TABLE OF CONTENTS

Chapter		Title	
		الآية	I
		Dedication	Ii
		Acknowledgement	Iii
		Abstract	Iv
		مستخلص	V
		Table of Contents	Vi
		List of Figures	Ix
		List of Tables	X
		List of Symbols	Xi
		List of Abbreviations	Xii
One		Introduction	
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objective	2
	1.4	Thesis Layout	2
Two		Economic Operation in Power System	
	2.1	Introduction	4
	2.2	Generator Incremental Cost Curve	5
	2.3	Optimal Generation Scheduling Considering of	6
	,	Transmission Losses	
	2.3	3.1 Mathematical Modeling	7
	2.4	Transmission Loss In Term of Real Power Generation	8

	2.5 Plant Scheduling Methods	8
	2.6 Optimal Power Flow	9
	2.7 Optimal Power Flow Solution Methodologies	9
	2.7.1 Conventional Methodologies	10
	2.7.1.1 Gradient Method	10
	2.7.1.2 Newton Method	10
	2.7.1.3 Linear Programming Method	11
	2.7.1.4 Quadratic Programming Method	11
	2.7.1.5 Interior Point Method	12
	2.7.2 Intelligent Methodologies:	13
	2.7.2.1 Binary Coded Genetic Algorithm Method	13
	2.7.2.2 Particle Swarm Optimization Method	14
Three	Optimal Power Flow Methodologies	
	3.1 introduction	16
	3.2 Conventional Optimization Method	17
	3.2.1 Newton – Raphson Method	17
	3.2.1.1 Newton-Raphson Solution Algorithm	18
	3.3 Intelligent Methods	27
	3.3.1 Particle Swarm Optimization	27
	Application of PSO Method to Economic 3.3.1.1 Load Dispatch	30
	The Advantages and Disadvantages of Using PSO	32
Four	Result and Discussion	
	4.1 Case study	33
	4.2 Result of the MATLAB Program	33

	4.2	2.1 Result with Newton Raphson Method	34
1		Result with Particle Swarm Optimization 2.2	35
	4.2	Method	33
	4.3	Discussion	36
Five		Conclusions and Recommendation	
	5.1	Conclusion	38
	5.2	Recommendations	39
		References	40
		Appendix	
	Appendix	x A	41

LIST OF FIGURES

Figure No	Figure No Title	
2.1	Input – Output Characteristic of Steam Turbine	5
2.2	Incremental Fuel Cost Curve	6
2.3	Transmission Network	7
2.4	Tree Diagram Indicating Optimal Power Flow	10
	Methodologies	
3.1	Flow-Chart to Find Optimal Power Flow Solution	26
	Using Newton Raphson Method.	
3.2	Example on The Flock of Bird In Nature	28
3.3	Example of School of Fish in Nature	28
3.4	Flow-Chart to Find Optimal Power Flow Solution	31
	Using Particle Swarm Optimization Method	
4.1	Single line diagram of the IEEE 39 New England	33
	test system	
4.2	Differences Between Real Power Generations (Mw)	37
	For Each Unit to the Two Methods.	
4.3	Differences Between Generation Cost (\$) for Each	37
	Unit to the Two Methods.	

LIST OF TABLES

Table No	Title	Page
4.1	Newton Raphson MATLAB Result	34
4.2	Particle Swarm Optimization MATLAB Result	35
4.3	Comparison between NR & PSO Results	36

LIST OF SYMBOLS

V Volt

I Current

R Resistance

P Active Power

Q Reactive Power

C_i Fuel cost Function

a, b & d Generator fuel cost characteristic

P_G Real power generation

Q_G Reactive power generation

P_D Real power Demand

P_L power Losses

B_{ij} B-coefficient to calculate the power loss formula

L Lagragian multiplier

 λ Lambda

 p_d Particle position v_d Particle velocity d No of Particle

 $pbest_d$ The best previous position of particle d

gbest the best particle among all particles represented

iter No of iteration

ITmaxMaximum No of iteration ω is the inertia weight factor

 C_1 and C_2 cognitive and social parameters, respectively

 $rand_1$ and $rand_2$ random values in [0, 1]

 w_{max} and w_{min} maximum and minimum weight factor

k No of iteration

LIST OF ABBREVIATIONS

IEEE The Institute of Electrical And Electronics Engineers

NR Newton Raphson Method

PSO Particle Swarm Optimization

IFC Incremental Fuel Cost

BTU British Thermal Unit

ITL Incremental Transmission Losses