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3.1Introduction  

The optimal power flow (OPF) was first introduced by Carpentier in 1962. The 

goal of OPF is to find the optimal settings of a given power system network that 

optimize the system objective functions such as total generation cost, system 

loss, bus voltage deviation, emission of generating units, number of control 

actions, and load shedding while satisfying its power flow equations, system 

security, and equipment operating limits. Different control variables, some of 

which are generators  real power outputs and voltages, transformer tap changing 

settings, phase shifters, switched capacitors, and reactors, are manipulated to 

achieve an optimal network setting based on the problem formulation.  

According to the selected objective functions, and constraints, there are 

different mathematical formulations for the OPF problem. They can be broadly 

classified as follows: 

1. Linear problem in which objectives and constraints are given in linear 

forms with continuous control variables 

2. Nonlinear problem where either objectives or constraints or both 

combined are nonlinear with continuous control variables 

3. Mixed - integer linear problems when control variables are both discrete 

and continuous 

Various techniques were developed to solve the OPF problem. The algorithms 

may be classified into three groups:  

1. Conventional optimization methods,  

2. Intelligence search methods, and  

3. Non-quantity approach to address uncertainties in objectives and 

constraints [8]. 
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3.2 Conventional Optimization Method: 

Traditionally, conventional methods are used to effectively solve OPF. The 

application of these methods had been an area of active research in the recent 

past. The conventional methods are based on mathematical programming 

approaches and used to solve different size of OPF problems. To meet the 

requirements of different objective functions, types of application and nature of 

constraints, the popular conventional methods is further sub divided into the 

following:  

(a) Gradient Method  

(b) Newton-Raphson Method  

(c) Linear Programming Method   

(d) Quadratic Programming Method  

(e) Interior Point Method  

 

Even though, excellent advancements have been made in classical methods, 

they suffer with the following disadvantages: In most cases, mathematical 

formulations have to be simplified to get the solutions because of the extremely 

limited capability to solve real-world large-scale power system problems. They 

are weak in handling qualitative constraints. They have poor convergence, may 

get stuck at local optimum, they can find only a single optimized solution in a 

single simulation run, they become too slow if number of variables are large and 

they are computationally expensive for solution of a large system. 

For this thesis Newton-Raphson method was implemented as a conventional 

method on the IEEE 39 New England test system to find the optimal power 

flow. 

3.2.1 Newton – Raphson Method: 

In the area of Power systems, Newton’s method is well known for 

solution of Power Flow. It has been the standard solution algorithm for the 

power flow problem for a long time The Newton approach is a flexible 
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formulation that can be adopted to develop different OPF algorithms suited to 

the requirements of different applications. Although the Newton approach exists 

as a concept entirely apart from any specific method of implementation, it 

would not be possible to develop practical OPF programs without employing 

special Sparsity techniques. The concept and the techniques together comprise 

the given approach. Other Newton-based approaches are possible. 

Newton’s method is a very powerful solution algorithm because of its rapid 

convergence near the solution. This property is especially useful for power 

system applications because an initial guess near the solution is easily attained. 

System voltages will be near rated system values, generator outputs can be 

estimated from historical data, and transformer tap ratios will be near 1.0 p.u. 

3.2.1.1 Newton-Raphson Solution Algorithm: 

Let us consider a N-bus power system having NG number of thermal power 

generators. Then the aim of optimal power flow problem is to minimize the cost 

of thermal power generation, 

2

1 1

( )  unit of cost/hr
Total i i i

NG NG

c c i g i g i

i i

F F P P  
 

                                           (3.1) 

Subjected to 

(i) Active power balance in the network 

(| |, ) 0 for i=1,2,3,....,N
ii g loadP V P P                                                  (3.2) 

Where Pi = active power injection at i-th bus and is a function of |V| and 

δ. For load buses [i.e for i= (NG+1),(NG+2),…(N)], 
igP =0; 

 

(ii) Reactive power balance in the network  

   ( , ) 0 for i=(NG+1),(NG+2),....,N
ii g loadQ V Q Q                                         (3.3) 

Where Qi = reactive power injection at i-th bus and also a function of |V| 

and δ. 
igQ =reactive power generation at i-th bus; 
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(iii) Security related constrains (also called soft constrain).these constrain 

are discussed in chapter two in equations (2.6) to (2.8). 

The constraint minimization problem can be transformed into unconstrained one 

by augment the load flow constraints into objective function. The additional 

variables are known as the Lagrange Multiplier Functions or Incremental Cost 

Function in power system optimization. The Lagrangian Function then 

becomes 

1 1 1

L(P . | |, ) ( ) [ (| |, ) ] [ (| |, ) ]
i i i i i

NG N N

g c g Pi i g load qi i g load

i i i NG

V F P P V P P Q V Q Q    
   

           

(3.4) 

The optimization Problem is solved, only if the following equation satisfied, 

  for i=1,2,3,...,NG
i

i i

p

g g

L F

P P


 
 

 
              (3.5) 

1 1

+  for i=2,3,...,NG
k k

N N
k k

p q

k k NGi i

P QL

i
 

    

    
        
                    (3.6) 

From equation (3.4) we can write the following 

 | |, for i=1,2,3,...,N
i i

i

i g load

p

L
P V P P




  


                          (3.7) 

And  

1 1

+  for i=NG+1,...,N
| | | | | |k k

N N
k k

p q

k k NGi i i

P QL

V V V
 

  

    
    

     
                    (3.8) 

Further to this  

 | |, for i=NG+1,...,N
i i

i

i g load

q

L
Q V Q Q




  


                                          (3.9) 

Any small variation in control variables about their initial values is obtained by 

forming differential as given below: 

2 2 2 2 2

1 2 1 1 1

| |
| |k k k

i k i i k i k i i

NG N N N N

g k p q k

k k k k NG k NGg g g k g p g q g k g

L L L L L L
P V

P P P P P P V P
  

        

     
          

          
    

 

For i=1,2,3,…,NG                         (3.10) 
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2 2 2 2 2

1 2 1 1 1

| |
| |k k k

k k k

NG N N N N

g k p q k

k k k k NG k NGi g i k i p i q i k i

L L L L L L
P V

P V
  

              

     
          

          
      

For i=1,2,3,…,N                          (3.11) 

2 2 2 2 2

1 2 1 1 1

| |
| |k k k

i k i i k i k i i

NG N N N N

g k p q k

k k k k NG k NGp g p k p p p q p k p

L L L L L L
P V

P V
  

              

     
          

          
      

For i=1,2,3,…,N                          (3.12) 

2 2 2 2 2

1 2 1 1 1

| |
| | | | | | | | | | | | | |k k k

k k k

NG N N N N

g k p q k

k k k k NG k NGi g i k i p i q i k i

L L L L L L
P V

V P V V V V V V
  

        

     
          

          
      

For i=NG+1,…,N                          (3.13) 

2 2 2 2 2

1 2 1 1 1

| |
| |k k k

k k k k k k k k k

NG N N N N

g k p q k

k k k k NG k NGq g q k q p q q q k q

L L L L L L
P V

P V
  

              

     
          

          
    

 

For i=NG+1,…,N                          (3.14) 

Let us now differentiate equations (3.5) to (3.9) with respect to control variables 

(Pgi, δi, λpi , λqi and Vi) to get second order partial derivative required for 

equations (3.5) to (3.9) as follow: 

22

2 2
2i

g gi i

c

i

FL
a

P P


 

 
   for i=1,2,3,…,NG                       (3.15) 

2

0

i kg g

L

P P




 
                                for i=1,2,3,…,NG;k=1,2,3,…,NG but i≠k       (3.16) 

2 2

0

i ig k k g

L L

P P 

 
 

   
               for i=1,2,3,…,NG;k=1,2,3,…,N                        (3.17) 

2 2

1

i i i ig p p g

L L

P P 

 
  

   
  for i=1,2,3,…,NG                       (3.18) 

2 2

0

i k k ig p p g

L L

P P 

 
 

   
         for i=1,2,3,…,NG;k=1,2,3,…,NG but i≠k           (3.19) 

2 2

0

i k k ig q q g

L L

P P 

 
 

   
            for i=1,2,3,…,NG;k=1,2,3,…,N                         (3.20) 

2 2

0
| | | |

i ig k k g

L L

P V V P

 
 

   
   for i=1,2,3,…,NG;k=1,2,3,…,N                          (3.21) 
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Similarly, second order partial derivation required for equation (3.10) are 

obtained by differentiating equation (3.5) with respect to control variables , and 

are as follow: 

1 2 1 2

1 21 2 ..... .....
N NG NG N

N NG NG N
p p p q q q

i i i i i i i

P Q Q QP PL
     

       

 
       

          
         

 

Differentiating both sides with respect to δk, we get 

1 2 1 2

2 2 2 22 22

1 21 2 ..... .....
N NG NG N

N NG NG N
p p p q q q

i k i k i k i i k i k i k i k

P Q Q QP PL
     

              

 
       

          
                
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1 1

    
r r

N N
r r

p q

r r NGi k i k i k

P QL
 

       

 
  

     
              for i=2,3,..,N; k=2,3,..,N     (3.22) 

2

k

k

i p i

PL

  




  
                                                     for i=2,3,..,N; k=2,3,..,N       (3.23) 

2

k

k

i q i

QL

  




  
                                                    for i=2,3,..,N; k=NG+1,..,N (3.24) 

2 22

1 1| | | | | |r r

N N
r r

p q

r r NGi k i k i k

P QL

V V V
 

    

 
 

     
         for i=2,3,..,N; k=NG+1,..,N (3.25) 

Next, second order partial derivatives required for equation (3.14) are obtained 

by differentiating equation (3.7) With respect to control variables: 

2

i

i

p k k

PL

  




  
                                            for i=2,3,..,N; k=2,3,..,N       (3.26) 

2

0

i kp p

L

 




 
                                               for i=1,2,3,..,N; k=1,2,3,..,N        (3.27) 

2

0

i kp q

L

 




 
                                               for i=1,2,3,..,N; k=NG+1,..N       (3.28) 

2

| | | |
i

i

p k k

PL

V V




  
                                       for i=1,2,3,..,N; k=NG+1,..N       (3.29) 

Also, second order partial derivatives required for equation (3.13) are obtained 

be differentiating equation (3.8) with respect to control variables, and as follow: 

2 22

1 1| | | | | |r r

N N
r r

p q

r r NGi k i k i k

P QL

V V V
 

    

 
 

     
      for i=NG+1,..,N; k=2,3,..,N (3.30) 
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2

| | | |
k

k

i p i

PL

V V




  
                                   for i=NG+1,..,N; k=1,2,3,..,N         (3.31) 

2

| | | |
k

k

i q i

QL

V V




  
                                   for i=NG+1,..,N; k=NG+1,..,N        (3.32) 

2 22

1 1| | | | | | | | | | | |r r

N N
r r

p q

r r NGi k i k i k

P QL

V V V V V V
 

  

 
 

     
   

for i=NG+1,..,N; k=NG+1,..,N        (3.33) 

Second order partial derivatives required for equation (3.14) are obtained by 

differentiating equation (3.9) with respect to control variables and are as follow: 

2

i

i

q k k

QL

  




  
                                         for i=NG+1,..,N; k=2,3,..,N             (3.34) 

2

0

i kq p

L

 




 
                                                   for i=NG+1,..,N; k=1,2,3,..,N          (3.35) 

2

0

i kq q

L

 




 
                                                  for i=NG+1,..,N; k=NG+1,..,N         (3.36) 

2

| | | |
k

k

q k k

QL

V V




  
                                  for i=NG+1,..,N; k=NG+1,..,N         (3.37) 

Equations (3.10) to (3.14) can be rewritten as: 

2 2

2 i i

g i i ii

g p

g p g

L L L
P

P P P




  
    

   
               for i=1,2,3,…,NG                             (3.38) 

2 2 2 2

2 1 1 1

| |
| |k k

k k

N N N N

k p q k

k k k NG k NGi k i p i q i k i

L L L L L
V

V
  

            

    
        

        
        

for i=1,2,3,…,NG                             (3.39)   

2 2 2

2 1

| |
| |

N N

gi k k

k k NGpi gi pi k pi k pi

L L L L
P V

P V


      

   
      

      
      

for i=1,2,3,…,NG                             (3.40)   

2 2 2 2

2 1 1 1

| |
| | | | | | | | | | | |k k

k k

N N N N

k p q k

k k k NG k NGi k i p i q i k i

L L L L L
V

V V V V V V
  

       

    
        

        
   

    

for i=NG+1,…,NG                           (3.41)   
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2 2

2 1

| |
| |

i i i
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k k NGq k q k q

L L L
V

V


     

  
    

    
                  for i=NG+1,…,NG             

(3.42)   

Equation (3.10) to(3.14) can be written as follow:                    

2 2

2 2 2 2
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             0                                0                      0
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i k

g g g p
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      
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 
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   
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     

  
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   
   

     

 

Or, 

| |

| |

| | | | | | | || |
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                                 (3.43) 

Where H & J are called Hesseian and Jacobian Matrices , respectively. 

The flow-chart for solution of optimal power flow problem using Newton –

Raphson method is shown in Figure 3.1 
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Figure 3.1 Flow-chart To Find Optimal Power Flow Solution Using Newton 

Raphson Method. 
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3.3 Intelligent Methods  

To overcome the limitations and deficiencies in analytical methods, intelligent 

methods based on Artificial Intelligence (AI) techniques have been developed 

in the recent past. These methods can be classified or divided into the following,  

a) Artificial Neural Networks (ANN)  

b) Genetic Algorithms (GA)  

c) Particle Swarm Optimization (PSO)  

d) Ant Colony Algorithm  

The major advantage of the intelligent methods is that they are relatively 

versatile for handling various qualitative constraints. These methods can find 

multiple optimal solutions in single simulation run. So they are quite suitable in 

solving multi objective optimization problems. In most cases, they can find the 

global optimum solution. The main advantages of intelligent methods are: 

Possesses learning ability, fast, appropriate for non-linear modeling, etc. 

whereas, large dimensionality and the choice of training methodology are some 

disadvantages of intelligent methods. 

For the intelligent method Particle Swarm Optimization was considered to find 

the optimal power flow for IEEE 39 New England test system for comparison 

with the conventional method. 

3.3.1 Particle Swarm Optimization: 

Particle swarm optimization (PSO) is a population based evolutionary 

computation technique inspired from the social behaviors of bird flocking or 

fish schooling. Since its invention in 1995 by Kennedy and Eberhart, PSO has 

become one of the most popular methods applied to various optimization 

problems due to its simplicity and capability to find near optimal solutions. In 

conventional PSO, a population of particles moves in the search space of a 

problem to approach the global optimum. Figure 3.2 and Figure 3.4 shows the 

nature of PSO method: 
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Figure 3.2: Example on the flock of bird in nature 

 

Figure 3.3: example of school of fish in nature 

The movement of each particle in the population is determined via its location 

and velocity. During the movement, the velocity of each particle is changed 

over time and its position is updated accordingly [4]. 
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Consider an n-dimensional optimization problem: 

Min f(p)  

where p = [p1, p2, …, pn] is a vector of variables. 

For implementation to the problem, the position and velocity vectors of 

particle d are represented by  

pd = [p1d, p2d, …, pnd] and 

 vd = [v1d, v2d, …, vnd], respectively,  

Where d = 1,…, NP and NP is the number of particles.  

The best previous position of particle d is based on the valuation of the fitness 

function represented by pbestd = [p1d, p2d, …, pnd] and the best particle among 

all particles represented by gbest. The velocity and position of each particle in 

the next iteration (k+1) for fitness function evaluation are calculated as follows: 

( 1) ( 1) ( ) ( ) ( ) ( )

1 1 2 2* * *( ) * *( )k k k k k k k

id id id id i idv w v C rand pbest p C rand gbest p               (3.6) 

( 1) ( ) ( 1)k k k

id id idp p v                   (3.7)  

Where w is the inertia weight factor, C1 and C2 are cognitive and social 

parameters, respectively, and rand1 and rand2 are random values in [0, 1]. 

In conventional PSO, the inertia weight factor and cognitive and social 

parameters are constants. Position and velocity of each particle have their own 

limits. Regarding position limits, the lower and upper bounds are defined by the 

limits of variables represented by the particle’s position. However, the velocity 

limits for the particles can be defined by the user. Generally, the solution quality 

of PSO is sensitive to cognitive and social parameters and velocity limits for 

particles. 

The inertia weight factor linearly declines from its maximum to the minimum 

value as the number of iterations increases from 0 to ITmax. The inertia weight 

factor at iteration k is updated as follows: 

( )

max max min

max

( )k k
w w w w

IT
                  (3.8) 
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Where wmax and wmin are maximum and minimum weight factor, respectively, 

and ITmax is the maximum number of iterations. 

 

3.3.1.1 Application of PSO Method to Economic Load Dispatch: 

Steps of Implementation:  

1. Initialize the Fitness Function, i.e. Total cost function from the individual 

cost function of the various generating stations.  

2. Initialize the PSO parameters Population size, C1, C2, Wmax, Wmin, error 

gradient etc.  

3. Input the Fuel cost Functions, MW limits of the generating stations along 

with the B-coefficient matrix and the total power demand.  

4. at the first steps of the execution of the program a large No. (equal to the 

population size) of vectors of active power satisfying the MW limits are 

randomly allocated.  

5. For each vector of active power the value of the fitness function is calculated. 

All values obtained in iteration are compared to obtain Pbest. At each 

iteration all values of the whole population till then are compared to obtain 

the Gbest. At each step these values are updated.  

6. At each step error gradient is checked and the value of Gbest is plotted till it 

comes within the pre-specified range.  

7. This final value of Gbest is the minimum cost and the active power vector 

represents the economic load dispatch solution. 
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Figure 3.4 Flow-chart To Find Optimal Power Flow Solution Using Particle 

Swarm Optimization Method. 
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3.3.1.2 The Advantages and Disadvantages of Using PSO  

 Advantages 

1. PSO is easy to implement the coding. 

2. PSO is able to produce high quality solutions by using less time. 

3. PSO is less sensitive to the objective function compared to 

conventional mathematical methods. 

4. PSO has less negative impact toward the solutions. 

5. PSO is less divergence. 

6. PSO has less parameter to control. 

 Disadvantages 

1. PSO need a longer computation time compared to the mathematical 

methods. 

2. PSO need more iteration than the classical method. 


