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Abstract 

The objective of the thesis is to introduce the importance of 

Economic load Dispatch in a power system. The Economic 

Dispatch means, to find the generation of the different units in the 

power system so that the total fuel cost is minimum and at the same 

time the total demand and transmission line losses at any instant 

must be met by the total generation considering the generation 

limits constrain. These constraints formulates the economic dispatch 

for finding the optimal power flow of all the online generating units 

that minimizes the total fuel cost, while satisfying an equality 

constraint and a set of inequality constraints. The thesis discuss how 

the Economic Dispatch problem being solved by using the methods 

of Newton Raphson (NR) and Particle Swarm Optimization (PSO). 

The two methods had been implemented to IEEE 39 New England 

test system by using MATLAB software R2010a .The results of the 

two methods after simulation in MATLAB were analyzed and 

conclude that the Particle Swarm Optimization method is more 

efficient than the Newton Raphson method. 
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 المستخلص

تعريف التوليد . الهدف من هذا البحث التعريف بأهمية التوليد الاقتصادي لمنظومة القدره

الاقتصادي هو ايجاد التوليد الامثل  لجميع الوحدات في منظومة القدره لجعل مجموع 

يساوي مجموع التوليد مع  هتكلفة الوقود هي الأقل ،مجموع الطلب و المفاقيد اللحظي

حدود التوليد تساعد في ايجاد تدفق القدره الامثل من جميع الوحدات . مراعاة حدود التوليد

هذه الاطروحه تناقش . لتقليل تكلفة الوقود الكليه مع مراعاة حدود المساواة و عدم المساواة

استمثال عناصر حل مشكلة التوليد الاقتصادي باستخدام طريقة نيوتن رافسون وطريقة 

في  .لانكلترا الجديدة الاختباريه قضيب توصيل 93تم تطبيق الطريقتين لمنظومة  .السرب

استمثال عناصر وجد ان طريقة  لطريقتيناامج الماتلاب و تم المقارنه بين نتائج برن

لأي عدد من  ليطبق تصميم البرنامج وتمن، طريقة نيوتن رافسواكثر كفاءه من  السرب

 .لطريقتينكلا اوحدات التوليد ل
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1.1 Background 

Economic operation and planning of electric energy generating systems have 

always been given proper attention in the electric power system industry. A 

saving in the cost of generation  represents a significant reduction in the 

operating cost (including the fuel cost) and hence this area has warranted a great 

deal of attention from operating and planning engineers. The original problem 

of economic dispatch of thermal power generating systems used to be solved by 

numerous methods. However, with the development of mathematical tools and 

advance computational methods, the economic scheduling of generators has 

become more accurate and can be applied even in complex networks. Thermal 

scheduling being of prime importance, hydrothermal coordination scheduling 

has emerged as another aspect of economic scheduling. The basic purpose of 

economic operation of power system is to reduce fuel cost for the operation of 

power system economic operation is achieved when the generators in the 

system share load to minimize overall generation cost. The main economic 

factor in the power system operation is the cost of generating real power [1]. 

As power systems are getting larger and more complicated due to the increase 

of load demand, the fossil fuel demand of thermal power plants increases which 

causes rising costs and rising emissions into the environment. Therefore, 

optimization has become essential for the operation of power system utilities in 

terms of fuel cost savings and environmental preservation [2]. 

The optimal operating point of a power generation system is where the 

operating level of each generating unit is adjusted such that the total cost of 

delivered power is at a minimum. In an energy management system, Economic 

Dispatch is used to determine each generating level in the system in order to 
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minimize the total generator fuel cost or total generator cost and emission of 

thermal units while still covering load demand plus transmission losses [3]. 

Recently, methods based on artificial intelligence have been widely used for 

solving optimization problems. These methods have the advantage that they can 

deal with complex problems that cannot be solved by conventional methods. 

Moreover, these methods are easy to apply due to their simple mathematical 

structure and easy to combine with other methods to hybrid systems adding the 

strengths of each single method [4]. 

1.2 Problem Statement  

Economic dispatch determines the optimal real power outputs for the generating 

units online so that fuel cost of generating units is minimized while all unit and 

system operating constraints are satisfied. By using conventional method and 

artificial intelligent methods in this thesis and compare between the two results 

to find the optimal generation schedule the methods were applied to IEEE 39 

New England bus system with 10 generator units. 

1.3 Objective  

The main objective is to minimize the overall cost of production of power 

generation considering all system constrains by using conventional method 

(Newton Raphson Method); and intelligent method (Particle Swarm 

Optimization) in MatLab program, and to compare between the two methods.  

1.4 Thesis Layout  

The thesis organization is summarized as follow:  

 Chapter one about research background, thesis problem and objectives. 

 Chapter two about the economic operation in power system  
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 Chapter three discusses the conventional and artificial intelligent 

methods in power systems.  

 Chapter four summarized the results of the software simulation in 

MatLab by using Newton Raphson (NR) and Particle Swarm 

Optimization (PSO) techniques. 

 Chapter five gives thesis conclusion and recommendations.  
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2.1 Introduction  

Generating plants have different characteristics which give different generating 

costs at any load. Therefore proper scheduling of plants for minimum cost of 

optimal operation becomes important. and because the cost characteristics of 

each generating unit are non-linear the problem of achieving the minimum cost 

becomes non-linear problem [5]. 

Economic dispatch is generation allocation problem and defined as the process 

of calculating the generation of the generating units so that the system load is 

supplied entirely and most economically subject to the satisfaction of the 

constraints and it is very important and essential daily optimization procedure in 

the system operation. 

The optimal system operation, in general, involves the consideration of 

economy of operation, system security, emissions at certain fossil-fuel plants, 

and optimal releases of water at hydro-generation, etc. All these considerations 

may make conflicting requirements and usually a compromise has to be made 

for optimal system operation. 

Since the basic purpose of economic operation of power system is to reduce the 

fuel cost for the operation of power system, economic operation achieved when 

the generation in the system share load to minimize overall generation cost. The 

main economic factor in the power system operation is the cost of generation 

real power. In any power system this cost has two components,  

(i) The fixed cost being determined by the capital investment, interest charged 

on the money borrowed, tax paid, labor charge, salary given to staff and 

any other expenses that continue irrespective to the load on the power 

system. 

(ii) The variable cost, a function of loading on generating units, losses daily 

load requirement and purchase or sale of power [1]. 
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2.2 Generator Incremental Cost Curve 

The analysis of the problems associated with the controlled operation of power 

systems contains many parameters of interest. Fundamental to the economic 

operating problem is the set of input-output characteristics of a thermal power 

generation unit as in Figure 2.1 [4]. 

From the input output curves, the incremental fuel cost (IFC) curve can be 

obtained. The IFC is defined as the ratio of a small change in the input to the 

corresponding small change in the output [1]. 

 

Figure 2.1: Input – Output Characteristic of Steam Turbine 

 

G

Input F
IFC

Output P

 
 
 

                                                                                         (2.1) 

Where Δ represents small changes. 

As the Δ quantities become progressively smaller, it is seen that IFC is 

( )

( )

d Input

d Output
 and is expressed in cost currency/MWhr. A typical plot of the IFC 

versus output power is shown in Figure 2.2. 
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Figure 2.2: Incremental Fuel Cost Curve 

Mathematically, the IFC curve can be obtained from the cost curve. 

The cost curve, 

21

2 i ii i G i G iC a P b P d    (Second degree polynomial)                                           (2.2) 

The IFC, 

( )
i

i

i
i G i

G

dC
IFC a P b

dP
    (linear approximation ) for all i=1,2,3,…n                   (2.3) 

Where 
i

i

G

dC

dP
 is the ratio of incremental fuel energy input in BTU to the 

incremental energy output in KWh, which is called ‘the incremental heat rate’ . 

2.3 Optimal Generation Scheduling Considering Of Transmission 

Losses: 

In a practical system, a large amount of power is being transmitted through the 

transmission network, which causes power losses in the network (PL) as shown 

in Figure 2.3. 
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Figure 2.3: Transmission Network 

2.3.1 Mathematical Modeling : 

Consider the objective function: 

      
1

( )
i

n

i G

i

C C P


                 (2.4) 

Minimize equation (2.4 ) subjected to equality and inequality constrains: 

(i) Equality constraint  

The real-power balance equation, i.e., total real power generation 
iGP

minus the total losses 
LP  should be equal to the real-power demand DP : 

1
i

n

G L D

i

P P P


    or  
1

0
i

n

G L D

i

P P P


                (2.5) 

(ii) Inequality constrain  

Always there will be upper and lower limits for the real and reactive- 

power generation at each station. The inequality constrain represented: 

(a) In term of real –power generation as  

(min) (max)i i iG G GP P P  .              (2.6) 

(b) in term of reactive-power generation as 

(min) (max)i i iG G GQ Q Q                (2.7) 

(c) in term of voltage at each of the station should be maintain 

with certain limits  

Transmission line  

PL 

Station 2 Station 1 

PG2 PG1 
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(min) (max)i i iV V V                (2.8) 

The optimal solution should be obtained by minimizing the cost function 

satisfying constrain equations (2.5) to (2.8) [1]. 

2.4 Transmission Loss in Term of Real Power Generation: 

Transmission loss PL is expressed without loss of accuracy as a function of real-

power generation. The power loss is expressed in B-coefficients or loss 

coefficients. The final equation is as below 

1

2
i

i

n
L

ij G

jG

P
ITL B P

P 


 


                                                                         (2.9) 

2.5 Plant Scheduling Methods: 

At the plant level, several operating procedure were adopted in the past 

leading efficient operation resulting in economy 

(i)  Base loading to capacity 

The turbo generators are successively loaded to their rated 

capacities in the order of their efficiencies. That is to say, that the 

most efficient unit will get greater share in load allocation which is 

a natural solution to the problem. 

(ii) Base loading to most efficient load 

In this case the heat rate characteristics are considered and the 

turbo-generator units are successively loaded to their most efficient 

loads in increasing order of their heat rates. In both the above 

methods thermodynamic considerations assumed importance and 

the schedules will not differ from each other much. 

(iii) Proportional loading to capacity 

A third method that was considered as a thumb rule in the absence 

of any technical data is to load the generating units in proportion to 

their rated capacities as stated on the name plates [6]. 

 



Chapter Two    Economic Operation In Power System 
           

9 
 

2.6 Optimal Power Flow: 

In an Optimal Power flow, the values of some or all of the control variables 

need to be found so as to optimize (minimize or maximize) a predefined 

objective. It is also important that the proper problem definition with clearly 

stated objectives be given at the onset. The quality of the solution depends on 

the accuracy of the model studied. Objectives must be modeled and its 

practicality with possible solutions. 

Objective function takes various forms such as fuel cost, transmission losses 

and reactive source allocation. Usually the objective function of interest is the 

minimization of total production cost of scheduled generating units. This is 

most used as it reflects current economic dispatch practice and importantly cost 

related aspect is always ranked high among operational requirements in Power 

Systems.  

 

2.7 Optimal Power Flow Solution Methodologies  

The OPF methods are broadly grouped as Conventional and Intelligent. The 

conventional methodologies include the well known techniques like Gradient 

method, Newton method, Quadratic Programming method, Linear Programming 

method and Interior point method. Intelligent methodologies include the 

recently developed and popular methods like Genetic Algorithm, Particle swarm 

optimization. 

The solution methodologies can be broadly grouped in to two namely: 

1. Conventional (classical) methods  

2. Intelligent methods. 

The further sub classification of each methodology is given below as per the 

Tree diagram. 
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Figure 2.4 Tree Diagram Indicating Optimal Power Flow Methodologies 

2.7.1 Conventional Methodologies  

The list of OPF Methodologies is presented in the Tree diagram Figure 2.4. It 

starts with Gradient Method. 

2.7.1.1 Gradient Method: 

The Generalized Reduced Gradient is applied to the OPF problem with the main 

motivation being the existence of the concept of the state and control variables, 

with load flow equations providing a nodal basis for the elimination of state 

variables. With the availability of good load flow packages, the sensitivity 

information needed is provided. This in turn helps in obtaining a reduced 

problem in the space of the control variables with the load flow equations and 

the associated state variables eliminated. 

2.7.1.2 Newton Method:  

In the area of Power systems, Newton’s method is well known for solution of 

Power Flow. It has been the standard solution algorithm for the power flow 

problem for a long time the Newton approach is a flexible formulation that can 

be adopted to develop different OPF algorithms suited to the requirements of 

OPF Solution mythologies 

OPF Methods 

Conventional 

method  

Intelligent method  

Gradient method  

Newton method  

Linear method  

Quadratic programming 

method  
Interior point method  

Genetic algorithm 

method  
Particle Swarm 

Optimization 
Ant colony method  

Evolutionary 

programming   
Artificial neural network  
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different applications. Although the Newton approach exists as a concept 

entirely apart from any specific method of implementation, it would not be 

possible to develop practical OPF programs without employing special sparsity 

techniques. The concept and the techniques together comprise the given 

approach. Other Newton-based approaches are possible. 

Newton’s method is a very powerful solution algorithm because of its rapid 

convergence near the solution. This property is especially useful for power 

system applications because an initial guess near the solution is easily attained. 

System voltages will be near rated system values, generator outputs can be 

estimated from historical data, and transformer tap ratios will be near 1.0 p.u. 

2.7.1.3 Linear Programming Method  

Linear Programming (L.P) method treats problems having constraints and 

objective functions formulated in linear form with non negative variables. 

Basically the simple method is well known to be very effective for solving LP 

problems.  

The Linear Programming approach has been advocated on the grounds that  

(a) The L.P solution process is completely reliable.  

(b) The L.P solutions can be very fast.  

(c) The accuracy and scope of linearised model is adequate for most engineering 

purposes.  

It may be noted that point (a) is certainly true while point (b) depends on the 

specific algorithms and problem formulations. The observation (c) is frequently 

valid since the transmission network is quasi linear, but it needs to be checked 

out for any given system and application. 

2.7.1.4 Quadratic Programming Method  

Quadratic Programming (QP) is a special form of NLP. The objective function 

of QP optimization model is quadratic and the constraints are in linear form. 

Quadratic Programming has higher accuracy than LP – based approaches. 

Especially the most often used objective function is a quadratic.  
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The NLP having the objective function and constraints described in Quadratic 

form is having lot of practical importance and is referred to as quadratic 

optimization. The special case of NLP where the objective function is quadratic 

(i.e. is involving the square, cross product of one or more variables) and 

constraints described in linear form is known as quadratic programming. 

Derivation of the sensitivity method is aimed at solving the NLP on the 

computer. Apart from being a common form for many important problems, 

Quadratic Programming is also very important because many of the problems 

are often solved as a series of QP or Sequential Quadratic Programming (SQP) 

problems.  

Quadratic Programming based optimization is involved in power systems for 

maintaining a desired voltage profile, maximizing power flow and minimizing 

generation cost. These quantities are generally controlled by complex power 

generation which is usually having two limits. Here minimization is considered 

as maximization can be determined by changing the sign of the objective 

function. Further, the quadratic functions are characterized by the matrices and 

vectors. 

2.7.1.5 Interior Point Method  

It has been found that, the projective scaling algorithm for linear programming 

proposed by N. Karmarkar is characterized by significant speed advantages for 

large problems reported to be as much as 12:1 when compared to the simplex 

method Further, this method has a polynomial bound on worst-case running 

time that is better than the ellipsoid algorithms. Karmarkar’s algorithm is 

significantly different from Dantzig’s simplex method. Karmarkar’s interior 

point rarely visits too many extreme points before an optimal point is found. In 

addition, the IP method stays in the interior of the polytope and tries to position 

a current solution as the “center of the universe” in finding a better direction for 

the next move. By properly choosing the step lengths, an optimal solution is 

achieved after a number of iterations. Although this IP approach requires more 
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computational time in finding a moving direction than the traditional simplex 

method, better moving direction is achieved resulting in less iteration. In this 

way, the IP approach has become a major rival of the simplex method and has 

attracted attention in the optimization community. Several variants of interior 

points have been proposed and successfully applied to optimal power flow. 

The Interior Point Method is one of the most efficient algorithms. The IP 

method classification is a relatively new optimization approach that was applied 

to solve power system optimization problems; it solves a large scale linear 

programming problem by moving through the interior, rather than the boundary 

as in the simple method, of the feasible reason to find an optimal solution. The 

IP method was originally proposed to solve linear programming problems; 

however later it was implemented to efficiently handle quadratic programming 

problems.  

2.7.2 Intelligent Methodologies:  

Intelligent methods include Genetic Algorithm and Particle Swarm 

Optimization methods. 

2.7.2.1 Binary Coded Genetic Algorithm Method: 

The drawbacks of conventional methods were presented in Section 2.7.1. All of 

them can be summarized as three major problems: 

 Firstly, they may not be able to provide optimal solution and usually 

getting stuck at a local optimal.  

 Secondly, all these methods are based on assumption of continuity and 

differentiability of objective function which is not actually allowed in a 

practical system.  

 Finally, all these methods cannot be applied with discrete variables, 

which are transformer taps. It is observed that Genetic Algorithm (GA) is 

an appropriate method to solve this problem, which eliminates the above 

drawbacks. GAs differs from other optimization and search procedures in 

four ways [8]:  
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 GAs work with a coding of the parameter set, not the 

parameters themselves. Therefore GAs can easily handle the 

integer or discrete variables.  

 GAs search within a population of points, not a single point. 

Therefore GAs can provide a globally optimal solution.  

 GAs use only objective function information, not derivatives or 

other auxiliary knowledge. Therefore GAs can deal with non-

smooth, non-continuous and non-differentiable functions 

which are actually exist in a practical optimization problem.  

 GAs use probabilistic transition rules, not deterministic 

rules[4]. 

The Main GA features over other search techniques are: 

1. GA algorithm is a multipath that searches many peaks in parallel and 

hence reducing the possibility of local minimum trapping.  

2. GA works with a coding of parameters instead of the parameters 

themselves. The coding of parameter will help the genetic operator to 

evolve the current state into the next state with minimum computations.  

3. GA evaluates the fitness of each string to guide its search instead of the 

optimization function.  

2.7.2.2 Particle Swarm Optimization Method 

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique inspired by social behavior of bird flocking or fish schooling. 

In PSO, the search for an optimal solution is conducted using a population of 

particles, each of which represents a candidate solution to the optimization 

problem. Particles change their position by flying round a multidimensional 

space by following current optimal particles until a relatively unchanged 

position has been achieved or until computational limitations are exceeded. 

Each particle adjusts its trajectory towards its own previous best position and 
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towards the global best position attained till then. PSO is easy to implement and 

provides fast convergence for many optimization problems and has gained lot of 

attention in power system applications recently.  

The system is initialized with a population of random solutions and searches for 

optima by updating generations. However, unlike GA, PSO has no evolution 

operators such as crossover and mutation. In PSO, the potential solutions, called 

particles, fly through the problem space by following the current optimum 

particles .In PSO, each particle makes it s decision using its own experience 

together with its neighbor’s experience.  

In this thesis, PSO was used as an intelligent method in MATLAB, for 

comparison with the conventional method (Newton Raphson). 
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3.1Introduction  

The optimal power flow (OPF) was first introduced by Carpentier in 1962. The 

goal of OPF is to find the optimal settings of a given power system network that 

optimize the system objective functions such as total generation cost, system 

loss, bus voltage deviation, emission of generating units, number of control 

actions, and load shedding while satisfying its power flow equations, system 

security, and equipment operating limits. Different control variables, some of 

which are generators  real power outputs and voltages, transformer tap changing 

settings, phase shifters, switched capacitors, and reactors, are manipulated to 

achieve an optimal network setting based on the problem formulation.  

According to the selected objective functions, and constraints, there are 

different mathematical formulations for the OPF problem. They can be broadly 

classified as follows: 

1. Linear problem in which objectives and constraints are given in linear 

forms with continuous control variables 

2. Nonlinear problem where either objectives or constraints or both 

combined are nonlinear with continuous control variables 

3. Mixed - integer linear problems when control variables are both discrete 

and continuous 

Various techniques were developed to solve the OPF problem. The algorithms 

may be classified into three groups:  

1. Conventional optimization methods,  

2. Intelligence search methods, and  

3. Non-quantity approach to address uncertainties in objectives and 

constraints [8]. 
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3.2 Conventional Optimization Method: 

Traditionally, conventional methods are used to effectively solve OPF. The 

application of these methods had been an area of active research in the recent 

past. The conventional methods are based on mathematical programming 

approaches and used to solve different size of OPF problems. To meet the 

requirements of different objective functions, types of application and nature of 

constraints, the popular conventional methods is further sub divided into the 

following:  

(a) Gradient Method  

(b) Newton-Raphson Method  

(c) Linear Programming Method   

(d) Quadratic Programming Method  

(e) Interior Point Method  

 

Even though, excellent advancements have been made in classical methods, 

they suffer with the following disadvantages: In most cases, mathematical 

formulations have to be simplified to get the solutions because of the extremely 

limited capability to solve real-world large-scale power system problems. They 

are weak in handling qualitative constraints. They have poor convergence, may 

get stuck at local optimum, they can find only a single optimized solution in a 

single simulation run, they become too slow if number of variables are large and 

they are computationally expensive for solution of a large system. 

For this thesis Newton-Raphson method was implemented as a conventional 

method on the IEEE 39 New England test system to find the optimal power 

flow. 

3.2.1 Newton – Raphson Method: 

In the area of Power systems, Newton’s method is well known for 

solution of Power Flow. It has been the standard solution algorithm for the 

power flow problem for a long time The Newton approach is a flexible 
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formulation that can be adopted to develop different OPF algorithms suited to 

the requirements of different applications. Although the Newton approach exists 

as a concept entirely apart from any specific method of implementation, it 

would not be possible to develop practical OPF programs without employing 

special Sparsity techniques. The concept and the techniques together comprise 

the given approach. Other Newton-based approaches are possible. 

Newton’s method is a very powerful solution algorithm because of its rapid 

convergence near the solution. This property is especially useful for power 

system applications because an initial guess near the solution is easily attained. 

System voltages will be near rated system values, generator outputs can be 

estimated from historical data, and transformer tap ratios will be near 1.0 p.u. 

3.2.1.1 Newton-Raphson Solution Algorithm: 

Let us consider a N-bus power system having NG number of thermal power 

generators. Then the aim of optimal power flow problem is to minimize the cost 

of thermal power generation, 

2

1 1

( )  unit of cost/hr
Total i i i

NG NG

c c i g i g i

i i

F F P P  
 

                                           (3.1) 

Subjected to 

(i) Active power balance in the network 

(| |, ) 0 for i=1,2,3,....,N
ii g loadP V P P                                                  (3.2) 

Where Pi = active power injection at i-th bus and is a function of |V| and 

δ. For load buses [i.e for i= (NG+1),(NG+2),…(N)], 
igP =0; 

 

(ii) Reactive power balance in the network  

   ( , ) 0 for i=(NG+1),(NG+2),....,N
ii g loadQ V Q Q                                         (3.3) 

Where Qi = reactive power injection at i-th bus and also a function of |V| 

and δ. 
igQ =reactive power generation at i-th bus; 
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(iii) Security related constrains (also called soft constrain).these constrain 

are discussed in chapter two in equations (2.6) to (2.8). 

The constraint minimization problem can be transformed into unconstrained one 

by augment the load flow constraints into objective function. The additional 

variables are known as the Lagrange Multiplier Functions or Incremental Cost 

Function in power system optimization. The Lagrangian Function then 

becomes 

1 1 1

L(P . | |, ) ( ) [ (| |, ) ] [ (| |, ) ]
i i i i i

NG N N

g c g Pi i g load qi i g load

i i i NG

V F P P V P P Q V Q Q    
   

           

(3.4) 

The optimization Problem is solved, only if the following equation satisfied, 

  for i=1,2,3,...,NG
i

i i

p

g g

L F

P P


 
 

 
              (3.5) 

1 1

+  for i=2,3,...,NG
k k

N N
k k

p q

k k NGi i

P QL

i
 

    

    
        
                    (3.6) 

From equation (3.4) we can write the following 

 | |, for i=1,2,3,...,N
i i

i

i g load

p

L
P V P P




  


                          (3.7) 

And  

1 1

+  for i=NG+1,...,N
| | | | | |k k

N N
k k

p q

k k NGi i i

P QL

V V V
 

  

    
    

     
                    (3.8) 

Further to this  

 | |, for i=NG+1,...,N
i i

i

i g load

q

L
Q V Q Q




  


                                          (3.9) 

Any small variation in control variables about their initial values is obtained by 

forming differential as given below: 

2 2 2 2 2

1 2 1 1 1

| |
| |k k k

i k i i k i k i i

NG N N N N

g k p q k

k k k k NG k NGg g g k g p g q g k g

L L L L L L
P V

P P P P P P V P
  

        

     
          

          
    

 

For i=1,2,3,…,NG                         (3.10) 
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2 2 2 2 2

1 2 1 1 1

| |
| |k k k

k k k

NG N N N N

g k p q k

k k k k NG k NGi g i k i p i q i k i

L L L L L L
P V

P V
  

              

     
          

          
      

For i=1,2,3,…,N                          (3.11) 

2 2 2 2 2

1 2 1 1 1

| |
| |k k k

i k i i k i k i i

NG N N N N

g k p q k

k k k k NG k NGp g p k p p p q p k p

L L L L L L
P V

P V
  

              

     
          

          
      

For i=1,2,3,…,N                          (3.12) 

2 2 2 2 2

1 2 1 1 1

| |
| | | | | | | | | | | | | |k k k

k k k

NG N N N N

g k p q k

k k k k NG k NGi g i k i p i q i k i

L L L L L L
P V

V P V V V V V V
  

        

     
          

          
      

For i=NG+1,…,N                          (3.13) 

2 2 2 2 2

1 2 1 1 1

| |
| |k k k

k k k k k k k k k

NG N N N N

g k p q k

k k k k NG k NGq g q k q p q q q k q

L L L L L L
P V

P V
  

              

     
          

          
    

 

For i=NG+1,…,N                          (3.14) 

Let us now differentiate equations (3.5) to (3.9) with respect to control variables 

(Pgi, δi, λpi , λqi and Vi) to get second order partial derivative required for 

equations (3.5) to (3.9) as follow: 

22

2 2
2i

g gi i

c

i

FL
a

P P


 

 
   for i=1,2,3,…,NG                       (3.15) 

2

0

i kg g

L

P P




 
                                for i=1,2,3,…,NG;k=1,2,3,…,NG but i≠k       (3.16) 

2 2

0

i ig k k g

L L

P P 

 
 

   
               for i=1,2,3,…,NG;k=1,2,3,…,N                        (3.17) 

2 2

1

i i i ig p p g

L L

P P 

 
  

   
  for i=1,2,3,…,NG                       (3.18) 

2 2

0

i k k ig p p g

L L

P P 

 
 

   
         for i=1,2,3,…,NG;k=1,2,3,…,NG but i≠k           (3.19) 

2 2

0

i k k ig q q g

L L

P P 

 
 

   
            for i=1,2,3,…,NG;k=1,2,3,…,N                         (3.20) 

2 2

0
| | | |

i ig k k g

L L

P V V P

 
 

   
   for i=1,2,3,…,NG;k=1,2,3,…,N                          (3.21) 
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Similarly, second order partial derivation required for equation (3.10) are 

obtained by differentiating equation (3.5) with respect to control variables , and 

are as follow: 

1 2 1 2

1 21 2 ..... .....
N NG NG N

N NG NG N
p p p q q q

i i i i i i i

P Q Q QP PL
     

       

 
       

          
         

 

Differentiating both sides with respect to δk, we get 

1 2 1 2

2 2 2 22 22

1 21 2 ..... .....
N NG NG N

N NG NG N
p p p q q q

i k i k i k i i k i k i k i k

P Q Q QP PL
     

              

 
       

          
                
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1 1

    
r r

N N
r r

p q

r r NGi k i k i k

P QL
 

       

 
  

     
              for i=2,3,..,N; k=2,3,..,N     (3.22) 

2

k

k

i p i

PL

  




  
                                                     for i=2,3,..,N; k=2,3,..,N       (3.23) 

2

k

k

i q i

QL

  




  
                                                    for i=2,3,..,N; k=NG+1,..,N (3.24) 

2 22

1 1| | | | | |r r

N N
r r

p q

r r NGi k i k i k

P QL

V V V
 

    

 
 

     
         for i=2,3,..,N; k=NG+1,..,N (3.25) 

Next, second order partial derivatives required for equation (3.14) are obtained 

by differentiating equation (3.7) With respect to control variables: 

2

i

i

p k k

PL

  




  
                                            for i=2,3,..,N; k=2,3,..,N       (3.26) 

2

0

i kp p

L

 




 
                                               for i=1,2,3,..,N; k=1,2,3,..,N        (3.27) 

2

0

i kp q

L

 




 
                                               for i=1,2,3,..,N; k=NG+1,..N       (3.28) 

2

| | | |
i

i

p k k

PL

V V




  
                                       for i=1,2,3,..,N; k=NG+1,..N       (3.29) 

Also, second order partial derivatives required for equation (3.13) are obtained 

be differentiating equation (3.8) with respect to control variables, and as follow: 

2 22

1 1| | | | | |r r

N N
r r

p q

r r NGi k i k i k

P QL

V V V
 

    

 
 

     
      for i=NG+1,..,N; k=2,3,..,N (3.30) 
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2

| | | |
k

k

i p i

PL

V V




  
                                   for i=NG+1,..,N; k=1,2,3,..,N         (3.31) 

2

| | | |
k

k

i q i

QL

V V




  
                                   for i=NG+1,..,N; k=NG+1,..,N        (3.32) 

2 22

1 1| | | | | | | | | | | |r r

N N
r r

p q

r r NGi k i k i k

P QL

V V V V V V
 

  

 
 

     
   

for i=NG+1,..,N; k=NG+1,..,N        (3.33) 

Second order partial derivatives required for equation (3.14) are obtained by 

differentiating equation (3.9) with respect to control variables and are as follow: 

2

i

i

q k k

QL

  




  
                                         for i=NG+1,..,N; k=2,3,..,N             (3.34) 

2

0

i kq p

L

 




 
                                                   for i=NG+1,..,N; k=1,2,3,..,N          (3.35) 

2

0

i kq q

L

 




 
                                                  for i=NG+1,..,N; k=NG+1,..,N         (3.36) 

2

| | | |
k

k

q k k

QL

V V




  
                                  for i=NG+1,..,N; k=NG+1,..,N         (3.37) 

Equations (3.10) to (3.14) can be rewritten as: 

2 2

2 i i

g i i ii

g p

g p g

L L L
P

P P P




  
    

   
               for i=1,2,3,…,NG                             (3.38) 

2 2 2 2

2 1 1 1

| |
| |k k

k k

N N N N

k p q k

k k k NG k NGi k i p i q i k i

L L L L L
V

V
  

            

    
        

        
        

for i=1,2,3,…,NG                             (3.39)   

2 2 2

2 1

| |
| |

N N

gi k k

k k NGpi gi pi k pi k pi

L L L L
P V

P V


      

   
      

      
      

for i=1,2,3,…,NG                             (3.40)   

2 2 2 2

2 1 1 1

| |
| | | | | | | | | | | |k k

k k

N N N N

k p q k

k k k NG k NGi k i p i q i k i

L L L L L
V

V V V V V V
  

       

    
        

        
   

    

for i=NG+1,…,NG                           (3.41)   
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2 2

2 1

| |
| |

i i i

N N

k k

k k NGq k q k q

L L L
V

V


     

  
    

    
                  for i=NG+1,…,NG             

(3.42)   

Equation (3.10) to(3.14) can be written as follow:                    

2 2

2 2 2 2

2

             0                                0                      0

      0                                           
| |

        

i k i k

k k

i k

g g g p

i k i p i q i k

p g

L L

P P P

L L L L

V

L

P



      



 

   

   

       



 

2 2

2 2 2 2

2

                 0                       0              
| |

      0                                
| | | | | | | | | |

      0                     

i i

k k

i

p k p k

i k i p i q i k

q k

L L

V

L L L L

V V V V V

L

  

  

 

 

   

   

       



 

2

| | | |

          0                      0                
| |

i

i

i

i

i

i

i

g

g

i

i

p

p

q

i
i

q
q k

L

P

LP

L

L
V V

L
L

V












 
     

  
                                            
   
   

     

 

Or, 

| |

| |

| | | | | | | || |

        0               0          0

 0                            
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                                 (3.43) 

Where H & J are called Hesseian and Jacobian Matrices , respectively. 

The flow-chart for solution of optimal power flow problem using Newton –

Raphson method is shown in Figure 3.1 
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Figure 3.1 Flow-chart To Find Optimal Power Flow Solution Using Newton 

Raphson Method. 
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3.3 Intelligent Methods  

To overcome the limitations and deficiencies in analytical methods, intelligent 

methods based on Artificial Intelligence (AI) techniques have been developed 

in the recent past. These methods can be classified or divided into the following,  

a) Artificial Neural Networks (ANN)  

b) Genetic Algorithms (GA)  

c) Particle Swarm Optimization (PSO)  

d) Ant Colony Algorithm  

The major advantage of the intelligent methods is that they are relatively 

versatile for handling various qualitative constraints. These methods can find 

multiple optimal solutions in single simulation run. So they are quite suitable in 

solving multi objective optimization problems. In most cases, they can find the 

global optimum solution. The main advantages of intelligent methods are: 

Possesses learning ability, fast, appropriate for non-linear modeling, etc. 

whereas, large dimensionality and the choice of training methodology are some 

disadvantages of intelligent methods. 

For the intelligent method Particle Swarm Optimization was considered to find 

the optimal power flow for IEEE 39 New England test system for comparison 

with the conventional method. 

3.3.1 Particle Swarm Optimization: 

Particle swarm optimization (PSO) is a population based evolutionary 

computation technique inspired from the social behaviors of bird flocking or 

fish schooling. Since its invention in 1995 by Kennedy and Eberhart, PSO has 

become one of the most popular methods applied to various optimization 

problems due to its simplicity and capability to find near optimal solutions. In 

conventional PSO, a population of particles moves in the search space of a 

problem to approach the global optimum. Figure 3.2 and Figure 3.4 shows the 

nature of PSO method: 
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Figure 3.2: Example on the flock of bird in nature 

 

Figure 3.3: example of school of fish in nature 

The movement of each particle in the population is determined via its location 

and velocity. During the movement, the velocity of each particle is changed 

over time and its position is updated accordingly [4]. 
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Consider an n-dimensional optimization problem: 

Min f(p)  

where p = [p1, p2, …, pn] is a vector of variables. 

For implementation to the problem, the position and velocity vectors of 

particle d are represented by  

pd = [p1d, p2d, …, pnd] and 

 vd = [v1d, v2d, …, vnd], respectively,  

Where d = 1,…, NP and NP is the number of particles.  

The best previous position of particle d is based on the valuation of the fitness 

function represented by pbestd = [p1d, p2d, …, pnd] and the best particle among 

all particles represented by gbest. The velocity and position of each particle in 

the next iteration (k+1) for fitness function evaluation are calculated as follows: 

( 1) ( 1) ( ) ( ) ( ) ( )

1 1 2 2* * *( ) * *( )k k k k k k k

id id id id i idv w v C rand pbest p C rand gbest p               (3.6) 

( 1) ( ) ( 1)k k k

id id idp p v                   (3.7)  

Where w is the inertia weight factor, C1 and C2 are cognitive and social 

parameters, respectively, and rand1 and rand2 are random values in [0, 1]. 

In conventional PSO, the inertia weight factor and cognitive and social 

parameters are constants. Position and velocity of each particle have their own 

limits. Regarding position limits, the lower and upper bounds are defined by the 

limits of variables represented by the particle’s position. However, the velocity 

limits for the particles can be defined by the user. Generally, the solution quality 

of PSO is sensitive to cognitive and social parameters and velocity limits for 

particles. 

The inertia weight factor linearly declines from its maximum to the minimum 

value as the number of iterations increases from 0 to ITmax. The inertia weight 

factor at iteration k is updated as follows: 

( )

max max min

max

( )k k
w w w w

IT
                  (3.8) 
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Where wmax and wmin are maximum and minimum weight factor, respectively, 

and ITmax is the maximum number of iterations. 

 

3.3.1.1 Application of PSO Method to Economic Load Dispatch: 

Steps of Implementation:  

1. Initialize the Fitness Function, i.e. Total cost function from the individual 

cost function of the various generating stations.  

2. Initialize the PSO parameters Population size, C1, C2, Wmax, Wmin, error 

gradient etc.  

3. Input the Fuel cost Functions, MW limits of the generating stations along 

with the B-coefficient matrix and the total power demand.  

4. at the first steps of the execution of the program a large No. (equal to the 

population size) of vectors of active power satisfying the MW limits are 

randomly allocated.  

5. For each vector of active power the value of the fitness function is calculated. 

All values obtained in iteration are compared to obtain Pbest. At each 

iteration all values of the whole population till then are compared to obtain 

the Gbest. At each step these values are updated.  

6. At each step error gradient is checked and the value of Gbest is plotted till it 

comes within the pre-specified range.  

7. This final value of Gbest is the minimum cost and the active power vector 

represents the economic load dispatch solution. 
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Figure 3.4 Flow-chart To Find Optimal Power Flow Solution Using Particle 

Swarm Optimization Method. 
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3.3.1.2 The Advantages and Disadvantages of Using PSO  

 Advantages 

1. PSO is easy to implement the coding. 

2. PSO is able to produce high quality solutions by using less time. 

3. PSO is less sensitive to the objective function compared to 

conventional mathematical methods. 

4. PSO has less negative impact toward the solutions. 

5. PSO is less divergence. 

6. PSO has less parameter to control. 

 Disadvantages 

1. PSO need a longer computation time compared to the mathematical 

methods. 

2. PSO need more iteration than the classical method. 
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4.1 Case study: 

For the case study IEEE 39 New England test system was used. This system 

consists of 10 generators units, 39 buses and 46 transmissions line the single 

line diagram of the system is shown in Figure 4.1 the line and bus data is shown 

in Appendix A.  

 

Figure 4.1: Single line diagram of the IEEE 39 New England test system 

4.2 Result of the MATLAB Program: 

The simulation had been carried out on the case study using NR and PSO 

methods the analysis had been done to the results. 
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4.2.1 Result with Newton Raphson Method: 

The Newton Raphson method was implemented in MATLAB; the result is 

shown in Table 4.1.  

After applying The MATLAB program the below results was found: 

 The total Demand for both cases is 6150.130 MW.  

 The generation Error is zero (power generation-load –losses=0). 

 The power loss had been calculated and had been found to be equal to 

63.11 MW. 

 The optimal power generation is calculated by using Newton Raphson 

Method for the optimal power flow the program as shown in Table 4.1  

Table 4.1 Newton Raphson MATLAB Result 

Unit No 
Real Power Generation 

(MW) 

Generation Cost 

($/hr) 

G1 299.00 14,737.58 

G2 439.59 22,123.85 

G3 497.11 24,960.67 

G4 572.51 29,281.60 

G5 498.31 25,117.13 

G6 673.71 33,648.63 

G7 620.00 27,430.78 

G8 643.00 25,033.85 

G9 920.00 42,286.85 

G10 1,050.00 51,140.10 

Total 6,213.24 295,761.01 

Power Loss (MW) 63.11 
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4.2.2 Result with Particle swarm optimization Method: 

The Particle swarm optimization method was implemented in the MATLAB 

program the result is shown in Table 4.2. In the PSO analysis the number of 

particles was set to 100. Besides, the weight factor was between the ranges of 

0.4 to 0.9. When weight factor was set from 0.4 to 0.9, the PSO was able to 

search for larger space and discover the Gbest using shortest time. The 

constants and was set to be 2. Then, the number of iteration was set as 100000 

iterations to avoid the analysis complete before it was really done the iteration. 

Error was set as 1e-06, so if the error was less than this value, the iteration 

process will terminate after 5000 iterations. During the analysis, the B-

coefficient was considered to calculate the losses in transmission line for more 

accurate result. Besides, the generators power limit constraint was also involved 

in the analysis.  

Table 4.2 Particle Swarm Optimization MATLAB Result 

Unit No Real Power Generation (MW) Generation Cost($/hr) 

G1 353.77 18,845.4996 

G2 445.19 22,564.3987 

G3 485.24 24,015.3960 

G4 540.78 26,717.6073 

G5 477.83 23,471.5681 

G6 693.75 35,213.1706 

G7 620.00 27,430.7719 

G8 643.00 25,033.8461 

G9 920.00 42,286.8480 

G10 1,011.39 48,038.6893 

Total    6,190.95      293,617.7956  

Power loss (MW)          39.10  
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4.3 Discussion: 

Comparing results of the two methods, the generation Cost, total Real power 

Generation and Power loss is less in PSO method than NR method as shown in 

Table 4.3. 

Table 4.3 Comparison between NR & PSO Results  

        Methods  

Area 

Of discussion 

Newton Raphson 

Method 

Particle swarm 

optimization 
Difference  

Total Real power 

Generation (MW) 
6,213.24    6,190.95 22.29 (MW) 

Total Generation Cost 

($/hr) 
295,761.01 293,617.7956 2,143.2144($/hr) 

Power Losses (MW) 63.11 39.10 24.01(MW) 

 

Table 4.3 shows a comparison between Newton Raphson and Particle Swarm 

Optimization result in the 10 generators units and 39 bus systems, it was found 

that Particle Swarm Optimization was able to produce the lower generation 

cost. Besides, the transmission losses in Particle Swarm Optimization were also 

lower than Newton Raphson method, dispatches of output power for each 

generator was different for both methods. However, Newton Raphson method 

was used less computational time compared to Particle Swarm Optimization. It 

was faster in the iteration process. 

Finally, it can be concluded that Particle Swarm Optimization method was more 

suitable to be used in solving the economic dispatch problem as it could 

produce lower generation cost while satisfying the power demand. In the 

purpose of cost saving and environmental problem, Particle Swarm 

Optimization had done better contribution. Thus, PSO method was superior 

compared to Newton Raphson method. 
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As shown in Figure 4.2 the difference between Real Power Generation for each 

unit to the two methods.  

 

Figure 4.2 Differences between Real Power Generations (Mw)  

The difference between the Generation Cost ($/hr) for NR and PSO Methods is 

shown in Figure  4.3. 

 

Figure 4.3 Differences Between Generation Cost ($/hr)  
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5.1 CONCLUSION 

The main purpose of this thesis was due to the importance of economic dispatch 

in the power system. Economic load dispatch in electric power sector is an 

important task, as it is required to supply the power at the minimum cost which 

aids in profit-making. As the efficiency of newly added generating units are 

more than the previous units the economic load dispatch has to be efficiently 

solved for minimizing the cost of the generated power. 

From the analysis of IEEE 39 New England test system it was found that 

Particle Swarm Optimization method was able to produce a better fuel cost 

compared to the Newton Raphson method. For the same power demand, 

Particle Swarm Optimization was able to produce less cost than NR. Besides, 

the losses produced by PSO for the same power demand according to the B-

coefficient was smaller than NR produced. As we know, higher losses will 

result in the consumption in fuel and increase the fuel cost. Thus, it was very 

important to get the optimal dispatch in reducing losses. The Real Power 

Generation and Generation cost of the particle swarm optimization result was 

close to that of the NR (conventional method) but tends to give a better solution 

in case of higher order systems. 

Per to the MATLAB result, Newton Raphson was using less computational time 

in the analysis compared to PSO method. The computational time of NR 

method was not affected by the increasing of number of generators. However, 

the computational time of the PSO method will be increased due to the 

increment of generator amount. Although, PSO was using more time in 

analyzing the result, it produces better result than the NR method. PSO was also 

possessed steady convergence characteristic which result in accuracy and 

consistency in the result. 

The B-coefficient was obtained through the Matlab by applying the Bloss 

program to the Bus data and line data of the test system were required by the 
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Bloss program to generate the B-coefficient. By solving the load flow analysis, 

it was able to generate the B-coefficient matrix of the system that we used in 

solving ED problem with PSO Method. 

 

5.2     RECOMMENDATION  

 PSO algorithm can be combined with other simple optimization 

techniques to improve their performance when applied to economic load 

dispatch problems and obtain better results. 

 For the PSO Method; Bus data and line data of the system can be taken as 

input along with the load demand to obtain the minimization function 

with constraints on voltage and reactive power at various points of the 

system. 

 Software beside MATLAB may be introduced if it is able to be applied in 

solving the ED problem.  

 This work may be extended for new optimization techniques, this may be 

used to compare and find out the better optimization technique. 

 PSO algorithm can be combined with other simple optimization 

techniques to improve their performance when applied to ELD problems 

and obtain better results.  

 ED problem was formulated as economic cost dispatch (ELD), but 

further, Existence of Emission Dispatch (EMD) leads to the formulation 

of Combined Emission Economic Dispatch (CEED) and emission 

Controlled Economic Dispatch (ECED) problem formulation. In future 

this problem could be solved as individual optimization of these two 

contradictory objectives. 
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APPENDIX A 
 

Bus data and line data: 

For our study in IEEE 39 New England bus system we will use the parameter of 

bus data as shown in Table A.1 and line data at Table A.2 to compute the 

optimal economic dispatch for the case study. 

 

Table A.1: 39 New England Bus data 

Bus 

No. 

P 

Generation 

(MW) 

Q 

Generation 

(MVAR) 

P 

Load 

(MW) 

Q 

Load 

(MVAR) 

Bus 

Type* 

1 0.00 0.00 0.00 0.00 0 

2 0.00 0.00 0.00 0.00 0 

3 0.00 0.00 322 2.5 0 

4 0.00 0.00 500 184 0 

5 0.00 0.00 0.00 0.00 0 

6 0.00 0.00 0.00 0.00 0 

7 0.00 0.00 233.8 84 0 

8 0.00 0.00 522 176.6 0 

9 0.00 0.00 0.00 0.00 0 

10 0.00 0.00 0.00 0.00 0 

11 0.00 0.00 0.00 0.00 0 

12 0.00 0.00 8.53 88 0 

13 0.00 0.00 0.00 0.00 0 

14 0.00 0.00 0.00 0.00 0 

15 0.00 0.00 320 153 0 

16 0.00 0.00 329 32.3 0 

17 0.00 0.00 0.00 0.00 0 
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18 0.00 0.00 158 30 0 

19 0.00 0.00 0.00 0.00 0 

20 0.00 0.00 680 103 0 

21 0.00 0.00 274 115 0 

22 0.00 0.00 0.00 0.00 0 

23 0.00 0.00 247.5 84.6 0 

24 0.00 0.00 308.6 -92.2 0 

25 0.00 0.00 224 47.2 0 

26 0.00 0.00 139 17 0 

27 0.00 0.00 281 75.5 0 

28 0.00 0.00 206 27.6 0 

29 0.00 0.00 283.5 26.9 0 

30 161 400 0.00 250 2 

31 677.871 0.00 9.2 4.6 2 

32 650 206.965 0.00 0.00 2 

33 632 108.293 0.00 0.00 2 

34 508 166.688 0.00 0.00 2 

35 650 210.661 0.00 0.00 2 

36 560 100.165 0.00 0.00 2 

37 540 -1.36945 0.00 0.00 2 

38 830 21.7327 0.00 0.00 2 

39 0.00 0.00 1104 250 1 

 

*Bus Type: (1) slack bus, (2) generator bus (PV bus), and (0) load bus (PQ bus) 
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Table A.2: 39 New England Line Data.  

 

From 

Bus 

To  

Bus 

Resistance 

(p.u.) 

Reactance 

(p.u.) 

Line charging 

admittance (p.u.) 

Tap 

ratio 

1 2 0.0035 0.0411 0.6987 1 

1 39 0.001 0.025 0.75 1 

2 3 0.0013 0.0151 0.2572 1 

2 25 0.007 0.0086 0.146 1 

2 30 0.0 0.0181 0.00 1.025 

3 4 0.0013 0.0213 0.2214 1 

3 18 0.0011 0.0133 0.2138 1 

4 5 0.0008 0.0128 0.1342 1 

4 14 0.0008 0.0129 0.1382 1 

5 6 0.0002 0.0026 0.0434 1 

5 8 0.0008 0.0112 0.1476 1 

6 7 0.0006 0.0092 0.113 1 

6 11 0.0007 0.0082 0.1389 1 

6 31 0.00 0.025 0.00 1.07 

7 8 0.0004 0.0046 0.078 1 

8 9 0.0023 0.0363 0.3804 1 

9 39 0.001 0.025 1.2 1 

10 11 0.0004 0.0043 0.0729 1 

10 13 0.0004 0.0043 0.0729 1 

10 32 0.00 0.02 0.00 1.07 

12 11 0.0016 0.0435 0.00 1.006 

12 13 0.0016 0.0435 0.00 1.006 

13 14 0.0009 0.0101 0.1723 1 

14 15 0.0018 0.0217 0.366 1 
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15 16 0.0009 0.0094 0.171 1 

16 17 0.0007 0.0089 0.1342 1 

16 19 0.0016 0.0195 0.304 1 

16 21 0.0008 0.0135 0.2548 1 

16 24 0.0003 0.0059 0.068 1 

17 18 0.0007 0.0082 0.1319 1 

17 27 0.0013 0.0173 0.3216 1 

19 20 0.0007 0.0138 0.00 1.06 

19 33 0.0007 0.0142 0.00 1.07 

20 34 0.0009 0.018 0.00 1.009 

21 22 0.0008 0.014 0.2565 1 

22 23 0.0006 0.0096 0.1846 1 

22 35 0.00 0.0143 0.00 1.025 

23 24 0.0022 0.035 0.361 1 

23 36 0.0005 0.0272 0.00 1 

25 26 0.0032 0.0323 0.531 1 

25 37 0.0006 0.0232 0.00 1.025 

26 27 0.0014 0.0147 0.2396 1 

26 28 0.0043 0.0474 0.7802 1 

26 29 0.0057 0.0625 1.029 1 

28 29 0.0014 0.0151 0.249 1 

29 38 0.0008 0.0156 0.00 1.025 
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Table A.3: 39 New England Characteristic of Power Generators: 

 

unit 
a 

($/MW
2
hr) 

b 

($/MWhr) 

c 

($/hr) 

Pmax 

(MW) 

Pmin 

(MW) 

1 0.03720 26.4408 180 360 155 

2 0.03256 21.0771 275 680 320 

3 0.03102 18.6626 352 718 323 

4 0.02871 16.8894 792 680 275 

5 0.03223 17.3998 440 600 230 

6 0.02064 21.6180 348 748 350 

7 0.02268 15.1716 588 620 220 

8 0.01776 14.5632 984 643 225 

9 0.01644 14.3448 1260 920 350 

10 0.01620 13.5420 1200 1050 450 

 


