بسم الله الرحمن الرحيم

Sudan University of Sciences and Technology

College of Graduate Studies

Characterization of orbits in Sudanese population using computed tomography

توصيف المحاجر لدى السودانين باستخدام الاشعة المقطعية المحوسبة

A Thesis submitted for Partial Fulfillment for the degree

of Master (M.Sc) in Diagnostic Radiologic Technique

BY:

Nehad Ishag Mohamed

Supervisor:

Dr/Caroline Edward Ayad

Associate Professor

(2016)

بسم الله الرحمن الرحيم

(وما اوتيتم من العلم الا قليلا)

حدق الله العظيم

Dedication

To my father how learned my that

Only man can defeat odds and arrive to the goals

To my mother how learned my that

Only love and compassion are the secret of the happy life

Acknowledgment

First of all, I thank Allah the Almighty for helping me complete this research; I thank Dr. Caroline Edward Ayad, my supervisor for her help and guidance.

I would like to thank my brothers to support me for long time.

Finally I would like to thank everybody who helped me prepare and finish this study.

Tables of contents

Topic	Page number		
Dedication	٧		
Acknowledgement	V		
English Abstract	V		
Arabic Abstract	V		
List of figures	V		
List of tables	V		
Chapter One			
Introduction			
1-1 Introduction	1		
1-2 problem of the study	2		
1-3 Objectives	2		
1.4 Significance of the study	2		
1-5 Overview of study	3		
Chapter Two	•		
Literature Review			
Theoretical background			
2-1 Anatomy	4		
2-2 physiology	8		
2-3patholigy	9		
2-4 Previous studies	13		
Chapter Three			
Material & Methodology			
3-1 Material	16		
3-2 Method of scanning	17		
3-3 Method of measurement	17		
3-4 Data analyzes	18		

Chapter Four Results	
Result Analysis	21
Chapter Five	
Discussion, Conclusions and	
Recommendations	
5-1 Discussion	29
5-2 Conclusion	31
5-3 Recommendations	31
References	32
appendix	33

Abstract

Characterization of orbit in Sudanese population as measurement of orbital diameter by CT helps to understand the anatomical structure which helps in facial bone surgery.

The objectives of this study are measurement the diameter of orbit and to correlate the measurement with head dimension and age.

The study design is measurements of orbital width, orbital height, orbital index, biorbital width, introrbital width, and transverse head diameter were obtained in (mm). The study was carried out in ALModares Medical Center in Khartoum.

The result of the study showed the mean of orbital width was (37.022) mm, orbital height (33.682) mm, orbital index (91.01) mm, biorbital width (95.918) mm, interorbital width (24.444) mm, transverse diameter of head (133.098) mm. the mean orbital index (90.12) mm for males and (91.9) mm for females.

The study showed the mean of orbital index (89.5 ± 4.173) mm at age between (10-19) years old, (91.483 ± 3.728) mm at age between (20-29) years, (91.085 ± 6.076) mm at age between (30-39) years, (90.4713 ± 4.064) mm at age between (40-49) years, (91.08571 ± 3.044) mm at age between (50-59) years, (91.36364 ± 2.990) mm at age between (60-69) years, (90.88 ± 4.293) at age between (70-79) years.

The conclusion of the study there were linear relationships between orbital height, orbital width, orbital index, biorbital width, interorbital width and transverse diameter of head with age show from figure.

There were linear relationships between orbital height, orbital width and orbital index with transverse diameter of head.

The diameter of orbit can increased due to age, but after 70 years old the diameter start to decrease due to bone shrinking.

The orbital index higher in females than males.

The orbital index higher in Sudanese than other previous studies.

ملخص الدراسة

توصيف المحاجر لدى السودانين باستخدام الأشعة المقطعية المحوسبة يساعد على فهم التركيب التشريحي للمحجر و الذي يساعد في العمليات الجراحية لعظام الوجه.

اهداف الدراسة قياس قطر المحجر وربط هذه القياسات مع عرض الرأس و العمر.

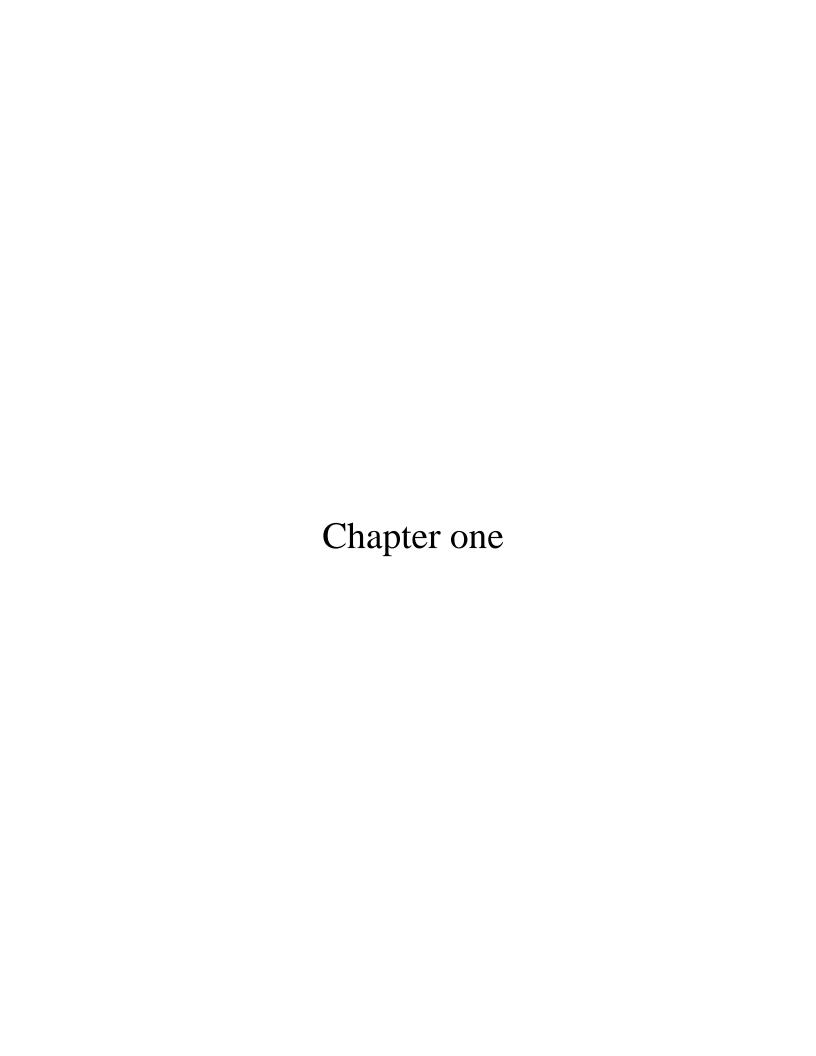
تصميم الدراسة تم قياس عرض المحجر و طول المحجر و فهرس المحجر و عرض الحجاجين و العرض بين الحجاجين و عرض الرأس (ملم)،وقد اجريت الدراسة في مركز المدرس الطبي بالخرطوم.

ملم، متوسط طول المحجر (33.682) ملم ، متوسط نتائج الدراسة أن متوسط عرض المحجر (37.22) ملم ، متوسط العرض بين الحجاجين فهرس المحجر (91.01) ملم ، متوسط عرض الحجاجين فهرس المحجر (91.01) ملم و ملم، ومتوسط عرض الرأس (133.09) ملم. متوسط فهرس المحجر للذكور (90.12) ملم. للأناث (91.9)

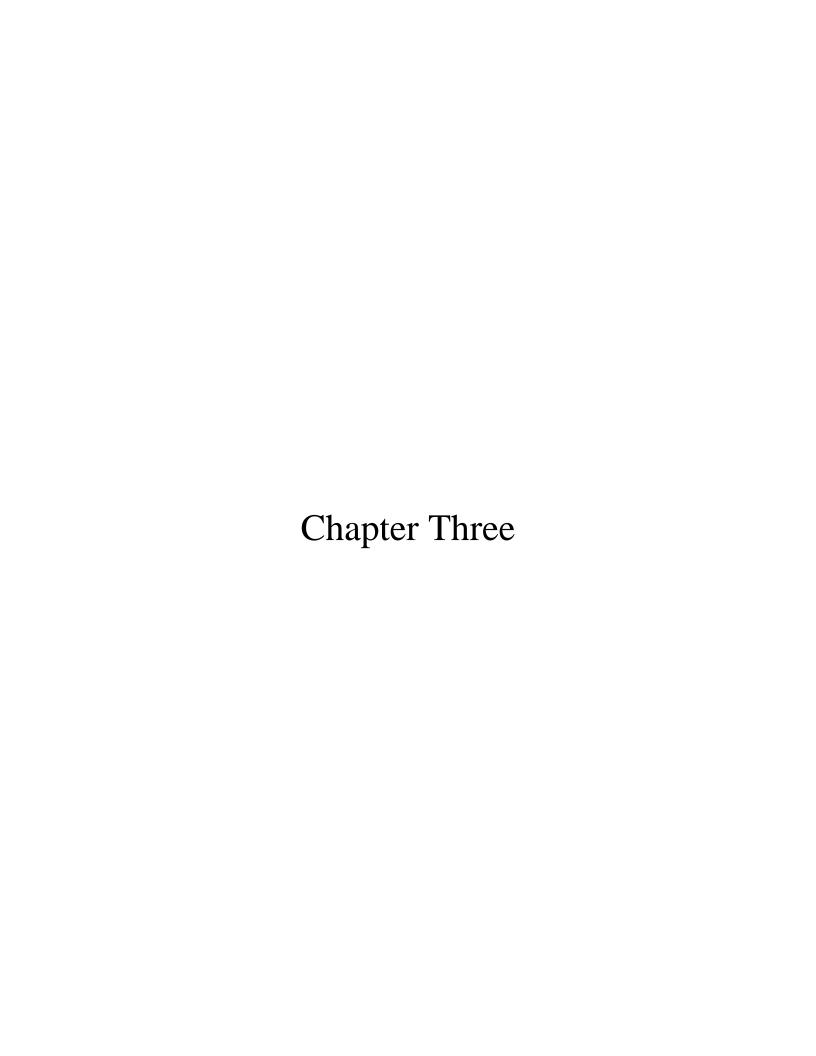
وأظهرت الدراسة ايضا أن متوسط فهرس المحجر (4.173 ± 0.08) ملم في العمر ما بين (10-10) سنة ، (10-10) ملم في العمر بين (10-20) ملم في العمر بين (مرك ألم بين (م

خلاصة الدراسة ان هنالك علاقة خطية بين عرض المحجر و طول المحجر و فهرس المحجر و عرض الحجاجين و العرض بين الحجاجين مع عرض الرأس .

.وهنالك ايضا علاقة خطية بين عرض المحجر و ارتفاع المحجر و فهرس المحجر مع العمر فهرس المحجر مع العمر العظم . فهرس المحجر يزيد مع زيادة العمر لكنه يبدأ في التناقص بعد عمر 70 عاما نتيجة لتقلص العظم . فهرس المحجر لدى الأناث اعلى من الذكور .


فهرس المحجر لدى السودانين اعلى من باقى الدراسات السابقة

List of figures


Figure	Title	Page
Figure 2-1	compination of orbital bony	7
Figure 2-2	muscle of orbit	7
Figure 2-3	Structure of globle	8
Figure 2-4	Indirect orbital fracture	11
Figure 2-5	Direct orbital fracture	11
Figure 2-6	Orbital rim fracture(zygomatic fracture)	12
Figure 2-7	Orbital rim fracture (frontal fracture)	12
Figure 3-1	show the measurement of transverse head diameter	19
Figure 3-2	show the measurement of orbital height and orbital width	19
Figure 3-3	the measurement of biorbital and intraorbital	20
Figure 4-1	Gender Distribution	21
Figure 4-2	Variable measurement	22
Figure 4-3	scatter plot Diagram shows a linear relationship between age and orbital width	24
Figure 4-4	scatter polt diagram show linear relation between orbital height and age	24
Figure 4-5	scatter polt diagram show linear relation between orbital index and age	25
Figure 4-6	scatter polt diagram show relation between biorbital width and age	25
Figure 4-7	scatter polt diagram show relation between interorbital width and age	26
Figure 4-8	scatter polt diagram show relation between transverse diameter of head and age	26
Figure 4-9	scatter polt diagram relation between orbital index and transverse diameter of head	27
Figure 4-10	scatter polt diagram show relation between orbital width and transverse diameter oh head	27
Figure 4-11	Scatter polt diagram show relation between orbital height and transverse diameter of head	28

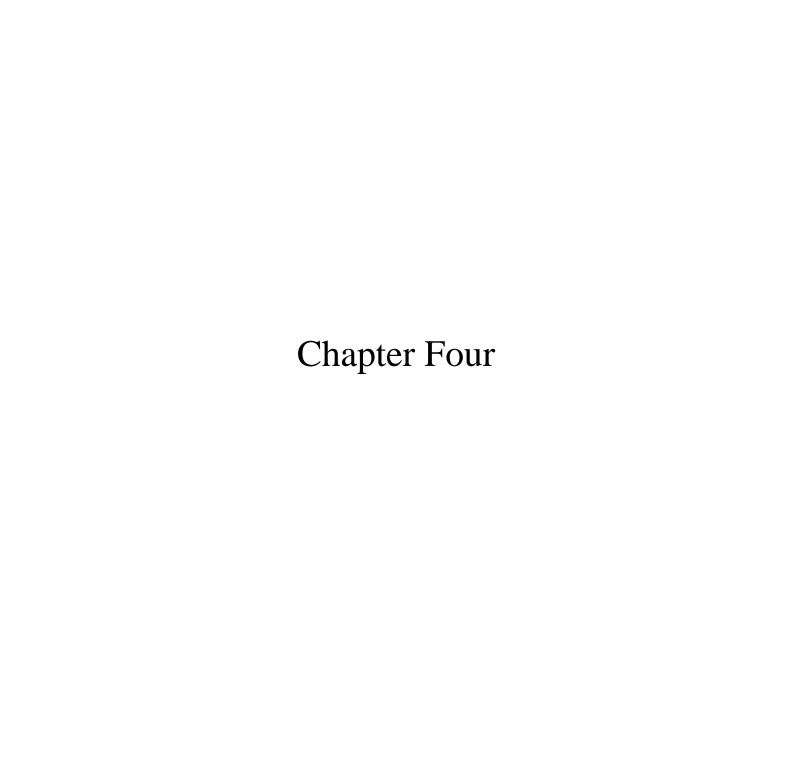
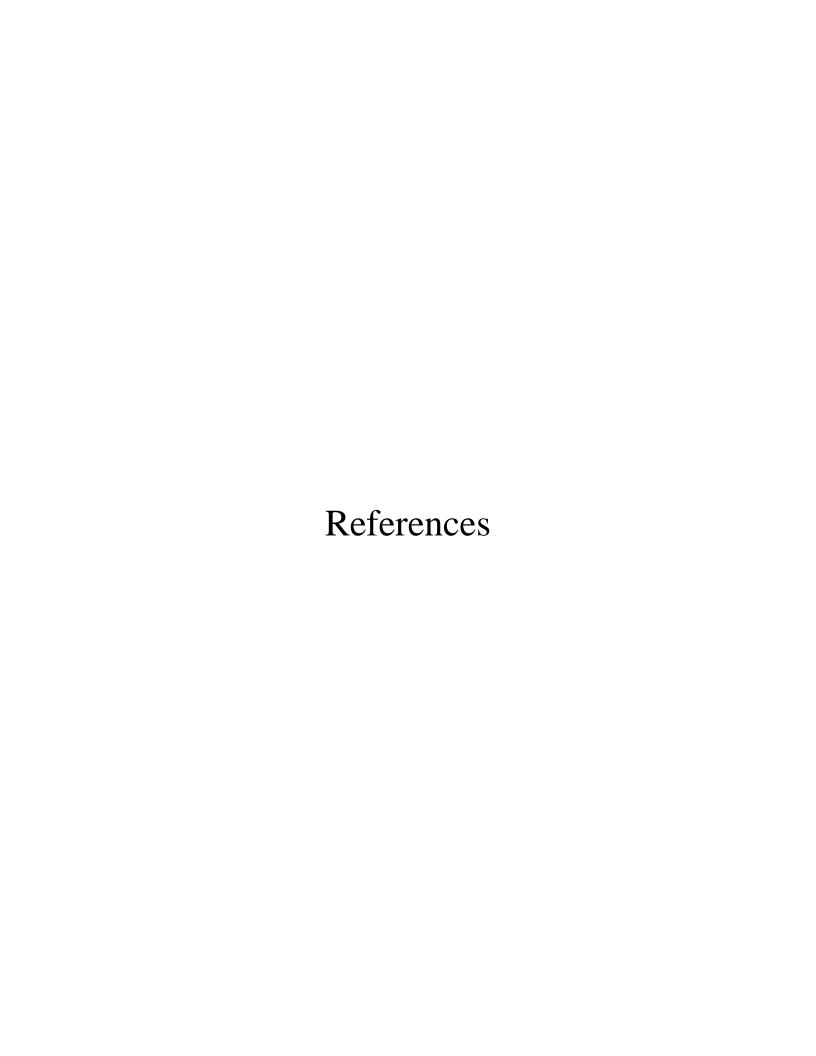

List of tables

Table	Title	Page
Table 2-1	compersion of research on different populations.	14
Table 4-1	Gender Distribution	21
Table 4-2	Variables, mean (mm) and standard deviation	22
Table 4-3	Classification of mean orbital Index according to age class	23
Table 4-4	Classification of mean orbital Index according to gender	23



Chapter Two

Chapter Five

