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Chapter (1) 

Brownian Motion and Local Martingales 

Section (1.1): Brownian Motion and Brownian Paths  

This section is devoted to the construction and some properties of one 

of probability theory's most fundamental objects. Brownian motion earned its 

name after R. Brown, who observed around 1827 that tiny particles of pollen 

in water have an extremely erratic motion. It was observed by Physicists that 

this was due to an important number of random shocks undertaken by the 

particles from the (much smaller) water molecules in motion in the liquid. A. 

Einstein established in 1905 the first mathematical basis for Brownian 

motion, by showing that it must be an isotropic Gaussian process. The first 

rigorous mathematical construction of Brownian motion is due to N. Wiener 

in 1923, using Fourier theory.  

In order to motivate the introduction of this object, we first begin by a 

"microscopical" depiction of Brownian motion. Suppose ( , 0)nX n  is a 

sequence of dR valued random variables with mean 0 and covariance matrix
2

dI , which is the identity matrix in d dimensions, for some 2 0  . Namely, 

if 1
1 1 1( ,..., ),dX X X  

1 0,iX   E[ 2
1 1 ,i j

i jX X     E[ 1 ,i .j d  

We interpret nX as the spatial displacement resulting from the shocks 

due to water molecules during the n-th time interval, and the fact that the 

covariance matrix is scalar stands for an isotropy assumption (no direction of 

space is privileged).  
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From this, we let 1 · · ·  n nS X X   and we embed this discrete-time 

process into continuous time by letting  

( ) 1/2
[ ],

n
t ntB n S 0.t   

Let | · | be the Euclidean norm on dR  and for 0t   and , dX yR  , define  

2

/2
1 | |( ) exp ,

(2 ) 2d
xpt x

t t
 

  
 

 

Which is the density of the Gaussian distribution (0, )dtIN with mean 0 and 

covariance matrix dtI . By convention, the Gaussian law ( ,0)mN  is the Dirac 

mass at m.  

Proposition (1.1.1): 

Let 1 20   t t  … kt . Then the finite marginal distributions of  nB with 

respect to times 1  ,  . . . ,  kt t converge weakly as n  . More precisely, if F is 

a bounded continuous function, and letting 0 00,    0x t  , 

1

( ) ( )( ,..., )
k

n n
t tF B B  E

→∞
ሱ⎯ሮ 21 1 1( )

1
( ,... ) ( )( )d k k i i i i i

i k
F x x p t t x x dx

  
 

  R
. 

Otherwise said, 
1

( ) ( )( ,..., )
k

n n
t tB B converges in distribution to  1 2 ,   ,  ...,   kG G G , 

which is a random vector whose law is characterized by the fact that 

 1 2 1 1 ,   ,  ...,   k kG G G G G   are independent centered Gaussian random 

variables with respective covariance matrices 2
1( )i i dt t I  . 

Proof: With the notations of the theorem, we first check that 

 1 2 1 1

( ) ( ) ( ) ( ) ( ) ,  ,...,
k k

n n n n n
t t t t tB B B B B


   is a sequence of independent random variables. 

Indeed, one has for 1 i k   
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1

1

[ ]
( ) ( )

[ ] 1

1 ,
i

i i

i

nt
n n

t t j
i nt

B B X
n

 

    

and the independence follows by the fact that   ,   0jX j is an i.i.d. family. 

Even better, we have the identity in distribution for the i-th increment  

1

( ) ( )
i i

n n
t tB B


 d

1[ ] [ ]
1

1

[ ] [ ] 1
[ ] [ ]

i int nt
i i

j
i i

nt nt
X

n nt nt









  

and the central limit theorem shows that this converges in distribution to a 

Gaussian law N 2
1(0, ( )i i dt t I  . Summing up our study, and introducing 

characteristic functions, we have shown that for every ߦ)=ߦ,1 j k  ), 

 1 1

( ) ( ) ( ) ( )

1 1
exp ( ) exp ( )

j j j j

kk
n n n n

j t t j t t
j j

i B B i B B 
 

 

  
    

   
 E  

   
→∞
ሱ⎯ሮ  1

1
exp ( )

k

j j j
j

i G G 


  

1
1

exp ( ) ,
k

j j j
j

i G G 


  
   

   
= = = = E  

 

where 1  ,  . . . ,  kG G is distributed as in the statement of the proposition. By 

Levy's convergence theorem we deduce that increments of ( )nB between times 

it converge to increments of the sequence iG , which is easily equivalent to the 

statement.  

This suggests that ( )nB should converge to a process B whose 

increments are independent and Gaussian with covariances dictated by the 

above formula. This will be set in a rigorous way later in the research, with 

Donsker's invariance theorem. 
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Definition (1.1.2): 

An dR -valued stochastic process   ,   0tB t is called a standard Brownian 

motion if it is a continuous process, that satisfies the following conditions:  

(i) 0 0B  a.s.,  

(ii) For every 0 1 20 ... kt t t t     , the increments 
1 0 2 1 1

( , ,..., )
k kt t t t t tB B B B B B


    

are independent, and  

(iii) for every , 0t s  , the law of  t s tB B  is Gaussian with mean 0 and 

covariance dsI .  

The term "standard" refers to the fact that 1B is normalized to have variance 

dI , and the choice 0 0B  .  

The characteristic properties (i), (ii), (iii) exactly amount to say that the 

finite dimensional marginal’s of a Brownian motion are given by the formula 

of Proposition (1.1.1). Therefore the law of the Brownian motion is uniquely 

determined. We now show Wiener's theorem that Brownian motion exists!  

Theorem (1.1.3): (Wiener)  

There exists a Brownian motion on some probability space. We will first 

prove the theorem in dimension 1d  and construct a process ( ,0 1)tB t 

satisfying the properties of a Brownian motion. This proof is essentially due 

to P. Levy in 1948. Before we start, we will need the following lemma. 

Lemma (1.1.4): 

 Let N  be a standard Gaussian random variable. Then 
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 .                       

(1.1) 

Let    0 0,  1 ,  2  ,  0   2  n n
nD D k k    for 1n  , and 0n nD U D be the set of 

dyadic rational numbers in [0, 1]. On some probability space (Ω, F , P), let  

( ,dZ d D ) be a collection of i.i.d. random variables all having a Gaussian 

distribution N (0, 1) with mean 0 and variance 1. It is a well-known and 

important fact that if the random variables 1 2 ,   ,  . . .X X " are linear 

combinations of independent centered Gaussian random variables, then 

1 2 ,   ,  . . .X X " are independent if and only if they are pair-wise uncorrelated, 

namely   ,     0i j i jCov X X X X    E for every i j . 

We set 0 0X  and 1 1X Z . Inductively, given ( 1
1,n

d nX d D
 ), we build 

( ,n
d nX d D ) in such a way that ( ,n

d nX d D )satisfies (i), (ii), (iii) in the 

definition of the Brownian motion (where the instants under consideration are 

taken in nD ). 

To this end, take 1\n nd D D  , and let 2 nd d 
    and 2 nd d 

    so 

that ,  d d  are consecutive dyadic numbers in 1nD  . Then define: 

1 1

( 1)/22 2

n n
d dn d

d n

X X ZX  

 




   

and put 1n n
d dX X 
  and 1n n

d dX X
 

 . Note that with these definitions, 

'n n
d d d dX X N N


    

'n n
d d d dX X N N

    

Where 



6 
 

1 1( ) / 2,n n
d d dN X X

 

   ' ( 1)/2/ 2 n
d dN Z   

are by the induction hypothesis two independent centered Gaussian random 

variables with variance 12 n  . From this, one deduces 

' ' '( , ) ( ) ( ) 0,d d d d d dCov N N N N Var N Var N      

so that the increments n n
d dX X


 and n n

d dX X

 are independent with variance 2 n

, as should be. Moreover, these increments are independent of the increments 

1 '' 2 n
n n

dd
X X 

  for 1' , 'nd D d d    and of ' 1, ' \ , 'd n nZ d D D d D  so they are 

independent of the increments '''' 2 n dd
X X

  for '' , '' { , }.nd D d d d  This 

allows the induction argument to proceed one step further.  

We have thus defined a process ( , )n
d nX d D , which satisfies properties 

(i), (ii) and (iii) for all dydadic times 1 2,   ,  . . . ,   k nt t t D . Observe that if 

, m n
n d dD D X X  for all  m n . Hence for all  d D ,  

lim m
d dm

B X


  

is well-defined and the process ( , )dB d D obviously satisfies (i), (ii) and (iii). 

To extend this to a process defined on the entire interval [0, 1], we proceed as 

follows. Define, for each 0n  , a process ( ),0 1nX t t  , to be the linear 

interpolation of the values ( , )d nB d D  the dyadic times at level n . Note that 

if d D , say md D  with 0m  , then for any n m , ( ) ( ) .n m dX d X d B 

Furthermore, define an event nA by  

 /4
1

0 1
sup | ( ) ( ) | 2 .n

n n n
t

A X t X t 


 
    

We then have, by Lemma (1.1.4), if N is a standard gaussian random 

variable: 
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12
/4

1
[(2 )2 ,(2 2)2 ]0

( ) sup | ( ) ( ) | 2 .
n

n n

n
n n n

t j jj

A X t X t


 




 

 
    

 
P P  

12
(2 1)2 /4

( 1)/2
0

| |
2

2

n
nj n

n
j

Z
 




 
   

 
P  

12

0

n

k





P (| N | ( 2)/42 n ) 

1/2 3 /4 /22 exp( 2 )n n    

We conclude that 

    
0

( )n
n

A




 P  

and by Borel-Cantelli, the events nA occur only finitely often. We deduce 

immediately that the sequence of functions nX is almost surely Cauchy in 

 0,  1C equipped with the topology of uniform convergence, and hence nX

converges toward a continuous limit function ( ( ),0 1X t t  ) uniformly, 

almost surely. Since ( )nX t is constantly equal to tX for t D and for n large 

enough, it must be that ( )tX X t   for all t D . Thus X is a continuous 

extension of X , and we still denote this extension by X . We now deduce 

properties (i), (ii) and (iii) for X  by continuity and the fact that Xn satisfies 

these properties. Indeed, let 1k  and let 1 20 ... 1.kt t t      Fix 

1 2, ,..., 0.k     For every1 ,i k   fix a sequence ( )( )n
i td   such that

( )lim ,n
i in

d t


  and assume (since D  is dense in [0, 1]) that ( )nd D  and 

( )
1 .n

i i it d t    Then by Lebesgue's dominated convergence theorem: 

   
1 2 1 11 2exp{ ( ) ... ( )}

k kt t t k t ti X i X X i X X  


      E  
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  ( ) ( ) ( ) ( ) ( )
1 2 1 1

1 2lim exp{ ( ) ... ( )}n n n n n
k k

kd d d d dn
i X i X X i X X  


       E  

  
22

( ) ( ) ( )1
1 1limexp ... ( )

2 2
n n nk

k kn
d d d



 
     

 
 

22
1

1 1exp ... ( ) .
2 2

k
k kt t t



 
     

 
 

It is now easy to construct a Brownian motion indexed by R+ . Simply take 

independent standard Brownian motions ( ,0 1), 0i
tB t i   as we just 

constructed, and let 

1

1
0

,
t

ti
t t t

i
B B B

  
  
  



  0.t   

It is easy to check that this has the wanted properties. Finally, it is 

straightforward to build a Brownian motion in d� , by taking d  independent 

copies 1,...,BdB  of B  and checking that 1(( ,..., ), 0)d
t tB B t   is a Brownian 

motion in d� .  

Remark(1.1.5): 

The extension of ( , )dB d D could have been obtained by appealing to the 

existence of a continuous modification, whose existence is provided by 

Kolmogorov's criterion below. 

Now- we discuss continuity and Holder continuity of Brownian paths. 

We construct Brownian motion which directly yields a random process 

satisfying the three properties defining  a Brownian motion, and which was at 

the same time continuous. In fact, and that is the reason why continuity is part 

of Definition (1.1.2), the next theorem will imply that any process satisfying 

(i), (ii) and (iii) can be slightly modified so that its trajectories are a.s 
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continuous. The result is in fact much more general than that. As a 

consequence, we establish stronger regularity properties for Brownian motion 

than mere continuity: we prove that the path is almost surely Holder with 

exponent 1/ 2   for all 0  . To start with, we need to introduce the concept 

of version (modification) and indistinguishable versions.  

Definition (1.1.6): 

If X and 'X  are two processes defined on some common probability space 

(Ω, F ,P), we say that is a version of X if for every ', ( ( )) ( )) 1t tt p X X   .  

In particular, two versions X and 'X of the same process share the same finite-

dimensional distribution, however, this does not say that there exists an  so 

that '( ) ( )t tX X    for every t . This becomes true if both X  and 'X  are a 

priori known to be continuous or cadlag, for instance. When the two 

trajectories coincide almost surely for all 0t  , we say that X  and 'X  are 

indistinguishable: 

 Definition (1.1.7): 

If X  and 'X  are two processes defined on some common probability space  

(Ω, F , P ),  we say that 'X  is an indistinguishable version of X  

P '( ( ) ( )t tX X    for all t)=1 

Note that, up to in distinguish ability, there exists at most one 

continuous modification of a given process ( , 0).tX t   Kolmogorov's criterion 

is a fundamental result which guarantees the existence of a continuous version 

(but not necessarily indistinguishable version) based solely on an pL  control 

of the two-dimensional distributions. We will apply to Brownian motion 

below, but it is useful in many other contexts.  
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Theorem (1.1.8): (Kolmogorov's Continuity Criterion) 

Let ( ,0 1)tX t  be a stochastic process with real values. Suppose there exist 

0, 0, 0p c    so that for every , 0,s t   

1p
t sX X c t s     E  

Then, there exists a modification X  of X  which is a.s. continuous, and even

Holder    continuous for any (0, / ).p   

Proof: Let { .2 ,0 2 }n n
nD k k   denote the dyadic numbers of [0,1]with 

level n, so nD  increases as n increases. Then letting  (0, / )p  , Markov's 

inequality gives for 0 2nk  ,  

  ( )
2 ( 1)2 2 ( 1)2

2 2 2 2 2 .
n

n n n n

p
n np n n p n

k k k k
X X X X c c    

   
    

 
       

P E  

Summing over nD  we obtain 

( )
2 ( 1)2

0 2
sup 2 2 ,n n

n

n n p
k k

k
X X c  

 
  


 

    
 

P  

which is summable. Therefore, the Borel-Cantelli lemma shows that for a.a. 

 , there exits N  so that if n N  , the supremum under consideration is  

2 .n  Otherwise said, a.s.,  

2 ( 1)2

0 {0...,2 1}
sup sup ( ) , . .

2
n n

n

k k
n

n k

X X
M a s 

 


  


    

We claim that this implies that for every 

0, ,| | '( ) | | ,n n s ts t D U D X X M t s       for some '( )M  a.s. 
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Indeed, if , ,s t D s t  , and let r  is the least integer such that 12 rt s    . 

Then there exists 0 2rk  and integers , 0l m such that 

1
12 2 ... 2r r r l

ls k          

and  

' ' 1 '
0 12 2 2 ... 2r r r r m

mt k              

with ' {0,1}.i i   For 0 ,i l  let 

1
12 2 ... 2 .r r r i

i is k           

By the triangular inequality 

| |t sX X  | |
m lt sX X ≤

0 0 1 1
1 1

| | | | | |
i i j j

l m

t s t t s s
i j

X X X X X X
 

 

       

( ) ( )

1 1

( )2 ( )2 2 ( )
l m

r r i r j

i j

M M M        

 

     

1( )2 (1 2(1 2 ) )rM         

'( ) | |M t s    

where ' 1( ) ( )2 (1 2(1 2 ) ).M M        Therefore, the process ( , )tX t D is a.s. 

uniformly continuous (and even Holder   continuous). Since D is an 

everywhere dense set in [0, 1], the latter process a.s. admits a unique 

continuous extension X  on [0, 1], which is also Holder   continuous (it is 

consistently defined by lim ,
nt n tX X  where ( , 0)nt n  is any D-valued 

sequence converging to t ). On the exceptional set where ( , )dX d D is not 

uniformly continuous, we let 0,tX  0 1,t   so X  is continuous. It remains 

to show that X  is a version of X. To this end, we estimate by Fatou's lemma  
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lim inf
n

pp

t t n t tX X X X          
E E  

where ( , 0)nt n  is any D-valued sequence converging to t. But since 

1 ,
n

p

t t nX X c t t      
E  this converges to 0 as n  . Therefore, t tX X  a.s. 

for every t. From now on we will consider exclusively a continuous 

modification of Brownian motion, which is unique up to indistinguishability. 

As a corollary to Kolmogorov's criterion, we obtain the aforementioned result 

on the Holder   properties of Brownian motion:  

Corollary (1.1.9): 

Let ( , 0)tB t  be a standard Brownian motion in dimension 1. Almost surely, B 

is Holder -continuous of order for any 0 1/ 2  . More precisely, with 

probability 1, for  

, 1

| |sup
| |

t s

n t s n

B B
t s   


 


                                        (1.2) 

Proof: Let ,s t D   and notice that for every 0p  , since t sB B  has the 

same law as ( )t s N , (where N  is a standard Gaussian random variable), 

we have 1(| | ) | |p
t sB B M t s   E  with / 2 1p    and (| | )pM N  E . For 

2, 0p   and thus X is Holder  of order for / 1/ 2 1/ .p p    Since 

2p   is arbitrary, then B is Holder   for any 1/ 2,  almost surely. 

Notice that the above corollary does not say anything about higher-

order Holder continuity: all we know is that the path is a.s. Holder  of order 

1/ 2  . The next result tells us that this is, in some sense, sharp.  
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Theorem (1.1.10): 

Let B be a continuous modification of Brownian motion. Let 1/ 2  . Then it 

holds:  

0

| |0 : limsup 1t h t

h

B Bt
h





      
 

P  

Proof: We first observe that  

0

| |0 : limsup t h t

h

B Bt
h





     
 

 

1 1 1

{ [0, ] :| | , (0,1 / )}t h t
p k m

t m B B ph h k
  


  

        

Therefore, it suffices to show that 

( [0, ] :| | , (0, )) 0t h tt m B B ph h       P  

For all 1, 1, 0.p m    For 1,1 1,n i mn    define: 

,
1, :| | , (0, ) .i n s h s

i iA s B B ph h
n n

 

            
 

It suffices to show: 

1

,
0

lim ( ) 0
mn

i nn i
A






 P                                          (1.3) 

Fix a large constant 0K  to be chosen suitably later. We wish to 

exploit the fact that on the event ,i nA many increments must be small. The trick 

is to be able to fix in advance the times at which these increments will be too 

small. More precisely, on ,i nA , as long as ( 1) / ,n K    for all 1 :j K   
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10 i j Ks
n n

 
     

where sis as in the definition of ,i nA . Thus, taking ( ) /h i j n s   , on ,i nA :  

1| |i j s
n

i j KB B p s p
n n

 


          

   
 

If 2 ,j K   by the triangular inequality:  

1
12i j i j

n n

KB B p
n



  
    

 
 

Therefore, there exists 0C  such that for all ( 1) /n K    

, 1
2

1( ) 2
K

i n i j i j
j n n

KA B B p
n



  


              
P P  

2

1| (0,1/ ) | 2
rK

j

kn p
n

        
P N  

1
2

1

1| (0,1) | 2
Krkp n

n


            
P N  

1

1/2
( 1/2)( 1)

12
K

K

K Cp n
n n







 

     
   

 

It follows that for all ( 1) / :n K    

1

, ( 1/2)( 1) 1
1

( )
mn

i n K
i

CmA
n 



  


 P  

Thus if K  is large enough that ( 1/ 2)( 1) 1,K     the right-hand side tends to 

0 for all  0 1/ 1.n n K         This proves Equation(1.3), and, as a 

consequence, Theorem (1.1.8).  
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As a corollary to the last result, we obtain the celebrated Paley-Wiener-

Zygmund theorem:  

Corollary (1.1.11): 

Almost surely, tt B  is nowhere differentiable 

Now we study some Basic Properties.  

Let ( , )dC   � �  be the 'Wiener space' of continuous functions, endowed 

with the product ߪ-algebra w (or the Borel ߪ-algebra associated with the 

compact-open topology).  

Definition (1.1.12): (Wiener's Measure)  

Let ( , 0)tB t  be a Brownian motion, and let W  be the law on   of B: that is, 

for any Aw ,  

( ) (( , 0) )tA B t A  W P  

W  is called Wiener's measure.  

Of course, we must check that this definition makes sense, i.e. that W does 

not depend on the construction of B . To see this, note that the finite-

dimensional (i.e, the joint law of 
1

( ,..., )
nt tB B are entirely specified by the 

definition of a Brownian motion. Since the ߪ-field w is generatedbycylinder 

events of the form
1 1{ ,...., },

nt t nX A X A  the right-hand side in the above 

display is indeed uniquely specifies. 

Definition (1.1.13): 

We now think of  as our probability space. For  define: 

( ) ( ), 0tX t t    
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We call ( ( ), 0)tX t   the canonical process. Then ( , 0)tX t  , under the 

probability measure W , is a Brownian motion. This is the canonical 

construction of Brownian motion.  

Remark (1.1.14):  

It is rarely that case in probability theory that we put some emphasis on the 

probability space on which a certain random process is constructed. (In all 

practical cases, we usually assume that such a random process is given to us). 

However the full advantage of specifying the probability space and measure 

will come to light we deal with Girsanov's change of measure theorem. 

For dx�   we also let ( )x dwW be the image measure of W  by ( , 0)tw t  

( , 0)tx w t  . A (continuous) process with law ( )x dwW is called a Brownian 

motion started at x . We let (ℱ௧ , 0t  )be the natural filtration of ( , 0),tB t 

completed by zero-probability events.  

Definition (1.1.15): 

We say that state B is Brownian motion (started at X ) if ( , 0)tB X t  is a 

standard Brownian motion which is independent of .X  

Otherwise said, it is the same as the definition as a standard Brownian motion, 

except that we do not require that 0 0.B   if we want to express this on the 

Wiener space with the Wiener measure, we have for every measurable 

functional : ,F  �  

[ ( , 0)] ( ) ( ) ( ( ), 0) ( ) ( ).
d d

t xF B t X dx dw F x w t t X dx F


        
� �

P W P WE  

It will be handy to use the notation ( )X FW  for the random variable 

( ) ( )XW F  , so that the right-hand side can be shortened as ( ( )).X FE W  
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We now state some fundamental results, which are often referred to as the 

scaling properties of Brownian motion, or scale-invariance of Brownian 

motion.  

Proposition (1.1.16): 

Let B  be a standard Brownian motion in d� .  

1. Rotational invariance: If ( )U O d  is an orthogonal matrix, then 

( , 0)tUB UB t  is again a Brownian motion. In particular, B  is a 

Brownian motion.  

2. Scaling property: Ifà >>0then 1/2( , 0)tB t àà is a standard Brownian 

motion  

3. Time-inversion: 1/( , 0)ttB t  is also a Brownian motion (at t = 0 the 

process is defined by its value 0).  

We now start to discuss ideas revolving around the Markov property of 

Brownian motion and its applications to path properties. We begin with the 

simple Markov property, which takes a particularly nice form in this context.  

Theorem (1.1.17): 

 Let ( , 0)tB t   be a Brownian motion, and let s> 0. Then 

( , 0)t t s sB B B t    

s a Brownian motion, independent of the  ߪ-field B B
ts t s 

F F . 

Proof: Since B  is continuous and 0 0B  , to show that B is a Brownian 

motion it suffices to check that the increments have the correct distribution. 

However if , t u s t s ut u B B B B       so this follows directly from the fact that

B itself is a Brownian motion. It remains to show that B  is independent from 

sF . We start by checking independence with respect to sF , for which we can 
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assume 1d  . We will use this easy lemma, which is an important property 

worth remembering:  

Lemma (1.1.18): 

Let , 0s t  Then  

cov( , ) .s tB B s t   

Now, to prove independence of B  with respect to sF , it suffices to check that 

the finite-dimensional marginal's are independent: i.e., if 1 ... ms s s  and 

1 ... nt t , we want to show that 

1
( ,..., )

ms sB B  and 
1

( ,..., )
nt tB B   

are independent. However, the m+n-coordinate vector 
1 1

( ,..., , ,..., )
m ns s t tB B B B   is 

a Gaussian vector (since it is the image by a linear application of a Gaussian 

vector), and it suffices to check that the covariance of two distinct terms is 0. 

Since each term has zero expectation: 

( , ) ( )
i j i jt s t sCov B B B B E  

( ) ( )
i j js t s s sB B B B E E  

( ) ( ) 0j i j j js s t s s s s         

which proves the independence with respect to sF . If sA F  , we wish to 

show that for every continuous functional : ( )d kF � �  continuous and 

bounded,  

1 1{ }(1 ( ,..., )) ( ) ( ( ,..., ))
k kA t t t tF B B A F B B   E P E  

Now, for any  0  , s sA   F F , thus, using the property just proved:  
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1 1
(1 ( ,..., )) ( ) ( ( ,..., ))

k kA t s s t s s t s s t s sF B B B B A F B B B B                      E P E  

Letting 0  in the above identity, since B is continuous and F is bounded 

and continuous, we have (by Lebesgue's dominated convergence theorem), 

1 1{ }(1 ( ,..., )) ( ) ( ( ,..., ))
k kA t t t tF B B A F B B   E P E  

as required.  

Theorem (1.1.19): (Blumenthal's Zero-One Law)  

Let B be a standard Brownian motion. The ߪ-algebra 0 0
B B

 
F F  is trivial 

i.e. constituted of events of probability 0 or 1. 

Proof: By the previous result, ( , 0)tB t   is independent from 0F . However 

B
F contains 0

B
F , so this implies that the ߪ-field 0F  is independent of itself, 

and 2( ) ( ) ( )A A A A  P P P by independence. Thus ( )AP is solution to the 

equation 2x x  whose roots are precisely 0 and 1. 

Proposition (1.1.20): 

(i) For d = 1 and 0t  , let 0supt s t sS B  and 0inft s t sI B  (these are 

random variables because B is continuous). Then almost surely, for 

every  0  , one has 

0S   and 0I   

 In particular, a.s. there exists a zero of B in any interval of the form 

(0, ), 0    

(ii) A.s.,  

00
sup inft ttt

B B
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(iii) Let C  be an open cone in dR  with non-empty interior and origin at 

0 (i.e., a set of the form { : 0, }tu t u A  , where A  is a non-empty 

open subset of the unit sphere of dR ). If  

inf{ 0 : }C tH t B C    

 is the first hitting time of C, then HC = 0 a.s.  

Proof: 

(i) The probability that 0tB   is 1/2 for every t , so 

( 0) 1/ 2)tP S   , and therefore if , 0nt n  is any sequence 

decreasing to 0, (limsup { 0}) limsup ( 0) 1/ 2
n nn t n tP B P B   

.Since the event limsup { 0}
nn tB   is in 0F , Blumenthal's law 

shows that its probability must be 1. The same is true for the 

infimum by considering the Brownian motion -B.  

(ii) Let 0supt tS B  . By scaling invariance, for every 0à > , 

0sup tt BS à > à >  has same law as 20supt tB S à > . This is 

possible only if  0,S   a.s., however, it cannot be 0 by (i).  

(iii) The cone C  is invariant by multiplication by a positive scalar, 

so that ( )tP B C  is the same as 1( )P B C  for every t by the 

scaling invariance of Brownian motion. Now, if C has 

nonempty interior, it is straightforward to check that 

1( ) 0P B C  , and one concludes similarly as above.  

  We now want to prove an important analog of the simple Markov 

property, where deterministic times are replaced by stopping times. To begin 

with, we extend a little the definition of Brownian motion, by allowing it to 

start from a random location, and by working with filtrations that are 

(slightly) larger than the natural filtration of a standard Brownian motion.  
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Definition (1.1.21): 

Let ( , 0)t t F be a filtration. We say that a Brownian motion B is an ( tF )-

Brownian motion if B is adapted to ( tF ), and if ( ) ( , 0)t
t s tB B B s   is 

independent of tF  for every 0.t   

For instance, if ( tF ) is the natural filtration of a 2-dimensional 

Brownian motion 1 2( , , 0)t tB B t   then 1( , 0)tB t   is an ( tF )-Brownian motion. If 

B' is a standard Brownian motion and X  is a random variable independent of 

B', the '( , 0)tB X B t    is a Brownian motion (started at 0B X ), and is an  
'

( ( ( ) )B
t tX F F -Brownian motion. A  Brownian motion is always an B

tF )-

Brownian motion. If B is a standard Brownian motion, then the completed 

filtration B
t t F F N  ( N  being the set of events of probability 0) can be 

shown to be right-continuous, i.e. t t F F  for every 0t  , and B is an ( tF )-

Brownian motion. 

Definition (1.1.22): 

Let F  be a filtration and let T be a stopping time. The ߪ-field TF  is defined 

by  

{ : { }T tA A T t   F F F for all 0}t   

It is elementary (but tedious) that in the case of filtration generated by a 

process X , ( , 0)s TT X s  F . In particular T  and TX  are TF -measurable. 

This corroborates the intuition that TF  is the -algebra generated by all the 

events occurring prior to time T . We may now state the strong Markov 

property.  
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Theorem (1.1.23): (Strong Markov Property) 

Let ( , 0)tB t   be an ( tF )-Brownian motion in d�  and T be an ( tF )-stopping 

time. We let ( )T
t T t TB B B   for every 0t  on the event { }T   , and 0 

otherwise. Conditionally on { }T   , the process ( )TB  is a standard Brownian 

motion, which is independent of TF . Otherwise said, conditionally given TF  

and { }T  , the process ( , 0)T tB t   is an ( T tF )-Brownian motion started at 

TB  .  

Proof: Suppose first that T   a.s. Let TAF , and consider times 

1 2 ... pt t t   . We want to show that for every bounded continuous function F 

on ( )d p� ,  

1 1

( ) ( )
{ }1 ( ,..., ) ( ) ( ,..., )

p p

T T
A t t t tF B B P A E F B B      E                    (1.4) 

Indeed, taking A   entails that ( )TB  is a Brownian motion, while letting A  

vary  in TF  entails the independence of 
1

( ) ( )( ,..., )
k

T T
t tB B  and TF  for every 1,..., kt t

, hence of ( )TB and TF . 

1 1

( ) ( ) ( 2 ) ( 2 )
{ } { {( 1)2 2 }}

1
1 ( ,... ) lim [1 ] ( ,..., )n n

n np p

T T k k
A t t t tA k T kn k

F B B F B B 





   


    E= E=  

1
1

lim ( {( 1)2 2 }) ( ,..., )
p

n n
t tn k

P A k T k F B B


 




        E  

1
( ) ( ,..., ) .

pt tA F B B   P E  

where we used the simple Markov property and the fact that 

2{( 1)2 2 } nk
n nA k T k s 

     F by definition. Finally, if ( ) 0P T   , check 

that Equation(1.4) remains true when replacing A  by { }A T  , and divide 

by ({ })T  P .  
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An important example of application of the strong Markov property is the so-

called reflection principle. Recall that 0sup .t s t sS B   

Theorem (1.1.24): (Reflection principle)  

Let 0 a  and b a , then for every 0t  , ( , ) ( 2 )t t tS a B b B a b    P P  

Proof: Let inf{ 0 : }a tT t B a   be the first entrance time of tB  in [ , ]a   for 

0a  . Then aT  is an ( B
TF )-stopping time for every a  and aT     a.s. since 

S     a.s. where lim .t tS S  .  

Now by continuity of B,
aTB a  for every a . We thus have: 

( , ) ( , )t t a tS a B b T t B b    P P  

( )( , )a

a

T
a t TT t B b a   P  

( )( , ).aT
aT t B a b    P  

Now, by the strong Markov property at time , aT
aT B is a Brownian motion 

independent of 
aTF  and thus of aT  . In particular, we deduce that the joint law 

of ( )( , )aT
aT B is identical to the joint law of ( )( , )aT

aT B by symmetry of Brownian 

motion. It follows that  

( )( , ) ( , )aT
t t aS a B b T t B a b      P P  

( , 2 )a tT t B a b   P  

( 2 ).tB a b  P  

Corollary (1.1.25): 

We have the following identities in distribution: for all 0t  ,  

| | | (0, ) | .t d t dS B t  N  
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Moreover, for every 0x  , the random time xT  has same law as 2
1( / )x B .  

Proof: We write, for all 0t   and all  0a  ,  

( ) ( , ) ( , )t t t t tS a S a B a S a B a      P P P  

( 2 ) ( )t tB a a B a    P P  

2 ( ) (| | )t tB a P B a   P  

since when ,t tB a S a   automatically as well. 

We end with a famous result of P  . Levy on the quadratic variation of 

Brownian e motion. This result plays a fundamental role in the development 

of the stochastic integral. Let ( , 0)tB t  be a standard Brownian motion. Let 

0t   be fixed and for 1n   let 0 1{0 ( ) ( ) .... ( ) }
nn mt n t n t n t     �  be a 

subdivision of [0, ]t , such that  

11
max( ( ) ( ))

n
n i ii m

t n t n  
 

→ஶ
ሱ⎯⎯ሮ 0. 

Theorem (1.1.26): (Levy) 

1

2

1

lim ( )
n

i i

m

t tn i

B B t




   

Section(1.2): Finite Variation and Local Martingales  

We now discuss the bigger picture in a nutshell. 

We will now spend rather a lot of time to give a precise and rigorous 

construction of the stochastic integral, for as large a class of processes as 

possible, subject to continuity. This level of generality has a price, which is 

that the construction can appear quite technical without shedding any light on 

the sort of processes we are talking about. So before we embark on this 
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journey, here are a few points which, in my opinion, guide the whole 

construction and should also guide your intuition throughout. What follows is 

only informal, and in particular, we do not describe issues related to 

measurability, and finiteness of the integral.  

The real difficulty in the construction of the integral is in how to make sense 

of 

0

t

s sH dM                                                    (1.5) 

where M is a martingale and H  is, say, left-continuous or continuous. Even 

though dM does not make sense as a measure (the paths of martingales, just 

like Brownian paths, have too wild oscillations for that), it is easy to cook up 

a definition which makes intuitive sense when H is a simple process, that is, H 

takes only finitely many (bounded) values. Indeed, it suffices to require that 

the integral process in Equation (1.5) varies in the same way as M on the 

intervals over which H is constant, and has jumps when H does. A natural 

approach is then to try to extend this definition to more general classes of 

processes by "taking a limit" of integrals 

0 0

t t
n
s s s sH dM H dM                                     (1.6) 

where the integrands in the left-hand side are simple and approximate H . In 

implementing this method, one faces several technical difficulties. The 

strategy is to construct a suitable function space where the sequence on the 

left-hand side of Equation (1.6) forms a Cauchy sequence. If the function 

space is complete, the sequence of integrals has a limit, which we may call the 

integral of H  with respect to M . But we must also guarantee that this limit 

does not depend on the approximating sequence. It remains to find a space 
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which has the desired properties. The key property which we will use (over 

and over again) is that martingales have a finite quadratic variation: 

2 1
2

( 1)2 2
0

[ ] lim ( )
n

n n

t

t k kn k
M M M 

  




                   (1.7) 

exists and is finite, and is non-decreasing in t.  

Furthermore, one can show (Theorem (2.1.10)) that 2 [ ]t tM M  is a martingale. 

Now, when H  is simple, it is not hard to convince yourself that the Equation 

(1.5) must also be a martingale. So what should be the t quadratic variation of

0

?
t

s sH dM  Based on the approximation Equation (1.7), the amount of 

quadratic variation that we add to the integral between t and t dt  is 

approximately 2 [ ]t tH d M . Hence any sensible definition of the stochastic 

integral must satisfy 

2

0 0

[ ]
t

s s s s
t

H dM H d M
 

 
 
                   (1.8) 

The key insight of Ito was the realization that this property was sufficient to 

define the integral. Indeed, using the optional stopping theorem, this is 

essentially the same as requiring: 

2

2

0 0

[ ] .s s s sH dM H d M
     

          
 E E

                                    
(1.9) 

Interpreting the right-hand side as an 2L  norm on the space of bounded 

integrands, this statement is saying that the stochastic integral must be a 

certain isometry between Hilbert spaces. The left-hand side shows that the 

correct space of martingales is the set of martingales with 2([ ] ) ,M   E , or, 

equivalently (as it turns out), martingales  which are bounded in 2L . This 
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space, endowed with the norm on the left-hand side of Equation (1.9) is 

indeed complete and simple processes are dense in it. Equation (1.9) is then 

relatively easy to prove for simple processes. This implies, at once, that the 

sequence in the left-hand side of Equation (1.6) is Cauchy (and hence has a 

limit), and the isometry property shows that this limit cannot depend on the 

approximating sequence.  

At this point we have finished the construction of the stochastic integral 

for martingales which are bounded in 2L . Stopping at suitable stopping times, 

it is then easy to extend this definition to general martingales, or indeed to 

processes known as local martingales. Adding a "finite variation" component 

for which the Equation (1.5) is defined as a good old Stieltjes-Lebesgue 

integral finishes the construction for semi-martingales.  

Having spoken about the bigger picture in a nutshell, it is now time to rewind 

the tape and go back to the beginning. 

We now start to illustrate Finite variation integrals.  

Finite variation processes are essentially those for which the standard notion 

of integral (the one you learn about in measure theory courses) is well-

defined. Since finite variation is a path-wise property, we will first establish 

integrals with respect to deterministic integrants and lift it to stochastic 

processes in the following.  

Recall that a function :f � �  is cadlag or rcll if it is right-continuous and 

has left limits. For such functions we write ( ) ( ) ( )f t f t f t  �  where 

( ) lim ( )s tf t f s  . Suppose :[0, )a   �  is an increasing cadlag function. 

Then there exists a unique  Borel measure da  on (0, )  such that 

(( , ]) ( ) ( ),da s t a t a s  , the Lebesgue-Stieltjes measure with distribution 
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function a. Since da  is a proper measure, there is no problem in defining, for 

any non-negative measurable function h  and 0t  : 

(0, ]
( . )( ) ( ) ( ).

t
h a t h s da s                 (1.10) 

We may extend this definition to a cadlag function ' ''a a a   , where 'a  and 

''a  are  both increasing cadlag, and to integrable :[0, )h   � . Subject to the 

finiteness of all the terms on the right we define 

. . ' . '' . ' . ''.h a h a h a h a h a                                                          (1.11) 

Where max{ ,0}h h    are the positive and negative part of h .  

To be able to make this definition we have assumed that a  was the 

difference between two non-decreasing functions. We now ask for an analytic 

characterization of those functions which have this property. If a is a 

measurable function and I  an interval, we define (with a slight abuse of 

notation) ( ) (sup ) (inf )da I a I a I  even though da  is not really a measure. 

 Lemma (1.2.1): 

Let :[0, )a   �  be cadlag and define (0) 0n  , and for all 0t   

2 1

0
( ) | (( 1)2 ) ( 2 ) | .

n t
n n n

k
t a k a k

  
 



                             (1.12) 

Then ( ) lim ( )n
n

t t 


  exists for all 0t   and is non-decreasing in t . 

Proof: Let 2 2n n
nt t      and  2 2 1n n

nt t      and write 

inf sup

( ) | ( ) | | ( ) | | ( ) ( ) | .
n n

I t I t

n
n n

I I
t da I da I a t a t

 

 

 

    
� �

                       (1.13) 
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where {( 2 ,( 1)2 ] : }n n
n k k k   � � . The first term is non-decreasing in n  by 

the triangle inequality, and so has a limit as n   . The second converges to 

| ( ) | | ( ) ( ) |a t a t a t  �  as a is cadlag, and so ( )t  exists for all 0t  .  

Since ( )n t is non-decreasing in t  for all n , the same holds for ( ).t  

Definition (1.2.2): 

( )t is called the total variation of a  over (0, ]t and a is said to be of finite 

variation if  ( )t     for all 0t  .  

Proposition (1.2.3): 

A cadlag function :[0, )a   � can be expressed as ' ''a a a  , with ', ''a a  

increasing and cadlag, iff a  is of finite variation. In this case, ( )t t  is a a 

cadlag with ( ) | ( ) |t a t � � and a 
ଵ
ଶ

( )a   are the smallest functions 'a  and 

''a  with that property.  

Proof: Suppose ( )t     for all 0t  .  

Direction 1. Assume that ' ''a a a   for two cadlag non-decreasing 

functions ', ''a a , and let us show that ( )t   . This is the easy direction: if 

,nI  then we have by the triangle inequality (since 'a  and ''a are non-

decreasing). 

| ( ) '( ) ''( ),da I da I da I   

So summing over all intervals nI  with inf I t , by noting that the sums on 

the right-hand side telescope: 

( ) '( ) ''( )n
n nt a t a t     



30 
 

Since 'a and ''a  are cadlag, the right-hand side converges to '( ) ''( )a t a t as 

n  and is in particular bounded. Thus ( )t   for all 0t  . 

Converse: Assume that ( )t   for all 0t  . Let us first show that  is 

cadlag. Fix 0T   and consider 

inf sup

( ) | ( ) |
n

t I I T

n

I
u t da I

  


   for all   .t T                                    (1.14) 

( )nu t  is clearly non-increasing in t , and it is easy to see that it is also right-

continuous. These two properties imply that { [0, ] : ( ) }nt T u t x  is closed for 

all 0x  . Now, just as for ( )n t , the sum defining ( )nu t  is non-decreasing in n  

by the triangular inequality. Thus for all 0, ( )nt u t , has a limit as n   

which we may call ( )u t . We have that  

{ [0, ] : ( ) } { [0, ] : ( ) }n

n

t T u t x t T u t x


    
�

                             (1.15) 

is closed as a countable intersection of closed sets. This, together with the fact 

that ( )u t is non-increasing in t, implies that u  is right-continuous. 

Furthermore, observe that for all t T : 

( ) ( ) ( ) | ( ) ( ) |,n n n
n nT t u t a T a T                                  (1.16) 

The final term on the right converges to | ( ) |a T  as n because a is right-

continuous. Hence for all t T we have ( ) ( ) ( ) | ( ) |T T u T a T     and since 

T was arbitrary,   is right-continuous.  has left limits since it is non-

decreasing, and taking the limit n  in (1.13) we get ( ) ( ) | ( ) | .n T t a t      

Step2: .a a     Having made these observations, define two functions a

and a by 

a 
ଵ
ଶ

( )a   and  a 
ଵ
ଶ

( )a  are cadlag.                             (1.17) 
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Since   is cadlag, then a  and a  are also cadlag. It thus suffices to prove 

that they are non-decreasing. However, note that for each m � ,  

( ) | ( ) |md I da I   for all mI   

and  ( ) | ( )nd I da I   for all mI  if n m                           (1.18) 

Thus ( )da I ଵ
ଶ

( )d I  ଵ
ଶ

( ) 0da I  for all 
1 mm

I


  (by right-continuity) that 

a  and a  are non-decreasing. 

Step 3: minimality. Suppose now ' ''a a a  where ', ''a a  are non-decreasing 

with (0) '(0) ''(0) 0a a a   without loss of generality. Then for any 

, 0,nI n   

| ( ) | '( ) ''( ).da I da I da I                                     (1.19) 

Summing over nI   with sup I t in Equation (1.13), the terms in the sum 

telescope and we obtain 

( ) '( ) ''( ).n
n nt a t a t                                            (1.20) 

Letting n  , the left-hand side converges to ( )t  by definition, and the 

right-hand side converges to '( ) ''( )a t a t  since 'a  and ''a  are right-continuous. 

Note that we can also write ( ) ( ) ( )t a t a t     and hence the last inequality 

shows 

( ) ( ) '( ) ''( )a t a t a t a t     

for all 0t  , Adding and substracting ' ''a a a a a     on both sides we get 

( ) '( )a t a t   and ( ) ''( )a t a t  for all 0t  , as required.  
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Suppose now that we have a filtered probability space 0) ), , ( ,( t t F F P . 

Recall that a process : [0, )X    �  is adapted to 0( )t tF  if (., )tX X t  is 

tF -measurable for all 0t  , and X  is cadlag if ( ,.)X   is cadlag for all   

Definition (1.2.4): 

Let A  be a cadlag adapted process. Its total variation process V  is defined 

path-wise (for each  ) as the total variation of ( ,.)A  . We say that A is of 

finite variation if ( ,.)A  is of finite variation for all  .  

Lemma (1.2.5): 

Let A  be a cadlag adapted process with finite total variation V . Then V is 

cadlag adapted and path-wise non-decreasing.  

Proof: Using the same partition as in Equation (1.13) we get 

lim | |n
t t tn

V V A


  
                                                 

 (1.21) 

Where
2 1

( 1)2 2
0

| |
n

n

n n

t
n

t k k
k

V A A


 






   is adapted for all n�  since nt t   and At  is 

tF -measurable since A is cadlag adapted. Thus V  is adapted and it is cadlag 

and increasing because ( ,.)V  is cadlag and increasing for all  . 

In the later we will introduce a suitable class of integrands H  for a path-wise 

definition of the stochastic integral  

(0, ]
( . )( , ) ( , ) ( , ).

t
H A t H s dA s                                     (1.22) 

We now started to study previsid  processes. 
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Definition (1.2.6): 

The previsible ߪ-algebra P  is the ߪ-algebra generated by sets of the form 

( , ]E s t  where sEF  and s < t. A previsible process H  is a P -measurable 

map : (0, ) .H    �  

Proposition (1.2.7): 

Let X  be cadlag adapted and , 0.t tH X t   Then H  is previsible.  

Proof: : (0, ) .H    � is left-continuous and adapted. 

 Set 2 n
nt k  when 2 ( 1)2n nk t k    and  

2 {( 2 ,( 1)2 ]}
0

1 ( )n n n
n

n
t t k k k

k
H H H t   






                            (1.23) 

So nH is previsible for all n�  since 
nt

H  is 
nt

F  -measurable as H  is adapted 

and nt t  . But nt t �  and so n
t tH H  as n    by left-continuity and H  is 

also n previsible. 

Remark (1.2.8): 

P is the smallest ߪ-algebra such that all adapted left-continuous processes are 

measurable.  

Examples(1.2.9): 

(i) Brownian motion is previsible by Proposition (1.2.7), since it is 

continuous. 

(ii) A Poisson process 0( )t tN   or, indeed, any other continuous-time 

Markov chain with discrete state space is not previsible, since tN  is 

not tF  -measurable.  



34 
 

Proposition (1.2.10): 

Let A  be a cadlag adapted finite variation process with total variation V . Let 

H  be previsible such that for all 0t   and all   

(0, ]
| ( , ) | ( , )

t
H s dV s                 (1.24) 

Then the process defined path-wise by 

(0, ]
( . )t s st
H A H dA      (1.25) 

is well-defined, cadlag, adapted and of finite variation.  

Proof: First note that in Equation (1.25)is well-defined for all t due to the 

finiteness of the Equation (1.24). (More precisely, Equation (1.24) implies 

that all four terms defining Equation (1.25) in Equation (1.11) are finite). By 

referring to Equation (1.11) we may assume without loss of generality in the 

rest of the proof that H is non-negative and Anon-decreasing. 

We now show that ( . )H A is cadlag for each fixed  . We have 

{(0, )} {(0, )}1 1s t  as ,s t� {(0, )} {(0, )}1 1s t  as ,s t� and 

{(0, )(0, )
( . ) 1 ( )t s t sH A H s dA


            (1.26) 

Hence, by dominated convergence, the following limits exist 

( . ) ( . )t tH A H A   and {(0, )}(0, )
( . ) 1 ( )t s t sH A H s dA 

           (1.27) 

and .H A is cadlag with 

{( )}(0, )
( . ) 1 ( ) .t s t s t tH A H s dA H A
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Next, we show that .H Ais adapted via a monotone class argument. Suppose 

first { ( , ]}1 B s uH   where sBF . Then { }( . ) 1 ( )t B t u t sH A A A   which is clearly tF

-measurable. Now let   

{ ( , ] : , }sB s u B s u    F and                                   (1.28) 

 { }{ : (1 . )C tC A A P is sF -measurable}                        (1.29) 

so that   is a ߨ-system and    A . But ( )  A P  and A  is a ⋋-

system. 

[Recall: A  a ߨ-system contains ∅ and is stable by intersection. A ⋋-

system (or d-system) is stable by taking the difference and countable unions. 

To see that A is ⋋-system. Not that if C D A then { } { }((1 1 ). )D C tA is tF -

measurable, which gives \D CA ; and if nC A with nC C� then CA

since a limit of measurable functions is measurable.] 

Hence, by Dynkin's lemma, ( )   A . But by definition, ( )   P and 

A P .Thus A P .. Suppose now that H  is non-negative, P .-measurable. 

For all n� set 

{{ [2 ,2 ( 1))}
1

2 2 2 1 n n
n n n n

H k k
k

H H k  




 

 


    


P

                      (1.30) 

so that ( . )n
tH A  is tF -measurable. We have ( . ) ( . )n

t tH A H A� by monotone 

convergence (applied for each  ). Hence, ( . )tH A is tF -measurable.  

Example (1.2.11): 

 Suppose that H  is a previsible process, such as Brownian motion, and that  

(0, ]
| |st
H ds    for all   and 0t                 (1.31) 

Then
(0, ] st

H ds is cadlag, adapted and of finite variation.  
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Now we discuss local martingales.  

We work on a filtered probability space 0( , , ( ) , )t t F F P where 0( )t tF satisfies 

what is technically known as the usual conditions, i.e. F is P -complete 

(equivalently, 0F  contains all P -null sets), and 0( )t tF  is right-continuous in 

the sense that  

t t s
s t




 F F F  for all 0t                                 (1.32) 

Note for instance that the filtration generated by Brownian motion completed 

by zero-probability events satisfies the usual conditions (this is essentially a 

consequence of the simple Markov property and Blumenthal's zero-one law).  

Recall that an adapted process X is a martingale if it is integrable ( (| |)tX  E

for all 0t  )and if 

( | )st sX XFE  a.s  for all s t                                     (1.33) 

We write M  for the set of all cadlag martingales. The following result is 

fundamental and will be used repeatedly in this research.  

Theorem (1.1.12):(Optional Stopping Theorem)(OST)  

Let X  be a cadlag adapted integrable process. Then the following are 

equivalent: 

(i) X is a martingale  

(ii) ( , 0)T
t TX X t  is a martingale for all bounded stopping times T  .  

(iii) For all bounded stopping times , ,S T ( | )T S S TX X FE a.s . 

(iv) 0( ) ( )TX XE E for all bounded stopping times T .  
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Proof: It is well known that (i) ...  (iv). We show how (iv) implies (i). Let 

s t and fix u t . Let ,SAF , and define a random time T by saying T t if 

A occurs, or T u otherwise. Similarly, define S s  otherwise. Note that both 

S  and T  are stopping times, and are bounded. Thus by (iv): 

0( ) ( ) ( )T SX X X E E E                               (1.34)    

On the other hand,  

{ } { }( ) ( 1 ) ( 1 )cT t A u AX X X E E E  

and similarly:  

{ } { }( ) ( 1 ) ( 1 )cS s A u AX X X E E E  

Plugging this intoEquation (1.34) and cancelling the terms { }( 1 ),cu AXE we find:  

{ } { }( 1 ) ( 1 )t A s AX XE E  

for all s t  and all ,SA F . This means (by definition) that 

( | ) ,t s sX XFE  a.s. 

as required. Hence, since X  is adapted and integrable, X  is a martingale. 

It is also the case that M  is stable under stopping. This observation leads us 

to define a slightly more general class of processes, called local martingales. 

Definition (1.2.13): 

A cadlag adapted process X  is a local martingale, ,locX M  if there exists a 

sequence ( )n nT � of stopping times with nT �   such that 0( )nT
t tX  M  for all 

.n N We say that the sequence ( )n nT �  reduces X .  
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In particular ,locM M since any sequence ( )n nT � of stopping times reduces 

X  by OST(ii). Recall that a family ( )i i IX X=  of random variables is called 

uniformly integrable (UI) if 

{| | }sup (| |1 ) 0
ii X

i I
X 


àE   as ⋋→ ∞                      (1.35) 

We now give necessary and sufficient conditions for a local martingale 

to be a martingale.  

Proposition (1.2.14): 

The following statements are equivalent:  

(i) X  is a martingale 

(ii) X is a local martingale and for all 0t  the set  

{ :t TX TX =  is a stopping time, }T t  is UI .                             (1.36) 

Proof: Suppose (i) holds. By the Optional Stopping Theorem, if T  is a 

stopping time with T t , then ( | )T t TX X FE  a.s.. Thus by definition tX = is 

uniformly integrable.  

If (ii) holds, suppose 0( )n nT   reduces .X  Let T  be any bounded stopping time, 

T t  say. By the Optional Stopping Theorem applied to the martingale nTX ,  

 0 0( ) ( ) ( ) ( )n n

n

T T
T T TX X X X   E E E E                            (1.37) 

Since { : }
nT TX n �  is uniformly integrable by assumption, ( ) ( )

nT T TX X E E  

as n  . Therefore, 

0( ) ( ).TX XE E  

But then by the Optional Stopping Theorem again, X  must be a martingale.  

An extremely useful consequence of the above is the following:  
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Corollary (1.2.15): 

Let M  be a local martingale, and assume that M  is bounded. Then M  is a 

true martingale. More generally, if M  is a local martingale such that for all 

0,| |tt M Z  , for some 1Z L , then M  is a true martingale.  

Remark (1.2.16): 

Occasionally, we will need the following stronger version of (iii) in the 

Optional stopping theorem: if X  is a uniformly integrable martingale, then 

for any stopping times ,S T  

( | )T S S TX X FE               (1.38) 

almost surely.  

Proposition (1.2.17): 

A nonnegative local martingale M  is a super-martingale.  

Proof: This follows simply from the definition of local martingales and 

Fatou's lemma for conditional expectations. 

Remark (1.2.18): 

A martingale can be interpreted as the fortune of a player in a fair game. A 

local martingale which is not a true martingale, on the other hand, is the 

fortune of a player in a game which looks locally fair: unfortunately, this is 

only because there are going to be times of huge increases of X  followed by 

an eventual ruin. Overall, as the above proposition shows, the expected 

fortune decreases. A local martingale is thus something akin to a bubble in the 

market. (Thanks are due to M . Tehranchi for this analogy).  
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Proposition (1.2.19): 

Let M  be a continuous local martingale ( ,c locM M ) starting from 0. Set 

inf{ 0 :| | }.n tS t M n   . Then 0( )n nS   reduces M  .  

Proof: Note that ,{ } {| | 1/ }
s t

tn s
k s

S t M n k


 

    
� �
  F  

and so nS  is a stopping time. For each    , ( ), 0)nS n   must be non-

decreasing by the mean-value theorem since M  is continuous, and limn nS  

can only be infinite by continuity as well. Hence nS �   a.s.. Let ( )k kT �  be a 

reducing sequence for M , i.e. kTM M  . By OST, also n kS TM  M M  and so 
n

l
S

ocM M  for each n� . But nSM  Sn is bounded and so also a martingale.  

Theorem (1.2.20): 
Let M  be a continuous local martingale which is also of finite variation, and 

such that 0 0M   a.s. Then M  is indistinguishable from 0.  

Remarks. 

(i) In particular Brownian motion is not of finite variation.  

(ii) This makes it clear that the theory of finite variation integrals we have 

developed is useless for integrating with respect to continuous local 

martingales.  

(iii) It is essential to assume that M is continuous in this theorem.  

Proof. Let V  denote the total variation process of M  . Then V  is 

continuous and adapted with 0 0.V  . Set inf{ 0 : }.n tS t V n   . Then nS  is a 

stopping time for all n� since V  is adapted, and nS �   as n    since 

tV  is non-decreasing and finite for all 0.t  . It suffices to show 0nSM   for 

all n� . By OST, n
l

S
ocM M . Also 

| | | | ,n nS S
t tM V n                                      (1.39) 
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and so, by Proposition (1.2.12), nSM M . 

 Replacing M  by nSM we can reduce to the case where M  is a bounded 

martingale of bounded variation, i.e. V  is bounded. 

Lemma (1.2.21): 

Let M  be a martingale and such that for some given s t , 2( )sM  E . and 

2( )tM  E .then 

2 2 2( | ) (( ) | ),st s t ssM M M M  F FE E  a.s                     (1.40) 

(This trick will be used over and over again in what follows, so it is a good 

point to memorize it).  

Proof: By expanding the square 2( )t sM M , the right-hand side is equal to 

2 2 2(( ) | ) ( | ) 2 ( | )t s s t s s ss tM M M M M M   F F FE E E  

2 2 2( | ) 2t ss sM M M  E F  

2 2( | )t ssM M E F  

as required.  

Coming back to the proof of the theorem, fix 0t  and set /kt kt N  for 

0 k N  . By Equation (1.40), 

1 1

1 1
2 2 2 2

0 0
( ) ( ) ( )

k k k k

N N

t t t t t
k k

M M M M M
 

 

 

         
   
 E E  

1 1

1

0
(sup | | | )

k k k k

t t

N

t t t t
k N k

V n V n

M M M M
 



 

   

  


E                               (1.41)        

As M  is bounded and continuous, 

1
sup | | 0

k kt t
k N

M M



   as N                                      (1.42) 
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and so, by bounded convergence, 

1 1

1

0
sup | | | | 0

k k k k

N

t t t t
k N k

M M M M
 



 

 
   

 
E  as N                  (1.43) 

Hence, 2( ) 0tM E  for all 0t  . Since M is continuous, M  is 

indistinguishable from 0.  

Definition (1.2.22): 

A continuous semimartingale X  is an adapted continuous process which may 

be written as  

0X X M A    with 0 0 0M A                               (1.44) 

where ,c locM M and A  is a finite variation continuous process.  

Note that as a consequence of Theorem (1.1.18), the decomposition is unique 

up to indistinguishability. This is known as the Doob-Meyer decomposition.  

Remark (1.2.23): 

The proof of the last theorem tells us something extremely useful for the 

following. If tk is the dyadic subdivision, then the calculation shows that  

1

2 2

:

( ) ( )
k k

k

t t t
k t t

M M M




 
  

 
E E                            (1.45) 

so there is good reason to believe that if M  is say, bounded in 2L  , then it has 

finite quadratic variation tQ  and moreover  

2
t tM Q  

has constant expectation 0. In fact, we will see that this is indeed the case and 
2
t tM Q  is also a martingale. 
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Chapter 2 

The stochastic integral 

In this chapter we establish the stochastic integral with respect to continuous 

semi-martingales. In places, we develop parts of the theory also for càdlàg  

semi-martingales, where this involves no extra work. However, parts of the 

construction will use crucially the assumption of continuity. A more general 

theory exists, but it is beyond the scope of this research. 

Recall that we say a process X is bounded in L2 if 

2
0

sup || ||t
t

X


                                                 (2.1) 

where here and in the rest of the course, for a random variable X: 
2 1/2

2|| || (| | )X X E                                             (2.2) 

Write 2M  for the set of all càdlàg  L2-bounded martingales, and 2
cM for the 

set of continuous martingales bounded in L2. Recall the following two 

fundamental results from Advanced probability: 

Section (2.1): Integral on L2 and Quadratic Variation   
We start this section by simple integrands and L2 properties. 

Definition (2.1.1):  
A simple process is any map : (0, )H    � of the form 

1

{( , 1]}
0

( , ) ( )1 ( )
k k

n

k t t
k

H t Z t 





                                  (2.3) 

where 0,0 ... nn t t    � and Zkis a bounded 
kt

F -measurable random 

variable for all k. We denote the set of simple processes by S . Given H S we 

denote || || sup | |H es H the essential supremum of H, i.e., the smallest 

M >0 such that 0sup | ( , ) |t H t M  almost surely. 

Note that S is a vector space and that (by definition) every simple process is 

previsible. We now define the stochastic integral for simple processes. 
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Definition (2.1.2): 

For
1

1
{( , ]}0

1
k k

n
k t tk

H Z





  S  and 2M M  set 

1

1

0
( . ) ( )

k k

n

t k t t t t
k

H M Z M M




 


                                     (2.4) 

Proposition (2.1.3): 

Let H∈S  and 2M M . Let T be a stopping time. Then 

(i) . ( . )T TH M H M  

(ii) 2.H M M  

(iii) 2 2 2
0(( . ) || || (( ) )H M H M M   E E  

Proof: 
(i) For all 0t   we have 

  1

1

0
( . ) ( )

k k

n
T T T

t k t t t t
k

H M Z M M




 


   

1

1

0
( ) ( . ) ( . )

k k

n
T

k t t T t t T t T t
k

Z M M H M H M




    


                     (2.5) 

(ii) For 1, ( . ) ( . ) ( )k k t k tt t t H M H M Z M M     S SS , so that 

(( . ) ( . ) | ) ( | ) 0t k tH M H M Z M M   ES S S SF FE                     (2.6) 

This extends easily to general S ≤t and hence H .M is a martingale. To show 

it is bounded in L2, note that if j<k we have the following "orthogonality 

relation": 

     1 1
( ( ) ( ))

j j k kj t t k t tZ M M Z M M
 
  E  

1 1
( ( ) ( | )) 0

j j k kkj t t k t t tZ M M Z M M
 
  E E F                            (2.7) 

Thus let t≥ 0and assume that nt t for simplicity. To compute 2(( . ) )tH ME , we 

expand the square and use the above orthogonality relation: 

1 1

21 1
2 2 2

0 0
(( . ) ( ) ( ( ) )

k k k k

n n

t k t t k t t
k k

H M Z M M Z M M
 

 

 

  
        

 E E E  
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1

1
2 2 2 2

0
0

|| || (( ) ) || || (( ) )
k k n

n

t t t
k

H M M H M M




 


   E E            (2.8) 

(On two occasions, we used the trick (1.40)).  

Similarly, if 1j jt t t   , then the same calculation gives: 
2 2 2

0(( . ) ) || || (( ) )t tH M H M M E E  

But note that since M M ,then 2
0( )tM M  is a sub-martingale, so if u t  

then 2 2
0 0(( ) ) (( ) )t uM M M M  E E . Since 2M M , then the convergence of

uM  to M holds in 2L as u  , hence we deduce 
2 2

0 0(( ) ) (( ) )tM M M M  E E by letting u  .  

Thus for all 0,t   
2 2 2

0(( . ) ) || || ( ) )tH M H M M  E E  

Thus 2.H M M and letting t   in the above inequality (which we may 

since we now know 2.H M M ) we obtain the desired (iii). 

To extend the simple integral defined before, we will need some 

Hilbert space properties of the set of integrators we are considering. As 

before, we work on a filtered probability space 2 0, ( ), )( ,t  PF F where 0( )t tF

satisfies the usual conditions. 

Definition (2.1.4): 
For all càdlàg adapted processes X define the triple norm 

2
0

||| ||| || sup | |||t
t

X X


  

We write 2C for the set of all càdlàg adapted processes X  such that ||| ||| .X   

On 2 ,M  define the norm 2|| || || ||X X   
Remark(2.1.5): 

Note that the function. || . ||on 2M defines indeed a norm. The only point 

which demands justification is the requirement that if || || 0M  , then M is 
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indistinguishable from 0. But || || 0M  , then 2( ) 0M  E  so 0M   a.s. By the 

martingale convergence theorem 

( )t tM M  E F  a.s. 

so 0tM   a.s. as well. Since M  is càdlàg, it is indistinguishable from 0. 

We may now state some 2L  properties which show that the space of square-

integrable martingales can be seen as a Hilbert space. As we will see later, 

this underlying Hubert structure is the basis of the formal definition of the 

stochastic integral in the general case. (Formally, it is defined as an isometry 

between Hilbert spaces). 

Theorem (2.1.6): 

Let 2X M . There exists 2X L  such that 

tX X  a.s. and in L2; ast                      (2.9) 

Moreover, ( )t tX X  E F a.s. for all 0t   

The second result which we will need is Doob's 2L  inequality: 

Theorem (2.1.7):  
For 2X M , 

2 2

0
(sup | | ) 4 ( )t

t
X X 


E E                 (2.10) 

Similar to the construction to the Lebesgue integral in measure theory. 

Proposition (2.1.8): 
We have  

(i) 2( ,||| . |||)C is complete 

(ii) 2 2 M M C  

(iii) 2( ,|| ||)M is a Hubert space with 2 2 C CM M M  as a closed subspace 

(iv) 2 2 ( ):X X L   M F  is an isometry 
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Proof: 

(i) Suppose ( )n
nX �  is a Cauchy sequence in 2( ,||| . |||)C . Then we can find a 

subsequence ( )k kn �  such that 1||| |||k kn nX X    . Then by the triangular 

inequality, 

1 1

01 1
sup | | ||| |||k k k kn n n n

t t
tk k

X X X X 

 

 

                          (2.11) 

and so for almost every ,   

1

01
sup | ( ) ( ) |k kn n

t t
tk

X X 





    

Since the space of càdlàg  functions equipped with the || || norm is complete, 

there exists a càdlàg process X such that ( ( )) ( )kn
t kX X  � as k 

uniformly in 0t  . Now 
2 2

0
||| ||| (sup | | )n n

t t
t

X X X X


  E     (2.12) 

  2

0
lim inf (sup | | )knn

t tk t
X X

 
 E by Fatou's lemma 

  2liminf ||| ||| 0knn

k
X X


    as n           (2.13) 

because ( )n
nX �  is a Cauchy sequence. Hence 2( ,||| . |||)C is complete. 

(ii) For 2X  C M  we have 

2 2
0 0

sup || || || sup | ||| ||| |||t t
t t

X X X
 

                               (2.14) 

and so 2X M . On the other hand, if 2X M , by Doob’s inequality, 

||| ||| 2 || || ,X X    and so 2X  C M         (2.15) 

(iii) ( , ) ( )X Y X Y  E  defines an inner product on 2M  whose associated 

norm is precisely the double norm || || . Moreover, for 2X M , we have 

shown in (ii) that 

|| || ||| ||| 2 || ||,X X X              (2.16) 



48 
 

that is, || || and ||| ||| are equivalent on 2M . Thus 2M  is complete for || || if 

and only if it is complete for ||| ||| , and by (i) it is thus sufficient to show that 
2M  is closed in 2( ,||| . |||)C . If 2nX M and ||| ||| 0nX X   as n  for some 

X , then X  is certainly càdlàg adapted and L2-bounded. Furthermore, by 

Jensen’s inequality for conditional expectations, 

2)|| ( ||st sX X E F 2 2|| ( || ||) ||n n
t t ss sX X X X  E F  

 2 2|| || || ||n n
t t s sX X X X                                   (2.17) 

 2 ||| ||| 0nX X                                                (2.18) 

as n  and so 2X M . By the same argument 2
CM is closed in 2( ,|| ||)M

where continuity of ( )tt X  follows by uniform convergence in .t  

(iv) For 2
2, || || || |, |X Y X YX Y    M by definition. 

Now we study Quadratic variation. 

Definition (2.1.9): 

 For a sequence ( )n
nX � we say that nX X uniformly on compacts in 

probability ( . . .)u c p  if 

0  0 : (sup | | ) 0n
s s

s t
t X X


   P ò  as .n                     (2.19) 

Theorem (2.1.10): (Quadratic Variation) 
For each ,locM  CM there exists a unique (up to indistinguishability) 

continuous adapted non-decreasing process [ ]M such that 2
,[ ] c locM M M and 

such that 0[ ] 0M   a.s. Moreover, for 

2 1

( 1)2 2
0

[ ] ( )
n

n n

t
n n
t k k

k
M M M 

  




           (2.20) 

we have  
[ ] [ ]nM M u.c.p. as .n   

We call [ ]M the quadratic variation process of M . 
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Example (2.1.11):  
Let B be a standard Brownian motion. Then we know that [ ]n

tB t for every 

0t  in probability. Thus [ ]tB t and we deduce that 2
tB t is a local 

martingale. 

Alternatively, it is not hard to see that 2
0( )t tB t  is a (true) continuous 

martingale. But then by Theorem (2.1.10), [ ]tt B . 

Proof: [Proof of Theorem (2.1.10)] Wlog we will consider the case 0 0M  . 

Uniqueness is easy: if A and 'A  are two increasing processes satisfying the 

conditions for [ ]M then 
' 2 2 2

,( ) ( )t t t t t t c locA A M A M A     M                         (2.21) 

is of finite variation and thus 'A A a.s. by Theorem (1.2.18) 

Existence: First we assume that M  is bounded, which implies 
2

cM M . Fix 0T  deterministic. Let 

2 1

2 { 2 ,( 1)2 ]}2 2
0

1 ( ).
n

n n nn n

T
n T

t k k kt
k

H M M t  

  

    

          (2.22) 

Then nH S for all n � . Hence nX defined by 
2 1

2 ( 1)2 2
0

( . ) ( ).
n

n n n

T
n n

t t k k t k t
k

X H M M M M  

  

  


                       (2.23) 

is in 2
cM  by Proposition(2.1.3) and by continuity of M . Recall that 

2 2|| || || || || ||n n
TX X X   since n

tX is constant for t T . For , 0n m  we have by 

linearity of the stochastic integral, 

. . ( ). ,n m n mH M H M H H M    

hence letting n mH H H   for ease of notations 
2 2|| || [( . ) ].n m

TX X H M  E  

Therefore, computing this as in Proposition (2.1.3) 
2

2 1
2

2 ( 1)2 2
0

|| || ( )
n

n n n

T
n m

k k k
k

X X H M M  

  




  
      
   
E  
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2

2 1
2 2

( 1)2 2
0

( )
n

n nnk

T

k k
k

H M M 


  




 
  
  
E  

2 1
2 2

( 1)2 2
0 0
sup | | ( )

n

n n

T

t k k
t T k

H M M 

  


  

 
  
 
 

E  

Recalling that n mH H H  where both nH arid mH are dyadic approximations 

of M , so that the first term in the above expectation tends to 0 almost surely 

as ,n m  (by uniform continuity of M on [0, ]T ), and that moreover the 

expectation of the second term is bounded by Equation(1.45), it is tempting to 

conclude that the left-hand side of the above inequality also tends to 0. This 

turns out to be true be requires stronger arguments than what we just 

sketched. In fact, we will deal with both terms separately: by the Cauchy-

Schwartz inequality, 
1

2 2
1 2 1

2
2 4 2

( 1)2 2
0 0

|| || sup | | ( )
n

n n

T
n m n m

t t k k
t T k

X X H H M M 

  


  

                  
E E       (2.24) 

The first term tends to 0 by the above discussion and Lebesgue’s convergence 

theorem since M is bounded, and the second term is bounded because of the 

following lemma. 

Lemma (2.1.12): 
Let M M be bounded. Suppose that l � and 0 10 ... .lt t t     . 

Then 
1

21
2

0
( )

k k

l

t t
k

M M






  
     

E  is bounded. 

Proof: [Proof of Lemma (2.1.12) First note that 

 

1 1

21 1
2 4

0 0
( ) (( ) )

k k k k

l l

t t t t
k k

M M M M
 

 

 

  
       

 E E  

1 1

1 1
2 2

0 1

2 ( ) ( )
k k j j

l l

t t t t
k j k

M M M M
 

 

  

 
   

 
 E                              (2.25) 
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For each fixed k we have 

1 1

1
2 2

1

( ) ( )
k k j j

l

t t t t
j k

M M M M
 



 

 
   

 
E  

1 1 1

1
2 2

1
( ) ( )

k k j kj

l

t t t t
j

t
k

M M M M
 



 

  
       

E E F  

11 1

1
2 2 2

1
( ) ( )

k k t tj j k

l

t
j

tt
k

M M M M
  



 

  
       

E E F  

 1 11

2 2 2( ) ( )
k k t l ktkt t tM M M M
  
  E E F  

 1 1

2 2 2 2( ) ( )
k k t tkl

t tM M M M
 
  E                 (2.26) 

After inserting this in Equation(2.25) we get the estimate 

1

21
2

0
( )

k k

l

t t
k

M M






  
      

E  

1 1

1
2 2 2

0

sup 2sup ( )
j j l j k k

l

t t t t t t
j j k

M M M M M M
 





  
      

  
E                     (2.27) 

Now, M is uniformly bounded by C , say. So using the inequality 
2 2 2( ) 2( ),x y x y    we obtain 

1 1

21 1
2 2 2

0 0
( ) 12 ( )

t t t tk k k k

l l

k k
M M C M M

 

 

 

    
            

 E E
 

0

2 2 412 (( ) ) 48
t tl

C M M C E (2.28) 

Returning to Equation(2.24), it follows from Lemma (2.1.12),  that nX

is a Cauchy sequence in 2( ,|| ||)c M  

and so, by Proposition (2.1.8), converse to a limit 2( , 0)t cY Y t  M . Now, for 

any n and 1 2nk T      

1 1
2 2 2

2 2 ( 1)2 2 2 ( 1)2 2
0 0

( ) 2 ( ) 2 ( )n n n n n n n

k k
n

k k j j j j j
j j

M X M M M M M      

 

 
 

       

1
2

( 1)2 2
0

( )n n

k

j j
j

M M 






  2
[ ] n

n
k

M   
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Hence, 2 2 n
t tM X is increasing along the sequence of times 

( 2 ,1 2n nk k T      Passing to the limit n  , 2 2 n
t tM X must be a.s. 

increasing. Set 
2[ ] 2 , [0, ]t t tM M Y t T    

on the set where 2 2M Y is increasing and [ ] 0M  otherwise. Hence, [ ]M is a 

continuous increasing process and 2 [ ] 2M M Y  is a martingale on[0, ]T . 

We extend the definition of [ ]tM to [0, )t   by applying the foregoing 

for all T � . 

Note that the process [ ]M obtained with T is the restriction to [0, ]T of [ ]M

defined with 1T   

Now, note that 2
2 2n nt

M   
 

converges to 2M  u.c.p. by uniform continuity, and 

convergence of nX  towards X also holds in the u.c.p. sense since it holds in 

the stronger 2( ,|| ||)c M sense. 

Thus the theorem is proved when M is bounded. 

Now we turn to the general case , .c locM M Define 

 inf 0 :| | .n tT t M n    

Then ( )n nT � reduces M and we can apply the bounded case to ,nTM writing 

[ ]nTnA M . By uniqueness, 1
n

n
t TA 
 and n

tA  are indistinguishable. Thus there 

exists an increasing process A such that for all ,
nt Tn A � and n

tA  are 

indistinguishable. Define[ ]t tM A . By construction, 2
0( )

n n ct T t T tM A   M and 

so ,
2

0( )t t ct c loM A  M  as required. It remains to show that [ ]M is the u.c.p. 

limit of its dyadic approximations. Let ( )[ ] mM  be the dyadic approximation at 

stage m m. Note that for fixed 1,n  , we have [ ] [ ]n nT TmM M u.c.p as m by 

the bounded case. Since for all fixed 0t  ; ( 1) 1nT  P as n  , we obtain 

that [ ] [ ]mM M u.c.p. as m  . 
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Remark (2.1.13): 
The idea of the proof itself is based on Ito’s formula. Indeed, as we will soon 

prove, if , .c locM M then 

2 2 . [ ]M M M M   

so the idea of the definition of nH  and then .n nX H M is to take an 

approximation of M and .M M . So the martingale Y in the proof really is .M M , 

and this is why we define 2[ ] 2M M Y  . 

Remark (2.1.14): 
 Note that [ ]M  is non-decreasing and thus of finite variation, and that if T is 

any possibly random time,[ ] [ ] .T TM M  

Theorem(2.1.15): 
If 2 2, [ ]c MM MM  is a uniformly integrable martingale. Moreover, 

2
0([ ] ) (( ) )M M M  E E Conversely, if , .c locM M with 2

0( )M  E  

and ([ ] )M  E ,Then 2.cM M  

Proof: Since the quadratic variation is unchanged by the addition of a 

constant to M , we may assume wlog that 0 0M   a.s. For the first direction, 

assume 2
cM M . Let inf{ 0:[ ] }.n tS t M n   nS is a stopping time and [ ]

nt SM n 

. Thus, the stopped local martingale satisfies 
2 2

0
[ ] sup

n nt S t S t
t

M M n M 


                           (2.29) 

is bounded by an integrable random variable and thus a true martingale (see 

remark after Proposition (1.2.14). Thus 
2([ ] ) ( )

n nt S t SM M   E E  for all 0t                             (2.30) 

We take the limit t  , using monotone convergence on the left and 

dominated convergence on the right, and then n  by the same arguments 

to get 
2([ ] ) ( )M M   E E                                       (2.31) 
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Hence, 2| [ ] |t tM M  is dominated by 2sup [ ]t
t

M M 


 , which is integrable. Thus 

2 [ ]M M  is a true martingale and is uniformly integrable since: 
2 2 2

0 0
(sup | [ ] |) ((sup ) [ ] ) 5 ( )t t t

t t
M M M M M 

 
    E E E                      (2.32) 

Remark (2.1.16): 
 Some textbooks use the notation M rather than [ ]M for the quadratic 

variation. In general (i.e., in the discontinuous case), M should be previsible 

and means something slightly different (beyond the scope of this course), but 

it coincides with [ ]M when M is continuous. 

Section (2.2): Itܗෝ′ܛIntegrals and Itܗෝ′ܛ Formula 
Now we Start to Study Ito’s Integrals. 

Proposition (2.2.1): 
 Let  be a finite measure on the previsible ߪ-algebra P . Then S is a dense 

subspace of 2 ( , ).L P  

Proof: If H S  then H is bounded so 2 ( , ).H L  P  Thus 2 ( , ).L S P . 

Denote by S the closure of S  in 2 ( , ).L P  Since linear combinations of 

indicator functions of the form { }1 A  for AP  are dense in 2 ( , ).L P  by 

measure theory, it suffices to prove that if AP , then A S . Set 

{ }{ :1 }.AA  A: P : S:                                          (2.33) 

Then A is a d-system. [Check: { (0, )}1 n S  so { (0, )}1   S  and (0, )  A ; 

if C D A  then \D CA ; if nC A  and nC C�  then CA  since S is the 

closure of S in 2 ( , )L P ]. Moreover A contains the ߨ-system { ( , ]:B s t

,sB s t F }, which generates P . Hence, by Dynkin's lemma, A P . 

Given 2
cM M , define a measure  on P by 

{ }( ( , ]) (1 ([ ] [ ] ))A t sA s t M M   E  for all , .ss t A F              (2.34) 
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Since P  is generated by the ߨ-system of events of this form, this uniquely 

specifies  . Alternatively, write 

( ) [ ]( , ) ( ),d dt d M dt d     P                          (2.35) 

where for a fixed , [ ]( ,.)d M   is the Lebesgue-Stieltjes measure associated 

to the non-decreasing function [ ]( )M  . Thus, for a previsible process 0H  , 

 (0, ) 0
[ ]s sHd H d M



 
 E                          (2.36) 

Definition (2.2.2): 
Set 2 2( ) ( (0, ), , )L M L    P  and write 

 2
2 2 2

( ) 0
|| || || || [ ]M s sL M

H H H d M


  E                               (2.37)        

so that 2 ( )L M  is the space of previsible processes H such that 2|| ||MH   . 

Note that the simple processes 2 ( )L MS  for all 2
cM M . Now, recall that if 

2
cM M  we defined 2 2|| || ( )M M E . 

Theorem (2.2.3): (ItܗෝIsometry.) 

For every 2
cM M  there exists a unique isometry 

2 2( ( ),|| . || ) ( ,|| . ||)M cI L M  M  

such that  
( ) .I H H M  for all HS . 

Proof: Let 
1

1
{( , ]}0

1
k k

n
k t tk

H Z





  S . By Proposition (2.1.3), 2. cH M M  with 

1

1
2 2 2

0
|| . || ( ( ) ).

k k

n

k t t
k

H M Z M M






 E                       (2.38) 

But 2 [ ]M M  is a martingale so that  

1 1

2 2 2 2( ( ) ) ( (( ) | ))
kk k k kk t t k t t tZ M M Z M M

 
   FE E E  

1 1

2 2 2 2( ( | )) ( ([ ] [ ] )),
k k k kkk t t k t ttZ M M Z M M
 

   FE E E              (2.39) 

And so  2 2 2

0
|| . || [ ] || ||s s MH M H d M H


 E . 
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Now let 2 ( ).H L M  We have thus defined a function I from S to 2
cM , which 

is an isometry. However, S  is dense in 2 2( ) ( , )L M L  P  by Proposition 

(2.2.1). This implies that there is a unique way to extend I  to 2 ( )H L M  

which makes I  into an isometry. Indeed, let 2 ( )H L M . Then there exists nH  

a sequence of simple processes such that nH H  in 2 ( )L M . Then by 

linearity: 

|| ( ) ( )) || || ( ) || || ||n m n m n m
MI H I H I H H H H      

so ( )nI H is a Cauchy sequence in 2( ,|| . ||)cM , which is complete. Therefore, 

( )nI H converges to some limit which we may denote by ( )I H . It is easy to 

check that ( )I H does not depend on the sequence nH chosen to approximate H

if nH H  and nK H in 2( ),L M  
then 

|| ( ) ( ) || || || 0n n n n
MI H I K H K    as n  , so the limits of ( )nI H  and ( )nI K

must be indistinguishable. ( )I H is then, indeed, an isometry on 2( ).L M For 

H S we have consistently ( ) .I H H M  by choosing .nH H  

Definition (2.2.4):  
We write 

0
( ) ( . )

t

t t s sI H H M H dM    

for all 2 ( ).H L M . The process .H M is Itoො’s stochastic integral of H with 

respect to M . 

Remark (2.2.5): 
By Theorem (2.2.3), this is consistent with our previous definition of .H M for 

H S . 

Proposition (2.2.6): 

Let 2
cM M  and 2 ( ).H L M  Let T be a stopping time. Then 2

(0. ]1 ( )TH L M

and 2( ),TH L M  and we have: 
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 {(0, ]}( . ) ( 1 ). .( ).T T
TH M H M H M                            (2.40) 

Proof: Let 2 ( ).H L M  It is trivial to check that 2
(0, ]1 ( ).TH L M  (to see that 

it is previsible, note that (0, ]1 ( )T t  is left-continuous and hence previsible). To 

see that 2( )TH L M , note that [ ] [ ]T TM M  by the discrete approximation in 

the definition of quadratic variation, and thus 

2 2

0 0
[ ] [ ]

TT
s s s sH d M H d M


  E E 2

0
[ ]s sH d M


 E  

Step 1. Take 2
cM M and suppose first that H S . If T  takes only 

finitely many values, {(0, ]}1 TH S and (0, ]( . ) ( 1 ).T
TH M H M  is easily checked. 

For general T , set (2 2n n
nT T n     which is a stopping time that takes only 

finitely many values.  

Then nT T� as n   and so 

 2 2 2
{(0, ]} {(0, ]} {(0, ]} {(0, ]}0

|| 1 1 || (1 1 ) ( ) [ ] 0
n nT T M t T T tH H H t d M


   E        (2.41) 

As n  , by dominated convergence, and so {(0, ]} {(0, ]}1 . 1 .
nT TH M H M in 

2
cM  by Theorem (2.2.3). But ( . ) ( . )nT T

t tH M H M  a.s. by continuity and 

hence, {(0, ]}( . ) ( 1 ).T
TH M H M since {(0, ]}( . ) ( 1 ).n

n

T
TH M H M . for all n  �  by 

the first part. On the other hand we already know ( . ) .( )T TH M H M by 

Proposition (2.1.3). 

Step 2. Now for 2 ( ).H L M choose nH S  such that nH H  in 
2( )L M . Then . .nH M H M  in 2

cM  so ( . ) ( . )n T TH M H M  in 2
cM  by Doob’s 

inequality.  

Also,  

  22 2
{(0, ]} {(0, ]} 0

|| 1 1 || ( ) [ ] 0
Tn n n

T T M s s M
H H H H d M H H     E          (2.42) 
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as n   , so {(0, ]} {(0, ]}( 1 ). ( 1 ).n
T TH M H M in 2

cM  by the isometry property of 

theorem (2.2.3). Again, by equating the limits of both sequences we get 

(0, ]( . ) ( 1 ).T
TH M H M  Moreover, 

 2 2

0
|| || ( ) [ ]T

n n T
s sM

H H H H d M


   E  

 2

0
( ) [ ] || || 0

T n n
s s MH H d M H H    E                   (2.43) 

so .( ) .( )n T TH M H M  in 2
cM . Hence, ( . ) .( )T TH M H M . 

Proposition (2.2.6) allows us to make a final extension of Itoො’s integral to 

locally bounded, pre-visible integrands. 

Definition (2.2.7): 
Let H  be previsible. Say that H  is locally bounded if there exist stopping 

times nS �  a.s. such that (0, ]1
nSH  is bounded for all n � , i.e. there exists 

nC    nonrandom such that 0 (0, ]sup 1 ( )
nt t S nH t C   a.s.. 

Note that if tH  is càdlàg and adapted, then 
t

H   is previsible and locally 

bounded. 

Definition(2.2.8):  

Let H  be a previsible locally bounded process and let ,c locM M  Choose 

stopping times  ' inf 0 :| |n tS t M n   �  a.s., and note that 
' 2nS

cM M  for 

all n� . Set '
n n nT S S  , arid define 

(0, ]( . ) ( 1 . )n

n

T
t T tH M H M  for all nt T                      (2.44) 

Remarks (2.2.9): 
(i) The stochastic integral in the right-hand side ofEquation(2.44) is well-

defined: indeed, every bounded previsible process is in 2 ( )L M  

whenever 2
cM M . Moreover, (0, ]1

nTH  bounded and 
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' 2( )n n nT S T
cM M M , so (0, ]1 . n

n

T
TH M  makes sense (it falls within the 

category of processes covered by Theorem (2.2.3)). 

(ii)  Proposition (2.2.6)  ensures that the right-hand side does not depend on 

n  for all n  large enough that .nT t  

(iii) Note also that the definition does not depend on the sequence of 

stopping times 0( )n nT   used to reduce M  and H , so long as nTH , is 

bounded and 2nT
cM M  for all 0.n   

(iv)  It is furthermore consistent with our previous definitions of stochastic 

integral when 2
cM M  and 2 ( ).H L M  

Proposition (2.2.10):  
If H  is locally bounded previsible and 2

,c locM M  then for all stopping times 

T we have (0, ]( . ) ( 1 ). .( ).T T
TH M H M H M  . 

Proof: Let us start by checking the first of these equalities. By Proposition 
(2.2.6), we know that 

(0, ] (0, ] (0, ]( 1 . ) 1 1 .n n

n n

T TT
T T TH M H M  

As n  , the left-hand side converges pointwise a.s. to ( . )TH M  by 

definition, while the right-hand side also converges pointwise a.s. to (0, ]1 .TH M  

since the sequence ( )nT  also “reduce” (0, ]1 TH  and M  in the sense of Definition 

(2.2.8). The second equality follows the same argument.  

Theorem (2.2.11): (Quadratic Variation of Stochastic Integral) 
Let ,locM  CM  and H  be locally bounded previsible. Then .H M  is a 

continuous local martingale, whose quadratic variation is given by 
2[ . ] .[ ].H M H M  

Remark (2.2.12):  
In practice, we often use this theorem in combination with Theorem (2.1.15) 

to conclude that .H M  is a true martingale. In addition, as already discussed 



60 
 

informally at the very beginning of the construction, this is the property which 

in some sense motivates the entire construction of the stochastic integral. 

Proof: Let nT be a sequence of stopping; times which reduces both H  and 

: nTM H  is bounded and 2nT
cM M . By Proposition (2.2.10), 

2
(0, ]( . ) ( 1 ).n n

n

T T
T cH M H M M                            (2.45) 

which implies that .H M  is a continuous local martingale. To compute the 

quadratic variation, assume first that 2
cM M  and that H  is uniformly 

pounded in time. For any stopping time T , we have by the isometry property 

of Theorem (2.2.3): 
2 2

(0, ](( . ) ) (( 1 . ) )T TH M H M  E E  
2 2

(0, ](( 1 .[ ]) ) (( .[ ]) )T TH M H M E E                      (2.46) 

By the optional stopping theorem, we conclude that 2 2( . ) .[ ]H M H M  is a 

martingale. Moreover, since H  is locally bounded and [ ]M  continuous one 

also shows that 2.[ ]H M  is continuous with probability 1. Therefore, by 

Theorem (2.1.10), we have 2[ . ] .[ ]H M H M . In the general case, note that as 

a consequence of (i) and of the fact that [ ] [ ]T TM M , we may write 

 [ . ] lim . nT

n
H M H M


  

        
lim ( . ) nT

n
H M


     

(0, ]lim 1 . n

n

T
Tn

H M

     

   
2

(0, ]lim 1 .[ ] n

n

T
Tn

H M


  (by the above) 

      = 2.[ ]H M  (by monotone convergence)  

where the limits in these equalities are a.s. pointwise limits. 

Theorem (2.2.13): (Stochastic Chain Rule) 
Let ,H K  be locally bounded and previsible and 2

,c locM M . Then 

.( . ) . .H K M HK M  



61 
 

We view this result as a stochastic chain rule, since it is telling us that: 

 0
.

t

s s t td K dM K dM  

This is a rule that is extremely useful in the practice of computing stochastic 

integrals. E.g., if t t tdY H dX then (1/ )t t tdX H dY . 

Proof: The case ,H K S  is tedious but elementary. For ,H K  uniformly 

bounded and 2
cM M , there exist , ,n nH K n �S  such that. nH H  and 

nK K  in 2( )L M . Furthermore, we may also assume that || ||nH   and 

|| ||nK   are uniformly bounded in n  

(indeed, truncating nK  at || || 1K    can only improve the 2L  difference 

between nK  and K ). We first prove an upper bound on 2 ( . )
|| ||

L K M
H : 

2
2 2

( . )
|| || (( .[ . ]) )

L K M
H H K M  E  

2 2(( .( .[ ])) )H K M  E  

* 2((( ) .[ ]) )HK M E  

2
2

( )
|| ||

L M
HK  

 2 2
2 2 2 2

( ) ( )
min || || || || ,|| || || || ,

L M L M
H K H K                  (2.47) 

since [ ]M  is non-decreasing and thus of finite variation. We have 

.( . ) ( ).n n n nH K M H K M  and using Equation(2.47) 

.( . ) .( . ) ( ).( . ) .(( ). )n n n n nH K M H K M H H K M H K K M      

22 (( ). )( . )
) nn

n
L K K ML K M

H H H


    

2 2( ) ( )
) 0n n n

L M L M
H H K H K K


       as n   

So .( . ) .( . )n nH K M H K M  in 2
cM . Similarly, ( ). ( ).n nH K M HK M  in 2 ,cM . 

which implies the result. 
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Definition (2.2.14):   
Let X  be a continuous semimartingale 0X X M A    with , ,c locM AM  . 

finite variation process and 0 0 0M A  . We set the quadratic variation of X  

to be that its martingale part, [ ] [ ]X M , independently of A. 

This definition finds its justification in the fact that 
2 1

2
( 1)2 2

0

( ) [ ]
n

n n

t

tk k
k

X X X 

  




   u.c.p.                        (2.48) 

as n  , as is not hard to show. 

Definition (2.2.15): 
For a continuous semimartingale X  and H  locally bounded and previsible, 

we define the stochastic integral 

. . . ,H X H M H A   writing also  
0

( . ) ,
t

t s sH X H dX                     (2.49) 

where .H M  is Itoො’s integral from Definition (2.2.8) and .H A  is the finite 

variation integral defined in Proposition (1.2.10). We agree that  

t t tdZ H dX  means 0 0

t

t s sZ Z H dX                        (2.50) 

Note that .H X  is already given in Doob-Meyer decomposition and is thus 

obviously a continuous semimartingale. Under the additional assumption that 

H  is left-continuous, one can show that the Riemann sum approximation to 

the integral converges.  

Proposition (2.2.16): 
Let X  be a continuous semimartingale and H  be a left-continuous, adapted 

and locally bounded process. Then  
2 1

2 ( 1)2 2 0
0

( )
n

n n n

t
t

s sk k k
k

H X X H dX  

  




    u.c.p. as n                   (2.51) 

Proof: We can treat the finite variation part 0X A  and the local martingale 

part M separately. It suffices to show that 
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2 1

2 ( 1)2 2
0

( ) ( . )
n

n n n

t

tk k k
k

H M M H M  

  




   u.c.p. as n              (2.52) 

when ,c locM M  with 0 0M  . By localization, we can reduce to the case 

where 2
cM M  and tH  is bounded uniformly for 0t  . Let 

2 2n n
n
t t

H H   
 

 . 

Then n
t tH H  as n   by left continuity. Now,  

2 1

2 ( 1)2 2 2 2 2 2
0

( . ) ( ) ( )
n

n n n n n n n

t
n

t tk k k t t
k

H M H M M H M M    

  

       

                 (2.53) 

where, since M  is continuous (and therefore almost surely uniformly 

continuous on any compact interval), 
2 2

0n nt t
M M   

 
   u.c.p. as n  . We 

can thus ignore the second term on the right. Now  

 2

0
|| || ( ) [ ] 0n n

M t t tH H E H H d M


     as n             (2.54) 

by bounded convergence and the fact that n
t tH H  for every t  as n  . By 

the isometry property, . .nH M H M  in 2
cM . Using Doob’s inequality, it is 

easy to see that this implies u.c.p. convergence.  

To step away from the theory for a moment and look at a concrete example, 

you should try your hands at proving the following result. This will be 

generalized in a moment in Theorem (2.2.27) so you can go look for some 

inspiration there if you are stuck.  

Proposition (2.2.17):  
Let ( , 0)tM t   be a continuous local martingale. Then for all 0t  ,  

2 2
0 0

2 [ ] .
t

t s s tM M M dM M    

In particular if ( , 0)tB t   is a one-dimensional standard Brownian motion, 

then  

2

0
2

t

t s sB B dB t   

is a semi-martingale. 
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Now we study Covariation. 

In practice we do not calculate integrals from first principles, but rather se 

tools of calculus such as integration by parts or the chin rule. In this section 

we derive these tools for stochastic integrals, which differ from ordinary 

calculus in certain correction terms. A useful tool for deriving these rules will 

be the covariation of two local martingales. 

Definition(2.2.18): 
Let ,, c locM N M  adapted to a common filtration ( , 0)t t F  satisfying the 

usual conditions, and set 
1
4[ , ] ([ ] [ ])M N M N M N           (polarization identity)                         (2.55) 

[ , ]M N is called the covariation of M and N . 

Proposition (2.2.19): 
Let ,, c locM N M  Then we have: 

(i) [ , ]M N  is the unique (up to indistinguishability) continuous adapted 

process with finite variation such that [ , ]MN M N  is a continuous 

local martingale started from 0. 

(ii) For 1n   and for all 0t  , let 
2 1

( 1)2 2 ( 1)2 2
0

[ , ] ( )( )
n

n n n n

t
n
t k k k k

k

M N M M N N   

  

 


                     (2.56) 

Then [ , ] [ , ]nM N M N  u.c.p. as ,n   

(iii) for 2, , [ , ]cM N MN M N M  is a UI martingale 

(iv) [ , ]M N  is a symmetric bilinear form. 

Proof: (i) Note that 2 21
4 (( ) ( ) )MN M N M N     It is thus obvious that 

[ , ]MN M N  is a continuous local martingale. Moreover, finite variation is an 

obvious consequence of the definition and uniqueness follows easily from 

Theorem (1.2.18). 
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(ii) and (iii) follow form polarizing the sum Equation(2.56) just as in 

Equation(2.55) and applying Theorems (2.1.9) and (2.1.14). 

For (iv), the symmetry comes from the uniqueness in (i), while the bilinearity 

also follows from (i). 

Remark (2.2.20):  
Of course, [ , ] [ ]M M M . 

Theorem (2.2.21): (Kunita-Watanabe Identity) 
Let ,, c locM N M  and H  be a locally bounded previsible process. Then  

[ . , ] .[ , ].H M N H M N                                  (2.57) 

Proof: We may assume by localization that 2, cM N M  and that H  is 

uniformly bounded in time. Note that .[ , ]H M N  is of finite variation, and thus 

by the uniqueness of Proposition (2.2.19), it suffices to prove that 

,( . ) .[ , ] c locH M N H M N M  

By the optional stopping theorem, it suffices to prove that for all bounded 

stopping times T , 

(( . ) ) (( .[ , ]) )T T TH M N H M NE E                       (2.58) 

and by considering the stopped processes ,T TH M  and TN  it suffices to prove 

that (( . ) ) (( .[ , ]) )H M N H M N  E E . If H  is of the form {( , ]}1 s tZ  with Z  

bounded sF  measurable, then this identity becomes 

{ ( ) } { ([ , ] [ , ] )}.t tZ M M N Z M N M N  S SE E  

However, note that since [ , ]MN M N  is a martingale, we have: 

{ ( ) } { ( | )} { ( | )}t tZ M M N ZM N ZM N    S S S SF FE E E E E  

{ ( | )}t tZ M N M N  S S SFE E  

{ ([ , ] [ , ] | )}tZ M N M N  S SFE E  

{ ([ , ] [ , ] )},tZ M N M N  SE  
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as required. Equation(2.58) then extends by linearity to all H S . If H  is 

bounded, we may find a L sequence nH H  in 2 ( )L M  such that nH S  and 

is uniformly bounded. The Lebesgue convergence theorem then shows that 

Equation(2.58) holds. This proves the result. 

Remark (2.2.22): 

Note that a consequence of this identity is that 2[ . , . ] .[ , ].H M H N H M N  

Definition (2.2.23):  
Let ,X Y  be continuous semi-martingales: We define their covariation [ , ]X Y  

to be the covariation of their respective martingale parts in the Doob-Meyer 

decomposition. 

It is not hard to see that    lim , ,n
n X Y X Y   u.c.p where 

2 1

( 1)2 2 ( 1)2 2
0

[ , ] ( )( )
n

n n n n

t
n
t k k k k

k

X Y X X Y Y   

  

 


    

An important property of the covariation is that two independent semi-

martingales have zero covariation. However, just as there exist many pairs of 

random variables with zero correlation which are not independent, the 

converse is false. A notable exception is the Levy characterization of 

Brownian motion. 

Proposition (2.2.24):  
Let ,X Y be continuous local martingales in a common filtration ( , 0)t t F  

satisfying, the usual conditions, and assume that X  and Y  are independent, 

i.e., ( , 0)sX s   and ( , 0)sY s   are independent. Then [ , ] 0.X Y   

Remark (2.2.25):  

In particular, if 1( ,..., )dB B B  is a d-dimensional F -Brownian motion, then 

,[ , ] .i j
t i jB B t  

Remark (2.2.26): 
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Note that the Kunita-Watanabe identity [ . , ] .{ , ] [ , . ]H X Y H X Y X H Y   also 

holds for continuous semi-martingales. 

Now we study Itoො’s formula. 

Theorem (2.2.27): (Integration by parts)  
Let ,X Y  be continuous semimartingales. Then 

0 0 0 0
[ , ] .

t t

t t s s s s tX Y X Y X dY Y dX X Y                         (2.59) 

Proof: Since both sides are continuous in t , it suffices to consider 2 Nt M   

for , 1.M N   Note that 

( ) ( ) ( )( )t t s s s t s s t s t s t sX Y X Y X Y Y Y X X X X Y Y                      (2.60) 

so for n N  
2 1

0 0 2 ( 1)2 2 2 ( 1)2 2
0

( ( ) ( )
n N

n n n n n n

M

t t k k k k k k
k

X Y X Y X Y Y Y X X


     



 


       

( 1)2 2 ( 1)2 2
( )( )n n n nk k k k
X X Y Y    

   

. . ( . ) ( . ) [ , ]t t tu c p X Y Y X X Y   as n               (2.61) 

by Proposition (2.2.16)  

Note the extra covariation term which we do not get in the deterministic case. 

The next result, Itoො’s formula, tells us that a smooth function of a continuous 

semimartingale is again a continuous semimartingale and gives us its precise 

decomposition in a sort of chain rule. 

Theorem (2.2.28): (Itܗෝ’s Formula) 

Let 1 2, ,..., dX X X  be continuous semimartingales and set 1( ,..., )dX X X . 

Let 2 ( , ).df C � � . Then 

 

21
0 20 0

1 . 1

( ) ( ) ( ) ( ) [ , ] .i i j

d dt tf fi i j
t s s s sx x x

i i j

f X f X X dX X d X X 
  

 

                   (2.62) 

Remarks: (i)In particular, ( )f X  is a continuous semimartingale with 

decomposition  
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,

0 0
1

( ) ( ) ( )i

c loc

d t f i
t s sx

i
f X f X X dM






 


M

 

2
1
20 0

1 . 1

finite variation

( ) ( ) [ , ] .i i j

d dt tf fi i j
s s s sx x x

i i j
X dA X d M M 

  
 

   


                       (2.63) 

where the covariation of the d� -valued semimartingale 0X X A M    is 

[ , ] [ , ]i j i jX X M M , due to quadratic variation and the polarization identity 

Equation(2.55). 

(ii) Intuitive proof by Taylor expansion for 1d  : 
2 1

0 ( 1)2 2 2 2
0

( ) ( ) ( ( ) ( )) ( ( ) ( ))
n

n n n n

t

t tk k t
k

f X f X f X f X f X f X  

  

   

       

2 1
'

0 2 ( 1)2 2
0

( ) ( )( )
n

n n n

t

k k k
k

f X f X X X  

  




     

2 1
''1

2 2 ( 1)2 2
0

( )( )
n

n n n

t

k k k
k

f X X X  

  




    error terms 

. .u c p
' ''1

0 20 0
( ) ( ) ( ) [ ]

t t

s s s sf X f X dX f X d X                   (2.64) 

We will not follow this method of proof, because the error terms are 

hard to deal with. 

Proof: (for 1d  ) 

Write 0X X A M   , where A has total variation process V . Let 

 inf 0 :| | [ ] .r t t tT t X V M r                                    (2.65) 

Then 0( )r rT   is a family of stopping times with rT � . It is sufficient to prove 

Equation(2.62) on the time intervals [0, ]rT . Let 2( , )C � �A  denote the 

subset of functions f  for which the formula holds. Then 

(i) A  contains the functions ( ) 1f x   and ( )f x x .  

(ii) A  is a vector space. Below we will show that A  is, in fact, an 

algebra, i.e. in addition 
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(iii) ,f g A  fg A  

Finally we will show that 

(iv) if nf A  and nf f  in 2 ( , )rC B �  for all 0r   then f A , where 

nf f  in 2 ( , )rC B R  means that , 0n r   as n   with 

{ :| | }rB x x r   and 

' ' '' ''
, max sup | ( ) ( ) |,sup | ( ) ( ) |,sup | ( ) ( ) |

r r r

n r n n n
x B x B x B

f x f x f x f x f x f x
  

      
           

(2.66) 

(i) -(iii) imply that A  contains all polynomials. By Weierstrass’ 

approximation theorem, these are dense in 2 ( , )rC B �  and so (iv) implies 
2 ( , )rC B �A . 

Proof of (iii): Suppose ,f g A  and set ( ), ( )t t t tF f X G g X  . Since the 

formula holds for f  and ,g F  and G  are continuous semimartingales. 

Integration by parts (Theorem  2.2.27). yields 

0 0 0 0
[ , ]

t t

t t s s s s tFG F G F dG G dF F G                           (2.67) 

we have . .(1. )F G F G and using Itoො’s formula for 0(1. ) ( ) ( )s sG g X g X   we 

get by 

' ''1
20 0 0

( ) ( ) ( ) ( ) [ ]
t t t

s s s s s s s sF dG f X g X dX f X g X d X                          (2.68) 

By the Kunita-Watanabe identity Theorem (2.2.21) we have 
' '[ . , ] ,[ , ]f X G f X G . Applying this a second time for G  leads to 

' ' ' '

0
[ , ] [ ( ). , ( ). ] ( ) ( ) [ ]

t

t t s s sF G f X X g X X f X g X d X                                    (2.69) 

Substituting these into Equation(2.67), we obtain Itoො’s formula for fg . 

Proof of (iv): Let nf A  such that nf f  in 2 ( , )rC B � . Then 

' ' '' ''1
20 0

| ( ) ( ) | | ( ) ( ) | [ ]r rt T t T

n s s s n s s sf X f X dV f X f X d M
 

      

1
, ,2( [ ] ) 0

r rn r t T t T n rV M r         as n                      (2.70) 

and so 
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' '' ' ''1 1
2 20 0 0 0

( ) ( ) [ ] ( ) ( ) [ ]r r r rt T t T t T t T

n nf X dA f X d M f X dA f X d M
   

     S S S S S S S S

Moreover, 2rT
cM M and so 

 2' ' ' ' 2

0
( ( ). ) ( ( ). ) ( ( ) ( )) [ ]r

r r
TT T

n n s s sf X M f X M f X f X d M  E  

 2 2
, ,([ ] ) 0,

rn r T n rM r    E                                       (2.71) 

as n   and so ' '( ( ). ) ( ( ). )r rT T
nf X M f X M  in 2

cM . For any fixed r , rT
rX B  

and taking the limit n   in Itoො’s formula for nf  we obtain 

' ''1
0 20 0

( ) ( ) ( ) ( ) [ ]r r

r

t T t T

t T s s s sf X f X f X dX f X d X
 

                    (2.72) 

Remark (2.2.29): 
For 1d  , (i)becomes ’ A  contains the constant 1 and the coordinate functions 

1
1( ) ,..., ( ) d

df x x f x x  ’. Check that you can then follow the same argument, 

dealing with all the different components , ,[ , ]i i i jX M M M  etc. 

Corollary (2.2.30): 

Let 1 2, ,..., dX X X  be continuous semimaingales and set 1( ,..., )dX X X . Let
2 ( , ).df C  � � �  Then 

0 0 01

( , ) (0, ) ( , ) ( )i

dt tf f i
t s s st x

i

f t X f X s X ds X dX¶ ¶
¶ ¶

=

= + + åò ò  

21
2 0, 1

( ) [ , ]i j

d t f i j
s sx x

i j

X d X X¶
¶ ¶

=
å ò  

Proof: This is an immediate consequence of Equation(2.62). Indeed, the 

process t t  is non-decreasing and so of finite variation, so 1( , ,..., )d
t tt X X  is a 

1d  -dimensional semi-martingale. The result follows by applying Itoො’s 

formula to this d + 1-dimensional process, and observing that since t t  is of 

finite variation, it does not contribute to any of the covariation terms. 

We will also occasionally need the following generalization of Itoො’s formula 

which allows us to localise the process in some open set: 
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Proposition (2.2.31): 
Let D be a domain (open and connected subset of d� ) which is a proper 

subset. Let :f D ® ¡  be a 2C function on D . Then if X is a semimartingale 

such that 

0X DÎ almost surely, and if inf{ 0 : }tT t X D= ³ Ï  then we have: 
2

0 01 , 1

1( ) ( ) ( ) [ , ]
2

d dt t
i i j

t s s s s
i i ji i j

f ff X X dX X d X X
x x x= =

¶ ¶= +
¶ ¶ ¶å åò ò  

almost surely for all t T< . 

Proof: We may assume without loss of generality that 2i
cX M for each 

1 i d£ £ Let 1n ³  and defines inf{ 0 : ( , ) 1 / }c
n tt d X D nt = ³ £ . Then n Tt £

almost surely and nt is nondecreasing, hence limn nL t® ¥= , exists. We have 

L T£ by passing to the limit in n Tt £ , and we also claim that L T£ . 

Indeed, since the distance is a continuous function, ( , ) 0c
Ld X D = .  

Note that 
( ,1)( , ) inf ( , ) inf ( , )c c

L

c
L L Ly D y D B Xd X D d X y d X yÎ Î= = I

.  

Sinc D is open, ( ,1)c
LD B XI is compact and thus this distance is attained. 

This means that c
LX DÎ which implies L T£ .Thus  

.L T= Let '
1 ,

inf{ 0 :|| || ([ , ] ) },i j
n t ti j d

t X V X X nt
£ £

= ³ + ³å  

where ( )V X  denotes the total variation of the process X . Let '
n n nT t t= Ù . 

Then nT T< for all 0n ³  and nT increases towards T almost surely. 

Now, let us introduce a sequence of functions 1( )m mj ³  which are C -

approximations of the identity (such as the Gaussian density with mean 0 and 

covariance matrix (1 / )m I .) Consider the function 

, { }( 1 )
nn m D mf f å j=  

where nD  is the subdomain { : ( , ) 1 / }c
nD x D d x D n= Î >  and å  denotes the  
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convolution of two functions, i.e., ( ) ( ) ( )
d

f x f y g x y dygå = -ò¡
. Since mj

is C , and since convolution is a regularizing operation, the function ,n mf is 

C  for all ,n m . Thus we can apply Itoො’s formula to ,n mf . Stopping at time nT , 

we get: 
2

, ,
, 0 01 , 1

1( ) ( ) ( ) [ , ]
2

n n

n

d dt T t Tn m n mi i j
n m t T s s s s

i i ji i j

f f
f X X dX X d X X

x x x
Ù Ù

Ù
= =

¶ ¶
= +

¶ ¶ ¶å åò ò (2.73) 

However, since f is 2C inside D , we have for all nx DÎ : 

, ( )n m
m

i i

f fx
x x


 


 

å  

and 
2 2

, ( ) ( )n m
m

i j i j

f fX X
x x x x

j
¶ ¶=

¶ ¶ ¶ ¶
å  

Since mj  is an approximation of the identity, this means that as m ® ¥ , 

, ( ) ( ),n m

i i

f fx x
x x

 


 
and 

2 2
, ( ) ( )n m

i j i j

f fx x
x x x x

¶ ¶®
¶ ¶ ¶ ¶

 

pointwise in D . This implies that one can take the limit m ® ¥  in 

Equation(2.73). Indeed, the second term 
2 2

,

0 0
( ) [ , ] ( ) [ , ]n nt T t Tn m i j i j

s s s s
i j i j

f fX d X X X d X X
x x x x

  


      

converges because of the Lebesgue convergence theorem since each 
2( ) nTi

cX M (1 i d  and 1n  ). To see that the first term also converges, 

applying the isometry property of the stochastic integral: 
2 2

, ,

0
( ).( ) ( ) [( ) ]n nn m n mT Ti i

s s
i i i iX

f ff fX X X d X
x x x x

                    
E  

Since for a fixed n , [( ) ]nTiX  is bounded by n , and since , ( ) ( )n m

i i

f fx x
x x

 


 

pointwise in nx D , and these functions are uniformly bounded in m , we 
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may apply the Lebesgue dominated convergence theorem, and get that the 

right-hand side converges to 0.  

Thus we get the desired Ito formula for all nt T almost surely. Letting n 

finishes the proof.  
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Chapter Three 

Applications to Brownian Motion and Martingales 

Section (3.1): Brownian Martingales and Dubins-Schwarz Theorem 

As we will see in a few moments, martingales are very useful to 

understand (and ultimately prove results about) the behaviour of random 

processes. 

We start with the following very useful observation. 

Theorem (3.1.1): (Exponential Martingale) 

Let ,c locM M with 0 0M  . Then 1exp [ ]
2t t tZ M M   

 
  defines a continuous 

local martingale. We call Z  the exponential (local) martingale of  M . 

Proof: The function ( , ) exp( 2)f x y x y   is Cଶ and tM  and [ ]tM are both semi 

martingales. By Itô’s formula, 

1 1[ ] [ ]
2 2t t t t t t t tdZ Z dM d M Z d M Z dM     

                  (3.1)                      

so 0 0

t

t s sZ Z Z dM    is a local Martingale. 

Applying this to Brownian motion, we find the following martingales, 

which are the basis of a finer study of Brownian motion. If , dx y C ,  we note 

1
, d

i ii
x y x y


  their complex scalar product. 

Theorem (3.1.2):  

 Let ( , 0)tB t   be an  tF -Brownian motion in 1d   dimensions. 

(i) If  1d   and 1
0( )B L , the process ( , 0)tB t  is a  tF  -martingale. 
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(ii) If 1d   and 2
0( )B L , the process  2 , 0tB d t t   is a  tF  - martingale. 

(iii) Let 1d  and d
1( ,..., )du u u C . Assume that 0exp( , )E u B     , the 

process defined by 

 2exp , 2t tM u B tu   

is also a  tF  -martingale for every 2 du C  where 2u  is a notation for
2

1

d

i i
u

  . 

Notice that in (iii), we are dealing with ℂ-valued processes. The 

definition of E X  G the conditional expectation for a random variable 

1( )X L C  is E X iE X    R G G , and we say that an integrable process 

( , 0)tX t  with values in C , and adapted to a filtrtion  tF , is a martingale if 

its real and imaginary parts are. Notice that the hypothesis on 0B  in (iii) is 

automatically satisfied whenever it u iv  is purely imaginary, i.e., vR . 

Proof: (i) if  , 0,s
t s s t ss t B B B 

         FE[ E   where  s
u u s sB B B   has mean 0 

and is independent of sF , by the simple Markov property. The integrability of 

the process is obvious by assumption on 0B . 

(ii) Since 2
0B L and 0tB B  is a normal random variable, we have by the 

triangle inequality that 2
tB L . For 2 2 2, ( ) 2 ( ) .t t s s t s ss t B B B B B B B       

Taking conditional expectation given sF and using the simple Markov 

property gives 2 2( )t sB t s B     E[ , hence the result. A proof using Ito’s 

formula is to say that B  is an F -local martingale and 

2

0
2 .

t

t s sB B dB t   
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Thus 2

0
  2

t

t t s SB t M B dB     is an F -local martingale. It thus suffices to 

show that it is a true martingale, which can be proved for instance by 

observing that the quadratic variation is 

  2

0

t

st
M B ds   

which has finite expectation for all 0t   by Fubini’s theorem. By Theorem 

(2.1.15)  , 0s tM s   is a martingale bounded in 2L  and hence M  is a true 

martingale. 

(iii) To check integrability, note that    2 / 2tE exp B exp t      whenever B  is 

a standard Brownian motion, and since z se e , then we have 

    0 0, ,t texp u B exp u B B B E E  

    0 0, ,texp u B B exp u B E E  

   2
i 0

1
u / 2 , .

d

i
exp t exp u B



 
 
 

    E  

To show that M is a martingale, consider 1dX t   which is a continuous semi-

martingale. 

Let      2 2 d+l
1 1 1

1
,..., , 1/ 2 . ,

d

d d i i d
i

f x x x exp u x u x f C 


 
  
 

  Rd C  so we may 

apply Itô’s formula and obtain: 

 
d

2
0 i

i=1

 u / 2, i
t ssM M exp u B su dB    

Since ,t
, i jd B B dt   

i j  and , =0iB t    for all 1 ,i j d  , so that the finite 

variations term cancel. It thus suffices to show that:  2

0
, / 2

t i
i s su exp u B su dB
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is a true martingale. We take the quadratic variation of the real and imaginary 

parts, and it suffices by Fubini’s theorem to show that 

d
2

i0
i=1

,exp 2r B s ds < 
t i

s u u
  
  

  
  E            (3.2) 

where ir is the complex modulus of iu  and
2 2

1

,
d

i
i

u u r


 . Equation (3.2) 

follows instantly from the independence of the coordinates and the fact that 

   2 / 2 . tE exp rB exp tr    

A classical application of these martingales is to show the following 

result, often referred to as the gambler’s ruin estimates. 

Theorem (3.1.3): 

 Let  ,  0tB t   be a standard Brownian motion and { 0 : }x tT inf t B x   .Then 

for , 0x y  , one has 

  ,  y x x y
xT T T T

x y
xy   


  P E  

Proof: Let y xT T T  , which is a stopping time. Moreover, TB  is bounded 

  by max ,  x y  so we may apply the optional stopping theorem to find that

   0 0TB B E E . On the other hand,    1TB yp x p   E , where 

  = y xp P T T   is the probability of interest to us. Thus  = 1py p x and the 

first statement follows easily. For the second statement, observe that 

 2
t TB t T   is a martingale (since martingales are stable by stopping) and thus 

   2
t TB t T  E E  

We may let t   since the left-hand side is bounded and the right-hand side 

is monotone, and deduce that 
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   2
TB TE E  

Using the first statement, 

 2 2 2
T

x yB y x xy
x y y x

  
 

E  

and the claim follows.  

Similarly, 

Theorem (3.1.4): 

 The Laplace transform of xT for x R is given by   2x qqTxe e  E . Moreover, 

the random variable x yT T T  has a Laplace transform given by 

  2 sinh 2
sinh( 2 ( ))

qT sinh qx q y
e

q x y
 




E  

and when ,y x T  is independent from the event x xT T  . 

Proof: The first statement follows directly from the optional stopping 

theorem and the fact that  2 /2
t tBe

   is a martingale which is bounded when 

stopped at xT if 0x   (which we may assume by symmetry). The second 

statement is a bit more involved. Let 

  2 /2    t
t tM e sinh B y    

is also a martingale since it can be written as 

   2 2    /2 /21 1 e  e
2 2

t tB y B yt te e        

which is the sum of two martingales. Now, stopping at ,x yT T T M  is 

bounded so we can use the optional stopping theorem to obtain: 
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     2 2sinh = sinh T
Ty B y e   E  

  2 2
{ }= sinh ( ) 1

x y

T
T Tx y e 




E  

Thus: 

   
 

2 2
{ }

sinh
1

sinh ( )x y

T
T T

y
e

x y
 




 


E  

By symmetry,  

   
 

2 2
{ }

sinh
1

sinh ( )y x

T
T T

x
e

x y
 




 


E  

 

Adding up the two terms, 

     
 

2 2 sinh sinh
sinh ( )

T y x
e

x y
  


 




E  

When x y , it suffices to check that 

     2 2 22 2 2
{ }

11 ( )
2y x

T T T
T T y xe e P T T e  


  
   E E E  

Which is easy to check.  

Another family of martingales is provided by the result below. This is 

the first hint of a deep connection between Brownian motion and second-

order elliptic partial differential operators, a theme which we will explore in 

greater detail later on in the research (This also connects to the theory of 

martingale problems developed by Stroock and Varadhan, which has proved 

to be one of the most successful tools in probability theory). 
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Theorem (3.1.5): 

 Let  , 0tB t  be a  tF -Brownian motion. Let   d, :f t x   R R C  be 

continuously differentiable in the variable t and twice continuously 

differentiable in x . Then, 

   0 0
, 1 (0 , ),,

2
f

t t

t

sdM f t B s f s B
t

f B      
   0t   

is a  tF -local martingale, where 
2d

2
1i ix


 

  is the Laplacian operator acting 

on the spatial coordinate of f . If moreover, the first derivatives are uniformly 

bounded on every compact interval (that is, for all 0T  , 

d0 ,
sup sups ( , )
t iT x

f t x
x 




 
R d

 

for all1 )i d  , then fM  is a true martingale. 

Proof: By Itô’s formula, 

0
1

( , )
dtf i

t s s
i i

fM s B dB
x




  

is indeed a local martingale. The fact it is a true martingale when the first 

partial derivatives are uniformly bounded on every compact time interval, 

follows from the fact that the quadratic variation of fM is bounded on every 

compact time interval, and hence it is a true martingale (even bounded in 2L ) 

on every compact time interval. 

Now we discuss Dubins-Schwarz Theorem. 

We work on a filtered probability space  0, , ( ) ,  t t  PF F  where 0( )t t F satisfies 

the usual conditions. 
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Theorem (3.1.6):(Levy’s Characterization of Brownian Motion) 

Let 1
,,...,  d

c locX X M  The two following statements are equivalent. 

(i) For all ij0,  , δi j

t
t X X t   . 

(ii)  1,... ,  dX X X  is a Brownian motion in dR . 

Proof: It suffices to show that, for   0 , 0, -t ss t X X IN t s   �  and the 

increment is independent of sF . By uniqueness of characteristic functions, this 

is equivalent to showing that for all s t and for all d R . 

    21, .
2t s sexp i X X exp t s      

 
E F                        (3.3) 

 (Here .,.  is the usual scalar product on dR and  is the Euclidean norm). 
dFix R d and set   1

1,  ... .d
t t t d tY X X X       

Then Y is a local martingale, and by the assumptions and the bilinearity of the 

covariation,  22

1

 .
d

i
i

Y t t 


   Define also 

2
t

1 1[Y] , .
2 2t t tZ exp iY exp i X t  

 
     
 

t  

Z is the exponential martingale associated with tiY which is a local 

martingale, so ,c locZ M . Moreover, Z is bounded on  0,  t   for all 0t 

 2since [ ] = tY t  and so is a true martingale by Proposition (1.2.14). Hence, 

t(Z   )=Zs sE F , or equivalently:  

., .1s
t

s

Z
Z

a s
 

  
 

E F  

Equation (3.3) follows directly. 
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Theorem (3.1.7): (Dubins-Schwarz Theorem) 

Let ,c locM M  with 0 0M   and  M

  . ..a s Set 

{inf  0 : ] }[ ,s t s st M s B M    TT . Then sT  is an   0t t 
F -stopping time. If ss  TG F

then   0s s 
G  is a filtration and B is a   0t t 

G -Brownian motion. Moreover

[ ]tt MM B . 

Remark (3.1.8): 

 So any continuous local martingale is a (stochastic) time-change of Brownian 

motion. In this sense, Brownian motion is the most general continuous local 

martingale. 

Proof: Since  M  is continuous and adapted, sT is a stopping time, and 

[since ]M     it must be that s  T . .a s for all 0s  . We start the proof by the 

following lemma. 

Lemma (3.1.9): 

B  is a.s. continuous. 

Proof: Note that ss  T  is càdlàg and nondecreasing and thus B is càdlàg. So 

it remains to show s sB B   for all 0s  , or equivalently s sM M T T , where 

 i : ][nf 0s tt M s   T  

and note that s T is also a stopping time. Let s > 0. We need to show that M is 

constant between s T and sT  whenever s s T T , i.e. whenever  M  is constant. 

Note that by Theorem (2.1.15) 2 ])( [ sM M T  is uniformly integrable since

([ ] )sM   E T . Hence, by the optional stopping theorem (the uniformly 

integrable version, see Equation (1.38) we get: 
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2 2( [ ] ) [ ]s ss ssM M M M
   E T TT T TF  

But by assumption, [ ] [ ]
s s

M M


T T and M  is a martingale, we obtain 

2 2( ) ( ) 0s s s ss sM M M M
     E ET T T T

2

T TF F  

and so M is a.s. constant between s T and sT . This proves that B  is almost 

surely continuous at time s . To prove that B is a.s. continuous 

simultaneously for all 0s  , note that if  inf 0 :r t rT t M M    and 

  inf 0 :r rt
t M M  S  then the previous argument says that for all fixed 

0r   (and hence for all r Q ), r rT  S . a.s. But observe that rT  and rS  are both 

càdlag. Thus equality holds almost surely for all 0r  and hence almost 

surely, M  and  M  are constant on the same intervals. This implies the result. 

We also need the following lemma. 

Lemma (3.1.10):  

B is adapted to   0t t 
G . 

Proof: It is trivial to check that   0s s 
G is a filtration. Indeed, if S T  a.s. are 

two stopping times for the complete filtration  tF , and if A sF , then for all

0t  , 

     { }A T t A S t T t       

up to zero-probability events. The first event in the right-hand side is in tF  by 

assumption, and the second is also in tF  since T is a stopping time. Since  tF

is complete, we conclude that TA F  as well, and hence Ts F F . From this, 

since r sT T almost surely if r s ,  sGs  is a filtration. It thus suffices to show 

that if X  is a càdlàg adapted process and T is a stopping time, then { }1T TX    is 
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TF -measurable. Note that a random variable Z is TF -measurable if 

 1  tT tZ  F  for every  0t  . If T  only takes countably many values  1k k
t 


 , 

then  

   
1

1  = 1
k kT tT T t

k

X X


 

  

so it is trivial to check that  1T TX  is TF -measurable, since every term in the 

above sum is. In the general case, let 2 [2 ]n n
nT T  where [ ]x  denotes smallest 

n Z  with n x . Then nT  is also a stopping time, finite wheneverT   , and 

such that  nT T while  nT T almost surely. Thus for all 0u  , and for all 

1n  , { }1
n nT T uX   is uF -measurable. Furthermore, by right-continuity of X ,

   lim  1 1
n nT T T uT un

X X 
 . Thus { }1

nT T uX  is uF -measurable. Naturally, 

{ } { }1 1T T u u T uX X  is also uF -measurable, so we deduce that { }1
nT T uX  is uF -

measurable.  

Having proved this lemma, we can now finish the proof of the Dubins-

Schwarz theorem .Fix 0s  . Then [ ] [ ]
s

sM M s  
T

Ta , by continuity of M . 

Thus by Theorem (2.1.15), 2s
cM Ta M  since sM


  E Ta . In particular, 

 , 0t sM s Ta is uniformly integrable by Doob’s inequality. In particular, we 

get that 2( )rM L PTa for r s (and s  was arbitrary). Applying the uniformly 

integrable version of the optional stopping theorem Equation (see Equation 

(1.38) a first time, we obtain 

 r rTrM MT TsFE  

a.s. and thus B  is a G -martingale. Furthermore, since 2s
cM T M  by Theorem 

(2.1.15),  2( ] sM M T  is also a uniformly integrable martingale. By Equation 

(1.38) again, for r s , 
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   2 2( [ ])s r s rB s M M EE T Ts G F  

2 2[ ])
r rT rM M B r   T  

Hence, cB M with [ ]sB s and so, by Levy’s characterization, B  is a   0t t 
G

-Brownian motion. 

Before we head on to our next topic, here are a few complements to this 

theorem, given without proof. The first result is a strengthening of the 

Dubins-Schwarz theorem. 

Theorem (3.1.11):  

Let M  be a continuous local martingale with 0M 0  a.s. Then we may 

enlarge the probability space and define a Brownian motion B on it in such a 

way that 

][  . .   0.M tM B a s for all t   

More precisely, taking an independent Brownian motion  , if 

[ ]

[ ] [  ]

s

s

s

M for s M

B
M M for a Ml sl



  




 
   

T

 

then B  is a Brownian motion and for all  0,  
t

t Mt M B  . 

Remark (3.1.12): 

 One informal but very informative!) conclusion that one can draw from this 

theorem is the fact that the quadratic variation should be regarded as a natural 

clock for the martingale. This is demonstrated for instance in the following 

theorem. 
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Example (3.1.13): 

 Let B  be a Brownian motion and let h  be a deterministic function in 

 2 , ,L R B  with Lebesgue measure  . Set 
0 s sX h dB


  . Then  2

2
0,X N h� . 

Theorem (3.1.14): 

 Let M  be a continuous local martingale. Then 

(a)  lim 0
tt

M


 P  . 

(b)     : lim     :tt
M exists and is finite M 

 
  up to null events. 

 (c)     lim   limt tt t
M sup M and infM

  
     up to null events. 

Section (3.2): P1anar Brownian Motion and Dobiskr's Invariance 

Principle 

As explained before, Brownian motion is the scaling limit of d-

dimensional random walks (this theorem will actually be proved in its strong 

form in the Later). One of the most striking results about random walks is 

Polya’s theorem which says that simple random walk is recurrent in 

dimension 1 and 2, while it is transient in dimension 3. What is the situation 

for Brownian motion? Being the scaling limit of simple random walk, one 

might expect the answer to be the same for Brownian motion. It turns out that 

this is almost the case: there is however something subtle happening in 

dimension 2. In the planar case, Brownian motion is neighbourhood-recurrent 

(it visits any neighbourhood of any point “infinitely often”) but almost surely 

does not hit any point chosen in advance. 
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We work with the Wiener measure W  on the space of continuous 

functions, and recall that xW , denote the law of a Brownian motion started at

x . Let xE denote the expectation under this probability measure. In the 

sequel,  ,  B x r  and  ,  B x r  denote the Euclidean ball of radius r  about
dx R  . 

Theorem (3.2.1): (Recurrence/Transience Classification.) 

Let d 1  We have the following dimension-dependent behaviour. 

(a) If 1d   , Brownian motion is point-recurrent in the sense that: 

0W0  - a.s.for all t  , {  t 0 :  B }x x  � is unbounded 

(b) If d 3 , Brownian motion is transient, in the sense that tB   almost 

surely as t  . 

(c) If 2d  , Brownian, motion is neighbourhood-recurrent, in the sense that 

for every d x � , every open set is visited infinitely often xW0 -almost surely. 

Equivalently, for any 0  , 

   0 :    tt B is unbounded   

xW0 -almost surely for every 2 x  � . However, points are polar in the sense 

that for every 2 x  �  

 0     0 0tB s for somet  W0 . 

Proof: (a) is a consequence of (ii) in proposition (1.1.20). 

 (b) Let  1,..., dB B B  be a d-dimensional Brownian motion with 3d  . 

Clearly it suffices to prove the result for 3d   since 
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3 22 2

1

:
t

i
t t

i

B R B


   

and we are precisely claiming that the right-hand side tends to infinity as 

t  . Now, for 3d  , a simple calculation shows that if   1/f x x , then if

 30  \ 0f in  � . Thus by the local Ito’s formula, 

1 / t TR   is a local martingale, 

where T  is the hitting time of 0. Since it is nonnegative, it follows from 

Proposition (1.2.17) that it is a supermartingale. Being nonnegative, the 

martingale convergence theorem tel1 us that it has an almost sure limit M as 

t  , and it suffices to prove that 0M   almost surely. Note that

   01/M R  E E , so that M   almost surely and thus  T  almost 

surely. Now on the event  0 ,M R  must be bounded, and thus so is 1
tB . This 

has probability 0 by (i) and hence 0M   a.s. 

(c) Let =2d and let B  be a planar Brownian motion. Assume without loss of 

generality that 0 1B  . We are going to establish that starting from there, B  

will never hit 0 but will come close to it “infinitely often” (or rather, 

“unboundedly often”). Fork Z  , let k
kR e  and let 

   0 :k t kinf t B R  T  

and let 

 0 : 0 .tinf t B   T T  

Our first goal will be to show that  T , almost surely. Define a sequence of 

stopping times nT  as follows 0T =0 , and by induction if =
nn TZ B  then 

  1
1   , ,  .n n t n nT inf t T B e Z eZ
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Notice that if k, 1m   are two large integers, the probability that k m T T is the 

probability that nZ  visits ke   before me . Put it another way, it is also the 

probability that  ,  0nlogZ n   visits k before m. 

On the other hand, by Itô’s formula, t tM log B  T  is a local martingale 

since 

   2 2,x y log x y  is harmonic on   2 \ 0,  0� . 

Since tM is bounded on 1][ ;n nT T  , it follows from the Optional Stopping 

Theorem that given log nZ k Z , 

   1 1log 1| log 1| log 1/ 2n n n nZ k logZ k P Z k Z k        P . 

Moreover, the strong Markov property of Brownian motion implies that 

 log ,  0nZ n   is a Markov chain. In other words,  log ,  0nZ n  is nothing but 

simple random walk on Z . In particular, it is recurrent. Therefore, for any

0m  , 

  0k m  P T T  

as k  . Therefore, 

  0k m  P T T  

for all 0m  . This implies that  T  almost surely since m Tm as m  . 

On the other hand, this argument shows that k  T for all k Z , and there are 

infinitely many times that B visits this ball after returning to a radius greater 

than 1. Thus the set of times such that  0,t kB B R is unbounded a.s.  
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Remark (3.2.2):  

Notice that (iii) implies the fact that   0 : ,tt B B x     is unbounded for 

every 2x �  and every 0  , almost surely. Indeed, one can cover 2� by a 

countable union of balls of a fixed radius. In particular, the trajectory of a 2-

dimensional Brownian motion is everywhere dense. On the other hand, it will 

a.s. never hit a fixed countable family of points (except maybe at time 0), like 

the points with rational coordinates! 

Theorem (3.2.3): 

 Let 2d   and identify 2�  with the complex field C . Let : 'f D D  be 

analytic (i.e.. complex differentiable). Let z D  and consider a Brownian 

motion  , 0tB t   started at z . Let  0 :  tD inf t B D T . Then there exists a 

Brownian motion 'B  started at  f z , and a nondecreasing random function 

 t , such that 

'
'

'
( )

( )
DDt t

f B B
 

T T
 

Where 2

0
( ) | '( ) |

t

st f B ds   . In other words,  f B  is a time-changed Brownian 

motion stopped when it leaves 'D . 

It will be useful to recall the Cauchy-Riemann equations for complex analytic 

functions: if f u iv   is a complex-differentiable function with real and 

imaginary parts u  and v , then: 

u v
x y

u v
y x

 
 

 
 

 



 


 
− 
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from which it follows by further differentiation that both u and v are harmonic 

functions (i.e., 0u v    ) all over D ). Applying Ito’s formula and the 

Cauchy-Riemann equations shows that the real and imaginary parts of  tf B

have zero covariation and that they have identical quadratic variation. 

Applying the ideas of the Dubins-Schwartz theorem yields the result. 

In principle, Theorem (3.2.3) (in combination with the famous 

Riemann mapping theorem) can be used to extract all the information we need 

about the behaviour of Brownian motion. For instance, the exit distribution 

from a domain D is simply the conformal image of the uniform measure of 

the circle by a map from the disc to this domain. 

Remark (3.2.4): 

 The ramifications of this result are huge. On the one hand, it serves as a 

bridge between probability and complex analysis. This is one aspect of the 

deep connection between random processes ad harmonic analysis (which will 

be further developed later on). On the other hand, conformal invariance of 

Brownian motion, already observed by Paul Levy in the 1940’s, can be seen 

as the starting poir1t of Schramm-Loewner Evolution (SLE), one of the most 

fascinating recent theories developed in probability, which may be seen as a 

study random processes in the complex plane that possess the conformal 

invariance property. 

As an example of application of conformal invariance to planar Brownian 

motion, we will mention the following result, due to Spitzer.  ,  0tLet B t   

denote a planar Brownian motion started from (1,0). Let tW denote the total 

number of windigs of the curve B about 0 up to time t . This counts 1   for 

each clockwise winding around 0 and -1 for each counterclockwise winding. 
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Theorem (3.2.5): (Spitzer’s Winding Number Theorem) 

We have the following convergence in distribution: 

4
log

t
d

W
t


 C a Cauchy distribution with parameter 1.  

Recall thata Cauchy distribution(with parameter 1) has density  2

1
(1 )x 

  and 

has the same distribution as . `/N N , where these are two independent 

standard Gaussian random variables. To deduce Theorem (3.2.5), observe that 

by scaling, tW , has the same distribution as W  , where W  is the number of 

windings by time 1 of a Brownian motion started from  ,0  and 1/ t  . It 

is a simple estimate that W    is bounded in probability, where  , is the 

number of windings up to time T , the hitting time of the unit sphere : 1z z 

The result follows  1 /since t   and Cis symmetric about 0. 

Now we discuss Donsker’s invariance principle. 

The following theorem completes the description of Brownian motion as a 

‘limit’ of centered random walks as depicted in the beginning of the chapter, 

and strengthens the convergence of finite-dimensional marginals to that 

convergence in distribution. 

We endow   0,  1 , RC , with the supremum norm, and recall that the 

product  -algebra associated with it coincides with the Borel  -algebra 

associated with this norm. We say that a function   : 0,  1F  �C  is 

continuous if it is continuous with respect to this norm. Often, functions F  

defined on C will be called functionals. For instance, the supremum of a path 

on the interval [0,1] is a (continuous) functional. 
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Theorem (3.2.6): (Donsker’s Invariance Principle) 

 Let  , 1nX n   be a sequence of � -valued integrable independent random 

variables with common law  , such that 

     2 2=0 0,x dx and x dx       . 

Let 0 0S   and 1 ...n nS X X   , and define a continuous process that 

interpolates linearly between values of S , namely 

  1{ }1 { }t t tS t S t S       
   0t   , 

where t    denotes the integer part of t and t t t     . Then 

 
2

: , 0 1N NtSS t
N

 
   
 

 

converges in distribution to a standard Brownian motion between times 0 and 

1, i.e. for every bounded continuous function   : 0,  1F  �C , 

 [ ]
0) ( )( N

n
F S F B


   E E  . 

Notice that this is much stronger than what Proposition (1.1.1) says. 

Despite the slight difference of framework between these two results (one 

uses cadlage continuous-time version of the random walk, and the other uses 

an interpolated continuous version), Donsker’s invariance principle is 

stronger. For instance, one can infer from this theorem that the random 

variable 1/2N 
0sup n N nS   converges to 0 1sup t tB   in distribution, because 

 f sup f  is a continuous operation on   0,  1 ,�C . Proposition (1.1.1) would 

be powerless to address this issue. 

The proof we give here is an elegant demonstration that makes use of a 

coupling of the random walk with a Brownian motion, called the Skorokhod 



94 
 

embedding theorem. It is however specific to dimension 1d  . Suppose we 

are given a Brownian motion  , 0tB t   on some probability space ( , , ) PF . 

Let      1 01 xdx X dx   P  and      1 01 ydy X dy    P  define two 

nonnegative measures. Assume that ( , , ) PF  is a rich enough probability 

space so that we can further define on it, independently of  , 0tB t  , a 

sequence of independent identically distributed 2� -valued random variables 

  ,  , 1n nY Z n   with distribution 

        1, ,n nY Z dxdy x y dx dy
C

   P  

where C 0  is the appropriate normalizing constant that makes this 

expression a probability measure (this is possible because X has a well-

defined expectation). 

We define a sequence of random times, by 0 0T  ,   1 1 10 : ,tT inf t B Y Z    , 

and recursively, 

  11 1 1: ,
nn n t TT inf t T B B Y Z
      

By (ii) in Proposition (1.1.20), these times are a.s. finite. We claim that 

Lemma (3.2.7): (Skorokhod’s Embedding). 

 The sequence  , 0
nTB n   has the same law as  ,  0nS n  . Moreover, the 

intertimes  n 1- , 1nT T n  form a sequence of independent random variables 

with same distribution, and expectation   2
1T E  

Proof:  Let BF be the filtration of the Brownian motion, and for each 0n  , 

introduce the filtration ( , 0)n n
t t Gt G =defined by 

1 1( , ,..., , ).n B
t t n nY Z Y Z G F  
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Since ( , )i iY Z are independent from  , , 0B
tB t F  is a nG -Brownian motion for 

every 0n  . Moreover, nT  is a stopping time for nG . It follows that if 

 , 0
n nt T t TB B B t    then is tB independent from 

n

n
TG . Moreover,  1 1,n nY Z   is 

independent both from
n

n
TG  and from �B , therefore  1n nT T  , which depends 

only on �B and  1 1,n nY Z   is independent from 
n

n
TG . In particular,  1n nT T   is 

independent from 0 1( , ,..., )nT T T . More generally, we obtain that the processes 

 1 1 1, 0 
n nt T T n nB B t T T
       are independent with the same distribution. 

It therefore remains to check that 
1TB has the same law as 1X and

 1
2.T E Remember from Theorem(3.1.3) that given 1 1,Y Z , the probability 

that  
1 1 1 1 1 /TB Y is Z Y Z  , as follows from the optional stopping theorem. 

Therefore, for every non-negative measurable function f, by first conditioning 

on  1 1Y Z , we get 

 
1

1 1
1

1 1 1 1
1 ( )( )T

Z Yf f Z
Y Z Y

f B Y
Z

       
 
 
 

E E  

*

1 ( ) ( ) ( ) ( ) ( )y xx y dx dy f x f y
C x y x y

 
 

 

 
      
R R

 

 *

1 ( ) ( ) ( ) ( )dx dy yf x xf y
C

 
 

 
  R R

 

* *

1 1( ) ( ) ( ) ( ) ( ) ( )dx f x y dy dy f y x dx
C C

   
   

        R R R R
 

Now observe that since  1 0X E , it must be the case that 

*

'( ) ( )x dx y dy C 
 

    R R
 

say, and thus, the left hand side is equal to 
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1

'

( )T
Cf B f x x f x d
C

d x 


        RE  

   
'C d

C
f x x


 R  

 
'

1( )C f
C

X E . 

By taking 1f  , it must be that 'C C , and hence 
1TB  has the same law as 1 X  

For  1TE , recall from Theorem (3.1.3) that  { { }0 }: ,tinf t B x y xy   E , so 

by a similar conditioning argument as above, 

  *1
1 ( ) ( ) ( )T x y xy dx dy
C

 
 

   R R
E  

* *

2 21 1( ) ( ) ( ) ( )x dx y dy y dy x dx
C C

   
   

        R R R R
 

 
'

2C d
C

x x


 R  

2
'C

C
  

but since we already know that 'C C , this shows that   2
1T E , as claimed. 

 We will need another lemma, which tells us that the times mT  are in a 

fairly strong sense localized around there mean 2m . 

Lemma (3.2.8): 

We have the following convergence as N  : 

1 2

0
sup 0 . .                            n

n N
N T n a s

 
                        (3.5) 
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Proof: By the strong law of large numbers, note that 2/  nT n   almost 

surely. Thus, fix 0  . Then there exists  0 0= ,N N    such that if  

1 2
0  , nn N n T     . Thus if 0N n N  , then 

1 2
n

nN T n
N

       

Moreover, 
0

1 2
0sup n N nN T n
    tends to 0 almost surely as N  , so this 

implies Equation (3.5).  

Proof of Donsker’s Invariance Principle: We suppose given a Brownian 

motion B. For 1N  , define 1
( ) 1/2 , 0N

t N t
B N B t  , which is a Brownian motion 

by scaling invariance. Perform the Skorokhod embedding construction on 
( )  NB  to obtain variables  ( ) ,  0N

nT n  . Then, let ( )
( )) (

N
n

N N
T

S B  Then by Lemma 

(3.2.7),  ( ) , 0N
nS n   is a random walk with same law as  ( ) , 0N

nS n  . We 

interpolate linearly between integers to obtain a continuous process 

 ( ) , 0 1
t

NS t   which thus has the distribution as  ,0 1tS t   . Finally, let 

( )
( )

2
, 0

N
N Nt

t
SS t

N
   

and ( ) 1 ( ).N N
n nT N T Finally, let 2

' 2 = /t t
B B


 , which is also a Brownian motion. 

We are going to show that the supremum norm 

' ( ) - 0N
t t pB S


  

is N  , where p , denotes convergence in, probability. 

First recall what we have proved in Equation (3.5), and note that this 

implies convergence in probability. Since  ( ) ,  0N
nT n  has the same 
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distribution as  , 0nT n   we infer from this that for every 0  , letting 

2' 0   , we have: 

1 ( ) 2

0
'  0. N

n Nn N
N sup T n 

 

 
  
 

P  

Therefore dividing by 2 : 

( ) 2

0
/ /  0. N

n Nn N
sup T n N 

 

 
   
 

P  

Now, note that if /t n N , then 

( )

( ) 2

( )( )
( ) '

.2 2 /

N
n

N
n

NN
TN t

t T

BSS B
N  

  



  

Thus, by continuity, if  / , 1 /t n N n N    , there exists 2( ( )
1

2) ,/ / .N N
n nu T T     

such that ( )
.

'N
t uS B . Therefore, for all 0   and all 0  , the event 

 ( ) '
, ,

0 1
sup N N N

t t
t

S B K L  
 

     

where 

 ( ) 2

0
sup / /N N

n
n N

K T n N  
 

    

and 

    ' '
, 0,1 , , 1 /  : .t ut u t t N B BL               

We already know that  ( ) 0  NP K as N   . For ( )
, ,

NL  , since 'B  is a.s. 

uniformly continuous on [0,1], by taking   small enough and then N large 

enough, we can make  NP L  as small as wanted. More precisely, if 

    ' '
2 , 0,1 , 2 , 2 1 /  : t u
NL t u t t N B B             . 
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 then for , 2 ,1/ , NN L L     , and thus for all 0  : 

    '
2 ,lim sup N

N
LS B  


 P P  

However, as  2 ,0,  0P L      by almost sure continuity of 'B  on (0,1) and 

the fact that these events are decreasing. Hence it must be that  

  ' 0.lim sup N

N
S B 

 
  P  

Therefore,   , 0 1NS t   converges in probability for the uniform norm to

 1 ,,0tB t   which entails convergence in distribution. This concludes the 

proof.  

Section (3.3): Dirichiet Problem and Girsanov’s Theorem 

Let D be a connected open subset of dR  for some   1d   (though the story is 

interesting only for   2d  ). We will say that D  is a domain. Let D   be the 

boundary of D . We denote by  the Laplacian on dR . 

Definition (3.3.1):  

Let :g D  R  be a continuous function. A solution of the Dirich Let problem 

with boundary condition ݃ on D  is a function :  u D  R  of class 

   2 ,D DC C  such that 

0

g.

u on D

u D

  


  

                                             (3.6) 

A solution of the Dirichlet problem is the mathematical counterpart of 

the following physical problem: given an object made of homogeneous 

material, such that the temperature  g y is imposed at point y  of its 



100 
 

boundary, the solution  u x  of the Dirichlet problem gives g  the temperature 

at the point x  in the object when equilibrium is attained. 

As we will see, it is possible to give a probabilistic resolution of the 

Dirichlet problem with the help of Brownian motion. This is essentially due to 

Kakutani. We let xE  be the law of the Brownian motion in dR  started at x . In 

the remaining of the section, let  inf 0 : tT t B D    be the first exit time from 

D . It is a stopping time, as it is the first entrance time in the closed set DC . 

We will assume that the domain D  is such that   1T   P  to avoid 

complications. Hence TB  is a well-defined random variable. 

In the sequel, �  is the Euclidean norm on dR . The goal now is prove 

the following result:  

Theorem (3.3.2):  

Suppose that  ,g D  RC is bounded, and assume that D satisfies a local 

exterior cone condition (l.e.c.c.), i.e. for every y D , there exists a nonempty 

open convex cone with origin at y such that  , CC B y r D  for some 0r  . 

Then the function 

 [: ]x Tu x g B E  

is the unique bounded solution. In particular, if D  is bounded and satisfies the 

l.e.c.c. then u  is the unique solution of the Dirichlet problem. 

We start with a uniqueness statement. 

Proposition (3.3.3): 

Let g be a bounded function in  .,D RC  Set 

   [ ].x Tu x g B E  
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If v is a bounded solution of the Dirichlet problem, thenv u . 

In particular, we obtain uniqueness when D  is bounded. Notice that we 

do not make any assumption on the regularity of D here besides the fact that 

T    a.s. 

Proof: Let v be a bounded solution of the Dirichlet problem. Let

  1inf   0 : ,n tT t d X D
n

  






 

C . Since 0v   inside D , we know by proposition 

(2.2.31) that    0nt t TM v B v B   is a local martingale started at 0 (here, 0B x  

almost surely). Moreover, since v is bounded, M  is a true martingale which is 

uniformly integrable. Applying the optional stopping theorem (1.2.12) at the 

stopping time nT , 

       0.
n nT x TM v B v x  E E  

Since nT T  almost surely as n, and since v is continuous on )(DC , we 

get: 

    .x Tv x g B E  

as claimed. 

For every dxR and 0r  , let ,x r  be the uniform probability measure 

on the sphere  , : . d
x r y y r r   RS  It is the unique probability measure on

,x rS . that is invariant under isometrics of ,x rS . We say that a locally bounded 

measurable function :h DR  is  harmonic on D  if for every x D  and every 

0r   such that the closed ball  ,B x r  with center x  and radius r  is contained 

in D , 

     
,

, .
x r

x rh x h y dy S  
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Proposition (3.3.4): 

 Let h  be harmonic on a domain D . Then  ,h D RC , and 0h   = 0 on D . 

Proof: Let x D  and 0   such that  ,B x D  . Then let ( , )  R RC , be 

non-negative with non-empty compact support in 0, . We have, for 0 ,r    

       
0,

0, .
r

rh x h x y dy S  

Multiplying by 1( ) dr r  and integrating over  0,r   gives 

 
 

   
0,

,
B

ch x z dzz h x

   

where 0C< , is some constant, where we have used the fact that 

   
 

 1
0,0,d

d
rr

f x dx c r dr f ry dy


  R R S
 

for some 0.C<  Therefore, 

 
 

       
, dB x

ch x z x h z dz dh zz x z

    R

 

since   is supported on  0,B  . By derivation under the  sign, we easily get 

that h  is .C  (Indeed, we may assume that 1/2( )r r is )C . Another way to 

say this is to say that   *ch x h  where  ( ) | |z z  . If 
1/2( )r r  is C , then 

d( , )  R RC and thus, the convolution being a regularizing operation, this 

implies * ( , )h D  RC . Thus ( , )h DC R . 

Next, by translation we may suppose that 0 D  and show only                                                                                                                

that h(0)   0  . we may apply Taylor’s formula to h , obtaining, as 0,x   

      
2 2

2 2
2

1

0 0 , (0) (0) (| | ).
d d

i i j
i i ji i j

h hh x h h x x x x o x
x x x 
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Now, integration over 0,rS  for r  small enough yields 

       
,

2
0, 0 0 ( )

x r
r rh x dx h C h o r    S  

 Where 
0,

2
1 0, ( )

r
r rC x dx S . Now, it is easy to see that there exists 0c   such 

that 2
rC cr  for all 0 1r  . Since the left-hand side is  0h  and the error term 

on the right-hand side is    2
ro r o C , it follows that   00h  .  

Therefore, harmonic functions are solutions of certain Dirichlet problems. 

Proposition (3.3.5): 

Let g be a bounded measurable function on D , and let  0 : tT inf t B D   . 

Then the function.  ]: [x Th x D g B  Ex  is harmonic on D, and hence 0h   on 

D. 

Proof: For every Bore subsets 1,..., kA A  of dR  and times 1 ... kt t  , the map 

 1 1, ...,
nx t t nx B A B A  P  

is measurable by Fubini’s theorem, once one has written the explicit formula 

for this probability. Therefore, by the monotone class theorem, [ ]xx E F , is 

measurable for every integrable random variable F , which is measurable with 

respect to the product or-algebra on  , dR RC . Moreover, h  is bounded by 

assumption. 

Now, let  0 :| |tS inf t B x r     the first exit time of  B  form the ball of 

center x  and radius r . Then by (ii), Proposition (1.1.20), S   a.s. By the 

strong Markov property,  ,  0B Bs t t   is an  S tF  Brownian motion started 
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at B . Moreover, the first hitting time of D for B is T T S  . Moreover, 

TTB B
 , so that 

     d { }] dy 1[ ( ) ,x T x x y T TT sBg B g B g B       


R
E E P E  

we recognize  d
(d )yx sB h yR P  in the last expression. 

Since B starts from x under xP  the rotation invariance of Brownian 

motion shows that Bs x  has a distribution on the sphere of center 0 and 

radius ݎ which is invariant under the orthogonal group, so we conclude that 

the distribution of Bs  is the uniform measure on the sphere of center x and 

radius r, and therefore that ℎ is harmonic on ܦ.  

It remains to understand whether the function u of Theorem (3.3.2). is 

actually a solution of the Dirichlet problem. Indeed, is not the case in general 

that  u x  has limit  g y  as ,x D x y  , and the reason is that some points of 

D  may be ‘invisible’ to Brownian motion. The researcher can convince 

himself, for example, that if    0,1 \ 0D B  is the open ball of 2R  with center 

0 and radius 1, whose origin has been removed, and if  01g  , then no solution 

of the Dirichlet problem with boundary constraint ݃ exists. The probabilistic 

reason for that is that Brownian motion does not see the boundary point 0. 

This is the reason why we have to make regularity assumptions on ܦ in the 

following theorem. 

Proof of Theorem (3.3.2): 

It remains to prove that under the l.e.c.c., ݑ is continuous on D , i.e. 

as x (ݕ)݃ converges to (ݔ)ݑ D  converges to y D . In order to do that, we 

need a preliminary lemma. Recall that ܶ is the first exit time of ܦ for the 

Brownian path. 
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Lemma (3.3.6): 

Let D be a domain satisfying the l.e.c.c., and let .y D  Then for every 

0, ( ) 1x T   P  as .D y  

Proof:  Let yC y C  be a nonempty open convex cone with origin at ݕ such 

that c
yC D . Then it is an elementary geometrical fact that there exists 

anonempty open convex cone 'C  with origin at 0 such that for every 0   

small enough, we can find an ( 0)     such that if ' '= x + C  xC , then 

  ' \ ,x yC B x C   for all  ,x B y  . 

Here is a justification. Assume without loss of generality that 0y   to 

simplify, and fix 0  . Let 0 be an open set in the unit sphere such that

 , , 0C z z O     

There exists 0   and another open set 'O  in the unit sphere such that 'O O  

and if 0,1zS with  , 'd z O   then z O . (For instance consider the 

intersection of the sphere with two concentric open balls centered at some

0z O , and take 'O  the smaller of the two balls intersected with S ). Now, 

choose  / 4.  0,Let x B    , and let us show that  ' \ ( , )x C B x C   where 

'C is the cone generated by 'O  originating at 0 (which does not depend on ) 

For 'y O , let   /z x y r   where r x y  , then 0,1zS . Moreover, note that 

by the triangular inequality r    . Thus if / 2r  , 

1 ( )y z y y x
r
     

1 ( )r y x
r

    

2 ( )r  


    

4 
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by definition of . Hence z O  and hence x y rz C   . Now, if  is further 

chosen such that / 2  , then for all  0,x B   and for all    ' \ ,u x C xB   , 

/ 2r u    automatically by the triangular inequality, and thus the previous 

conclusion n C  holds. We have shown that    ' \ ,Bx C x C   as desired.] 

Now by (iii) in Proposition (1.1.20), if 

' inf{ 0 : '\ (0, )}C tH t B C B     

then 

   0 ' 0 ' 1  0.C CH H as       P P  

Therefore, for all 0   there exists 0  such that  ' 1CH     P . Choosing 

     associated with this  , we find that for every  ,x B y  , we have by 

translation invariance, and letting KT  be the hitting time of a set K , 

  ' \ ( , )
( )

x
x x C B x

T T


   P P  

0 '( )CH   P  

  (by our choice of ). 

This means that   0x T  P , x y , which proves the lemma. 

We can now finish the proof of Theorem (3.3.2) Let y D . We want 

to estimate the quantity    x Tg B g y  E  for some x D . For , 0   , let 

,
0

 / 2t
t

A sup B x 



 

    
 

 . 

This event decreases to   as 0   Because B  has continuous paths. Now, for 

any , 0   , 
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  ,( ) ( ) ( ) ( ) ; c
x T x Tg B g y g B g y T A          E E  

  ,( ) ( ) ;x Tg B g y T A     E  

 ( ) ( ) ;x Tg B g y T      E  

 0Fix   . We are going to show that each of these three quantities can be 

made / 3  for x  close enough to y . Since g  is continuous at y , for some 

6 0,  y z     with ,y z D implies ( ) ( ) / 3g y g z   . Moreover, on the event

  ,
cT A   , we know that / 2TB x   , and thus TB x    as soon as

/ 2x y   . Therefore, for every 0  , the first quantity is less than / 3  for

 , / 2x B y  . 

Next, if M  is an upper bound for g , the second quantity is bounded by

 ,2M A P . Hence, by now choosing  small enough, this is / 3 . 

Finally, with ,   fixed as above, the third quantity is bounded by

2 ( )xM T P . By the previous lemma, this is / 3  as soon as  ,   Dx B y  

for some 0  . Therefore, for any      , / 2 ,x B y D u x g y      . This 

entails the result. 

Corollary (3.3.7): 

 A function :u D  R  is harmonic in D  if and only if it is in  2 ,D RC , and 

satisfies 0u  . 

Proof: Let ݑ be of class  2 ,D RC  and be of zero Laplacian, and let x D . Let 

  be such that  ,B x D  , and notice that ( , )|B xu   is a solution of the Dirichlet 

problem on  ,B x   with boundary values ( , )| B xu  . Then  ,B x   satisfies the 
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݈. ݁. ܿ. ܿ., so that ( , )|B xu  is the unique such solution, which is also given by the 

harmonic function of Theorem (3.3.2). Therefore, u  is harmonic on D . 

No we illustrate Girsanov’s theorem. 

Given a local martingale M , recall the definition of its exponential 

martingale (Theorem 3.1.1), which will play a crucial role in what follows. 

Recall that if ,c locM M with 0 0M  , then  1
2t ttZ exp M M  

 
 

 defines a 

continuous local martingale by Itô’s formula. Z  is the exponential (local) 

martingale of M  (sometimes also called the stochastic exponential of M ) and 

we write ( )Z M . 

We start by the following inequality which will be useful in the proof 

of Girsanov’s theorem, but is also interesting in its own right. 

Proposition (3.3.8): (Exponential martingale inequality) 

Let ,c locM M with 0 0M  . Then for all 0, 0x u  , 

  2

0
, / 2 )(x

t
t

sup M x M u e u






 
 





 P                               (3.7) 

Proof:  0Fix x   and set   0 :
t

T inf t M x    . Fix R  and set 

 21  .
2

T
t t

T

t
Z exp M M    

 
                                       (3.8) 

Then ,c locZM and xZ e . Hence, 2
cZ M  and, by OST,    0 1Z Z  E E . 

For 0u   we get by Markov’s inequality 

 
2 21 1

2 2

0
sup ,  

x u x u

t
t

M x M u Z e e
     




            
P P           (3.9) 
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Optimizing in    gives /x u   and the result follows. (It is also possible to 

use the DubinsSchwarz theorem, as a calculus argument shows that 

  2 /2Z e   P  for all 0  , when Z  is a standard Gaussian random 

variable). 

Proposition (3.3.9):  

Let ,c locM M with 0 0M   and suppose that  M  is a.s. uniformly bounded. 

Then  ME  is a UI martingale. 

Proof: Let C  be such that  M C

  a.s. By the exponential martingale 

inequality, for all 0x   

   2 / 2

0 0
sup sup ,  x C

t t
t t

M x M x M C e

 


         
   

P P                 (3.10) 

Now, 
0 0

sup ( ) exp supt t
t t

M M
 

   
 

E  and  

00 0
exp sup sup  dt t

t t
M M log 



 
    

      


 E P  

( )2/(2 )

0
1 dlog Ce  

                                   (3.11) 

Hence, ( )ME  is UI and, by Proposition (1.2.4), ( )ME is a martingale.  

Girsanov’s theorem is a result which relates absolute continuous 

changes of the underlying probability measure P  to changes in the drift of the 

process. The starting point of the question could be formulated as follows. 

Suppose we are given realizations of two processes X  andY , where X is a 

Brownian motion and Y is a Brownian motion with drift b . However, we do 

not know which is which. Can we tell them apart with probability 1 just by 

looking at the sample paths? If we get to observe them up to time   then we 
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can, since tlim /tY t b   almost surely. However, if we get to observe them 

only on a finite window, it will not be possible to distinguish them with 

probability 1: we aye that their law (restricted to  0,T  for any 0T  ) is 

absolutely continuous with respect to one another. When such is the case, 

there is a “density” of the law of one process with respective to the other. This 

density is a random variable which depends on T , and which will turn out to 

be a certain exponential martingale. 

Recall that for two probability measures 1 2,P P on a measurable space 

  1, , PF  is absolutely continuous with respect to 2 1 2, �P P P , if 

2 1(A)=0   (A)=0P P  for all AF                    (3.12) 

In this case, by the Radon-Nikodym theorem, there exists a density  

 : 0,f    which is F -measurable and 2P  unique almost surely (and hence 

1P unique almost surely as well), such that 1 2fP P . That is, for all AF , 

 1 2A(A)= (ω)1 d (ω)f
P P  

f  is also called the Radon-Nikodym derivative, and we denote: 

1

2

d
d

f
P
P F

 

 (Note that in general, the density f depends on the  -field F ). 

In order to see where Girsanov’s theorem comes from on a simple 

example where one can compute everything by hand, consider the following. 

Let 0   and 0b  , and let t tX B bt  . Then we claim that the law of X  is 

absolutely continuous with respect to the law of Brownian motion t tY B  

with speed   (but without drift), so long as we restrict ourselves to events of 
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tF for some fixed 0t  . Indeed, if 1n   and 0 10 ... nt t t t      and

0 10, ,..., nx x x R , then we have: 

 
1

21
1 1

1 2
0 11

( )
( ,..., ) exp

2 ( )n

nn
i i i i

t t n i
i ii i

x x b t t
X x X x C dx

t t


 

 

   
    

  
 P  

where C  is a factor depending on 1,..., nt t and  , whose value is of no interest 

to us. It follows that 

1

1

1

1

( ,..., )
( ,..., )

n

n

t t n z

t t n

X x X x
e

Y x Y x
 


 

P
P

 

Where 

   2 21
1 1 1

2 2
0 1 1

( )
2 ( ) 2 ( )

n
i i i i i i

i i i i i

x x b t t x x
Z

t t t t 


  

  

   
 

   

   
1

2
1 12 2

0

1
2

n

i i i i
i

b x x b t t
 



 


      

2 2 2

0 0

1
2

t t

sbdY b ds       as   n    . 

(We have written the last bit as a convergence although there is an exact 

equality. This makes it clear that when   and b depend on the position x 

which is precisely what defines the SDE’s developed in the next chapter then 

a similar calculation holds and Girsanov’s theorem will hold.) Thus if Q is the 

law of X , and Pthe law of Y , 

2

20 0
exp

2
d
d

t

t t

s
b bdB ds
 

 
  

 
 

Q
P F

 

2( )tb Y  E  

So we have written the density of X with respect to Y as an exponential 

martingale. 
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The point of view of Girsanov’s theorem is a slightly different perspective, 

essentially the other side of the same coin. We will consider changes of 

measures given by a suitable exponential martingale, and observe the effect 

on the drift. It is of fundamental importance in mathematical finance (in the 

context of “risk neutral measures”). 

Theorem (3.3.10):(Girsanov’s Theorem) 

Let ,c locM M with 0 0M  . Suppose that  Z M E is a UI martingale. We can 

define a new probability measure  �P P , on ( , ) F  by:  

   1 ,  . AA Z A P E F                                (3.13) 

Then for every , ,( ), [ , ] ( )c loc c locX X X M   P PM M . Moreover the quadratic 

variation of X under P  and of [ , ]X X M under P are identical P  and P  

almost surely. 

Proof: Since Z is UI , the limit lim tt
Z Z 

 , exists P -almost surely, 0Z  and 

   0 1. Z Z  E E  thus    1,  ø 0   P P and countable additively follows by 

linearity of expectation and the monotone convergence theorem.  I A  = 0P

then   0
A

A Z d P P , so  �P P . Let ,c locX M and set 

inf{ 0 : [ , ] }.n t tT t X X M n                                (3.14) 

Since [ , ]X X M is continuous, ( ) 1nT  �P will implies ( ) 1nT   �P . So to 

show that  ,[ , ] c locY X X M   PM , it suffices to show that 

 [ , ]n n nT T T
cY X X M   PM  for all nN                            (3.15) 

Replacing X  by nTX , we reduce to the case where Y  is uniformly bounded. 

By the integration by parts formula and the Kunita-Watanabe identity, 
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( ) [ , ]t t t t t t t td Z Y Y dZ Z dY d Z Y    

    , ,t t t t t t t t t tY Z dM Z dX d X M Z d M X     

t t t t tY Z dM Z dX                                                   (3.16) 

and so  ,c locZY  PM . Also   :  is a stopping timeTZ T isUI . 

So since Y  is bounded,   :  is a stopping timeT TZ Y T isUI . Hence,  cZY  PM . 

But then for s t , if ,sAF  

      ( )1 ( )1t s A t s AY Y Z Y Y  E E  

    1 | |A t t s sZ Y Z Y    E E EF F  

 1 0A t t s sZ Y Z Y    E  

Since  cZY  PM . Therefore,  cY  PM as required. The fact that the 

quadratic variation  Y is the same under P as it comes from the discrete 

approximation under P: 

 
2[2 ] 1

( 1)2 2
0

[ ] [ ] lim
n t

t t k n k nn k
Y X X X



  


    

P-u.c.p. Thus there exists a subsequence kn  for which the convergence holds 

P-almost surely uniformly on compacts. Since P is absolutely continuous with 

respect to P this limit also holds P  almost surely for this particular 

subsequence. Since the whole sequence converges in probability to  Y in the 

P-u.c.p. sense (by general theory, since  ,c locY  PM , this uniquely identifies 

the limit, and hence the quadratic variation  Y under Phas the same value as 

under P. 
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Corollary (3.3.11): 

 Let B be a standard Brownian motion under Pand ,c locM M such that 0 = 0M . 

Suppose  Z M E is a UI martingale and    1AA ZP E for all AF . Then 

 :  ,B B B M  is a P -Brownian motion. 

Proof: Since  ,c locB  PM  by Theorem (3.3.10) and has  tt
B B t    
 , by 

Levy’s characterization, it is a Brownian motion. 

Remark (3.3.12): 

This corollary should be read backward if X  is a Brownian motion, then 

changing the measure by the exponential martingale  ME ,  ,X X X M   

where X  is a Brownian motion under the new measure. So the old process 

(which was just Brownian motion) becomes under the new measure a 

Brownian motion plus a “drift” term given by the conversatio  ,X M . 

Let  W, ,WW  be the Wiener space. (Recall that   0, , ,W C   R W

 : 0tX  where t:  X W  R  with t ( ) ( )X w w t . The Wiener measure Wis the 

unique probability measure on  W,W  such that   0t t
X


 is a Brownian motion 

started from 0.) 

Definition (3.3.13): 

Define the Cameron-Martin space 

       2

0
:   for some 0,  

t
H h W h t s ds L      .                      (3.17) 

For h H , write h  the derivative of h . 
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Theorem (3.3.14): (Girsanov, Cameron-Martin Theorem) 

Fix h H and set hW to be the law on  W,W of   , 0tB h t t   where tB is a 

Brownian motion: that is, for all AW , 

  ( ) : .h A w W w h A   W W                    (3.18) 

Then hW is a probability measure on  W,W and h �W W with Radon-

Nikodym density 

2

0 0

1exp ( ) ( ) ds
2

d
d

h

sh s dX h s
    

  
W
W W

.                   (3.19) 

Remark (3.3.15):  

So if we take a Brownian motion and shift it by a deterministic function h H  

then the resulting process has a law which is absolutely continuous with 

respect to that of the original Brownian motion. 

Proof: Set t s= (X ,s t)  W and
0

( ) .
t

t sM s dX  Then  2
0, , ( ) ,c tM W  WM W W

and 

   2

0
: .M s ds C




                            (3.20) 

By Proposition (3.3.9),  ME is a UI martingale, so we can define a new 

probability measure � WP on  W,W by 

2

0 0

1 1[ ] ( ) exp ( )d ( ) ( ) ( ) ds
2 2

exp ( )
d sM w s dXw M w w s

 


        


 
    W

P .    (3.21) 

and .[ , ] ( )c locX X X M   M P  by Girsanov’s theorem. Since X is a W-

Brownian motion, by Corollary (3.3.11) X is a P -Brownian motion. But by 

the Kunita-Watanabe identity, 
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[ , ] [ , . ]t tX M X X   

.[ , ]tX X   

0
( ) ( )

t
s ds h t    

hence we get that ( ) ( )X X h h      . Hence, under , X X h P , where X  

is a P -Brownian motion. Therefore, h W P on  F W : 

    } :{ }({ ): XA A h A       P P P  

   :{ } hh A A    W W  

as required. 

One of the most important applications of Girsanov’s theorem is to the 

study of Brownian motion with constant drift. Indeed, applying the previous 

result with { }( ) 1 s ts  gives us the following corollary. 

Corollary (3.3.16):   

Let γ 0   and let W  be the law of   tX +γt, t  0  under W . Then for all 0t  , 

and for any A tF , 

  211 exp
2A tA X t  

  
   
  

WW E                    (3.22) 

This allows us to compute functionals of Brownian motion with drift in terms 

of Brownian motion without drift - a very powerful technique.  
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Chapter Four 

Stochastic Differential Equations 

Suppose we have a differential equation, say     b x
dt

dx t
t  or, in integral 

form, 

0
x(t) = x(0) +  ( ( ))  

t

b x s ds                             (4.1) 

Which describes a system evolving in time, be it the growth of  

a population, the trajectory of a moving object or the price of an asset. Taking 

into account random perturbations, it may be more realistic to add a noise 

term: 

0
0

X ( )  
t

s tt X b X ds B                                          (4.2) 

Where B  is a Brownian motion and   is a constant controlling the intensity 

of the noise. It may be that this intensity depends on the state of the system, in 

which case we have to consider an equation of the form: 

0
0 0

X = X + ( ) ( )   
t t

s s st b x ds x dB                                 (4.3) 

Where the last term is, of course, an Itô integral.  Equation (4.3) is a 

stochastic differential equation and may also be written 

(X ) ( )    t t t tdX b dt X dB                               (4.4) 

  



118 
 

Section (4.1): Lipschitz Coefficients, Strong Markov Property 

and Definitions Processes 

We start by general definitions.   

Let B  be a Brownian motion in mR  with m 1 . Let d 1  and suppose 

1
1

(x) = ( ( )) :
d d m

i dij
j m

x 



 

R R  

and 

1( ) ( ( )) :
d d

i i db x b x  R R  

are given Borel functions, bounded on compact sets. Consider the equation in 
d

R : 

dX ( ) dB (X )     t t t tX b dt                                           (4.5) 

which may be written component wise as 

1
dX ( ) ( )    , 1 i d 

m
i j

ij t t j tt
j

X dB b X dt


                    (4.6) 

This general SDE will be called E( ,b) . A solution to E( ,b) in Equation (4.5) 

consists of:  

 a filtered probability space   0, ,t t PF F satisfying the usual conditions; 

  an   0t tF -Brownian motion 1
B=(B , ..., B )  

m  taking values in m
R ; 

 an   0t tF -adapted continuous process 1
X= (X , ...,  X )

d d
 R such that 

0
0 0

X ( ) ( )  
t t

s s st X X dB b X ds                                          (4.7) 
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When, in addition, 0 X
d

x R , we say that X is a solution started from x . 

Definition (4.1.1) : 

Let  ,E b  be the SDE in (4.5). 

 We say that  ,E b has a solution if for all dx R , there exists a 

solution to the SDE started from x . 

 There is uniqueness in law if all solutions to E( ,b)  started from x  have 

the same distribution. 

 There is pathwise uniqueness if, when we   0f x ,i , t t PF F and B  then any 

two solutions X  and 'X  satisfying '
0 0X X  a:s: are indistinguishable 

from one another. 

  We say that a solution X of  ,E b  started from x  is a strong solution 

if X is adapted to the natural filtration of B . 

Remark (4.1.2):  

In general, ( , )s tB s t  F  and a solution might not be measurable with respect 

to the Brownian motion B . A strong solution depends only on dx R  and the 

Brownian motion B , and is moreover non-anticipative: if the path of B  is 

known up to time t , then so is the path of X  up to time t . We will term weak 

any solution that is not strong. 

Remark (4.1.3): 

 If every solution is strong, then pathwise uniqueness holds. Indeed, any 

solution must then be a certain measurable functional of the path B . If two 

functionals 1F  and 2F  of B  gave two solutions to the SDE, then we would 

construct a third one by tossing a coin and choosing 1X or 2X . This third 

solution would then not be adapted to BF . 
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Example (4.1.4):  

It is possible to have existence of a weak solution and uniqueness in law 

without pathwise uniqueness. Suppose   is a Brownian motion in R  with

0 x  . Set 

0

1 if x < 0
B = sgn( )    where  (x) = . 

1 if x > 0 

t

s st sgnd 





                            (4.8) 

Since sgn is left-continuous, 0( ( ))t tsgn 
 is previsible, so that the Itô integral 

is well defined and ,c locB M . By Levy's characterization, B  is a Brownian 

motion started from 0, since   [ ]tt
B t  . It is also true that 

0
s g n ( )

t

s st x d B                                               (4.9) 

(Indeed, by definition  s s sdB sgn dB  so multiplying by  ssgn  yields, by 

the stochastic chain rule,    s s ssgn dB d   Hence,  is a solution to the SDE 

0sgn( ) ,  t t tdX X dB X x                                      (4.10) 

Thus Equation (4.10) has a weak solution. Applying Levy's characterization 

again, it is clear that any solution must be a Brownian motion and so there is 

uniqueness in law. On the other hand, path wise uniqueness does not hold: 

Suppose that   is a solution to Equation (4.10) with 0 0  . Then both   and 

  are solutions to Equation (4.10) started from 0. Indeed, we may write 

     00 0 0
sgn sgn 2 1

s

t t t

t s s s s sdB dB dB            

The second term is a local martingale since it is an integral with respect to B . 

The quadratic variation of this local martingale is 
 0 0

4 1
s

t
ds

   which is 0 almost 

surely by Fubini's theorem (since   must be a Brownian motion by Lévy's 
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characterization). Hence this local martingale is indistinguishable from 0, and 

  is a solution to Equation (4.10). 

It also turns out that   is not a strong solution to (4.10). 

Theorem (4.1.5): (Yamada-Watanabe)  

Let ,b  be measurable functions. If path wise uniqueness holds for ( , )E b and 

there exist solutions, then there is also uniqueness in law. In this case, for 

every filtered probability space   0
, , ;t t

 PF F   and every tF -Brownian 

motion  , 0B B t t   , and for every dx R , the unique solution X  to  ,xE b  

is strong. 

In particular path wise uniqueness is stronger than weak uniqueness, provided 

that there exist solutions. 

Now we study Lipschitz coefficients. 

For dU  �  and : df U  � , say f  is Lipschitz with Lipschitz constant K    

if 

           , ,  f x f y K x y for all x y U                                 (4.11) 

Where �  denotes the Euclidean norm on d� . (If : d mf U  �  then the left-

hand side is the Euclidean norm in d m� ). The key result of this part of section 

will be that SDE with Lipschitz coefficients have path wise unique solutions 

which are furthermore always strong. 

We start preparing for this result by recalling two important results 

which will be used in the proof. 
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Theorem (4.1.6): (Contraction Mapping Theorem) 

Let ( , )X d  be a complete metric space and :F X X . Suppose that the iterated 

function nF is a contraction for some n� , i.e. 

1 , : ( ( ), ( )) ( , ).n n
r x y X d F x F y rd x y                                   (4.12) 

Then F has a unique fixed point. 

Remark (4.1.7): 

This theorem is most well-known when F itself is contractive, rather than nF . 

However, the theorem for 1n   easily follows from the 1n   result. Indeed, if 

1n  and nF  is contractive, then (by the theorem for 1n  ) nF must have a 

unique fixed point x. We claim that x is also a fixed point of F. Indeed, let

     2 1
1 2 1,  ,... .,  n

nx F x x F x x F x
    Then since   ,nF x x  we have 

  1
1 1( ( ))n nF x F F x  

   nF F x  

  1F x x   

so 1x  is a fixed point of nF as well. But nF has a unique fixed point, so 1x x . 

Therefore,   1 F x x x   and 1x is a fixed point of F. 

Lemma (4.1.8): (Gronwall's Lemma): 

Let 0T   and let f be a non-negative bounded measurable function on 0,T . 

Suppose that for some , 0a b  : 

   
0

  0 .
t

f t a b f s ds t T                                          (4.13) 

Then     f t a exp bt  for all  0,t T . In particular if 0a   then 0f  . 
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Proof: The proof uses a trick which is close to what we will do in the proof 

of the next theorem. The idea is to iterate the inequality Equation (4.13). We 

get: 

0 0
( ) ( )

t s
f t a b a b f u duds     

1 2

2
1 1 20

( )
t t

a abt b f t dt dt
 

      

1 1

2 2
1

1 1 10 ...
... ... ( ) ...

2! ! n

n n
n

nt t t

b t b ta abt a a b f t dt dt
n 


   

         

where the term / !n nb t n  comes from the fact that
1 1

10 ...
... / !

n

n
nt t t

dt dt t n
 

 , since 

the volume of the cube is nt  and the ordering 1 ... nt t  is one of !n possible 

ordering of the variables, with each ordering contributing the same fraction to 

the total volume. This argument shows that the last term in the right-hand side 

of the inequality tends to 0 (since f is bounded). We recognize the Taylor 

expansion of the exponential function in all the other terms when n   . Thus

  btf t ae . 

Theorem (4.1.9):  

Suppose that : d d m � �  and : d db � �  are Lipschitz. Then there is 

pathwise uniqueness for the SDE 

( ) ( ) .t t t tdX X dB b X dt                                        (4.14) 

Moreover, for each filtered probability space   0
, , ;t t

 PF F and each   0t t
F -

Brownian motion B , there exists a strong solution to the SDE started from x , 

for any x� . 
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Proof: (for 1d m  ).   0
, ,Fix ;t t

 F F P  and B . Let  
0

B
t t

F  be the natural 

filtration generated by B  so that B
t tF F  for all 0t  . Suppose that K  is the 

Lipschitz constant for    and b . 

Pathwise uniqueness: 

Suppose X  and X'  are two solutions on   0
, , ;t t

 PF F  with  

'
0 0X X  a.s.. Fix  M  and let  

 'inf 0 : t tt x x M   T .                                    (4.15) 

Then 0 0 0
( ) ( ) ,t t

t s s sX X X dB b X ds 

    
T T

T and similarly for `X . 

Let 0T  . If 0 t T   then, since 

2 2 2( ) 2( )x y x y                                         (4.16) 

for all ,x y � , we have: 

  2'
t tX X E T T  

     ' '

0 0

2 2

( ) ( )2 ( (2 ) )t t

s s s s sX X dB b X b X ds     
    

   
 E ET T

 

     2' ' 2

0 0
( ) ( ) (2 ) ( )2 t t

s s s sX X ds b X b X dsT     E ET T  

(by the Itô isometry and the Cauchy-Schwarz inequality). 

  22 `

0
2 (1 ) t

s sK T X X ds
  E T  (by the Lipschitz property) 

  22 `

0
2 (1 ) .

s

t

s tK T X X ds
   E

T
                          (4.17) 
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Let   2`( .)
ssXf t X
  E

TT  Then  f t  is bounded by 24M and 

2

0
2 (1 ) () )( .

t
K T f s dsf t                                   (4.18) 

Hence, by Gronwall's lemma,   0f t   for all  0,t T . So `
t tX X T T  

a.s. and, letting ,M T  , we obtain that X and `X are indistinguishable. 

Existence of a strong solution: 

We start by constructing a weak solution as a fixed point of a certain 

mapping. Let   ,ix , ;F t PF F  be a filtered probability space and let B be a 

Brownian motion. Write TC  for the set of continuous processes  : 0,X T  �  

adapted to  tF such that 

2
: sup tT t T

X X


  .                                     (4.19) 

and Cfor the set of continuous adapted processes  : 0,X   �  such that 

T
X   for all 0T   .                                  (4.20) 

Recall from Proposition (2.1.8) that  , .T T
C is complete. Let  '

0T T X x C C , 

and let  be a mapping defined on '
TC by; 

0 0
( ) ( ) ( )

t t

t s s sX x X dB b X ds     for all   t T .                                    (4.21) 

Note that a solution to ( , )E b is a fixed point of  . We start by showing that 

if '
TX C , then so is ( )X . For all ,y �  

( ) (0) ,y K y   ( ) (0)b y b K y  .                                             (4.22) 



126 
 

Suppose TX C for some T . Let 
0

( ) , 0 .
t

t s sM X dB t T   then 
0

( )[ ] s

T

T XM ds   

and by Equation (4.16)                                                                                                                                                                                                                                   

   22 2[ ] 2 (0)T T
M T K X  E  .                                      (4.23) 

Hence, by Theorem (2.1.15), 0( )t t TM    is a martingale bounded in 2L . So by 

Doob's 2L inequality and Equation (4.23):  

 
2 22 2

0
sup ( ) 8 (0)

t

s s Tt T
E X dB T K X 



 
    

 
  .                          (4.24) 

Therefore  , 0tM t   belongs to TC . Similarly, by Equations (4.22), (4.16) and 

the Cauchy-Schwarz inequality: 

 2
2

0 0
sup ( ) ( )

t T

s s s
t T

E X dB TE b X ds


 
 

 
   

 222 22 (0)
T

T b K X   .                                  (4.25) 

Therefore,   0
, 0

t

sb X ds t   belongs to TC  as well. By the triangular 

inequality, it follows that   TX C   and thus   '
TX C   since by definition

 0
X x  . Now, let ',  TX Y C . By Doob's inequality again and  

Equation (4.17), 

2 2

0
( ) ( ) sup ( ) ( )t tT t T
X Y E X Y

 

      
 

                            (4.26) 

2

0 00
2 sup ( ) ( )

t t

s s s s
t T

E X dB Y dB 
 

   
              (4.27) 

2

0 00
2 sup ( ) ( )

t t

s s
t T

E b X ds b Y ds
 

   
      

           (4.28) 

          22

0
2 4

t

t tK T E X Y dt       

   22

0
2 4

T

t

t
C

K T X Y dt  
                    (4.29) 
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By induction using Equation (4.29), we have for all 0n   that 

 1

2 2
10 ...( ) ( ) ... 1 ...

nn

n n n
T nt t TtT

X Y C X Y dt dt         

2

!

n n
T

t

C T X Y
n

   by symmetry (see Gronwall's lemma)                           (4.30) 

For n  sufficiently large, n is a contraction on the complete metric space 

 ' , . .T T
C  Hence, by the Contraction Mapping Theorem,  has a unique fixed 

point which we may call   ' .T
TX C  

By uniqueness of this fixed point,    'T T
t tX X  for all 't T T   a.s. and so we 

may consistently define X C  by 

 N
t tX X  for ,t N N  � .                                    (4.31) 

This is the pathwise unique solution to the SDE started from x . It remains to 

prove that it is 
0

B
t t

F -adapted. Define a sequence  
0

n

n
Y


 in TC by 

0 ,Y x  1n nY Y     for  1.n                                       (4.32) 

Then nY is  
0

B
t t

F -adapted for each 0.n   Since  nX X   for all 0.n  by 

Equation (4.30) we have 

2 2
.

!

n n
n T

TT

C TX Y X x
n

                                          (4.33) 

Hence, nY X in TC and thus n
t tY X in probability for a fixed 0t  . Thus there 

exists a subsequence kn  such that kn
t tY X  almost surely. Since kn

tY is B
tF -

measurable, then so is tX . Therefore X is  
0

B
t t

F -adapted and the proof of 

this theorem is finished.  
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Remark (4.1.10): 

The uniqueness of the fixed point in the contraction mapping theorem 

cannot be invoked directly to prove path wise uniqueness of the solutions. 

What this result give is path wise uniqueness of solutions in TC for any  0T  . 

So if we knew a priori that any solution belongs to TC , we could invoke this 

result. (Note that our proof that  ( ) Tx C   relies on the fact that X is already 

assumed to be in TC ). Thus a byproduct of our proof is that indeed any 

solution belongs to TC for any  0T  . 

Corollary (4.1.11):  

Let ,ij ib   be Lipschitz functions on  d�  for 1 ,i j d  . Then every solution 

to  ( , )xE b  is strong, and there is uniqueness in distribution for the solutions 

to E( , b). 

Proof: The proof of the theorem constructs a strong solution for every 

filtered probability space and Brownian motion defined on it. On the other 

hand there is path wise uniqueness of solutions so any solution must be 

strong. By the Yamada-Watanabe theorem, it also follow from existence of 

solutions and path wise uniqueness that uniqueness in distribution holds. 

Example (4.1.12): (Ornstein-Hollenbeck Process) 

Fix R  and consider the  SDE  in 2�  

,t t tdV dB V dt  0 0 ,V v ,t tdx V dt 0 0X x                                 (4.34) 

When  0    this models the motion of a pollen grain on the surface of a 

liquid, and    then represents the viscosity of that liquid. x  represents the x -

coordinate of the grain's position and V represents its velocity in the 

x -direction.  V  is the friction force due to viscosity. 
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Whenever  V becomes large, the system acts to reduce it. (This is a much 

more realistic model of random motion from a physical point of view than 

Brownian motion which oscillates too wildly!) V is called the Ornstein-

Uhlenbeck (velocity) process. Then there is path wise uniqueness for this 

SDE. In fact, this is a rare example of a SDE we can solve explicitly. 

Remark (4.1.13): 

If    and b are only defined on a closed set k , then there is strong existence 

and path wise uniqueness at least up until the time   inf 0, c
tt X k  T . 

Now we discuss strong Markov property and diffusion processes. 

In an ordinary differential equation, the future of the trajectory of a particle is 

entirely determined by its present position. The stochastic analogue for 

stochastic differential equations is true as well: solutions to SDE's have the 

strong Markov property, i.e., the distribution of their future depends only on 

their present position. (In fact, SDE solutions should be viewed as the 

prototypical example of a strong Markov process.) 

Theorem (4.1.14): (Strong Markov Property) 

Assume that   and b are two Lipschitz functions. 

Then for all  dx� , if  xX denotes a weak solution started from ݔ  to  ( , )E b , 

if  F  is any measurable nonnegative functional on    0, , dC  �   then almost 

surely, for any stopping timeT : 

   , 0 | , 0
T

T
x y

T t t y X
F X t F X t


        E EF                                 (4.35) 

on the event T   . 
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Proof. By considering  T n , it suffices to consider the case where T   a.s.. 

As we will see, the strong Markov property is a relatively straightforward 

consequence of Corollary (4.1.11). 

Let x
t T tY X  . Since X is a solution to  ( , )xE b , we have 

   . .
T t T t

x x x x
T t T s s s

T T

X X X dB b X ds
 

                                (4.36)    

To make the change of variable  u t T  , we use the following Lemma: 

Lemma (4.1.15): 

Let H be a previsible locally bounded process, and let X be a continuous local 

martingale. If T  is a stopping time and   ( ) , 0T
t T TX X X t     then 

( )

0

T t t
T

T u u
T

H dX H dX


 S S  

Proof: Only the case where X  is a local martingale needs to be discussed. 

The statement is trivial for processes of the form   ,1 Ax s tH  where sAF  and 

the general result follows by linearity and the  ˆIto   isometry when  2
cM M  

and  2H L M . Finally the general result follows by localization.  

Thus, if Ty X , then making the change of variable in Equation (4.36) we 

get: 

   ( )

0 0

. .
t t

T
t u u uY y y dB b y du     

where ( )T
t T t TB B B   is a Brownian motion independent from  tF . Y  is 

adapted to the filtration  , 0t u u F  which satisfies the usual conditions. 

Therefore, the previous theorem applies and  Y is adapted to  (࣡௧)௧ஹ, where 
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for all t > 0, tG  is the   -field generated by TX  and  ( )TBS , tS . Thus, we can 

write   0t t
Y

  as a certain deterministic and measurable functional   of its 

starting point TX  and the driving Brownian motion,   ( ), T
TX B . 

Furthermore, note that by definition  ,y B is the unique solution to   ,yE b  

corresponding to the driving Brownian motion B. Hence (by weak 

uniqueness)   ,y B   has the same law as YX . Since  ( )TB  is independent 

from TF , it is independent from TX   (because X  is adapted to F ). It follows 

that the left-hand side of (4.35) may be computed as: 

    ( ), 0 | , |T
t T T TE F Y t E F X B       F F  

    ( )| , |, .0
Tt T

T
y XE F y sE Y t BF a

     F  

   , 0 | , 0 | .
T

y
t y Xt T E F X t a sE F Y t 

      F  

Which is exactly the content of the Strong Markov Property.  

In the remainder of this research we now provide a brief introduction to 

the theory of diffusion processes, which are Markov processes characterized 

by martingale properties. We first construct these processes with SDE's and 

then move on to describe some fundamental connection with PDE's. In the 

later we show how diffusions arise as scaling limits of Markov chains. 

2

,
, 1 1

1( ) ( ) ( )
2

d d

i j i
i j ii j i

f fLf x a x b x
x x x 

 
 

                                         (4.37) 

where , ( )i ja x   is a measurable function called the diffusivity and  b x , 

another measurable function, is called the drift. We assume that   , ,
( )i j i j

a x  is 

a symmetric nonnegative matrix for all  dx� . 
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Definition (4.1.16): 

Let   ,, ,t PF F be a filtered probability space satisfying the usual 

conditions. Say that a process  , 0tX X t   is an L-diffusion (or diffusion 

generated by L) if  for all   2 d
bf C � , the process fM is a local martingale, 

where for all  0t  : 

 0
0

) ( .)(
t

f
t t sM f x f x dLf X s                                        (4.38) 

For the moment, we don't know whether such processes exist, and we 

haven't shown any sort of uniqueness. The following result takes care of the 

existence part. 

Theorem (4.1.17): 

Let   be a solution (in  d� ) to the SDE  

  ( ).t t t xdX x dB b x dt   

where B is a  tF  -Brownian motion in d� and where    , 1 ,i j i j d
x 

 
   and 

  1i i d
b b x

 
  are measurable. Then for all   1,2 df C R R  , 

   0
0

, 0, ( , ).
t

f
t t s

fM f t x f X L s X df s
t

                            (4.39) 

is a local martingale, where X  has the form Equation (4.37) and  . Ta   . In 

particular, if the coefficients ,b  are bounded, then X  is an L-diffusion. 

This results follows simply from an application of It o ,s formula. 

Remarks (4.1.18): 

(1) If  ,i ja  is uniformly positive definite (that is, there exists  0   such that  
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 ,
, 1

,
d

i i j j
i j

A a x     


   

for all  d �   and all  dx� ), then a has a positive-definite square root 

matrix  . If a is furthermore Lipschitz, then it can be shown that  x  is also 

Lipschitz. It follows that if ,a b are bounded Lipschitz functions and a is 

uniformly positive definite, then L-diffusions exist, by Theorem (4.1.9), for 

any given starting point 0X . 

(2) Brownian motion in  d�   is an L-diffusion for  1
2

L   .  

(3) In the language of Markov Processes, we say that L is the infinitesimal 

generator of X . Intuitively, ( )Lf x  describes the infinitesimal expected change 

in  ( )f X   given that  tX x . That is, 

   
0 ,l ( )im t t

t t X
f X f X

Lx f x
 




 
  

 
E F  

For every  2 d
bf C � .  

Now we Illustrate Some links with PDEs. 

Theorem (4.1.19):  

Let D  be an open set in  d� . Let L be defined by Equation (4.37) for 

uniformly positive definite Lipschitz bounded coefficients ,a b . Let  

 g C D  and let   C D   such that both   and g are bounded. Define: 

   
0

( ) ,
T

x s Tu x X ds g X x D
 

   
 
E  
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where X  is an L-diffusion and  inf 0 : tT t X D   . Then u  is the unique 

continuous function on D  which is solution to the Dirichlet problem: 

0 in D
u g on

Lu
D

 
  

 

Another link is provided by the following Cauchy problem- that is, an 

evolution problem for which the initial condition is prescribed. 

Theorem (4.1.20) 

Let : dg � �  be a given continuous bounded function, and let X  be an  L  

diffusion where Lsatisfies the same assumptions as in Theorem (4.1.19). 

Then if we define: 

  ( , ) x tu t x g x E     for all  0, dt x �  

then u is the unique solution in   1,2 dC  � �  to the problem: 

(0,.)

d

d

u L
t

u

n

n

o

g

u

o


 









�

�

�  

One word about the proof of the uniqueness part: let v  be a solution to 

this problem, and let u  be our candidate. Let us show that  ,v u  Fix 0T   and 

let  ( , ) ( , )F t x v T t x  .Applying Equation (4.39) to the function f , we see that 

 , ,0t tM v T t X t T     

is a martingale. Thus 

   0 TM ME E  

and it follows that    ( , ) x Tv T x g X E . The uniqueness part of the Theorem is 

proved. 
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Remark (4.1.21):  

The application of Equation (4.39) (as opposed to Equation (4.38), which 

defines diffusions) is a bit tricky to justify at this point. We will soon see that 

diffusions solve suitable SDE's (see Theorem (4.2.2)) from which Theorem 

(4.1.17) follows. Alternatively, if   is a diffusion then by the integration by 

parts formula, the process fM of Equation (4.39) is a local martingale as soon 

as  1 2( , ) ( ) ( )f t x f t f x  for some  2C   functions  1f   and  2f . Thus the class of f

for which  fM  is a local martingale contains all linear combinations of 

product functions  1 2( ) ( )f t f x . That Equation (4.39) holds for general functions 

f now follows from an approximation argument. 

Remark (4.1.22): 

Note that the Cauchy problem may reformulated as a Dirichlet problem in 

1d�   by changing Linto  

�L L
t


 


 

Fix a point    1, dt x �  . By Theorem (4.1.19), the solution  ,  u t x is given by  

 TXE where  X is the diffusion with generator �L . This corresponds to adding 

a coordinate  1dX    to the diffusion  , such that 1 1
0

d d
sX X s   , that is, time is 

decreasing at speed 1. The time   corresponds to the first time that the "time" 

coordinate hits 0, i.e., time t if we start from  ,x t . The other d coordinates 

are then distributed according to   .x tx P  . This proves Theorem (4.1.20), 

given Theorem (4.1.19). 
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Example (4.1.23): 

 Let   , 0tB t    be a 3-dimensional Brownian motion with  0 0B    let 

 inf 0 : 1tt B  T . Compute   TE . Answer: Let  t tR B . Then an 

application of  It o 's formula shows that 

1 .t t
t

dR dB dt
R

   

It follows that  , 0tR t   is a diffusion process on   0, , with generator: 

2

2

1 1
2

d dL
dx x dx

   

Thus if  1   and  0g   in the previous theorem,     0 u oE T  where  

   xu x E T  is a function solving: 

1Lu     for all (0,1)x   

Solving this ODE yields that if  f u   then 

3 22( )
3

f x x c x     
 

 

for some constant  c� , so integrating: 

  21
3

cu x x c
x

     

for a constant  c R : But we note that c must be equal to 0. Indeed, otherwise  

 0  E T  by the monotone convergence theorem, which is impossible by 

comparison with a one-dimensional Brownian motion and Theorem (3.1.3). 

Thus   21
3

u x x c     

and since   1 0u    we have    21 1
3

u x x  . Hence   0
1
3

T E . 
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Theorem (4.1.24): 

Let   2 d
bf C �  and let   dV L � , that is, V is uniformly bounded. For 

all  , 0t x  , let 

   
0

( , ) exp
t

x t su t x f B V B ds
  

      
E  

Then u is the unique solution  1,2 d
bw C  � � :  

1
2

(0,.)

d

d

u u Vu on
t

u f on



    


 

� �

�

 

Proof: Here again, the uniqueness part is an easy application of  ˆIto 's 

formula. Let u be a solution and let  ,t t tM u T t B E   where  

 
0

exp
t

t sE V B ds
 

  
 
  is of finite variation. By ˆIto 's formula: 

   1, ,
2t t t t t tdM u T t B E dB u u Vu T t B E dt          

 
 

 , tt t tu T t B EM Bd d   

since the second term is equal to 0 (because u is a solution to the PDE 

problem). Thus M is a local martingale, and it is uniformly bounded on [0, T], 

hence a true martingale. By the Optional Stopping Theorem: 

        0, x x T x T Tu T x M M f B  E E E E  

which is precisely the claim. 
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Remark (4.1.25): 

This formula turns out to be very useful when applied the other way round: in 

fact, it was originally introduced to compute expectations involving 

exponential functional s of Brownian motion, which tend to occur frequently 

in mathematical finance and in statistical mechanics, where V is a potential. 

(This is presumably why Feynman got interested in this problem). Then we 

can write: 

     
0

exp ,
T

x s TV X ds f X u x T
          

E  

where 
1
2

u u uV
t


  


  on d

 � �  

and     ,0u x f x   for all  dx � . This often makes these computations 

easier, by bringing in techniques that were developed in analysis (e.g., Fourier 

analysis). In mathematical finance, the Feynman-Kac formula allows to 

compute the Black-Scholes formula for the price of a call in terms of a certain 

PDE. This point of view is in some sense dual to ours, and it is a great 

advantage to have these two approaches for what is, fundamentally, the same 

object. 

Section (4.2): Stroock–Varadhan Theory of Diffusion Approximation  

We start to study Martingale problems. 

  Let , 1 ,( )i j i j dx
 

and  
1

( )
i di xb

 
 be a family of measurable functions 

with values in � .  

Let ( ) 6( )6 ( )Ta x x x . (Here we assume for simplicity that m d ). 
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Definition (4.2.1): 

We say that a process   , 0tX X t   with values in d� , together with a filtered 

probability space   , , ,t PF F , solves the martingale problem   ,M a b  if for 

all 1 , ,i j d   

  0
; 0

ti i
t si

Y x b X ds t    

and 

  ,0
; 0

ti j
t t i j sY Y a X ds t   

are local martingales. 

Of course, the second condition implies that  

 ,0
, , .

ti j i j
i j st t

Y Y X X a X ds          

 For instance, if ,b  are in addition Lipschitz, then there exists    0
Ω,  ,

t
x


F  

and an tF -Brownian motion  , 0tB t   solution to the stochastic differential 

equation: 

   . .t t t tdx x dB b x dt   

X then solves the martingale problem  ( , )M a b . In fact, note that any (weak) 

solution to ( ),  bE gives a solution to the martingale problem ℳ(a, b). More 

generally even, any L-diffusion will solve the martingale problem: 

Theorem (4.2.2): 
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Let  Ta    and let  X  and   , , ,t PF F be a solution to  ,M a b . Then there 

exists an  ℱ௧-Brownian motion (ܤ௧ , ݐ ≥ 0)  in dR  defined on an enlarged 

probability space, such that ( ),X B  solves ( ),  bE . 

Proof: Assume first that σ is invertible for every dx � . Then define  

 
0

ti j i
t t s sY X b X ds   , so that ,c loc

iY  M and by definition we have 

 ,,i j
i j td Y Y a x dt    . Define: 

   1
10 ,

t di k
t s sk i k

B X dY 


   

Thus ,c loc
iB M . Since Ta   and thus  ்ߩܽߩ = ߩ  where ܫ =  ଵ, or, inିߪ

coefficients, , , , ,
,

i k k j i j
k

a    


, we have  

   . , ,
. 1 0

,
td

i j
i k s k s i jt

k
B B X a X ds t 



       


 

so by Levy's characterization, B  is an Brownian motion in  d� . 

 Moreover, by the stochastic chain rule (Theorem 2.2.13), 

   0
0 0

t t

s s t t tX dB Y Y X b X dt                                              (4.40) 

Indeed the thi  component of the left-hand side may be written as 

  1
, , ,

1 , 10 0 0

t t td d
j k

i j s s i j i k s s
j j k

X dB dY dY   

 

      

 But Equation (4.40) is simply the statement that ( ),X B  solves ߪ)ܧ, ܾ). 

When   is not everywhere invertible, we proceed like in the 

generalized version of Dubins- Schwartz's (when  M

  ) and let the 
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Brownian motion evolve independently when s is such that   sX is not 

invertible.   

Theorem (4.2.2) Shows that there is a one-to-one correspondence between 

solutions to the stochastic differential equation E(σ,b) and the martingale 

problem  ,M a b . In particular, there is uniqueness in distribution to the 

solutions of ( ),bE , if and only if the solutions to  the martingale problem 

 ,  M a b  are unique, where uniqueness means that all solutions to  ,M a b  

with identical starting points have the same law. 

Now we Notions of Weak Convergence of  Processes. 

In the following we describe some basic results in the theory of weak 

convergence of processes, which we do not prove due to the time constraints. 

We will however use these results in this section to discuss the convergence 

of Markov chains towards solutions of certain stochastic differential 

equations. 

The point of view here is similar to the one in Donsker's theorem. We view a 

process as a random variable with values in the space   of trajectories. We 

thus need to recall a few notions about weak convergence in general metric 

space. Let ( ), dS  be a metric space. The distance function ( , )d x y satisfies 

( , ) 0d x y   if and only if ; ( , ) 0;x y d x y  ( , ) ( , ) ( , )d x z d x y d y z  . 

The open ball ,( )B x r  is the set  : ( , )y S d x y r  . The Borel  -field is 

the field generated by all open sets. 

The notion of convergence in distribution is defined in terms of test 

functions, which are only required to be bounded and continuous (for the 

topology of S ): 
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Definition (4.2.3): 

Let  (ߤ)ஹଵ be a sequence of probability distributions on S . We say that

n   weakly as n   , if n
S S

fd fd    as n    for all bounded 

continuous functions f . If  n  is the law of a random variable  nX  and   that 

of a random variable X , we say that  nX X   in distribution (or in law). 

 There are a number of ways one can reformulate the notion of weak 

convergence in terms of the mass assigned to events that are either closed or 

open. If  A S , we recall the definition of the frontier of A, which is the set  
�: \ int( )A A A   . 

Theorem (4.2.4): 

Let   1n n
X


 be a sequence of random variables with values in S . The 

following are equivalent. 

(i) nX X   in distribution. 

(ii) For all closed set K,  limsup ( ) ( )n nX K X K   P P  . 

(iii) For all open set 0,  lim inf ( 0) ( 0)n nx x   P P . 

(iv) For all sets A such that ( ) 0,X A P  

lim sup ( ) ( )n X A X A   P P  

(v) For all sets A such that  ( ) 0,X A P  

lim ( ) ( )n x A x A   P P  

(vi) For any bounded function f , denote by fD  the set of discontinuities 

of f . Then for any f such that ( ) 0,fX D P ( ( )) ( ( ))nf X f XE E  as 

n   . 

It is important to note that the random variables nX  need not be related in 

any particular way. In fact they may even be defined on different probability 
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spaces. However, it turns out that (provided the metric space is sufficiently 

nice), one can always choose a common probability space for the random 

variables and define a sequence of random variables nY   with law identical to 

nX , in such a way that convergence occurs almost surely. This is the content 

of the "Skorokhod representation theorem", which we may occasionally need. 

Lemma (4.2.5):  

Suppose S  is complete and separable. If  n    weakly then there exists 

random variables  nY  defined on    0,1   equipped with the Lebesgue 

measure P , such that 
d

nY  for all  1n  , and  lim ,n nY Y   

P -almost surely, where  
d

nY  .  

We now specialize to the case where the random variables nX  take 

values in the space C  of continuous trajectories over the compact interval 

[0,1]. This is precisely the point of view in Donsker's theorem. We equip C 

with the distance of the sup-norm: 

[0,1]( , ) sup ( ) ( )td f g f g f t g t
     

This turns  C   into a complete, separable metric space, on which it 

makes sense to talk about  weak convergence. 

Example (4.2.6):  

If  , 0nS n    is a simple random walk on Z , then by Donsker's theorem:  

 [ ], 0 1N
tS t  , converges weakly towards a Brownian motion on [0, 1], where  

 1[ ] 2N
t NtS N S . 
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A classical trick in analysis for proving convergence of a sequence  nx   

towards a limit  x   is to prove that (a) the sequence takes its values in a 

compact set, and (b) there can only be one sub sequential limit. It is usually 

part (a) which demands slightly harder work to establish, as part (b) follows 

from usually softer arguments (we typically have identified the limit at this 

stage). Fortunately there is a general criterion and fairly easy to use in 

practice, which tells us when the set  1{ }n nk x 
  is compact (or, actually, pre-

compact, meaning that �k  is compact). When this happens, we say that the 

sequence of processes 1( )n nx   is tight. This criterion consists in, roughly 

speaking, showing that the process doesn't oscillate too wildly. 

This is the content of the following theorem. For a continuous path  

( ), [0,1]w t t   let   ( ) sup ( ) ( ) :osc w w s w t s t     osc is simply the modulus 

of continuity of the path w , at precision  . 

Theorem (4.2.7):  

Suppose that 1( )n
nX    is a sequence of processes with values in  C . Then nX is 

tight, if and only if for each 0  , there exists  , 1on M    and  0    such that: 

(i)  (0)nX M  P   for all 0n n  . 

(ii)  osc   P  

To summarize, to show that a sequence converges weakly in C , it suffices 

to prove that (i) and (ii) hold above and that there is a unique weak sub 

sequential limit. This is for instance the case if one has already established 

convergence of the finite-dimensional distributions, i.e., convergence of the k-

dimensional vector   1
, ...,

k

n n
t tX X  towards  1

,...,
kt tX X for any 1k   and any 

choice of "test times"  1, ..., kt t . This could have been a possible route for 
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proving Donsker's theorem, as convergence of finite-dimensional 

distributions is easy to establish. 

Note that condition (i) in the above theorem says that the starting point of 

the process (0)nX takes values in a compact set with arbitrarily high 

probability. This is usually trivial since very often, the starting point of a 

process is a deterministic point such as 0. 

In the later, we will prove weak convergence of certain rescaled Markov 

chains towards diffusion processes. For this, we will usually use the fact that 

any weak sub sequential limit must satisfy the associated martingale problem 

 ,M a b  for which sufficient smoothness of the coefficients proves uniqueness 

in distribution. However there is one (small) additional difficulty in this case: 

it will be more natural to work with right-continuous processes nX  rather than 

with the linear-interpolation of nX , which typically loses some of the Markov 

property.  

Let D  be the space of right-continuous paths on [0,1]. Without entering 

into the details, D  can also be equipped with a complete separable metric d, 

which is called the Skorokhod topology. It can also be proved that if a 

sequence of right-continuous processes nX  satisfy (i) and (ii) in Theorem 

(4.2.7), then nX  is also tight and any sub sequential limit ܺmust be 

continuous, in the sense that    1X C P . Furthermore, weak convergence 

with respect to the Skorkhod topology towards a continuous process , implies 

weak convergence in  C  of the linear interpolations. Another fact which will 

be needed is that if nx x in the Skorokhod topology, the ( ) ( )nx t x t   for all  

0t  . 

Now we need to study Markov chains and diffusions. 
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The result which we now discuss is due to Stroock and Varadhan, and shows 

a link between rescaled Markov chains and certain diffusion processes. It is 

applicable in a remarkably wide variety of contexts, of which we will only 

have the time to give one example.  

While the idea for the statement of the result is in fact fairly simple, 

there is quite a bit  of notation to introduce. We assume that a certain Markov 

chain is given to us. A certain scaling parameter 0h  is going to 0, and we 

assume that the chain has already been rescaled, so it takes it values in a 

certain set  d
hS  � . We will denote this Markov chain by   , 1h

nY n  . The 

transition probabilities of Y  are given by a transition kernel  h  which may 

depend on 0h  : 

 1 | ( , )h h
n n hY A Y x x A    P  

We define the random process on [0,1] by 

, [0,1]h h
t t

h
X Y t 

 
   

so that hX is almost surely right-continuous and is constant between 

two successive jumps of the chain, which may occur every h  units of time for 

the process hX . We let  hK  denote the rescaled transition kernel: 

1( , ) ( , )h
hK x dy x dy

h
   

Roughly, the conditions of the theorem states that "the infinitesimal mean 

variance of the jumps of X  when  X x   are approximately given by b(x) and 

 x , respectively". The conclusion states that  hX  converges weakly towards 

the solution of  ,M a b . 

For  1 , ,i j d    define: 
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  ,
1

( , )h
i j i i j j h

y x

a y x y x K x dy
 

    

 
1

( ) ( , )h
i i i h

y x

b x y x K x dy
 

   

( ) ( , ( , ) )h h cx k x B x    

Suppose that ija  and ib  are continuous coefficients on d�  for which the 

martingale problem  ,M a b  is well posed, i.e., for each  dx �   there is a 

unique in distribution process  ,0 1tX t   such that  0X x   almost surely, 

and 

0

( )
t

i i
t t i sY X b X ds     and 

0

( )
t

i j
t t ij sY Y a X ds   

are both local martingales. 

Theorem (4.2.8): 

Suppose that the above holds, and that for every  1 ,i j d  , and every 0R   , 

every  0  , 

(i) 0lim sup ( ) ( ) 0h
h ij ijx R a x a x     

(ii) 0lim sup ( ) ( ) 0h
h i ix R b x b x     

(iii) 0lim sup ( ) 0h
h x R x     

Then if  0 0
h

hX x x  , we have     ,0 1 ,0 1h
t tX t X t       weakly in D , and 

in particular, the linear interpolations of  hY  converge weakly in C . 

The rest of this part is devoted to a proof of this result. By localization, 

one may replace (i), (ii) and (iii) by the following stronger conditions: 

(i) 0lim sup ( ) ( ) 0d
h

h ij ijx
a x a x 

 
�
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(ii) 0lim sup ( ) ( ) 0d
h

h i ix
b x b x 

 
�

 

(iii) 0lim sup ( ) 0d
h

h x
x 

 
�

 

(iv) Moreover ,
h
i ja , h

ib , h
 are uniformly bounded in h and x . 

Step 1. Tightness: 

Let f  be a bounded and measurable function. Define the operator  hL   by   

 ( ) ( , ) ( ) ( )h
hL f x K x dy f y f x                                                  (4.41) 

  This is the "generator" of the process: this represents the infinitesimal 

change in the function f when the process is at x . In particular, note that the 

process 

1

0
( ) ( ), 0,1, 2,...

k
h h h

k j
j

f Y hL f Y k




                                                    (4.42) 

is a (discrete-time) martingale. For our proof of tightness we are going to need 

an estimate on the time needed by the chain to make a deviation of size 

roughly 0  , when it starts at position  dy� . To do this, we introduce a 

function  :g � �   such that  2 , 0 1g g  C   and  ( ) 0g x    if  dx � , while  

(0) 1g  . We also define for dx� 2 2( ) (| | / )f x g x    which is also 2C , and 

becomes 0 when  x  , and for  da� , let  da�  let , ( ) ( )af x f x a   . 

Lemma (4.2.9): 

 There exists   C , independent of h , such that  ,
h

aL f   C  for all , da x� . 

Proof: This is simply an application of Taylor expansion. For   0,1t    and 

, da x�  , let      ,at f x t y x     . Then by Taylor's theorem, there exist 

 0,1xy C  such that 
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           , ,
11 0 0
2!a a xyf y f x c            

            ,
1

,
1 ,

d d

i ia a i i i j j ij xy
i i j

y x D f x y x yf y x D ff x z 
 

        

where  ,af f    and Di and Dij stand for  
i

f
x



 and  
2

i j

f
x x


 
 respectively, while  

   ,xy xyz x c y x x y    . 

   To obtain   hL f x , we integrate the above with respect to   ,hk x dy , and 

get: 

              

      

  

, , , ,
1

,
,1

,

, . ,

,

2 , ,1

h
a h a a a h

y x

i i j j ij a xy h
i jy x

c
a h

L f x k x dy f y f x f x y x k x dy

y x y x D f K x dy

f K x b x

   





 

 



    

  



 

 �  

Let   ,sup aA f x   , let  supzB Df z    , where   
1 ,ij i j d

Df D f
 

   the 

Hessian matrix of f and for a matrix  ijmM   we note 

: 1
sup ,

d
j

u
i

u
m uu M

 


�

 

Thus  

     2
,

,
i i j j ij a xy

i j
y x y x D f Z y x B      

hence by Cauchy-Schwarz 

        2

,
1

, 2 , ,1 ch h
a h h

y x

L f x A b x B y x K x dy K x B x  
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Since  
2

1

, h
h ij

iy x

y x K x dy a
 

   and since we have assumed in (iv) that all 

those quantities were uniformly bounded, we have proved the lemma.  

 To estimate  hosc x , we introduce the following random variables: 

0 0T , 

 1 1inf : h
n n t Tnt X X     T T  

 min : 1nn � T  

 1min :1n n n     �T T  

and, finally 

    max : 0 1h hX t X t t      

The relation between these random variables and tightness is provided by the 

following lemma. 

Lemma (4.2.10): 

Assume that      and that    . Then    4hosc x  . 

Proof: The proof is straightforward. We want to show that for all s;  

 , 0,1s t   with s t   ,     4h hX s X t   . The point is that since

s t     , s and t can only span at most one of the interval 1, n nT T , and by 

definition of these stopping times, everything behaves well on those intervals. 

Thus if  1n ns t   T T , then      2f s f t   . If on the other hand, 

1  n ns t   T T , then 
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1

1 4

n n n n

n n

f s f t f s f f t f f f

f f 







      

  

T T T T

T T
 

 We now use this to prove the tightness estimate. Since it is assumed 

that the starting point h hX x  is nonrandom and converges towards a fixed 0x

, it suffices to prove the statement about oscillations: for all   , there exists  

0    and   such that for all  0h h , 

  hosc x   P  

Thus it follows to prove that for all h sufficiently small and for    small 

enough,   4 0x   P  as 0h  , and    0x   P   for  0h   for all  

dx R . The first one is very simple: since there are at most  1
h

  time steps in 

the unit interval [0, 1], a simple union bound yields 

      1 sup , , sup 0c h
x hy y

y B y y
h       P  

by (iii). The second one requires more arguments. We follow the elegant 

argument introduced by Stroock and Varadhan. The first step is to estimate  

 1`xP T u   for small u. Note that by Lemma (4.2.9), the process  

 , ,h
x kf Y hk  � 0,1, 2,...k   

is a submartingale. Thus letting   

 inf 1: h
kk Y x    T  so that 1 hT T .Using the Optional stopping theorem 

at  uT   with  uu h  , 

    , 1h h
x x u T uf Y h Y    �E T  
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Since T u u   and since on the event that T u  , we have that  T uY x     , 

so  , 0h
x uf Y   , we have: 

      1 ,1 h
x x x uu u f Y h u u           P P E C C  

This has the following consequence: for all u > 0, letting   x u  P P : 

         
2

1 1

1

u u u u
x x x

u

e u e u P e P e P e

e Pu u u

    



         

     �

E P PT T T
 

Thus by choosing u small enough, we can find  1  , independent of x or     

(depending solely on     through  C ), such that  x e  E T  . Now, iterating 

and using the strong Markov property at times  1,..., nT T  , which are stopping 

times,  

 n
x e  E T  

since   does not depend on x , and thus by Markov's inequality: 

     
   

11 n

n

x x x

xx

n

n

N n e e

N n e e e

 



    

 

P P P

P E

T

T

T
 

We finish by saying that 

     sup k
x y x

y
k k k e          � �P P PT  

Thus we take k large enough that  2
ke     and then pick    small enough 

that  2k  �  . 

We are then done for the proof of tightness. 

Step 2. Uniqueness of the weak subsequential limits. 
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Since we have assumed that the martingale problem   ,a b   was well 

posed, it suffices to show that the limit of any weakly convergent 

subsequence solves the martingale problem  ,a b . Our first step for doing 

so is to show that the generator of the Markov chain hL  converges in a 

suitable sense to the generator L  of the diffusion: 

         2

, 1 1

1
2

d d

ij i
i j ii j i

f xfLf x a x x b x
x x x 


 

     

Lemma (4.2.11): 

Let 2
kf C  be twice differentiable and with compact support. Then 

   hL f x L x  uniformly over  dx �   as  0h  . 

Proof: Going back to our Taylor expansion of   hL f x , and recalling the 

definition of   h
ib x  and  ija x  , we may write: 

     

        

       

1

, 11

1

,

,

d
h h

i i
i

d

i i j j ij
h

h

xy h
i jy x

h
y x

L f x b

L f x

L f x

x D f x

y x y x D f z K x dy

f y f x K x dy



 

 



  

   







 

 The final term in the right-hand side converges to 0 uniformly in x by 

assumption (iii) with 1   . To deal with the first term, note that 

       

   

1 1

11
sup

d d
h
i i i i

i i

d
h
i i i

ii d

b x D f x b x D f x

b x b x D f
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        Which converges to 0 uniformly in x by assumption (ii) (since 2
kf C ). It 

remains to deal with the central term. Recalling the definition of  h
ija x , we 

get: 

          

       

        

, 1 , 11

, 1 , 1

, 11

,

,

d d

i i j j i xy h ij ij
i j i jy x

d d
h
ij ij ij ij

i j i j

d

i i j j ij xy ij h
i jy x

y x y x D f z k x dy a x D f x

a x D f x a x D f x

y x y x D f z D f x k x dy

  

 

 

  

 

     

 

 



 

The first term converges to 0 uniformly in x by (i) and the fact that the 

derivatives of f are uniformly bounded. The second term can be split in an 

integral over y x     and y x   . The first one converges to 0 uniformly 

in dx�  thanks to (iii) and the fact that the integrand is bounded. For the 

other term, let 

     
1 ,
sup sup ij xy ij
i j d y x

D f z D f x



   

    

Then since xyz  lies on the segment between x and y , and since ijD f  is 

continuous on the compact set K (and hence uniformly continuous),    0   

as 0  . On the other hand, 

        

   

, 11

2

,

,

d

i i j j ij xy ij h
i jy x

h
y x

y x y x D f z D f x k x dy

y x k x dy




 

 

    

  




 

by Cauchy-Schwarz's inequality, 

so the proof of the lemma is complete.  
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 We now use this lemma to conclude the proof of Theorem (4.2.8). Fix  

0nh    such that nhX x  weakly (in D) as n . (Recall that  hX   is 

defined as h
t t

h
X Y

 
 

 . Fix s t . Then for any continuous functional :F D R   

which is measurable with respect to Fs , we have, since hL  is the discrete 

generator of Y , 

   
1

0
, 0,1,...n n n

n n

k
h h h
kh n jh

j
f X h L f X k





   

is a martingale. In particular, taking nk k  such that  nkh s , i.e.,  /n nk s h    , 

and taking n similarly so that  n nh t , i.e., n nt h    , we get 

       
1

0
n

n

n n

n n n n

n n n
n

h
jh

h h h h
x h k h n

j k
F x ff X f x h L X





           



E  

By using the Skorokhod representation theorem, one may find nY  such that 
d

n hnY X  and nY Y  almost surely, where
d

Y X . We recognize a Riemann sum 

in this expectation. Since almost sure convergence in D  implies almost sure 

convergence of the martingals, we conclude by the Lebesgue convergence 

theorem that 

  ( ) ( ) ( ) 0
t

x t s s uF n F X F Lf X dX u    
 E  

Since F  is an arbitrary continuous function on D , it follows that 

0
(( 0) ) ,u

t

t Lf X du tf X    

is a martingale for all 2
kf C  . Since the martingale problem has a unique 

solution, the desired conclusion follows. This ends the proof of Theorem 

(4.2.8). 
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Example (4.2.12): 

This result has literally thousands of practical applications, and we show one 

particularly simple such application. 

Now we discuss The Ehrenfest chain: This is a Markov chain which models a 

box filled with gas molecules which is divided in two equal pieces, and where 

gas molecules can be exchanged between the two pieces through a small hole. 

Mathematically, we have two urns with a total of 2n   balls (molecules). At 

each time step we pick one ball uniformly at random among the 2n  balls of 

the urn, and move it to the other urn (we think of this event as a certain gas 

molecule going through that hole). Let  n
tY denote the number of molecules in 

the left urn. 

Define a normalized process   /n n
t tnX Y n n

  
  , and assume for instance 

that 0
nY n , i.e., equal number of molecules in each urn. 

Theorem (4.2.13):  

The process  , 0 1n
tX t   converges weakly to an Orstein-Uhlenbeck 

diffusion  , 0 1tX t   with unit viscosity, i.e., the pathwise unique solution to 

0, 0t t tdX X dt dB X     

Thus the number of molecules in each urn never deviates too much 

from n . Writing    , , .
n

nK x dy n x dy   

Proof: The state space for nY  is  / :nS k n n k n    . The transition 

probability n of nY  is given  

   1 1
2 2, , ,

2 2
n nn x n n x nx x n x x n

n n
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Here 1d  , and the expected infinitesimal drift 

 
1 1

2 2ˆ ( ) (
2

,
2

)n n n xb x n ny x k x d x ny n n n x
n n

         
  

  

While the infinitesimal variance 

1 1
2 2 2ˆ ( ) ( ) ( , ) 1

2 2
n n n x n n x na x y x K x dy n n n

n n
         

  
  

It follows without difficulty that the truncated expected drift and variance, 

respectively 

 2

1
( ) ( , )n n

y x
b x y x k x dy

 
   and  2

1
( ) ( , ),n n

y x
a x y x k x dy

 
  satisfy: 

   1;n na x b x x   

Uniformly on every compact set. Since the coefficients of the Ornstein-

Uhlenbeck diffusion are Lipschitz, there is pathwise uniqueness for the 

associated SDE and thus uniqueness in distribution. Therefore,  ,0 1n
tX t   

converges to  , 0 1tX t    weakly, by Theorem (4.2.8). 
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