is isomorphism 휑 ∶ 퐺 → 퐺  such that 휑 (푎 ) = 훽 ,휑 (훽 ) = 푎 . This 
isomorphism induces unitary maps 푈 ∶ 픩 (퐺 ) → 픩 (퐺 ) and 푈# ∶ 픩#(퐺 ) → 픩#(퐺 ) by formula 
푈#푓 = 푓휑 . 
Lemma (3.1.7) [86]:푈 (푈#) commutes with ∆ (퐺 ) and ∆ (푛) ∆ (퐺 )and∆ (푛) . 
Proof of this lemma immediately follows from the definition of ∆  and ∆ . Let us consider the 
function deg(푥) = 푑 . It can occur that the function deg(⋅) is not bunded in general. Moreover, 
there can exist a point 푥 휖∆  such that deg(푥 ) = ∞. The next Lemma should be more clear from 



48 
 

the following examples (see Figs. 2 and 3). 
For an arbitrary  graph 퐺 let us denote by 푑,퐺 the degree of the vertex 푥 in 퐺. 
Lemma (3.1.8) [86]:  

(i) 푑 (퐺 ) = 푑 (퐺 ) ∙ (푑 (푀)) = 푑 (퐺 ) ∙ 퐺 (푀). 
(ii) 푖푓푥휖 int 퐺 . then (푑푒푔(푥) = 푑 (퐺 ) = 푑 (퐺 )푓표푟푒푣푒푟푦푛 ≥ 1. 
(iii) 푇ℎ푒푓푢푛푐푡푖표푚푑푒푔(푥) 푖푠푏푢푛푑푒푑푖푓푎푛푑표푛푙푦푖푓푑 (푀) = 1. 
(iv) 푖푓푥휖푉푎푛푑푥 ≠ 푥 ,훽 푡ℎ푒푛푑푒푔(푥) < ∞. 
(v) deg(푥 ) = ∞(푑푒푔(훽 ) = ∞) if and only if 푒  is indicent to and  푑 (푀) ≥ 2 (훽 is 

incident to 푒  and 푑 (푀) ≥ 2). 

Proof. The first statement can be proved by induction. The second follow from (ii) and (iii) of 
Definition (3.1.1) Statement (iii) follow from (i) and equality 푚푎푥 푑 (퐺 ) =
푚푎푥 푚푎푥 푑 (퐺 ),푚푎푥 푑 (푀) . 

(iv) There exists 푛 ∈ ℕ such that 푥 ∈ 푉  for every 푛 ≥ 푛 . if 푥 ∈ 푖푛푡퐺  the statement 
follows from (ii). Otherwise, 푥 ∈ 휕퐺  for every 푛 ∈ 푛  and consequently 푥 is equal to 
훼  or 훽 . 

(v) By (iV), it follows that훼 ∈ 휕퐺  for any 푛 ≥ 푛 ,푛 ∈ ℕ. if 푎 is not incident to 푒 , then훼  
is an interior point of  퐺  for some 푛 . Let 푎 be incident to 푒  and(푀) ≥ 2. Then 
statement (V) follows from (i). 

Definition (3.1.9) [86]: We denote by휕퐺 = {푥, 푑푒푔(푥) = ∞} 
The boundary of the graph 퐺. If  휕퐺 = ∅, we say that 퐺 is a graph without boundary. 
By Lemma (3.1.10) we obtain the following lemma: 
Lemma (3.1.10) [86]: 

(i) 푒 = (훼,훽) and 푑 (푀) ≥ 2, if and only if 휕퐺 = {훼,훽}. 
(ii) The boundary 휕퐺 has only one point if and only if the points 훼 vertex of  푒  and the 

degree of this vertex in 푀 is not less than 2. 
(iii) If conditions (i), (ii), are not satisfied for the graph 퐺 then 휕퐺 = ∅. 

If 퐺 has the boundary, we define the operator ∆  with zero boundary condition, i.e.,  
∆ : 푙#(푉 ) → 푙∗(푉 ), 

where  
푙#(푉 ) = {푓 ∈ 푙#(푉),푓(푥) = 0,푥 ∈ 휕퐺}. 

The ∆  is a self-adjoint bounded operator, too. 
Theorem (3.1.11) [86]: Let 푚 ∈ ℕ, 훿 > 0 and 푐 < ∞ be fixed numbers and for every푛 = 1,2, …, 
there exists a linear operator Φ :퓀 → 퓀  such that ‖Φ ‖ ≤ 푐, 푓,Φ (푓) ≥ 훿‖푓‖  for any푓 ∈
퓀  and 퐻Φ (푓) = 휆 Φ (푓) for any푓 ∈ 퐹 , 푖 = 1, … ,퐾( ). 
Then the following statements hold: 

(i) The operator 퐻 has only pure point spectrum. The set of eigenvalues is 
⋃ ⋃ 휆( ) .  

(ii) There is a countable set 푆 ⊂ 퓀 of orthonormal eigenfunctions of the operator 퐻 which is 
complete in 퓀. 
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(iii) If Φ (푓) ∉ 퓀  for any nonzero 푓 ∈ 퓀  and every푛 ≥ 1, then each eigenvalue of 퐻 has 
infinite multiplicity. 

(iv) H is a self-adjoint operator in 퓀. 
Proof. At first we note from the definition of 퐻  that 퓀 = ⨁ ( )퐹 . 
Let  

푆 = {푓 ∈ 퓀 :퐻푓 ∈ 퓀 }. 
It is easy to see that 푆 ⊂ 푆  for every푛 ≥ 1. 
We introduce the set 푆 by the formula  

푆 = 퐹 ∩ 푆
( )

 

and we note that the set 푆 ∩ 퐹  is not empty for 푛 ≥ 푚 + 1 because Φ (푓) ∈ 퓀  for every푓 ∈
퓀  and 

퐻 Φ (푓) = 푃 퐻푃 Φ (푓) = 푃 휆 Φ (푓) = 휆 Φ (푓),푓 ∈ 퐹 (6) 
One can see from the condition of Theorem (3.1.11) and (6) that if 휆 ∈ 휎(퐻 ) then 휆 is an 
eigenvalue of 퐻. That gives us the inclusion 

휆
( )

⊂ 휎(퐻).                                                                    (7) 

We will prove that the set 푆 is complete in 퓀. Suppose that there exists 푓 ∈ 퓀 such that (푓, g) = 0 
for anyg ∈ 푆. 
Let 퐴 be a subspace of 퓀 and 푃  be the orthogonal projection to 퐴.  
Then  

‖푃 푓‖ ≥
1
‖g‖

|(g,푓)|                                                              (8) 

for every푔 ∈ 퐴, g ≠ 0, and 푓 ∈ 퓀. This follows from the expression 
|‖g‖ (g,푓) = ‖g‖ |(푃 g, 푓)| = ‖g‖ |(푃 g, 푓) = ‖g‖ (g,푃 푓)| ≤ ‖g‖ ‖g‖‖푃 푓‖ ≤ ‖푃 푓‖ 

Let us introduce the subspace 퐴  of 퓀  by the formula 

퐴 =
퐾(푛)
⊕
푖 = 1

퐹 ∩ 푆  

and let 푄  be the orthogonal projector to 퐴 . 
If 푓 = 푃 푓, 푛 = 1,2, …, by (8) and the conditions of Theorem (3.1.11) we have 
‖푄 푓 ‖ ≥ |Φ (푓 ),푓 |‖Φ (푓 )‖ ≥ (푐‖푓 ‖) |(Φ (푓), 푓 )| ≥ 푐 훿‖푓 ‖.          (9) 
Since 퐴 ⊂ Span 푆 we obtain 푄 푓 = 0. Hence. 

0 = ‖푄 푓‖ ≥ ‖푄 푓 ‖ − ‖푓 − 푓 ‖ ≥ 푐 훿‖푓 ‖ − ‖푓 − 푓 ‖. 
This implies 푓 = 0 since ‖푓 − 푓 ‖ → 0 as 푛 → ∞. Therefore 푆 is complete in 퓀 and (i), (ii) is 
proved. 
(iii) For arbitrary eigenvalue 휆 of 퐻 there exists a corresponding egenfunction 푓 ∈ 푆 and 
consequently there are such 푛 , 푖 that 푓 ∈ 퐹 ∩ 푆 . We denote g = Φ (푓) and g =

Φ (g ). Then g  is a linearly independependent sequence of eigenfunctions of the 
operator 퐻 because, by the definition of  Φ , ∉ 퓀  . 
(iv) It is enough to prove that Ran(퐻 ± 푖) are complete sets in 퓀 (see [84, Vol. 1. Theorem VIII.3) 
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that follows from (ii) of our theorem. 
The theorem is proved.  
Theorem (3.1.12) [86]: Suppose that the graph 푀 has a cycle and the edge 푒  belongs to this cycle. 
Then the spectrum of the operator ∆ ∆  is pure point. Moreover, a countable set of orthonomral 

eigenfunctions of ∆ ∆  with compact support is complete in 푙#(푉) 푙#(푉 )  and every 
eigenvalue has infinite multicity. 
If 푒  does not belong to the cycle, we do not know the structure of the spectrum in general. 
However, there is the following theorem in a particular case. 
Theorem (3.1.13) [86]: Suppose all conditions for the graph G in Theorem (3.1.13) hold. Then: 

(i) The operator ∆ (∆ ) is self-adjoint. 
(ii) All statements of Theorem (3.1.13) are true. 

Proof.By Theorem (3.1.11) it is enough to construct the operator Φ :퓀 → 퓀 ,푚 ≥ 1 with 
required properties. We will prove Theorem (3.1.12) only for the operator ∆  because the case of 
the ∆  is the same. 
Let 퓀 = 푙#(int 퐺 ). We suppose that the cycle in 푀 is defined by the set of vertices {푣 } ,푣,∈
푉 ,푣 = 푣 . 
If 푙 = 2푚,푚 ∈ ℕ, we can introduce sets of edges. 

퐸 = {(푣 , 푣 )} ⊂ 퐸 , 
퐸 = {(푣 , 푣 )} ⊂ 퐸 , 

We note that for any푥 ∈ 훹 (푉 ∖ 휕퐺 ) there is a unique 푦 ∈ 푉 ∖ 휕퐺  such that 푥 = 훹 (푦),푒 ∈ 퐸 . 
We may suppose that the maps 훹 , 푒 ∈ 퐸 ∪ 퐸  can be chosen such that if different edges 푒  and 
푒  have a common vertex, then at least one of the following equalities holds. 

훹 (훼 ) = 훹 (훼 )표푟훹 (훽 ) = 훹 (훽 )(10) 
Let us define operators Φ :퓀 → 퓀  for any푒 ∈ 퐸  as follows: 

Φ (푓)(푥) = 0         푖푓푥 ∉ 훹 (푉 ∖ 휕퐺 )
푓(푦)푖푓푥 = 훹 (푦),∈ 푉 ∖ 휕퐺  

Then we define the operator  

Φ = Φ − Φ , 

which maps  into 퓀 . We will verify that it satisfies the conditions of Theorem (3.1.11). 
we note that if 푒 , 푒 ∈ 퐸 , and 푒 ≠ 푒  then Φ (푓) and Φ (푓) have disjoint supports. Thus 
Φ (푓) is orthogonal to Φ (푓) and the bound ‖Φ ‖ ≤ 푐 = 푙 is obtained. By condition (ii) of 
Definition (3.1.1) we have Φ (푓) = 푓 and  

푓,Φ (푓) = ‖푓‖  
for every푓 ∈ 퓀 . Now if 푓 ∈ 퐹  then the equality. 

−∆ Φ (푓) = 휆 Φ (푓) 
follows from the definition of the operator Φ . 
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Diagram 1 

Fig. 2 
Since Φ (푓) is an eigenfunction of the operator ∆  with compact support by the definition of the 
set 푆 in the proof of Theorem (3.1.11) we find that 푆 is a set of eigenfunctions with compact 
supports  
Let 푙 = 2푚 + 1,푚 ≥ 1. The construction of the operator Φ  in this case is more delicate. In graph 
푀 (see Lemma (3.1.6)) we have at least two cycles of length 푙, joining by a path, and 푒  belongs to 
one of these cycles. 
Say these cycles are {푣 } , {푢 } ,푣 = 푛 , 푢 = 푢  and they are joined by a path 푣 =
푥 ,푥 , … ,푥 = 푢 . 
Let 퐸 ,퐸.  are defined similarly. Also, we define operators Φ  analgously to Φ , using Ψ  instead 
of Ψ  (see Lemma (3.1.6)). 
Then  

Φ = Φ − Φ
∈∈

− (Φ + Φ ∘ 푈#) + (Φ + Φ ∘ 푈#) + (−1) Φ − Φ
∈∈

.
∈∈

 

We suppose that condition (10) is satisfied in this case, too. This construction is sketched in 
Diagram 1 if 푟 is odd and on Diagram 2 if 푟 is even. 
We note that Φ :퐺  and this operator satisfies the condition of Theorem (3.1.11) that can be 
proved analogously to case 1 using Lemma (3.1.6) and (3.1.7) The theorem is proved.  
 
 
 
 
 
 
 

 
Fig. 3 

 
Theorem (3.1.14) [86]: Suppose that the graph 푀 has an odd cycle and there is an isomorphism  
휑:푀 → 푀 such that 휑(훼) = 훽,휑(훽) = 훼, and (푒 )#푒 . If  

(i) The edge 푒  belongs to a path joining 훼 and 훽 or 
(ii) The edge 푒  belongs to a path joining 훼 (or 훽) with the cycle then the conclusions of 

Theorem (3.1.13) hold for ∆  and ∆ . 
Let us now consider the operator ∆ . If the boundary of 퐺 is empty its action is well defined on all 
functions with compact support which form a dense subspace of 푙 (푉). If 휕퐺 ≠ ∅ we define ∆  as 
an operator with zero boundary conditions (See above definition for ∆ ). This operator is symmetric 
and thus closable. We will denote its closure by the same symbol ∆ (∆ ). 
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Theorem (3.1.15) [86]:if all conditions of Theorem (3.1.14) are satisfied for the graph 퐺, then the 
operator ∆ (∆ ) is self-adjoint and the statements of Theorem (3.1.14) hold for ∆ (∆ ). 
We note that the operator ∆  is not self-adjoint in general. An example of a locally finite graph with 
no unique self-adjoint extension of ∆  was given in [81]. 
The condition of the existence of a cycle in the graph 푀 is not a necessary condition for the 
spectrum to be pure point. Moreover the graph 퐺 may be a tree in this case  
Proof.We will consider only operator ∆  because the case of ∆  is the same. Also we assume that 
푒  does not belong to a cycle, otherwise it is a special case of Theorem (3.1.12). 
We define  

퓀 = 푓 ∈ 푙#(lnt 퐺 ),∆ 푓 = ∆ (푛)푓표푟푈#푓 = 푓 . 
We have 퓀 ⊂ 퓀 . Let us show that 퓀 = ⋃ 퓀  is complete in 퓀 = 푙#(푉). For any푓 ∈ 퓀 there 
is such 푛 that ‖푓 − 푓 ‖ ≤ ‖푓‖ , 푓  is the restriction of 푓 to 푉 . Since 휑(푒 ) ≠ 푒  we have 
(푈# 푓 , 푓 ) = 0 and so 

(푓, 푓 + 푈# 푓) ≥ (푓 , 푓 + 푈# 푓 ) − ‖푓 − 푓 ‖ ⋅ (푓 + 푈# 푓 ,푓 ) ≥ ‖푓 ‖ −
√2
4
‖푓 ‖

≥
3

16
‖푓‖  

because ‖푓 ‖ ≥ ‖푓‖ and 푓 + 푈# 푓 = √2‖푓 ‖. This implies that 퓀 is complete since 푓 is 

arbitrary and 푓 + 푈# 푓 ∈ 퓀 . 
Therefore we need only construct operator Φ  which satisfies the conditions of Theorem (3.1.11). 

(i) One can see that the graph 푀 has two odd cycles joining by a path such that 푒  belongs 
to this path. In this case, Φ  can be defined exactly the same way as in the proof of 
Theorem (3.1.13) for an odd cycle. 

(ii) If, for example, 훼 is incident to 푒 , then there is a path 푥 = 푥 ,푥 , … , 푥 = 푢  and an odd 
cycle {푢 } ,푢 , where 푒 = (푥 , 푥 ). Then Φ  can be defined by 

Φ = (Φ + Φ ∘ 푈#) − (Φ + Φ ∘ 푈#) + (−1) Φ − Φ
∈∈∈∈

 

where Φ ,퐸 ,퐸 ,퐸 ,퐸  are defined the same way as in the proof of Theorem (3.1.12). 
If 훼 is not incident with 푒  the proof is analogously (i). The theorem is proved. 
Theorem (3.1.16) [86]: Suppose there exist different vertices 푦 , 푦 ,푦 ∈ 푉(푀) such that there are 
edges (푦 , 푦 ), (푦 ,푦 ) ∈ 퐸(푀), 푒 = (푦 ,푦 ), 푑 (푀) = 푑 (푀) = 1 and the set {푦 ,푦 } does not 
coincide with the set {푥,훽}. 
Then all results of Theorem (3.1.11) and (3.1.13) hold. 
 
 
 

 
 

Figure 4 
The simple example of a two-point self-similar graph such that the conditions of Theorem (3.1.13-
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3.1.16) are not satisfied is the lattice ℤ. It is well known that the spectrum of the Laplacian in this 
case is absolutely continuous. 
Condition (iv) in Definition (3.1.1) defines the structure of eigenfucntions of the Laplacians. It is 
easy to see that conditions (i)-(iii) of Definition (3.1.1) are satisfied for Sierpinsky lattice but 
Theorem 1 − 2  are not true in this case. By [75] it follows that there are such eigenvalues that if a 
function 휑 is an eigenfunction corresponding to one of them, then 휑 cannot have a compact 
support. 
The problem of describing the spectrum as a set in ℝ is hard enough as shown by the example of the 
operator ∆  on the modified Koch graph in [79]. 
Let us introduce functions 푊:푉 → ℝ which do not change the nature of the spectrum of the 
Laplacian; i.e. the spectrum of the Schrödinger operator. 

퐻 = ∆ + 푊(11) 
will be pure point, too. Here we denote ∆  and ∆  by the same symbol ∆.  
We note that periodic functions are potentials of this sort for the Schrödinger operator in 푙 (ℤ ) but 
only in the case of absolutely continuous spectrum. 
Suppose that 푊 :푉 → ℝ is a function such that 푊 휑(푥) = 푊 (푥), where 휑:퐺 → 퐺  is an 
automorphism of 퐺 ,휑(훼 ) = 훽 ,휑(훽 ) = 훼 . Let us define the potential 푊:푉 → ℝ by induction. 
We denote by푊  the restriction of 푊 on 푉  and we suppose 푊 (푥) = 푊 (푦), where 
푥 = 훹 (푦)푦 ∈ 푉 , 푒 ∈ 퐸  for every푚 ≥ 0. 
Proof.At first we suppose that 훼,훽 are not from the set {푦 , 푦 }. Without loss of generality we can 
assume that 푑 (퐺 ) < 푑 (퐺 ) and Ψ( , )(훽 ) = 훽 . 
Let us define  

퓀 = {푓 ∈ 푙#(퐺):푓(푥) = 0 푖푓푥 ∈ (푉 ∖ 훽 )}. 
The operator Φ :퓀 → 퓀  can be given by the formula  

Φ (푓)(푥) =
푓(푥)푖푓푥 ∈ 푉

−푓(푥)푖푓푥 ∈ Ψ( , )(푦),푦 ∈ 퐺 (12)
0                 표푡ℎ푒푟푤푖푠푒

 

If 훼 = 푦  the definition of the operator Φ  is the same. 
Let 훼 = 푦 . Then we have to consider the graph 푀 (Lemma (3.1.6)) instead of 푀 which has the 
necessary properties to construct Φ  by the formula (12). The theorem is proved.  
Theorem (3.1.17) [86]: If the function W is defined as above, all results of Theorems(3.1.12 ), 
(3.1.15), (3.1.16) hold for the Schrödinger operator (6). 
Let us consider the so-called Bernoulli potential {푊(푥),푥 ∈ 푉} made of a sequence of i.i.d random 
variables taking only two values 0 and 1.  
We set. 

ℙ{푊(푥) = 0} = ℙ{푊(푥) = 1} =
1
2 ,   푥 ∈ 푉. 

We are interested in the random Schrödinger operator. 
퐻 = ∆ + 훽푊 

with a coupling constant 훽 > 0. 
Proof.The proof is one-to-one to the proof of Theorem (3.1.12 – 3.1.15, 3.1.16). 
Theorem (3.1.18) [86]: Let G satisfy conditions of one of the Theorem (3.1.12), (3.1.15), (3.1.16). 
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Then for any훽 > 0 with probability one, every eignavalue of ∆ is an eigenvalue of 퐻  of infinite 
multiplicity. 
Let 퓀 be a Hilbert space with the inner product (,) and 퓀 , = 1,2, …, be a sequence of finite 
dimensional subspaces of 퓀 such that 퓀 ⊂ 퓀  and 퓀 = ⋃ 퓀  is dense in 퓀. 
We suppose that 퐻 is a closed symmetric operator on 퓀 such that 퓀 belongs to the domain of 
definition of the operator 퐻 and 퐻 = 푃 퐻푃 , where 푃  is the orthogonal projector on 퓀 . 
Then 퐻 :퓀 → 퓀  and 퐻  is symmetric, too. 
Let 휆 , … , 휆  be all distinct eigenvalues of the operator 퐻  (restricted to 퓀 ).  
Let 퐹  be the eigenspace corresponding to 휆  and let 퐹  be an orthonormal basis of 퐹 . 
Proof.It is easy to see that if Ψ is an eigenfuction of the operator ∆ with compact support and supp 
Ψ∩ supp 푊 = ∅ then the function Ψ is an eigenfucntion of the operator 퐻 . 
Let Λ be a set of all eigenvlues of the ∆ and let 푆 be a countable set of orghonormal eigenfunctions 
of the ∆ with compact support. For every휆 ∈ Λ there is an eigenfunction 푓 ∈ 푆 and the integer 푛  
such that supp 푓 ⊂ 퐺 . 
We note that graph G can be written as the union of copies of 퐺 . With the probability one there is 
an infinity set of disjoint copies of 퐺  where 푊 is zero. Consequently휆 is an eigenvalue of the 
operator 퐻  of infinite multiplicity. The theorem is proved. 
 
Section (3.2): The Hierarchical Anderson Model 
We devoted to study of the spectral properties of the hierarchical Anderson model and is motivated 
by the work of Molchanov [114]. we recall the definition of the model and its basic properties. For 
additional information about the hierarchical structures and the hierarchical Anderson model we 
refer to [111, 109, 108, 113, 114]. 
Let  푋 be an infinite countable set. Throughout the section훿  will denote the Kronecker delta 
function at 푥 ∈ 푋. A partition 풫 of 푋 is a collection of its disjoint subsets whose union is equal to 푋. 
Let n = (푛 )  be a sequence of positive integers and P = (풫 )  a sequence of partitions of 푋. 
The elements of 풫  are called “cluster” of rank 푟. We say that (푋, P, n) is a hierarchical if the 
following hold: 

(푖)    푛 = 1and every푄 ∈ 풫  has exactly one element. 
(ii) For 푟 ≥ 1, every푄 ∈ 풫  is a disjoint union of 푛  clusters in 풫 . 
(iii) Given 푥, y ∈ 푋, there is a cluster 푄 of some rank containing both 푥 and y. 

Let us state some immediate consequence of this definition. Every cluster of rank 푟 ≥ 0 has size 
푁 :∏ 푛 . Given 푥 ∈ 푋 and 푟 ≥ 0, there is a unique cluster of rank 푟 containing 푥. We denote 
this cluster by푄 (푥). The map. 

푑(푥, y) ≔ min{푟: y ∈ 푄 (푥)}, 
is a metric on 푋 and 푄 (푥) = {y: 푑(푥, y) ≤ 푟}. Note that 푄 (푥) = 푄 (y) whenever 푑(푥, y) ≤ 푟. 
Given an integer 푛 ≥ 2, a hierarchical structure is called homogeneous of degree 푛 if 푛 = 푛 for all 
푟 ≥ 1. 
The free Laplacian on the hierarchical structure (푋, P, n) is define as follows. For each 푟 ≥ 0, let 
퐸 : 푙 (푋) → 푙 (푋) be the aver operator. 
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(퐸 휓)(푥) ≔
1
푁 휓(y).

( , )

 

Let P = (푝 )  be a sequence of positive number such that ∑ 푝 = 1. In the sequel we set 푝 =
0 and 

⋋ ≔ 푝 ,   푟 = 0,1, … ,∞. 

The hierarchical Laplacian ∆ on 푙 (푋) is defined by 

∆≔ 푝 퐸 . 

Clearly, ∆ is a bounded self-adjont operator and 0 ≤ ∆≤ 1. 
A hierarchical model is a hierarchical structure (푋, P, n) together with the hierarchical Laplacian ∆. 
The spectral properties of ∆ only depend on nand P and are summarized in: 
Theorem (3.2.1) [95]: (i) The spectrum of ∆ is equal to {⋋ : 푟 = 0, … ,∞}. Each ⋋ , 푟 < ∞, is an 
eigenvalue of ∆ of infinite multiplicity. The point ⋋ = 1 is not an eigenvalue. 
(ii) 퐸 − 퐸  is the orthogonal projection onto the eigenspace of ⋋  and 

∆= ⋋ (퐸 − 퐸 ). 

(iii) For every푥 ∈ 푋, the spectral measure for 훿  and ∆ is given by 

휇 =
1
푁 −

1
푁 훿(⋋ ), 

where 훿(⋋ ) stands for the Dirac unit mass at ⋋ . Note that 휇 does not depend on 푥. 
The spectra measure 휇 can be naturally interpreted as the integrated density of states of the operator 
∆. Let 푥 ∈ 푋 be given and consider the increasing sequence of clusters 푄 (푥 ), 푟 ≥ 0. Let 푃  be the 
orthogonal projection onto the 푁 -dimensional subspace. 

푙 푄 (푥 ) ≔ {휓 ∈ 푙 (푋):휓(푥) = 0 푓표푟푥 ∉ 푄 (푥 )}. 
Let 푒( ) ≤ 푒( ) ≤ ⋯ ≤ 푒( ), be the eigenvalues of the restricted Laplacian 푃 ∆푃  acting on 
푙 푄 (푥 )  and  

푣 ≔
1
푁 = 훿 푒( ) , 

the corresponding counting measure. 
Proof. For 푟 ≥ 0, let ℋ = 푅푎푛(퐸 ).ℋ  is the closed subspace of 푙 (푋) consisting of functions 
that are constant on each cluster of rank 푟. Note that  

푙 (푋) = ℋ ⊃ ℋ ⊃ ℋ ⊃ ℋ ⊃ ⋯ 
and that ⋂ℋ = {0} since a nonzero function constant on every cluster would have infinite 푙  nom. 
These observations yield that 

푙 (푋)
∞
⊕

푟 = 0
퐿 ,                                                                        (13) 

where 퐿  is the orthogonal complement of ℋ  in ℋ . Note that 퐿  is the infinite dimensional 
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subspace of function 휓 s.t. 퐸 휓 = 휓 for 0 ≤ 푠 ≤ 푟 and 퐸 휓 = 0 for 푠 > 푟. Hence for every휓 ∈
퐿 ,∆휓 =⋋ 휓, and this proves parts (1) (2). 
The spectral measure 휇 ,∆ for 훿  and ∆ is the unique Borel probability measure on ℝ s.t.  

〈훿 |푓(∆)훿 〉 = 푓(휉)푑휇 ,∆(휉),
ℝ

 

for every bounded Borel function 푓:ℝ → ℂ. To compute 휇 ,∆, we decompose 훿  according to (13): 

훿 = (퐸 − 퐸 )훿 =
1
푁 1푄 ( ) −

1
푁 1푄 ( ) , 

where 1푄 ( ) ≔ ∑ 훿∈ ( ) . Hence  

푓(∆)훿 = 푓(⋋ )
1
푁 1푄 ( ) −

1
푁 1푄 ( ) , 

and  

〈훿 |푓(∆)훿 〉 = 푓(⋋ )
1
푁 1푄 ( ) −

1
푁 1푄 ( ) . 

Since 1푄 ( ) − 1푄 ( ) = 1/푁 − 1/푁 , (3) follows. 

The analysis of the density of states of ∆ us facilitated if one introduces the cut-off Laplacians 

∆ ≔ 푝 퐸 ,               푟 ≥ 0. 

It is technically easier to work with ∆  than with 푃 ∆푃 . Note that 푙 (푄 (푥 )) is an invariant 
subspace for ∆ . One can exactly compute the eigenvalues and eigenvectors of restricted operator 
푃 ∆푃  acting on 푙 (푄 (푥 )). If 0 ≤ 푠 ≤ 푟, then every휓 ∈ 퐿 ∩ 푙 (푄 (푥 )) is an eigenvector of  
푃 ∆푃  with eiegnvalue ⋋ . The subspace 퐿 ∩ 푙 (푄 (푥 )) has dimension 퐷( ) ≔ 푁 (1/푁 −
1/푁 ) for 0 ≤ 푠 ≤ 푟 − 1, and the subspace 퐿 ∩ 푙 (푄 (푥 )) has dimension 퐷( ) ≔ 1. Since 
∑ 퐷( ) = 푁 , the spectrum of 푃 ∆  is equal to {⋋ : 푠 = 0, … , 푟} and each eigenvalue ⋋  has 
multiplicity퐷( ). 
Proposition (3.2.2) [95]: The weak-* limit lim

→
푣  exists and is equal to 휇. if  

lim
↓

log휇([1− 푡, 1])
log 푡 = 푑/2, 

then the number d is called the spectral dimension of ∆. This definition is motivated by the analogy 
with the edge asymptotic of the density of states of the standard discrete Laplacian on ℤ , for which 
the spectral and spatial dimensions coincide. 
The relation ∑ 〈훿 ∆훿 〉∈ = 1yields that ∆ generates a random walk on 푋. We recall that the 
random walk on ℤ  generated by the standard discrete Laplacian is recurrent if d =  1, 2 and 
transient if d > 2. The corresponding result for the hierarchical Laplacian is: 
Proposition (3.2.3) [95]: Consider a homogeneous hierarchical structure of degree 푛 ≥ 2. Suppose 
that there exist constants 퐶 > 0,퐶 > 0 and 휌 > 1 such that 

퐶 휌 ≤ 푝 ≤ 퐶 휌 . 
for 푟 bit enough. Then:  
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(i) The spectral dimension of the model is 

d(푛,휌) = 2
log푛
log휌. 

Hence 0 < 푑(푛, 휌) ≤ 2 if 푛 ≤ 휌. 
(ii) The random walk generated by∆ is recurrent if 0 < 푑(푛, 휌) ≤ 2 and transient if d(푛, 휌) > 2. 
We now define the hierarchical Anderson model associated to (푋, P, n) and the hierarchical 
Laplacian ∆. Consider the probability space (Ω,ℱ,ℙ) where Ω ≔ ℝ ,ℱ is the usual Borel 휎-
algebra in Ω, and ℙ is a given probability measure on (Ω,ℱ). For 휔 ∈ Ω, we set 

푉 ≔ 휔(푥)〈훿 |∙〉
∈

훿 . 

푉  is a self-adjoint (possibly unbounded) multiplication operator on 푙 (푋). Let  
퐻 ≔ ∆ + 푉 ,                휔 ∈ Ω. 

The family of self-adjoint operators {퐻 } ∈  indexed by the events of the probability space 
(Ω,ℱ,ℙ) is called the hierarchical Anderson model. 
Concerning the probability measure ℙ, we will need only one technical assumption having to do 
with the notion of conditional density. Throughout, 푚 will denote the Lebesgue measure on ℝ. For 
any푥 ∈ 푋,Ω can be decomposed along the 푥 ,th coordinate as Ω = ℝ × Ω,Ω = ℝ ∖{ }. Let ℙ  be the 
corresponding marginal of ℙ defined byℙ 퐵 ≔ ℙ ℝ × 퐵 , where 퐵 ⊂ Ω is a Borel set. Then for 
ℙ -a.e. 휔 ∈ Ω, there is a probability measure ℙ  on ℝ s.t. the conditional Fubini theorem holds: for 
all 푓 ∈ 퐿 (Ω,푃) we have. 

푓(휔)푑ℙ(휔) = 푓(휉,휔)
ℝ

푑ℙ (휉) 푑ℙ (휔). 

If for ℙ -a.e. 휔 ∈ Ω,ℙ  is absolutely continuous (a.c.) with respect to 푚, then we say that ℙ has a 
conditional density along the 푥 ,th coordinate. An important special case of a conditionally a.c. 
probability measure is the product measure ℙ = ⨂ ∈ ℙ , where each ℙ , is a probability measure 
on ℝ a.c. with respect to 푚. 
We denote by휎 (퐻 ) the absolutely continuous part of the spectrum of 퐻  and by휎 (퐻 ) the 
continuous part.  
Proof. Let 푣∗ be a weak-* limit point of the sequence 푣 . Let 푣  be a subsequence converging to 
푣∗. We claim that  

푣∗({⋋ }) = 휇({⋋ }),                                                   (14) 
for all 푠 ≥ 0. Indeed, let 훿 ≔ min ⋋ −⋋ /2 and 0 < 휀 < 훿/3. Since ‖푃 ∆푃 − 푃 ∆ ‖ ≤
∑ 푝 , we have that ‖푃 ∆푃 − 푃 ∆ ‖ ≤ 휀 for all 푟 big enough. For such 푟, the spectrum of ∆ ∆  
is contained in ⋃ ⋋ − 휀,⋋ + 휀 . Let 푅 be the spectral projection of 푃 ∆푃  on [⋋ − 휀,⋋ + 휀] and 
푇 the spectral projection of 푃 ∆푃  on the same interval. Let 훾 be the circle {푧 ∈ ℂ: |푧 −⋋ | = 훿}, 
oriented counterclockwise. Then  

푅 − 푇 =
1

2휋푖
(푧 − 푃 ∆푃 ) 푑푧

−
1

2휋푖
(푧 − 푃 ∆ ) 푑푧 =

1
휋푖

(푧 − 푃 ∆푃 ) (푃 ∆푃 − 푃 ∆ ) (푧 − 푃 ∆ ) 푑푧, 
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and thus 
‖푅 − 푇‖ ≤ 훿(2훿/3) 휀(2훿/3) ≤ 3/4 < 1. 

It follows that 푅푎푛(푅) and 푅푎푛(푇) have the same dimension and that 

≠ 푠: 푒( ) ∈ [⋋ − 휀,⋋ + 휀] = 퐷( ). 
Then for all 푘 big enough 

푣 ([⋋ − 휀,⋋ + 휀]) = 퐷( )/푁 = 1/푁 − 1/푁 . 
Letting 푘 → ∞, we get 푣∗([⋋ − 휀,⋋ + 휀]) = 1/푁 − 1/푁 , and (14) follows by taking 휀 ↓ 0. 
Since ∑ (1/푁 − 1/푁 ) = 1 and 푣∗ is a probability measure, we must have that 푣∗ = 휇. 
Therefore 휇 is the unique weak-* limit point of the sequence 푣  and lim

→
푣 = 휇. 

Note that 휇([1− 푡, 1]) is a piecewise constant function of 푡 with jump discontinuities at the points 
1 −⋋ . Since  

퐶 (휌 − 1) 휌 ≤ 1 −⋋ = 푝 ≤ 퐶 (휌 − 1) 휌 , 

and 휇([1 −⋋ , 1]) = 1/푁 = 푛 , we have that  

lim
↓

log휇([1− 푡, 1])
log 푡 =

log푛
log휌 , 

which proves (i). 
The random walk on 푋 starting at 푥 is transient if 푅 ≔ ∑ 〈훿 |∆ 훿 〉 < ∞ and recurrent if 푅 =
∞. Part (iii) of Theorem (3.2.1) allows to compute 푅 explicitly: 

푅 = 〈훿 |(1− ∆) 훿 〉 =
푑휇(휉)
1 − 휉 =

푁 − 푁
1 −⋋ . 

The bounds  

퐶 (휌 − 1)(1− 1/푛) (휌/푛) ≤ 푅 ≤ 퐶 (휌 − 1)(1− 1/푛) (휌/푛)  

show that 푅 < ∞ for 휌 < 푛 and 푅 = ∞ for 휌 ≥ 푛, and part (2) follows. 
We first derive a hierarchical approximation formula for the resolvent (퐻 − 푧) . Then we use the 
formula to obtain a bound on the resolvent matrix elements. This bound combined with the Simon-
Wolff localization criterion yields the statement. 
Set  

퐻 , ≔ 푉 + 푝 퐸 ,     푟 ≥ 0. 

Fix 휔 ∈ Ω. For any푄 ∈ 풫 , the subspace 푙 (푄 ) is invariant for 퐻 , . Let 휎(휔,푄 ) be the set of the 
eigenvalues of the restricted operator 퐻 , ↾ 푙 (푄 ) and 휎 :⋃휎(휔,푄 ) where the union is over all 
clusters of all ranks. Clearly, 휎  is a countable subset of ℝ. For 푧 ∈ ℂ ∖ 휎 , 푟 ≥ 0, and 푥, y ∈ 푋, we 
set 

퐶 , (푥, y; 푧) ≔ 〈훿 퐻 , − 푧 훿 〉. 
For 푧 ∈ ℂ ∖ 휎 , 푟 ≥ 0 and 푡 ∈ 푋, let 푔 , (푡; 푧) be the average of 퐶 , (∙, 푡; 푧) over the cluster 푄 (푡), 
i.e. 
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푔 , (푡; 푧) ≔
1
푁 퐶 , (푡 , 푡; 푧).

( , )

 

Since the joint spectral measure for 훿 , 훿  and 퐻 ,  is real, 퐶 , (푡 , 푡; 푧) = 퐶 , (푡, 푡 ; 푧) and  

푔 , (푡; 푧) =
1
푁 퐶 , (푡, 푡 ; 푧) =

1
푁

〈훿 | 퐻 , − 푧 ퟏ ( )〉
( , )

.                               (15) 

 
Proposition (3.2.4) [95]: Let 휔 ∈ Ω, 푥, y ∈ ℂ ∖ 휎  and 푟 ≥ 0 be given. Then  

퐶 , (푥, y; 푧) = 퐶 , (푥, y; 푧) − 푝 푁 푔 , (y; 푧).
( , )

(16) 

Proof. The formula holds for 푟 = 0 since 푝 = 0. For 푠 ≥ 1, the resolvent identityyields. 

퐻 , − 푧 훿 − 퐻 , − 푧 훿 = − 퐻 , − 푧 푝 퐸 퐻 , − 푧 훿  

Observe that 퐸 퐻 , − 푧 훿 = 푔 , (y; 푧)1 ( ). Taking 〈훿 | ∙〉 in the above equation yields 

퐺 , (푥, y; 푧)− 퐺 , (푥, y; 푧) = −푝 푔 , (y; 푧) 〈훿 | 퐻 , − 푧 1 ( )〉 .                   (17) 
Note that by (15), 

〈훿 | 퐻 , − 푧 1 ( )〉 =
푁 푔 , (푥; 푧), 푖푓푑(푥, y) ≤ 푠,
0,                            푖푓푑(푥, y) ≤ 푠, 

The formula (16) follows after adding (17) for 푠 = 1,2, … , 푟 
Theorem (3.2.5) [95]:  Suppose that 푝  and 푁  satisfy (24). Let 휔 ∈ Ω and 푥 ∈ 푋 be fixed. Then 
for 푚-a.e. 푒 ∈ ℝ ∖ 휎 , 

sup 퐺 , (푥, y; 푒) < ∞.
∈

(18) 

Proof. We shall use the following general results, proven in [M2]: 
Let 퐴 be a hermitian 푁 × 푁 matrix and 푣 ∈ ℂ . Then for all 푀 > 0. 

푚({푒:‖(퐴 − 푒) 푣‖ ≥ 푀}) ≤ 4
푁
푀
‖푣‖ ,                                  (19) 

where ‖∙‖  stands for the 푙  norm on ℂ . 
Since 푙 (푄 (푥)) is an 푁 -dimensional invariant subspace for 퐻 ,  and since 1 ( ) = 푁 , we 
have from (19) that for 푀 > 0, 

푚 푒 ∈ ℝ ∖ 휎 : 퐻 , − 푒 1 ( ) ≥ 푀 ≤
4푁
푀

. 

Let 푀 > 0 be a sequence satisfying ∑ 푁 푀 / < ∞. By the Borel-Cantelli lemma, for 
푚, 푒. 푒푒 ∈ ℝ ∖ 휎 , there exists a finite constant 퐶  such that 

퐻 , − 푒 1 ( ) < 퐶 푀 ,                                        (20) 

for all 푟 ≥ 0. From now on, such an 푒 ∈ ℝ ∖ 휎  is fixed. Using the representation formula (16), we 
get the estimate. 

∑ 퐺 , (푥, y; 푒)∈
/
≤ 퐺 , (푥, 푥; 푒) ∑ 푝 푁 푔 , (푥; 푒) ∑ 푔 , (y; 푒)( , ) (21) 

Observe that  
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푔 , (y; 푒)
( , )

/

=
1
푁
〈훿 | 퐻 , − 푒 1 ( )〉

( , )

/

=
1
푁

〈훿 | 퐻 , − 푒 1 ( )〉
( , )

/

=
1
푁 퐻 , − 푒 1 ( ) . 

Inequality (20) gives the bound 

푔 , (y; 푒)
( , )

/

≤ 퐶 / 푀
푁 .                                                    (22) 

Moreover, 

푁 푔 , (푥; 푒) = 〈훿 | 퐻 , − 푒 1 ( )〉 ≤ 퐶 / 푀 .    (23) 
Combination of (21) with (23) and (22) yields the estimate  

퐺 , (푥, y; 푒)
∈

/

≤ 퐺 , (푥, 푥; 푒) + 퐶 푝
푀 푀
푁 . 

By hypothesis (24), the sequence 푀 = (푢 푁 )  satisfies 

푁 푀 / = 푢 < ∞. 

Since  

푝
푀 푀
푁 = 푝 푁 푢 푢 < ∞, 

the result follows. 
Let us recall the Simon-Wolff localization criterion. For 푥 ∈ 푋 and 휔 ∈ Ω, denote by휇  the spectral 
measure for ∆ + 푉  and 훿 , by휇 ,  the continuous part of 휇  and by휇 ,  the a.c. part. Define the 
function 퐺 , :ℝ → [0, +∞] by 

퐺 , (푒) ≔
푑휇 (⋋)
(푒 −⋋) = lim

↓
‖(∆ + 푉 − 푒 − 푖휖) 훿 ‖ .

ℝ
 

By the Theorem of de la Valle Poussin,  

푑휇 , (푒) = 휋 lim
↓
‖(∆ + 푉 − 푒 − 푖휖) 훿 ‖ 푑푒. 

Hence, if for a fixed 휔 ∈ Ω we have that 퐺 , (푒) < ∞ for 푚-a.e. 푒 ∈ ℝ, then 휇 , = 0. 
The Simon-Wolff localization criterion is summarized in: 
Theorem(3.2.6) [95]: Assume that ℙ has a conditional density along the 푥’th coordinate. Let 퐵 ⊂
ℝ be Borel set such that 퐺 , (푒) < ∞ for ℙ⊗푚-a.e. (휔, 푒) ∈ Ω × 퐵. Then 휇 , (퐵) = 0 푓표푟 ℙ-
a.e. 휔 ∈ Ω. 
Theorem (3.2.6) is a well known consequence of the rank-1 Simon-Wolff theorem [115] and the 
conditional Fubini theorem. 
Theorem (3.2.7) [95]: Assume that there exists a sequence 푢 > 0 such that ∑ 푢 < ∞ and 
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푝 푁 푢 푢 < ∞.                                 (24) 

Then:  
(i) For all 휔 ∈ Ω, 휎 (퐻 ) = ∅. 
(ii) If ℙ is conditionally 푎. 푐. then 휎 (퐻 ) = ∅ 푓표푟 ℙ-a.e. 휔. 

Proof. Fix 휔 ∈ Ω and fix 푒 ∈ ℝ ∖ 휎  for which the bound (18) holds. By monotone convergence  
푑휇 (⋋)
(푒 −⋋) = lim

↓

푑휇 (⋋)
(푒 −⋋) + 휖 = sup

푑휇 (⋋)
(푒 −⋋) + 휖ℝℝℝ

. 

Since for any 푧 ∈ ℂ ∖ ℝ, 
lim
→

퐻 , − 푧 − (퐻 − 푧) = 0. 

we have that the weak-* limit lim
→

휇 ,  equals 휇 , where 휇 ,  is the spectral  

푑휇 (⋋)
(푒 −⋋) = sup lim

→

푑휇 , (⋋)
(푒 −⋋) + 휖 ≤ sup

,

푑휇 , (⋋)
(푒 −⋋) + 휖ℝℝ

= sup
푑휇 , (⋋)
(푒 −⋋)ℝℝ

= sup 퐻 , − 푒 훿 = sup 퐶 , (푥, y) < ∞.
∈

 

In the final equality we used the fact that 훿 : y ∈ 푋  is an orthonormal basis for 푙 (푋). Since 
푚(휎 ) = 0 and since the bound (18) holds for 푚-a.e. 푒 ∈ ℝ ∖ 휎 , we have that for every fixed 휔 ∈
Ω,퐺 , (푒) < ∞ for 푚-a.e. 푒 ∈ ℝ. This proves part (i). Part (ii) follows from the fact that 퐺 , (푒) <
∞ for ℙ⊗푚-a.e. (휔, 푒) ∈ Ω × ℝ and the Simon-Wolff criterion. 
Remark (3.2.8) [95]: Theorem (3.2.7) and Proposition (3.2.3) allow to construct hierarchical 
models with spectral dimension d ≤ 2 that exhibit Anderson localization at arbitrary disorder. If 
(푋, P, n) is a homogeneous hierarchical structure of degree 푛 ≥ 2 and 푝 = 퐶휌  with 휌 > 푛, then 
the hypothesis (24) is fulfilled for 푢 = 푟 . Given 0 < 푑 < 2, one can adjust 휌 > 푛 to make 
d(푛, 휌) = d. If 푝 = 퐶푟 푛 , then the model has spectral dimension d = 2 and (24) is verified 
for 푢 = 푟 / . One can also construct trivial models with d = 0 by taking 푝  to decrease faster 
than 휌  for any휌. We emphasize that homogeneity of the hierarchical structure is not required for 
Theorem (3.2.7). 
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Chapter 4 
Endpoint Maximal and Space-TimeEstimates 

For 훼 > 1we consider the initial value problem for the dispersive equation푖휕 푢 + (−∆) ⁄ 푢 =
0.We show an endpoint퐿 inequality for the maximal function sup

∈[ , ]
|푢(∙, 푡)|with initial values in 퐿 -

Sobolev spaces, for 푝 ∈ (2 + 4 (푑 + 1),∞⁄ ). 
 
Section (4.1): Smoothing Estimates for Schrödinger Equation 
For α 1 we consider L  estimates for solutions to the initial value problem 

i∂ u + (−∆) ⁄ u = 0
u(. ,0) = f.

 

The case α = 2 corresponds to the Schrodinger equation. We will not consider α = 1 which 
corresponds to the wave equation and exhibits different mathematical features. 
When fis a Schwartz function, the solution can be written as u(x, t) = U f(x),      where          

U f(ξ) = e | | f(ξ)                                                 (1) 
with f(ξ) = ∫ f (y)e 〈 . 〉dy as the definition of the Fourier transform. The sharp end point 
L -Sobolev bounds for fixed t are due to Fefferman and Stein [31] and Miyachi [37]. Their result 

states that for any compact time interval I and anypϵ(1, ∞), sup
t ∈ I‖U f‖ ℝ , = d − ; 

This is sharp with respect to the regularity index β and can also be deduced from 
certain endpoint versions of the Hörmander multiplier theorem (96, 103). 
We strengthen the fixed time estimates as follows. 
Theorem (4.1.1) [108]:Letpϵ 2 + , ∞ and α > 1. Then, for any compact time interval I, 

∥ sup
t ∈ I|U

α
t f| ∥ ℝ ≤ C , , ∥ f ∥ ℝ ʼ

β
−
α

= d − .                                       (2) 

This implies point wise convergence results; indeed we shall prove a little more, namely if  χϵ 
C∞

e (ℝ) then the function t ⟼ (t)Uαt f(x) belongs to the Besov space B ⁄ . (ℝ), for almost 

every xϵℝ . These functions are continuous (for almost everyx) and there for this implies almost 
everywhere convergence to the initial datum as t ⟶ 0. 
The maximal function result is closely related to certain space-time estimates which improve the 
regularity index. The first such bounds are due to Constantin and Saut [29], Sjölin [15], and vega 
[24] who showed that better L  regularity properties that hold locally when αϵ(1, ∞); namely, if 
fϵL ( )⁄ ℝ  then uϵL ℝ . However it is not possible to replace the L -norms over 
compact sets byL -norms which are global in space. This is known as the local smoothing 
phenomenon. For functions in L  -Sobolev spaces the various local and global problems for 
smoothing and for maximal operators have received a lot of attention, starting with [4]. We do not 
have a contribution to the L  –Sobolev problems but rather consider corresponding questions with 
initial data in L  –Sobolev spaces for p > 2, wit p not close to 2. 
In [46]  considered L  regularity estimates which are global in space but involve an integration over 
a compact time interval 1, 
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‖U f‖ dt
⁄

≤ C ‖f‖ ℝ .                                                            (3) 

This question was motivated by the similar (although deeper) question for the wave equation 
(cf. [41]). In [46], it was proven that (3) holds for α = 2 when p > 2 + 4 (d + 1)⁄ with 
β 2 > d(1 2− 1 p⁄⁄ ) − 1 p.⁄⁄  We remark that smoothing results of this type could also be deduced 
from square-function estimates related to Bochner-Riesz multipliers such as in [27], [98], [102] and 
[36] however these arguments do not apply when d = 1, an din dimensions p ≥ 2 they are currently 
limited to the smaller range p > 2 + 4 d.⁄  
The L  smoothing result in [46] was obtained from an L → L  estimate for the adjoint Fourier 
restriction (or ‘extension’) operator associated to the paraboloid, and the range p > 2 +   
corresponds to the known range ofL → L  bounds for the extensions operator; see [99], [100] and 
[107] for the sharp bounds when d = 2. The reduction in [46] to the extension estimate used the 
explicit formula  

e ∆ƒ(퓍) =
1

(4πit) ⁄ e |퓍 | ⁄ ( )  

Together with ‘completing of the square’ trick; see [28] for similar argument. Unfortunately this 
reasoning is not available when α ≠ 2. 
We generalize to all α > 1, and establish the endpoint regularity result. 
Theorem (4.1.2) [108]:  Letp ∈ 2 +  ,   ∞ andα > 1. ThenforanycompacttimeintervalI. 

‖U ‖ dt
⁄

≤ C , , ‖f‖ ℝ , = d − − . 

In Theorem (4.1.9) below we formulate a slightly improved version of this result which canalso be 
used to prove Theorem (4.1.1) We remark that for d = 1 our argument also give the analogous 
results for the range 0 < α < 1. 
We mention an application  in one spatial dimension where we obtain sharp estimates for the initial 
value problem for the Airy equation 

u + u = 0.                                                              (4) 
For f ∶= u(. ,0) a Schwartz function, we can write u(. , t) = U p + f + U p − f, where p  and p  
are the projection operators with Fourier multipliers χ( ,∞) and χ( ∞, ), respectively. 
Thus, for initial values in L  the solution of (4) satisfies the sharp bound 

‖u‖ (ℝΧ[ . ]) ≤ C ‖u(. ,0)‖ (ℝ),β = ( ), 4 < p < ∞. 

And if  u(. , 0)ϵL (ℝ) for anyε > 0 with 2 < p ≤ 4, thenuϵL (ℝ × ⌊−T, T⌋). 
The proofs will be based on the bilinear adjoint restrictions theorem for elliptic surfaces due to Tao 
[21], having discussed the necessary conditions, we combine Tao’s theorem with a variation of a 
localization technique employed in [30] to prove L  estimates for same oseillatory integrals with 
elliptic phases; this yields the smoothing estimate for functions which are frequency supported in 
annulus. we extend to the general case by decomposing the Fefferman-Stein sharp function; here we 
use a variant of an argument in [103]. 
Throughout, c and C will denote positive constants that may depend on the dimension, exponents or 
indices of the Sobolev spaces, or the parameter α, but never on the functions. Such constants are 
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called admissible and their values may change from line to line. We shall mostly use the notation 
A ≲ B if A ≤ CB for an admissible constant C. We may sometimes indicates the dependence on a 
specific parameter c by using the notation ≲. We write A ≈ B if A ≲ B and B ≲ A. 
Let θ be a nonnegative and smooth function supported in {2 < |ξ| < 2} and equal to 1 in 2 / <
|ξ| < 2 / . For large ⋋, we consider initial data f⋋ defined byf⋋(ξ) = e | | θ(⋋ ξ) and note 
that, by a change of variables, 

f⋋(퓍) =
⋋

2π θ(ξ)e (〈⋋퓍. 〉 ⋋ | | )dξ 

Thus |f⋋(퓍)| ≲⋋  , by the method of the stationary phase (keeping in mind that α ≠ 1). On the 
other hand, when |퓍| ⋋ , by repeated integration by parts, there exists constants C  such that 
|f⋋(퓍)| < C (|퓍| ⋋ )  for all N ∈ ℕ. Combining the low bounds, we see that 

‖f⋋‖ ℝ ≈⋋ ‖f⋋‖ ℝ ≲⋋
( ) . 

Next we consider 

Uαi f⋋(퓍) =
⋋

2π θ(ξ)
ℝ

e 〈⋋ , 〉 ⋋ ( ) | | dξ , 

So when |퓍| ≤ (10 ⋋)  and |t− 1| ≤ (10⋋ ) , we have U f⋋(퓍) ≥ c ⋋  for some positive 
constantc. Thus, 

‖U f⋋‖ dt
( ⋋ )

/

≥ C ⋋ . 

Comparing this with upper bound for ‖f⋋‖ ℝ , and letting ⋋→ ∞, we see that 

β α ≥ d(1 2− 1 p⁄⁄ )− 1 p⁄⁄  is necessary condition for (3) to hold when α ≠ 1. 
 Note that alternatively one can argue that by Sobolev embedding any improvement in the 
smoothing would give a better fixed time estimate than the sharp known bounds in [31], [37], which 
is impossible. 
The range p > 2 + 4 (d + 1)⁄  for the smoothing estimate in Theorem (4.1.2) is sharp for d = 1, and 
for d ≥ 2 it is conceivable that it holds for p > 2 + 2 d,⁄  see [46]. 
For Theorem (4.1.1) however our range may not be sharp even in one dimension. We can say that 
the maximal estimate (2) cannot hold when p + 1 d.⁄  this follow from the necessary condition 
β α⁄ ≥ 1 2p⁄  which we now show, modifying a calculation in [6]. 
Let χ be a nonnegative and smooth function supported in (−ε, ε) where ε will be small depending 
only on α, Let e = (1,0, … ,0) and define 

g⋋(퓍) =
1

(2π) χ ⋋ |ξ + ℯ | e (퓍. ) dξ. 

Then immediately 

‖g⋋‖ ≲⋋
( )

. 

Now 

U g⋋(퓍)
( )

χ(⋋ |ξ +⋋ e |)e (〈퓍, 〉 | | )dξ 
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=
( )

χ (χ |h|)e ⋋(퓍, , )dh 

Where ϕ ⋋ (퓍, t, h) = t ⋋ |−e + h ⋋⁄ | + 〈퓍,− ⋋ e + h〉. A Taylor expansion gives for term in 
the phase is ≪ 1 on the support of the cutoff function (provided that ε is sufficiently small). 
Let 0 < c ≪ α and let R be the rectangle where 0 ≤ 퓍 ≤ c ⋋ , and |퓍 | ≤⋋( )⁄  for i =
2 … . , d. We define t(퓍) = α ⋋ 퓍  for 퓍 ∈ R so that t(퓍) ∈ [0,1] for 퓍 ∈ R, and for 퓍 ∉ R we 
may choose any (measurable) t(퓍) ∈ [0,1]. Then for 퓍 ∈ R, we have U 퓍 ⋋(퓍) ≥ c ⋋ ( )⁄  
and thus 

sup
0 ≤ s ≤ 1|U g⋋| ≥ ‖U g ⋋‖ ≳⋋

( )( ) ( )

. 

Comparing with upper bond for ‖g ⋋‖  leads to the condition β α ≥ 1 2p.⁄⁄  

We will rescale inequalities for U  when acting on functions with compact frequency support. This 
process will give rise to the operator S define by 

Sf(퓍t) ≡ S∅f(퓍, t) =
( )

χ(ξ)e ∅( ) f(ξ)e (퓍, )dξ                         (5) 

Where χ ∈ C∞(풰) and ∅is elliptic  C∞ function ϕ on an open set 풰 in ℝ  is called elliptic if for ever 
ξ ∈ ι the Hessian ϕ  is positive define. 
We ask for L − ℝ × [0,⋋]  bounds for S. Note that for |t| ≤ 1 and χ ∈ C∞ the function χe  is 
Fourier multiplier of L , 1 ≤ p ≤ ∞, and consequently the question is only nontrivial for large ⋋. 
The key ingredient will be Tao’s bilinear estimate for the adjoint restriction operator [21] which 
applies to phase which are small perturbations 0f |ξ| 2.⁄  We need to formulate more specific 
assumptions on the phases allowed and follow [105]. LetN ≥ 10d. We sayϕ ∶ [−2,2] → ℝ is a 

class Ф(N, A) if ∂퓍 ϕ(퓍) ≤ A for all 퓍 ∈ [−2,2]  and all α ≤ N, where j = 1 … . , d. To add an 

ellipticity condition we say that ϕ is of class Ф (ε, N, A) if ϕ(0) = ∇ϕ(0) = 0, and if for all 퓍 ∈
[−2,2]  the eigenvalues of the Hessian ϕ (퓍) lie in [1− ℰ, 1 + ℰ]. 
We define the adjoint restriction operator ℰ ≡ ε  by 

εh(퓍, t) = e 〈 , 〉 ( )h(ξ)dξ h
[ , ]

 

So that Sf = (2π) εf ,where u = (−2,2) . Now Tao’s theorem can be stated as follows: Suppose 
p > 2 + . Then there exists an N (depending on d andp) and for A ≥ 1 there exists ε =
ε(A, N, d, p) > 0 so that the following holds for ϕ ∈ Ф(ε, N, A): For all pairs of L  functions h , h  
so that dist(supp (h ), supp(h ))≥ c > 0 the inequality 
‖εh h ‖ ⁄ ≲ ‖h ‖ ‖h ‖ , p > 2 +  ,                                                      (6) 
Holds. In what follows we fix N, A and ε for which Tao’s theorem applies. The constants may all 
depend on these parameters. 
Lemma (4.1.3) [108]: Letp > 2 + ,퐵 ,퐵 ⊂ [−1, 1]  be bals so that dist (퐵 ,퐵 )푐, and let 
ϕϵФ (ε, N, A). Then for ff, g with supp f ⊂ B  supp f ⊂
B , ‖SfSg‖ ⁄ ℝ ×[ ,⋋] ≲ . ⋋ ( ⁄ ) ‖f‖ ℝ g (ℝ ). 

Proof.LetC = 10 1 + 횖횊횡ℇ [ , ] |∇ϕ(ξ)| , and letȠ ,Ƞ ϵC∞ be supported in (−2,2)  so that 
Ƞ (ξ) = 1 on B  and Ƞ (ξ ) = 1 on B . Moreover assume that Ƞ  and Ƞ  are supported 
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onlyslightly larger concentric balls B , B  with property that dist B , B ≥ c 2.⁄  We also set 
P f = ℱ Ƞ f ,        i = 1,2. 

Let K = ℱ e Ƞ χ , for i = 1,2, so that 
S f(퓍, t) ∶= SP f(퓍, t) = K ∗ f(퓍). 

Then SfSg = S fS g. We first note that for all t ∈ [−⋋,⋋] 

K |퓍| ≲ |퓍| ,       if |퓍| ≥ C ⋋                                        (7) 

This follows by a straightforward N-fold integration by parts, which uses the inequality ∇ 〈퓍, ξ〉 +
tϕ(ξ) ≥ |퓍| 2⁄  if |퓍| ≥ C ⋋, |t| ≤⋋. 
Now let 풬(⋋) to be a tiling of ℝ  by cubes of sidelength ⋋, and for each Q ∈ 풬(⋋) let햰∗ denote the 
enlarged cube with sidelength 2C ⋋, with same center as 햰. For each cube we split each function 
into a part supported푄∗and a part supported in its complement. 
Thus we can write 

‖SfSg‖ ⁄ ℝ ×[ ,⋋]
⁄ = I + II + III + IV 

Where 

I = S fχ햰∗ S gχ햰∗ ⁄ (햰×[ ,⋋])

⁄

햰∈풬(⋋)

 , 

II = S fχ햰∗ S gχℝ \햰∗ ⁄ (햰×[ ,⋋])

⁄

햰∈풬(⋋)

 , 

III = S fχℝ \햰∗ S gχ햰∗ ⁄ (햰×[ ,⋋])

⁄
 ,

햰∈풬(⋋)

 

IV = S fχℝ \햰∗ S gχℝ \햰∗ ⁄ (햰×[ ,⋋])
⁄

 ,
햰∈풬(⋋)

 

The first term gives the main contribution and estimated using Tao’s theorem, i.e. (6). One obtains, 

|I| ≤ SP fχ햰∗ SP gχ햰∗ ⁄ ℝ ×ℝ

⁄
≲ P gχ햰∗

⁄
P gχ햰∗

⁄

햰∈풬(⋋)

 

≲ fχ햰∗
⁄

gχ햰∗
⁄

햰

≲ fχ햰∗
햰

⁄

gχ햰∗
햰

⁄

 

By Hölder’s inequality, 

fχ햰∗
햰

⁄

≲ |햰∗| ⁄ fχ햰∗
햰

⁄

≲⋋ ( ⁄⁄ ) ‖f‖ , 

And we have the same estimate for g. Thus I ⁄ ≲ ⋋ ( ⁄ ) ‖f‖ ‖g‖  which is the desired bound 
for the main term. 
The corresponding estimates for II, III, IV are straightforward as we use (7) for the terms supported 
in ℝ ∖ 햰∗. We examines II and begin with 
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|II| ≲ S fχ햰∗ (햰×[ ,⋋])

⁄

햰∈풬(⋋)

S gχℝ ∖햰∗ (햰×[ ,⋋])
⁄

 

≤ ∑ S fχ햰∗ (햰×[ ,⋋])햰∈풬(⋋)
⁄

∑ S fχℝ (햰×[ ,⋋])햰∈풬(⋋)
⁄

     (8) 

We use the trivial bound ‖S f(. , t)‖ ≲ (1 + |t|) ‖f‖  for f replaced with fχ햰∗ , so that the first 

factor in (8) is bounded by C ⋋ ‖f‖
⁄

. By (7) we get 

S gχℝ ∖햰∗ (햰×[ ,⋋])
⁄

⁄

 

≲ |z| |g(퓍 − z)|dz
| | ⋋

d퓍dt
퓍∈ℝ

⋋

⋋

⁄

≲⋋ ‖g‖ . 

Hence II ⁄ ≲ ⋋ ( ) ‖f‖ ‖g‖ . As N ≥ 10d this estimate is negligible. Because of 
symmetryIII is estimated by the same term. For the estimation of IV we proceed in the same way but 
use (7) for both terms, the result is the (again negligible) bound IV ⁄ ≲⋋ ‖g‖ . 
We now formulate an analogous result for functions with smaller frequency support and smaller 
separation. 
Lemma (4.1.4) [108]: Let p > 2 +  and ⋋ ⁄ ≥ 2 ≥ 1. LetQ , Q ⊂ [−1,1]  be cubes of side 
2 ⋋ ⁄ , so that dist (Q , Q ) ≥ c2 ⋋ ⁄  and let  ϕϵФ (ε, N, A). Then for all 푓 and 푔 such that 

supp f ⊂ Q ,‖Sf(Sg)‖ ⁄ ℝ ×[ ,⋋] ≲ 2 ⋋ ‖f‖ ℝ ‖g‖ ℝ . 

Proof.By finite partitions and the triangle inequality, we may suppose that Q  and Q  are balls of 
radius 2 ⋋ ⁄ . We reduce matters to the statement of Lemma (4.1.3) by scaling. Let ξ  be 
midpoint of the interval connecting the center of the balls. We change variables ξ = ξ + δη where 
δ = 2 ⋋ ⁄ . Then a short computation shows that 
SФf(퓍, t) = e 〈퓍, 〉 ( ) S f∗ δ 퓍 + t∇ϕ(ξ ) , δ t  where f∗(y) = f(δ y)e 〈 , 〉 and the 
phase ψ is given by 

ψ(η) = 〈ϕ (ξ + sδη)η, η〉ds. 

 
The same consideration is applied to S g. Note that ψ is elliptic (with estimates uniform in ξ  and 
δ) and the frequency supports of f∗ and g∗ are now separated, independently of δ, jand ⋋. Thus we 
can apply Lemma (4.1.3) to obtain 

S fS g ⁄ ℝ ×[ ,⋋] = δ ( ) ⁄⁄ S f∗S g∗ ⁄ ℝ × ,⋋  

≲ δ ( )⁄ (⋋ δ ) ( ⁄ )‖f∗‖ ‖g∗‖  
≲ δ ( )⁄ ⋋ ( ⁄ ) ‖f‖ ‖g‖ . 

As δ = 2 ⋋ ⁄  the assertion follows. 
We will also require the following lemma for when we have no frequency separation. 
Lemma (4.1.5) [108]: Let 푃 ≥ 1, let 푄 ⊂ [−1, 1]  be a cube of side ⋋ ⁄ , and let 휙 휖 ∅ (푁,퐴). 
Then for all 푓 such that supp 푓 ⊂ 푄, ‖푆푓(∙, 푡)‖ (ℝ ), |푡| ≤⋋. 
퐏퐫퐨퐨퐟. Letξ  bethecenterofthecubeQ,   and let χϵC∞ so that χ(ξ) = for |ξ| ≤ √d. It suffices to 
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show that χ(⋋ ⁄ (ξ − ξ ))e ( ) is a Fourier multiplier of  L for all |t| ≥⋋,  with bound uniform in 
t. By modulation, translation and dilation invariance of the multiplier norm it suffices to check that 
h(. , t) defined by 

h(η. t) = χ(η)e ⋋ ⁄ ( ) 〈⋋ ⁄ .∇ ( )〉 . 
is a Fourier multiplier of  L , uniformly in |t| ≥⋋. However this follow since ∂ h(η, t) = O(1)for 
|t| ≤⋋ as one can easily check. 
Propsition (4.1.6) [108]: Lets > 2 + , χ ∈ C∞(풰), andletϕbeanellipiticphaseon풰. Then 

‖Sf‖ ℝ ×[ ⋋,⋋] ≲⋋ ( ⁄⁄ )‖ ‖
ℝ . 

퐏퐫퐨퐨퐟.By partition of unity and compactness argument it suffices to show that for everyξ ∈ 풰 
there is neighborhood 풰(ξ ) so that the statement of the theorem holds with χ replaced byχ ∈ C∞ 
supported in 풰(ξ ). Now let ℋ be the (symmetric) positive definite square root of ϕ (ξ ) and let 

ψ(η) = ε (ϕ(ξ + ε ℋ η) − ϕ(ξ ) − ε 〈ℋ η,∇ϕ(ξ )〉). 
Then it suffices to show that S (defined with amplitude χ(ξ + ε ℋ η)) satisfies the asserted 
estimates, with a dependence on ε . If ε  is chosen sufficiently small then we have reduced matters 
to a phase function in Φ ( , , ) with parameters for which Tao’s Theorem and therefore Lemma 
(4.1.4) applies. 
 We now return to our original notation and work with ϕ a phase function but assume now that ϕ ∈
Φ ( , , ); we may also assume that the amplitude function χ is smooth and supported in 
[−(2d) , 2d ] . We make a decomposition of the product SfSgin terms of bilinear operators, 
localizing the frequency variables in terms of nearness to the diagonal in (ξ, η)-space; this is similar 
to arguments in [34], [104] and [105]. 
Let χ  be a radial C∞ ℝ  function so that χ (ω) = 1 for |ω| ≤ 8d ⁄  and so that supp χ  is 
contained in ω ∶  |ω| < 16d ⁄ . Fix ⋋> 1 and set 

Θ (ξ,η) = χ (⋋ ⁄ (ξ − η)) 
Θ (ξ, η) = χ (⋋ ⁄ 2 (ξ − η)) − χ (2 ⋋ ⁄ 2 (ξ − η)),   j ≥ 1,  
So that Θ  is supported where |ξ − η| ≥ 16d ⁄ ⋋ ⁄  and, Θ  is supported in the region 

4d ⁄ 2 ⋋ ⁄ ≤ |ξ − η| ≥ 16d ⁄ ⋋ ⁄ . 
We may then decompose 

SfSg = B [f, g] 

Where 

B [f, g](퓍, t) =
( )

e ( , )e ( ( ) ( ))Θ (ξ,η)f(ξ)g(η)dξdη 

Only values of j ≥ 0 with 2 ≤⋋ ⁄  will be relevant, as otherwise B  is identically zero. We will 
prove the estimate 

B [f, g]
⁄
≲

2 ( ) ⋋ ‖f‖ ‖g‖ ,                       ( ) ,

2 ( ) ⋋
( )

‖f‖ ‖g‖ ,           4 < p < ∞
  (9) 

And use this to bound 
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‖Sf‖ ℝ ×[ ,⋋] = ‖(Sf) ‖ ⁄ ℝ ×[ ,⋋]
⁄ ≤ B [f, f]

⁄
⋋ ⁄

 

And then sum a geometric series. 
In order to prove (9), we decompose B  into pieces on which we may 
apply Lemma (4.1.4) Let ϑ ∈ C∞ ℝ  a function supported in [−3 5⁄ , 3 5⁄ ] , equal to 1 on 
[−2 5⁄ , 2 5⁄ ] , and satisfying 

ϑ(ξ − n) = 1
∈ℤ

 

For all ℤ ∈ ℝ . For j ≥ 0, n ∈ ℤ , define 
β . (ξ) = ϑ ⋋ ⁄ 2 ξ − n  

And, for (n, n ) ∈ ℤ × ℤ , 
ϑ , , (ξ, η) = Θ (ξ, n)β , (ξ)β , (η) 

Observe that β , , β ,  are supported in cubes Q , , Q ,  which have sidelengths slightly larger than 
⋋ ⁄ 2 , and that aare centered at the points ξ , =⋋ ⁄ 2 n and ξ , =⋋ ⁄ 2 n , respectively. 
Now let 

∆ = (n, n ) ∈ ℤ × ℤ ∶  |n − n | ≤ 18d ⁄ , 
∆= (n, n ) ∈ ℤ × ℤ ∶ 2d ⁄ ≤ |n − n | ≤ 18d ⁄ . 

Then if ϑ , ,  is not identically zero then we necessarily have (n, n ) ∈ ∆  and if, for j ≥ 1 the 
function ϑ , ,  is not identically zero then we necessarily have (n, n ) ∈ ∆ .  These statements 
follow by the definitions of our cutoff functions. Moreover,  

dist Q , , Q , ≤ 18d ⁄ 2 ⋋ ⁄ if(n, n ) ∈ ∆ , 
and 

2 d ⁄ 2 ⋋ ⁄ ≤ dist Q , , Q , ≤ 18d ⁄ 2 ⋋ ⁄ if j ≥ 1 and (n, n ) ∈ ∆  
For the application of Lemma (4.1.4) it is convenient to eliminate the cutoff  Θ  but still keep the 
separation of the supports off β , and β , . Set, for j ≥ 1, 

B [f, g](x, t) =
( )

e 〈 , 〉e ( ) ( ) β , (ξ)β , (η)f(ξ)g(η)dξdη
, ∆

 

And define B [f, g] similarly by letting (n, n ) sum run over ∆ . The reduction of the estimate for B  
to the estimate for B  is straightforward; by an averaging argument. Indeed, χ = χ − χ (2 ·) and 
use the Fourier inversion formula 

Θ (ξ,η) = χ (y)e ⋋ ⁄ 〈 , 〉dy ,      j ≥ 1; 

Then 

ℬ [f, g] =
( )

χ (y)ℬ f , g dy 

Where f (x) = f x +⋋ ⁄ 2 y  and g (x) = g x −⋋ ⁄ 2 y . A similar formula holds for j = 0, 
only then χ  is replaced with χ . Thus in order to finish the argument it is enough to show that 

B [f, g]
⁄

 is dominated by the right hand side of (9). 
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Define convolution operators P , byP . f = β , f. Note that for fixed j, each ξ is contained in only a 
bounded number of the sets Q , + Q , . this implies, interpolation of ℓ (L ) with trivial ℓ (L )or 
ℓ∞(L∞) bounds that, for j ≥ 1, p ≥ 2, 

B [f, g] ⁄ (ℝ×[ ⋋])
                                                                   (10) 

≲ max 1, ⋋ ⁄ 2
( ⁄ )

SP , SP , g ⁄ ℝ ×[ ,⋋]

⁄

, ∆

⁄

 

The analogous formula for j = 0 holds if we replace ∆by∆ . Notice that for all j, 

p . f
⁄

≲ ‖f‖ .        p ≥ 2.                                                                  (11) 

Now if j = 0 we use Lemma (4.1.5) to estimate 
SP , f(. , t)SP , g(. , t) ⁄ ℝ

≲ SP , f(. , t) SP , g(. , t)  

≲ P , f P , g
;
 

Hence, after integrating in t, 

B [f, g] ⁄ ℝ ×[ ,⋋] ≲ max 1,⋋ ( ⁄ ⁄ ) ⋋ ⁄ P , f
⁄

P , g
⁄

, △

⁄

 

≲ max 1,⋋ ( ⁄ ⁄ ) ⋋ ⁄ P , f
⁄

P , g
⁄

 

The asserted bound for j = 0 follows from (11). 
Next for j > 0 we use Lemma (4.1.4)and thus the assumption p > 2 +  , and estimate 

SP , fSP , g ⁄ ℝ ×[ ,⋋]
≲ 2 ⋋ ⁄ P , f P , g

.
 

Therefore by (10) 
B [f, g] ⁄ ℝ ×[ ,⋋]

≲ max 1, ⋋ ⁄ 2
( ⁄ )

2 ⋋ ⁄ P , f
⁄

P , g
⁄

 

and again asserted bound for B [f, g]
⁄

 follows from (11). 

We now prove the endpoint estimates of Theorems (4.1.1) and (4.1.2) First we remark that by 
various scaling and symmetry arguments we assume that I = [0,1]. 
Consider χ , χ ∈ c∞(ℝ) supported in (−2,2)and (1 2,2⁄ ), respectively, such that 

χ + χ 2 = 1. 

We define the operators T ≡ T  by 
T f(. , t)(ξ) = χ (ξ)e | | f(ξ). 

T f(. , t)(ξ) = χ 2 |ξ| e | | f(ξ),            k ≥ 1, 
So that U = ∑ T (. , t). 
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Our main result is the following inequality for vector-valued functions {f }∞ ∈ ℓ (L ). 

Theorem (4.1.7) [108]:Letp ∈ 2 + , ∞ ,α ≠ 1, d = 1orα > 1, d ≥ 2 andβ = αd − − . 
Then 

2 T dt
⁄

ℝ

≲ ‖f ‖
⁄

       (12) 

We now discuss the implication to Theorem (4.1.1) 1nd (4.1.2) in fact strengthened versions 
involving Triebel-Lizorkin spaces F . . 
 Here the norms in this spaces are given by the L (ℓ )and ℓ (L ) norms (resp.) of the sequence 
2 L f

∞
, with usual inhomogeneous dyadic frequency composition I = ∑ L . See [26]. The 

following corollary is an immediate consequence of Theorem (4.1.7) by Minkowski’s inquality and 
Fubini’s theorem. 
Proof.The localization of the multiplier near the origin T  is easily handled as  

ℱ χ (|⋅|)e |⋅| ≤ C 
uniformly for t ∈  [0,1]. To see this, since ℱ [χ (|⋅|)] ∈ L , it suffices to show that for ϕ 
supported in  (1/2, 2), the L  norm of ℱ χ 2 . e |⋅| − 1 ϕ(|⋅|)  is O(2 ) which 
follows from the standard Bernstein criterion. 
Now, by scaling and Proposition (4.1.6) with ⋋≈ 2 , u = {ξ ∶  1 2 < |ξ| < 2⁄ }and ϕ(ξ) = |ξ| , we 
have already proven the estimates  

‖T f‖ ℝ ×[ , ] ≲ 2 ‖f‖ ℝ ,   β ≥ β(p) ∶= αd − −         (14) 

for k > 0 and p > 2+ . 
It suffices thus to show that if (14) holds for all k > 0 and all p > q, then (4.1.7) holds for all p ∈
(q, ∞). Due to our restriction on (14) we  let q = 2+   and fix2+ < r < p. We can make the 
additional assumption that the k sum on the left hand side is extended over a finite set (with the 
constant in the inequality independent of this assumption); the general case then follows by the 
monotone convergence theorem.  
For later reference we state a Sobolev inequality which is proved linking frequency decompositions 
in ξand ⊤ and Young's inequality (just as in the argument used to deduce Corollary(4.1.9) from 
Theorem (4.1.7) Namely 

‖T f‖ [ . ] ≲ 2 ‖T f‖ [ . ] .                                                  (15) 

holds for r ≤ p ≤ ∞ (including the endpoint). Alternatively one can also apply the fundamental 
theorem of calculus to |T f(x, . )|  (see e.g. [55])  for p = ∞and the general inequality follows by 
convexity.  
The main ingredient in the proof of (4.1.7) will be the Fefferman-Stein sharp function [31] and their 
inequality 

‖F‖ ≲ ‖F#‖ , 
Where  p ∈ (1, ∞) and aparioriF ∈ L . We apply this to 
∑ 2 β( )‖T f (x, . )‖ [ . ]  and by (14) this function is aparioriinL  as the sum in k is assumed 
to be finite. Thus it will suffice to prove that 
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sup
xϵQ 2 ( )‖T f (y,∙)‖ [ , ] − 2 ( )‖T f (y,∙)‖ [ , ]dz . 

 

is dominated byC ∑ 2 ( )‖f ‖
⁄

. Here the supremum is taken over all cubes containing x, 
and the slashed integral denotes the average |Q| ∫ . By the triangle inequality the previous bound 
follows from 

sup
xϵQ 2 ( )‖T f (y,∙) − T f (z,∙)‖ [ , ]dzdy ≲ f

⁄

 

Denoting the sidelength of Q byℓ(Q), we observe that, by Minkowski's inequality, this would follow 
from the inequalities 

sup
xϵQ 2 ( )‖T f (y,∙) − T f (z,∙)‖ [ , ]dzdy

ℓ( )

≲ f

⁄

  (16) 

sup
xϵQ 2 ( )‖T f (y,∙) − T f (z,∙)‖ [ , ]dzdy

ℓ( )

≲ f

⁄

  (17) 

and 

sup
xϵQ 2 ( )‖T f (y,∙) − T f (z,∙)‖ [ , ]dzdy

ℓ( )

≲ f

⁄

  (18) 

Proof of (16). It is enough to consider cubes Q of diameter ≈ 2  with x, y, z ∈ Q and j + k ≤
0. LetH = ℱ [χ] 2 |⋅| ,  where χ is smooth, equal to one on (1/2, 2), and supported in (1/3, 3). 
Then 

|∇H (퓌)| ≲ 2
(퓌)

 

With large N ≥ 10d.  Thus 

T f (y, t) − T f (z, t) = [H (y −퓌)− H (z−퓌)]T f (퓌, t)d퓌 

= 〈(y − z),∇H (z + s(y − z) −퓌)〉T f (퓌, t)d퓌 

Which is controlled by a constant multiple of 

2
| 퓌|

|T f (퓌, t)|d퓌. 

Thus, using the embedding ℓ ↪ ℓ∞ , the right hand side of bounded by 

2
|⋅ 퓌|

2 ( )|T f (퓌,⋅)|d퓌
[ , ]

⁄
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≲ 2
( ) ( )

( |⋅ 퓌|)
T ( )f ( )(퓌,⋅) d퓌

ℝ ×[ , ]

⁄

 

 

≲ 2 2( ) ( )T ( )f ( ) ℝ ×[ , ]

⁄

 

By the (14) the last expression is dominated by a constant times 

2 f ( )

⁄

≲ ‖f ‖
⁄

 

And (16) is proved. 
퐏퐫퐨퐨퐟퐨퐟(ퟏퟕ). For fixed t, the operator T  has convolution kernel K  given by 

K (x) =
( )

χ(|ξ|)e ( . ) | | dξ
ℝ

 

픅 (α) = x ∶  |x| ≤ 4C(α)2 ( ) . 
Integration by parts yields favorable bounds in the complement of this ball. Observe that 

∇ 2 (x, ξ) + 2 t|ξ| ≥ c 2 |x| if x ∉ 픅 (α),     t ∈ [0,1], 
And we obtain 

K (x) ≤ C 2 1 + 2 |x| if x ∉ 픅 (α),    t ∈ [0,1],             (18) 
Consequently the main contribution of K (x) comes when |x| ≤ 4C(α)2 ( ).  
We prove the estimate (17) by interpolation between 

sup
xϵQ 2 ( )‖T f (y,∙)‖ [ , ]dy

ℓ( )

≲ sup
k ‖f ‖  

And 

sup
xϵQ 2 ( )‖T f (y,∙)‖ [ , ]dy

ℓ( )

≲ ‖f ‖

⁄

 

 
Where 2 + < r < p. 

Now, as β(p) > β(r) + α − , the L  bound is proven by applying Hölder in k, followed by the 
inequality 

sup
xϵQ 2 ( ) ‖T f (y,∙)‖ [ , ]

⁄

dy ‖f ‖

⁄

 

This is a consequence of the L  -boundedness of the Hardy-Littlewood maximal operator, the 
interchange of the spatial integral and the sum, an application of (15), followed by Fubini and the 
estimate (14) 
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(for the admissible exponent r > 2 + 4 (d + 1)⁄ ). 
To prove the  L∞ bound, we let  Q∗ be a cube with same center as Q satisfying ℓ(Q∗) =
10dC(α)ℓ(Q). By Minkowski’s inequality itwill suffice to prove that 

2 ( )

ℓ( )

‖T [f χQ∗](y,∙)‖
[ , ]

≲ sup
k ‖f ‖        (19) 

And 

2 ( )

ℓ( )

‖T [f χQ∗](y,∙)‖
[ , ]

≲ sup
k ‖f ‖        (20) 

Uniformly in Q. 
To prove (19), again we apply Hölder a number of times and (15); 

2 ( )

ℓ( )

‖T [f χQ∗](y,∙)‖
[ , ]

 

≲ |Q| ⁄ 2 ( ) ‖T [f χQ∗](y,∙)‖
[ , ]

dy
⁄

 

≲ sup
k |Q| ⁄ 2 ( ) ‖T [f χQ∗](y,∙)‖

[ , ]
dy

⁄

 

≲ sup
k |Q| ⁄ |f χQ∗| dx

⁄

≲ sup
k ‖f ‖  

Where the third inequality holds again by the L  version of (14). 
For (20), we note that as ℓ(Q) > 2 ( ), and the function is supported in the complement of Q∗ we 
can use the rapid decay in formula (18). We have that 

2 ( )‖T [f χQ∗](y,∙)‖
[ , ]

ℓ( )

dy 

≲ sup
k | |

|f (z)|dz
[ , ]

dy 

 

≲ sup
k |∙ |

|f (z)|dz ≲ sup
k ‖f ‖  

This concludes the proof of (17) 

Proof of (18). We let ς (x) = d2  if |x| ≤ d2  and ς (x) = 0 if |x| ≤ d2 . replacing cubes 
bydyadic balls we see that (18) follows from 

sup
j ς ∗ 2 ( )‖T f ‖

[ , ]

( )

≲ ‖f ‖
⁄

.                    (21) 

Now, for fixed k we cover ℝ  by a grid ℛ  consisting of cubes of sidelength 2 ( ). For each 
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R ∈ ℛ  let R∗ be the cube with same center as R and sidelength C(α)2 ( ) where C(α) is 
as in the proof of (17) 
For R ∈ ℛ  we let f = χ f . We may then split the left hand side of (21) as I + II where 

I =
sup

j ς ∗

⎣
⎢
⎢
⎢
⎡

2 ( ) χR∗T f
∈ℛ

[ , ]( ) ⎦
⎥
⎥
⎥
⎤

 

And II is analogous expression where  χR∗ is replaced with χℝ ∗⁄ . 
By Hardy-Littlewood, Minkowski, Fubini, (18), and Young’s inequality, we dominate 

II ≲ 2 ( ) χℝ ∗⁄ T f
∈ℛ ℝ ×[ . ]

 

≲ 2 ( ) 2
(1 + 2 |x − y|) f (y) d

∈ℛ

y dxdt

⁄

≲ 

≲ 2 ( ) f
∈ℛ

≲ sup
k ‖f ‖ ≲ ‖f ‖

⁄

. 

Concerning the main term I we use the embedding ℓ ↪ ℓ , interchange a sum an integral, and 
apply Minkowski’s, so that 

I ≲

⎝

⎜
⎛

ς ∗

⎣
⎢
⎢
⎢
⎡

2 ( ) χR∗ T f
[ , ]

∈ℛ
( ) ⎦

⎥
⎥
⎥
⎤

⎠

⎟
⎞

⁄

. 

Now for R ∈ ℛ  has sidelength greater than 2 , so for fixed k. Setting n = k + j > 0 and 
applying Minkowski’s inequality, we get 

I ≲ I  

Where 

I = 2 ( ) ( ) ς ∗ T f
[ , ]∈ ∈ℛ

⁄

 

As before chose r so that 2 + < 푟 < 푝. It will suffice to show that 

I ≲ 2 ‖f ‖
⁄

.                                                  (22) 

Observe that byYoung’s convolution with ς  maps L ℝ  to L ℝ  with operator norm 
O 2 ( ⁄ ⁄ ) . Moreover by (15) we have 



76 
 

T f
[ , ]

≲ 2( ) T f
[ . ]

. 

 
Thus we can bound 

I ≲ 2 2( ) 2 ( ) ( ) T f
ℝ ×[ . ]

∈ ∈ℛ

. 

Which by (14), is 

≲ 2 2( ) 2 ( ) ( ) T f
ℝ ×[ . ]

∈ ∈ℛ

. 

Since f  is supported on the cube R of size 2( )( )  we see by Hölder’s inequality that the last 
displayed expression is dominated by a constant times 

2 2( ) 2 ( ) ( ) 2 ( ) ( ) 2( ) f
∈ ∈ℛ

. 

Now this simplifies after summation in R, to 

I ≲ 2 ‖f − j‖ ≤ C2 ‖f ‖
⁄

. 

This finishes the proof of (18) and concludes the proof of Theorem (4.1.7). 
Corollary(4.1.8) [108]Letp, α,β be as in Theorem (4.1.7) then 

‖U f‖ ℝ dt
⁄

≲ ‖f‖
, ℝ . 

This implies Theorem (4.1.2) since for p ≥ 2 the space B , ≡ F ,  contain the Sobolev space F ≡

F , , via the embedding ℓ ↪ ℓ  followed by the Littlewood-Paley inequality, and by the same 

reasoning F ,  is imbedded in L ≡ F , . We remark that a similar sharp inequality for the wave 
equation is proved in [101], in sufficiently high dimensions. 
Another consequence of Theorem (4.1.7) is 
Corollary(4.1.9) [108]:Letp, αbeasinTheorem (4.1.7)Lett ↣ ϑ(t)besmoothand 

completlysupported.  Then 

ϑ(∙)U(∙)g
⁄ . (ℝ)

ℝ
≲ ‖g‖

, ℝ ,     = αd(1 2⁄ − 1 p⁄ ).       (13) 

Theorem (4.1.1) is an immediate consequence of Corollary(4.1.9) since the Besov space B ,⁄ ℝ  
is continuously embedded in the space CO of continuous bounded functions which vanish at 
infinity.  
To see how Corollary(4.1.9) follows from Theorem (4.1.7) we introduce dyadic frequency cutoffs 
in the t variable. We decompose the identity as I = ∑ ℒ  where ℒ f(т) = χ (т) = χ (т)f(т) where 
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χ = χ 2 |∙|  for j ≥ 1, with suitable χ ∈ C∞ supported in (1 2⁄ , 2) and χ  is smooth and vanishes 
for |т| ≥ 2. Now we applyL to ϑT . . If 2 ∉ (2 , 2 ), then we apply an integration by parts in 
s to terms of the form 

χ 2 |т| χ 2 |ξ| g(ξ)e (〈 . 〉 ) ϑ(s)e (| | )dsdξd. 

One finds that for this range the contribution of ℒ [ϑT g] is negligible; namely 

ℒ [ϑT g](x, s) dxds
ℝℝ

⁄

≲ C min 2 , 2 ‖g‖ if2 ∉ (2 , 2 ). 

Thus a localization in ~ where corresponds to a localization in T where ITI We combine this with 
Theorem (4.1.7) applied to and obtain 
 
Section (4.2): Schrödinger Operator and Space-TimeEstimates 
We consider the Schrodinger equation, i ∂ u + ∆u = 0, with initial data u(. , o) = 푓. 
When 푓is a Schwartz function, the solution can be written as u = Uf, where 

                             Uf(x. t) ≡ e ∆f(x) = f(ξ)e | | 〈 , 〉

ℝ
dξ.                                (23) 

And  denotes the Fourier transform defined byf(ξ) = ∫ f(y)e ( . )dy. We fix a compact time 
interval I and L (ℝ ; L (I)) be the space equipped with mixed norm  

‖u‖ (ℝ ; ( )) = |푢(푥, 푡)| 푑푡
⁄

푑푥
ℝ

⁄

. 

Our aim is to bound the solution in this space whet h initial data are given in the Sobolev spaces L , 
with norm ‖f‖ = (I − ∆) ⁄ f ℝ . We shall always assume that 푞, 푟 ≥ 2, and we will mostly 

assume 푝 ≥ 2 as well. The cases 푟 = 2, 푟 = 푞 and 푟 = ∞ are of particular interest. 
Theorem (4.2.1) [118]:Let 2 ≤ p ≤ ∞. 
Then 푈 ∶ 퐿 (ℝ) → 퐿 (ℝ;  퐿 (퐼)) is bounded if and only if 푟 ≤ 2. 
The sufficiency of the condition follows from [16]. The necessary is a consequence of the following 
more precise bounds for frequency localized functions which also illustrated the sharp of the 
necessary conditions of [16] (at least in the cases r ≤ q and d = 1). 
Corollary (4.2.2) [118]:Suppose that 2 ≤ r ≤ p ≤ q, + < 1 −  . 

ThenU ∶  B . (ℝ) → L (I)isboundedwithα = 1 − − − . 

When p = q one could hope for the following estimates. 
Conjecture(4.2.3) [118]:Letp ∈ [2, ∞]r ∈ [2, ∞]satisfy + < and + < d. 

ThenU ∶  B . ℝ → L ℝ ; L (1) isboundedwithα = d 1− − . 

To prove the conjecture it would suffice to prove the sharp estimates with r = ∞, p and  2. The 
estimates with r = ∞ strengthen the sharp  L -Sobolev bounds for fixed t and α = 2d|1 2⁄ − 1 p⁄ | 
due to Fefferman-Stein [31] and Miyachi [37]. In [114], the conjecture was proven in the reduced 
range p ϵ ( ), ∞ , and for d = 1 it was proven in the range p ∈ (4, ∞). In [108], the conjecture 
was proven for pϵ ( ), ∞ , with r ≥ p; moreover a related result was proven for the semigroup 
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exp it (−∆) ⁄  for α = 1. A nonendpoint result for  α = 2, p = r has been previously obtained in 
[46]. 
In the case of the Schrodinger semigroups (α = 2) it is well known that the local something and 
maximal inequalities are closely related to estimates for the adjoint restriction operator for a 
compact portion of the paraboloid in ℝ  (see [15], [24], [110], [11], [46]). Here we improve the 
known L (L ) bounds for q = r by establishing the actual equivalence of the space-time regularity 
estimates with estimates for the adjoint restriction operator (a related result establishing the the 
equivalence between the ajoint restriction and Bochner-Riesz for paraboloids was found by Garbery 
[28]). 
Let ℰ denote the adjoint restriction (or Fourier extension) operator given by 

εf(ξ, s) = f(y)e | | dy
| |

(ξ, s)ϵℝ xℝ.                               (24) 

Definition (4.2.4) [118]: We say that R∗(p → q) holds true if ε ∶  L ℝ → L ℝ  is bounded. 
In the critical case q(p) = p  it follow from the explicit formula 

Uf(χ, t) =
( ) ⁄ exp | | f(y)dy                                     (25) 

And scaling that R∗(p → q(p)) implies the L ℝ → L ( ) ℝ  x I  boundedness of  U. 

Moreover it was also shown in [46] it implies the L → L ℝ  x I  bound for α > 2d − − . 
we strengthen these results as follows. 
Corollary(4.2.5) [118]:Let 2 < q < ∞, 1 ≪ p ≤ q , and suppose that R∗(p → q )holds. 

Letq < q < ∞, q ≤ r ≤ ∞andsupposethat 0 ≤ − ≥ − . 

ThenU ∶  B ℝ → L ℝ ; L (I) isboundedwithα = d 1− − − . 

Using also the trivial R∗(1 → ∞) one can deduce the conclusion in the larger range p (q) < p ≤ q, 
where p (q) < p  is defined by ( ) = + 1 − 1− . 
Given Theorem (4.2.8) the recent progress on R∗(p → p) by Bourgain and Guth [110] can be used 
to verify Conjecture (4.2.3) for new parameters (see also [16] below for the case p ≠ q). In two 
dimensions their implies that the conjecture holds in the case p = q ≤ r for p > 33 10;⁄  moreover, 
in higher dimensions, it holds for p = PBG(d) with PBG(d) = 2 + 3d + O(d ) (see [110] for 
their exact range of p).  
In two dimensions a better range for p can be obtained for large r; this is closely related to previous 
results on maximal operators for L  function and result on Planchon’s conjecture in ℝ  (cf. [52], 
[11], [59], [115]). 
Corollary (4.2.6) [118]:Let 2 ≤ p ≤ 16 5.⁄  
Then U ∶  B (ℝ ) → L (ℝ ; L∞(I)) isboundedwithα > 3 4.⁄  
Unlike the rest of the estimates in this article, there is no reason to suspect that this is sharp with 
respect to the regularity in the range 2 ≤ p < 16 5⁄ . 
By m(D) we denote the convolution operator with Fourier multiplier m; that is to saym(D)f = mf. 
For two nonnegative quantities A, B the notation A ≲ B and B ≲ A. 
We formulate a more technical version of Theorem (4.2.8) that applies to mixed norm inequalities. 
In what follows let 



79 
 

A(p) ∶= ξϵℝ ∶  3p ≤ |ξ| ≤ 12p .                                        (26) 

Theorem (4.2.7) [118]:Letp, q, rϵ[2, ∞], p ≤ q,β > −d − . Thentheinequality 

sup
⋋> 1

⋋ sup
‖f‖ ≤ 1 εf

⋋
ξ, s ds

⋋

⋋

⁄

dξ
(⋋)

⁄

< ∞(27) 

Holds if and only if for ? = d 1− − − + 2β, 

sup
‖f‖

?.
≤ 1 e ∆f dt

⁄

< ∞.                         (28) 

Taking Theorem (4.2.7) for granted we can quickly give 
Theorem (4.2.8) [118]:Suppose 2 ≤ p ≤ q < ∞. The the following are equivalent: 

(i) R∗(p → q)holds. 
(ii)TheoperatorU ∶  B . ℝ → L ℝ  x I isbundedwithα = d 1 − − − . 

We can also obtain result on larger spaces (including the Sobolev space L ) if we give up endpoint 
in the q-range. 
Proof. By Theorem (4.2.7) we just have to show that R∗(p → q) with equivalent to (6) for large ⋋, 
in the case q = r and β = 0. Clearly the later is implied by bounded above and below in the region 
where s ≈⋋.Vice versa, supposing that (28) holds in the case q = r and β = 0, by the chang of 
variables, we have that ε ∶  L ℝ → L (W⋋), where 

W⋋ = {(ξ. s) ∶ sϵ[⋋ .2 ⋋],    xϵA(s)}. 
For ωϵℝ  define f (y) = e ( . ) | | f(y) and observe that εf = εf(.−ω). Thus using a 
finit number of translations we see that ε ∶  L ℝ → L (B⋋), where B⋋ of radius ⋋ centered at the 
origin, and the operator norm is uniformly bounded in ⋋. Letting ⋋→ ∞yieds R∗(p → q). 
Lemma (4.2.9) [118]:Letp, q, rϵ[2, ∞]withp ≤ qandlet ⋋≥ 1. supposethat 

εf
⋋
ξ. s ds

⋋

⁄

dξ
(⋋ )

⁄

≤ A‖f‖                         (29) 

holds. Then, forψϵC∞withsupportin{ξ ∶ < |ξ| < 5}, 

e ∆ψ
⋋

f
⁄

⁄

≲ A ⋋ ‖f‖ ,    α = d 1 − − − .         (30) 

Proof.If f⋋ is characteristic function of a ball of radius (100⋋)  then ε(f⋋)
⋋
ξ, s ≥

⋋ for(⋋ ξ, s)ϵA (⋋ ) x[⋋ , 2 ⋋ ].The resulting lower bound A ≥ c ⋋ ( ⁄⁄ ) ⁄  (which 
is far from being sharp) will be used repeatedly to dominate certain error terms which decayfast in 
⋋. 
The convolution kernel for e ∆ψ ⋋  can be written as 

k⋋(x) = ⋋ ψ(ξ)e ⋋ | | ⋋( . )dξ. 

By integration by parts it follows that 
k⋋(x)|≤ C |x| , | ≥ 11 ⋋ .                                                               (31) 
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Hence, by a standard argument,  

|k⋋ ∗ f| ⁄ dt
⁄| | ⋋

⁄

dx ≲ A ⋋ ‖f‖ ,    α = d − − −        (32) 

For f supported in the cube of the sidelength ⋋ 2d  centered at the origin. Indeed, suppose that 
(32) is verified, let 픔⋋ = {Q}be a grid of cubes with sidelength ⋋ 2d , and centres 푥 , and let B  
be the ball of radius 11⋋ centred r . Then we may estimates the L (ℝ ;  L ([2, 1])) norm of 
e ∆ψ ⋋  by 

풳Q( ) k⋋ ∗ fχ (x) dt
⁄

⁄

dx

⁄

χQ( ) 푘푡
⋋ ∗ 푓휒ℝ푑\퐵푄 (푥)

푟
dt

⁄
dx

⁄

  (33) 

By Minkowski’s inequality in L . We use the finite overlap of the balls, the translation invariance of 
the operators and (32) to estimate the first term by 

CA ⋋ fχ

⁄

≲ CA ⋋ ‖f‖  

Where for the last inequality we have used the assumption p ≤ q. For the second term in (33) we 
use (31) with N > 2d and then Young’s to bound it by 

C |w| f(x − w)dw
| | ⋋

dx
⁄

≲⋋ ‖f‖ ≲ A ⋋ ‖f‖ . 

We used the trivial lower bound for A in the last step. 
Our task is now to prove (32). We use a stationary phase calculation to see that k⋋ = H⋋ + E⋋, 
where 

k⋋(x) =
| | ⁄

( ) ⁄ ψ
⋋

⋋
 

And                                              |E⋋(x, t)| ≤ C ⋋  
Where we chose L ≫ d. For the leading term ψ = ψ, and the functions ψ  are obtained by letting 
certain differential operators act on ψ; thus ψ (퓌) = 0 for |퓌| ≤ 4 and |퓌| ≥ 5. 
For the error we use a trivial bound 

|E⋋(x − y, t)||f(y)|dy dt
⁄

⁄

| | ⋋
dx

⁄

≲⋋ ‖f‖ ≲ A ⋋ ‖f‖ . 

For the oscillatory terms we have to prove the inequality 

ψ
⋋

exp i| | f(y)dy dt
⁄

⁄

| | ⋋
dx

⁄

≲ A ⋋ ‖f‖ .         (34) 

Whenever f is supported in {|y| ≤ ⋋ 2⁄ }. By a change of variable t → u = 1 t⁄  (with u ≈ t ≈ 1) and 
the support properties for ψ  this follows from 

ψ ( )
⋋

exp i (|y| − 2〈x− y〉)             (35)  
| | ⋋⁄⋋ | | ⋋

 

Whenever f is supported in {|y| ≤ ⋋ 2⁄ }. We now use a parabolic scaling in the (x, u) variables and 
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setx =⋋ 퓌, u =⋋ s;      y = 2 ⋋ z. 
The previous inequality becomes 

ψ 퓌 ⋋
⋋

| |

⋋

⋋⋋ |퓌| ⋋
푒 | | 〈 퓌

⋋
, 〉 ( ⋋ )( ⋋) |

⋋

⁄ 퓌
⋋

⁄

 

                                                                                                       ≲ A ⋋ ‖f‖ .                                   (36) 

We have the Fourier series expansion ψ (x) = ∑ c . e ( . )
ℤ  for xϵ − π, π  and for each v the 

Fourier coefficients are rapidly decaying, |Cℓ. | ≤ C . (1 + |ℓ|) . Thus 

ψ 퓌 ⋋
⋋

= Cℓ. e ⋋ 〈 퓌.ℓ〉⁄ e ⋋ 〈 .ℓ〉.
ℓ

 

Using Minkowki’s inequality for the sum and the rapid decay of the Fourier coefficients the 
previous inequality (35) follows from 

exp i s|s| − 〈 (퓌 ℓ)
⋋

, z〉 f(2 ⋋ z)dz
| |

ds
⋋

⋋

⁄

d퓌
⋋ |퓌| ⋋

⁄

 

≲ (1 + |ℓ|) A ⋋ ‖f‖ .                                   (37) 
The left hand side is trivially bounded byC ⋋ ⁄ ⁄  and therefore the displayed inequality holds 
for |ℓ| ≥ ⋋ 4⁄ . if |ℓ| ≤ ⋋ 4⁄ , we change variable and see that for (37) we only need to show 

i s|z| − 〈 퓌
⋋

, z〉 g(z)dz
| |

ds
⋋

⋋

⁄

⋋ |퓌| ⋋
d퓌

⁄

 

                                                  ≲ A ⋋ ⋋ ⁄ ‖g‖ .                                 
The right hand side is just A‖g‖ , So that this would follow from (29). 
Lemma (4.2.10) [118]:Let p, q, rϵ[2, ∞] and ⋋≫ 1. Let 2 < α < α  and let a radial C∞ 

functionwhichsatisfiesη(ξ) = 1 for ≤ |ξ| ≤ 2(α ). Suppose 

sup
‖f‖ ≤ 1 e ∆η

⋋
f dt

⁄

⁄

≤ B.                  (38) 

Then 

ℰf
⋋
ξ, s

⋋

⋋

⁄

dξ
⋋ | | ⋋

⁄

≲ B ⋋ ‖f‖ .         (39) 

Proof. In what follows let α = d 1− − − . We begin by observing the lower bound B ≥ c ⋋  
which follows from the example in (ii). 
By a change of variable ξ =⋋ x, s =⋋ p, y = 2 ⋋ z we see that (39) is equivalent with  

f
⋋

e | | 〈 , 〉⁄⁄ dy
| | ⋋

dp

⁄

⋋ | | ⋋
dx

⁄

 

≤ CB ⋋ (2 ⋋) ⋋ ⁄⁄ ‖f‖ . 
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By inverting t = 1 p⁄  the previous inequality follows from  

( ) ⁄ g(y)e
| |

dy
| | ⋋

dt
⁄

⁄

dx
⋋ | | ⋋

⁄

 

≲ CB ⋋ ⋋ ⁄⁄ ⋋ ⁄ ‖f‖ . 
Which can be rewritten as 

e ∆g(x) dt
⁄

⁄

dx
⋋ | | ⋋

⁄

≲ B‖g‖ .                          (40) 

For g supported in {y ∶  |y| ≤ 2 ⋋}. By assumption 

e ∆η
⋋

g(x) dt
⁄

⁄

dx
⋋ | | ⋋

⁄

≤ B‖g‖ . 

And thus (39) follows from the straightforward estimate 

e ∆ 1 − η
D
⋋ g(x) dt

⁄

⁄

dx
⋋ | | ⋋

⁄

≤ C ⋋ ‖g‖ .         (41) 

Whenever g is supported in {y ∶  |y| ≤ 2 ⋋}. 
To see (41) we decompose the multiplier. Let xο be smooth and supported in{|ξ| < 2} 
And χο(ξ) = 1 for |ξ| ≤ 1, and let χκ(ξ) =  χο(2 ξ) − χο(2 ξ), for κ ≥ 1. Let 

E⋋. (x, t) =
( )

χκ
⋋

1 − η
⋋

e | | ( , )dξ 

And we need to bound the expression 

1 − η
D
⋋ e ∆g(x, t) = E⋋. (x − y)

| | ⋋
g(y)dy. 

We now examine ∇ (〈x − y, ξ〉 − tξ ) = x −  y − 2tξ. since α > 2, foe the relevant choices 
α |⋋| ≤ |x| ≤ α ⋋, 1 2⁄ ≤ t ≤ 1, |y| ≤ 2 ⋋ we have 

|x − y − 2tξ| ≥
(α − 2)⋋       if |ξ| ≤ ⋋,

max | |, (α − 2)⋋ if |ξ| ≥ (α − 2) ⋋.
 

Since 1− η(⋋) = 0 for ≤ |ξ| ≤ 2(α + 2), after an N-fold integration by parts we find that 
|E⋋. (x − y, t)| ≤ C (2 ⋋)  for this choice of x, y, t, and the estimate (19) follows. 
To complete the Theorem (4.2.7) we also need the following scaling lemma. 

Lemma (4.2.11) [118]:Let γ > 푑 − − . Supposethat for ⋋≫ 1 

e ∆χ
⋋

f dt
⁄

⁄

≲⋋ ‖f‖ .                                                 (42) 

where χϵC  is supported in (1 2, 2⁄ )(with suitable bounds). Then, for ⋋≫ 1. 

e ∆χ
⋋

f dt
⁄

⁄

≲⋋ ‖f‖ .                                   (43) 
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Proof. It is easy to calculate that 

푠푢푝 ( ⋋)  ℱ χ ∙
⋋

exp(−it|∙| ) (x) ≤ C ⋋ (1 +⋋ |x|)  
And thus, byYoung’s inequality, 

e ∆χ
⋋

f dt
( ) ⁄

≲ ⋋ ⁄ ⋋ (1 +⋋ |y|) |f(∙ −y)|dy

≲⋋ ‖f‖ .                                                                                                     (44) 
Now letting (8 ⋋) ≤ b ≤ 1, 

e ∆χ
⋋

f(x)
⁄

dt
⁄

⁄

= b ⁄ χ ⁄ ⋋
e ∆ f b ⁄ . b ⁄ x ds

⁄

⁄

 

Thus by change of variable (42) implies 

e ∆χ
⋋

f(x)
⁄

dt
⁄

⁄

≲ √b ⋋ √b ‖f‖ . 

We chose b = 2 . and since γ > d − −  we may sum over I with (8 ⋋) ≤ 2 ≤ 1 and 
combine with (44). Hence we get 

e ∆χ
⋋

f dt
⁄

≲⋋ ‖f‖ . 

Now (43) with I = [−1,1] follows using the formula e ∆f = e ∆f,̅and the triangle inequality. 
Finally, by scaling, we can enlarge the time interval (so that the implicit constant is of course 
dependent on the interval), and we are done. 
Proposition (4.2.12) [118]:Let 2 ≤ p, q, r ≤ ∞, andsuposethatthereconstantCsuchthat 

‖Uf‖ (ℝ ; ( )) ≤ C‖f‖ ℝ                                                        (45) 

wheneverfϵL ℝ . Then 
(i)p ≤ q, 

(ii)α ≥ d 1− − − , 

(iii)α ≥ − ,   

(iv)α ≥ − , 

(v)α > − ifr > 2, 

(vi)α > 0        ifr = 2, p = q > 2, d ≥ 2. 
The proposition can be strengthened by replacing the Sobolev norm by the Besov norm B . v, for 

anyv > o, where ‖f‖
.

= ∑ 2 ‖P f‖
⁄

. Here, for k ≥ 1, the operators p  localize 

frequencies to annuli of width ≈ 2  and p = 1 − ∑ P . Recall that B . v is contained in L  for 
v ≤ min {2, p}. 
The inequality (45) has been considered in many especial cases and some of the necessary 
conditions in Proposition (4.2.12) are related to similar conditions for other problems in harmonic 
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analysis. In what follow we set α (p; q, r) ∶= d(1− − )− . 
(a) If p = 2, then the condition (ii)coincides with (iii)if  + = .  This is the condition in the 
end point version of Planchon’s conjecture (cf. [52], [115]). 
(b) If p = 2 and r = ∞, then the condition (iii) follow from the necessary conditions for carleson’s 
problem [4, 15], via an equivalence between local and global estimates [46]. 
(c) If p = 2 and 2 ≤ r ≤ q. then the condition α ≥ α (p; p, r) is more restrictive than (iv) if 

d − − > 0. In particular, if r = 2, and α = α (p; p, 2), the range p >  is necessary (in 

analogy to the Bochner-Riesz conjecture in ℝ ), and for r = p,α = α (p; p, r) the range p > ( ) 
is necessary (as to equivalent adjoint restriction theorem for the sphere in ℝ , 
. (d) If p < q = r then the condition α ≥ α (p; p, 2) is more restrictive than (iv) if  ≤ , the 

familiar range for the adjoint restriction theorem for the sphere in ℝ . Likewise if, p < q = r then 

the condition α ≥ max α (p; q, q) implies ≤  ,   the range for the adjoint restriction theorem 

for the paraboloid in ℝ . 
(e) The necessity of the strict inequalities in(v), (vi) is proved by considerations which involve  the 
Besicovich set.  The necessity of the condition (vi) in dimensions d ≥ 2 comes from the fact that a 
sharp square function estimate for the Schrodinger operator implies sharp bounds on Bochner-Riesz 
multipliers. The necessity for the open range (v) in one dimension was left open in [16]. 
Proof. First we discuss the easier necessary conditions (i)-(iv). 
i) The conditionp ≤ q. This follows from the translation invariance (see an argument in [112]). 
More precisely, the L ℝ → L (ℝ ;  L (I)) boundedness is equivalent with the L ℝ →
L (ℝ ;  L (I)) boundedness of the operator U (1− ∆) ⁄ f  which commutes with translation on ℝ . 
Let A = sup‖ ‖ ≤ 1 U (1 − ∆) ⁄ f ( ). Then by the density argument, for ϵ > 0 there is a g ∈

C ℝ  such that A −  ϵ > U (1− ∆) ⁄ g ( ) and ‖g‖ = 1. One may test the inequality 

with f = g + g(. +αe ). Letting α → ∞, we see that (A − ϵ)2 ⁄ ≤ A2 ⁄ , which gives A2 ⁄ ≤
A2 ⁄  by letting ϵ → 0, and thus p ≤ q. 
ii) The condition α ≥  d − − . This condition follows by a focusing example (see for 

example [46]). Let η ϵ C  be radial and supported in {ξ ∶ 1 < |ξ| < 2}. Moreover |Uf(x, t)| ≳⋋  if, 
for suitable c > 0, |x| ≤ c ⋋  and t − ≤⋋ . For Large ⋋ this leads to the restriction α ≥

d − − . 

iii) The condition α ≥ − . Let g⋋be defined byg⋋(ξ) = χ(|ξ −⋋ e |), χ supported in an ϵ − 
niighborhood of 0 (see [7], [24]), so that g ⋋ ≲⋋ . Also 

Ug ⋋ (x, t) =
( )

χ(|h|)e ⋋( , , )dh 

Where iϕ ⋋ (x, t, h) = −t|h| − t ⋋ + r ⋋ +〈r − 2t⋋ e 〉. Then |Ug ⋋ (x, t)| ≥ c > 0 if 
|t − (2 ⋋) x1| ≤ c ⋋  for 0 ≤ x1 ≤⋋, |x | ≤ c, i = 2 … . , d. It follows that ‖Uf‖ ( ) ≥

⋋ ⁄ ⁄ . Hence the condition α ≥ 1 q⁄ − 1 r⁄  follows. 
iv) The condition α ≥ − . Let ⋋≫ 1 and set h⋋(η) = ϕ(η ) ⋋ ϕ ⋋ (η −⋋)  with ϕ ϵ C (ℝ). 
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Then h⋋ ≲⋋ ⋋ ⁄ . Note that 

Uh⋋(x, t) =
( )

e 〈 , 〉 ϕ(|η |)dη e ⋋ ⋋ e ⋋ ⋋ ϕ(⋋ ξ )dξ , 

So that |Uh ⋋ (x, t)| ≥ c > 0 if |t|, |x | ≤ c and |x | ≤ c ⋋ for small enough c > 0. This shows the 
necessity of α ≥ 1 q⁄ − 1 p.⁄  
To show the conditions (v) and (vi), we use sharp bounds in the construction of Besicovich sets 
[113] and adapt Fefferman’s argument for the disc multiplier [111] (see also [109]). 
v) The condition α ≥ −     . This follows from 
Proposition (4.2.13) [118]:Let푝,푞, 푟 휖 (2,∞). Let η be a radial C  function satisfying η(ξ) = 1 for 
1 4⁄ ≤ |ξ| ≤ 12. Define α⋋ by   

α⋋(p, q, r) =
sup

‖f‖ ≤ 1 e ∆η
⋋

f dt
⁄

⁄

ℝ

.                         (46) 

Then for ⋋≫ 1. 
α⋋(p, q, r) ≥ c ⋋ ⁄ ⁄ (log⋋) ⁄ ⁄ .                                                    (47) 

Proof. In what follows we set 
A (⋋ ) = {x ∶ 3 ⋋ ≤ |ξ| ≤ 4⋋ }. 

By Lemma (4.2.10) wit parameters α = 3, α = 4, for ⋋≫ 1 

sup
‖f‖ ≤ 1 εf

s
⋋  ξ, s

⋋

⋋
ds dξ

(⋋ )
≲ α⋋(p, q, r) ⋋ . 

Let  

Tf(ξ, s) = εf
s
⋋  ξ, s . 

Using Khintchine’s inequality we also get 

sup
푓

ℓ
≤ 1

⎝

⎜
⎛

푇푓 푑푠
⋋

⋋(⋋ )
푑휉

⎠

⎟
⎞

≲ 훼⋋(푝,푞, 푟) ⋋ .               (48) 

For integers |j| ≤ ⋋ 10,⁄  Let z = (⋋ j, 0, … , 0) in ℝ . Let I = y ∶  y − z ≤ (100d⋋) . Let 
R = (ξ, s)ϵℝ ∶  |ξ − 2j ⋋ s| ≤ 10 ⋋, |ξ | ≤ 10 ⋋, i = 2, … , d, |s| ≤ 100 ⋋ . 
For a pointwise lower bound we use the following lemma. 
Lemma (4.2.14) [118]:Let α ϵℝ , b ϵ ℝ, and  gj(y) = χI (y)e 〈 , 〉 | | . Then there is a constant c 
> 0, independent of ⋋, j so that 

Re e 〈 , 〉 ( ) ε g ξ(ξ, s) ≥ c ⋋ , if (ξ, s) ∈ R + (a, b). 
Proof. Let I = {y ∶  |y| ≤ (100d⋋) }. We have 

εg (ξ, s) = e | | 〈 , 〉g (y)dy = e 〈 , 〉 ( ) χI z + h dh

= e 〈 , 〉e ( ) e χ (h)dh 
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The pointwise lower bound follows quickly. 
Let N⋋ to be the largest integer which is smaller than ⋋ 10⁄ . By making use of the Besicovich set 
construction of Keich [113]. There are vectors v ∈ ℝ  such that v = a e + b e  for some 
a , b ∈ ℝ, v + R ⊂ {(ξ, s) ∶ ⋋ ≤ s ≥ 2 ⋋ }, and 

meas v + R
⋋

≲ ⋋
 ⋋

. 

This is just obvious extension of the two dimensional construction which gives a collection of 

rectangles R| |  and vectors a , b  such that meas ⋃ v + R⋋ ≲ ⋋
 ⋋ and a , b +

R| |{ξ , s ∶⋋ ≤ s ≤ 2⋋ }. 

Let Ф(ξ, s) =
⋋

 ξ, s  which is 1 − 1 0n A (⋋ ) × [⋋ , 2⋋ ], and has Jacobian JФ with 
det JФ(ξ, s) ~1.  Let 

       v ∶= Ф v + R ∩ (A (⋋ ) × [⋋ , 2 ⋋ ]),      E ∶= v
,… , ⋋

.                  

Then it follows that 

⋋ ≲  meas v ,         meas(E) ≲ ⋋
 ⋋

.                                            (49) 

Let f (y) = χ (y)e 〈 , 〉 | | . Then by Lemma (4.2.14), 

Tf (ξ) ≲⋋ ,         ξ ∈ V ,                                                                        (50) 
And 

f
⁄

≲⋋ ⁄ .                                                                      (51) 

We now modify argument in [109]. By (49), we have 

⋋ ≲ N⋋ ⋋ ≲ meas v
⋋

                                                          (52) 

= χv (ξ, s)ds dξ
⋋

≲⋋ Tf (ξ, s)
⋋

ds dξ, 

And by application of Hölder’s inequality, 

⋋ Tf (ξ, s)
⋋

≲⋋ A. B,                                                           (53) 

Where 

A =

⎝

⎜
⎛

Tf (ξ, s) ds
⋋

⋋(⋋ )
dξ

⎠

⎟
⎞

, 
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B = χ (ξ, s)ds
⋋

⋋

( ⁄ )
( ⁄ )

dξ
(⋋ )

. 

From (48) and (51) we obtain, 

A ≲ ⋋ 픳⋋(p; q, r) ⋋ .                                                              (54) 

In order to estimate B we set 

픳(ξ) = χ (ξ, s)ds
⋋

⋋
, 

The measure of the vertical cross section of E at ξ. For M > 0. we break 

B ≲ 픳(ξ)
( ⁄ )
( ⁄ )

{ ∈ (⋋ ) ∶ 픳( ) }
dξ + 픳(ξ)

( ⁄ )
( ⁄ )

{ ∈ (⋋ ) ∶ 픳( ) }
dξ . 

From the construction of E it is obvious that 픳 is supported in a tube where |ξ | ≤ C ⋋  and |ξ | ≤
C ⋋, 2 ≤ i ≤ d, so that 

픳(ξ)
( ⁄ )
( ⁄ )

{ ∈ (⋋ ) ∶ 픳( ) }
dξ ≲ M ⋋( ) . 

Moreover since r ≤ q and therefore (1 − ( ⁄ )
( ⁄ )

) ≥ 0, by (49) 

픳(ξ)
( ⁄ )
( ⁄ )

{ ∈ (⋋ ) ∶ 픳( ) }
dξ ≲ 픳(ξ)M

( ⁄ )
( ⁄ ) dξ  

≤ M meas(E) ≲ M ⋋
⋋

. 

Combining these two bounds, we have 

B ≲ M ⁄ ⋋( ) M⋋ + M (log⋋) , 

And choosing M =⋋ (log⋋) , with optimizes the above, we obtain 

B ≲⋋( )( )⋋ (log⋋) .                                                                      (55) 
Finally, we combine (55), (54), (53) and (52) to obtain 

⋋( )≲⋋ ⋋( )( )⋋ (log⋋) ⋋ 픳⋋(p; q, r)⋋ , 

Which yields 픳⋋(p; q, r) ≥ c(log⋋) ⋋ . 
vi) Relation with Bochner − Riesz and the condition α > 0 푖푓 푟 = 푞 > 2,푑 ≥ 2. 
The L → L L (I)  estimate implies sharp results for the Bochner-Riesz multiplier in the same 
way as the wave equation in [116]. 
For small δ > 0, let us set h (ξ) = ϕ δ (1 − |ξ| )  with ϕ ∈ C (−1, 1). Let ψ be radial, 
supported in {1 2⁄ < |ξ| < 2} so that ψ = 1 on the support of h . Then by the Fourier inversion 
formula and the support property of ψ it follows that 

h (D)f = δϕ(δs)e e ∆ ψ(D)f ds. 
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By the Schwarz inequality we get 
|h (D)f| ≤ δϕ(δs) ds ⁄ e ∆ψ(D)f δϕ(δs) ds ⁄ . 

Thus we see that 

‖h ‖ ≲
sup

‖f‖ ≤ 1 e ∆ψ(D)f δϕ(δs) ds
⁄

, 

which after rescaling becomes 

‖h ‖ ≲
sup

‖f‖ ≤ 1 e ∆ψ √δD f ϕ(t) dt
⁄

. 

Hence, using the rapid decay of ϕ and a further rescaling we see that the sharp bound ‖h ‖ ≲

δ ⁄ ( ⁄ ⁄ ), for p > 2 + . would follow from U ∶  B . → L L (I) , with α = d 1 − − 1, 
for anyv > 0. 
We see that the L L (I)  inequality for some p > 2 would imply that h  is a multiplier of ℱL  
with bounds independent of δ. However a variant of Fefferman’s argument for the ball multiplier 
[111]. Based on a Kakeya set argument, shows that 

‖h ‖ ≲ log(1 δ⁄ ) ⁄ ⁄ .                                                                           (56) 
This establishes the final necessary condition (vi) in Proposition (4.2.12) For completeness we 
include some details of the argument. 
Proof of (56). By de Leeuw’s theorem it suffices to prove the lower bound for d = 2. We may 
assume that δ < 10 . By Khintchine’s inequality, we have 

( |h (D)f | ) ⁄ ≲ ‖h ‖ ( |f | ) ⁄ .                                  (57) 

For v ∈ ℤ ⋂ −10 δ ⁄ , 10 δ ⁄ , let us set 
h . (ξ) = h (ξ)ϕ δ ⁄ ξ − v , ξ = (ξ , ξ ) ∈ ℝ  

Where χ  is the characteristic function of the upper half plane. Define T  byT f = h . f. Let η  be 
the inverse Fourier transform of a bump function which is supported on a half of radius Cδ ⁄  so 
that η (ξ) = 1 for ξ in the support of h . . Define ϕ  byϕ (ξ) = η (ξ)ϕ δ ⁄ ξ − v χ (ξ).  Then 

|Ф (x)| ≲ δ ⁄ 1 + δ ⁄ |x| ( )
 for the v s under consideration, so that ‖{Ф ∗ g }‖ ℓ ≲

‖{g }‖ ℓ . Since T g = h (D)[Ф ∗ g], inequality (57) applied to f = Ф ∗ g  implies that 

( |T g | ) ⁄ ≲ ‖h ‖ |g |
⁄

.                                    (58) 

Let θ = δ ⁄ v,√1 − δv ,  let θ  be a unit vector perpendicular to θ  and  

R = (x , x ) ∶  |〈x, θ 〉| ≤ 10 δ , 〈x,θ 〉 ≤ 10 δ ⁄ . 

Letting f (y) = χ (y)e〈 . 〉, we have that 
e ( . )T g (x) ≥ c > 0 for x ∈ R .                                               (59) 

Here we use again sharp bounds in the construction of Besicovich sets [113]. There are vectors 
a , |v| ≤ 10 δ ⁄  so that with E ∶= U R  the measure of E is O(δ logδ⁄ ) but the 
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corresponding translation a + R  have O(1) overlap. Define g (x) = f (x − a ), which is 
supported in a + R . Then |T g | ≥ c on a + R . Thus we get 

δ ≲ |R | ≲ χ (x)dx ≲ |T g | dx 

And also by Hölder’s inequality and (58) the last one in the above string of inequalities is bounded 
by 

meas(E) ⁄ |T g |
⁄

≲ ‖h ‖
⁄

|g |
⁄

. 

Now by the bounded overlap of the translated rectangles a + R , we see 

|g |
⁄

≲ χ dx
⁄

≲ |R |
⁄

≲ δ ⁄ . 

Combining the three displayed inequalities we get δ ≲ ‖h ‖ (δ logδ⁄ ) ⁄ δ ⁄  and 
thus the desired (55). 
Theorem (4.2.15) [118]:Forlarge ⋋, let 
프⋋(p; q, r) = sup {‖Uf‖ (ℝ; ( )) ∶  ‖f‖ ≤ 1, supp f ⊂ {ξ ∶  ⋋ 5⁄ ≤ |ξ| ≤ 15⋋}}. 

Thenfor ⋋≥ 1, thefollowingnormequivalenceshold. 
(i)For 2 ≥ r ≤ p ≤ q ≤ ∞, 

프⋋(p; q, r) ≈
⋋ ⁄ ⁄ [log⋋] ⁄ ⁄ if + ≥ ,

⋋ ⁄ ⁄ ⁄ if + <  .  
 

(ii)For 2 ≥ p ≤ r ≤ q ≤ ∞, 

프⋋(p; q, r) ≈
⋋ ⁄ ⁄ if + ≥ 1 −  ,

⋋ ⁄ ⁄ ⁄ if + < 1 −  .
 

One can obtain sharp estimates for functions in Sobolev and Besov spaces. In order to compare such 
results recall that B ⊂ B .  for q < q , that B . ⊂ B ⊂ B .  when p ≥ 2, and that B .  is the 
same as the Sobolev-Slobodecki space W .  when 0 < α < 1. 
Proof. The lower bounds for 프⋋(p; q, r) were established in the previous. And here we prove the 
upper bounds. Mainly by interpolation arguments. By Lemma (4.2.11), we can take I = [1 2⁄ . 1]. 
We consider the cases + ≥  and + <  separately. 
The case + ≥ .  Note that the set 

( , ,  ) ∶ 2 ≤ r ≤ p ≤ q ≤ ∞, + ≥  

Is closed tetrahedron with vertices , , , , , , , 0, , and 0, 0, . Hence by interpolation 
it is enough to show the estimate 

프⋋(p; q, r) ≲ ⋋ [log⋋]                                                                               (60) 
For (p; q, r) = (4, 4, 4), (2, 2, 2), (2,∞, 2) and (∞,∞, 2). The estimate for (p; q, r) = (2, 2, 2) is 
immediate from Plancherel’s theorem. More generally we recall from [114] the estimate 



90 
 

프⋋(p; q, r) ≲ 1 with 2 ≤ p ≤ ∞, which is related to a sqare-function estimate for equally spaced 
intervals. So we also get the estimates for (p; q, r) = (∞,∞, 2). For (2,∞, 2) we choose a 
nonnegative χ ∈ C (ℝ), so that χ (t) = 1 on [1 2⁄ , 1]. We need to estimate, for fixed x, 

χ (t) Uη
⋋

f(x, t) dt =
( )

e ( )f(ξ)f(w)η
⋋
η

⋋
χ (|ξ| − |w| )dξdw 

And since |ξ| + |퓌| ≥⋋, the above is bounded by 

C 1 +⋋ |ξ|− |퓌| f(ξ) f(퓌) d퓌 dξ ≲⋋ ‖f‖ . 

This is gives the desired estimate for (p, q, r) = (2,∞, 2).For (p, q, r) = (4, 4, 4) we use the bound   

ψ(ξ, s) f(y)e ⋋ | | f(y)
| |

dy dξ ds

⁄

≲⋋ (log⋋) ‖f‖ . 

Where ψ ∈ C . This is implicit in [100] (see also [117] for more discussion and related issues). 
The by rescaling, Lemma (4.2.9) and Lemma (4.2.11) we get (60) for (p, q, r) = (4, 4, 4). 
The case + < . We begin as before by observing that the set 

∆ = ( , ,  ) ∶ 2 ≤ r ≤ p ≤ q ≤ ∞, + ≥  

Is closed tetrahedron with vertices (0, 0, 0), , , , , 0,  and 0, 0,  and 0, 0, , from which 
the triangle with vertices , , , , 0,  and 0, 0,  is removed. We use a bilinear analogue of 
our adjoint restriction operator, and rely on rather elementary estimates from [100]. Define χℓ so 
that ∑ χℓℓ ℤ ≡ 1, χℓ =χ (2ℓ. ) and χ  is supported in (33). Let 

픅⋋.ℓ⌊f, g⌋ = e | | | |
⋋

( )χℓ(|y − z|)
⌈ , ⌉

f(y)g(z)d ydz, 

So that 

(ℰfℰf)(
⋋

 ξ, s) = 픅⋋.ℓ(f, f)(ξ, s).
ℓ

 

We shall verify that for ℓ ≥ 0 

‖픅⋋.ℓ(f, g)‖ ⁄ ⋋ : ⁄ ⋋ . ⋋ ≲ 2 ℓ ‖f‖ ‖g‖                       (61) 

When ( , ,  ) is contained in the closed tetrahedron with vertices (0, 0, 0), , , , , 0,  and 

0, 0, . By summing a geometric series, this yields (61) 
For ( , ,  ) ∈ ∆ . which by Lemmata (4.2.9) and (4.2.11 )yields the desired 

프⋋(p, q, r) ≲⋋ .                                                                                             (62) 
We remark that conversely, if (62) holds, then we can use Lemma (4.2.10) and a Fourier expansion 
of χℓ(y − z) to bound the left hand side of (61) byC‖f‖ ‖g‖ . with C independent of ℓ. 
It remains to show (61). By interpolation it is enough to do this with (푝,푞, 푟) = (∞,∞,∞), (2,∞, 2) 
The last two estimates were already obtained; not that the bounds (60) and (62) coincide for the 
cases (p, q, r) = (2,∞, 2) and (∞,∞, 2) and the bounds for (61) are independent of  ℓ. Hence from 
the bounds (60) previously obtained and the discussion above we have the required bounds for  
(p, q, r) = (2,∞, 2) and (∞,∞, 2). We note that the argument of the poof of the endpoint adjoint 
restriction theorem in [100] gives 
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‖B⋋ℓ(f, g)‖
,
≲ ‖f‖ ‖g‖ .                                                                             (63) 

Uniformly in ℓ ≥ 0, where B⋋ℓ(f, g)(ξ, s) = 픅(f, g) ⋋  ξ, s , and by a change of variables we obtain 
(61) holds with (p, q, r) = (4, 4, 4). To get the inequality (61) for (p, q, r) = (∞,∞,∞) we need to 
integrate ⋋ ℓ(|y − z|) over [−1, 1]  which yields the gain of 2 ℓ. 
We also consider the cases 1 − ≤  + . We note that the set 

∆ = , , : 2 ≤ p < 푟 ≤ 푞 ≤ ∞, +  ≥ 1 −  

Is the closed tetrahedron with vertices , , , , , , ,  and , 0, , from which the face 
with vertices , , , , ,  and , 0,  is removed. Note that from the previous bounds (60) 
and (62) we already have the required bounds 

프⋋(p, q, r) ≲⋋                                                                                      (64) 
For (p, q, r) = (2, 2, 2) and (2,∞, 2). Obviously∆  is contained in the convex hull of , 0, , , ,

, and the half open line segment , , , , , . Hence by it is enough to show (64) for  , ,   

containe in the half closed line segment , , , , ,  but these follow from Lemmata (4.2.9) 

and (4.2.11) combined with restriction estimate for the parabola which gives (29) for( , ,  ) ∈

, , , , , . 

The case 1 −  + . We note that the set 

, , : ∈ 2 ≤ p < 푟 ≤ 푞 ≤ ∞, + < 1 −  
1
p  

Is contained in the equatrangular pyramid Q with vertices (0, 0, 0), , 0, 0 , , , , , , and 

, 0, . We need to show (62) for , ,  contained in the above set. Repeating the above 

argument, the asserted estimates follows if we establish, for ℓ ≥ 0 and , , ∈ Q. 

‖픅⋋.ℓ(f, g)‖ ⁄ ⋋ : ⁄ ⋋ . ⋋ ≲ 2 ℓ ‖f‖ ‖g‖                       (65) 

We only need to verify it for (p, q, r) = (∞,∞,∞), (4, 4, 4), (2,∞, 2), (2, 6, 6), and (2,∞,∞). 
The first three cases were already obtained when we showed (61), and the case (p, q, r) = (2, 6, 6) 
follows from the linear adjoint restriction estimate for the parabola as before. Finally the case 
(p, q, r) = (2,∞,∞) wit a gain of 2 ℓ⁄  follows from the Schwarz inequality, and so we are done. 
One can use the uniform regularity results for the frequency localized pieces to prove sharper 
bounds such as Sobolev estimates by using argument based on the Fefferman-Stein #-function 
supported in {ξ ∶  1 4⁄ < |ξ| < 4}, not identically 0. Let I = [−1, 1 ]and  

      Γ(p, q, r) = sup
⋋> 1⋋ Uφ

⋋ → ℝ : ( )
                         (66) 

It is not hard to verify that the finiteness of Γ(p, q, r) is independent of the particular choice of φ. 
The following statement is a special case of the result in [114]. 
Proposition (4.2.16) [118]: Let푝 , 푞 , 푟 ∈ [1,∞],푞 ∈ (푞 ,∞),푟 ≤ 푟 < ∞,푝 ≤ 푞  and assume 
1 푝⁄ − 1 푞⁄ = 1 푝⁄ − 1 푞⁄ , suppose that Γ(푝 ; 푞 , 푟 ) < ∞. Then 
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|푈푓(∙, 푡)| 푑푡
⁄

(ℝ )

≲ ‖푓‖
, (ℝ ),푎 = 푑 1− − −  . 

The Sobolev estimates follow from this since for푞 ≥ 푝 ≥ 2 one has 퐿 ⊂ 퐵 , ⊂ 퐵 , . 
We note that the result in [16] is slightly sharper. Namely the left hand side can be replaced by the 

퐿 (ℝ ) norm of ∑ (푓 |푈푓(∙, 푡)| 푑푡) ⁄ ⁄
, where 푣 > 0. 

Proposition (4.2.17) [118]: Suppose that R∗(q → q ) holds for some q ∈ 2, ( ) . Then  
(i)R∗(p → q) holds q = p  provided that 

q > q∗ ∶  ( ) Ύ ( , ) ,where Ύ(d, q ) = ( ).

.
 

(ii) Let q∗ < 푞 < ∞, 푞 ≤ ∞ 푎푛푑 푠푢푝푝표푠푒 푡ℎ푎푡 0 ≤ − < 1 − ( )

∗
. 

Then U ∶  L ℝ → L ℝ  is bounded with α = d 1− − − . 

In two dimensions R∗(p → q) was proven in [3] for q > 33 10⁄  and the sharp inequalityR∗(p → q) 
for q > 63 19⁄ . 
Proof. By Theorem (4.2.8) and Proposition (4.2.16) it suffices to prove the first part. 
Let E  and E  be 1 2⁄ -separated sets in the unit ball of ℝ  and define ε f = ε fχ . By Theorem 2.2 
in [105], suffices to prove the estimate 

‖ℰ f ℰ f ‖ ⁄ ≲ ‖f ‖ ‖f ‖                                                                     (67) 
For q > q∗ and p in a neighborhood of  (i.e. the p which satisfies q = p ). 

By hypothesis and Hölder’s inequality, (67) holds with p ≥ q = q . with p ≥ 2 and q 2⁄ > . The 
theorem then follows by interpolation of bilinear operators. Indeed, we determine θ ∈ (0, 1) and 
q∗ ∈ q , ( )  by 

+ = 1 −
∗
,    (1 − θ) +  θ =

∗
. 

We compute θ =
∗
− −  and θ =

∗
− ( ) ∗ ( ) , from which we obtain 

1 q∗⁄ =
( )

− 1 − b  with b = − ( ) − . A further computation shows 

that q∗ is equal to ( ) 1 −Ύ(d, q )  as in the statement of the Lemma. 
Definition (4.2.18) [118]: Fix d ≥ 1, and let p, q, r ∈ [2,∞]. for N > 1, let 

       A , , (N, p) ≡ A , , (N, p, d) = sup‖Uf Uf ‖ ⁄ ℝ , ⁄ [ . ]  

Where the supremum is taken over all pairs of function (f , f ) whose Fourier transforms are 
supported in 1-separated subsets of ξ ∶  ξ −  N ≤ 2d , and which satisfy‖f‖ ,‖f ‖ ≤ 1. 
We remark that the unit vector e  does not play a special role here. It could replace by any unit 
vector, by rotational invariance. 
By considering two bump functions, it is easy to calculate that 

A , , (N, p) ≳ N , 1 ≤  p, q, r ≤ ∞,                                                       (68) 
sup

p > 1A , , (N, p) ≲ N , q > 16 5⁄ , r ≥ 4,                                     (69) 

Which was proven in [115] (see also [11] and [46]). We will combine this with following two 
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lemmata. 
Corollary (4.2.19) [118]:Let 2 ≤ p ≤ q ≤ r ≤ .    Suppose that 

sup
p > 1A , , (N, p) ≲ N , for some γ < 2푑 1− − − 4.                   (70) 

Then if d 1− − ≥ 0, then for all ⋋> 1, 

Uψ
⋋

f
ℝ : [ , ]

≲⋋ ‖f‖ .                                                       (71) 

Supposing this for the moment we give the 
Theorem (4.2.20) [118]:Let < p < ∞and 4 ≤ r ≤ ∞. 

Then U ∶  B . (ℝ ) → L (ℝ ; L (I)) isboundedwithα = 2 1 − − . 
The r-range can be further improved for 16 5⁄ < p < 4, by interpolating with above mentioned 
L (L (I)) bounds for p > 33 10⁄  (|3|) and the L (L (I)) bounds in [114] for p > 4. Moreover one 
can intermediate L → L (L (I)) bounds with critical α by interpolating with the L → L (L ) 
bounds in [115]. 
One can also interpolate with best known L (ℝ ) estimates for the maximal operator f ↦
sup |Uf(. , t)|, which are equivalent to the best known local estimates (see [34, 59]). 
Proof. By Proposition (4.2.16) it suffices to prove, in two spatial dimensions, the estimate (71) for 
p = q > 16 5⁄  and r ≥ 4. Using (69), we put γ = 2 q⁄ − 2 r⁄  and verify that the condition (70) with 
d = 2 in the range p = q > 16 5⁄  and r ≥ 4. Thus (71) holds in this range, and we are done. 
Lemma (4.2.21) [118]:Let p ≤ p ≤ q ≤ r and ε > 0.푇ℎ푒푛, 푓표푟 푁,푝 > 1, 

A , , (N, p) ≲ N p A , , (N, p).                                                                    (71) 
Proof.Let η ,η  be smooth in balls of diameter 1/2 which are contained in ξ ∶  ξ −  N ≤ 2d , 
and which are separated by 1/2. Define the operators s , s  bys f(ξ, t) = η (ξ)Uf(ξ), i = 1, 2. it 
suffices to prove that ‖S f S f ‖ ⁄ ℝ : ⁄ [ , ]  is dominated by‖f ‖ ‖f ‖  times a constant 

multiple of the expression on the right hand side of (71). 
 We partition ℝ  into cubes  풬  of side p with centre pv ∈ pℤ , and define 

p = (x, t) ∈ ℝ × [o, p] ∶ x − 2tNe ∈ 풬 .                                                (72) 
The parallelipipeds form a partition of ℝ × [o, p]. For fixed x the intervals I = {t ∶  (x, t) ∈ p } 
are disjoint. Thus 

‖F‖ ⁄ ℝ : ⁄ [ , ]
⁄ ≤ |F(x, t)| ⁄ dt

⁄

dx ≤ ‖χp F‖ ⁄ ℝ ;[ , ]
⁄ ;

ℝ
 

Here we used the triangle inequality for ‖∙‖ℓ ⁄
⁄  as q r⁄ ≤ 1. 

Taking F = S f S f , and denoting by풬∗ , the enlarged cube with side 50dpN , where 0 <  휀 <
4푑ε , we obtain 

‖S f S f ‖ ⁄ ℝ : ⁄ [ , ]
⁄ ≤ ‖χp S f S f ‖ ⁄ ℝ : ⁄ [ , ]

⁄  

≲ I ⁄ + II ⁄ + III ⁄ IV ⁄ , 

Where 
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I = χp S f χ풬∗ S f χ풬∗ ⁄ ℝ : ⁄ [ , ]
, 

II = χp S f χℝ \풬∗ S f χ풬∗ ⁄ ℝ : ⁄ [ , ]
, 

III = χp S f χ풬∗ S f χℝ \풬∗ ⁄ ℝ : ⁄ [ , ]
, 

IV = χp S f χℝ \풬∗ S f χℝ \풬∗ ⁄ ℝ : ⁄ [ , ]
,                        (73) 

First we consider the main terms I . By Hölder’s inequality, 

I ≤ A , , (N, p) f χ풬∗ ≲ A , , (N, p)(pN ) ( ) f χ풬∗  

We use the Schwarz inequality, the embedding ℓ ⊂ ℓ , p ≤ q, and the fact that everyx is contained 
in only0 N  of the cubes 풬∗ to get 

f χ풬∗
⁄
≤ f χ풬∗

⁄
≲ N ‖f ‖ . 

Combining the previous two estimates we bound 

( I ⁄ ) ⁄ ≲ N p ( )(N, p) ‖f ‖ .                                     (74) 

We use very crude estimates to handle the remaining three terms which can to be dominate 
byC . (N p) ‖f ‖ ‖f ‖ . which finishes the proof since  

A , , (N, p) ≳ N   By: (68) 

We only give the argument to bound ∑ II ⁄  as the other terms are handled similarly by the 
Schwarz inequality we estimate ∑ II ⁄  by 

χp S f χℝ \풬∗ ⁄ ℝ : ⁄ [ , ]

⁄

S f χ풬∗ ⁄ ℝ  ; [ , ]

⁄

  (75) 

For the second factor we use a wasteful bound, namely that the L → L ℝ  ;  [0, p]  Operator 
norm of S  is O p ⁄ N . consequently, the second factor in (75) can be bounded 

C ⁄ ( ⁄ )‖f ‖ ⁄ . 
We consider the first factor in (75) and write S f(x, t) = K f(x)wherewith χ ∈ C  equal to one in 
the ball of radius 2d centered at the origin. Integration by parts yields that for everyt ∈ [0, p] 

|K (y)| ≤ C |y − 2tNe |  if |y − 2tNe | ≥ 4d . 
Let c  be the center of 풬∗ . If x −  y ∈ ℝ \풬∗ and (x, t) ∈ p , then |x −  y − c | ≥ 10d N , |x −
2tNe − c | ≤ 2d N . and therefore also |y − 2tNe | ≥ 8d N . thus for this choice of (x, t) and y 
we have 

S f χℝ \풬∗ ≲ (pN ) | ( )|

| |
| |

dy 

And the integral is bounded by(pN) ∫(1 + |y|) |f (x − y)| dy. Here we use p > 1. 
Now Let 풬∗∗Be the cube of sidelength p(2 + N) centered at c ; 풬∗∗ × [0, p]contains p . Letting 
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C , ∶= p ⁄ (pN ) (pN) , we have 

χ p  S f χℝ \풬∗ ⁄ ℝ : ⁄ [ , ]

| ( )|
( | |)

dx
풬∗∗

 

Which is  ≲ C , (pN) ‖f ‖ ;  here one uses young’s inequality and the fact that each x ∈ ℝ  is 

contained in at most Ο (pN)  of the cubes  풬∗∗. collecting the estimates yields the crude bound  

II ⁄ ≤ C (pN ) (pN) ⁄ ‖f ‖ ⁄ ‖f ‖ ⁄  

And we conclude by choosing M sufficiently large. 
Lemma (4.2.22) [118]:Let 2 ≤ p ≤ q ≤ r ≤  and ε > 0.퐿푒푡 휓 ∈ C  be supported in the annuls 

ξ ∈ ℝ ∶  1 2⁄ ≤ |ξ| ≤ 2 . Then, for ⋋> 1, 

Uψ
⋋

f
ℝ : [ , ]

 

≲ ⋋ + sup
1 < 푁 <⋋N A , , (N, C ⋋ N⁄ )

⁄

⋋ ‖f‖ .      (76) 

Lemma (4.2.21) realize on localization argument such as in [34] and Lemma (4.2.22) relies on a by 
now standard scaling argument in [105] which reduces estimates for bilinear operators with 
separation assumptions to estimates for linear operators. 
We may combine (71), with p = 2, and (76) to obtain 

Proof. for j ≥ 0, we writeA(j,⋋) ∶= 2 ( ) sup
2 ≤ N ≤ 2 A , , N, C ⋋ 2 . 

Define T = Uψ(D),  and thus Uψ(
⋋

)f(x, t) = T[f(⋋ .)](⋋ x,⋋ t). By scaling. 

Uψ
D
⋋ → ℝ : [ , ]

=⋋ ( ) ‖T‖ → ℝ : ,⋋ .        (77) 

So that the statement of the lemma is an immediate consequence of  

‖T‖ → ℝ : ,⋋ ≲ ⋋ ( )+ A(j,⋋ )
⋋

⁄

.                    (78) 

  Now by scaling we have that  

‖Tf  Tf ‖ ⁄ ℝ : ⁄ ,⋋ ≲  A(j,⋋), ‖f ‖ ,                                                          (79) 

Whenever f  and f  are supported in a 2  ball, contained in {ξ ∶ < |ξ| ≤ 2}, and their supports are 
2  separated. We will also require the following simpler estimates 

‖Tf  Tf ‖ ⁄ ℝ : ⁄ ,⋋ ≲⋋ ( ) ‖f ‖ ,                                                          (80) 

Whenever f  and f  are supported in an ball of radius ⋋ , contained in {ξ ∶ < |ξ| ≤ 2}, by the 

Schwarz inequality, this follows from ‖Tf ‖ ℝ : ⁄ ,⋋ ≲⋋ ( ) ‖f ‖  . Let t → ϖ(t)  be a 

Schwartz function which is positive on [0, 4d] and whose Fourier transform is supported in 
[−1, 1]. by scaling and rotation this would follow from 
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‖ ϖTf‖ ℝ : (ℝ) ≲⋋ ‖f‖                                                   (81) 

Whenever f is supported in {ξ ∶  |ξ −⋋ e | ≤ 2d}. by a change of variables and trivial estimates it is 
easy to see (81) for 1 ≤ p ≤ q = r ≤ ∞. the estimate for r > 푞 follows by applying Brenstein’s 
inequality in t since the temporal Fourier transform of ϖTf is contained in {s ∶ s ~ ⋋ }. 
We now argue similarly as in [105]. Write ‖ Tf‖ ℝ : (ℝ) = ‖Tf  Tf ‖ ⁄ ℝ : ⁄ ,⋋ . For each 

j, 1 ≤ 2 ≤⋋, we Write ℓ ~  ℓ  if  sℓ and  sℓ  have adjacent parent, but are not adjacent. When ⋋<

2 ≤ 2 ⋋,  we mean byℓ ~  ℓ that the distance between sℓ and  sℓ is ≲⋋ . then, we can write for 
every(ξ, η) ∈ ℝ , with ξ ≠ η. 

χ
ℓ
(ξ)χ

ℓ
(η) = 1  

ℓ,ℓ
ℓ ~  ℓ

⋋

                                                             (82) 

Define pℓ bypℓf = χ
ℓ
f; then the operators pℓ are bounded on L , 1 < 푝 < ∞, with operator norms 

independent of ℓ and j.  For any Schwartz function f we have by (82) 

[ Tf(x, t)] = TPℓf(x, t)TPℓf(x, t)
ℓ,ℓ ℓ ~  ℓ⋋

 

Let φ ∈ C  be supported in [−1, 1] , satisfying ∑ φ(ξ − ð)ℤ = 1 for all ξ ∈ ℝ . Define pð as 

acting on L L  functions bypð G(ξ, t) =  φ(ξ − ð). We use the inequality 

pð
ð

Gð ≤ C‖{Gð}‖ℓ ,   1 ≤ α ≤ 2,   α ≤ b ≤ α ,                      (83) 

The constant C in (83) is independent of j. the inequality follows from Plancherel’s theorem in the 
case α = b = 2, and from an application of Minkowski’s inequality in the case α = 1, 1 ≤ b ≤ 2, 
The intermediate case follow by interpolation. Note that for anyj and anyð ∈ ξ  the number of pairs 
ℓ, ℓ  with ℓ ~  ℓ for which p Tpℓf Tpℓ ≠ 0 is uniformly bounded (independent of j, ð, f). Thus 

inequality (83) applied with α = q 2⁄   implies. 

‖Tf‖  ,⋋ ≲ Tpℓf Tpℓ ⁄  ⁄ ,⋋

⁄

ℓ ~  ℓ

⁄

;
⋋

             (84) 

Here we use that 1 ≤ q 2⁄ ≤ r 2⁄ ≤ (q 2⁄ )ˊ i.e. q ≤ r ≤  which implies that q 2⁄ ≤ 2. 
Now by (79) and (80) the right hand side of (84) is dominated by constant times 

A(j,⋋)
⋋

‖p‖ ⁄ ‖p‖ ⁄

ℓ ~  ℓ

⁄

+⋋  pℓ
ðf

⁄
pℓ
ðf

⁄

ℓ ~  ℓ

⁄

 

≲⋋  pℓ
ð

ℓ

⁄

+ A(j,⋋)
⋋

pℓ
ð

ℓ

⁄

. 

Here jð is the integer such that ⋋> 푗ð ≤ 2 ⋋ , and we have used the Schwarz inequality and the fact 
that for each (j, ℓ) the number of ℓ with ℓ ~  ℓ is uniformly bounded. Since 2 ≤ p ≤ q , We also 
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have 

pℓf
ℓ

⁄

≲ ‖f‖ , 

And thus we have shown (78). 

Corollary ( 4.2.23).Let γ >
 

( )( )
. . Supposethat for ⋋≫ 1 

푒 ∆휒
⋋
푓

( )
푑푡

 ( )

≲⋋ ‖푓 ‖( ) .                                              (85) 

where 휒휖퐶  is supported in 
1
2 , 2 (with suitable bounds). Then, for ⋋≫ 1. 

푒 ∆휒
⋋
푓

( )
푑푡

 ( )

( )

≲⋋ ‖푓 ‖( ).                                          (86) 

Proof. It is easy to calculate that 
sup

( ⋋)  
ℱ 휒 ∙

⋋
푒푥푝(−푖푡|∙| ) (푥) ≤ 퐶 ⋋( ) (1 +⋋ |푥|)  

And thus, by Young’s inequality, 

푒 ∆휒
⋋
푓

( )
푑푡

 

⁄

( )

( )

≲ ⋋( ) ⋋( ) (1 +⋋ |푦|) 푑푦
( )

 

≲⋋
 

( )( ) ‖푓 ‖( ) .                                                                   (87)  
Now letting (8 ⋋) ≤ 1− 휖 , 

푒 ∆휒
⋋
푓 (푥) ( ) 푑푡

( )

( )⁄

( )

= (−휖)( ) 휒
( ) ⁄ ⋋

푒 ∆ 푓 1 − 휖 ⁄ . (1 − 휖) ⁄ 푥
( )

푑푠
⁄

( )

 

Thus by change of variable (2.17) implies 

푒 ∆휒
⋋
푓

( )
푑푡

⁄

( )

( )

≲ (1 − 휖)
( ) ( ) ( ) ( ) ⋋ (1 − 휖) ‖푓 ‖( ). 

We choose 푏 = 2 . and since 훾 > (2 + 휖) ( ) − ( ) − ( ) we may sum over I with 
(8 ⋋) ≤ 2 ≤ 1 and combine with (2.19). Hence we get 

푒 ∆휒
⋋
푓 ( ) 푑푡

( )

( )

≲⋋ ‖푓 ‖( ). 

Now (86) with 퐼 = [−1,1] follows using the formula 푒 ∆푓 = 푒 ∆푓 ,̅and the triangle inequality. 
Finally, by scaling, we can enlarge the time interval (so that the implicit constant is of course 
dependent on the interval), and we are done 
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Chapter 5 

Spectral Theory of Schrödinger Operators 
We find conditions on the configuration of point interactions such that any self-adjoint realization 
haspurely absolutely continuous non-negative spectrum. We also apply some results on Schrödinger 
operatorsto obtain new results on completely monotone functions. 
 
Section (5.1): Radial Positive Definite Function with Bases of Subspace and 
Property of x-positive Definiteness 
An important topic in quantum mechanics is the spectral theory of Schrödinger Hamiltonians with 
point interactions. These are Schrödinger operators on the Hilbert space L ℝ , 1 ≤ d ≤ 3, with 
potentials supported on a discrete (finite or countable) set of points of ℝ  . There is an extensive 
literature on such operators, see e.g. [122, 124, 129, 140, 145, 147, 149, 162]. 
Let X = x  be the set of points in ℝ  and let α = α  be a sequence of real numbers, where 
m ∈ ℕ ∪ {∞}. The mathematical problem is to associate a self-adjoint operator (Hamiltonian) on 
L ℝ  with the differential expression 

ℒ ≔ ℒ (X,α) ≔ −∆+ α δ ∙ −x ,   α ∈ ℝ, m ∈ ℕ ∪ {∞},       (1) 

and to describe its spectral properties. 
There are at least two natural ways to associate a self-adjoint Hamiltonian H .  with the differential 
expression (1). The first one is the form approach. That is, the Hamiltonian H ,α is defined by the 
self-adjoint operator associated with the quadratic form 

픱 , [f] = |∇f| dx + α f x .      dom 픱 , = W , ℝ .   (2)
ℝ

 

This is possible for d = 1 and finite m ∈ ℕ, since in this case the quadratic form 픱 ,  is semi-

bounded below and closable (cf. [164]). Its closure 픱 ,
( )  is defined by the same expression (2) on the 

domain dom 픱 ,
( ) = W , (ℝ). For m = ∞ the form (2) is also closable whenever it is 

semibounded (see [125, Corollary 3.3]). 
Another way to introduce local interactions on X ≔ x ⊂ ℝ is to consider the minimal operator 

corresponding to the expression ℒ  and to impose boundary conditions at the points x .  
in the case d = 1 and m < ∞ the domain of the corresponding Hamiltonian H ,  is given by 

dom H , = f ∈ W , (ℝ ∖ X) ∩ W , (ℝ): f x + − f x − = α f x . 
In contrast to the one-dimensional case, the quadratic form (2) is not closable in L ℝ  for d ≥ 2, 
so it does not define a self-adjoint operator. The latter happens because the point evaluations f →
f(x) are no longer continuous on the Sobolev space W , ℝ  in the case d ≥ 2. 
However, it is still possible to apply the extension theory of symmetric operators. F.A. Berezin and 
L.D. Faddeev proposed in [129] to consider the expression (1) (with m = 1and d = 3). 
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They defined the minimal symmetric operator H as a restriction of −∆ to the domain dom H =
f ∈ W , ℝ : f(x ) = 0  and studied the spectral properties of all its self-adjoint extensions. Self-

adjoint extensions (or realizations) of H for finitely many point interactions have been investigated 
since then in numerous sections (see [122]). In the case of infinitely many point interactions X =
x  the minimal operator H  is defined by 

H ≔ H , ≔ −∆↾ dom H, dom(H ) = f ∈ W , ℝ : f x = 0, j ∈ ℕ .      (3) 
we investigate the “operator” (1) (with d = 3 and m = ∞) in the framework of boundary triplets. 
This is a new approach to the extension theory of symmetric operators that has been developed 
during the last three decades (see [139, 64, 134, 166]). A boundary triplet Π = {ℋ, Γ ,Γ } for the 
adjoint of a densely defined symmetric operator A consists of an auxiliary Hilbert space ℋ and two 
linear mapping Γ ,Γ : dom(A∗) → ℋ such that the mapping Γ ≔ (Γ , Γ ): dom(A∗) → ℋ⨁ ℋ is 
surjective. The main requirement is the abstract Green identity. 

(A∗f, g)ℌ − (f, A∗g)ℌ = Γ f,Γ
ℋ
− Γ f,Γ

ℋ
,   f, g ∈ dom(A∗)(4) 

A boundary triplet for A∗ exists whenever A has equal deficiency indices, but it is not unique. It 
plays the role of a “coordinate system” for the quotient space dom(A∗)/dom(A) and leads to a 
natural parametrization of the self-adjoint extension of A by means of self-adjoint linear relation 
(multi-valued operators) in ℋ, see [139] and [166]. 
The main analytical tool is the abstract Weyl function M(∙) which was introduced and studied in 
[64]. This Weyl function plays a similar role in the theory of boundary triplets as the classical 
Weyl-Titchmarsh function does in the theory of Strum-Liouville operators, its allows one to 
investigate spectral properties of extensions (see [133, 64, 155, 158]). 
When studying boundary value problems for differential operators, one is searching for an 
appropriate boundary triplet such that: 
The properties of the mapping Γ = Γ , Γ  should correlate with trace properties of functions from 
the maximal domain dom(A∗). 
The Weyl function and the boundary operator should have “good” explicit forms. 
Such a boundary triplet was constructed and applied to differential operators with infinite deficiency 
indices in the following cases: 
(i) Smooth elliptic operators in bounded or unbounded domains ([141, 172], see also [142]), 
(ii) The maximal Strum-Liouville operator –d dx + T in L ([0,1];ℋ) with an unbounded 

operator potential T = T∗ ≥ aI, T ∈ (ℋ) ([139], see also [64] for the case of L (ℝ ;ℋ)), 
(iii) The ID Schrödinger operator ℒ ,  in the cases d∗(X) > 0[150, 160] and d∗(X) = 0[151], 

where d∗(X) is defined by (5) below. 
Constructing such a “good” boundary triplet involves always non-trivial analytic results. For 
instance, Grubb’s construction [141] for (i) (see also the adaptation to the case of Definition 4 in 
[156]) is based on trace theory for elliptic operators developed by Lions and Magenes [153] (see 
also [142]). The approach in (iii) is based on a general construction of a (regularized) boundary 
triplet for direct sums of symmetric operators (see [158, Theorem 5.3] and [151, Corollary(5.1.36)]. 
We study all (that is, not necessarily local) self-adjoint extensions of the operator H = H  
(realizations of ℒ ) in the framework of boundary triplets approach. As in [122] our crucial 
assumption is 
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d∗(X) ≔ inf x − x > 0.                                                                (5) 

Our construction of a boundary triplet Π for H ∗ is based on the following result: The sequence 

e
x − x

(6) 

forms a Riesz basis of the defect subspace 픑 (H) = ker(H∗ + I) of H∗ (cf. Theorem (5.1.43)). 
Using this boundary triplet Π we parameterize the set of self-adjoint extensions of H, compute the 
corresponding Weyl function M(·) and investigate various spectral properties of self-adjoint 
extensions (semiboundedness, non-negativity, negative spectrum, resolvent comparability, etc.). 
The main result on spectral properties of Hamiltonians with point interactions concerns the 
absolutely continuous spectrum (ac-spectrum). For instance, if 

C ≔
1

x − x
< ∞,                                                                (7)

| |

 

We prove that the part HE (C,∞) of every self-adjoint extension ˜H of H is absolutely continuous 
(cf. Theorems (5.2.25) and (5.2.26)). Moreover, under additional assumptions on X, we show that 
the singular part of H ≔ HE (0,∞) is trivial, i.e. H = H . 
The absolute continuity of self-adjoint realizations H of H has been studied only in very few cases.  

Assuming that X = Y + Λ, where Y = y ∈ ℝ  is a finite set and  

Λ = ∑ n a ∈ ℝ : (n , n , n ) ∈ ℤ  is a Bravais lattice, it was proved in [121, 123, 135, 140, 145-
147, 124] (see also [122] and the references in [122] and [124]) that the spectrum of some periodic 
realizationsis absolutely continuous and has a band structure with a finite number of gaps. 
An important feature of the investigations is an apparently new connection between the spectral 
theory of operators (1) for d = 3 and the class Φ  of radial positive definite functions on ℝ . We 
exploit this connection in both directions. We combine the extension theory of the operator H with 
Theorem (5.1.34) to obtain results on positive definite functions and the corresponding Gram 
matrices (8), while positive definite functions are applied to the spectral theory of self-adjoint 
realizations of operators (1) with infinitely many point interactions. 
We deal with radial positive definite functions on ℝ  and has been inspired by possible applications 
to the spectral theory of operators (1). If f is such a function and X = {x }  is a sequence of points 
of ℝ , we say that f is stronglyX-positive definite if there exists a constant c > 0 such that for all 
ξ , . . . ,ξ ∈ ℂ, 

ξ ξ̅
,

f x − x ≥ c |ξ | ,   m ∈ ℕ. 

Using Schoenberg’s theorem we derive a number of results showing under certain assumptions on X 
that f is stronglyX-positive definite and that the Gram matrix 

Gr (f) ≔ (f x − x ) , ∈ℕ(8) 
defines a bounded operator on l (ℕ). The latter results correlate with the properties of the sequence 
{e (·,  )} ∈ℕ of exponential functions to form a Riesz–Fischer sequence or a Bessel sequence, 
respectively, in L (S ;σ ) for some r > 0. 
We prove that the sequence (6) forms a Riesz basis in the closure of its linear span if and only if X 
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satisfies (5). This result is applied to prove that for such X and any non-constant absolute monotone 
function f on ℝ  the function f (|∙| ) is stronglyX-positive definite. Under an additional assumption 
it is shown that the matrix (8) defines a boundedly invertible bounded operator on l (ℕ) . 
We collect some basic definitions and facts on boundary triplets, the corresponding Weyl functions 
and spectral properties of self-adjoint extensions. 
Also we construct a boundary triplet for the adjoint operator H∗ for d = 3 and compute the 
corresponding Weyl function M(·). The explicit form of the Weyl function given by (101) plays 
crucial role in the sequel. For the proof of the surjectivity of the mapping Γ = (Γ ,Γ ) the strong 
X-positive definiteness of the function e |·| on ℝ  is essentially used. The latter follows from the 
absolute monotonicity of the function e  on ℝ . 
We describe the quadratic form generated by the semibounded operator M(0) on l (ℕ) as strong 
resolvent limit of the corresponding Weyl function M(−x) as x → +0. For this we use the strong X-

positive definiteness of the function 
|∙|

|∙|
 on ℝ  which follows from the absolute monotonicity of 

the function   on ℝ . The operator M(0) enters into the description of the Krein extension of H 
for d = 3 and allows us to characterize all non-negative self-adjoint extensions as well as all self-
adjoint extensions with κ (≤ ∞) negative eigenvalues. Using the behavior of the Weyl function at 
−∞ we show that any self-adjoint extension H  of H is semibounded from below if and only if the 
corresponding boundary operator B is. A similar result for elliptic operators on exterior domains has 
recently been obtained byG. Grubb [143]. 
We apply a technique elaborated in [133,158] as well as a new general result to investigate the ac-
spectrum of self-adjoint realizations, we prove that the part HE (C,∞) of any self-adjoint 
realization H of ℒ  is absolutely continuous provided that condition (7) holds. Moreover, under 
some additional assumptions on X we show that the singular non-negative part H E (0,∞) of any 
realization H is trivial. Among others, provide explicit examples which show that an analog of the 
Weyl-von Neumann theorem does not hold for non-additive (singular) compact (and even 
noncompact) perturbations. The proof of these results is based on the fact that the function  

belongs to Φ  for each s > 0. Then, by Propositions (5.1.17) and (5.1.19), |∙|
|∙|

 is stronglyX-

positive definite for certain subsets X of ℝ  and anys > 0. The latter is equivalent to the invertibility 
of the matrices 

ℳ(t) ≔ δ +
sin(√t x − x
√t x − x + δ

.

for t ∈ ℝ  

Throughout and ℋ are separable complex Hilbert spaces. We denote byB(ℋ,ℌ) the bounded linear 
operators from ℋ into ℌ, by B(ℋ) the set B(ℋ,ℋ), by풞(H) the closed linear operators on ℋ and 
by픖p(ℋ) the Neumann–Schatten ideal on ℋ. In particular, 픖 (ℋ) and 픖 (ℋ) are the ideals of 
compact operators and trace class operators on ℋ, respectively. 
For closed linear operator T on ℌ, we write dom(T), ker(T), ran(T), gr(T) for the domain, kernel, 
range, and graph of T, respectively, and σ(T) and ρ(T) for the spectrum and the resolvent set of T. 
The symbols σ (T),σ (T),σ (T),σ (T),σ (T) denote the continuous, absolutely continuous, 
singular, singularly continuous and point spectrum, respectively, of a self-adjoint operator T. Note 
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that σ (T) = σ (T) ∪ σ (T) and σ(T) = σ (T) ∪ σ (T). The defect subspaces of a symmetric 
operator T are denoted by픑 . [164-166, 148]. 
ByC[0,∞) we mean the Banach space of continuous bounded functions on [0,∞) and byS  the 
sphere in ℝ  of radius r centered at the origin and S ≔ S . Further, Σ ∈ℕ denotes the sum over all 
k ≠ j and Σ| |  is the sum over all k, j ∈ ℕ with k ≠ j. 
Let (u, v) = u v + ⋯+ u v  be the scalar product of two vectors u = (u , … , u ) and v =
(v , … , v ) from ℝ , n ∈ ℕ, and let |u| = |u| = (u, u) be the Euclidean norm of u. First we 
recall some basic facts and notions about positive definite functions [1]. 
Definition (5.1.1) [176]: (See [119]). A function g:ℝ → ℂ is called positive definite if g is 
continuous at 0 and for arbitrary finite sets {x , … , x } and {ξ , … , ξ }, where x ∈ ℂ, we have  

ξ ξ̅ g x − x ≥ 0.                                                            (9)
,

 

The set of positive definite function on ℝ  is denoted byΦ(ℝ ). 
Clearly, a function g on ℝ  positive definite if and only if it is continuous at 0 and the matrix 

G(X) = g ≔ g x − x
,

is positive semi-definite for any finite subset X = x  of ℝ .  

The following classical Bochner theorem gives a description of the class Φ(ℝ ). 
Theorem (5.1.2) [176]: (See [132]). A function g(∙) is positive definite on ℝ  if and only if there is 
a finite non-negative Bore measure μ on ℝ  if and only if there is a finite non-negative Borel 
measure such that 

g(x) = e ( , )dμ(u)    for all x ∈ ℝ .                                           (10)
ℝ

 

Let us continue with a number of further basic definitions.  
Definition (5.1.3) [176]: Let g be a positive define function on ℝ  and let X be a subset of ℝ . 
(i) We say that g is strongly X-positive definite if there exists a constant c > 0 such that. 

ξ ξ̅ g x − x > 푐 |ξ | , ξ = {ξ , … , ξ }
,

∈ ℂ ∖ {0}(11) 

for any finite set x  of distinct points x ∈ X. 

(ii) It is said g is strictly X-positive definite if (3) is satisfied with c = 0. 
Any stronglyX-positive definite g is also strictlyX-positive definite. For finite sets X = x  both 
notions are equivalent by the compactness of the sphere in ℂ . 
Definition (5.1.4) [176]: (See [173]). Let F = {f }  be a sequence of vectors of a Hilbert spaceℋ. 

(i) The sequence is called a Riesz-Fischer sequence if there exists a constant c > 0 such that  

ξ f
ℋ

≥ c |ξ |   for all (ξ , … , ξ ) ∈ ℂ and m ∈ ℕ.    (12) 

(ii) The sequence F is said to be Besel sequence if there is a constant C > 0 such that. 
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ξ f
ℋ

≤ C |ξ |    for all (ξ , … , ξ ) ∈ ℂ  and m ∈ ℕ  (13) 

(iii) The sequence F is called Riesx basis of the Hilbert space ℋ if its linear span is dense in ℋ 
and F is both a Riesz-Fischer sequence and a Bessel sequence. 

Note that the definitions of Riesz-Fischer and Bessel sequences given in [173] are different, but 
they are equivalent to the preceding definition according to [173] 
The following proposition contains some slight reformulations of these notions.  
If 풜 = a

, ∈ℕ
 is an infinite matrix of complex entries a  we shall say that 풜 defines a bounded 

operator A on the Hilbert space l (ℕ) if 

〈Ax, y〉 = a x y   for x = {x } ∈ℕ, y = {y } ∈ℕ
,

∈ l (ℕ).      (14) 

Clearly, if 풜 defines a bounded operator A, then A is uniquely determined by Eq. (14). 
Proposition(5.1.5) [176]: Suppose that X = {x }  is a sequence of pairwise distinct points of ℝ  
and g is a positive definite function given by (10) with measure μ. Let F = f ≔ e (∙, )  denote 
the sequence of exponential function in the Hilbert space L (ℝ ;μ). Then: 

(i) F is a Riesz-Fischer sequence in L (ℝ ; μ) if and only if g is strongly X-positive definite. 
(ii) F is a Bessel sequence if and only if the Gram matrix. 

G = (〈f , f 〉 ℝ ; ) , ∈ℕ =: Gr (g)                                             (15) 
defines a bounded operator on l (ℕ). 
Proof. Using Eq. (10) we easily derive  

ξ ξ̅ g x − x = ξ e ( , ) dμ(u) = ξ f (u) dμ(u) = ξ f
(ℝ : )ℝℝ,

(16) 

for arbitrarym ∈ ℕ and ξ = {ξ , … , ξ } ∈ ℂ . Both statements are immediate from (16). 
Taking in mind further applications to the spectral theory of self-adjoint realizations of ℒ  we will 
be concerned with radial positive definite functions. Let us recall the corresponding concepts. 
Definition (5.1.6) [176]: Let n ∈ ℕ. A function f ∈ C([0, +∞)) is called a radial positive definite 
function of the class Φ  if f(|∙| ) is a positive definite function on ℝ , i.e., if f(|∙| ) ∈ Φ(ℝ ). 
It is known that Φ ⊂ Φ  and Φ ≠ Φ  for anyn ∈ ℕ (see, for instance, [171, 175]). 
A characterization of the class Φ  is given by the following Schoenberg theorem [167, 168], see, 
e.g., [119] or [130, 170]. Let σ  denote the normalized surface measure on the unit sphere S . 
Theorem(5.1.7) [176]:A function f on [0, +∞) belong to the class Φ  if and only if there exists a 
positive finite Borel measure v on [0, +∞) such that  

f(t) = Ω (rt) dv(r)dv(r), t ∈ [0, +∞).                                                 (17) 

where  

Ω (|x|) = e ( , )dσ (u),   x ∈ ℝ .                                                                    (18) 
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Moreover, we have 

Ω (t) = Γ
n
2

2
1 J (t) = −

t
4

Γ

p!Γ + p
. t ∈ [0, +∞).       (19) 

The first three function Ω , n = 1,2,3, can be computed as  

Ω (t) = cos t,       Ω (t) = J (t),        Ω (t) =
sin t

t .                                            (20) 

where J  is the Bessel function of first kind and order zero (see e.g., [163]). 
It was proved in [138] using Schoenberg’s theorem that for each non-constant function f ∈ Φ , n ≥
2, the function f(|∙|) is strictlyX-positive definite for any finite subset X of ℝ . 
Definition (5.1.8) [176]: A function f ∈ C[0,∞) ∩ C (0, +∞) is called completely monotone on 
[0,∞) if (−1) f (t) ≥ 0 for all k ∈ ℕ ∪ {0} and t > 0. The set of such functions is denoted 
byM[0,∞). 
By Bernstein’s theorem [1], a function f on [0,∞) belongs to the class M[0,∞) if and only if there 
exists a finite positive Borel measure τ on [0,∞) such that 

f(t) = e dτ(s),   t ∈ [0,∞).                                         (21) 

The measure τ is then uniquely determined by the function f. 
Schoenberg noted in [167, 168] that a function f on [0,∞) belongs to ⋂ Φ∈ℕ  if and only if f √∙ ∈
M[0,∞). The following statement is an immediate consequence of Schoenberg’s result. 
Proposition(5.1.9) [176]: If f ∈ M[0,∞), then f ∈ ⋂ Φ∈ℕ . 
Proof. For s ≥ 0 the function g (t) ≔ e √  is completely monotone for t > 0. Schoenberg’s result 
applies to g (t ) and shows that g (t ) = e ∈ ⋂ Φ∈ℕ . Therefore the integral representation 
(21) implies that f(∙) ∈ ⋂ Φ∈ℕ . 
For any sequence X = {x }  of points of ℝ  we set  

d∗(X) ≔ inf x − x . 

The following proposition describes a large class of radial positive definite functions that are 
stronglyX-positive definite for any sequence X of points of ℝ  such that d∗(X) > 0. 
Corollary(5.1.10) [176]:  Suppose X = x  is a sequence of points of ℝ  and τ is a finite 

positive Borel measure on [0, +∞). Then: 
If d∗(X) > 0 and τ((0, +∞)) > 0, then Φ forms a Riesz-Fischer sequence in L (ℝ ). 
If d∗(X) > 0 and (67) holds, then Φ is a Bessel sequence in L (ℝ ). 
If d∗(X) > 0 and (67) is satisfied, then Φ forms a Riesz basis in its closed linear span. 
If the sequence Φ is both a Riesz-Fischer and a Bessel sequence in L (ℝ ), then d∗(X) > 0. 
An immediate consequence of the preceding corollary is 
Corollary(5.1.11) [176]: Let f, X and τ be as in Theorem (5.1.37) and assume that condition (67) 
holds. Then the sequence Φ = φ  forms a Riesz basis in its closed linear span if and only if 
d∗(X) > 0. 
Remark(5.1.12) [176]: Let f be an absolutely monotone function with integral representation (21). 
Then. 
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Gr (f) = (f( x − x )) , ∈ℕ = (〈φ ,φ 〉 ℝ ) , ∈ℕ = Gr .    (22) 
Proposition(5.1.13) [176]:  Suppose that f ∈ Φ  and let v be the corresponding representing 
measure form (17). Let X = x  be an arbitrary sequence from ℝ . Then f is stronglyX-positive 
definite if and only if there exists a Borel subset 풦 ⊂ (0, +∞) such that v(κ) > 0 and the system 
e (∙, )  forms a Riesz-Fischer sequence in L (S ;σ ) for everyr ∈ κ. 

Proof. From (17) and (18) it follows that for (ξ , … , ξ ) ∈ ℂ  and m ∈ ℕ. 

ξ ξ̅
,

f x − x = ξ e ( , ) dσ (u) dv(r).   (23) 

Suppose that there exists a set κ as stated above. Then for everyτ ∈ 풦 there is a constant c(r) > 0 
such that 

ξ e ( , )

( )

≥ c(r) |ξ | .                                                   (24) 

Choosing c(r) measuring and combining this inequality with (23) we obtain 

ξ ξ̅
,

f x − x = ξ e ( , )

( )

dv(r) ≥ c |ξ | ,   (25) 

where c ≔ ∫ c(r)dv(r). Since v(κ) > 0 and c(r) > 0, we have c > 0. That is, f is stronglyX-
positive definite. 
The converse follows easily from E.q. (23). 
Remark(5.1.14) [176]:  Or course, the set κ in Proposition (5.1.13) is not unique in general. If the 
measure v has an atom r ∈ (0, +∞), i.e., v({r }) > 0, then one can choose k = {r }. For instance, 
for the function f(∙) = Ω (r ) the representative measure from formula (17) is the delta measure δ  

at r . Therefore, f(∙) = Ω (r ) is stronglyX-positive definite if and only if the system e (∙, )  

forms a Riesz-Fischer sequence in L S :σ . 
Let Λ = {λ }  be a sequence of reals. For r > 0 let n(r) denote the largest number of points λ  that 
are contained in an interval of length r. Then the upper density of Λ is defined by. 

D∗(Λ) = lim
→

n(r)r . 

Since n(r) is subadditive, it follows that this limit always exists (see e.g. [131]). 
In what follows we need the classical result on Riesz-Fischer sequences of exponents in L (−a, a). 
Proposition(5.1.15) [176]: Let Λ = {λ }  be a real sequence and a > 0. Set E(Λ) ≔ e . 

(i) If d∗(Λ) > 0 and D∗(Λ) < 푎/휋, then E(Λ) is a Riesz-Fischer sequence in L (−a, a). 
(ii) If E(Λ) is a Riesz-Fischer sequence in L (−a, a), then d∗(Λ) > 0 and D∗(Λ) ≤ a/π. 
Assertion (i) of Proposition (5.1.15) is a theorem of A. Beurling [131], while assertion (ii) is a result 
of H.J. Landau [152], see e.g. [174]. Proposition (5.1.15)yields following statement. 
Corollary(5.1.16) [176]: If d∗(Λ) > 0 and D∗(Λ) = 0, then E(Λ) is a Riesz-Fischer sequence in 
L (−a, a) for all a > 0. 
From this corollary it follows that E(Λ) is a Riesz-Fischer sequence in L (−a, a) for all a > 0 if 
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lim
→

(λ − λ ) = +∞. 

Now we are ready to state the main result of this subsection. 
Proposition(5.1.18) [176]: Let f ∈ Φ , f ≠ const, and let X = {x }  be a sequence of points x ∈
ℝ , n ≥ 2, of the form x = (0, x , … , x ). If the sequence X ≔ {x }  of n-th coordinates 
satisfies the conditions d∗(X ) > 0 and D∗(X ) = 0, then f is stronglyX-positive definite. 
Proof. By Schoenberg’s Theorem (5.1.7), f admits a representation (17). Let ξ = (ξ , … , ξ ) ∈
ℂ , m ∈ ℕ. It follows from (17) and (18) that 

ξ ξ̅
,

f x − x = ξ e ( , ) dσ (u) dv(r).  (26) 

Next, we transform the integral over S  in (26). Recall that in terms of spherical coordinates  
u = cosφ , u

= sinφ … sinφ cosφ ,
u = sinφ … sinφ sinφ ,φ , … ,φ ∈ [0,π] and φ ∈ [0,2π] 

the surface measure σ  on the unit sphere S  is given by 
dσ (u) ≡ dσ (u , … , u ) = sin φ sin φ … sinφ … dφ  

Set v = (u , … , u ) and B ≔ {v ∈ ℝ : |≤ 1|}. Writing u ∈ S  as u = (u , v), we derive from 
the previous formula. 

dσ (u) =
1

1 − |v|
dv,   where u + |v| = 1, v ∈ B .       (27) 

Further, we write v = (풲, t), where w ∈ ℝ  and t ∈ ℝ, and x = (0, x , … , x ) = (0, y , x ), 
where y ∈ ℝ . Then we have (u, rx ) = r(w, y ) + rtx . Let B  denote the unit ball B ≔
{w ∈ ℝ : |w| ≤ 1} in ℝ . Using the equality (27) we then compute 

ξ e ( , ) dσ (u) = ξ e ( , ) 1
1 − |v|

dv   (28) 

ξ e ( , )e  dv = ξ e ( , )e dt

| |

| |

 dw

= r ξ e ( , )e

| |

| |

ds dw.   (29) 

 
Since d∗(X ) > 0 and D∗(X ) = 0 by assumption, Corollary(5.1.16) implies that for anya > 0 the 
sequence e  is a Riesz-Fischer sequence in L (−a, a). That is, there exists a constant 
c(a) > 0 such that 

ξ e ( , ) e ds ≥ c(a) ξ e ( , ) = c(a) |ξ | . 

Inserting this inequality, applied with a = 1− |w| > 0, into (29) and then (29) into (26) we 
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obtain. 

ξ ξ̅ f x − x ≥ r ξ e ( , ) e ds

| |

| |

dw dv(r)
,

≥ r c r 1− |w| |ξ | dw dv(r)

≥ r c r 1− |w| dwdv(r) |ξ | . 

The double integral in front of the last sum is a finite constant, sayγ, by Since f is not constant by 

assumption, v((0, +∞)) > 0. Therefore, since r c r 1− |w| > 0 for all r > 0 and |w| < 1, 

we conclude that γ > 0. This shows that f is stronglyX-positive definite. 
Assuming f ∈ Φ  rather that f ∈ Φ  we obtain the following corollary. 
Corollary(5.1.18) [176]: Assume that f ∈ Φ  and f is not constant. Let X = {x }  be sequence of 
points x = (x , x , … , x ) ∈ ℝ . If the sequence X ≔ {x }  of n-th coordinate satisfies the 
conditions d∗(X ) > 0 and D∗(X ) = 0, then f is stronglyX-positive definite. 
Proof. We identifyℝ  with the subspace 0⨁ ℝ . Then X is identified with the sequence X =
{(0, x )} . Since f ∈ Φ , Proposition (5.1.17) applies to the sequence X, so f is stronglyX-
positive definite. Hence it is stronglyX-positive definite. 
The next proposition gives a more precise result for a sequence X = {x }  of ℝ  which are 
located on a line. 
Proposition(5.1.19) [176]: Suppose that Λ = {λ }  is a real sequence and r > 0. Let X be the 
sequence X = {x ≔ (0,0, λ )}  in ℝ  and let f (x) ≔ Ω (r|x|), x ∈ ℝ . 
If d∗(Λ) > 0 and D∗(Λ) < 푟/휋, then the function f  is stronglyX-positive definite. 
If f  is stronglyX-positive definite, then d∗(Λ) > 0 and D∗(Λ) ≤ r/π. 
Proof. Suppose that ξ = (ξ , … , ξ ) ∈ ℂ , m ∈ ℕ. We introduce spherical coordinates on the unit 
sphere S  in ℝ  by. 

u = sin θ cosφ, u = sinθ sinφ , u = cosθ, where θ ∈ [0,π]. 
Then the surface measure σ  on the sphere S  is given bydσ (u) = sin θdφdθ and (u, rx ) =
rλ cos θ. Using these facts and Eq. (18) we compute. 

ξ ξ̅ f x − x = ξ ξ̅ Ω r x − x
,

= ξ e ( , ) dσ (u)
,

= ξ e sinθdφdθ = 2π ξ e sinθdθ. 

Transforming the latter integral by setting t = r cosθ obtain 

ξ ξ̅
,

f x − x =
2π
r ξ e dt.                  (30) 
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Equality (30) is the crucial step for the proof of Proposition (5.1.19). 
Since d∗(Λ) > 0 and D∗(Λ) < 푟/휋, (Λ) = e  is Riesz-Fischer sequence in L (−r, r) by 
Proposition (5.1.15) (i). This means that there exists a constant c > 0 such that 

ξ e dt ≥ c |ξ | . 

Combined with (30) it follows that f is stronglyX-positive definite. 
Since f is stronglyX-positive definite, there is a constant c > 0 such that  

ξ ξ̅ f x − x ≥ c |ξ | .
,

 

Because of (30) this implies that E(Λ) is stronglyX-positive definite. Therefore, d∗(Λ) > 0 and 
D∗(Λ) ≤ r/π by Proposition (5.1.15) (ii). 
Corollary(5.1.20) [176]: Assume the conditions of Proposition (5.1.19) and r > 0. Then the 
functions f  are stronglyX-positive definite for anyr ∈ (0, r ) if and only if d∗(Λ) > 0 and D∗(Λ) =
0. 
Here we discuss the question of when the Gram matrix (15) defines a bounded operator on l (ℕ). A 
standard criterion for showing that a matrix defines a bounded operator is Schur’s test. It can be 
stated as follows: 

Lemma(5.1.21) [176]: Let A = a
, ∈ℕ

 be an infinite Hermitian matrix satisfying. 

C ≔ sup
∈ℕ

a < ∞.                                                    (31) 

Then the matrix A defines a bounded self-adjoint operator A on t (ℕ) and we have ‖A‖ ≤ C.  
A proof of Lemma (5.1.21) can be found, e.g., in [173, p. 159]. 
Lemma(5.1.22) [176]: Let A = (a ) , ∈ℕbe on infinite Hermitian matrix. Suppose that (푎푘푗) ∈
푡  for all 푗 ∈ ℕ and 

lim
→

푠푢푝
푗 ≥ 푚 |푎푘푗| = 0.                                          (32) 

Then the Hermitian matrix 퐴 = (푎푘푗)푘, 푗 ∈ ℕ defines a compact self-adjoint operator on t (ℕ). 
Proof. For m ∈ ℕ let A  denote the matrix (a( )) , ∈ℕ, where a( ) ≔ 0 if either k ≥ m or j ≥

mand a( ) = a  otherwise. Clearly, A  defines a bounded operator A  on l (ℕ). From (32) it 

follows that the matrix A − A  satisfies condition (31) for large m, so A − A  defines a bounded 
operator B . Therefore A defines the bounded self-adjoint operator A ≔ A + B . 
Let ε > 0 be given. By (32), there exists m  such that ∑ a < 휀 for m > m  and j > m . 
Using the latter, the Cauchy-Chwarz inequality and the relation a = a  we derive  
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‖B x‖ = a x ≤ a k |a k| |x | =≤ ε |a ||x |

≤ ε |x | ≤ ε ‖x‖  

for x = x ∈ l (ℕ) and m > m . This proves that lim‖B ‖ = lim‖A − A ‖ = 0. Obviously, 

A  is compact, because it has finite rank. Therefore, A is compact. 
An immediate consequence of Lemma (5.1.22) is the following matrix satisfying 
Corollary (5.1.23) [176]: If A = A

,∈ℕ
 is an infinite Hermitian matrix satisfying. 

lim
→

sup
∈ℕ

|a | − 0,                                                         (33) 

then the matrix A defines a compact self-adjoint operator on l (ℕ). 
Proposition(5.1.24) [176]:Let f ∈ Φ , n ≥ 2, and let v be the representing measure in Eq. (17). Let 
X = {x }  be a sequence of pairwise different points x ∈ ℝ . Suppose that for each j, k ∈ ℕ, j ≠ k, 
there are positive numbers α  such that 

K: sup
∈ℕ

′
1

(a |x − x |)
< ∞.                                              (34)

∈ℕ

 

L: sup
∈ℕ

′v([0, a ]) < ∞.                                                                  (35)
∈ℕ

 

Then the matrix G (f) ≔ (f( x − x )) , ∈ℕ defines a bounded self-adjoint operator on l (ℕ). 
Proof. By (19) the function Ω (t) has an alternating power series expansion and Ω (0) = 1. 
Therefore we have Ω (t) ≤ 1 for t ∈ [0,∞). It is well known (see, e.g., [163. P. 266]) that the 

Bessel function J (t) behaves asymptotically as  as t → ∞. Therefore. It follows from (19) that 

there exists a constant C  such that  

|Ω (t)| ≤ C t   for t ∈ (0,∞).                                       (36) 
Using these facts and the assumptions (34) and (35) we obtain. 

′f x − x = ′ Ω r x − x dv(r) ≤ ′ 1dv(r) + C (r x − x ) dv(r)
∈ℕ∈ℕ∈ℕ

≤ ′v 0,α + ′C (α |x − x |)
∈ℕ∈ℕ

dv(r)

= L + C ′(α |x − x |)
∈ℕ

v(ℝ) ≤ L + C Kv(ℝ). 

so that 

sup
∈ℕ

f x − x ≤ f(0) + L + C Kv(ℝ) < ∞.                    (37) 
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This shows that the assumption (5.1.24) of the Schur test is fulfilled, so the matrix G (f) defines a 
bounded operator by Lemma (5.1.21). 
The assumptions (35) and (34) are a growth condition of the measure v at zero combined with a 
density condition for the set of points x . Let us assume that v([0, ε]) = 0 for some ε > 0. Setting 
a = ε in Proposition (5.1.24), (35) is trivially satisfied and 34) holds whenever. 

sup
∈ℕ

′
1

x − x
< ∞.                                                               (38)

∈ℕ

 

Because of its importance we restate this result in the special case when v = δ  is a delta measure at 
r ∈ (0,∞) separately as  
Corollary(5.1.25) [176]: If X = {x }  is a sequence of pairwise distinct points x ∈ ℝ  satisfying 
(38), then for anyr > 0 the infinite matrix (Ω (r|x − x |)) , ℕ define bounded operator on l (ℕ). 
An example is the next proposition. 
Proposition(5.1.26) [176]:Suppose X = {x }  is a sequence of distinct points x ∈ ℝ  such that 

K ≔ sup
∈ℕ

′
1

x − x
< ∞.                                                                  (39)

∈ℕ

 

Let r ∈ (0,∞) and let A be the infinite matrix given by 

Ω (t, X) ≔ (Ω (t|x − x |)) , ∈ℕ =
sin(t|x − x |)

t|x − x |
, ∈ℕ

(40) 

where we set ≔ 1. If r K < 1, then A defines a bounded self-addjoint operator A on l (ℕ) 
with bounded inverse; moreover, ‖A‖ ≤ 1 + r K and ‖A ‖ ≤ (1 − r K) . 
Proof. Set S ≡ (a ) , ∈ℕ ≔ A − I, where I is the identity matrix. Since a = 0, one has 

sup
∈ℕ

|a | = sup
∈ℕ

′
sin(r|x − x |)

r|x − x | ≤ r sup
∈ℕ

′
1

|x − x | = r k 

This shows that Hermitian matrix S satisfies the assumption ((5.1.24)) of Lemma (5.1.21) with C ≤
r K. Thus S is the matrix of a bounded self-adjoint operator S such that ‖S‖ ≤ r K. We have S ≔
A − I. This implies that A is the matrix of a bounded self-adjoint operator A = I + S and ‖A‖ ≤ 1 +
r K < 1,퐴 has a bounded inverse and ‖A ‖ ≤ (1 − r K) . 
Let ∆ denote the Laplacian on ℝ  with domain dom(−∆) = W . (ℝ ) in L (ℝ ). It is well known 
that −∆ is self-adjoint. We fix a sequence X = {x }  of pairwise distinct points x ∈ ℝ  and denote 
byH the restriction  

H ≔ −∆↾ domH    domH = f ∈ W , (ℝ ): f x = 0 for all j ∈ ℕ .       (41) 
We abbreviate r ≔ |x − x | for x = (x , x , x ) ∈ ℝ . For z ∈ ℂ ∖ [0,∞) we denote by√z the 
branch of the square root of z with positive imaginary part. 
Further, let us recall the formula for the resolvent (−∆ − zI)  on L (ℝ ) (see [159]): 

((−∆− zI) f)(x) =
1
4π

e √ | |

|x − t|
ℝ

f(t)dt,   f ∈ L (ℝ ).                            (42) 

Lemma (5.1.27) [176]:The sequence E ≔ {
√

φ } = {
√

| |

| |
}  is normed and complete in 
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the deficit subspace 픑 (⊂ L (ℝ )) of the operator H. 
Proof. Suppose that f ∈ 픑  and f ⊥ E. Then u ≔ (1 − ∆) f ∈ W , (ℝ ). By (42), we have 

u(x) =
1
4π

e | |

|x − t f(t)dt.                                                                                  (43)
ℝ

 

Therefore, the orthogonality condition f ⊥ E means that 

0 = 〈f,φ 〉 =
1
4π f(t)

e | |

|x − t dt = u x ,        j ∈ ℕ.                                  (44)
ℝ

 

By (44) and (41), u ∈ dom(H) and f = (I − ∆)u = (I + H)u ∈ ran(I + H). Thus  
f ∈ 픑 ∩ ran(I + H) = {0}, 

i.e., f = 0 and the system E is complete. 
The function e|∙|(∈ W , (ℝ )) is a (generalized) solution of the equation (I − ∆)e | | = 2 ( | |)

| |
. 

Therefore it follows from (43) with f = f (x) ≔
| |

| |
 that 

e | |

2 =
1
4π

e | |

|x − t|
ℝ

∙
e | |

|t− y| dt.                                                        (45) 

Setting here x = y = x  we get φ = 2π, i.e., the system E is normed. 
In order to state the next result we need the following definition. 
Definition(5.1.28) [176]:A sequence f  of vector of a Hilbert space is called w-linearly 

independent if for any complex sequence c  the relations. 

c f = 0   and  c f < ∞                                                           (46) 

imply that c = 0 for all j ∈ ℕ. 

Lemma(5.1.29) [176]:Assume that X = x  has no finite accumulation points. Then the sequence 

E{
√

φ } = {
√

| |

}  is w-linearly independent in 픑 = L (ℝ ). 

Proof. Assume that for some complex sequence c  conditions (46) are satisfied with φ  in place 

of f . By Lemma (5.1.27), φ = √2π. Hence the second of condition (46) is equivalent to c ∈
l . Furthermore, since each function φ (x) is harmonic in ℝ ∖ x , this implies that the series 
∑ c φ  converges uniformly on each compact subset of ℝ ∖ X. 
Fix k ∈ ℕ. Since the points x  are pairwise distinct and the set X has no finite accumulation points, 
there exists a compact neighborhood U  of x  and such that x ∉ U  for all j ≠ k. Then, by the 
preceding considerations, the series ∑ c φ  converges uniformly on U . 
From the first equality of (46) it follows that  

−c = c e | |

∈ℕ

|x − x | |x − x | 
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for all x ∈ U , x ≠ x . Therefore, passing to the limit as x → x  we obtain c = 0. 
Definition(5.1.30) [176]: 

(i) A sequence f  in the Hilbert space ℌ is called minimal if for any k 

           dist f ,ℌ( ) = ε > 0,    ℌ( ) ≔ span f : j ∈ ℕ ∖ {k} , k ∈ ℕ                             (47) 

(ii) A sequence f  is said to be uniformly minimal if inf
∈ℕ
ε > 0. 

(iii) A sequence g ⊂ ℌ is called birothogonal to f   if 〈f , g 〉 = δ  for all j, k ∈ ℕ. 

Let us recall two well-known facts (see. e.g. [137]): A birothogonal sequence to f  exist if and 

only if the sequence f  is minimal. If this is true, then the biorthogonal sequence is uniquely 

determined if and only if the set f  is complete in ℌ. 

Recall that the sequence φ  is complete in 픑  according to Lemma (5.1.27). 
Lemma(5.1.31) [176]:Assume that X = {x }  has no finite accumulation points. 

(i) The sequence E ≔ φ  is minimal in 픑 . 

(ii) The corresponding biorthogonal sequence ψ  is also complete in 픑 . 
Proof. (i) To prove minimality it suffices to construct a biorthogonal system. Since X has no finite 
accumulation point, for anyj ∈ ℕ there exists a function u ∈ C (ℂ ) such that 

u x = 1    and     u (x ) = 0   for k ≠ j                                                                  (48) 
Moreover, u (∙) can be chosen compactly supported in a small neighborhood of x . 
Let ψ ≔ (I − Δ)u , j ∈ ℕ. In general, ψ ∉ 픑 . To avoid this drawback we put 

ψ ≔ P ψ ∈ 픑    and   g ≔ ψ −ψ , j ∈ ℕ.                                                  (49) 
where P  is the orthogonal projection in 픑 onto 픑 . Then g ∈ ran(I + H) = ℌ⊖픑 , j ∈ ℕ. 
Setting v = (I − ∆) g , we get v ∈ dom(∆). Therefore, by the Sobolev embedding theorem, v ∈

C(ℝ ). Together with the sequence u  we consider the sequence of functions.  

u ≔ u − v ∈ W , (ℝ ),           j ∈ ℕ.                                                                             (50) 
Since v ∈ dom(H), the functions u  satisfy relations (48) as well. Thus,  

−∆u + u = ψ ∈ 픑    and   u (x ) = δ    for j, k ∈ ℕ.                                            (51) 
Combining these relations with resolvent formula (42) we get 

〈φ ,φ 〉 =
1
4π ψ (x)

e | |

|x − x | dx = (I − Δ) ψ = u (x ) = δ , j ∈ ℕ                 (52)
ℝ

 

These relations means that the sequence ψ  is biorthogonal to the sequence ψ . Hence the 
latter is minimal. 
(ii) Let ℌ  denote the closed linear span of the set {u ; j ∈ ℕ} in W , (ℝ ). 
We prove that W , (ℝ ) is the closed linear span of its subspaces ℌ  and dom(H). Indeed, assume 
that g ∈ W . (ℝ ) and has a compact support K = supp g. Then the intersection X ∩ K is finite 
since X has no accumulation points. Therefore the function. 
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                    g = g x u
∈

                                                                              (53) 

is well defined and g ∈ ℌ . It follows from (51) that g ≔ g ∈ dom(H) and g = g + g . It 
remains to note that C (ℝ ) is dense in W , (ℝ ). 
Suppose that f ∈ 픑  and 〈f,ψ 〉 = 0, j ∈ ℕ. Then, by (51). 

          0 = 〈f,ψ 〉 = 〈f, (−Δ + I)u 〉.     j ∈ ℕ.                                                                        (54) 
The inclusion f ∈ 픑  means that f ⊥ (I − ∆)dom(H). Combining this with (54) and using that 
W , (ℝ ) is the closure of ℌ + dom(H) as shown above, it follows that f ⊥ ran(I − ∆) = L (ℝ ). 
Thus f = 0 and the sequence ψ  is complete. 

Lemma(5.1.32) [176]:If E = φ  is uniformly minimal, then X has no finite accumulation points. 

Proof. Since φ  is minimal in 픑 , there exists the biorthogonal sequence ψ  in 픑 . It was 

already mentioned that the uniform minimality of E = φ  is equivalent to sup
∈ℕ

φ . ψ < ∞. 

Therefore, since φ = 2√π, by Lemma (5.1.27), the sequence ψ ; j ∈ ℕ  is unitofmly bounded 
i.e., sup ψ =: C < ∞. Setting u = (I − ∆) ψ ∈ W (ℝ ) we conclude that the sequence 

u  is uniformly bounded in W , (ℝ ), that is, sup
∈ℕ

u , = C < ∞.  

Now assume to the contrary that there is a finite accumulation point y  of X. Thus, there exists a 
subsequence x  such that y = lim

→
x . By the Sobolve embedding theorem, the set 

u ; j ∈ ℕ  is compact in C(ℝ ). Thus there exists a subsequence of u  which converges 
uniformly to u ∈ C(ℝ ). Without loss of generality we assume that the sequence u  itself 
converges to u , i.e. lim

→
u − u

ℝ
= 0. Hence  

1 = u x
→
⎯⎯ u (y ) = 1,             0 = u u

→
⎯⎯ u (y ) = 0 

which is the desired contradiction. 
Lemma(5.1.33) [176]:Suppose that d∗(X) = 0. If the matrix 풯 ≔ ( e | |) , ∈ℕ defines a 
bounded self-adjoint operator T  on l (ℕ), then 0 ∈ σ (T ), hence T  has not bounded inverse. 
Proof. Let ε > 0. Since d∗(X) = 0, there exist number n ∈ ℕ such that r ≔ |x − x | < 휀. Let 

e  denote the vector e ≔ δ ,  of l (ℕ). Then 2 T (e − e ) = {e − e } ∈ l (ℕ). 

Since |r − r | < r < 휀 by the triangle inequality, e ≤ exp(r − r ) ≤ e  and hence  
|e − e | = e |1 − e | ≤ εCe , j, k, p ∈ ℕ. 

where C > 0 is a constant. Using the assumption that T  is bounded we get 

          4 T e − e ≤ ε C e = 4ε C T e ≤ 4ε C ‖T ‖ .                   (55) 

Since ε > 0 is arbitrary and e − e = √2 for j ≠ k, it follows that 0 ∈ σ (T ). 
Theorem(5.1.34) [176]:The sequence E = {φ }  forms a Riesz basis of the Hilbert space 픑  and 
only if d∗(X) > 0. 
Proof. Sufficiency. Suppose that d∗(X) > 0. By Lemma (5.1.27) and (5.1.31), both sequences 
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φ  and ψ  are complete in 픑 . Therefore, by [137, Theorem 6.2.1], the sequence φ  forms 
a Riesz basis in 픑  if and only if. 

〈f,φ 〉 < ∞   푎푛푑  〈f,φ 〉 < ∞   푓표푟 푎푙푙 푓 ∈ 픑 .                                (56) 

Let B  denote the ball in ℝ  centered at x  with the radius r = d∗(X)/3, j ∈ ℕ. ClearlyB ∩ B = ∅ 
for j ≠ k. By the Sobolve embedding theorem, there is a constant C > 0 such that  

v x ≤ C‖v‖ , ,   v ∈ W , B , j ∈ ℕ,                                                         (57) 

where C is independent of j and v ∈ W , B . 
Let f ∈ 픑  and set u = (I − ∆) fu ∈ W , (ℝ ). Combining (57) with the representation (5.1.28) 
for u we get 

f,φ = u x ≤ C ‖u‖ , ≤ C‖u‖ , ℝ , f ∈ 픑 (58) 

This proves the first inequality of (56). 
We now derive the second inequality. Let B  be the ball centered at zero with the radius r =
d∗(X)/3. We choose a function u ∈ C (ℝ ) supported in B  and satisfying u (0) = 1. Put 

u (x) ≔ u x − x ,     ∈ ℕ.                                                                                               (59) 

Clearly, the sequence u  satisfies conditions (33). Then repeating the reasonings of the proof of 

Lemma (5.1.31) (i) we find a sequence v  of vectors from dom(H) such that the new sequence 

u ≔ u − v  satisfies relations (51). Hence for anyf ∈ 픑 . 

〈f,ψ 〉 = 〈f, (−Δ + I)u 〉 = 〈f, (−Δ + I) u − v 〉 = 〈f, (−Δ + I)u 〉, j ∈ ℕ.              (60) 
Since u (∙) is supported in the ball B , it follows form (59) and relation (60) that  

|〈f,ψ 〉| = 〈f, (−∆ + I)u 〉

≤ C ‖f‖ u ,

= C ‖f‖ ‖u ‖ , ( )

= C‖u ‖ , ( ) ‖f‖ ≤ C‖u ‖ , ( ) ‖f‖ ℝ . 

Thus, the second inequality (56) is also proved, hence φ  forms a Riesz basis. 

Necessity. Suppose the d∗(X) = 0. By [137, Theorem 6.2.1], a sequence ψ = ψ  of vectors is a 

Riesz basis of a Hilbert space ℌ if and only it is complete in ℌ and its Gram matrix G ≔
(〈ψ ,ψ 〉) , ∈ℕ defines a bounded operator on l (ℕ) with bounded inverse. 

By (45), E = φ  has the Gram matrix G = (〈ψ ,ψ 〉) , ∈ℕ = πe | |
, ∈ℕ = 2π풯 . 
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Therefore, by Lemma (5.1.30), if G  defies a bounded operator, this operator is not boundedly 

invertible. Hence E = φ  is not a Riesz basis by the preceding theorem. 
Remark(5.1.35) [176]:Note that the proof of uniform minimality of the system E is much simpler. 
Combining (59) with (60) we obtain. 
〈f,ψ 〉 ≤ ‖f‖ ∙ (I − ∆)u ≤ ‖f‖ u , ℝ

= ‖f‖ ‖u ‖ , ℝ ,           j ∈ ℕ.          (61) 

Since f ∈ 픑  is arbitrary, one has sup
∈ℕ

φ
ℝ

≤ ‖u ‖ , ℝ , so ψ
∈ℕ

  is uniformly minimal 

Next we set  

φ , (x) ≔
e √

x − x
    and   e , (x): e √ ,        j ∈ ℕ.                                              (62) 

Clearly, φ , = φ , j ∈ ℕ. 
Corollary(5.1.36) [176]:Suppose that d∗(X) > 0. Then for anyz ∈ ℂ ∖ [0,∞), the sequence E ≔
{ φ . }  forms a Riesz basis in the deficiency subspace 픑  of the operator H. Moreover, for z =

− a < 0(a > 0) the system √aE = { √
√

φ , } . Is normed. 

Proof. It is easily seen that 

e | |

|x − y| ∙
e √

y − x
ℝ

dy
e √ | |

|x − y| ∙
e
x − x

dy,   ∈ ℕ.                                       (63)
ℝ

 

Using (42) we can rewrite this equality as 
(I − ∆) φ , = (−∆ − z) φ ,           j ∈ ℕ, z ∈ ℂ ∖ ℝ .                                            (64) 

Therefore, we have 
          φ , = U , where   U ≔ (I − ∆)(−∆ − z) = I − (1 + z)(∆+ z) .         (65) 

Obviously, U  is a continuous bijection of 픑  onto 픑 . therefore, since E = E = φ
∈ℕ

 is 

Riesz basis of 픑  by Theorem (5.1.31), E = φ ,  is a Riesz basis of 픑 . 

To prove the second statement we note that for anya > 0 the function e |∙| ∈ W , (ℝ )  is a 

(generalized) solution of the equation (a I − ∆)e | | = 2a ( | |)
| |

. Taking this equality into 

account we obtain from (42) with z = −a  and f = f (x) ≔
| |

| |
 that 

e | |

2a =
1
4π

e | |

|x − t| ∙
e | |

|t − y| dt,      a > 0.                                                        (66)
ℝ

 

Setting here x = y = x  we get φ , = 2π/a, i.e., the system √aE  is normed. 
Theorem(5.1.37) [176]:Let f be a non-constant function of M[0,∞) and let τ be the representing 
measure in Eq. (21). Suppose that X = {x }  is a sequence of points x ℝ . Then: 
(i) Ifd∗(X) > 0, then the function f(|∙|) is strongly X-positive definite. 
(ii) Suppose that d∗(X) > 0 and  

(s + s )dτ(s) < ∞.                                                                           (67) 
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Then the Gram matrix Gr (f) = f(|x − x |)
, ∈ℕ

 defines a bounded operator with bounded 

inverse on l (ℕ). 
(iii) If the Gram matrix Gr (f) defines a bounded operator with bounded inverse on l (ℕ), then 

d∗(X) > 0. 
 
Proof.(i) Suppose that s ∈ (0, +∞) and set 

g (x) ≔ s e | |,   φ , (x) ≔
1
√2π

φ , (x)
1
√2π

e
x − x

, j ∈ ℕ. 

Eq. (45) shows that Gr (g ) = (g (x − x )) , ∈ℕ is the Gram matrix of the sequence E ≔
φ , . Since d∗(X) > 0 by assumption, E  forms a Riesz by Corollary(5.1.33). Therefore it 

follows from [137, Theorem 6.2.1] that for anys > 0 the Gram matrix 〈φ , ,φ , 〉 ℝ , ∈ℕ
=

G (g ) defines a bounded operator on l (ℕ) with bounded invese. Hence for anys > 0 and c(s) >
0 such that  

C(s) ξ ≥ 〈φ , ,φ , 〉 ℝ
,

ξ ξ̅ = s e ξ ξ̅
,

≥ c(s) ξ (68) 

for all (ξ , … , ξ ) ∈ ℂ  and m ∈ ℕ. Clearly, the function c(s) on (0, +∞) can be chosen to be 

measurable. Since c(s) > 0 on ℝ  and τ(ℝ ) > 0, we have c ≔ ∫ sc(s)dτ(s)( , ) > 0. 
Combining (21) with (68) we arrive at the inequality. 

f x − x ξ ξ̅ = e
,

ξ ξ̅
,

dτ(s)     

≥ s c(s) ξ dτ(s) = c ξ ,                                                                    (69) 

This means that the function f(|∙|) is stronglyX-positive definite. 
(ii) By (65), U = (I − ∆ + s ) , hence ‖U ‖ = max(1. s ). Moreover, by (65). φ , =
U φ , . Using the preceding facts we derive 
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f x − x ξ ξ̅ = e
,

ξ ξ̅
,

dτ(s)(70)

= s〈φ , ,φ , 〉ξ ξ̅ dτ(s)
,

= s ξ φ , dτ(s)

= s U ξ φ , dτ(s) ≤ s‖U ‖ ξ φ , dτ(s)

= 2 s‖U ‖ 〈φ , ,φ , 〉
,

ξ ξ̅ dτ(s) ≤ s(1 + s )C(1) ξ dτ(s)

= C ξ ,                                       (71) 

where C ≔ C(1)∫ (s + s )dτ(s) < ∞ by assumption (67). 
It follows from (69) and (70) that the matrix G (f) defines a bounded operator with bounded 
inverse. 
(iii) Suppose that d∗(X) = 0. Assume to the contrary that the Gram matrix G (f) defines a bounded 
operator, sayT, with bounded inverse on l (ℕ). 
Fix ε ∈ (0, τ([0,∞))). Since the measure τ is finite, there exists s > 0 such that 

dτ(s)
[ , )

< 휀 < 휏([0,∞)).                                                             (72) 

By the assumption d∗(X) = 0 we can find points x , x ∈ X, k, l ∈ ℕ, such that r = x − x ≤
s ln(1 + ε(0, s ]))) ). Fix a number l ∈ ℕ. First suppose r ≤ r . Then  

0 ≤ 1− e ≤ 1 − e ≤
ε τ([0, s ])

1 + ε τ([0, s )
≤ ε τ([0, s ]) , s ∈ [0, s ].     (73) 

Using (72) and (73) we derive 

(e − e )dτ(s) = 1 − e e dτ(s)

= 1− e dτ(s) + 1− e dτ(s) e dτ(s)

≤ 2ε e dτ(s).                                                      (74) 
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If r > r  then the same reasoning yields. 

(e − e )dτ(s) ≤ 2 e dτ(s).                         (75) 

Summing over l in (74) respectively (75) we obtain. 

T e − e
(ℕ)

= 〈T e − e , e 〉 = (e − e )dτ(s)

≤ 2ε e dτ(s) + e dτ(s) = 2ε T + T

≤ 4ε‖T‖ .                                 (76) 
and hence  

4 = e − e ≤ ‖T ‖ T e − e ≤ 4ε‖T ‖ ‖T‖ (77) 
for j ≠ k. Since ε > 0 is arbitrary, this is a contraction. 
Now we return to be considerations related to Theorem (5.1.34) and recall the following. 
Definition(5.1.38) [176]: 
A basis f  of a Hilbert space ℌ is called a Bari basis if there exists an orthonormal basis g  of 
ℌ such that  

f − g < ∞.                                                                (78)
∈ℕ

 

It is known that each Bari basis is a Riesz basis. The converse statement is not true. 
Proposition(5.1.39) [176]:Assume that X has no finite accumulation points. Then the sequence 

E{
√

φ } ≔ {
√

| |

| |
}  forms a Bari basis of 픑  if and only if 

e | |

, ∈ℕ,

< ∞.                                                                (79) 

Moreover, this condition is equivalent to  
D ≔ lim

→
D(φ , … ,φ ) > 0,                                                       (80) 

where D(φ , … ,φ ) denotes the determinant of the matrix 〈φ ,φ 〉
,

. 

Proof. By (45), we have 〈φ ,φ 〉 = 2π exp(−|x − x |) for j, k ∈ ℕ. By Lemma (5.1.29), the 
system E is ω-linearly independent. Therefore, by [137, Theorem 6.3.3], E is a Bari basis if and 
only if. 

〈φ ,φ 〉 − 2πδ
,

= 2π exp(−|x − x | − δ ) , ∈ 픖 (l ), 

i.e. condition (79) is satisfied. The second statement follows from [137, Theorem 6.3.1]. 
 
Section (5.2): Three Dimensional Schrödinger Operator with Point Interactions  
Here we briefly recall basis notions and facts on boundary triplets (see [64, 139, 166] for details). In 
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what follows A denotes a densely defined closed symmetric operator on a Hilbert space ℌ,픑 ≔
픑 (A) = ker(A∗ − z), z ∈ ℂ±, is the defect subspace. We also assume that A has equal deficiency 
indices n (A) ≔ dim(픑 ) = dim(픑 ) =: n − (A). 
Definition (5.2.1) [176]: (See [139]). A boundary triplet for the a joint operator A∗ is a triplet Π =
{ℋ, Γ ,Γ } of an auxiliary Hilbert space ℋ and of linear mapping Γ , Γ : dom(A∗) →ℋ such that 
(i) The following abstract Green identity holds: 

(A∗f, g)ℌ − (f, A∗g)ℌ = (Γ f,Γ g)ℋ − (Γ , f,Γ g)ℋ , f, g ∈ dom(A∗); (81) 
The mapping (Γ ,Γ ): dom(A∗) → ℋ⨁ℋ is surjective. 
With a boundary triplet Π one associates two self-extensions of A defined by 

A ≔ A∗ ↾ ker(Γ )    and A ≔ A∗ ↾ ker(Γ ).                                             (82) 
Definition (5.2.2) [176]: 
(i) A closed extension A of A is called proper if A ⊂ A ⊂ A∗. The set of all extensions of A is 

denoted by Ext . 
(ii) Two proper extensions A  and A  of A are called disjoint if dom A ∩ +dom A =

dom(A∗). 
Remark(5.2.3) [176]: 
(i)  If the symmetric operator A has equal deficiency indices n (A) = n (A), then a boundary 

triplet Π = {ℋ,Γ , Γ } for A∗ always exists and we have dimℋ = n±(A). [139] 
(ii) For each self-adjoint extension A of A there exists a boundary triplet Π = {ℋ, Γ ,Γ } such 

that A = A∗ ↾ ker(Γ ) = A . 
(iii) It Π = {ℋ,Γ , Γ } is a boundary triplet for A∗ and B = B∗ ∈ B(ℋ), then the triplet Π =

{ℋ, Γ ,Γ } with Γ ≔ Γ  and Γ ≔ BΓ , Γ   is also a boundary triplet for A∗. 
Boundary triplet for A∗ allow one to parameterize the set Ext  in terms of closed linear relations. 
For this we recall the following definitions. 
Definition (5.2.4) [176]: 
(i) A linear relation Θ in ℋ is a linear subspaces of ℋ ⨁ ℋ. It is called if the corresponding 

subspaces is closed in ℋ ⨁ ℋ. 
(ii) A linear relation Θ is called symmetric if (g , f ) − (f , g ) = 0 for all {f , g }, {f , g } ∈ Θ. 
(iii) The adjoint relation Θ∗ of a linear relation Θ in ℋ is defined by 

Θ∗ = {k, k }: (h , k) = (h, k ) for all {h, h } ∈ Θ . 
(iv) A closed linear relation Θ is called self-adjoint if Θ = Θ∗. 
(v) The inverse of a relation Θ is the relation Θ  defined by Θ = {h , h}: {h, h } ∈ Θ . 
Definition (5.2.5) [176]:Let Θ be a closed relation in ℋ. The resolvent set ρ(Θ) is the set of 
complex numbers λ such that the relation (Θ− λI) ≔ {h − λh, h}: {h, h } ∈ Θ  is the graph of a 
bounded operator of B(ℋ). the complement set σ(Θ) ≔ ℂ ∖ ρ(Θ) is called the spectrum of Θ. 
For a relation Θ in ℋ we define the domain dom(Θ) and the multi-valued part mul(Θ) by 

dom(Θ) = {h ∈ ℋ: {h, h } ∈ Θ  for some h ∈ ℋ}.  mul(Θ) = {h ∈ ℋ: {0, h } ∈ Θ}. 
Each closed relation Θ is the orthogonal sum of Θ ≔ {0, f } ∈ Θ  and Θ ≔ Θ⊖ Θ . Then Θ  
is the graph of a closed operator, called the operator part of Θ and denoted also byΘ , and Θ  is a 
“pure” relation, that is mul(Θ ) = mul(Θ). 
Suppose that Θ is a self-adjoint relation in ℋ. Then mul(Θ) is the orthogonal complement of 
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dom(Θ) in ℋ and Θ  is a self-adjoint operator in the Hilbert space ℋ ≔ dom(Θ). That is, Θ is 
the orthogonal sum of an “ordinary” self-adjoint operator Θ  in ℋ  and a “pure” relation Θ  in 
ℋ ≔ mul(Θ). 
Proposition(5.2.6) [176]: 4.6. (See [64, 139, 166] Let Π = {ℋ, Γ ,Γ } be a boundary triplet for A∗. 
Then the mapping. 

Ext ∋ A ≔ A → Θ ≔ Γ dom A = {Γ f,Γ f}: f ∈ dom A (83) 

Is a bijection of the set Ext  of all proper extensions of A and the set of all closed linear relations 
풞(ℋ) in ℋ. Moreover, the following equivalences hold: 
(i) (A )∗ = A ∗ for any linear relation Θ in ℋ. 
(ii) A  is symmetric if and only if Θ is symmetric. Moreover, n±(A ) = n±(Θ). In particular, 

A  is self-adjoint if and only if Θ is self-adjoint. 
(iii) The closed extensions A  and A  are disjoint if and only if Θ = B is a closed operator. In 

this case. 
A = A = A∗ ↾ dom(A ),   dom(A ) = ker(Γ − BΓ ).            (84) 

The notion of the Weyl function and theyγ-filed of a boundary triplet was introduced in [64]. 
Definition (5.2.7) [176]: (See [64, 166]). Let Π = {ℋ,Γ , Γ } be a boundary triplet for A∗. The 
operator-valued functions γ(∙):ρ(A ) → B(ℋ,ℌ) and M(∙):ρ(A ) → B(ℋ) defined by 

γ(z) ≔ (Γ ↾ 픑 )   and  M(z) ≔ Γ γ(z), z ∈ ρ(A ),             (85) 
are called the γ-field and the Weyl function, respectively, of Π = {ℋ, Γ ,Γ }. 
Note that the γ-field γ(∙) and Weyl function M(∙) are holomorphic on ρ(A ).  
Recall that a symmetric operator A in ℌ is said to be simple if there is no non-trivial subspace which 
reduces it to a self-adjoint operator. In other words, A is simple if it does not admit an (orthogonal) 
decomposition A = A ⨁ S where A  is a symmetric operator and S is a self-adjoint operator acting 
on a non-trivial Hilbert space. 
It is easily seen (and well known) that A is simple if and only if span {픑 (A): z ∈ ℂ ∖ ℝ} = ℌ.  
If A is simple, then the Weyl function M(∙) determines the boundary triplet Π uniquely up to the 
unitary equivalence (see [64]). In particular, M(∙) contains the full information about the spectral 
properties of A . Moreover, the spectrum of a proper (not necessarily self-adjoint) extension A ∈
Ext  can be described by means of M(∙) and the boundary relation Θ. 
Proposition(5.2.8) [176]: (See [64, 166]). Let A be a simple densely defined symmetric operator in 
ℌ,Θ ∈ 풞(ℋ) and z ∈ ρ(A ). Then: 
(i) z ∈ ρ if and only if 0 ∈ ρ(Θ− M(z)); 
(ii) z ∈ σ (A ) if and only if 0 ∈ σ Θ − M(z) , τ ∈ {p, c} 
(iii) f ∈ ker(A − z) if and only if Γ f ∈ ker Θ − M(z)  and 

dim ker(A − z) = dim ker(Θ− M(z)). 
For any boundary triplet Π = {ℋ,Γ , Γ } for A∗ and any proper extension A ∈ Ext  with non-
empty resolvent set the following Krein-type resolvent formula holds (cf. [64, 166])/ 

(A − z) = (A − z) + γ(z) Θ− M(z) γ(z)∗, z ∈ ρ(A ) ∩ ρ(A ).  (86) 
It should be emphasized that formulas (82), (83), and (85) express all data occurring in (86) in terms 
of the boundary triplet. These expressions allow one to apply formula (86) to boundary value 
problems. 
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The following result is deduced from (86). 
Proposition(5.2.9) [176]: (See [64, Theorem 2]). Let Π = {ℋ,Γ , Γ } be a boundary triplet for A∗ 
and Θ ,Θ ∈ 풞(ℋ). Suppose that ρ(A ) ∩ ρ(A ) ≠ ∅ and ρ(Θ ) ∩ ρ(Θ) ≠ ∅. 
(i) For z ∈ ρ(A ) ∩ ρ(A ), ζ ∈ ρ(Θ ) ∩ ρ(Θ), and ρ ∈ [0,∞] the following equivalence is 

valid: 
(A − z) − (A − z) ∈ 픖 (ℌ) ⟺ (Θ − ζ) − (Θ− ζ) ∈ 픖 (ℋ)          (87) 
In particular, (A − z) − (A − z) ∈ 픖 (ℌ) of and only if (Θ− ζ) ∈ 픖 (ℋ) for ζ ∈ ρ(Θ). 
(ii) If dom(Θ ) = dom(Θ), then the following implication holds: 
Θ − Θ ∈ 픖 (ℋ) ⟹ (A − z) − (A − z) ∈ 픖 (ℌ), z ∈ ρ(A ) ∩ ρ(A ).                (88) 
In particular, if Θ ,Θ ∈ (ℋ), then (87) is equivalent to Θ − Θ ∈ 픖 (ℋ). 
In this subsection we assume that the symmetric operator A on ℌ is non-negative. Then the set 
Ext (0,∞) of all non-negative self-adjoint extensions of A on ℌ is not empty. Moreover, there 
exists a maximal non-negative extension A , called the Friedrichs extension, and a minimal 
non0negative extension A , called Krein extension, in the set Ext (0,∞) and 

(A + x) ≤ A + x ≤ (A + x) , x ∈ (0,∞), A ∈ Ext (0,∞). 
Proposition(5.2.10) [176]: (See [117]). Let Π = {ℋ,Γ , Γ } be a boundary triplet for A∗ such that 
A ≥ 0 and let M(∙) be the corresponding Weyl function. 
(i) There exists a lower semibounded self-adjoint linear relation M(0) in ℋ which is the strong 

resolvent limit of M(x) as x ↑ 0. Moreover, M(0) is associated with the closed quadratic 
form. 

픱 [h] ≔ lim
↑

(M(x)h, h),   dom(픱 ) = h: lim
↑

(M(x)h, h) < ∞ = dom M(0)− M(−a) /
. 

(ii) The Krein extension A  is given by 
A = A∗ ↾ dom(A ),   dom(A ) = {f ∈ dom(A∗): {ℋ,Γ , Γ } ∈ M(0)}. (89) 

The extensions A  and A  are disjoint if and only if M(0) ∈ 풞(ℋ). In this case dom(A ) =
ker(Γ − M(0)Γ ). 
(iii) A = A  if and only if lim

↑
(M(x)f, f) = −∞ for f ∈ ℋ ∖ {0}. 

(iv) A = A  if and only if lim
↑

(M(x)f, f) = +∞ for f ∈ ℋ ∖ {0}. 

If A  is lower semibounded, then Θ is lower semibounded too. The converse is not true in general. 
In order to state corresponding result we introduce the following definition. 
We shall say that M(∙) tends uniformly to −∞ as x → −∞ if for anya > 0 there exists x < 0 such 
that M(x ) < −푎. Iℋ . In this case we write M(x) ⇉ −∞ as x → −∞. 
Proposition(5.2.11) [176]: (See [64]). Suppose that A is a non-negative symmetric operator on ℌ 
and Π = {ℋ,Γ , Γ } is a boundary triplet for A∗ such that A = A . Let M be the corresponding 
Weyl function. Then the two assertions: 
(i) a linear relation Θ ∈ 풞 (ℋ) is semibounded below. 
(ii) a self-adjoint extension A  is semibounded below. 
are equivalent if and only if M(x) ⇉ −∞ for x → −∞. 
Recall that the order relation for lower semibounded self-adjoint operators T , T  is defined by 
T ≤ T  if dom 픱 ⊂ dom 픱    and  픱 [u] ≥ 픱 [u],    u ∈ dom 픱 ,                   (90) 
where 픱  is the quadratic form associated with T . 
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If T is a self-adjoint operator with spectral measure E put (T) ≔ dim ran E (−∞, 0) . For a 
self-adjoint relation  Θ we set (Θ) ≔ Θ , where  Θ  is the operator part of Θ. For a 
quadratic form 픱 we denote byk (픱) the number of negative squares of 픱 (cf. [155]). 
Proposition(5.2.12) [176]:(See [64]). Suppose A is a densely defined non-negative symmetric 
operator on ℌ and Π = {ℋ, Γ ,Γ } is a boundary triplet for A∗ such that A = A . Let M be the Weyl 
function of this boundary triplet and let Θ be a self-adjoint relation on ℋ. Then:  
(i) The self-adjoint extension A  is non-negative if and only if Θ ≥ M(0), 
(ii)       If A  is lower semibounded and dom(픱 ) ⊂ dom 픱 ( ) , then k (A ) = k 픱 − 픱 ( ) . If, 
in addition, M(0) ∈ (ℋ), then k (A ) = k Θ − M(0) . 
In what follows we will denote. 

M (z) ≔ (M(z)h, h),   z ∈ ℂ .   and   M (x + i0) ≔ lim
↓

M (x + iy), h ∈ ℋ. 

Since lm M (z) > 0, 푧 ∈ ℂ , the limit M (x + i0) exists and is finite for a.e. x ∈ ℝ. We put 
Ω (M ) ≔ {x ∈ ℝ: 0 < 푙푚M (x) < +∞}. 

We also set d (x) ≔ rank lm M(x + i0) ≤ ∞ provided that the weak limit M(x + i0) ≔ ω−
lim ↓  M(x + iy) exists. 
Proposition(5.2.13) [176]: (See [133]). Let A be a simple densely defined closed symmetric 
operator on a separable Hilbert space ℌ and let Π = {ℋ, Γ ,Γ } be a boundary triplet for A∗ with 
Weyl function M. Assume that {h } , 1 ≤ N ≤ ∞, is a total set in ℋ. Recall that A  is the self-
adjoint operator defined byA = A∗ ↾ ker(Γ ). 
(i) A  has no point spectrum in the interval (a, b) if and only if lim

↓
yM (x + iy) = 0 for all 

x ∈ (a, b) and k ∈ {1,2 … , N}. 
(ii) A  has no singular continuous spectrum in the interval (a, b) if the set (a, b) ∖ Ω M  is 

countable for each k ∈ {1,2, … , N}. 
To state the next proposition we need the concept of the ac-closure cl (δ) of a Borel subset δ ⊂ ℝ 
introduced independently in [133] and [136]. We refer to [136, 158] for the definition of this notion 
as well as for its basic properties. 
Proposition(5.2.14) [176]: (See [157, 158]). Retain the assumptions of Proposition (5.2.13) Let B 

be a self adjoint operator on ℋ, A = A∗ ↾ ker(Γ − BΓ ), and M (z) ≔ B − M(z) . 
(i) If the limit 푀(푥 + 푖0) ∶= 휔 − log ↓ 푀(푥 + 푖푦) exists a.e. on ℝ, then σ (A ) =

cl supp d (x) . 
(ii)    For any Borel subset 풟 ⊂ ℝ the ac-parts A E (풟) and A E (풟) of the operators A E (풟) 
and A E (풟) are unitarily equivalent if and only if d (x) = d (x) a. e. on 풟. 
Throughout we fix a sequence X = {x }  of points x ∈ ℝ  satisfying. 

d∗(X) = inf
, ∈ℕ,

x − x > 0. 

denote byH the restriction of −∆ given by (41), and set. 

φ , (x) =
e √z|x − x|

|x − x |   and  e , (x) = e √ | |, z ∈ ℂ ∖ [0, +∞), j ∈ ℂ.            (91) 

Clearly, φ = φ ,  and e = e , . Recall from Lemma (5.1.33) that T  is the bounded operator on 
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l (ℕ) defined by the matrix 풯 ≔ 2 e | |
, ∈. 

The following lemma is a special case of Example 14.3 in [166] 
Lemma(5.2.15) [176]: Let A be densely defined closed symmetric operator on ℌ. Suppose that A is 
a self-adjoint extension of A on ℌ and −∈ ρ A . Then: 
(i)     dom(A∗) = dom A  

+ ker(A∗ + I) + A + I 픑 , A∗ f + f + A + I f

= Af − f + A A + I f . 
where f ∈ dom(A) and f , f ∈ 픑 ≔ ker(A∗ + I). 

(ii) Definition ℋ = 픑  and Γ f + f + A + I f = f  for j = 0,1. Then Π = {ℋ, Γ ,Γ } 

form a boundary triplet for A∗. 
Proof. Assertion (i) is well known in extension theory (see e.g. [166], formula (14.17), so we prove 

only assertion (ii). Let f = f + f + I + A f  and g = g + g + I + A g  , where 
f , f , g , g ∈ 픑 . Then  
〈A∗f, g〉 − 〈f, A∗g〉

= 〈A I + A f , g 〉 − 〈f , (I + A )g 〉 + 〈A I + A f , 1 + A g 〉

− 〈f , A I + A g 〉 + 〈 I + A f , g 〉 − 〈 I + A f , A I + A g 〉

= − 〈f I + A I + A g 〉 + 〈 I + A I + A f , g 〉 = −〈f , g 〉ℋ + 〈f , g 〉ℋ
= 〈Γ f,Γ g〉ℋ − 〈Γ f,Γ g〉ℋ (92) 

The surjectivity of the mapping (Γ f,Γ ) is obvious. 
Next we apply Lemma (5.2.15) to the minimal Schrödinger operator A = H. 
Proposition(5.2.16) [176]: Suppose H is the minimal Schrödinger operator defined by (41) and 
d∗(X) > 0. Let T  be the bounded operator on l (ℕ) defined by the matrix 풯 ≔

2 e
, ∈ℕ

. Then 

(i) H is a closed symmetric operator with deficiency indices (∞,∞). The defect subspace 픑 =
ker(H∗ + I) is given by 

픑 = c φ : c ∈ l (ℕ) .                                  (93) 

(ii) dom(H∗) is the direct sum of vector spaces domH,픑  and (−∆ + I) 픑 , that is, 
dom(H∗) = {f = f + f + (−∆ + I) f : f ∈ domH, f , f ∈ 픑 }

= f = f + ξ φ + ξ e : f ∈ domH, ξ ≔ ξ , ξ = ξ ∈ l (ℕ) , (94) 

H∗f = −∆f − f + (−∆)(−∆+ I) f = −f + −ξ φ + ξ φ − e /2 .                    (95) 

The triplet Π = ℋ, Γ ,Γ , where  
         ℋ = l (ℕ),        Γ f = ξ ,     Γ f = T ξ ,    f ∈ dom(H∗).                                   (96) 

is a boundary triplet for H∗. 
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Proof. (i) By the Sobolev embedding theorem, f → f x  is a continuous linear functional on 

W , (ℝ ) (see [159]). Therefore, dom(H) = W , (ℝ ) ↾ ⋂ ker δ  is closed in the graph 

norm of −∆, so the operator H is closed. Since −∆ is self-adjoint, H is symmetric. 
Since d∗(X) > 0 by assumption. Theorem (3.1.34) applies and shows that φ  is a Riesz basis of 

the Hilbert space 픑 . In particular, n±(H) = ∞. 
(ii) All assertions of (ii) follow from (i) and Lemma (5.2.15) (i), applied to the self-adjoint operator 
A = −∆ on L (ℝ ). For the formula of H∗f we recall that e /2 = (−∆ + I) φ  and therefore, 
H∗e = −∆(−∆ + I) φ = φ − e /2. 
(iii) From (45) it follows that 〈φ ,φ 〉 = 2 e | |, i.e., the Gram matrix of E = φ

∈ℕ
 is 풯 . 풯  

defines the bounded operator 풯  on l (ℕ) with bounded inverse. Hence Γ  and Γ  are well defined 
and the map Γ , Γ  are well defined and the map Γ , Γ : dom(A∗) → ℋ⨁ℋ is surejctive. 
Next we verify the Green formula. Let f, g ∈ dom(H∗). By (93), these vectors are of the form 

f = f + f + (−∆ + I) f ,       g = g + g + (−∆+ I) g  
with f , g ∈ dom H and f , f ∈ 픑 , f , f , g , g  can be written as  

f = ξ φ ,       f = ξ φ ,      g = η φ ,   g = η φ . 

where ξ
∈ℕ

, ξ
∈ℕ

η
∈ℕ

, η
∈ℕ

∈ l (ℕ). Using the Green identity for the boundary triplet 

Π = (ℋ ,Γ , Γ ) in Lemma (5.2.15), applied to A = H and A = −∆, we derive the identity. 
〈H∗f, g〉 − 〈f, H∗g〉 = 〈Γ f,Γ g〉 − 〈Γ f, Γ g〉 = 〈f , g 〉픑 − 〈f , g 〉픑

= ξ η − ξ η 〈φ ,φ 〉
,

= (T ξ ) η − ξ T = 〈T ξ ,η 〉 − 〈ξ , T η 〉 = 〈Γ f,Γ g〉ℋ

− 〈Γ fΓ g〉ℋ , 
which complete the proof. 
However, we prefer to work with another boundary triple. For this purpose we define 

(T (ξ )) = −ξ + ξ
e | |

|x − x |,          ξ
∈ℕ

∈ l (ℕ).            (97)
∈ℕ,

 

It follows from the assumption d∗(X) > 0 and the fact that the matrix 2 e| |
, ∈ℕ defines a 

bounded operator T  on l (ℕ) be Lemma (3.1.33), that T  is a bounded self-adjoint operator on 
l (ℕ). 
Next we slightly modify the boundary triplet Π ℋ, Γ , Γ  and express the trace mappings Γ  in 
terms of the “boundary values”. We abbreviate 

G√ (x) =
e √ | |

|x| , x ≠ 0;

0,  x = 0,
                                                             (98) 

Proposition(5.2.17) [176]: Let H be the Schrödinger operator defined by (41). Suppose that 
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d∗(X) > 0. 
(i) The triplet  Π{ℋ,Γ , Γ }, where ℋ = l (ℕ), 

Γ f lim
→

f(x)|x− x | =: {ξ } , 

Γ f lim
→

f(x) − ξ |x − x | ,                                                                          (99) 

is a boundary triplet for H∗. 

(ii) The deficiency subspace 픑 = 픑 (H) is 픑 = ∑ c φ , : c ∈ l (ℕ) , z ∈ ℂ ∖ ℝ. 

(iii) The gamma field γ(∙) of the triplet Π{ℋ, Γ ,Γ } is given by 

γ(z) c = c φ , ,           c ∈ l (ℕ), z ∈ ℂ ∖ [0, +∞).                            (100) 

(iv) The corresponding Weyl function acts by  

(M(z) c ) = c i√z + ′c
∈ℕ

e √z|x − x |
|x − x | ,   c

∈ℕ
∈ l (ℕ), z ∈ ℕ ∖ [0, +∞),      (101) 

that is, the operator M(z) is given by the matrix. 

ℳ(z) = i√zδ + G√ x − x
,

.                                                                                        (102) 

Proof. (i) Since T = T∗ ∈ [ℋ] and Π is boundary triplet for H∗ by Proposition (5.2.16) (iii), so is 
the triplet Π = {ℋ,Γ , Γ }, where  

     ℋ = l (ℕ),                     Γ ≔ Γ ,           and   Γ = Γ + T Γ .                                                  (103) 
It therefore suffices to show that Γ = Γ , j = 0.1. 
Let f ∈ domH∗. By Proposition (5.2.16) (ii), f is of the form f = f + f + (−∆ + I) f , where 
f ∈ dom(H), f = ∑ ξ φ∈ℕ . Then (−∆ + I) f = 2 ∑ ξ e . 
Fix k ∈ ℕ. Since the series f = ∑ ξ φ∈ℕ  converges uniformly on compact subsets of ℝ ∖ X and 
f ∈ W , (ℝ ) is continuous and f x = 0 by (41), we get 

ξ = lim
→

f(x)|x − x | = ξ = Γ f = (Γ f) . 

This proves the first formula of (99). the second formula is derived by 
lim
→

(f(x) − ξ |x − x | )

= lim
→

ξ
e − 1

|x − x | + ξ
e | |

|x − x | + 2 ξ e = −ξ

+ ξ
e | |

|x − x | + 2 ξ e | | = (T (ξ )) + (T (ξ )) = (Γ f) . 

where T  is defined by (97), and T  is introduced in Proposition (5.2.16). 
(ii) follows at once from Corollary(5.1.36). 
(iii) Clearly, lim

→
φ , (x)− φ (x) |x − x | = 0. Therefore, by (99), Γ φ , − φ = 0 and so 

Γ , = Γ = e = δ is the standard orthonormal basis of l (ℕ). Hence, by (85) combined 
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with (ii), the gamma field is of the form given in (100). 
(iv) Next we prove the formula for the Weyl function. Since M is linear and bounded, it suffices to 
prove this formula for the vectors e , l ∈ ℕ. The function φ , ∈ dom(H∗)f , ∑ ξ (z)∈ℕ φ . Then, 
by (99) and (91), 

ξ (z) = lim
→

φ , (x) x − x = δ ,   j ∈ ℕ,   i. e., f , (x) = |x − x | e | |,        (104)  

so f ,  does not depend on z. Since ξ (z) = 0 for k ≠ l, (99) and (91) yield. 

Γ φ , = lim
→

φ , − ξ |x − x | = lim
→

φ . (x) =
e √ | |

|x − x | , k ≠ l, k, l ∈ ℕ 

Similarly, using that ξ (z) = 1 if follows from (99) and (91) that (Γ φ , z) = i√z. Inserting these 
expressions into (85) with account of (100) we arrive at the formula (101) for the Weyl function. 
Proposition (5.2.18) [176]: Let Π = {ℋ, Γ ,Γ } be the boundary triplets for H∗ defined in 
Proposition (5.2.17) (see (99)). Let T  be defined by (97) and T = 2 e | |

, ∈ℕ. Then: 

(i) The set of self-adjoint realization H ∈ Ext  is parameterized by the set of linear relations Θ =
Θ∗ ∈ 풞(ℋ) as follows: H = H∗ ↾ dom(H ), where  

    dom(H ) = f = f + ξ
e | |

x − x
+ ξ e | | : f ∈ dom(H). (ξ , T ξ + T ξ ) ∈ Θ .     (105) 

Moreover, we have Θ = Θ ⨁Θ  where Θ  is the graph of an operator B = B∗ in ℋ ≔ dom(Θ) 
and Θ  is the multi-valued part of Θ, and ℋ = ℋ⨁ℋ , where ℋ ≔ mul(Θ) and  

        Θ ≔ {0,ℋ } ≔ {0, T ξ }: ξ ⊥ T ξ , ξ ∈ ℋ .                                                                (106) 
        Θ = {ξ , T ξ + T ξ }: ξ ∈ ℋ , ξ = T (Bξ − T ξ ) .                                                (107) 

In particular, H = H  is disjoint with H  if and only if dom(Θ) = ℋl (ℕ). In this case Θ = Θ  is 
the graph of B, so that H = H∗ ↾ (ker(Γ − BΓ )). 

(ii) Let z ∈ ℂ ∖ ℝ . Then z ∈ σ (H ) if and only if 0 ∈ σ Θ − i√zδ + G√ (x )
,

. 

The corresponding eienfunctions ψ  have the form 

              ψ = ξ x − x e √ | |,   where ξ ∈ ker ΘM(z) ⊂ l (ℕ).                             (108) 

(iii) The resolvent of the extension ∆ , ≔ H  admits the integral representation. 

      ( −∆ , − z f(x) = (x) T , (x, y; z)
ℝ

f(y)dy, z ∈ ρ −∆ , ,                     (109) 

with kernel T , (∙, , ; z) defined by 

          T , (x, y; z) =
e √ | |

4π|x − y + Θ (z)
,

e √ | |

|y − x | .
e √ | |

|x − | .                                     (110) 

where (Θ (z)) ,∈ℕ is the matrix representation of the operator (Θ − M(z))  on l (ℕ). 
Proof. (i) Formula (105) is immediate from Proposition (5.2.6), formula (83). 
Both formulas (106) and (107) are proved by direct computations. We show that (106) and (107) 
imply the self-adjointness of Θ; the proof of the converse implication is similar. Indeed, it follows, 
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(106) and (107) that (T ξ , ξ ) = 0 = (ξ , T ) and 
(T ξ , ξ ) = (Bξ − T ξ , ξ − T ξ ) = (ξ , T ξ ).                                                 (111) 

Hence we have (T ξ , ξ ) = (ξ , T ξ ) for all (ξ , ξ ) ∈ Θ. It is easily checked that the latter 
condition is equivalent to the self-adonintness of the relation Θ. 
(ii) The symmetric operator H is in general not simple. It admits a direct sum decomposition H =
H ⨁ H  where H is a simple symmetric operator and H  is self-adjoint. Define Π = ℋ, Γ ,Γ , 
where Γ :Γ ↾ dom H∗ , j ∈ {0,1}. Clearly, Π is a boundary triplet for H∗ and the corresponding 
Wely function M(∙) coincides with the Weyl function M(∙) of Π. Further, any proper extension H =
H   of H admits a decomposition H = H ⨁H . Being a part of H , the operator H  is non-
negative. Therefore, for z ∈ ℂ ∖ ℝ , we have z ∈ σ (H ) is and only if z ∈ σ H . Thus, it 
suffices to prove the assertion for extension H  of the simple symmetric operator H. But then the 
statement follows from Proposition (5.2.8) and 93 (ii) and formula (100). 
(iii) Noting that i√z = ı√z it follows from (91) that φ , = φ , . Therefore, (100) implies that 

             γ∗(z)f = f(x)φ , (x)
ℝ

dx e = f(x)
ℝ

e √ | |

|x − x | e ,              (112) 

where e = δ is the standard basis of l (ℕ). 

Inserting (112) and (100) into the Krein-type formula (86) and applying the formula (43) for the 
resolvent of the free Hamiltonian −∆, we obtain 

((−∆ , − z) f)(x) =
e √ | |

4π|x − y| f(y)dy + Θ − M(z)
,

f,φ , φ , (x).
,ℝ

 

Clearly, the latter is equivalent to the representations (109) – (110). 
Next we turn to non-negative or lower semibounded self-adjoint extensions of H. For this we need 
the following technical result. 
Lemma(5.2.19) [176]:Retain the assumptions of Proposition (5.2.17) and let Π{ℋ,Γ , Γ } be the 
boundary triplet for H∗ defined therein. Then;  
(i) There exists a lower semibounded self-adjoint operator M(0) on ℋ = l (ℕ) which is the 

limit of M(−x) in the strong resolvent convergence as x → +0. 
(ii) The quadratic from 픱 ( ) of M(0) is given by 

픱 ( )[ξ] =
1

|x − x |
| |

ξ ξ̅ < ∞,푑표푚 픱 ( ) = ξ = ξ ∈ l (ℕ):
1

x − x
ξ ξ̅ < ∞

| |

.     (113) 

(iii) The operator M(0) = M(0)∗ associated with the form 픱 ( ) is uniquely determined by the 
following conditions: dom(M(0)) ⊂ dom(픱 ( )) and 

(M(0)ξ,η) =
1

|x − x | ξ η
| |

, ξ = ξ ∈ dom M(0) , η = η ∈ 픱 ( ) .       (114) 

If, in addition, ∑ |x − x | < ∞∈ℕ  for everyk ∈ ℕ, then e ∈ dom M(0) , k ∈ ℕ, where e =

δ  is the standard orthonormal basis of l (ℕ), and the matrix. 
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ℳ (0) ≔
1− δ

x − x + δ
,

,                                                                                   (115) 

define a (minimal) closed symmetric operator M (0) on l (ℕ). Moreover, 

            dom(M (0)∗) = ξ ∈ l (ℕ): ′|x − x | ξ
∈ℕ

< ∞
∈ℕ

.                              (116) 

The operator M (0) is semibounded from below and its Friedrichs extension M (0)  coincides with 
M(0), that is, M (0) = M(0). 
Proof. (i) The assertion follows by combining Proposition (5.2.10) (i) and (5.2.17) (iv) (cf. formulas 
(102) and (98)). 
(ii) By Proposition (5.2.10) (i). 

픱 ( )[ξ] ≔ lim
↓

(M(−t)ξ, ξ) .            ξ ∈ dom 픱 ( ) ≔ η: lim
↓

(M(−t)η,η) < ∞ .         (117) 

Let us denote for the moment the form defined in (113) by픱 = 픱 ( ).  

Note that the function f(t) = (1− e )/t = ∫ e ds is absolutely monotone f ∈ M[0,∞). Hence 
f ∈ Φ . This fact together with (102) and (113) yields 

픱 [ξ] − (M(−t)ξ, ξ) =
1 − e | |

|x − x | ξ ξ̅
| |

> 0, 푡 > 0, 휉 = ξ ∈ dom(픱 ).      (118) 

Thus, for anyξ ∈ dom(픱 ) the lim
↓

(M(−t)ξ, ξ) is finite and by (117), dom(픱 ) ⊂ dom(픱 ( )). 

Now we prove that 픱 ( )[ξ] = 픱 [ξ] for all ξ ∈ dom(픱 ). For finite vectors this follows at once from 
(118) and (117). fix ξ ∈ dom(픱 ). Given ε > 0 if follows from (113) and (117) that there exists N ∈

ℕ such that the finite vector ξ( ) ≔ ξ  satisfies. 

픱 [ξ] − 픱 ξ( ) < 휀  푎푛푑  픱 ( )[ξ] − 픱 ( ) ξ( ) < 휀. 
Then 픱 [ξ] − 픱 ( )[ξ] < 2휀. Since ε > 0 was arbitrary, this implies that 픱 ( )[ξ] = 픱 [ξ]. 
The equalitydom픱 = dom(픱 ( )) is obvious. 
(iii) follows from (ii) and the first form representation theorem (cf. [121]. Theorem 6.2.1]).  
(iv) By the assumption Σ ∈ℕ|x − x | < ∞m we have e ∈ dom(M(0)). Now [120, Theorem 
56.4] gives the first assertion, while the second follows from [120, Theorem 56, 2]. 
(v) Define a quadratic from 픱  by픱 [ξ] ≔ (M (0)ξ, ξ ∈ dom(픱 )) = dom(M (0)). Clearly, the finite 
vectors are dense in dom(픱 ( )) with respect to the norm [ξ] ≔ 픱 ( )[ξ] + C‖ξ‖  for sufficiently 
large C > 0. Since  픱 [η] = 픱 ( )[η], the closure of the form 픱  is 픱 ( ). Since M(0) = M(0)∗ and 
dom(M(0)) ⊂ dom픱 ( ), this complete the proof. 
Theorem(5.2.20) [176]:Let Π{ℋ, Γ ,Γ } be the boundary triplet for H∗ defined in Proposition 
(5.2.17), M the corresponding Weyl function and let Θ be a self-adjoint relation on ℋ. Then: 
(i) The operator H ≔ H∗ ↾ ker Γ  is the free Lapacian H = −∆, dom(H ) = dom(∆) =

W , (ℝ ). Moreover, H  is the Friedrichs extension H  of H and dom 픱 = W , (ℝ ). 
(ii) The operator H ( ) is the Krein extension H  of H and given by H = H∗ ↾ dom(H ), 

where the domain dom(H ) is the direct sum of dom(H) and the vector space  
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ξ φ + ξ e : ξ = T (M(0)− T )ξ ξ ∈ dom(M(0)) . 

The extensions H = H  and H  are disjoint. They are transversal if and only if the operator M(0) 
is bounded on l (ℕ). For instance, this is true whenever condition (40) is satisfied. 
(iii) H ≥ 0 if and only if Θ is semibounded below, dom(픱 ) ⊂ dom 픱 ( )  and 픱 ≥ 픱 ( ). In 

particular, H ≥ 0 when dom(Θ) ⊂ dom(M(0)) and Θ− M(0) ≥ 0. 
(iv) H  is lower semibounded if and only if Θ is. In this case the quadratic from 픱 is  

                        dom 픱 W , (ℝ ) + ξ φ : ξ = ξ
∈ℕ

∈ (픱 ) ⊂ l (ℕ) ,                    (119) 

픱 [f] + ‖f‖ = (|∇g(x)| + |g(x)| )dx + 픱 [ξ] −
e | |

x − x
| |ℝ

ξ ξ ,               (120) 

where f = g + ∑ ξ φ ∈ dom 픱∈ℕ  with g ∈ W , (ℝ ) and ξ = ξ
∈ℕ

∈ dom(픱 ).  

(v) In particular, for the quadratic form 픱 = 픱 ( )we have  

         dom 픱 = W , (ℝ ) + ξ φ : ξ ∈ l (ℕ), x − x ξ ξ̅ < ∞
| |

,        (121) 

픱 [f] + ‖f‖ = |∇g(x)| dx + ‖g‖ +
1 − e | |

|x − x |
| |ℝ

ξ ξ ,                   (122) 

where f = g + ∑ ξ φ ∈ dom 픱 ( )∈ℕ  with g ∈ W , (ℝ ) and ξ
∈ℕ

∈ dom 픱 ( ) . 

(vi) If Θ is lower semiboudned and dom(픱 ) ⊂ dom 픱 ( ) , then k (H ) = k 픱 ( ) . If, in 
addition, dom (Θ) ⊂ dom M(0) , then k (Θ − M(0)). 

(vii) If M(0) is bounded, i.e., H  and H  are transversal, we have the implication. 
Θ − M(0) E ( )(−∞, 0) ∈ 픖 (ℋ) ⟹ H E (−∞, 0) ∈ 픖 (ℌ).                          (123) 

For instance, implication (123) holds whenever condition (123) is satisfied  
Proof. (i) The first statement is immediate from (94) and definition (99) of Γ . 
Further, integrating by part one gets  

        픱 [f] + ‖f‖ ≔ (Hf, f) + ‖f‖ = |∇f(x)| dx + ‖f‖ =:‖f‖ , . f ∈ dom(H)
ℝ

.        (124) 

Since dom(H) is dense in W , (ℝ ), the closure 픱  of 픱  is defined by (124) on the domain 
dom(픱 ) = W , (ℝ ). Noting that dom 픱 = W , (ℝ ) = dom(픱 ) we get the result. 
We present another proof that is based on the Weyl function. it follows from (102) and (98) that 
lim
↓

(M(x)h, h) = −∞ for h ∈ ℋ ∖ {0}. It follows from (102) and (98)  

(ii) By Proposition (5.2.10), dom(H ) = ker(Γ − M(0)Γ ) since H  and H = H  are disjoint. 
Inserting the expressions from (99) and (103) for Γ  and Γ  we get the result. 
(iii) follows immediately from Proposition (5.2.12) (i). 
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(iv) Let ξ = ξ ∈ l (ℕ). Set |ξ| ≔ ξ
∈ℕ

. Then we derive from (102) 

〈M(−t )ξ, ξ〉+
t
4π

‖ξ‖ ≤
e
x − x

ξ ξ̅
| |

≤
1

d∗(X) e ξ ξ̅ ≤ d∗(X) e ( ) ∗( )

, ∈ℕ

e ξ ξ̅
, ∈ℕ

= d∗(X) e ( ) ∗( )2. 〈T |ξ|, |ξ|〉 (ℕ) ≤ d∗(X) e( ) ∗( )2. ‖T ‖ ∙ ‖ξ‖ (ℕ)(125) 
For anyε > 0, 휀 < ‖T ‖d∗(X) , we define t = t (ε) by 

t = t (ε) = 1− ln(εd∗(X)‖T ‖ ).                                                                       (126) 
Then it follows from (125) that 

(M(−l )ξ, ξ) ≥ −
1
4π + ε ‖ξ‖ ,              t ≥ t ,                                                 (127) 

and hence M(−l ) ⇉ −∞. Now Proposition (5.2.11)yield the first assertion. 
Next we prove the second statement. By [155, Theorem 1], the domain dom 픱  is a direct sum 

dom 픱 = dom(픱 ) + γ(−ε )dom(픱 ),     ε > 0,                                          (128) 
Hence anyf ∈ dom(픱

Θ
) can be written as f = g + γ(−ε )h, where g ∈ dom(픱  ) and h ∈

dom(픱Θ). Noting that dom(픱 ) = W , (ℝ ), and combining (128) with (100) yields (119). 
Further, by [155, Theorem 1] we have the equality 
픱 [f] + ‖f‖ = 픱 [g] + ‖g‖ + 픱 [h] − (M(−1)h, h), f ≔ g + γ(−1)h.       (129) 

Using Proposition (5.2.17) (iv) and the equality픱 [g] = ∫ |∇g(x)|  dxℝ  we obtain (120). 
(v) follows from (iv) with Θ = M(0). 
(vi) By (i), H = H . Hence the assertion is immediate from Proposition (5.2.12) (ii). 
(vii) Since H0 is the Friedrichs extension of H, [155, Theorem 3] implies the assertion. 
Remark(5.2.21) [176]:It follows from (5.2.21) and (9) that the inclusion 

dom 픱 = W , (ℝ ) + γ(−1)dom픱 ( ) ⊃ W , (ℝ ) + 픑 domH∗(130) 
holds if and only if the operator M(0) is bounded. This fact illustrates the following general result: 
for any non-negative operator A the inclusion dom(픱 ) ⊃ dom(A∗) holds if and only if A  and A  
are transversal (see [155, Remark 3]). 
Remark(5.2.22) [176]: (i) The Krein-type formulas (109)–(110) were established in [122, Theorem 
3.1.1.1] for a special familyH ,

( )  of self-adjoint extensions by approximation method. In our 
notation this family is parameterized by the set of self-adjoint diagonal matrices Bα =
diag(α , . . . ,α , . . . ). In this case 

H ,
( ) = H∗ ↾ f = f + ξ

e
x − x

+ b (α)ξ e
,

,             (131) 

where Bα = (b (α)) , T (Bα − T ). It is proved in [122] that H ,α
( )  is self-adjoint. Other 

parameterizations of the set of self-adjoint realizations are also contained in [149] and [161]. 
Another version of formulas (109)–(110) as well as an abstract Krein-like formula for resolvents 
can also be found in [161]. 
(ii)the case of finitely many point interactions (m < ∞) different descriptions of nonnegative 
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realizations has been obtained in [127,144,138]. 
(iii) In connection with Theorem (5.2.20) (iv) we mention the sections [151] and [143] where 
similar statements have been obtained for realizations of 1D Schrödinger operators (1) with 
d∗(X) ≥ 0 and elliptic operators in exterior domains, respectively. 
Theorem (5.2.23) [176]: Let d∗(X) > 0 and let Π = {H,Γ ,Γ } be the boundary triplet for H∗ 
defined in Proposition (5.2.17). Suppose that Θ is a self-adjoint relation on ℋ. Then: 
(i) For any p ∈  (0,∞] we have the following equivalence: 

(H − i) (H − i) ∈ 픖 (ℌ) ⟺ (Θ − i) ∈ 픖 (ℋ).       (132) 
(ii) If (Θ− i) ∈ 픖 (ℋ), then the non-negative ac-part H E (ℝ ) of the operator H = H∗  

is unitarily equivalent to the Laplacian −∆. 
(iii) Suppose that (Θ − i) ∈ 픖 (ℋ) and condition (40) is satisfied, i.e.,  

C ≔ sup
∈ℕ

′
1

x − x
< ∞.                                                (133)

∈ℕ

 

Then the ac-part H = H E (ℝ ) of H  is unitarily equivalent to the Laplacian −∆. 
Proof. (i) This assertion follows at once from Proposition (5.2.9). 
(ii)By Proposition (5.2.20) (i) H = −∆. Therefore, by (132) with p = 1, (H − i) —Δ − i) ] ∈
픖 (ℌ . It remains to apply the Kato-Rosenblum theorem (see [148]). 
(iv) (iii) Let z = t + iγ ∈ ℂ , t > 0 and √z = α + iβ. Clearly, α > 0,훽 > 0  and i√z = iα − β. It 

follows from (98) that 

G√ x − x =
e( )

x − x
=

e
x − x

, j ≠ k,    (134) 

It follows from (102) combined with (133) and (134) that  

‖M(t + iy)‖ ≤ α + β + e sup
∈ℕ

′
1

x − x
∈ℕ

= α + β + C e

≤ √t + 1 + 1 + C ,                             y ∈ [0,1] 
Thus, for any fixed t > 0 the familyM(t + iy) is uniformly bounded for y ∈ (0, 1], hence the weak 
limit M(t + iy) ≔ ω− lim

↓
M(t + iy) exist and 

ω − lim
↓

M(t + iy) =: M(t + i0) =: M(t) = i√tI + (G√ x − x ) , (135) 

From (132), applied with p = ∞, we conclude that [(H − z) − (H − z) ] ∈ 픖 (픑) since 
(Θ − i) ∈ 픖 (ℋ). To complete the proof it suffices to apply [122], Theorem 4.3] to H  and 
H = −∆. 
We need the following auxiliary lemma which is of interest in itself. 
Lemma (5.2.24) [1767]: Suppose that A is a simple symmetric operator in ℌ and {H,Γ ,Γ } is a 
boundary triplet for A∗ with Weyl function M. Assume that for anyt ∈ (α,β) the uniform limit 

M(t) ≔ M(t + i0) ≔ u − lim
↓

M(t + iy)(136) 

exists and 0 ∈ρ(M (t)) for t ∈ (α,β). Then the spectrum of any self-adjoint extension A of A on 
ℌ in the interval (α,β) is purely absolutely continuous, i.e., 

δ A ∩ (α,β) = ∅.                                                                    (137) 
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The operator AE (α,β) = A E (α, B) is unitarily equivalent to A E (α,β), where A =
A∗⌈ker Γ . 
Proof. Without loss of generality we can assume that the extensions A and A  are disjoint. Then, by 
Proposition (5.2.6) (iii), there is a self-adjoint operator B on ℋ such that A = A , where A = A∗ ↾
ker(Γ − BΓ ). 

We set M (t + iy) ≔ B − M(t + iy)  and note that  

lm(M (t + iy)) = (B − M(t + iy)) lm(< (t + iy)) B− M∗(t + iy) , y ∈ ℝ .             (138) 
Fix t ∈ (α,β). By assumption we have 0 ∈ ρ(M (t)), i.e., there exists ε = ε(t) such that 

〈M (t + iy)h, h〉 ≥ ε‖h‖ , h ∈ ℋ,                                         (139) 
It follows from (136) that there exists y ∈ ℝ  such that  

‖M (t + iy)− M (t)‖ ≤ ε/2   for ∈ [0, y ).                              (140) 
Combining (139) with (140) we get 

〈M (t + iy)h, h〉 = 〈M (t)h, h〉 + 〈 M (t + iy)− M (t) h, h〉 ≥ 2 ε‖h‖ , y ∈ [0, y ). 
Hence, for anyh ∈ dom(B), 
‖(M(t + iy) − B)h‖ ∙ ‖h‖ ≥ |〈(M(t + iy) − B)h, h〉| ≥ lm〈(M(t + iy) − B)h, h〉 = 〈M (t + iy)h, h〉

≥ 2 ε‖h‖ , y ∈ ⌈0, y ) 
Since 0 ∈ ρ(M(t + iy) − B), the latter inequality is equivalent to  

‖(M(t + iy) − B) ‖ ≤ 2ε ,   y ∈ [0, y ).                                (141) 
It follows that  

‖(B − M(t + iy)) − (B− M(t)) ‖

= B − M(t + iy) [M(t + iy) − M(t + iy) − M(t)] B − M(t)

≤ 4ε ‖M(t + iy) − M(t)‖, y ∈ [0, y ) 
Hence 

u − lim
↓

B − M(t + iy) = (B− M(t)) .                           (142) 

Next, it is easily seen that ∏ =  {ℋ, Γ  , Γ  }, where Γ = BΓ − Γ , Γ =  0, is a 
generalized boundary triplet for A∗ ⊂ A∗, dom(A∗)  =  dom(A0) +  dom(A ) (see [64] for the 
definitions). The corresponding Weyl function is M (·)  =  (B −  M(·)) . Therefore, combining 
(142) with [131,Theorem 4.3], we get τ (A )  ∩  (α,β)  =  ∅, i.e., AE  (α,β)  = A E   (α,β).  
Moreover, passing to the limit in (138) as y ↓  0, and using (136) and (142), we obtain  

Im(M (t + i0)) = (B− M(t +  i0)) M  (t + i0)(B− M∗(t + i0)) , t (α,β). (143) 
Since ker B − M∗(t +  i0)) =  {0}, we have 

rank Im(M (t +  i0))) =  rank Im(M (t +  i0))), t ∈  (α,β). (144) 
By Proposition (5.2.14) the operators A E (α,β) and A E (α,β)are unitarily equivalent. 
Now we are ready to prove the main result of this section. 
Theorem (5.2.25) [176]: Let H be a self-adjoint extension of H. Suppose that 

C ∶=
1

|x  −  x |
| |

<  ∞.                           (145) 

(i) Then the part HE (C ,∞) of H is absolutely continuous, i.e., 
σ (H )  ∩  (C ,∞)  =  ∅.                       (146) 
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Moreover, HE (C ,∞) is unitarily equivalent to the part −ΔE (C ,∞) of −Δ. 
(ii) Assume, in addition, that the conditions in Proposition (5.1.17) are satisfied, i.e., d∗(X )  >  0 
and D∗(X )  =  0. Then H ∶=   HE  (ℝ ) is unitarily equivalent to H  =  −Δ. In particular, H  is 
purely absolutely continuous, H  =  H  . 
Proof. As in the proof of Proposition (5.2.18) (ii) we decompose the symmetric operator H in a 
direct sum H =  H  ⊕ H′ of a simple symmetric operator H and a self-adjoint operator H′. Next we 
definea boundary triplet Π  =  {ℋ,Γ , Γ } for H∗ by setting Γ ∶=  j ↾ dom(H∗), j ∈  {0, 1}, 
and note that the corresponding Weyl function M(·)  coincides with the Weyl function M(·) of Π. 
Further, any proper extension H  =  H of H admits a decomposition H  =  H  ⊕  H′. In particular, 
the operator H  =  −Δ is decomposed as H  =  H  ⊕  H′, where H  =  H ∗  ↾  ker(Γ ) =  H∗  . 
Being a part of H , the operator H′ =  (H′)∗ is absolutely continuous and σ(H′)  =  σ (H′)  ⊂  ℝ , 
because σ(H )  =  σ (H )  =  ℝ . Therefore, it suffices to prove all assertions for self-adjoint 
extensions H of the simple symmetric operator H . 
(i) To prove (146) for any extension of H it suffices to verify the conditions of Lemma (5.2.24) 
noting that M(·)  =  M(·). First we prove that for anyt ∈  ℝ  the uniform limit 

M(t + i0) ∶= u − lim
↓

M(t + iy) ≅= i√t δk +
e √ − δk
|x − x  | +  δk

,

∞

, t ∈ ℝ,                    (147) 

exists, where the symbol T ≅  T means that the operator 풯 has the matrix 풯with respect to the 
standard basis of l (ℕ). 
Indeed, it follows from (102) that for anyξ, η ∈ l (ℕ), 

〈(M(t +  iy)  − M(t)ξ),η〉  =  ( t +  iy − √t)〈ξ, η〉 

+ e |x − x |  −  1
, ∈ℕ

e | |

|x − x | ξ η .                         (148) 

Fix ε >  0. By to the assumption (145) there exists N =  N(ε)  ∈  N such that 
1

|x − x |∈ℕℕ
+

1
|x − x |∈ℕℕ

< (ε/2) .               (149) 

Then 
1

|x − x |∈ℕℕ
|ξ η |  +

1
|x − x |∈ℕℕ

|ξ η | 

≤ |ξ |

/

|η |

/

1
|x − x |∈ℕℕ

/

 

+ |η |

/

|ξ |

/

1
|x − x |∈ℕℕ

/

 

≤ 2 ε‖ξ‖ · ‖η‖ .                                                      (150) 
On the other hand, since d∗(X)  >  0, we can find β  =  β (N) such that 

(1 − e | |)
|x − x |

,

≤ εd∗(X)  for β ∈ (0,β ).                         (151) 
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Combining (148) with (160) and (161) we get 
|〈(M(t +  iy)  − M(t))ξ,η〉|  ≤ ε (1 +  d∗(X) )‖ξ‖ · ‖η‖ , y ∈  (0,  y ), (152) 

that is, 
‖M(t +  iy)  − M(t)‖ ≤  ε (1 +  d∗(X) )for y ∈  (0, y ).              (153) 

Thus, the uniform limit (147) exists for anyt ∈  ℝ . 
Further, it follows from (147) that 

M (t) ∶= M (t + i0) ≅ √t δk +
sin(√t|x  – x  |)

√t x  – x +  δk
,

∞

, t ∈ ℝ .           (154) 

This relation combined with assumption (145) yields 0 ∈  ρ (M (t))for t >  C . The assertion 
0follows now by applying Lemma (5.2.24) to the operator bH and the interval (C ,∞). 
(ii) By (20) the function Ω (t)  =   is in Φ . Hence, by Proposition (5.1.17), the matrix function 

Ω (t‖·‖) is stronglyX-positively definite for anyt >  0, i.e., the matrix Ω (t x − x ) , ∈ℕ is 
positively definite for any t > 0. By (154) we have 

M (t): =  M (t +  i0) ≅ √tΩ √t x  – x
, ∈ℕ

t ∈  ℝ . 

Hence MI(t) is positively definite for t ∈  ℝ . It remains to apply Lemma (5.2.24) to the boundary 
triplet Π and the interval  ℝ . 
Next we present another result on the ac-spectrum of self-adjoint extensions that is based on 
Corollary(5.1.23). 
Theorem (5.2.26) [176]: Let H be an arbitrary self-adjoint extension of H. Assume that 

lim
→∞

sup
∈

1
|x − x  |∈

=  0                          (155) 

and let C1 be defined by (133). Then: 
(i) The part HE  (C  ,∞) of H is absolutely continuous, i.e. 

σ (H )  ∩  (C  ,∞)  =  ∅.                                               (156) 
Moreover, HE  (C  ,∞) is unitarily equivalent to the part −ΔE (C  ,∞ of−Δ. 
(ii) Assume, in addition, that the conditions of Proposition (5.1.17) are fulfilled, i.e. d∗(X )  >  0 
and D∗(X )  =  0. Then HE  (ℝ ) is unitarily equivalent to H  =  −Δ. In particular, eH + is 
purely absolutely continuous, i.e. H  =  H . 
Proof. (i) The proof is similar to that of Theorem (5.2.25) (i). Indeed, by assumption (155), for 
anyε >  0 one can find N =  N(ε)  ∈  Nℕ such that 

sup
1

|x − x |∈ℕ
+  sup

1
|x − x |∈ℕ

<  휀/2.                    (157) 

Starting with (157) instead of (149), we derive 
1

|x − x |∈ℕℕ
ξ η +

1
x − x∈ℕℕ

ξ η ≤ 2 ε‖ξ‖ · ‖η‖ (158) 

which implies (153). That the operator MI(·) has a bounded inverse if t > C  follows from (154) 
and Proposition (5.1.26). It remains to apply Lemma (5.2.24) to the operator H and the interval 
(C  ,∞). 
(ii) follows by arguing in a similar manner as in the proof of Theorem (5.2.25) (ii). 
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Chapter 6 
General Inequalities and Negative Spectrum  

In some cases the kernel decays exponentially as 푡 → ∞This allows us to consider very slow 
decaying potentials and obtain some results that are precise in the logarithmical scale. We devoted 
to the spectral theory of the Schrödinger operator on the simplest fractal: Dyson’shierarchical 
lattice. An explicit description of the spectrum, eigenfunctions, resolvent and parabolic kernelare 
provided for the unperturbed operator, i.e., for the Dyson hierarchical Laplacian. Positive spectrum 
is studied for the perturbations of the hierarchical Laplacian.  
 
Section (6.1):  Cwikel-Lieb-Rozenblum and Lieb-Thirring Inequalities  
Lets us recall the classical estimate concerning the negative eigenvalues of the operator H = −∆ +
V(x) on L R , d ≥ 3. Let N (V) be the number of eigenvalues, E  of the operator H that are below 
or equal to E ≤ 0. In particular, N (V) is the number of non-positive eigenvalues. Let 

N(V) = #{E < 0} 
be the number of strictly negative eigenvalues of the operator H. Then the Cwikel-Lieb-Rozenblum 
and Lieb-Thirring inequalities have the following form, respectively, (see [180], [191]-[194],[198], 
[197]). 

N(V) ≤ C W (x)dx,                                                (1) 

|E | ≤ C , W (x)dx.                                (2)
:

 

Here W = |V |, V (x) = min(V(x), 0), d ≥ 3, g ≥ 0. The inequality (1) can be considered as a 
particular case of (2) with γ = 0. Conversely, the inequality (2) can be easily derived from (1) (see 
[197]). So, below we will mostly discuss the Cwikel-Lieb-Rozenblum inequality and its extensions, 
although some new results concerning the Lieb-Thirring inequality will also be stated. 
A review of different approaches to the proof of (1) can be found in [200]. We will remind only 
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several results. E. Lieb [191], [192] and I. Daubechies [181] offered the following general form of 
(1) and (2). Let H = H + V(x), and V(x) = V (x) − V (x), V± ≥ 0. Then  

N(V) ≤
1

g(1)
π(t)

t dt G(tW(x))μ(dx).                         (3) 

|E |
:

≤
1

g(1)
π(t)

t dt G(tW(x))W μ(dx).             (4) 

Here W = V = max(0,−V(x)) , G is a continuous, convex, non-negative function which grows at 
infinity not faster than a polynomial, and is such that z G(z) is integrable at zero (hence, G(0) =
0), and the integral (3) is finite. The function g(⋋),⋋≥ 0, is defined by 

g(⋋) = z G(z)e ⋋dz,   i. e. , g(1) = z G(z)e dz.  (5) 

Note that π(t) = (2πt)  in the classical case of H = −∆ on L R , and (1) follows from (3) in 

this case by substitution t → 풯 = tW(x) if G is such that ∫ z G(z)dz < ∞. 
The inequalities above are meaningful only for those W for which integrals converge. They become 
particularly transparent (see [192]) if G(z) = 0 for z ≤ σ, G(z) = z − σ for z > 휎,휎 ≥ 0. Then (3), 
(4) take the form  

N(V) ≤
1

c(σ) W(x) π(t)dtμ(dx),                                       (6)
( )

 

|E | ≤
1

c(σ) W (x) π(t)dtμ(dx),                               (7)
( ):

 

where c(σ) = e ∫ . 
1. Daubichies [181] used Lieb method to justify the estimates above for some pseudo-differential 
operators in R . She also mentioned there that the Lieb method works in a wider setting. A slightly 
different approach based on the Trotter formula was used by G. Rozenblum and M. Solomyak 
[199], [200]. They proved (3) for a wide class of operators in L (X,μ) where X is a measure space 
with a σ-finite measure μ = μ(dx). They also suggested the following form of (3). Assume that the 
function π(t) has different power asymptotics as t → 0 and t → ∞. Let 

p (t, x, x) ≤ c/t ⁄ ,   t ≤ h, p (t, x, x) ≤ c/t ⁄ ,   t > ℎ                       (8) 
where h > 0 is arbitrary. The parameters α and β characterize the “local dimension” and the “global 
dimension” of X, respectively. For example α = β = d in the classical case of the Laplacian H =
−∆ in the Euclidean space X = R . If H = −∆ is the difference Laplacian on the lattice X =  Z , 
then α = 0, β = d. If X = S × R  is the product of n-dimensional sphere and R , then α = n +
d,β = d. 
If α,β > 2, inequality (3) implies (see [200]) that 

N(V) ≤ C(h)[ W (x)μ(dx) + W (x)μ(dx)
{ ( ) }{ ( ) }

],       (9) 

Note that the restriction β > 2 is essential here in the same way as the condition d > 2 in (1). We 
will show that the assumption on α can be omitted, but the form of the estimate in (9) changes in 
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this case. 
We will consider operators which may have different power asymptotics of π(t) as t → 0 or t → ∞ 
or exponential asymptotics as t → ∞. The latter case will allow us to consider the potentials which 
decay very slowly at infinity. This is particularly important in some applications, such as Anderson 
model, where the borderline between operators with a finite and infinite number of eigenvalues is 
defined by the decay of the perturbation in the logarithmic scale. 
We will assume that X is a complete σ-compact metric space with Borel σ-algebra B(X) and a σ-
finite measure μ(dx). Let H  be a self-adjoint non-negative operator on L (X, B,μ) with the 
following two properties: 
(a) Operator −H  is the generator of a semigroup P  acting on C(X). The kernel p (t, x, y) of P  is 
continuous with respect to all the variables when t > 0 and satisfies the relations 

∂p
∂t = −H p , t > 0, p (0, x, y) = δ (x), p (t, x, y)μ(dy) = 1,    (10) 

i.e. p  is a fundamental solution of the corresponding parabolic problem. We assume that p (t, x, y) 
is symmetric, non-negative, and it defines a Markov process x , s ≥ 0, on X with the transition 
densityp (t, x, y) with respect to the measure μ. 
Note that this assumption implies that p (t, x, x) is strictly positive for all x ∈ X, t > 0, since  

p (t, x, x) = p (
t
2 , x, y)μ(dy) > 0.                                                                  (11) 

(b) There exists a function π(t) such that p (t, x, x) ≤ π(t) for t ≥ 0 and all x ∈ X. We also assume 
that π(t) has at most power singularity at t → 0 and is integrable at infinity, i.e. there exists m such 
that 

t
1 + t π(t)dt < ∞.                                                                                                (12) 

Note that condition (b) implies that  
p (t, x, y) ≤ π(t), x, y ∈ X.                                                                                (13) 

In fact, 

p (t, x, y) = p (
t
2 , x, z)p (

t
2 , z, y)μ(dz) ≤ ( p (

t
2 , x, z)μ(dz)) ( p (

t
2 , z, y)μ(dz)) , 

which implies (13) due to (11). Let us note that (12), (13) imply that the process x  is transient. 
We decided to put an extra requirement on X to be a metric space in order to be able to assume that 
p  is continuous and use a standard version of the Kac-Feynman formula. This makes all the 
arguments more transparent. In fact, X is a metric space in all examples below. However, all the 
arguments can be modified to be applicable to the case when X is a measure space by using L -
theory of Markov processes based on the Dirichlet forms. 
Many examples of operators which satisfy conditions (a) and (b) will be given later. At this point 
we would like to mention only a couple of examples. First, note that self-adjoint uniformly elliptic 
operators of second order satisfy conditions (a) and (b). Condition (b) holds with π(t) = Ct /  due 
to Aronson inequality. 
Another wide class of operators with conditions (a) and (b) consists of operators which satisfy 
condition (a) and are invariant with respect to transformations from a rich enough subgroup Γ of the 
group of isometries of X. The subgroup Γ has to be transitive, i.e., for some reference point x  ∈ X 
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and each x ∈ X there exists an element g ∈ Γ  for which g (x ) = x. Then p (t, x, x) =
p (t, x , x ) = π(t). The simplest example of such an operator is given byH = −∆ on 
L (R , B(R ), dx). The group Γ in this case is the group of translations or the group of all Euclidean 
transformations (translations and rotations). Another example is given byX = Z  being a lattice and 
−H  a difference Laplacian. Other examples will be given later. 
(c) Our next assumption mostly concerns the potential. We need to know that the perturbed operator 
H = H + V(x) is well defined and has pure discrete spectrum on the negative semiaxis. For this 
purpose it is enough to assume that the operator V (x)(H − E)  is compact for some E > 0. This 
assumption can be weakened. If the domain of H  contains a dense in L (X, B,μ) set of bounded 
compactly supported functions, then it is enough to assume that V (x)(H − E)  is compact for 
some E > 0 and the positive part of the potential is locally integrable (see [177]). 
Typically (in particular, in all the examples below) H  is an elliptic operator, the kernel of the 
resolvent (H − E)  has singularity only at x = y, this singularity is weak, and the assumptions (c) 
holds if the potential has an appropriate behavior at infinity. Therefore we do not need to discuss the 
validity of this assumption in the examples below. 
Remark (6.1.1) [202]:Note that (16) differs from (3) only by inclusion of the dimension of the null 
space of the operator H into the left-hand side of (16). This difference is not very essential, and the 
first goal of this part of the section is to give an alternative proof of (3) suitable for readers with a 
background in probability theory. 
Remark (6.1.2) [202]: If G(z) = 0 for z ≤ σ, G(z) = z − σ for z > 휎, 휎 ≥ 0, then (16), (17) take 
the form 

N (V) ≤
1

c(σ) W(x) π(t)dtμ(dx),                                     (14)
( )

 

|E | ≤
1

c(σ) W (x) π(t)dtμ(dx),                         (15)
( ):

 

where c(σ) = e ∫  . Some applications of these inequalities will be given below. 
Remark (6.1.3) [202]:  Inequalities (16), (17) are valid with π(t) moved under sign of the interior 
integrals and replaced byp (t, x, x). For example, (16) holds in the following form 

N (V) ≤
1

g(1)
1
t p (t, x, x)G(tW(x))μ(dx)dt. 

The same change can be made in (14), (15). A very minor change in the proof of the theorem is 
needed in order to justify this remark. Namely, one needs only to omit the last line in (32). 
Theorem (6.1.4) [202]: Let (X, B,μ) be a complete σ-compact metric space with the Borel σ-
algebra B and a σ-finite measure μ on B. 
Let H = H + V(x), where H  is a self-adjoint, non-negative operator on L (X, B,μ), the potential 
V = V(x) = V − V , V± ≥ 0, is real valued, and the assumptions (a)-(c) hold. 
Then 

N (V) ≤
1

g(1)
π(t)

t G(tW(x))μ(dx)dt,                               (16) 

and 
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|E | ≤
1

g(1)
π(t)

t G(tW(x))W(x) μ(dx)dt,            (17)
:

 

where W(x) = V (x), and functions G and g are introduced above in (3) and (5). 
Proof. Step 1. Since the eigenvalues E  depend monotonically on the potential V(x), without loss of 
generality one can assume that V(x) = −W(x) ≤ 0. 
First (steps 1-6), we’ll prove inequality (16) for N(V) instead of N (V). Here we can assume that 
V(x) ∈ C (X). Indeed, when N(V) is considered, inequality (16) with V(x) ∈ C (X) implies the 
same inequality with anyV such that the integral in (16) converges (see [197]). Then (step 7), we’ll 
show that inequality (16) for N(V) leads to the same inequality for N (V). Finally (step 8), we will 
remind the reader of standard arguments which allow us to derive (17) from (16). 
Step 2. We denote byB and B  the operators 

B = W / (H + ϰ ) W / , B = W / (H + κ + nW) W / , W = W(x). 
If N 퓍 (V) = #{E ≤ −퓍 < 0},⋋  are eigenvalues of the operator B and n(⋋, B) = #{k:⋋ ≥⋋}, 
then the Birman-Schwinger principle implies 

N 퓍 (V) = n(1, B).                                           (18) 
Thus, if F = F(⋋),⋋≥ 0, is a non-negative strictly monotonically growing function, and {μ } is the 
set of eigenvalues of the operator F(B), then  

N 퓍 (V) ≤ 1 ≤
1

F(1) μ ≤
1

F(1)Τ픯F(B).               (19)
: ( ): ( )

 

This inequality will be used with the function F of the form 

F(⋋) = P(e )e ⋋ dz,   P(t) = c l ,                                         (20) 

The exponential polynomial P(e ), z > 0, will be chosen later, but it will be a non-negative 
function with zero of order m at z = 0, i.e. 

P(e ) ≤ C
z

1 + z , z ≥ 0,                                                                (21) 

where m is defined in the condition (b). Since P(e ) ≥ 0, (20) implies that F is nonnegative and 
monotonic, and therefore (19) holds. 
From (20) it follows that 

F(⋋) = c
⋋

1 + n ⋋, 

and the obvious relation B = B(1 +  nB)  implies that 

F(B) = c B = W c (H + κ + nW) W . 

For an arbitrary operator K, we denote its kernel byK(x, y). The kernel of the operator F(B) can be 
expressed trough the fundamental solutions p = p (t, x, y) of the parabolic problem 

p = (H + nW(x))p, t > 0,푝(0, x, y) = δ (x). 
Namely, 
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F(B)(x, y) = W (x) e c p (t, x, y)dtW (y).     (22) 

It will be shown below that the integral above converges uniformly in x and y when κ = 0. Hence, 
the kernel F(B)(x, y) is continuous. Since the operator F(B) is non-negative, from the last relation 
and (19), after passing to the limit as κ → 0, it follows that 

N(V) ≤
1

F(1) W(x) c p (t, x, x)dtμ(dx).                        (23) 

Step 3. The Kac-Feynman formula allows us to write an”explicit” representation for the 
Schrodinger semigroup ( ( )) using the Markov process x  associated to the unperturbed 
operator H . Namely, the solution of the parabolic problem  

∂u
∂t = −H u − nW(x)u, t > 0, 푢(0, x) = φ(x) ∈ C(X), (24) 

can be written in the form 

u(t, x) = E e ∫ ( ) φ(x ). 
Note that the finite-dimensional distributions of x  (for 0 < t < ⋯ < t ,Γ , … Γ ∈ B(X)) are given 
by the formula  

P x ∈ Γ , … , x ∈ Γ  

= ⋯ p (t , x, x )p (t − t , x , x ) … p (t − t , x x )μ(dx ) … μ(dx ). 

If p (t, x, y) > 0, then one can define the conditional process (bridge) b = b → , ,∈ [0, t], which 
starts at x and ends at y. Its finite-dimensional distributions are  

P → b ∈ Γ , … , b ∈ Γ  

=
∫ …∫ p (t , x, x ) … p (t − t , x , x )p (t − t , x , y)μ(dx ) … μ(dx )

p (t, x, y)  

In particular, the bridge b → , , s ∈ [0, t], is defined, since p (t, x, x) > 0 (see condition (a)). 
Let p = p (t, x, y) be the fundamental solution of the problem (24). Then p (t, x, y) can be 
expressed in terms of the bridge b = b → , , s ∈ [0, t]: 

p (t, x, y) = p (t, x, y)E → e ∫ .                      (25) 
One of the consequence of (25) is that 

p (t, x, y) ≤ p (t, x, y).                                                    (26) 
Another consequence of (25) is the uniform convergence of the integral in (22) (and in (23)). In 
fact, (21) implies that 

c e ∫ ≤ C
t

1 + t . 

Hence from (25) and (13) it follows that the integrand in (22) can be estimated from above 

byCπ(t) . Then the uniform convergence of the integral in (22) follows from (12). 
Now (23) and (25) imply 
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N(V) ≤
1

F(1) W(x)p (t, x, x)E → [ c e ∫ ]μ(dx)dt, b = b → , . 

Step 4. We would like to rewrite the last inequality in the form  

N(V) ≤
1

F(1) p (t, x, x)E → [W b풯 c e ∫ ]μ(dx)dt (27) 

with an arbitrary풯 ∈ [0, t]. For that purpose, it is enough to show that 

p (t, x, x)E → [W b풯 e ∫ ]μ(dx)

= p (t, x, x)W(x)E → e ∫ μ(dx).                         (28) 

The validity of (28) can be justified using the Markov property of  b  and its symmetry 
(reversibility in time). We fix 풯 ∈ (0, t). Let y = b풯. We spilt b  into two bridges b → ,풯 , u ∈
[0,풯], and b → , , v ∈ [풯, t]. The first bridge starts at x and ends at y, the second one starts at yand 
goes back to x. Using these bridges, one can represent the left hand side above as  

W(y)[p (풯, x, y)p (t − 풯, y, x) − p (풯, x, y)p (t − 풯, y, x)]μ(dx)μ(dy)

= W(y)[p (t, y, y) − p (t, y, y)]μ(dy), 

which coincides with the right hand side of (28). This proves (27). 
Step 5. We take the average of both sides of (27) with respect to 풯 ∈ [0, t] and rewrite it in the form 

N(V) ≤
1

F(1)
p (t, x, x)

t E → (c W b dse ∫ )μ(dx)dt

=
1

F(1)
p (t, x, x)

t E → (u(P(e ))μ(dx)dt, u = W b ds,         (29) 

where P is the polynomial defined in (20) and (23). 
Let now P be such that 

uP(e ) ≤ G(u),                                                                                              (30) 
where G is defined in the statement of Theorem (6.1.4) Then one can replace uP(e ) in (29) 
byG(u). Then the Jensen inequality implies that 

G( W b )ds = G(
1
t tW b )ds ≤

1
t G(tW b )ds. 

This allows us to rewrite (29) in the form 

N(V) ≤
1

F(1)
p (t, x, x)

t
1
t E → G(tW(b ))dsμ(dx)dt.   (31) 

It is essential that one can use the exact formula for the distribution above: 

E → G(tW(b )) = G(tW(z))
p (s, x, z)p (t − s, z, x)

p (t, x, x) μ(dz). 

Form here and (31) it follows that 
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N(V) ≤
1

F(1)
1
t ds G(tW(z))p (s, x, z)p (t − s, z, x)μ(dx)μ(dz)dt

=
1

F(1)
1
t ds μ(dz)G(tW(z))p (t, z, z)d

=
1

F(1)
1
t G(tW(z))p (t, z, z)μ(dz)dt

≤
1

F(1)
π(t)

t G(tW(z))μ(dz)dt,                     (32) 

where F(1) is defined in (20). 
Step 6. Now we are going to specify the choice of the polynomial P which was used in the previous 
steps. It must be non-negative and satisfy (12) and (30). Polynomial P will be determined by the 
choice of the function G. Note that it is enough to prove (16) for functions G which are linear at 
infinity. In fact, for arbitraryG, let G ≤ G be a continuous function which coincides with G when 
z ≤ N and is linear when z ≥ N. For example, if G is smooth, G  can be obtained if the graph of G 
for z ≥ N is replaced by the tangent line through the point (N, G(N). Since G ≤  G, the validity of 
(16) for G  implies (16) with the function G in the integrand and g(1) being replaced byg (1). 
Passing to the limit as N → ∞ in this inequality, one gets (16), since g (1) → g(1) as N → ∞. 
Similar arguments allow us to assume that G = 0 in a neighborhood of the origin (The validity of 
(16) for G (z) = G(z − ε) ≤ G(z) implies (16)). Now consider G (z) = max(G(z), y(ε, z)) where 
y(ε, z)) = z , z ≤ ε, y(ε, z) = (m + 1)(z− ε) + ε , z > 휀, with m defined in condition (b). 
We will show later that the right-hand side of (16) is finite for G = G . Thus if (16) is proved for 
G = G , then passing to the limit as ε → 0 one gets (16) for G. Hence we can assume that G = az at 
infinity and G = z  in a neighborhood of the origin. Note that a ≠ 0, since G is convex. 
A special approximation of the function G by exponential polynomials will be used. Consider 

function H(z) = ( )
( )

, z > 0. It is continuous, nonnegative and has positive limits as z → 0 and 

z → ∞. Hence there is an exponential polynomial P (e ) which approximates H(z) from below, 
i.e. 

|H(z)− p (e )| < 휀, 0 < p (e ) ≤ 2p (e ), z > 0. 
In order to find p , one can change the variable t = e  and reduce the problem to the standard 
Weierstrass theorem on the interval (0,1). If 푃 (e ) = (1− e ) 푃 (e ) then 

|푧 퐺(푧)− 푃 (e )| < 휀, 0 < 푃 (e ) ≤ 푧 퐺(푧), 푧 > 0; 푃 (e ) < 퐶푧 , 푧 → 0.        (33) 
We will choose polynomial P in (20) and (23) to be equal to P . The last two of relations (33) show 
that P = P  satisfies all the properties used to obtain (32). Function F in (32) is defined by (20) with 
P = P , and therefore F(1) = F (1) depends on ε. From the first relation of (33) it follows that 
F (1) → g(1) as ε → 0. Thus passing to the limit in (32) as ε → 0 we complete the proof of 
inequality (16) for N(V). 
Step 7. Now we are going to show that inequality (16) for N(V) implies the validity of this 
inequality for N (V) under the assumption that integral (16) converges. We can assume that G is 
linear at infinity and G(z) = z  in a neighborhood of the origin (see step 6). Then G(2tW(x)) ≤
CG(tW(x)), and therefore the convergence of the integral (16) implies the convergence of the same 
integral with W replaced by2W. 
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Let n be the dimension of the null space of the operator H. We need to show that n is finite and 
N(V) + n does not exceed the right-hand side of (16). 
Consider the operator 

H = H + εV(x) = H + (1 + ε)V(x), ε > 0. 
The Dirichlet form of this operator 

(H ϕ,ϕ) = (Hϕ,ϕ) + ε V(x)|ϕ(x)| μ(dx) 

is strictly negative on the space T\{0}, where the (N(V) + n)-dimensional space T is spanned by 
the eigenfunctions of H with negative or zero eigenvalues. Indeed, both terms on the right in the 
formula above are non positive on T. If ϕ ∈ T does not belong to the null space N of H, then the 
first term is strictly negative. If ϕ ∈ N\{0}, then the second term is strictly negative since otherwise 
there exists ϕ = ϕ ∈ N ∖ {0} such that Vϕ = 0. Then ϕ  belongs to the null space of the 
unperturbed operator H . This contradicts the assumption (b) on the decay (integrability) of the heat 
kernel p (t, x, x) as t → ∞ (since p ≥ |ϕ (x)| ). 
The negativity of the Dirichlet form on T\{0} implies that operator H has at least N(V) + n strictly 
negative eigenvalues. Hence from inequality (16) for strictly negative eigenvalues of the operator 
H  it follows that  

N(V) + n ≤
1

g(1)
π(t)

t G(t(1 + ε)W(x))μ(dx)dt.      (34) 

One may assume that the double integral in (16) converges. It was shown above that this 
assumption leads to the convergence of the integral in (34) when ε = 1. Then one can pass to the 
limit as ε → 0 in (34) and get 

N(V) + n ≤
1

g(1)
π(t)

t G(tW(x))μ(dx)dt. 

Hence (16) is proved  
Step 8. In order to prove (17), we note that  
 
 
 

|E | = γ E N (V)dE
:

≤ γ E N (−(W − E) )dE

≤
γ

g(1) E
π(t)

t G(t(W(x)− E) )μ(dx)dtdE

=
γ

g(1)
π(t)

t E G t(W(x) − E) dEμ(dx)dt

=
γ

g(1)
π(t)

t u W (x)G tW(x)(1− u) duμ(dx)dt. 

One can replace G(tW(x)(1− u)) here byG(tW(x)), since G is monotonically increasing. This 
immediately implies (17). 
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Theorem (6.1.5) [202]: Let H = H + V(x), where H  is a self-adjoint, non-negative operator on 
L (X, B,μ), the potential V = V(x) is real valued, and the assumptions (a)-(c) hold. 
If  

π(t) ≤ c/t ,    t → ∞;     π(t) ≤ ct , t → 0                                     (35) 
For some β > 2 and α ≥ 0, then  

N (V) ≤ C(h)[ W(x) / μ(dx) + bW(x) ( , / )μ(dx)],   (36) 

where X = {x: W(x) ≤ h }, X = {x: W(x) > h }, b = 1 if α ≠ 2, b = ln 1 + W(x) if α = 2, 
in some cases (α/2,1) can be replaced byα/2, as will be discussed in Section 3.  
Proof. We write (14) in the form N (V) ≤ I + I , where I∓ correspond to integration in (14) over 
X∓respectively. 
Let x ∈ X , i.e., W < h . Then the interior integral in (14) does not exceed 

C(h) t / dt = C(h)W( / ) .                                   (37) 

Thus I  can be estimated by the first term in the right-hand side of (36). Similarly 

I ≤ C(h) W( + )π(t)dt ≤ C(h) W( t / dt + t / dt)dx, 

which does not exceed the second term in the right-hand side of (36). 
Theorem (6.1.6) [202]: Let H = H + V(x), where H  is a self-adjoint, non-negative operator on 
L (X, B,μ), the potential V = V(x) is real valued, and the assumptions (a)-(c) hold  
If  

π(t) ≤ ce , t → ∞;   π(t) ≤ c/t ,   t → 0                                               (38) 
for some γ > 0 and α ≥ 0, then for each A > 0, 

N (V) ≤ C(h, A)[ e ( ) μ(dx) + bW(x) ( / , )μ(dx)],   (39) 

where X , X , b are the same as in the theorem above,  
Proof. The proof is the same as that of the theorem above. One only needs to replace (37) by the 
following estimate 

c(h) e γ dt                                                                         

= C(h)W e (풯 ) d풯                   

≤ C(h)W e
( )

e (풯 ) d풯    

≤  C(h)W e ( 풯) d풯]e ( ) , 

and note that σ can be chosen as large as we please. 
1. Operators on lattices and groups. It is easy to see that Theorems 6.1.6 and 6.1.5 are not exact if 
α ≤ 2. We are going to illustrate this fact now and provide a better result for the case α = 0 which 
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occurs, for example, when operators on lattices and discrete groups are considered. An important 
example with α = 1 will be discussed in next subsection (operators on quantum graphs). 
Let X = {x} be a countable set and H  be a difference operator on L (X) which is defined by 

(H ψ)(x) = a(x, y)ψ(y),                (40)
∈

 

where  

a(x, x) > 0, 푎(x, y) = a(y, x) ≤ 0, a(x, y) = 0.
∈

 

A typical example of H  is the negative difference Laplacian on the lattice X = Z , i.e.,  

(H ψ)(x) = −∆ψ = [ψ(x)− ψ(y)],   x ∈ Z ,   (41)
∈ :| |

 

We will assume that 0 < 푎(x, x) ≤ c < ∞. Then SpH ⊂ [0, 2c ]. The operator −H  defines the 
Markov chain x(s) on X with continuous time s ≥ 0 which spends exponential time with parameter 
a(x, x) at each point x ∈ X and then jumps to a point y ∈ X with probabilityr(x, y) =

( , )
( , )

,∑ r(x, y) = 1: . The transition matrix p(t, x, y) = P (x = y) is the fundamental solution of 

the parabolic problem 
∂p
∂t + H p = 0,   p(0, x, y) = δ (x). 

Obviously, p(t, x, x) ≤ π(t) ≤ 1, and π(t) → 1 uniformly in x as t → 0. The asymptotic behavior of 
π(t) as t → ∞ depends on operator and can be more or less arbitrary. 
Consider now the operator H = H − mδ (x) with the potential supported on one point. The 
negative spectrum of H contains at most one eigenvalue (due to rank one perturbation arguments), 
and such an eigenvalue exists if m ≥ c . The latter follows from the variational principle, since 

< H δ ,δ > −푚 < δ , δ >    ≤ c − m < 0. 
However, Theorems 6.1.5 and 6.1.6 estimate the number of negative eigenvalues N(V) of the 
operator H byCm. Similarly, if  

V = − m δ(x − x ) 

and m  ≥ c , then N(V) = n, but Theorems 6.1.5 and 6.1.6 give only that N(V) ≤ C∑m . The 
following statement provides a better result for the case under consideration than the theorems 
above. The meaning of the statement below is that we replace max(α/2,1) = 1 in (36), (39) 
byα/2 = 0. Let us also mention that these theorems can not be strengthened in a similar way if 0 <
훼 ≤ 2 (see Example 3). 
Theorem (6.1.7) [202]: Let H = H + V(x), where H  is defined in (40), and let assumptions of 
Theorem 6.1.4 hold. Then for each h > 0,  

N (V) ≤ C(h)[n(h) +
π(t)

t G(tW(x))dt],   n(h) = #{x ∈ X }.
∈

 

If, additionally, either (35) or (38) is valid for π(t) as t → ∞, then for each A > 0, 

N (V) ≤ C(h)[ W(x) + n(h)], n(h) = #{x ∈ X },   (42)
∈
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N (V) ≤ C(h, A)[ e ( )

∈

+ n(h)],     n(h) = #{x ∈ X }, 

respectively, 
Remark (6.1.8) [202]: Estimate (42) for N(V) in the case X = Z  can be found in [200]. 
Proof. In order to prove the first inequality, we split the potential V(x) = V (x) + V (x), where 
V (x) = V(x) for x ∈ X , V (x) = 0 for x ∈ X . Now for each ε ∈ (0,1), 

N (V) ≤ N (ε V ) + N ((1 − ε) V ) = N (ε V ) + n(h).                         (43) 
It remains to apply Theorem 6.1.4 to the operator −∆ + ε V  and pass to the limit as ε → 1. The 
next two inequalities follow from Theorems 6.1.5 and 6.1.6. 
2. Operators on quantum graphs. We will consider a specific quantum graph Γ , the so called 
Avron-Exner-Last graph. Its vertices are the points of the lattice Z , and the edges are all segments 
of length one connecting neighboring vertices. Let s ∈ [0,1] be the natural parameter on the edges 
(distance from one of the end points of the edge). Consider the space D of smooth functions φ on 
edges of Γ  with the following (Kirchoff’s) boundary conditions at vertices: at each vertex φ is 
continuous and 

φ = 0,                                                                                                          (44) 

where φ  are the derivatives along the adjoint edges in the direction out of the vertex. The operator 

H  acts on functions φ ∈ D as − . The closure of this operator in L (Γ ) is a self-adjoint operator 
with the spectrum [0,∞) (see [179]) 
Theorem 6.1.9 Let d ≥ 3 and V be constant on each edge e  of the graph: V(x) = −v < 0,푥 ∈ e . 
Then  

N (V) ≤ c(h)( v /

:

+ v ).
:

 

Proof. Put V(x) = V (x) + V (x), where V (x) = V(x) if |V(x)| > h , V (x) = 0 if |V(x)| ≤ h . 
Then (see 43)) 

N (V) ≤ N (2V ) + N (2V ). 
One can estimate N(V ) from above (below) by imposing the Neumann (Dirichlet) boundary 
conditions at all vertices of Γ. This leads to the estimates 

2v
π ≤ N (V) ≤ (

2v
π

::

+ 1) ≤ c(h) v ,
:

 

which, together with Theorem 2.5 applied to N (2V ), justifies the statement of the theorem 
The same arguments allow one to get a more general result. 
Theorem (6.1.10) [202]: Let d ≥ 3. Let Γ  be the set of edges, e  of the graph Γ  where W ≤
h , Γ  be the complementary set of edges, and 

sup ∈ W(x)
min ∈ W(x) ≤ k = k (h), x ∈ Γ , 

where W = V . Then  
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N (V) ≤ c(h, k )( W(x) / dx + W(x) dx). 

Example. The next example shows that there are singular potentials on Γ  for which max(α/2, 1) in 
(36) can not be replaced by any value less than one. Consider the potential V(x) = −A∑ δ(x −
x ), where x  are middle points of some edges, and A > 4. One can easily modify the example by 
considering δ-sequences instead of δ-functions (in order to get a smooth potential.) Then 

W (x)dx = 0 

for anyσ < 1, while N(V) ≥ m. In fact, consider the Sturm-Liouville problem on the interval [1 −
2/2,1/2]: 

−y − Aδ(x)y =⋋ y, y(−1/2) = y(1/2) = 0,    A > 4. 
It has (a unique) negative eigenvalue which is the root of the equation tanh(√− ⋋/2) = 2√− ⋋/A. 
The corresponding eigenfunction is y = sinh[√− ⋋ (|x| + 1/2)]. The estimate N(V) ≥ m follows 
by imposing the Dirichlet boundary conditions on the vertices of Γ . 
I. Discrete case. Consider the classical Anderson Hamiltonian H = −∆ + V(x,ω) on L (Z ) with 
random potential V(x,ω). Here 

∆ψ(x) = ψ(x ) − 2dψ(x).
:| |

 

We assume that random variables V(x,ω). on the probability space (Ω, F, P) have the Bernoulli 
structure, i.e., they are i.i.d. and P{V(·) = 0} = p >  0,푃{푉(·) = 1} = 푞 = 1 − 푝 > 0. The 
spectrum of H  is equal to (see [178]) 

Sp(H ) = Sp(−∆)⨁1 = [0,4d + 1]. 
Let us stress that 0 ∈ Sp(H ) due to the existence P-a.s. of arbitrarily large clearings in realizations 
of V, i.e., there are balls B = {x ∶ |x − x | < r } such that V(x) = 0, x ∈ B , and r → ∞ as n →
∞ (see the proof of the theorem below for details). 
Let 

H = H − W(x), W(x) ≥ 0. 
The operator H has discrete random spectrum on (−∞, 0] with possible accumulation point at ⋋=
0. Put N (−W) = #{⋋  ≤ 0}. Obviously,  N (−W) is random. Denote byE the expectation of a r.v., 
i.e. 

EN = N P(dω). 

Theorem (6.1.11) [202]:(a) For each h > 0 and γ < , 

EN (−W) ≤ c (h) # x ∈ Z : W(x) ≥ h + c (h, γ) e ( )

: ( )

 

In particular, if W(x) <
| |

, |x| → ∞, with some σ > , then EN (−W) < ∞, 푖. 푒, N (−W) <

∞ almost surely. 
(b) If 

W(x) >
C

log |x| , |x| → ∞, and  σ <
2
d,                    (45) 
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then N (−W) = ∞ a. s. (in particular, EN (−W) = ∞). 
Proof. Since V ≥ 0, the kernel p (t, x, y) of the semigroup exp(−tH ) = exp(t(∆ − V)) can be 
estimated by the kernel of exp(t∆), i. e., by the transition probability of the random walk with 
continuous time on Z . The diagonal part of this kernel p (t, x, x,ω) is a stationary field on Z . Due 
to the Donsker-Varadhan estimate (see [182],[183]), 

Ep (t, x, x,ω) = Ep (t, x, x,ω) ~ exp(−c t ), t → ∞, 
i.e., 

log Ep ~ − c t , t → ∞. 
On the rigorous level, the relations above must be understood as estimates from above and below, 
and the upper estimate has the following form: for each δ > 0, 

Ep ≤ C(δ) exp(−c t ),    t → ∞.                   (46) 
Now the first part of the theorem is a consequence of Theorems 6.1.4 and 6.1.6 In fact, from 
Remarks 2.3 and 2.4 and (46) it follows that 

EN (V) ≤
1

c(σ) W(x) Ep (t, x, x,ω)dtμ(dx) ≤
C(δ)
c(σ) W(x) e dtμ(dx).

( )( )

 

Then it only remains to repeat the arguments used to prove Theorem 6.1.6. 
The proof of the second part is based on the following lemma which indicates the existence of large 
clearings at the distances which are not too large. We denote byC(r) the cube in the lattice, 

C(r) = x ∈ Z : |x | < 푟,≤ 푖 ≤ 푑 . 
Let’s divide Z  into cubic layers L = C(a )\C(a ) with some constant a ≥ 1 which will be 
selected later. One can choose a set Γ( ) = {z( ) ∈ L } in each layer L  such that 

z( ) − z( ) ≥ 2n + 1, d z( ),∂L > n , 
and  

Γ( ) ≥ c
(2a) ( )a

(2n )
≥ ca , n → ∞. 

Let C(n / , i) be the cube C(n / ) with the center shifted to the point z( ).  Obviously, cubes 
C 1/d,  do not intersect each other, C(n / , i) ⊂ L  and C(n / , i) ≤ c n. 
Consider the following event A = {each cube C(n / , i) ⊂ L  contains at least one point where 
V(x) = 1}. Obviously, 

P(A ) = (1− p ( / ,
( )

) ≤ e ( ) ( / , )
≤ e ( ) . 

We will choose a big enough, so that a p > 1. Then ∑ P(A ) < ∞, and the Borel-Cantelli lemma 
implies that P-a.s. there exists n (ω) such that each layer L , n ≥ n (ω), contains at least one 
empty cube C(n / , i), i =  i(n). Then from (45) it follows that 

W(x) ≥
C

n
= ε ,      x ∈ C n / , i ,   i = i(n). 

One can easily show that the operator H = −∆ − ε in a cube C ⊂ Z  with the Dirichlet boundary 
condition at휕퐶  has at least one negative eigenvalue if |C|ε /  is big enough. Thus the operator H in 
C(n / , i(n)) with the Dirichlet boundary condition has at least one eigenvalue if n is big enough, 
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and therefore N(−W) = ∞. 
II. Continuous case. Theorem 6.1.11 is also valid for Anderson operators in R . Let H = −∆ +
V(x,ω) on L (R ) with the random potential 

V(x,ω) = ε I (x), x ∈ R , n = (n , … , n ),
∈

 

where Q = {x ∈ R : n ≤ x ≤ x < n + 1, i = 1,2, … d} and ε  are independent Bernoulli r.v. 
with P{ε = 0} = p, P{ε = 1} = q = 1 − p. Put H = H − W(x) = −∆ + V(x,ω)− W(x). 
Theorem (6.1.12) [202]: (a) If d ≥ 3, then for each h > 0 and γ < , 

EN (−W) ≤ c (h) W(x) / dx + c (h, γ) e ( )

( )
dx.

( )
 

In particular, if W(x) <
| |

, |x| → ∞, with some σ <  then EN (−W) < ∞, i.e., 

N (−W) < ∞ almost surely.  
(b) if W(x) >

| |
, |x| → ∞, and 휎 < , then N (−W) = ∞ a.s. (in particular, EN (−W) = ∞). 

The proof of this theorem is identical to the proof of Theorem 6.1.11 with the only difference that 
now p (t, 0, 0) is not bounded as t → 0, but p (t, 0, 0) ≤ c/t / , t → 0. 
1. Lobachevsky plane (see [184], [196]). We will use the Poincare upper half plane model, where 
X = {z = x + iy ∶ y > 0} and the (Riemannian) metric on X has the form 

ds = y (dx + dy ).                                 (47) 
The geodesic lines of this metric are circular arcs perpendicular to the real axis (halfcircles whose 
origin is on the real axis) and straight vertical lines ending on the real axis. The group of 
transformations preserving ds  is SL(2, R), i.e. the group of real valued 2 × 2 matrices with the 

determinant equal to one. For each A = a b
c d ∈ SL(2, R), the action A(z) is defined by 

A(z) =
az + b
cz + d. 

For each z ∈ X, there is a one-parameter stationary subgroup which consists of A such that Az =
z . The Laplace-Beltrami operator ∆  (invariant with respect to SL(2, R)) is defined uniquely up to a 
constant factor, and is equal to 

∆ = y ∆= y (
∂
∂x +

∂
∂y ),                                             (48) 

The operator −∆  is self-adjoint with respect to the Riemannian measure 
μ(dz) = y dxdy,                                                            (49) 

and has absolutely continuous spectrum on [1/4,∞). In order to find the number N (V) of 
eigenvalues of the operator −∆ + V(x) below 1/4, one can apply Theorem 6.1.4 to the operator 
H = −∆ − I. 
One needs to know constants α,β in order to apply Theorem 6.1.5. It is shown in [188] that the 
fundamental solution for the parabolic equation u = −∆ u has the following asymptotic behavior 

p(t, 0,0)~c /t, t → 0;   p(t, 0,0)~c e / /t / ,   t → ∞. 
Thus α = 2, β = 3 for the operator H = −∆ − I. A similar result for the Laplacian in the 
Hyperbolic space of the dimension d ≥ 3 can be found in [200]. 



150 
 

2. Markov processes with independent increments (homogeneous pseudo 
differential operators). We will estimate N (V) for shift invariant pseudo differential operators H  
associated with Markov processes with independent increments. Similar estimates were obtained in 
[181] for pseudo differential operators under assumptions that the symbol f(p) of the operator is 
monotone and non-negative, and the parabolic semigroup e  is positivity preserving. This class 
includes important cases of f(p) = |p| ,α < 2 and f(p) = p + m − m. Note that necessary and 
sufficient conditions of the positivity of p (t, x, x) are given by Levy-Khinchin formula. We will 
omit monotonicity condition. What is more important, the results will be expressed in terms of the 
Levy measure responsible for the positivity of p (t, x, x). This will allow us to consider variety 
estimates with power and logarithmical decaying potentials. 
Let H  be a pseudo-differential operator in X = R  of the form 

H u = F Φ(κ)Fu,   (Fμ)(k) = u(x)e ( , ) dx,   u ∈ S R , 

where the symbol Φ(k) of the operator H  has the following form 

Φ(k) = (1 − cos(x, k))v(x)d.                             (50) 

Here μ(dx) = v(x)dx is an arbitrary measure (for simplicity we assumed that it has a density) such 
that  

v(x)dx + |x| v(x)dx < ∞.                                     (51)
| || |

 

Assumption (50) is needed (and is sufficient) to construct a Markov process with the generator L =
−H  (see below). However, we will impose an additional restriction on the measure μ(dx) 
assuming that the densityv(x) has the following power asymptotics at zero and at infinity 

v(x)~|x| , x → 0, v(x)~|x| , x → ∞, 
with some ρ, δ ∈ (0,2). Note that assumption (51) holds in this case. To be more rigorous, we 
assume that 

v(x) = a(
x

|x|)|x| (1 + O|x| )), x → 0,                           (52) 

v(x) = b(
x

|x|)|x| (1 + O|x| )), x → ∞,                         (53) 

where 푎,푏, 휀 > 0. we also will consider another special case when the asymptotic behavior of 푉(푥) 
at infinity is at logarithmical borderline for the convergence of the integral (51). 
Namely, we will assume that (52) holds and 

푉(푥) > 퐶|푥| log |푥|,푥 → ∞,휎 > 1. 
The solution of problem (10) is given by 

푝 (푡, 푥 − 푦) = 푒 ( ) ( , )푑퐾. 

A special form of the pseudo differential operator H  is chosen in order to guarantee that p ≥ 0. In 
fact, let x , s > 0, be a Markov process in R  with symmetric independent increments. It means that 
for arbitrary0 < s < < ⋯, the random variables x − x , x − x , … are independent and the 
distribution of x − x  is independent of s. The symmetry condition means that Law(x − x ) =
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Law(x − x ), or p(s, x, y) = p(s, y, x), where p is the transition density of the process. According 
to the Levy-Khinchin theorem (see [186]), the Fourier transform (characteristic function) of this 
distribution has the form 

Ee ( ) = e ( ), 
with Φ(k) given by (50). Moreover, each measure (51) corresponds to some process. One can 
consider the family of processes x( ) = x  + x , s > 0, with an arbitrary initial point x . The 
generator L of this family can be evaluated in the Fourier space. If φ(x) ∈ S R  and φ(k) = Fφ, 
then 

Lφ(x) = lim
→

Eφ(x + x( )) −φ(x)
t = lim

→

1
(2π)

Ee ( ( ), ) − e ( , )

t φ(k)dk

=
−1

(2π) e ( , ) Φ(k)φ(k) dk = −H φ. 

Thus, function (55) is the transition density of some process, and therefore p (t, x) ≥ 0, i.e., 
assumption (a) of Theorem 6.1.4 holds. Since operator H  is translation invariant, assumption (b) 
also holds with π(t) =  p (t, 0). Hence, Theorem 6.1.4 can be applied to study negative eigenvalues 
of the operator H + V(x) when (Levy) measure vdx satisfies (51). If (52), (53) or (52), (54) hold, 
then Theorems 6.1.5, 6.1.6 can be used. Namely, the following statement is valid. 
Theorem (6.1.13) [202]: If measure vdx satisfies (52) and (53), then (35) is valid with β =
2d/δ,α2d/ρ. 
 If measure vdx satisfies (52) and (54), then (38) is valid with  γ = 1/σ,α = 2d/ρ. 
Proof. Consider first the case when (52) and (53) hold. Let us prove that these relations imply the  
Following behavior of Φ(k) at zero and at infinity  

Φ(k) = f(
k

|k|)|k| (1 + O(|k| )), k → 0; 

Φ(k) = g(
k

|k|)|k| (1 + O(|k| )), k → ∞,                                                                          (56) 

with some f, g, ε > 0. We write (50) in the form  

Φ(k) = 2 sin (x, k))v(x)dx + 2 sin(x, k))v(x)dx = Φ (k) + Φ (k).        (57)
| || |

 

The term Φ (k) is analytic in k and is of order O(|k| ) as k → 0. We represent the second term as 

2 sin (x, k)b(x)|x| dx − 2 sin (x, k))b
| |

(x)|x| dx + 2 sin (x, k))h(x)dx,
| |

 

where x = x/|x| and 
h(x) = v(x)− b(x)|x| , |h| ≤ C|x| . 

The middle term above is of order O(|x| ) as k → 0. The first term above can be evaluated by 
substitution x → x/|k|. It coincides with f(

| |
)|k| . One can reduce ε to guarantee that δ + ε < 2. 

Then the last term can be estimated using the same substitution. This leads to the asymptiotics (56) 
as k → 0. 
Now let |k| → ∞. Since Φ (k) is bounded uniformly in k, it remains to show that Φ (k) has the 
appropriate asymptotics as |k| → ∞. We write v(x) in the integrand of Φ (k) as follows 
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v(x) = a(x)|x| + g(x),   |g(x)| ≤ C|x| . 
Then  

Φ (k) = 2 sin (x, k)a(x)|x| dx

− 2 sin (x, k)a(x)|x| dx + 2 sin(x, k))g(x)dx.
| || |

 

The middle term in the right hand side above is bounded uniformly in k. The substitution x → x/|k| 
justifies that the first term coincides with g(

| |
)|k| . The same substitution shows that the order of 

the last term is smaller if ε < 휌. This gives the second relation of (56), and therefore, (56) is proved. 
Let us estimate π(t) when (56) holds. From (55) it follows that 

π(t) =
1

(2π) e ( )dk + O(e
| |

)as t → ∞, η > 0.   (58) 

Now the substitution k → t / k leads to  

π(t)~ct / ,   t → ∞,   c =
1

(2π) e (| |)| | dk. 

Hence, the first of relations (35) holds with β = 2d/δ. In order to estimate π(t) as t → 0, we put 

π(t) =
1

(2π) e ( )dk + O(1
| |

)    as t → 0, 

and make the substitution 푘 → 푡 ⁄ 푘. This leads to   

π(t)~ct / , t → 0, c =
1

(2π) e (| |)| | dk. 

Hence the second of relations (35) holds with α = 2d/ρ. The first statement of the theorem is 
proved. 
Let us prove the second statement. If (52) and (54) hold, then 

Φ(k) ≥ c(log
1

|k|) , k → 0;    Φ(k) = g
k

|k| |k| 1 + O(|k| ) , k

→ ∞.                                                                                      (59) 
In fact, only integrability of v(x) at infinity, but not (53), was used in the proof of the second 
relation of (56). Thus the second relation of (59) is valid. Let us prove the first estimate. Let Ω =
{x: |k| > |x| > |k| }, |k| < 1. We have 

Φ(k) ≥ 2 sin (x, k))v(x)dx ≥ C sin (x, k))|x| log  |x|dx

≥ C(2 log
1

|k|) sin (x, k))|x| dx, |k| → 0. 

It remains to show that  

sin (x, k))|x| dx~log  
1

|k|,    |k| → 0.                                            (60) 

After the substitution x = y/|k|, the last integral can be written in the form 
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1
2

|y| dy −
1
2 cos(y, k))|y| dy.

| | | || | | |
 

This justifies (60), since the second term above converges as |k| → 0. Hence (59) is proved. 
Finally, we need to obtain (38). The estimation of π(t) as t → 0 remains the same as in the proof of 
the first statement of the theorem. To get the estimate as t → ∞, we use(58) (with a smaller domain 
of integration) and (59). Then we obtain 

π(t) ≤
1

(2π) e | | dk + O(e
| | ⁄

)as t → ∞, η > 0. 

After integrating with respect to angle variables substitution log | | ,  we get  

π(t) ≤
1

(2π) z e dz + O(e )   as  t → ∞,η > 0. 

The asymptotic behavior of the last integral can be easily found using standard Laplace method, and 

the integral behaves as C t e  when t → ∞. This completes the proof of (38). 
1. Free groups. Let X be a group Γ with generators a , a , . . . a , inverse elements a , a , . . . a , 
the unit element e, and with no relations between generators except a a = a a  = e. The 
elements g ∈ Γ are the shortest versions of the words g = a  · . . .· a  (with all factors e and a a  
being omitted). The metric on Γ is given by 

d(g , g ) = d(e, g g ) = m(g g ), 
where m(g) is the number of letters a±  in g. The measure μ on Γ is defined byμ({g}) = 1 for each 
g ∈ Γ. It is easy to see that|{g ∶ d(e, g) = R}| =  2d(2d −  1) , i.e., the group Γ has an 
exponential growth rate. 
Define the operator ∆  on X = Γ  by the formula 

∆ ψ(g) = [ψ(ga ) −ψ(g)].                                   (61)
,

 

Obviously, the operator −Δ  is bounded and non-negative in L (Γ ,μ). In fact, ‖Δ ‖4d. As it is 
easy to see, the operator Δ  is left-invariant: 

(Δ ψ)(gx) = Δ (ψ(gx)),   x ∈ Γ, 
for each fixed g ∈ Γ. Thus, conditions (a), (b) hold for operator −∆ . In order to apply Theorem 2.5, 
one also needs to find the parameters α and β. 
Remark 6.1.14 Since the absolutely continuous spectrum of the operator Δ  is shifted (it starts from 
γ, not from zero), the natural question about the eigenvalues of the operator −Δ + V(g) is to 
estimate the number N (V) of eigenvalues below the threshold γ. Obviously, N (V) coincides with 
the number N(V) of the negative eigenvalues of the operator H  + V(g), where H = −∆ − γI. 
Hence one can apply Theorems 2.1, 3.1 to this operator. From (62) it follows that constants α, β for 
the operator H = −∆ − γI are equal to 0 and 3, respectively, and 

N (V) ≤ c(h)[n(h) + W(x) / ],   n(h) = #{g ∈ Γ: W(g) > h }.
∈ : ( )

 

Theorem (6.1.15) [202]: a) The spectrum of the operator −∆  is absolutely continuous and 
coincides with the interval l = [γ, γ + 4√2d− 1], γ = 2d− 2√2d− 1 ≥ 0. 
b) The kernel of the parabolic semigroup π (t) = (e ∆ )(t, e, e) on the diagonal has the following 
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asymptotic behavior at zero and infinity 

π (t) → c  as  t → 0,   π (t)~c
e
t /  as t → ∞.             (62) 

Let us find the kernel R⋋(g , g ) of the resolvent (∆ −⋋) . From the Γ-invariance it follows that 
R⋋(g , g ) = R⋋(e, g g ). Hence it is enough to determine u⋋ = R⋋(e, g). This function satisfies 
the equation 

u⋋(ga ) − (2d +⋋)u⋋(g) = −δ (g),                                   (63) 

where δ (g) = 1 if g = e, δ (g) = 0 if g ≠ e. Since the equation above is preserved under 
permutations of the generators, the solution u⋋(g) depends only on m(g). Let ψ⋋(m) =
u⋋(g), m = m(g). Obviously, if g ≠ e, then m(ga ) = m(g)− 1 for one of the elements a , i ≠ 0, 
and m(ga ) = m(g) + 1 for all other elements a , i ≠ 0. Hence (63) implies 

2dψ⋋(1)− (2d +⋋)ψ⋋(0) = −1,                                                 (64) 
ψ⋋(m− 1) + (2d− 1)ψ⋋(m + 1) − (2d +⋋)ψ⋋(m) = 0,   m > 0. 

Two linearly independent solutions of these equations have the form ψ⋋(m) = v± , where v± are 
the roots of the equation 

v + (2d− 1)v − (2d +⋋) = 0 
Thus,  

v± =
2d +⋋ ± (2d +⋋) − 4(2d− 1)

2(2d− 1) . 

The interval l  was singled out as the set of real ⋋ such that the discriminant above is not positive. 
Since v v = 1/(2d− 1), we have 

v± =
1

√2d − 1
 for ⋋∈ l ;  |v | >

1
√2d− 1

, |v | <
1

√2d− 1
 for real ⋋∉ l . 

Now, if we take into account the set A = {g ∈ Γ, m(g) = m } has exactly2d(2d− 1)  
points, i.e., μ A = 2d(2d− 1) , we get that  

v ( ) ∈ L (Γ, μ), v ( ) ∉ L (Γ,μ) for real ⋋∉ l ,                     (65) 
and  

v±
( )
μ(dg)~ m   as  m → ∞  for ⋋∉ l (66)

⋂{ : ( ) }
 

Relations (65) imply that R\l  belongs to the resolvent set of the operator Δ  and that R⋋(e, g) =
cv ( ). Relation (66) implies that l  belongs to the absolutely continuous spectrum of the operator 
Δ  with functions (v ( ) − v ( )) being the eigenfunctions of the continuous spectrum. Hence 
statement a) is justified. 
Note that the constant c in the formula for R⋋(e, g) can be found from (64). This gives 

R⋋(e, g) =
1

(2d +⋋)− 2dv v ( ). 

Thus 

R⋋(e, e) =
1

(2d +⋋) − 2dv . 

Hence, for each a > 0, 
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π (t) =
1
2π e⋋ R⋋(e, e)d ⋋=

1
2π e⋋

d ⋋
(2d +⋋)− 2dv . 

The integrand here is analytic with branching points at the ends of the segment l , and the contour 
of integration can be bent into the left half plane Re ⋋< 0 and replaced by an arbitrary closed 
contour around l . This immediately implies the first relation of (62). The asymptotic behavior of 
the integral as t → ∞ is defined by the singularity of the integrand at the point −γ (the right end of 
ld). Since the integrand there has the form e⋋ [a + b√⋋ +γ + O(⋋ +γ)],⋋ +γ → 0, this leads to the 
second relation of (62). 
The examples below concern differential operators on the continuous and discrete non-commutative 
groups Γ (processes with independent increments considered in the previous section are examples of 
operators on the abelian groups R ). 
First we will consider the Heisenberg (nilpotent) group Γ = H  of the upper triangular matrices 

g =
1 x z
0 1 y
0 0 1

, (x, y, z) ∈ R ,                                            (67) 

with units on the diagonal, and its discrete subgroup ZH , where (x, y, z) ∈  Z3. 
Then we study (solvable) group of the affine transformations of the real line: x → ax + b , a > 0, 
which has the matrix representation: 

Aff(R ) = g = a b
0 1 , a > 0, (0,푏) ∈ R , 

And its subgroup generated byα = e e
0 1  and α = e −e

0 1  and their inverses α = e −1
0 1

 

and α = e 1
0 1

. 

There are two standard ways to construct the Laplacian on a Lie group. A usual differential-
geometric approach starts with the Lie algebra 프Γ on Γ, which can be considered either as the 
algebra of the first order differential operators generated by the differentiations along the 
appropriate one-parameter subgroups of Γ, or simply as a tangent vector space TΓ to Γ at the unit 
element I. The exponential mapping 프Γ → Γ allows one to construct (at least locally) the general 
left invariant Laplacian ∆  on Γ as the image of the differential operator ∑ a D D + ∑ b D  with 
constant coefficients on 프Γ. The Riemannian metric ds  on Γ and the volume element dv can be 
defined now using the inverse matrix of the coefficients of the Laplacian ∆ . It is important to note 
that additional symmetry conditions are needed to determine ∆  uniquely. 
The central object in the probabilistic construction of the Laplacian (see, for instance, McKean [14]) 

is the Brownian motion g  on Γ. We impose the symmetry condition g
l

g . Since 프Γ is a linear 
space, one can define the usual Brownian motion b  on 프Γ with the generator ∑ a D D + ∑ b D . 

The symmetry condition holds if (I + db ) = (I + db ) . The process g  (diffusion on Γ) is 
given (formally) by the stochastic multiplicative integral  

g = (I + db ), 

or (more rigorously) by the Ito’s stochastic differential equation 
dg  = g db .                                                                                 (68) 
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The Laplacian ∆  is defined now as the generator of the diffusion 

∆ f(g) = lim
∆ →

Ef(g(1 + b∆ ))− f(g)
∆t , f ∈ C (Γ).        (69) 

The Riemannian metric form is defined as above (by the inverse matrix of the coefficients of the 
Laplacian). 
We will use the probabilistic approach to construct the Laplacian in the examples below, since it 
allows us to easily incorporate the symmetry condition. 
3. Heisenberg group Γ = H  of the upper triangular matrices (67) with units on the diagonal. We 
have 

프Γ = A =
0 α γ
0 0 β
0 0 0

, (α,β, γ) ∈ R ,    e =
1 α γ +

αβ
2

0 1 β
0 0 1

. 

Thus A → exp(A) is a one-to-one mapping of 프Γ onto Γ. Consider the following Brownian motion 
on 프Γ: 

b =
0 u σw
0 0 v
0 0 0

,  

where σ is a constant and u , v , w  are (standard) independent Wiener processes. Then equation 
(68) has the form 

dg =
0 dx dz
0 0 dy
0 0 0

=
1 x z
0 1 y
0 0 1

0 du σdw
0 0 dv
0 0 0

, 

which implies that  
dx = du , dy = dv , dz = σdw + x dv . 

Under condition g(0) = I, we get 

g

⎣
⎢
⎢
⎡1 u σw + u dv

0 1 v
0 0 1 ⎦

⎥
⎥
⎤
. 

Let us note that the matrix  

(g ) =

⎣
⎢
⎢
⎡1 −u u v − σw − u dv

0 1 −v
0 0 1 ⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎡1 −u −σw + v du

0 1
0 0 1 ⎦

⎥
⎥
⎤
 

Has the same law as g . Now from (69) it follows that 

(∆ f)(x, y, z) =
1
2 f + f + (σ + x )f + 2σxf . 

The matrix of the left invariant Riemannian metric has the form  
0 0 0
0 1 σx
0 σx σ + x

=
1 0 0
0 σ + x −σx
0 −σx 1

, 

i.e.,  
ds = dx + (σ + x )dy + dz − 2σxdydz,   dV = dxdydz. 

Denote byp (t, x, y, z) the transition density for the process g  (fundamental solution of the 
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parabolic equation u = ∆ ). Let π (t) = p (t, 0,0,0). 
Theorem (6.1.16) [202]: Function π (t)has the following asymptotic behavior at zero and infinity: 

π (t)~
c

t
, t → 0;  π (t)~

c
t , t → ∞, c = p (1,0,0), (70) 

i.e., Theorem 6.1.5 holds for operator H = ∆ + V(x, y, z) with α = 3,β = 4. 
Proof. Since H  is a three dimensional manifold, the asymptotics at zero is obvious. Let us prove 
the second relation of (70). We start with the simple case of σ = 0. The operator ∆  in this case is 
degenerate. However, the densityp (t, x, y, z) exists and can be found using H¨ormander 
hypoellipticity theory or by direct calculations. In fact, the joint distribution of (x , y , z ) is self-
similar 

(
u
√t

,
v
√t

,
∫ u dv

t ) = (u , v , u dv ), 

i.e.,  

p (t, x, y, z) =
1
t p (1,

x
√t

,
x
√t

,
z
t), 

and therefore, 

p (t, 0,0,0) =
c
t , c = p (1,0,0,0). 

Let σ > 0. Then  

p (t, x, y, z) =
1

√2πσ t
p (t, x, y, z )e

( )

dz . 

After rescaling 
√
→ x,

√
→ y, → z, we get 

p (t, x, y, z) =
√t

t √2πσ
p (1, x, y, z )e

( )

dz . 

From here it follows that p (t, 0,0,0)~c/t , t → ∞, with c = p (1,0,0,0). 
Theorem 6.1.16 can be proved for the group H  of n × n upper triangular matrices with units on the 
diagonal. In this case, 

α = dim H =
n(n − 1)

2 , β = (n − 1) + 2(n − 2) + 3(n− 3) + ⋯ =
n(n − 1)

2 . 

Γ = ZH  of integer valued matrices of the form  

g =
1 x y
0 1 z
0 0 1

, x, y, z ∈ Z . 

Consider the Markov process g  on ZH  defined by the equation  

g = g
1 dξ dζ
0 1 dη
0 0 1

,                                                   (71) 

where ξ ,η , ζ  are there independent Markov process on Z  with generators 
∆ ψ(n) = ψ(n + 1) + ψ(n − 1) − 2ψ(n),     n ∈ Z . 

Equation (71) can be solved using discretization of time. This gives 
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g =
1 x y
0 1 z
0 0 1

1 ξ ζ + ξ dη

0 1 η
0 0 1

 

The generator L of this process has the form (61) with 

a± =
1 ±1 0
0 1 0
0 0 1

, a± =
1 0 0
0 1 ±1
0 0 1

, a±

1 0 ±1
0 1 0
0 0 1

, 

i.e.,  

L = ∆ ψ(g) = [ψ(ga ) −ψ(g)].                       (72)
± ,± ,±

 

If ψ = ψ(g) is considered as a function of (x, y, z) ∈ Z , then 
Lψ(x, y, z) = ψ(x + 1, y, z) + ψ(x − 1, y, z) + ψ(x, y + 1, z + x) + ψ(x, y − 1, z − x)

+ ψ(x, y, z + 1) + ψ(x, y, z − 1) − 6ψ(x, y, z)(73) 
The analysis of the transition probability in this case is similar to the continuous case, and it leads to 
the following result 
Theorem (6.1.17) [202]:If g  is the process on ZH  with the generator (73), then 

P{g = I} = P{x = y = z = 0}~
c
t , t → ∞, 

with c defined in (70). can be applied to operator H = L with β = 4. 
This result is valid in a more general setting (see [13]). Consider three independent processes 
ξ , η , ζ , t ≥ 0, on Z  with independent increments and such that 

Ee = e ( ∑ ), p = 1, 

Ee = e ( ∑ ), q = 1, 

Ee = e ( ∑ ), r = 1, 

Assume also that there exist α ,α ,α  on the interval (0,2) such that 

p ~
c

i , q ~
c

i , r ~
c

i  

as i → ∞, i.e., distributions with characteristic functions ∑ p cos ki,∑ q cos ki,∑ r cos ki 
belong to the domain of attraction of the symmetric stable law with parameters α , α ,α . Let g  be 
the process on ZH  defined by (71). Then  

P{g = I}~
c
t , t → ∞, γ = max(

2
α +

2
α ,

1
α ). 

This group of transformations x → ax + b, a > 0, has a matrix representation: 

Γ = Aff(R ) = {g = a b
0 1 , a > 0, (푎, 푏) ∈ R }. 

We start with the Lie algebra for Aff(R ): 

프Γ = α β
0 0 , (α,β) ∈ R . 
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Obviously, for arbitraryA = α β
0 0 , one has  

exp(A) = e β
e − 1
α

0 1
, 

i.e., the exponential mapping of 프Γ coincides with the group Γ. Consider the diffusion  

b = w + αt v
0 0  

on 프Γ, where (w , v ) are independent Wiener processes. Consider the matrix valued process g =
x y
0 1 , g = 1 0

0 1 , on Γ satisfying the equation 

dg = g db = x y
0 1

dw + αdt dv
0 0 = x (dw + αdt) x dv

0 0
. 

This implies  
dx = x (dw + αdt), 
dy = x dv ,                   

i.e. (due to Ito’s formula), 

x = e ( ) , y = x dv . 

We impose the following symmetry conditions: 
(g ) g ,                                                                                           (74) 

It holds if α = . In fact, 

g = e e dv

0 1
, g = e − e dv

0 1
, (75) 

and (74) follows after the change of variables s = t − τ in the matrix g . Then the generator of the 
process g  has the form  

∆ f =
x
2

∂ f
∂x +

∂ f
∂y +

x
2
∂f
∂x. 

Remark (6.1.18) [202]: Let H = ∆ + V, where the negative part W = V  of the potential is 
bounded: W ≤ h . From (76) and Theorem 2.5 it follows that 

N (V) ≤ C(h)
W / (x, y)

x dxdy. 

Remark (6.1.19) [202]: The left-invariant Riemannian metric on Aff(R ) is given by the inverse 
diffusion matrix of ∆ , i.e., 

dξ = x (dx + dy ) g = x y
0 1 , x > 0  

After the change (x, y) → (y, x), this formula coincides with the metric on the Lobachevsky plane 
(see the previous section). However, one can not identity the Laplacian on Aff(R ) and on the 
Lobachevsky plane L , since they are defined by different symmetry conditions. The plane L  has a 
three dimensional group of transformations, and each point z ∈ L  has a one-parameter stationary 
subgroup. The Laplacian on the Lobachevsky plane was defined by the invariance with respect to 
this three dimensional group of transformations. In the case of Γ = Aff(R ), the group of 
transformations is two dimensional. It acts as a left shift g → g g, g , g ∈ Γ, and the Laplacian is 



160 
 

specified by the left invariance with respect to this two dimensional group and the symmetry 
condition (74). 
Theorem (6.1.20) [202]:Operator ∆  is self-adjoint with respect to the measure x dxdy. The 
function π(t) = p(t, 0,0) has the following behavior at zero and infinity: 

π(t)~
c
t , t → 0;        π(t)~

C
t / , t → ∞.                                                 (76) 

Proof. Since Γ is a two dimensional manifold, the asymptotics of π(t) at zero is obvious. One needs 
only to justify the asymptotics of π(t) at infinity. 
Let’s find the density of (x , y ) = (e ,∫ e dv ). The second term, for a fixed realization of w., 

has the Gaussian law with (conditional) variance σ = ∫ e ds, and 

P{x ∈ 1 + dx, y ∈ 0 + dy} = p(t, 0,0)dxdy =
1

√2πt
E

1

2π∫ e ds
(77) 

Here w , s ∈ [0, t], is the Brownian bridge on [0, t] . The distribution of the exponential functional 
A(t) = ∫ e ds and the joint distribution of (A(t) , w (t)) were calculated in [201]. Together with 
(77), these easily imply the statement of the theorem.  
Let Γ be a discrete group generated by elements a , … , a , a = a , … , a = a , with some 
identities. Define the Laplacian on Γ by the formula 

Δψ(g) = ψ(ga ) − 2dψ(g), g ∈ Γ. 

Consider the Markov process g  on Γ with continuous time and the generator ∆. Let g , k =
0,1,2, …, be the Markov chain on Γ with discrete time (symmetric random walk) such that 

P{g = e} = 1, P{g = ga |g = g} =
1

2d , i = ±1, ±2, … ± d. 

Then there is a relation between transition probabilityp(t, e, g) of the Markov process g  and the 
transition probabilityP{g = g} of the random walk. In particular, one can estimate π(t) =  p(t, e, e) 
for large t through π(2k) = P{g = e} under minimal  assumptions on π(2k). For example, it is 
enough to assume that π(2k) = k L(k), γ ≥ 0, where L(k) for large k can be extended as slowly 
varying monotonic function of continuous argument k. We are not going to provide a general 
statement of this type, but we restrict ourself to a specific situation needed in the next section. Note 
that we consider here only even arguments of π, since π(2k + 1) = 0. 
Theorem (6.1.21) [202]:Letπ(2n) ≤ e ( ) , n → ∞, c > 0,0 < 훼 < 1. 
Then  

π(t) ≤ e ( ) , t ≥ t . 
Proof. The number v  of jumps of the process g  on the interval (0, t) has Poisson distribution. At 
the moments of jumps, the process performs the symmetric random walk with discrete time and 
transition probabilities P{g → ga } = 1/2d, i = ±1, ±2, … ± d. Thus (taking into account that 
π(2k + 1) = 0), 

π(t) = p(t, e, e) = π(2n)P{v = 2n}. 
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Due to the exponential Chebyshev inequality 
P{|v − 2dt| ≥ εt} ≤ e , t → ∞. 

Secondly,  

P{v  is even} =
1
2 + O e , t → ∞. 

These relations imply that, for t → ∞ and δ > 0, 

π(t) = π(2n)P{v = 2n} + O(e ( ) )
:| |

≤ e ( ) P{v = 2n} + O(e ( ) )
:| |

≤ (1 + δ)e ( ) P{v = 2n) + O(e ( ) ) ≤
1 + δ

2 e ( )

:| |

+ O(e ( ) ). 
7. Random walk on the discrete subgroup of Aff(R ). Let us consider the following two matrices 

α = e e
0 1  and α = e −e

0 1  in Aff(R ) and their inverses α = e −1
0 1

 and α =

e 1
0 1

. Let G be a subgroup of Aff(R ) generated byα±  and α± . Consider the random walk on 

G of the form  
g = h h … h , 

where one step random matrices h  coincide with one of the matrices α± , α±  with probability 1/4, 
i.e.,  

h = e δ
0 1 , 

where  
P{ε = 1,δ = e} = P{ε = 1, δ = −e} = P{ε = −1,δ = −1} = P{ε = −1,δ = 1} = 1/4.  (78) 
Let ∆  be the Laplacian on G which corresponds to the generators a± , a± , i.e., (compare with (61) 
(72)) 

L = Δ ψ(g) = [ψ(ga ) −ψ(g)].
± ,±

 

Theorem (6.1.22) [202]: (a) The following estimate is valid for π(2n): 
π(2n) ≤ e ( ) / , n → ∞, c > 0. 

(b) Theorem 6.1.7 can be applied to operator H = ∆ + V(g) with γ = 1/3, i.e.,  

N (V) ≤ C(h, A)[ e ( ) /

: ( )

+ n(h)], n(h) = #{g: W(g) > h } 

Proof. The random variables (ε , δ ) are dependent, but (78) implies that (ε ,δ ), where δ = sgn δ , 
are independent symmetric Bernoulli r.v. It is easy to see that 

g = e δ e

0 1
, 

where S = 1, S = ε + ⋯+ ε , k > 0, is a symmetric random walk on Z . This formula is an 
obvious discrete analogue of (75). Our goal is to calculate the probability  
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π(2n) = P{g = I} = P{S

= 0, δ e = 0} = 2n
n

1
2 P{ δ e = 0} ~

1
√πn

P{ δ e = 0}, n

→ ∞. 
Here S , k = 0,1, … ,2n, is the discrete bridge, i.e., the random walk S  under conditions S = S =
0. 
Put M = max S , m = min S . Let Γ , Γ  be the sets of moments of time k when the bridge 

S  changes value from s − 1 to s or from to s − 1, respectively. Introduce local times τ =
Card Γ  and τ = Card Γ , i.e., τ = # (jumps of S  from s − 1 to s) and τ = # (jumps of S  
from s to s − 1). Note that δ e = δ e  when k ∈ Γ ∪ Γ , and therefore  

δ e = e δ .
∈ ∪

 

Since r.v. {δ } are independent of the trajectoryS  and numbers e , s = 0, ±1, ±2, …, are rationally 
independent, we have 

P{g = I}~
1
√πn

E 2τ
τ (

1
2) ≤

1
√πn

(
1
2)

=
1
√πn

(
1
2) [I √ + I √ ]

≤
1
πn (

1
2)√

+ (
1
2) P{|S | ≤ r, k = 1,2, … 2n, S = 0}

√

≤ e √ + (
1
2) P{|S | ≤ r, k = 1,2, … 2n, S = 0}.

√

 

Lemma (6.1.23) [202]:P{|S | ≤ r, l = 1,2, … 2n, S = 0} ≤ (cos
( )

) . 

Proof. Let us introduce the operator H ψ(x) = ( ) ( ) on the set – r, r ∈ Z  with the 

Dirichlet boundary conditions ψ(r + 1) = ψ(−r − 1) = 0. Then φ(x) = cos
( )

 is an 

eigenfunction of H  with the eigenvalue ⋋ , = cos
( )

. Hence  

H φ(x) =⋋ , φ(x). 
Let p (k, x, z) be the transition probability of the random walk on – r, r ∈ Z  with the absorption at 
±(r + 1). Then  

p (2n, x, z)φ(z) =
| |

⋋ , φ(x). 

Since φ(z) ≤ 1,φ(0) = 1, the latter relation implies  
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p (2n, x, z) ≤
| |

⋋ , . 

Since S , k = 0,1, … 2n, is the symmetric random walk on Z , we have  
P{|S | ≤ r, k = 1,2, … 2n, S = 0} = p (2n, 0,0) ≤⋋ , . 

Direct calculation shows that  

max
√

(
1
2) (cos

π
2(r + 1)) ≤ e ( ) / , 

with the maximum achieved at r = r ~c (2n) / . Thus  

P{g = I} ≤ (
1
2)√ + √2ne ( ) / ≤ e ( ) /  

for arbitraryc < c  and sufficiently large n. This proves the first statement of the theorem. Now the 
second statement follows from Theorem 6.1.20. 
Theorem (6.1.24) [202]: The assumptions of Theorems 6.1.4, 6.1.5 hold for operator −H  
introduced in this section with the constants α,β in Theorem 6.1.5 equal to 1 and d, respectively.  
One can easily see that there is a Markov process with the generator −H , and condition (a) of 
Theorem 6.1.5 holds, we’ll estimate the function p  in order to show that condition (b) holds and 
find constants α,β defined in Theorem 6.1.5 In fact, the same arguments can be used to verify 
condition (a) analytically. 
As we discussed above, Theorem 6.1.5 is not exact if α ≤ 2. Theorem 6.1.7 provides a better result 
in the case α = 0. The situation is more complicated if α = 1. We will illustrate it using the 
operator H  on quantum graph Γ  defined above. We will consider two specific classes of 
potentials. In one case, inequality (36) is valid with max(α/2,1) = 1 replaced byα/2 = 1/2. 
However, inequality (36) can not be improved for potentials of the second type. The first class 
(regular potentials) consists of piece-wise constant functions. 
Proof. As it was mentioned after the statement of the theorem, it is enough to show the validity of 
condition (b) and evaluate α,β. Let 

u = −H u, t > 0, 푢| = f, 
with a compactly supported f and 

φ = φ(x,⋋) = ue⋋ dt, Re ⋋≤ −a < 0, 푥 ∈ Γ . 

Note that we replaced −⋋ by⋋ in the Laplace transform above. it is convenient for future notations. 
Then φ satisfies the equation 

(H −⋋)φ = f,                                                                                                        (79) 
and u can be found using the inverse Laplace transform 

u =
1

(2π) φe ⋋ d ⋋ .                                                                                (80) 

The spectrum of H  is [0,∞), and φ is analytic in ⋋ when ⋋∈ C ∖ [0,∞). We are going to study the 
properties of φ when ⋋→ 0 and ⋋→ ∞. Let ψ(z) = ψ(z,⋋), z ∈ Z , be the restriction of the 
function φ(x,⋋), x ∈ Γ , on the lattice Z . Let e be an arbitrary edge of Γ  with end points z , z ∈
Z  and parametrization from z  to z . By solving the boundary value problem on e, we can 
represent φ on e in the form  
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φ =
ψ(z sin k(1− s) + ψ(z ) sin ks

sin k + φ ,φ = G(s, t)f(t)dt,         (81) 

where k = √⋋, Imk > 0, and 

G =
1

k sin k
sin ks sin k(1 − t),   s < 푡
sin kt sin k(1− s),   s ≥ t. 

Due to the invariance of H  with respect to translations and rotations in Z , it is enough to estimate 
p (t, x, x) when x belongs to the edge e  with z  being the origin in Z  and z = (1,0, . . . ,0). Let f 
be supported on one edge e . Then (81) is still valid, but φ = 0 on all the edges except e . We 
substitute (81) into (44) and get the following equation for ψ: 

(Δ − 2d cos k)ψ(z) =
1
k sin k(1 − t)f(t)dtδ +

1
k sin ktf(t)dtδ , z ∈ Z . 

Here Δ is the lattice Laplacian defined in (41) and δ ,δ  are functions on Z  equal to one at z, y, 
respectively, and equal to zero elsewhere. In particular, if f is the delta function at a point s of the 
edge e , then  

(Δ − 2d cos k)ψ =
1
k sin k(1− s)δ +

1
k sin ksδ .                  (82) 

Let R (z − z ) be  the kernel of the resolvent (∆ − μ)  of the lattice Laplacian. Then (82) implies 
that 

ψ(z) =
1
⋋ sin√⋋ sR (z) +

1
√⋋

sin√⋋ (1− s)R (z − z ), μ = 2d cos√⋋ (83) 

Function R (z) has the form  

R (z) =
e ( , )dσ

(∑ 2 cosσ ) − μ , T = [−π,π] . 

Hence, function sin √⋋ s R (z),   s ∈ (0,1),μ = 2d cos√⋋, decays exponentially as |Im√⋋ | →
∞. This allows one to change the contour of integration in (80), when z ∈ Z , and rewrite (80) in 
the form  

u(z, t) =
1

(2π) ψ⋋(z)e⋋ d ⋋, z ∈ Z ,                                         (84) 

where contour l consists of the ray⋋= ρe / ,ρ ∈ (∞, 1), a smooth arc starting at ⋋= e / , 
ending at ⋋= e / , and crossing the real axis at ⋋= −a, and the ray⋋= ρe / , ρ ∈ (1,∞). It is 
easy to see that |ψ(z,⋋)| ≤ C/|√⋋ | as ⋋∈ l uniformly in s and z ∈ Z . This immediately implies 
that |u(z, t)| ≤ C/√t. Now from (81) it follows that the same estimate is valid for p (t, x, x), x ∈ e , 
i.e., condition (b) holds, and α = 1. 
From (84)it also follows that the asymptotic behavior of u as t → ∞ is determined by the asymptotic 
expansion of ψ(z,⋋) as ⋋→ 0,⋋∉ [0,∞). Note that the spectrum of the difference Laplacian is 
[−2d, 2d], and μ = 2d− d ⋋ +O(⋋ ) as ⋋→ 0. From here and the well known expansions of the 
resolvent of the difference Laplacian near the edge of the spectrum it follows that the first singular 
term in the asymptotic expansion of R (z) as ⋋→ 0,⋋∉ [0,∞), has the form  

c ⋋ / (1 + O(⋋)),   d is odd,      
c ⋋ / ln⋋ (1 + O(⋋)),   d is even.

 

Then (83) implies that a similar expansion is valid for ψ(z,⋋) with the main term independent of s 
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and the remainder estimated uniformly in s. This allows one to replace l in (84) by the contour 
which consists of the rays arg ⋋= ±π/4. From here it follows that for each z ∈ Z  and uniformly 
ins, 

u(z, t)~t / , t → ∞. 
This and (81) imply the same behavior for p (t, x, x), x ∈ e , i.e., β = d. 
 
Section (6.2):  The Hierarchical Schrödinger Operator 
The spectral theory of the fractals, which are similar to the infinite Sierpinski gasket (i.e. the 
spectral theory of the corresponding Laplacians) is well understood (see [206, 86, 207]). It has 
several important features: the existence of a large number of eigenvalues of infinite multiplicity, 
pure point structure of the integrated density of states, compactly supported eigenfunctions. These 
features manifest themselves in the unusual asymptotes of the heat kernel, the specific structure 
of the corresponding ζ-function, etc., see [203]. 
 
Fig. 7 
 
Fig. 7. An example of a hierarchical lattice with X = ℤ and v = 2. 
The next natural step in the spectral theory is to study Schrödinger type operators, i.e., fractal 
Laplacian perturbed by a potential. There are two possible directions for such a development: 
analysis of the random Anderson Hamiltonians (the potential is stationary in space) or the study 
of the classical problem on the negative spectrum when the potential vanishes at infinity. For the 
first direction, see [88, 93, 95]. We will concentrate on the second problem in a particular case of 
the simplest fractal object: Dyson’s hierarchical Laplacian perturbed by a decaying potential. Our 
goal is to prove the Cwikel-Lieb-Rozenblum (CLR) estimates for the number of negative 
eigenvalues and estimates for Lieb-Thirring (LT) sums. These estimates depend on the spectral 
dimension s  of the fractal (which can take an arbitrary positive value).  
The concept of the hierarchical structure was proposed by F. Dyson [205] in his theory of 1-D 
ferromagnetic phase transitions. There are several modifications of the hierarchical Laplacian (see 
[93]). We will study the simplest one, which is characterized by an integer-valued parameter v ≥ 2 
and a probabilistic parameter p ∈ (0, 1). More recent results in this area can be found in [204]. 
Consider a countable set X and a family of partitions Π ⊂ Π ⊂ Π ⊂ ⋯ of X (we write Π ⊂ Π  
to mean that every element of Π  is a subset of some element of Π ). The elements of Π  are the 
singleton subsets of X. They are denoted byQ( ) and called cubes of rank zero. Each element Q( ) of 
Π  (cube of rank one) is a union of v different cubes of rank zero, i.e., X = ⋃Q( ), |Q( )| = v (see 

Fig. 7). Each element Q( ) of Π  (cube of rank two) is a union of v different cubes of rank one, i.e., 

X = ⋃Q( ), |Q( )| = v , and so on. The parameter v ≥ 2 is one of the two basic parameters of the 
model. 
Each point x belongs to an increasing sequence of cubes of each rank r ≥ 0 which we denote 
byQ( )(x), i.e., x = Q( )(x) ⊂ Q( )(x) ⊂ Q( )(x) ⊂ ⋯. 
The hierarchical distance d (x, y) on X is defined as follows: 

d (x, y) = min{r:∃Q( ) ∋ x, y}.                                                         (85) 
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We assume the following connectivity condition holds: for each x, y ∈  X, the cubes Q( )(x) contain 
y when n is large enough, i.e., d (x, y) < ∞. 
Note that for arbitraryz ∈ X, d (x, y) ≤ max{d (x, z), d (y, z)}, i.e., d (·,·) is a super-metric which 
implies that 

ρ(x, y) = ρ (x, y) = e ( , ) − 1, β > 0. 
is also a metric. We will use it in the form 

ρ(x, y) =
1
p

( , )

− 1,                                                                                                        (86) 

i.e., β = ln . Here p ∈ (0,1) is the second parameter of the “Laplacian” ∆  (see formula (3) 

below). 
Now we denote byl (X) the standard Hilbert space of square summable functions on the set X and 
define a self-adjoint bounded operator (the hierarchical Laplacian) depending on the parameter p ∈
(0, 1): 

∆ ψ(x) = a
∑ ψ(x )∈ ( )( )

v − ψ(x) , where a = (1− p)p , ∂ = 1.       (87) 

The random walk on (X, d ) related to the hierarchical Laplacian has a simple structure. It spends 
an exponentially distributed time τ (with parameter one) at each site x. At the moment τ + 0 it 
randomly selects the rank k of a cube Q( )(x), k ≥ 1, with P{k = r} = a  and jumps inside of 
Q( )(x) with the new position x ∈ Q( )(x) being uniformly distributed. 
It is clear that ∆ = ∆∗ ,∆ ≤ 0, Sp(∆ ) ∈ ⌈−1,0]. The following decomposition will play an essential 
role. Denote byI (x) the indicator function of a set K ∈ X, i. e., I = 1 on K, I = 0 outside of K. 
Then, for each y ∈ X, 

δ (x) =
I ( )( )(x)

v −
I ( )( )(x)

v .                                                                                 (88) 

The validity of (4) is obvious. It is important that each term on the right is an eigenfunction of ∆h 
and the kth term belongs to the eigenspace L  defined in the following proposition. 
Proposition (6.2.1) [209]:(a) The spectrum of ∆  consists of isolated eigenvalues λ = −p , k =
1,2, .., each of infinite multiplicity, and their limiting point λ = 0. 
(b) The corresponding eigenspaces L ⊂ l (X) have the following structure: For k = 1, 

L = ψ ∈ l (X): ψ(x) = 0 for each Q( ) ∈ Π
∈ ( )

. 

For k > 1, the space L  consists of all ψ ∈ l (x) which are constant on each cube Q( ), and have 
the property that ∑ ψ(x) = 0  for each Q( ) ∈ Π∈ ( ) . 

(c) The following decomposition holds: l (X) =⊕ L . 
Indeed, one can easily check that the space L , defined above, consists of eigenfunctions with the 
eigenvalue λ = −p , and for each y ∈ X, the kth term in (4) belongs to L . Thus (4) immediately 
implies (c) which justifies (a). 
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Let us note that each eigenspace L  has an orthogonal basis of compactly supported eigenfunctions. 
Such a basis in L  consists of functions which are zero outside of a fixed cube Q( ) and such that 
∑ ψ(x) = 0∈ ( ) . There are ν − 1 orthogonal functions with the latter property for each cube Q( ). 

The orthogonal complement of L  consists of the functions ψ ∈ l (X) which are constant on each 
cube of rank one. The basis in L  is formed by functions supported by individual cubes of rank two 
such that ψ(x) = c  on sub-cubes Q( ) of rank one, and ∑ c = 0 . One needs to specifyc  to 
guarantee the orthogonality of the elements of the basis. The basis in L , k > 1, is formed by 
functions which are supported by individual cubes of rank k and which are constant on sub-cubes of 
rank k − 1 with the sum of those constants being zero. 
Let’s find the density of states for ∆  and the spectral dimension s . We fix x ∈ X (the origin) and 
a positive integer N. Consider the spectral problem 

−∆ ψ = λψ;       ψ ≡ 0  on X ∖ Q( )(x ). 
(Now it is more convenient to work with −∆  instead of ∆ .) It is easy to see (compare to 
Proposition 6.2.1) that the problem has the following eigenvalues: 

λ , = 1 with multiplicity  v (v − 1), 
λ , = 1 with multiplicity  v (v − 1), 

⋮ 
λ , = p  with multiplicity  (v− 1) 

λ , = p  with multiplicity 1. 
This implies the following relation for 

풩 (λ) =
1

v ≠ λ , < 휆 . 

Proposition (6.2.2) [209]: As N → ∞, 

풩 (λ) → N(λ) =
1

v 1 −
1
v =

1
v ( )

:

, 

where k (λ) = min{k ≥ 0: p < 휆}. Furthermore,  

n(λ) =
dN(λ)

dλ = 1−
1
v δ (λ) +

δ (λ)
v +

δ (λ)
v + ⋯  

Proposition (6.2.3) [209]:As λ ↓ 0, 

N(λ) ≍ λ / , s =
2 ln v

ln(1/p), 

or, more precisely 

N(λ)~λ / h
lnλ
ln p  

for a positive, periodic function h(z) = v { } ≡ h(z + 1). Here, {z} is the fractional part of a 
numberz ∈ ℝ. The latter proposition is a consequence of the following simple calculation. If [z] is 
the integer part of z ∈ R, then  

N(λ) = e ( ) = e [ ] v = e e( { } ) = λ / h
lnλ
ln p . 

We will call the constant s =
/

 the spectral dimension of the triple (X, d (. , . ),∆ ). 
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Let p(t, x, y) = P {x(t) = y} be the transition function of the hierarchical random walk x(t), i.e.,  
∂p
∂t = ∆p,    p(0, x, y) = δ (x), 

and let 

R (x, y) = e p(t, x, y)dt, λ > 0. 

The functions p and R  define the bounded integral operators 

(P f)(x) = p(t, x, y)f(y),
∈

 

(R f)(x) = R (t, x, y)f(y),
∈

 

acting in l (X) and l (X), respectively. 
Formula (4) (where each term on the rights is an eigenfunction of ∆ ) and the Fourier method lead 
to the following statement: 
Proposition (6.2.4) [209]: The transition kernel p(t, x, y) has the form: 

p(t, x, x) = 1−
1
v e +

e
v + ⋯+

e
v + ⋯ for each x ∈ X, 

p(t, x, y) = −
e

v + 1 −
1
v

e
v +

e
v + ⋯ , x ≠ y.    (89) 

Here, r = d (x, y) is the minimal rank of the cube Q(∙)(x), containing the point y (see (1)). 
Similar formulas for R (x, y) can be obtained from (88) or (easier) from the proposition above (by 
integration in t): 
Proposition (6.2.5) [209]:For anys > 0, 휆 > 0, 

R (x , x) = −
1

(λ + p )v + 1−
1
v

1
(λ + p )v +

1
(λ + p )v + ⋯ , 

when r = d (x , x) > 0. If x = x, then (independent of x ∈ X), 

R (x, x) = 1 −
1
v

1
λ + 1 +

1
(λ + p)v + ⋯+

1
(λ + p )v + ⋯ . (90) 

Corollary (6.2.6) [209]: (a) If pv > 1(s =
/

> 2), then for each x ∈ X. 

R (x, x) = p(t, x, x)dt = 1 −
1
v 1 +

1
pv +

1
(pv) + ⋯ =

p(v − 1)
pv − 1 < ∞. 

If pv ≤ 1 (i.e., s =
( / )

≤ 2), then lim
→

R (x, x) = ∞. Thus the random walk x(t) with the 

generator ∆  is transient for s > 2 and recurrent for s ≤ 2. 
(b) If s > 2 and ρ(x , x) → ∞ (see (2)), then  

R (x , x) =
1

p v −
1

p v +
1

p v −
1

p v + ⋯ =
1− p

(pr) (pv − 1) ~
c

ρs (x , x) ,

c =
pv(1 − p)

pv − 1 . 

This is one more indication of a similarity between ∆  and the lattice ℤ  Laplacian. 
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Now let’s find the asymptotic of p(t, x, x) as t → ∞. The asymptotics will play an essential role in 
the spectral theory of the Schrödinger operator H = −∆ + V(x). 
Proposition (6.2.7) [209]:For arbitrary spectral dimension s . 

p(t, x, x) ≍
1

t / ,        t → ∞, 

and there exists a positive periodic function h (z) ≡ h (z + 1) such that 

p(t, x, x) =
h ( )

t
1 + o(1)    as t → ∞.                                                          (91) 

Proof. The index of the maximal terms in the series p(t, x, x) = (1 − )∑  has order s =

O(
/

) when t → ∞. We put k = [
( / )

] and change the order of terms in the series 

representation of p, first taking the sum over s ≥ k and then taking the sum over s < 푘: 

p(t, x, x) = 1−
1
v

e
v +

e ( )

v + ⋯+
e ( )

v + ⋯

= 1 −
1
v

e
v 1 +

e ( )

v +
e

v + ⋯+
e

v +
e ( )

v

+ ⋯ .        (92) 

The relation 
( / )

= k + {
( / )

} implies that  

p t = p { ( / )} and 
1

v = e ( / ) v { ( / )} =
1

t /2 v { ( / )}. 

We substitute the latter relations into (8) and note that {x} is a periodic function of x with period 
one. 
This and (8) would lead to (7) with zero reminder term if both series in square brackets in (8) had 
infinitely many terms. Since the second part in the square brackets has onlyk terms we obtain (7) 
with an exponentially small reminder.  
The next statement provides the asymptotic expansion of R (x, x) as λ → +0. We restrict ourselves 
to the more difficult and important case where s < 2. As in the previous proposition, the main 
term of the expansion contains a periodic function. We will use an alternative approach to show 
that: 
Proposition (6.2.8) [209]: If s < 2, then  

R (x, x) = λ u
lnλ
ln p + c + O(λ), λ → +0,α = 1 −

ln v
ln 1/p = −

s
2 , 

where c = ( ) is a constant and u(z + 1) = u(z) is a positive periodic function with period one. 

Proof. From series representation (6) it follows that  

R −
1

pv R =
v − 1

v(pλ + 1). 

We put R = c + f(λ). Then  
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f(pλ)−
1

pv f(λ) =
p(1 − v)

v(pλ + 1) λ. 

After the substitution f(λ) = λ g(λ) we arrive at 

g(pλ) − g(λ) = ζ(λ) =
p (1 − v)

pλ + 1 λ .    (93) 

The estimate |ζ(λ)| < 퐶|λ |, λ > 0, is valid for the function ζ (this estimate was the goal of the 
subtraction of the constant c  from R  made above). Hence the series g = ∑ ζ(pλ), λ > 0, 
converges, has order O(λ ) as λ → +0 and is a partial solution of Eq. (9). Any solution of the 

homogeneous equation (9) is a periodic function of ln λ =  with period one. This completes the 

proof.  
Rmark (6.2.9) [209]:The statement of the proposition and its proof remain valid if λ → 0 in the 
complex plane, and |arg λ| ≤ 3π/4. 
We conclude this section by defining two functions, θ(t) and ς(z), which are the analogues of the 
corresponding classical 1-D functions: 

θ(t) = e dN(λ) = 1−
1
v e +

e
v +

e
v + ⋯ , 

ς(z) =
1
Γ(z) t θ(t)dt = 1 −

1
v

1
p v = 1 −

1
v

p v
p v − 1 . 

The formula for ς(z) is obtained for Re z ∈ (0,δ) with a small enough δ > 0 (p ν > 1) and 
understood in the sense of the analytic continuation for other z. The function ς has no complex 
zeros, but (compare to [203]) has infinitely many poles at z = z = +

/
. 

The functions p(t, x, y) and R (x, y) play a central role in the analysis of the positive spectrum of 
the hierarchical Schrödinger operator 

H = ∆ + V(x),   V ≥ 0.                                       (94) 
With only weak assumptions on V, the positive spectrum λ = λ (H) ≥ 0 of H is discrete (possibly, 
with accumulation at λ = 0). Our goals are to find upper bounds on N (V) =  #{λ  ≥ 0} and on 
the Lieb–Thirring sums S (V) = ∑ (λ ) , γ > 0. Below, we will provide several estimates on N  
and S  which are valid [202, 208] for general discrete operators and for the operator (10) in 
particular (the case of operators on the Euclidian lattice Z  can be found in [200]).  
Let X be an arbitrary countable set and let H  be a bounded self-adjoint operator on l (X) given by 

H ψ(x) = h(x, y) ψ(y) −ψ(x) ,
:

 

h(x, y) = h(y, x) ≥ 0  for x ≠ y,   h(x, y) ≤ C < ∞.
:

 

It is clear that H = H∗ , H ≤ 0,‖H ‖ ≤ 2C . 
Let p(t, x, y) = P (x(t) = y) be the transition kernel of the continuous time Markov chain x(t) 
generated byH . Of course, 

∂p
∂t = H p,    p(0, x, y) = δ (x). 
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We assume that x(t) is connected which means, since its time is continuous, that p(t, x, y) > 0 for 
arbitraryx, y ∈ X and t > 0. 
The bounds for the eigenvalues of H  depend essentially on whether the process x(t) is transient or 
recurrent. If ∫ p(t, x, x)dt < ∞ for everyx ∈ X, then x(t) is transient, i.e., P-a.s., x(t) → ∞ as t →

∞. If ∫ p(t, x, x)dt = ∞ for everyx ∈ X, then x(t) visits each state x ∈ X infinitely many times P-
a.s. and the process is called recurrent. It is a well-known fact that, if the chain is connected, the 
convergence or divergence of ∫ p(t, x, x)dt is independent of x, y. 

Theorem (6.2.10) [209]: (General CLR estimate for discrete operators). If ∫ p(t, x, x)dt < ∞, then 
for anya, σ > 0 and some c (σ), 

N (V) ≤ #{x ∈ X: V(x) > 푎} + c (σ) V(x) p(t, x, x)dt.

( )
: ( )

 

Theorem (6.2.11) [209]: (LT estimate). If ∫ p(t, x, x)dt < ∞  then 

S (V) ≤
1

c(σ) V (x)
∈

p(t, x, x)dt.

( )

 

Theorem (6.2.12) [209]: If ∫ t p(t, x, x)dt < ∞ for some γ > 0, then 

S (V) ≤
2γΓ(γ)

c(σ) V(x)
∈

t p(t, x, x)dt.

( )

 

(Note that here, the process x(t) may not be transient.) 
The following two results are valid in both transient and recurrent cases. These results are based on 
the method of partial annihilation, proposed in [202, 208]. In the discrete situation it is equivalent to 
the rank-one perturbation technique. 
Consider, for a fixed x ∈ X, the process x(t) with the condition of annihilation at x . The 
corresponding transition probabilityp (t, x, y) is given by 

∂p
∂t = H p , x, y ≠ x p (t, x , y) ≡ 0;   p (0, x, y) = δ (x). (95) 

As easy to see, ∫ p (t, x, x)dt < ∞. 
Theorem (6.2.13) [209]: (CLR estimate, the general case). For anya,σ > 0 and some c (σ), 

N (V) ≤ 1 + #{x: V(x) > 푎} + c (σ) V(x) p (t, x, x)dt

( )

.
: ( )

 

Theorem (6.2.14) [209]: (LT estimates, the general case). The following two estimates hold for 
each σ ≥ 0 and some c(σ) > 0: 

S (V) ≤ Λ +
1

c(σ) V (x) p (t, x, x)dt,      (96)

( )
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S (V) ≤ Λ +
2γΓ(γ)

c(σ) V(x) t p (t, x, x)dt,      (97)

( )

 

Here Λis the largest eigenvalue of H. 
Remark (6.2.15) [209]:(6.2.13) and (6.2.14) are valid without any assumptions on p , i.e., in both 
transient and recurrent cases. 
Note that Theorem (6.2.13) not only covers the recurrent case, but also provides a better results than 
Theorems (6.2.10), (6.2.11) in the transient case when the operator H = H  depends on a parameter 
α which approaches a threshold α = α , where the process becomes recurrent. In Theorem (6.2.10), 
(6.2.11) the integrals in t blow up when α approaches α  whereas they remain bounded in theorem 
(6.2.13). A similar remark is valid for Theorem (6.2.14)where the threshold depends on the values 
of α and γ. 
In the case where σ = 0, [11] contains a more detailed description of the results obtained in 
Theorem (6.2.10), (6.2.14) 
Theorems (6.2.10), (6.2.12) and Proposition (6.2.8), when applied to the operator (10), lead to the 
same bound on N (V) and S (V) as in the case of the standard Schrödinger operator in ℝ  with the 
dimension d replaced by the spectral dimension S . and essential difference is that, while 푑 must be 
an integer, the spectral dimension S  can be an arbitrary positive number. The corresponding bound 
hold if s > 2, where s = S  in the estimate on N (V) and s = γ +  in the estimates on S (V). The 
right-hand sides in these estimates blow up when s ↓ 2 (the integrals in t diverge when s = 2). For 
example, Theorem (6.3.10) with σ = 0 and Proposition (6.2.8) imply a usual estimate: 

N (V) ≤ #{x ∈ X: V(x) > 푎} +
C(A)

S − 2 V /

: ( )

(x),    2 < S < 퐴. 

The case s ≤ 2 is covered by Theorems (6.2.13), (6.2.14). In fact, these theorem are valid for 
anys > 0 and the estimate proven there are (locally) uniform in s. Hence they provide a better result 
in the transient case s > 2 than do Theorems (6.2.10), (6.2.12) when s ↓ 2, see [208]. 
In order to apply Theorems (6.2.13), (6.2.14), one needs to know an estimate on p  as t → ∞ and 
both the annihilation point x  and x are arbitrary. If σ = 0, then only the integral ∫ p dt is needed, 
not p  itself. The corresponding results can be found in [208] (we concentrated on N (V) in [208], 
but S (V) can be studied similarly). Theorem (6.2.13) with σ = 0 implies [208] the following 
Bargmann type result: 

N (V) ≤ 1 + #{x: V(x) ≥ 1} + C (S ) V
: ( )

(x)ρ(x , x) S < 2,              (98) 

with C (S ) → ∞ as S → 2. A more accurate estimate of ∫ p dt leads [208] to estimates on 
N (V) for all S  and with a uniformly bounded constant: 
Theorem (6.2.16) [209]: If ε < S < ε , S ≠ 2, then  

N (V) ≤ 1 + #{x: V(x) ≥ 1} + C (ε) V(x)
[1 + ρ(x , x)] − 1

( ) − 1: ( )

.  (99) 

If S = 2, then  
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N (V) ≤ 1 + #{x: V(x) ≥ 1} + C V(x)
ln[1 + ρ(x , x)]

ln: ( )

. 

We will obtain an estimate for p  as t → ∞, which allows one to use Theorems (6.2.13), (6.2.14) 
with arbitraryσ > 0. We will restrict ourselves to the case where S < 2 and provide an estimate 
only on N (V). The following refined Bargmann type estimate is an immediate consequence of 
Theorem (6.2.13) and Proposition (6.2.19) which will be proven below. 
Theorem (6.2.17) [209]:If S < 2, then  

N (V) ≤ 1 + #{x: V(x) ≥ 1} + C (S ) V
: ( )

(x)[1 + ρ (x , x)] . 

We will conclude with a proof of the estimate on p  as t → ∞. This estimate is needed to justify the 
refined Bargmann estimate stated above and to prove similar estimates for S . 
Remark (6.3.18) [209]:We expect that, in the case of fractal lattices similar to the Sierpincki lattice, 
the same estimate will be valid for a random walk with annihilation at a point.  
Proposition (6.2.19) [209]:The following estimate is valid. 

p (t, x, x) ≤ C
(ρ + 1)

t , t ≥ 1,ρ = ρ(x , x),α = 1 −
S
2 . 

Proof.Consider the function  

R( )(x, y) = e p (t, x, y)dt.                       (100) 

It is well defined when Reλ > 0 and understood in the sense of analytic continuation for complex 
λ ∈ C = {λ ∈ ℂ: |argλ| < 3휋/4}. From (95) it follows that R( ) satisfies 

(∆ − λ)R( )(x, y) = −δ (x), x, y ≠ x , R( )(x , y) = 0. 

Hence R( )(x, y) = R (x, y) + cR (x, x ), which together with the second relation in the formula 
above implies that 

R( )(x, y) = R (x, y) −
R (x , y)

R (x , x ) R (x, x ). 

We put here y = x and R (x , x) = R (x , x ) + R (x , x) where (see Proposition (6.2.5)) 

R (x , x) = −
1

(λ + p )v − 1 −
1
v

1
(λ + p ) , r = d (x , x)(101) 

Taking also into account that R (x, x ) = R (x , x) and R (x, x) does not depend on x, we obtain 
that 

R( )(x, x) = −2R (x , x) −
R (x , x)

R (x , x ).                    (102) 

We not that (101) immediately implies the following two estimates: 

R (x , x) ≤
c

(pv) ,   R (x , x) − R (x , x) ≤
c|λ|

(pv)   for all λ ∈ C , r ≥ 0, 

which together with (18) and the Remark after Proposition (6.2.8) lead to 

R( )(x, x) = a(r) + g(λ, r), a(r) = −R (x , x), |g| ≤
2c|λ|
(pv) +

c |λ|
(pv) .                                    (103) 
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The last estimate is valid for all λ ∈ C  with |λ| < 1 and all r ≥ 0. 
Applying the inverse Laplace transform to (100) we obtain  

p (t, x, x) =
1
2π e R( ) (x, x)dλ, b ≫ 1. 

Since R( ) is analytic in λ ∈ C , and R( ) ≤
|  |

 (the resovlent does not exceed the inverse 

distance from the spectrum), the last integral can be rewritten as  

p (t, x, x) =
1
2π e R( )(x, x)dλ, 

where Γ = ∂C  with the direction on Γ such that Imλ increase along Γ. We now use (103), the 

decay of R( ) on Γ at infinity, and the fact that ∫ e dλ = 0, t > 0. This leads to 

p (t, x, x) ≤
1
2π e

2c|λ|
(pv) +

c |λ|
(pv) |dλ| =

a
t (pv) +

a
t (pv) . 

It remains to recall that α = 1 −
/

 (see Proposition (6.2.8). Thus pv = p , and 
( )

= =

(ρ + 1) .  
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List of Symbols 
Symbol   Page  
Sup Supremum  1 
퐻  Sobolev space  1 
퐿  Dual Lebasgue space 1 
푊 ,  Sobolev space  1 
max Maximum   2 
퐿  Helbert space 5 
inf Infimum  5 
퐿  Lebasgue space 8 
min Minimum 14 
Sup Supremum  15 
a.e. Almost every where 22 
퐿  Essential Lebasgue space 24 
Loc Local 25 
ker Kernel 37 
van Vange 37 
ess Essential 38 
ac  Absolutely  38 
Sc Singular continuous  38 
Au Auxiliary 40 
⊕ Orthogonal sum 43 
TPSG Two- point self- similar fractal 44 
deg Degree 46 
int Interior 50 
푙  Helbert space 56 
퐿  Lebasgue space on real line  59 
⊗ Tensor produil 59 
Cont Conditionally  64 
dist Distance  69 
푙  Lebasgue space 70 
퐹 ,  Triebal- lizorkin-spaces 85 
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Re Real 85 
meas Measene  85 
det Determinant  97 
dom Domain  97 
comp complete 99 
Gr Gram 100 
gr Graph 100 
휎  Point spectrum  100 
휎  Single Spectrum 105 
Const Constant 111 
휃 Direct difference  117 
ext Extension 118 
mul Multi  118 
op Operator  120 
Im Imaginary  137 
tr Trace 145 
p.a.s Probably almost sure  145 
r.v Random variable 153 
aff Affine 162 
Par Parametrize 164 
CLR Cwikel – lieb rozenblum 164 
LT Lieb- Thirring  164 
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