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CHAPTER ONE 

INTRODUCTION 

Class imbalance is one of the challenges of machine learning and data mining fields. 

This chapter provides a gentle introduction to the problem of class imbalance and their 

difficulties that hinder the performance of algorithms. It also includes the objective and 

scope of this dissertation and finally the organization of chapters. 

1.1 Introduction 

Classification is one of the main data mining and machine learning tasks, which extracts 

useful information using intelligent methods. Given a data set with a set of objects each 

of them represented by a vector of attributes with one of the attributes as the class, the 

classification process is finding a model for class attribute as a function of the values of 

other attributes [1]. 

 The classification problem of imbalanced data can appear in two types of data sets: two 

classes, where the instances of one class outnumber the instances of other and multi 

classes, where the applications have more than two classes. The multi class imbalance 

problem is an extension of the traditional two class imbalanced data where a data set 

consists of k classes instead of two. While imbalance is said to exist in the binary class 

imbalance problem when one class severely outnumbers the other class, when extended 

to multiple classes, the effects of imbalance are even more problematic. The class have 

overwhelmed called the majority class while the other is called minority class. However, 

in many applications the class has lower instances is the more interesting and important 

one. The imbalance problem heightens whenever the class of interest is relatively rare 

and has small number of instances compared to the majority class. Moreover, the cost of 

misclassifying the minority class is very high in comparison with the cost of 

misclassifying the majority class [2] for examples; consider cancer versus non-cancer or 

fraud versus un-fraud in first example the error of misclassification of positive class 

(cancer) as negative (non-cancer) is very big and may cause disaster or death. The same 
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case in the second example, the error of misclassification of positive class (fraud) as 

negative (non-fraud) is very big and may cause huge losses.   

The class imbalance can be intrinsic property or due to limitations to obtain data such as 

cost, privacy and large efforts [3]. 

Many real world applications suffer from these phenomena such as medical diagnosis, 

fraud detection (credit card, phone calls, insurance), network intrusion detection, 

pollution detection, fault monitoring, biomedical, bioinformatics and remote sensing 

(land mine, under water mine).As examples, both intrusion detection and fraud detection 

are considered as highly imbalance class problem. Although there is massive data 

however, most of them are legitimate and a little are intruders/fraudulent.  

1.2 Problem Statement 

Class imbalance is one of the challenges of machine learning and data mining fields. 

Imbalance data sets degrades the performance of data mining and machine learning 

techniques as the overall accuracy and decision making be biased to the majority class 

which lead to misclassifying the minority class samples or furthermore treated them as 

noise.  

There are different difficulties caused by imbalance classes that hinder the performance 

of machine learning and data mining techniques [4]: 

Firstly: the class distribution, the standard classifiers such as decision trees and neural 

networks assume that the training samples are equally distributed among classes. 

However, in many real applications the ratio of the minority class is very low (1:100, 

1:1000 or may exceed 1 to 10000). 

Secondly: lack of data, few samples of minority class in training set tends the classifiers 

to falsely detect them and the decision boundary be far from the true one. 

Thirdly: concept complexity or overlapping, which refers to level of separability 

between data classes. High overlapped classes and high noise level produced higher 

complexity as depicted in Figure 1.1. Moreover, the discriminating rules can be difficult 



3 
 

to induce if the examples of each class are overlapping at different levels in some feature 

space. 

Fourthly: the existence of small disjuncts in a data set adds more complexity to the 

problem as depicted in Figure 1.2. 

Fifthly: in most imbalance problems the cost of errors for different classes is uneven and 

usually it is unknown. 

Furthermore, another problem associated with mining rare cases is reflected by the 

phrase: like a needle in a haystack in which the needle is obscured by a huge number of 

strands of hay that similarly to minority class samples that may be obscured by the 

majority class samples. 

 Various approaches have been proposed by the researchers for solving the imbalance 

problem. However, there is no general approach proper for all imbalance data sets and 

there is no unification frame work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: concept complexity (class overlapping) in imbalanced data 
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1.3 Objectives 

The major objective of this research is to investigate the highly imbalance classes 

problem through using an ensemble approach. Additional objectives are listed as 

follows: 

 To investigate classifiers which are less sensitive to the class imbalance problem. 

 To evaluate the classifiers performance under several circumstances. 

 To improve the performance through using an ensemble approach. 

 To compare the performance of different models on different highly imbalanced 

data.  

 

1.4 Research Questions 

 What are the best classifiers for dealing with highly imbalance data? 

 What are the best ensemble (combination) approaches of classifiers for solution 

highly imbalance classes’ problem? 

 

Figure 1.2: Small disjuncts in imbalanced data 
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1.5 Scope 

• The scope of this research is limited for handling the imbalance class’s data in: 

 Insurance fraud detection as two class imbalance problem  

  Network intrusion detection as multi class imbalance problem. 

 Other tested data sets: 

o Two class imbalanced data sets: German, Hepatitis, Haperman 

o Multi class imbalanced data sets: Thyroid, Lymphography, Glass, 

Landsat. 

 

 

1.6 Thesis Structure 
The rest of the dissertation is organized as follows:  

Chapter two: provides a literature review for the given problem and all related works for 

both two and multi class imbalance problem.  

Chapter three: includes experimental methodology and describe all methods and data 

sets used in our experiments. 

Chapter four: includes the design and results discussion for all conducted experiments 

and the proposed approach for solving two-class imbalance problem. 

Chapter five: includes the design and results discussion for all conducted experiments 

and the proposed approach for solving multi class imbalance problem. 

Chapter six: provides conclusion and future works. 
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter demonstrates the methodologies for handling imbalanced class problem for 

two class and multi class classification problems. Several methods proposed for solution 

the imbalance class problems include re-sampling and feature selection at the data level 

and other ones at the algorithm level such as cost sensitive and single class learning. 

However, most of these studies focused on two class classification problems and tried to 

improve the performance depending on the accuracy measure, which is an unsuitable 

performance measure for imbalanced data and few of them have been focused on multi 

class imbalanced classification problem. We start by introducing solutions for two class 

problem and then introduce solutions for multi class imbalanced data problem. 

 
2.1 Imbalanced Two Class classification Review 

2.1.1 Sampling based methods 
Sampling methods is a preprocessing of data, which handle the imbalance problem by 

constructing balanced training data set and adjusting the prior distribution for minority 

and majority class [3] [5]. Sampling methods include under sampling and over sampling 

methods.  

2.1.1.1 Undersampling 

Under sampling balance the data by removing samples from majority class. 

Undersampling can be done using a non heuristic approach by randomly selecting 

samples from majority class [6] or using a heuristic approach such as Tomek link [7] , 

condensed NNR [8] or one sided selection [9]. 

 

Tomek link [7] defined pairs of samples belongs to different classes that are close to 

each other. They both take place in the decision boundary then tome links either 
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removes the majority samples only or assume one of them representing noise. So Tomek 

links can be considered as undersampling method or as a cleaning method. 

Condensed Nearest Neighbor (CNN) was proposed by Hart [8]. It applies a 1-NN (One- 

Nearest Neighbour) to select a consistent subset from the majority class by eliminate 

samples that are far from the decision border, by considering them less relevant and do 

not add additional information for learning.  

One Sided Selection (OSS) [9]  is an undersampling method that apply both Tomek 

links and CNN. Tomek links used to remove both noisy and borderline majority class 

samples. And CNN used to remove samples that are far from the decision border.  

 

Li et al. [10] used granular support vector machines repetitive under sampling method 

(GSVM-RU). This method balances the majority class by extracting important samples 

and removing those unimportant ones. It significantly improved the efficiency of SVM 

model and reduced the computational cost.  

 

Wilson’s editing is an undersampling method proposed by Barandela et al. [11]. It 

employs the k-nearest neighbors for each majority sample and assigns its class based on 

3-NN. If the sample  is misclassified, it is excluded from the final dataset that 

represented the majority class. 

 

A cluster based under sampling approach was proposed by Yen and Lee [12]  to improve 

the classification accuracy for the minority class. They divided the training data into 

clusters and then selected the representative data for majority class samples from each 

cluster regarding the ratio of majority class samples to minority class samples. Their 

results showed that the cluster based under sampling improved prediction accuracy and 

it was more stable than other under sampling approach. Mostafizur et al. [13] modified 

the method proposed in [12] by separating the majority class into k clusters and selects a 

subset from each cluster. Then all subsets combined separately with the minority class to 

obtain k different training datasets. However, generally using under sampling may cause 

loss of useful information by removing significant patterns. 
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2.1.1.2 Oversampling  

Oversampling balanced the data by creating copies of the existing samples or adding 

more samples to the minority class. Oversampling can be done using a non heuristic 

approach by randomly duplicating samples of minority class [6] or adding new samples 

using a heuristic approach. However, random over sampling may cause over fitting and 

may introduce additional computational tasks. To tackle this problem Chawla et al. [14] 

proposed a synthetic minority over sampling technique (SMOTE) by generating a 

synthetic examples rather than replacement with replication for the existing minority 

class samples. SMOTE works by selecting some or all the nearest neighbors for each 

minority sample and then take the difference between the feature vector for the minority 

sample under consideration and its nearest neighbor. Then, multiply this difference by a 

random number between 0 and 1 and add it to the feature vector under Consideration to 

produce the synthetic samples and add them to the minority class. This technique 

identifies more specific regions in the feature space for the minority class and so this 

makes the decision boundary for the minority class larger. The proposed technique 

maximized the performance of the classifier and biased the learning towards the 

minority class.  However, it may lead to overlapping between classes because it does not 

take the neighbors of the minority class into consideration. Another drawback of 

SMOTE is appeared when the number of samples of minority class is not adequate for 

estimating the accurate probability distribution for the actual data. 

SMOTE [14] generated a new samples for the minority class using the original ones in 

any further generation but Wei et al. [15] modified SMOTE and proposed a novel 

oversampling method called incremental SMOTE by considering the generated synthetic 

minority samples for further generation. 

Borderline over sampling method was proposed in [16]. This method is similar to 

SMOTE, but it generated synthetic samples from the minority samples which take place 

around the borderline and they are most prone to be misclassified. 
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Juan and Li-li [17] proposed an oversampling method based on clustering and genetic 

algorithm. Firstly, k-means used to divide data into clusters and then the genetic 

algorithm used the parent samples in cluster to generate new minority samples applying 

mutation and crossover operations. GhaziKhan et al. [18] presented a wrapper based 

random oversampling that used genetic algorithm as the evolutionary optimization 

scheme to search the optimal regions for oversampling.  

An investigation for the effects of imbalance ratio and the classifier was presented by 

Garcia et al. [5]. They evaluated several sampling methods RUS (random under 

sampling) and WE+ MSS (Wilson’s editing with MSS condensing over the negative 

instances) as under sampling methods and SMOTE and gg-SMOTE (Gabriel- graph-

based SMOTE). Their results showed that over sampling was outperformed under 

sampling in highly imbalance datasets as under sampling causes loss of significant 

patterns. The performance of evaluated methods (under sampling plus over sampling)  

was alike when the imbalance ratio was low. 

Kamei et al. [19] evaluated the effects of four sampling methods (random over sampling, 

SMOTE, random undersampling and one sided selection) using four models (linear 

discrimination analysis, logistic regression analysis, neural network and classification 

tree). However, the sampling methods improved the prediction performance of linear 

and logistic models but there was no effect on neural network or classification tree 

performance. 

.Kerdprasop and Kerdprasop [20] used Random over sampling and SMOTE to improve 

the performance of the learned model using decision tree induction, regression analysis, 

neural network and SVM. The highest sensitivity model given by random over sampling 

while SMOTE gives the highest specificity model.  Moreover, they applied a cluster 

based feature selection which added a significant improvement to the predicting 

accuracy for the learned models. 

Ramentol et al. [21] introduced a hybrid sampling method by integrate SMOTE with 

fuzzy rough set theory (FRST). Using this method improved SMOTE performance by 

eliminating the synthetic minority class samples which they had lower degree to the 
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fuzzy region. While, recently a fuzzy distance based undersampling (FDUS) is 

combined with SMOTE in [22]. The combination of SMOTE and FRST performance 

have surpassed other SMOTE approaches.  

A hybrid under sampling technique for mining unbalanced datasets was proposed by 

Ravi and Vasu [23]. They employed KRNN (k-reverse nearest neighbour) to detect the 

outliers and K-means clustering on the majority class. The proposed method was tested 

using several classifiers such as SVM, logistic regression (LR), radial basis function 

network (RBF), genetic programming and decision tree (J48). Their results showed that 

the proposed under sampling technique increased the classifier’s performance. 

Although SMOTE has advantages for balancing the data effectively however, it may 

bring noise. To overcome this problem, recently Mi [24] proposed an active learning 

SMOTE that selects the best and valuable samples for learning. The author introduced 

SVM into adapted SMOTE learning frame. Their results showed that the proposed 

method outperformed other learning models using SMOTE, undersampling and 

AdaBoost. 

Also, a hybrid feature selection method was proposed in [25] by combining re-sampling 

and feature subset approaches. They used SMOTE for re-sampling, consistency subset 

evaluation method and genetic search for finding the optimal feature space and 

removing irrelevant features. The proposed method improved the classifier performance 

and outperformed the other feature selection methods.  Although most of the learners 

benefits from sampling techniques, but the performance of sampling techniques depend 

on the dataset size and imbalance ratio [26]. 

Alibeigi et al. [27]  presented an unsupervised feature selection for highly imbalanced 

data. The proposed feature selection method selects the more important and informative 

features regarding the minority class and remove the redundant features according to 

their probability density function. 

Cuaya  et al. [28] proposed a minority class feature selection called Feature Selection for 

Minority Class (FSMC). FSMC is a filter method that selects features whose minority 
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class values significantly different from majority class values. This method return fewer 

attributes in less time in comparison with other feature selection methods. 

 

A hybrid approach that combined feature selection with sampling is proposed in [29], 

[30], [31]. A wrapper-based feature selection was used with random undersampling. 

They also combined feature selection with sampling but in a repetitive manner by 

aggregating results obtained during each repetitive process. Authors in [32], [33] 

proposed a hybrid approach using subset filtering. The majority class divided into 

multiple subsets and then those subsets combined with the minority subsets to form 

balanced sets. The number of subsets depends on the imbalance ratio. They used 

Correlation based Feature Subset (CFS) to reduce the effect of imbalanced classes. 

Authors in [34], [35]  proposed an undersampling method based on feature selection. It 

eliminated weak and noise samples and select the strong samples for each specific 

feature using filter method. 

 

2.1.3   Cost sensitive learning based methods 
In many imbalance class problems, not only the data distribution is skewed but also the 

misclassification error cost is uneven. The cost learning techniques take the 

misclassification cost in its account by assigning higher cost of misclassification to the 

positive class (minority class) i.e. C(+,-)> C(-,+) and generate the model with lowest 

cost [36]. However, the misclassification errors costs are often unknown and 

furthermore, cost sensitive learning may lead to over fitting. 

Another cost sensitive learning approach used in unbalance dataset is adjusting the 

decision threshold of the standard machine learning algorithms, wherever the selection 

of threshold is an effective factor on the performance of learning algorithms [37]. This 

approach moves the output threshold towards the inexpensive class (majority class) so as 

the samples with higher costs became harder to be misclassified. 

Thach et al. [38] proposed accuracy- based learning (XCS) with cost sensitive. They 

identified a constraint reward function which maximizes the total reward of the positive 
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class samples and improves the performance of XCS in imbalanced data. Alejo et al. 

[39] proposed a hybrid method based on Gabriel graphs technique and modified back 

propagation algorithm. They proposed new cost function based on minimum square 

error (MSE).  

Authors in [40] investigated the performance of cost sensitive classifier regarding data 

with/without imbalanced classes. They used instance-weighting- based cost sensitive 

C4.5. From their experiments they recommended to use the normal distribution of data if 

the costs do not differ seriously and using balanced classes if the costs differ seriously. 

In [41] Sun et al. used instance-weighting method that assigns different error 

classification costs to positive and negative training samples. 

 

Hong et al. [42] presented a hybrid kernel algorithm that combined SMOTE and Particle 

Swarm Optimization (PSO) and Radial Basis Function (RBF). OFS is employed to 

construct RBF classifier and PSO was used to determine the parameters of RBF. 

 

Daneshmandi and  Ahmadzadeh [43] proposed a hybrid approach that integrates a 

supervised learning using neural networks with an unsupervised learning using k-nearest 

neighbors clustering. Fuzzy C-means clustering (FCM) algorithm used to improve the 

performance of SVM on imbalanced data classes. FCM builds n clusters randomly and 

the membership for each training sample is calculated.  

 

Adam et al. [44] improved the performance of the neural networks in imbalanced data 

using Particle Swarm Optimization. Back propagation learning used to train the neural 

network then PSO was applied to optimize the decision boundary for the output layer in 

trained neural network. 

 

Bahnsen et al. [45] integrated sampling techniques and cost sensitive learning into 

improved random forests. They integrate sampling techniques into balanced random 

forests and cost sensitive learning into weighted random forests. In [46] Kothandan 

investigated the competence of using SMOTE sampling and cost sensitive learning with 
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two step SVM. Ling and  Sheng [47] proposed two empirical methods to deal with class 

imbalance. The first method combined cost sensitive learning with sampling and the 

second used cost sensitive learning by optimizing the cost ratio. They concluded that 

cost matrix have reduced when using the first method however, the second one have 

better performance. 

Uyar et al. [48] examined the classification performance when using oversampling, 

under sampling and adjusting the decision threshold. Their results showed that the 

optimum true positive rate and false positive rate can be improved easily by adjusting 

the decision threshold. Also, Yan et al. [49] proposed an adjustment method for 

threshold based on Fisher discrimination.  

 

2.1.4 Recognition based methods 
In recognition based method or (one-class learning) the classifier learned on the just 

target class samples. This approach improves the performance of the classifier on unseen 

data by recognized only those belong to that class. Raskutti and Kowalczyk [50] 

investigated the effect of sampling, and weighted learning of a single class. They 

concluded that one- class learning can be a robust technique when dealing with 

imbalanced data and highly dimensional noisy feature space. Recently, A hybrid 

approach that combined undersampling with one class SVM (OSVM) was proposed by 

Kim and Ahn [51]. They used k-reverse nearest neighbors to remove outliers and OSVM 

is used to extract support vectors in the majority class. For solving parameter selection 

problem in imbalanced data, in [52] Zhuang and Dai used one-class learning to train on 

the minority class and then an optimization criteria is set using the generalization 

performance which is estimated from both minority and majority classes. One-class 

learning can perform better under certain conditions such as high dimensional data, 

however, many classifiers such as decision trees and Naive Bayes cannot be built by one 

class learning.  
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2.1.5 Ensemble- based Methods 
Ensemble is a combination of multiple classifiers so as to improve the generalization 

ability and increase the prediction accuracy. The most popular combining techniques are 

boosting and bagging. In boosting, each classifier is dependent on the previous one, and 

focuses on the previous one’s errors. Examples that are misclassified in previous 

classifiers are chosen more often or weighted more heavily. Whereas, in bagging, each 

model in the ensemble votes with an equal weight. In order to promote model variance, 

bagging trains each model in the ensemble using a randomly drawn subset of the 

training set [53]. 

Kang and Cho [54] proposed an ensemble of under sampled SVM (EUS SVMs). They 

integrated the good generalization ability of SVM by boosting ensemble scheme. Their 

proposed method overcame the drawback of under sampling method and reduced the 

time complexity of oversampling method. 

Zhang and Wang [55] presented an ensemble model that combining cost sensitive SVM 

and query by committee (QBC) with AdaBoost learning. The majority class divided into 

several subsets regarding to imbalance ratio. Then QBC which is an active learning 

method is used to generate nominee training samples and selects the effective ones. 

AdaBoost is used to train the sub classifiers. 

Khoshgoftaar et al. [56] studied empirically the use of different data sampling with 

Boosting including random undersampling, random oversampling, SMOTE, Borderline 

SMOTE and wilson’s editing. The best performance usually obtained by undersampling. 

SMOTE and borderline SMOTE given better results than the random oversampling and 

wilson’s editing. They concluded that Boosting improve performance over sampling 

methods. 

A hybrid kernel machine ensemble by integrating two types of kernel machine one class 

SVM and binary SVM (BSVM) is proposed in [57]. Authors in [58]- [59] proposed a 

hybrid approach using random undersampling with AdaBoost (RUSBoost). They 

obtained the desired distribution by randomly remove samples from majority class. 

RUSBoost is simpler and faster technique comparing to SMOTEBoost and other 
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technique.. Yuan and Ma in [60] improved the performance by using SMOTE with 

AdaBoost and an objective function using optimization technique such as genetic 

algorithm. 

Xiong et al. [61] proposed an ensemble model that integrates sampling with AdaBoost 

using Naïve Bayes (NB) and decision tree C4.5 as  base classifiers.  Random sampling 

used with NB to denotes the data distribution and Undersampling used with 

C4.5/C4.5+AdaBoost. 

To tackle the deficiency of undersampling, Liu et al. [62] proposed two ensemble 

models called Easy ensemble and balanced cascade ensemble. In easy ensemble the 

combined classifiers are trained on different subsets separately. In balanced cascade 

ensemble the combined classifiers trained sequentially using a guide in the sampling 

process for each classifier by removing samples those are classified correctly. Recently, 

Tianyu [63] used easy ensemble based feature selection.  To improve the performance, 

PSO is applied to get the optimal feature subsets. 

Khoshgoftaaret al. [64] proposed a filter-based feature ranking techniques. They applied 

an iterative feature selection strategy and combined it with sampling and boosting 

techniques. This method repeatedly employed data sampling followed by feaure 

selection. The ranked features sets taken from each iteration and applied to boosting 

learners. 

An investigation on the performance of random sampling and advanced under sampling 

(CUBE) and two modeling techniques (gradient boosting and weighted random forests) 

was introduced by Burez and Poel [65]. They concluded that under sampling improved 

the prediction accuracy comparably with sophisticated under sampling which had no any 

effect on the performance. Also, they found that Boosting is a robust classifier but not 

surpassed the other techniques and Weighted random forest performed better than 

random forest. 

Gue and Viktor [66] proposed an ensemble based learning approach (DataBoost-IM) 

that combined boosting with data generation. The hard examples were identified then 

they were used to generate synthetic examples for both classes to be focus by the next 
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classifier component in the boosting procedure. However, synthetic examples prevented 

boosting from over fitting on hard examples. Another ensemble in a hierarchical frame 

was proposed by Zhang and Luo [67]. They proposed a parallel classification method to 

improve classifying speed; two classifiers (simple one and complicated one) were 

trained serially but worked in parallel. The results showed that their proposed approach 

effectively improved performance and speed. 

An approach based on repeated sub-sampling was proposed by Khalilia et al. [68]. They 

compared the performance of SVM, bagging, boosting and Random Forest (RF). They 

emphasized the effectiveness of repeated sub-sampling in dealing with highly imbalance 

data sets. However, RF outperformed other methods plus its ability to estimate the 

importance of each variable in classification process. 

Recently, a hybrid ensemble model that integrated sampling, clustering and bagging was 

proposed by Wang [69]. Firstly, the borderline majority samples were removed using 

Tome links undersampling technique. Then the remaining majority class divided into a 

number of subsets (clusters). These subsets were combined with the minority class using 

bagging learning technique. For diversity they used random forests and decision tree as 

base classifiers for the ensemble. Krawczyk et al. [70] proposed a hybrid ensemble 

model that combined feature selection with cost sensitive learning. Random feature 

subspaces are used for the diversity of ensemble. Cost matrix is used to construct the 

base classifiers. To promote the performance, an evolutionary algorithm was used for 

classifier selection and assignment of committee member weights. 

Table [2] summarizes the advantages and drawbacks of the proposed methods for 

dealing with imbalance problem: resampling, cost sensitive learning, one class learning 

and ensemble approaches. 
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Table 2.1. The advantages and drawbacks of the proposed methods for dealing with 

imbalance problem 

Method Advantages Limitations 

Under-

sampling 

 

 Independent on 

underlying classifier. 

 Can be easily 

implemented 

 May remove significant patterns and 

cause loss of useful information 

Over-

sampling 

 Time consuming: Introduce additional 

computational cost 

 May lead to over-fitting 

Cost 

sensitive  
 Minimize the cost of 

misclassification (by 

biasing the classifier 

toward the minority 

class) 

 The misclassification costs (the actual 

cost of errors) often are unknown 

Recogniti

on based  
 Have better performance 

especially on high 

dimensional data 

 Many classifiers such as decision trees 

and Naive Bayes cannot be built by 

one class learning. 

Ensemble  Better classification 

performance than 

individual classifiers 

 Less likely to overfit 

 More resilience to noise 

 

 

 Time consuming 
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2.2  Imbalanced Multi Class classification Review 

In the previous Sections, we introduced the related works and proposed solution for 

handling two classes’ imbalanced data, however, in comparison with solutions of multi 

class imbalanced data which is an extension for the two class imbalanced problem and 

more complicated, we found that there are few focused and concentrated solutions for 

handling it. In addition to that, most of those proposed solutions do not directly apply in 

multi class classification problems. 

 Multi class classification problem can be solved using two different strategies: problem 

adaptation and problem decomposition. Problem adaptation solution carried out by 

directly manipulate and adapted specific algorithm using single classifier with multiple 

outputs. Whereas, the other solution accomplished by transforming and decomposing the 

multi class problem into small binary sub problems which referred as multi binary 

classification. Ensemble is made of those binary classifiers and the final output of the 

ensemble is a combination of binary classifiers outputs. There are several approaches  

for multi binary classification that differ on the used decomposition and integration 

techniques. The most popular ones are One against All, One against One and Error 

Correcting Outputs code [71]- [72]. 

For solving multi class classification in imbalanced data, a hybrid approach by 

combining clustering and sampling was proposed by Al-Roby and El-Halees [73]. The 

training data are divided into number of clusters and in each cluster SMOTE over 

sampling method has been applied. The new balanced data obtained by combining all 

clusters. Wang and Ou [74]  proposed a solution that based into decomposition of multi 

class into binary sub problems. They developed a hierarchy multi class method One-

Against-Higher-Order (OAHO). For k class, k-1 classifiers are built in a hierarchy 

regarding the order; i.e. if any sample misclassified by the first classifier it doesn’t 

corrected by any lower classifier. Also, Jeatrakuland Wong [75] developed One-

Against-All with Data Balancing (OAA-DB) algorithm that combined multi-binary 

classification and data balancing. It applied One-Against-All (OAA) multi-binary 
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classification technique and data balancing technique that integrated undersampling 

using Complementary Neural Network and SMOTE oversampling method. 

Recently, Lavanya et al. [76] proposed an approach that based on one against one 

(OAO) decomposition technique for multi class data. After the problem transformed into 

binary sub problems, they applied undersampling technique in each sub binary problem 

using ant colony optimization algorithm to extract the best subset. 

To reduce the computational cost of sample selection Alaouiet al. [77] presented a 

clustering method based on Sample Selection (SS). SS is an undersampling method that 

selects the important majority samples from the critical clusters only (samples which are 

not close to border). 

Prachuabsupakijet al. [78] proposed C-MEIN (Clustering with Sampling for Multi class 

Imbalanced using Ensemble) which is a hybrid ensemble that integrated clustering with 

sampling. The data samples are divided into two clusters using K-means algorithm. 

Then, in each cluster two resampling methods were used to balance data. The new 

balanced data are used to construct the ensemble. 

Leung et al. [79] investigated the performance of combining feature subsets methods 

(Principle Component Analysis, Genetic Algorithm, Rough Set) with three sampling 

methods (undersampling, oversampling, undersampling+oversampling). The optimal 

pairs of feature subsets and sampling techniques obtained using Genetic algorithm. 

Rafiahet al. [80] combined features extraction, sampling with Boosting. They extracted 

the important features using feature extraction algorithm, then SMOTE+Boosting 

applied to the extracted generated features. 

Authors in [81], [82] proposed cost sensitive approach using SVM with ramp loss 

function to handle multi class classification. They developed an objective function that 

optimize performance measure such as  g-mean, F-measure. 

Very recent investigation proposed by Sainin et al. [83]  have studied the use of random 

undersampling with replacement (SWR) with new proposed direct ensemble classifier 

for imbalanced multi class learning (DECIML). DECIMIL is a combination of two 
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ensemble, the first one combined NB and 1- nearest neighbor and second one combined 

NB and k- nearest neighbors. However, SWR degraded F-measure in some datasets. 

 

From the previous study we can conclude that various approaches have been proposed 

by the researchers for solving the imbalance problem. However, there is no general 

approach proper for all imbalance data sets and there is no unification frame work. 

In addition to, most of these proposed methods try to improve performance and to obtain 

satisfactory results in term of accuracy. However, through this investigation new hybrid 

ensemble models will be proposed to handle imbalance class problem in order to 

improve the true detection rates per class and reduces the false alarms for both minority 

and majority classes. 

 

2.3 Summary 

This chapter gave an overview of major existing techniques related to imbalanced class 

problem, which is proposed for handling two-class and multi-class imbalance problem. 

The next chapters shall present proposed approaches for solving this problem through 

using hybrid ensemble approaches. 
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CHAPTER THREE 

EXPERIMENTAL METHODOLOGIES 

 This chapter introduces the experimental methodology utilized in our experiments using 

different machine learning and data mining classifiers and different imbalanced data sets 

and the WEKA machine learning tool. Section 3.1, explains information about the data 

sets used for experiments. Section 3.2, provides details of sampling methods. Section 3.3 

provides the details about the bases classification learners. Section 3.4 explains 

information about the Meta learning methods and finally Section 3.5 describes the 

performance measures used in evaluation.  

3.1 Datasets 

In total, nine real world imbalanced datasets were used for the experiments with 

different sizes and imbalanced ratios four of them are two class imbalanced data sets and 

the others are multi class imbalanced dataset. 

3.1.1 Two Class Imbalanced Data 

(1) Insurance Fraud detection data set 

This dataset related to insurance fraud detection, which encompasses information about 

automobile insurance claims. It consists of 32 variables, 31 predictor variables and one 

class variable. The total of samples is 15,420 samples, 14,497 are non-fraudulent and 

923 are fraudulent, which indicate the data set is highly imbalanced [23]. 

(2) German Dataset 

This dataset obtained from the University of California at Irvine (UCI) repository, which 

is a contribution by Hans Hofmann. It is concerned regarding credit card applications. 

The purpose of the German credit data set is to predict whether a loan application is a 

good or a bad credit risk. The total of samples is 1000 samples, Number of attributes is 

20, 700 are negative and 300 are positive [84]. 
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(3) Hepatitis Dataset 

This dataset obtained from the UCI repository. It is used to diagnose whether a hepatitis 

patient will die or live. The total of samples is 155, 123 LIVE and 32 DIE samples 

number of attributes is 20 [85]. 

(4) Haberman’s Survival Dataset 

This dataset obtained from the UCI repository. It contains the survival status of the 

patients who had undergone breast cancer surgery. The dataset has 306 samples each of 

which has 3 attributes. For this data 225 patients survived more than 5 years post surgery 

and 81 patients died within 5 years. The goal for this data is to predict the class (dead or 

alive) using the 3 input variables [86]. 

 

3.1.2 Multi Class Imbalanced Data 

(1) Intrusion detection dataset 

Intrusion detection dataset were prepared by MIT Lincoln Lab [87]. This Dataset 

consists of 41 attributes and one class label. 24 attack types classified into four main 

classes: Dos (Denial of Service), R2L (Unauthorized Access from a Remote Machine), 

U2R (Unauthorized Access to Local Super User (root)) and Probing. The data is highly 

imbalance, the training set divided as follows: 1000 are normal data, 1000 are probe, 

3002 are Dos, 27 are U2R and 563 are U2L. 

(2) Glass dataset 

Glass Identification dataset was generated to help in criminological investigation. At the 

scene of the crime, the glass left can be used as evidence, but only if it is correctly 

identified. It contains 214 instances, 9 numeric attributes and class attribute. Each 

instance has one of 7 possible classes. The data distributed as 70, 76, 17, 13, 9 and 29 for 

Building Windows Float Processed Glass, Vehicle Windows Float Processed Glass, 
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Building Windows Non-Float Processed Glass, Vehicle  Windows Non-Float Processed 

Glass, Containers Non-Window Glass, Tableware Non-Window Glass and Headlamps 

Non-Window Glass class [88].  

(3) Thyroid dataset 

This dataset is used to determine whether a patient referred to the clinic has hypothyroid. 

The total number of instances is 3772, 21 attributes (15 binary, 6 continuous); three 

classes named: primary hypothyroid, compensated hypothyroid, normallyeach class has 

93, 191 and 3488 instances respectively [89]. 

 

(4) Landsat Satellite image dataset 

This dataset was generated from Landsat Multi-Spectral Scanner image data. It consists 

of the multi-spectral values of pixels in 3x3 neighbourhoods in a satellite image, and the 

classification associated with the central pixel in each neighbourhood. The aim is to 

predict this classification, given the multi-spectral values. In the sample database, the 

class of a pixel is coded as a number. It has 6 decision classes: 1, 2, 3, 4, 5 and 7 (class 6 

has been removed because of doubts about the validity of this class) [90].  

 

(5) Lymphography dataset 

 This lymphography domain is one of three domains provided by the Oncology Institute, 

University Medical Centre that has repeatedly appeared in the machine learning 

literature.  It contains 148 total number of  instances with 19 number of attributes 

including the class attribute. It has 4 classes distributed as 2 normal find, 81 metastases, 

61 malign lymph and 4 fibrosis [91]. 
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3.2. Sampling Methods 

Sampling methods is a preprocessing of data, which handle the imbalance problem by 

constructing balanced training data set and adjusting the prior distribution for minority 

and majority class. In our experiments, we employ under sampling and oversampling as 

sampling methods to modify and balance our imbalanced two class data sets. 

(1) Undersampling 

In our experiments we use random Under-Sampling (RUS), which is a non-heuristic 

method that aims to balance class distribution through the random elimination of 

majority class instances to get a set that equals to the minority class. 

(2) Oversampling 

To oversampled our data, we use SMOTE [14]. SMOTE increase the number of 

minority class by taking the difference between a feature vector (minority class sample) 

and one of its k nearest neighbors (minority class samples). And multiply this difference 

by a random number between 0 and 1. Then add this difference to the feature value of 

the original feature vector to create a new feature vector (See figure 3.1) 

 

 

 

 

 

 

 

 

 

Figure 3.1 Algorithm of SMOTE 

 

 

Add newminority class instance by: 

for each minority class instancec 

−neighbours = GetKNN (k) 

−n = Randompickonefromneighbours 

−Create a new minority class r instance using cᇱs feature vector by: 

r. features = c. features + (c. features − n. features) ∗ rand(0,1) 
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The above steps are applied when the features are continuous. For the nominal features 

SMOTE takes majority vote between the feature vector under consideration and its k 

nearest neighbors for the nominal feature value (In the case of a tie, choose at random) 

and assign that value to the new synthetic minority class sample. 

 

3.3 The Basic Learners 

In our experiments, we use seven distinct classifiers from the top and most used data 

mining and machine learning algorithms including Naïve Bays, Support Vector 

Machine, Back propagation neural network, radial basis function network, the decision 

trees C4.5, Random Forests and Random Trees. 

 

(1) Naïve Bays 

Naïve Bays (NB) is a simplified Bayesian probability theory, which is considered as a 

learning method as well as a statistical method for classification. It calculates explicit 

probabilities for hypothesis and it is robust to noise in input data. NB based on the 

conditional assumption that variables are independent within each output label. 

Although its conditional assumption is rarely true in real world application, it is 

distinguished by its surprising and competitive performance in classification [92].  

 

(2) Support Vector Machine 

Support Vector Machine (SVM) is one of the robust, popular and successful 

classification algorithms, which based on the risk minimization. It constructs hyper 

planes in a high dimensional space and finding the optimal one that maximizes the 

margin of training data. The basic SVM supports only binary classification, but 

extensions have been proposed to handle the multiclass classification case as Well as 

additional parameters and constraints are added to the optimization problem to handle 

the separation of the different classes. SVM distinguishes by its theoretical and practical 

advantages, such as solid mathematical background, high generalization capability and 

ability to find global and non-linear classification solutions through using kernels [93], 

[94]. 
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(3) Back Propagation Neural Network 

A back propagation neural network employs one of the most popular neural network 

learning algorithms, the Back propagation algorithm. It has been used successfully for 

wide variety of applications. The back propagation algorithm performs learning on a 

multilayer feed-forward neural network. It iteratively learns a set of weights for 

prediction of the class labels. A multilayer feed-forward neural network consists of an 

input layer, one or more hidden layer, and an output layer. The inputs to the network 

correspond to the attributes measured for each training instance. These inputs pass 

through the input layer and are then weighted and fed simultaneously to second layer, 

known as a hidden layer. The outputs of the hidden layer units can be input to another 

hidden layer, and so on. The number of hidden layers is arbitrary, although in practice, 

usually only one is used. The weighted outputs of the last hidden layer are input to units 

making up the output layer [95] [96]. 

 

 

 

 

 

 

 

 

 

Figure 3.2 Three Layers Back Propagation Neural Networks 
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Figure 3.2, explain the two phases of BP: Forward pass phase and Backward pass phase. 

In Forward pass phase, computes ‘functional signal’, feed forward propagation of input 

pattern signals through network. In Backward pass phase, computes ‘error signal’, 

propagates the error backwards through network starting at output units (where the error 

is the difference between actual and desired output values) [97]. 

(4) Radial basis functions network    

Radial basis functions network (RBF) is a type of neural network, which have a similar 

architecture to that of MLPs.  RBF networks have become one of the most used 

classifier for regression, classification and function approximation applications. They are 

embedded into a two-layer feed-forward neural network, a hidden layer of radial kernels 

and an output layer of linear neurons. The hidden layer performs a non-linear 

transformation of input space. The output layer combines linearly the outputs of the 

hidden neurons to predict the desired targets as depicted in Figure 3.3. The RBF output 

is a value based on the radial distance of a feature vector from a center in the feature 

space. RBF centers are selected so as to match the distribution of training examples in 

the input feature space [98]. 

 

 

 

Figure 3.3 Radial basis function neural network 
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(5) C4.5  

C4.5 is one of best-known and most widely-used learning algorithms proposed by 

Quinlan. It is An Improvement over ID3 algorithm by adding dealing with Missing data 

and numeric attributes, handling noisy data better and using  Pre and post pruning to 

prevent overfitting. The decision tree generated from a set of training data by C4.5, 

using the concept of information entropy. At each node of the tree, C4.5 chooses one 

attribute of the data that most effectively splits. The attribute which has the highest 

information gain is chosen to make the decision tree [99], [100]. 

 

(6) Random forest 

Random forest is one of the most accurate learning algorithms. It isan ensemble 

classifier that consists of many decision trees, where each tree is generated based on an 

independent set of random vectors of a data set. To classify a new object from an input 

vector, put the input vector down each of the trees in the forest. Each tree gives a 

classification, the output is class that having the most votes over all the trees in the 

forest. RF runs efficiently on large databases and thousands of input variables. It gives 

estimates of what variables are important in the classification. And It has an effective 

method for estimating missing data and maintains accuracy when a large proportion of 

the data are missing. However, it have been observed to overfit for some datasets with 

noisy classification/regression tasks [101].  

(7) Random Trees 

Random Tree (RT) is a tree constructed from a set of trees that considers K randomly 

chosen attributes at each node. RT algorithm can deal with both classification and 

regression problems. All the trees are trained with the same parameters but on different 

training sets. These sets are generated from the original training set using the bootstrap 

procedure: for each training set, randomly select the same number of samples as in the 

original set. The samples are chosen with replacement. That is, some samples will occur 

more than once and some will be absent. At each node of each trained tree, not all the 

features are used to find the best split, but a subset of them randomly  selected at each 
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node expansion without any purity function check (such as information gain, gini index, 

etc.).The classification of the input feature vector works by classifying the input feature 

vector, it with every tree, and the output is class label that received the majority of votes. 

In case of a regression, the classifier response is the average of the responses over all the 

trees in the forest. As all trees, it has possibilities for explanation and visualization of its 

output. An accurate model can be generated by a combination of a set of random trees 

[102]. 

 

3.4 Meta learning ensembles methods 

The main objective of ensemble is to try to improve the performance through using 

multiple classifiers and aggregate their predictions in decision making. In our 

experiments we use homogenous ensembles that use a single learning algorithm but 

manipulate training data to make it learn multiple models. We used the most widely used 

meta-learning algorithms Bagging and AdaBoost which have significant improvements 

in several classification problems. Section 3.3.1 explains the information of Bagging and 

section 3.3.2, explain the information of AdaBoost. 

 

3.4.1 Bagging 

Bagging was initially developed by Breiman. In a bagging ensemble, each individual 

classifier is trained using a different bootstrap of the data set. A bootstrap from a data set 

of N samples is a randomly drawn subset of N samples with replacement. The 

replacement allows samples to be drawn repeatedly. The final output is determined by 

simple vote among the component classifiers (See figure3.4) [103]. 
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 3.4.2 Boosting 

Boosting (or Arcing , Adaptive reweighting and combining) [104],  trains classifiers  

serially  such that a new classifier should focus on those instances which were 

incorrectly classified in the last round  and Combine the classifiers by letting them 

vote on the final prediction (like bagging).  AdaBoost is specific boosting method. It 

adaptively weigh each data instance so that those are wrongly classified get high 

weight. Each boosting round learns a new (simple) classifier on the weighed dataset. 

Furthermore, those classifiers are weighed to combine them into a single powerful 

classifier whereas Classifiers that obtain low training error rate have high weight. In 

our experiments we use AdaBoost.M1 (see figure 3.5) which an extension of  

AdaBoost for multi classes [105]. 

 

 

 

;ݏ݊݅ݐܽݎ݁ݐ݅ ݂ݎܾ݁݉ݑܰ:ܶ;ݐ݁ݏ ݃݊݅݊݅ܽݎܶ:ܵ :ݐݑ݊ܫ  ;݁ݖ݅ݏ ܽݎݐݏݐܤ:݊

 ݎ݁݊ݎ݈ܽ݁ ܹ݇ܽ݁:ܫ

(ݔ)ܪ :ݎ݂݁݅݅ݏݏ݈ܽܿ ݀݁݃݃ܽܤ:ݐݑݐݑܱ = (ݔ)൭ℎ௧݊݃݅ݏ
்

௧ୀଵ

൱  ݁ݎℎ݁ݓ 

ℎ௧ ∈  ݏݎ݂݁݅݅ݏݏ݈ܽܿ ݀݁ܿݑ݀݊݅ ℎ݁ݐ ݁ݎܽ [1−,1]

ݐ ݎ݂ =  ݀ ܶ ݐ 1

௧ܵ ←  ݐ݈ܴ݊݁݉݁ܿܽ݁ ݈݁݉ܽܵ ܴ݉݀݊ܽ

ℎ௧ ← )ܫ ௧ܵ) 

 ݎ݂݀݊݁

            Figure 3.4 Bagging Algorithm 
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Figure 3.5 AdaBoost Algorithm 
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            Figure 3.5 AdaBoost.M1 Algorithm 
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3.5 Evaluation Metrics  

Evaluation metrics is a critical issue in machine learning which used as indicator for the 

performance of machine learning algorithms.  The standard evaluation metrics used are 

accuracy and error rate however, these metrics are not proper to handle imbalance 

classes as the overall accuracy be biased to the majority class  regardless of the minority 

class with lower samples which leads to poor performance on it. In our experiments we 

use the most evaluation metrics related to imbalance classes which are recall 

(sensitivity) (1), specificity (2), precision (3), F-measure(4),(5). Recall and specificity 

are used to monitor the classification performance on each individual class. While 

precision is used in problems interested on highly performance on only one class, F-

measure is used when the performance on both classes –majority and minority classes- 

needed to be high [106].  As an example for two class problem, metrics are derived from 

a confusion matrix which shown in Table 3.1. 

 

Table 3.1: A 2x2 Confusion Matrix 

 A
ct
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l C
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Predicted Class 

 +ve -ve 

+ve True Positive (TP) False Negative (FN) 

-ve False Positive (FP) True Negative (TN) 
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݊݅ݏ݅ܿ݁ݎ =  
ܶܲ
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 :non negative constant and generally is set to 1 so ݏ݅ ߚ ݏܽ ݁ݎℎ݁ݓ

F =  
2. precision. Recall 
precision + Recall                       (5) 

 

3.6 Summary 

In this chapter, we explained the experimental methodologies utilized in our experiments 

that include seven of the top machine learning and data mining algorithms, different 

imbalanced data sets for both two and multi class imbalance problems, meta learning 

methods and finally, performance measures used to evaluate our experiments. 
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CHAPTER FOUR 

HANDLING TWO CLASS IMBALANCE PROBLEM 

Two class imbalance problems occur when the instances of one class that forms the 

majority outnumber the instances of other minority class. The instances of the minority 

class are labeled as positive and those of the majority class as negative. In this Chapter 

we investigate two class imbalance problem through conducting several experiments and 

introduces a hybrid ensemble approach as a solution for two class problem. We begin 

with the design of all conducted experiments that contains four different phases, 

followed by results analysis and discussion. 

 

 

4.1 Experiments Design Methodology 
Our experiments have been carried out using seven classifiers (Naïve Bays (NB), Back 

Propagation Neural Network (BP), Support Vector Machine (SVM), Radial Basis 

Function Network (RBF), C4.5, Random Tree (RT), and Random Forest (RF)) (Section 

3.3) with three different scenarios and phases and four two class imbalanced datasets 

(insurance fraud, German, Hepatitis and Haberman) with different imbalanced ratios 

(Section 3.1).  

 

4.1.1 Phase One: Testing Classifiers Using the Original Data 

Distribution 

 In phase One, we tested the performance of the seven selected classifiers using the 

original distribution for different imbalanced data sets with different imbalanced ratios. 

The main objective of this phase is to compare the performance of different classifiers to 

reveal those sensitive to class imbalanced problem.  
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4.1.2 Phase Two: Using Resampling Methods 
In phase two, we resampled data using undersampling by selecting random subsets from 

the majority classes that equal the size of minority classes. Then we tested the 

performance of seven classifiers using the new resampled data. The objective of this 

phase is to examine the effect of using undersampling on the performance of different 

classifiers.  

 

Next, we resampled data using oversampling by increasing the minority class samples 

using SMOTE (Synthetic Minority Oversampling Technique). The new resampled data 

is used for classifiers training. The objective of this phase is to examine the effect of 

using oversampling on the performance of different classifiers when dealing with 

imbalanced classes. 

 

4.1.3 Phase Three: Using Meta Learning Methods 

In phase three, we repeated the previous experiments using meta-learning methods with 

homogenous ensemble methods such as Bagging and AdaBoost. The objective of this 

phase is to display the impact of the meta-learning method and their improvements on 

the performance of  classifiers when dealing with imbalanced classes data using original 

data distribution (without applying any resampling method) and when applying 

resampling methods. 

 

4.1.4 Phase Four: Using the proposed Approach  

We have proposed a new method for dealing with two class imbalanced data sets. The 

basic idea for the proposed method is applying multiple resampling methods at various 

rates to construct several balanced datasets. Instead of designing multiple classifiers with 

the same dataset, we can manipulate the training set by resampling the original data 

using undersampling and oversampling.  

Also, in our proposed method we integrate ensemble of multiple classifiers, which is one 

of the popular techniques being used recently to increase and boost the performance of 

weak learners. 
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Firstly we used SMOTE to oversample the minority class by adding new synthetic 

samples. SMOTE finds the k nearest neighbors for each minority sample according to 

the percentage of increase. Then, it selects randomly a point that lie on the line between 

each pair of nearest neighbors to generate the new added minority sample. In our method 

the percentage of increase is controlled by the number of repetition for the loop to 

generate different set in each repetition and overcome overfitting for the new model, 

which is a defection for oversampling.  

In the next step, we applied undersampling by selecting randomly a subset from the 

majority class by size equal to the new oversampled minority class that obtained in the 

previous step. The objective of this step is to overcome the defection of undersampling, 

which causes loss of information by forming multiple subsets that contain different 

samples from majority class.  

Then, the new trained dataset obtained by combining new balanced sets for minority and 

majority subsets. Then these multiple balanced datasets used to train the base classifiers 

of ensemble. The number of the base classifiers that formed for ensemble depends on the 

imbalance ratio between majority and minority class. After that, the trained ensemble 

model is evaluated on the testing data. The predicted class for any testing sample is 

calculated using average function for the output of all base classifiers with threshold 

value 0.5. Finally, the output is performance measures for the ensemble. Figure 4.1 

explains the Algorithm of the proposed method. 

 

 

 

 

 

 

 

 

Figure 4.1 Algorithm of the proposed method for handling  two class problem 

 

Input: training data set (DT) and testing dataset (DS) and classifier C. 

 Split training data into majority (M) and minority (N) class  

 Calculate IR (imbalance ratio) = size M/size N 

  For i=1 to ceil(IR*2) 

      Ni= SMOTE(N,100/i); 

      Mi=RUS(M,size(Ni)); 

      DTi= Ni U Mi; 

      Build a component for the classifier C using DTi; 

Evaluate the ensemble model using DS; 

Find the predicted class using average function with threshold 0.5; 

Output: TPR, TNR, precision and F-measure 
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4.2 Results Analysis and Discussion 

In our experiments we used four datasets with different imbalance ratios as summarized 

in Table 4.1. Using seven selected classifiers NB, SVM, BP, RBF, C4.5, RF and RTs. 

Table 4.1. Datasets summary 

Data set 
#of 

instances 

# of 

Attributes 

# of instances in 

Majority class 

# of instances in 

Minority  class 

Imbalance 

Ratio 

Insurance 

fraud 
15420 32 14497 (94%) 923 (6%) 15.7 

Hepatitis 155 20 123 (79%) 32 (21%) 3.8 

German 1000 21 700 (70%) 300 (30%) 2.3 

Haberman 306 4 225 (74%) 81 (26%) 2.8 

 

4.2.1 Results Analysis and Discussion for Phase One 

Table 4.2 depict results in term of accuracy for all data sets and Tables 4.3-4.6 explain 

the results for each data sets using TN rate, TP rate, precision and F- measure as 

evaluation measures. 

 

Table 4.2. Performance of classifiers on different datasets in term of accuracy 

Method Insurance 

Fraud 

German Hepatitis Haberman 

NB 0.93 0.75 0.83 0.75 

SVM 0.94 0.7 0.79 0.74 

BP 0.94 0.73 0.82 0.73 

RBF 0.94 0.74 0.83 0.74 

C4.5 0.94 0.71 0.81 0.72 

RF 0.97 0.74 0.84 0.69 

RT 0.96 0.66 0.77 0.64 
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Table 4.3 Performance of different classifiers on Insurance Fraud data set using the 

original data distribution 

 

 

 

 

 

 

 

Table 4.4. Performance of different classifiers on German data set using the original data 

distribution 

 

 

 

 

 

 

 

 

 

 

Method TNR TPR Prec F-M 

NB 0.98     0.11     0.27     0.16      

SVM 1.00 0.00  0 .00 0.00  

BP 1.00 0.09  0.86  0.17  

RBF 1.00 0.01     0.00     0.01      

C4.5 1.00 0.04  0.83  0.07  

RF 1.00 0.57  0.97  0.72  

RT 0.98 0.66  0.70  0.68  

Method TNR TPR Prec F-M 

NB .86 .50 .8 .83 

SVM 1.00 0.00 0.00 0.00 

BP .82 .52 .55 .53 

RBF .87 .45 .60 .51 

C4.5 .84 .39 .52 .44 

RF .88 .41 .59 .49 

RT .75 .45 .43 .44 
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Table 4.5. Performance of different classifiers on Hepatitis data set using the original 

data distribution 

 

 

 

 

 

 

 

 

 

Table 4.6. Performance of different classifiers on Haberman data set using the original 

data distribution 

 

 

 

 

 

 

 

 

 

Classifier TNR TPR Prec F-M 

NB .89 .63 .61 .62 

SVM 1.00 0.00 0.00 0.00 

BP .87 .63 .90 .88 

RBF .88 .66 .58 .62 

C4.5 .90 .44 .54 .48 

RF .89 .63 .61 .62 

RT .85 .50 .46 .48 

Method TNR TPR Prec F-M 

NB .94 .21 .58 .31 

SVM .99 .03 .5 .05 

BP .88 .30 .48 .37 

RBF .95 .17 .54 .26 

C4.5 .87 .30 .45 .36 

RF .84 .26 .37 .30 

RT .77 .30 .32 .31 
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Compared to the obtained results for insurance fraud data set, as evident from Table 4.2 

we find that all classifiers have overall accuracy up to (92%). But if we compare the 

performance using detection rate for each class: TP rate and TN rate as depicted in Table 

4.3, we find out that the detection rates for majority class (True negative rates) are 

always up to (98%) regardless of the classifier used. Contrary to these results, the 

highest detection rates for the minority class (TP rates) are 65%, 56%, which are 

obtained by random tree and random forests respectively but all other classifiers have 

given TP rates less than 1%.  

The same thing occurs with other three datasets, which are depicted clearly in Figures 

4.2- 4.5. We note that the higher detection rates are for the negative class and the lower 

detection rates are for the positive class which emphasize that the overall accuracy are 

biased towards negative class. Obviously, we can also deduce that all the used classifiers 

are very sensitive for imbalanced classes but the most influenced one is SVM which is 

biased totally to the negative class and produced TP rates equal to zero.  The lower TP 

rates also produced lower precision and lower F- measure. 

 

 

Figure  4.2 Detection rates for positive and negative classes in Insurance fraud data set 
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Figure  4.3 Detection rates for positive and negative classes in German data set 

 

 

 

Figure  4.4 Detection rates for positive and negative classes in Hepatitis data set 
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Figure 4.5 Detection rates for positive and negative classes in Haperman data set 

 

4.2.2 Results Analysis and Discussion for Phase Two 

In the next phase, we have balanced data using undersampling by selecting randomly a 

subset from the majority (negative) class that equal to the size of minority (positive) 

class. The results after using undersampling depicted in Tables 4.7-4.10.  

 

Table 4.7. Performance of classifiers on Insurance Fraud data set using undersampling 
  

 

 

 

 

 

 

 

Method TNR TPR Prec F-M 

NB 0.59 0.94  0.13  0.23  

SVM 0.61 0.90  0.13  0.23  

BP 0.61 0.90  0.13  0.23  

RBF 0.63 0.85  0.13  0.23  

C4.5 0.59 0.96  0.13  0.24  

RF 0.66 0.91  0.15  0.26  

RT 0.63 0.90  0.14  0.24  
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Table 4.8. Performance of different classifiers on German data set using undersampling 

 

 

 

 

 

 

 

 

Table 4.9. Performance of classifiers on Hepatitis data set using undersampling 

 

 

 

 

 

 

 

 

 

 

Method TNR TPR Prec F-M 

NB .88 .71 .86 .77 

SVM .16 .87 .51 .64 

BP .79 .74 .78 .76 

RBF .81 .75 .8 .77 

C4.5 .81 .73 .80 .76 

RF .78 .76 .78 .77 

RT .71 .71 .71 .71 

Method TNR TPR Prec F-M 

NB .91 .88 .90 .89 

SVM .34 .5 .43 .46 

BP .81 .91 .83 .87 

RBF .84 .94 .86 .90 

C4.5 .88 .84 .87 .86 

RF .81 .94 .83 .88 

RT .78 .81 .79 .8 
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Table 4.10. Performance of classifiers on Haberman data set using undersampling 

 

 

 

 

 

 

 

 

 

Figure 4.6. Detection rates of negative and positive classes insurance fraud data set when 

using undersampling 

 

 

Method TNR TPR Prec F-M 

NB .93 .75 .91 .82 

SVM .60 .82 .67 .73 

BP .92 .72 .89 .80 

RBF .84 .75 .82 .79 

C4.5 .90 .67 .87 .76 

RF .84 .77 .83 .80 

RT .74 .78 .75 .76 
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From Tables 4.7-4.10, we noticed that there are clear improvements in the true positive 

rates, however; the TNRs have become less and the other performance measures such as 

precision and f-measure have degraded. So these results have reflected the defection of 

undersampling which resulted in loss of information by removing significant samples 

from the negative class. This case is clearly depicted in Figure 4.6 which explain the 

results of insurance fraud data set (data set with highest imbalance ratio)  when using 

undersampling. However, in data sets with low imbalanced ratio there is a proportional 

degradation in TN rates because the number of excluded samples was low in comparison 

with loss occurred in high imbalanced data sets. 

 

In the third phase, we have oversampled data by applying SMOTE. SMOTE used to 

generate new synthetic samples and added them to minority class.  Tables 4.11-4.14 

explain results when using oversampling. Obviously, these results explain that SMOTE 

has significantly improved the performance of all classifiers. However, in insurance 

fraud data set we realize that there is a clear degradation on the detection rates for the 

negative class and there are proportional improvements on the true positive rates as 

depicted in Figure. 4.7.  

 

Table 4.11. Performance of classifiers on Insurance Fraud data set using oversampling 

 

 

 

 

 

 

 

Method TNR TPR Prec F-M 

NB 0.72 0.67  0.14  0.23  

SVM 0.86 0.51  0.19  0.28  

BP 0.95 0.40  0.33  0.36  

RBF 0.79 0.57  0.16  0.25  

C4.5 0.95 0.42  0.37  0.40  

RF 0.99 0.66  0.79  0.72  

RT 0.96 0.73  0.56  0.63  
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Table 4.12. Performance of classifiers on German data set using oversampling 

 

 

 

 

 

 

 

 

Table 4.13. Performance of classifiers on Hepatitis data set using oversampling 

 

 

 

 

 

 

 

 

 

Method TNR TPR Prec F-M 

NB .79 .80 .79 .79 

SVM .91 .35 .80 .49 

BP .79 .79 .79 .79 

RBF .79 .76 .78 .77 

C4.5 .78 .77 .78 .77 

RF .82 .80 .81 .81 

RT .71 .77 .73 .75 

Method TNR TPR Prec F-M 

NB .87 .84 .87 .86 

SVM .95 .51 .92 .65 

BP .81 .95 .84 .89 

RBF .82 .90 .84 .87 

C4.5 .83 .87 .84 .85 

RF .83 .95 .85 .90 

RT .85 .83 .86 .84 
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Table 4.14. Performance of classifiers on Haberman data set using oversampling 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Detection rates of negative and positive of insurance fraud data set when 

using oversampling 

 

Method TNR TPR Prec F-M 

NB .88 .36 .76 .49 

SVM .72 .76 .73 .74 

BP .74 .58 .69 .63 

RBF .71 .64 .68 .66 

C4.5 .70 .71 .70 .70 

RF .75 .70 .74 .72 

RT .73 .72 .23 .72 
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4.2.3 Results Analysis and Discussion for Phase Three 

Further experiments repeated using Bagging and AdaBoost meta learning methods and 

the same tested classifiers as bases classifiers. Tables 4.15 - 4.18 explain results when 

applying Bagging and AdaBoost using the imbalanced original data distribution and 

using resampling balanced data. Clearly we note that there are no significant effects on 

the performance using original data distribution, but the performance got better after 

applying meta learning methods on balanced data using undersampling or oversampling 

resampling methods.  

Table 4.15. Performance of classifiers when using meta Learning methods on Insurance 

Fraud data set 

Method 
Original Data 

Distribution 

Balancing Data Using 

Undersampling 

Balancing Data Using 

Oversampling 
TNR TPR Prec F-M TNR TPR Prec F-M TNR TPR Prec F-M 

U
sin

g 
Ba

gg
in

g 

NB .98 .09 .25 .13 .57 .93 .13 .23 .72 .67 .14 .23 

SVM 1 .01 1 .01 .60 .90 .13 .23 .86 .51 .19 .29 

BP 1 .16 .97 .28 .79 .91 .16 .28 .95 .46 .40 .43 

RBF .86 .51 .19 .28 .66 .81 .14 .23 .79 .58 .16 .25 

C4.5 1 .04 .83 .07 .64 .93 .15 .25 .99 .66 .79 .72 

RF 1 .34 1 .51 .65 .94 .15 .26 .99 .62 .78 .69 

RT 1 .57 .97 .72 .66 .91 .15 .26 .99 .66 .79 .72 

U
sin

g 
A

da
Bo

os
t 

NB .98 .11 .25 .15 .65 .84 .14 .24 .72 .67 .14 .23 

SVM .99 .39 .67 .49 .67 .82 .14 .24 .93 .48 .30 .37 

BP 1.0 .09 .86 .17 .65 .90 .15 .25 .95 .40 .33 .36 

RBF .99 .06 .29 .09 .70 .77 .14 .24 .83 .52 .17 .26 

C4.5 .99 .67 .88 .76 .70 .91 .17 .29 .99 .67 .74 .70 

RF 1.0 .64 .92 .75 .69 .90 .16 .27 .99 .66 .79 .72 

RT .98 .67 .74 .71 .6 .90 .13 .23 .98 .68 .67 .68 
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Table 4.16. Performance of classifiers when using meta Learning methods on German 

data sets 

Method 
Original Data 

Distribution 

Balancing Data Using 

Undersampling 

Balancing Data Using 

Oversampling 

TNR TPR Prec F-M TNR TPR Prec F-M TNR TPR Prec F-M 

U
sin

g 
Ba

gg
in

g 

NB .87 .51 .13 .56 .88 .72 .85 .78 .79 .79 .79 .79 

SVM 1.00 0 0 0 .62 .38 .5 .43 .92 .33 .80 .47 

BP .87 .53 .64 .58 .82 .76 .81 .78 .81 .81 .81 .81 

RBF .89 .43 .63 .51 .82 .77 .81 .79 .78 .79 .78 .79 

C4.5 .87 .43 .58 .49 .87 .71 .85 .77 .80 .79 .80 .80 

RF .92 .36 .67 .47 .84 .76 .87 .79 .83 .86 .83 .83 

RT .88 .41 .59 .49 .78 .76 .78 .77 .82 .80 .81 .81 

U
sin

g 
A

da
Bo

os
t 

NB .87 .49 .62 .55 .82 .74 .81 .77 .78 .81 .79 .80 

SVM 1.00 .01 .4 .01 .50 .49 .50 .49 .92 .34 .80 .47 

BP .81 .53 .55 .54 .79 .74 .78 .76 .79 .78 .79 .79 

RBF .85 .47 .58 .52 .78 .76 .77 .77 .76 .78 .76 .77 

C4.5 .79 .46 .48 .47 .75 .75 .75 .75 .81 .78 .80 .79 

RF .89 .42 .62 .50 .83 .74 .81 .78 .84 .81 .83 .82 

RT .79 .45 .48 .46 .71 .7 .71 .70 .74 .74 .74 .74 
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Table 4.17. Performance of classifiers when using meta Learning methods on Hepatitis 

data sets 
 

Method 
Original Data 

Distribution 

Balancing Data Using 

Undersampling 

Balancing Data Using 

Oversampling 

TNR TPR Prec F-M TNR TPR Prec F-M TNR TPR Prec F-M 

U
sin

g 
Ba

gg
in

g 

NB .89 .66 .62 .64 .88 .94 .88 .91 .86 .86 .86 .86 

SVM 1.00 0 0 0 .23 .78 .5 .61 .85 .53 .79 .64 

BP .033 1.0 1.0 .06 .23 1.0 .56 .72 .06 .99 .52 .69 

RBF .94 .69 .73 .71 .91 .88 .90 .89 .86 .90 .87 .89 

C4.5 .93 .56 .67 .61 .88 .81 .87 .84 .81 .92 .84 .88 

RF .94 .5 .67 .57 .88 .88 .88 .88 .87 .92 .88 .90 

RT .894 .63 .61 .62 .81 .94 .83 .88 .83 .95 .85 .90 

U
sin

g 
A

da
Bo

os
t 

NB .94 .50 .68 .56 .84 .84 .84 .84 .89 .88 .89 .88 

SVM .99 0 0 0 .47 .56 .51 .54 .96 .42 .92 .58 

BP .90 .53 .59 .56 .81 .91 .83 .87 .86 .95 .87 .91 

RBF .94 .63 .74 .68 .84 .88 .85 .86 .85 .92 .87 .89 

C4.5 .94 .53 .68 .60 .78 .81 .79 .8 .89 .93 .90 .91 

RF .90 .47 .56 .51 .75 .91 .78 .84 .85 .94 .86 .90 

RT .81 .44 .37 .4 .94 .75 .92 .83 .84 .87 .85 .86 
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Table 4.18. Performance of classifiers when using meta Learning methods on Haberman 

data sets 

 

Method 
Original Data 

Distribution 

Balancing Data Using 

Undersampling 

Balancing Data Using 

Oversampling 

TNR TPR Prec F-M TNR TPR Prec F-M TNR TPR Prec F-M 

U
sin

g 
Ba

gg
in

g 

NB .94 .20 .55 .29 .92 .75 .90 .82 .89 .36 .76 .50 

SVM .98 .06 .5 .11 .59 .82 .66 .73 .70 .74 .71 .71 

BP 1.0 0 0 0 .57 .51 .54 .52 .13 .92 .51 .66 

RBF .94 .19 .54 .28 .82 .77 .81 .79 .74 .63 .71 .67 

C4.5 .88 .22 .4 .29 .92 .72 .89 .80 .70 .78 .72 .75 

RF .84 .25 .35 .29 .83 .75 .81 .78 .72 .81 .74 .77 

RT .84 .26 .37 .30 .84 .77 .83 .80 .75 .70 .74 .72 

U
sin

g 
A

da
Bo

os
t 

NB .91 .28 .52 .37 .93 .75 .91 .82 .76 .55 .69 .61 

SVM .87 .15 .29 .20 .52 .83 .63 .77 .70 .78 .72 .75 

BP .88 .28 .47 .35 .85 .73 .83 .79 .78 .60 .73 .66 

RBF .94 .21 .55 .30 .76 .74 .75 .75 .72 .64 .69 .66 

C4.5 .84 .42 .48 .45 .92 .72 .89 .80 .71 .74 .71 .73 

RF .82 .33 .40 .36 .72 .75 .73 .74 .75 .71 .73 .72 

RT .76 .26 .28 .27 .76 .77 .76 .76 .75 .73 .74 .73 

 

From all previous results we can report that all classifiers get a significant improvement 

when applying undersampling or oversampling with/without meta learning methods. 

However, undersampling and oversampling improve the performance on the positive 

class and inversely degrade the performance on the negative class. This is due to loss of 

significant and important samples excluded by undersampling and overfitting caused by 

oversampling. So, this affirms that using undersampling and oversampling until a full 
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balance may not be an optimal solution and the defection of them are increased 

whenever a high imbalanced ratio founded. 

4.2.4 Results Analysis and Discussion for Phase Four 

Further experiments are suggested to use different resampling rates. However, it is not 

possible to know a given domain prefer undersampling or oversampling. So we decided 

to create a combination approach and propose a hybrid ensemble that considers both 

resampling methods at different rates (see section 4.1.1). Table 4.19 explains the 

performance results for the proposed method when applied in different datasets in term 

of  TNR, TPR, precision and f-measure. The results shown in Table 4.19 indicate that 

our proposed method the proposed method yielded good results comparing to the other 

tested methods in term of True negative rates. 

In term of True positive rates, when being compared with the basic classifiers, Bagging, 

AdaBoost or SMOTE with/out Bagging or AdaBoost, we note that our proposed method 

achieved superior performance results. Form the other side, our proposed method mostly 

gives TPRs closely to those performed by using undersampling with/out 

Bagging/AdaBoost. However, our proposed method give higher TPRs without decreases 

the detection rates for the negative class or causing bias to the one class due to 

overfitting. 

In term of precision, our proposed method achieved competitive results on most data 

sets. We note that using Bagging with SVM and BP in insurance fraud data set and using 

BP with bagging in hepatitis data set resulted in a higher precision than our method but 

this occur due to the total biased for these methods to the positive class which is tackled 

by the proposed method. 

In term of f-measure, our proposed method performed a significant improvements and 

superior results in comparison to the other tested methods.  

Finally, we conclude that our proposed method performed well in all data sets with 

different imbalance ratios and significantly outperformed other methods in insurance 

fraud, a data set with highly imbalance ratio. 



53 
 

Table 4.19. Performance of the proposed method on different data sets 

Data set Method TNR TPR Prec F-M 

In
su

ra
nc

e 
fra

ud
 

NB .870 .840 .870 .860 

SVM .985 .866 .799 .831 

BP .820 .770 .810 .790 

RBF .918 .889 .909 .899 

C4.5 1.00 1.00 .998 .999 

RF 1.00 1.00 .998 .999 

RT 1.00 1.00 .998 .999 

G
er

m
an

 

NB .793 .774 .793 .793 

SVM .891 .895 .882 .889 

BP .891 .895 .882 .889 

RBF .918 .889 .909 .899 

C4.5 .933 .896 .924 .91 

RF .924 .881 .914 .897 

RT .863 .858 .852 .855 

H
ep

at
iti

s 

NB .919 .875 .913 .894 
SVM .751 .725 .742 .733 
BP .889 .948 .892 .919 
RBF .899 .917 .898 .907 
C4.5 .869 .927 .873 .899 
RF .909 .948 .91 .929 
RT .909 .948 .91 .929 

H
ab

er
m

an
 

 

NB .927 .753 .91 .824 

SVM .598 .815 .667 .733 

BP .915 .716 .892 .795 

RBF .841 .753 .824 .787 

C4.5 .902 .667 .871 .755 

RF .841 .765 .827 .795 

RT .744 .778 .75 .764 
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CHAPTER FIVE 
HANDLING MULTI CLASS IMBALANCED 

PROBLEM 
 

The multi class imbalance problem is an extension of the traditional two class 

imbalanced data where a data set consists of k classes instead of two. While imbalance is 

said to exist in the binary class imbalance problem when one class severely outnumber 

the other class, extended to multiple classes the effects of imbalance are even more 

problematic. In this chapter we investigated multi class imbalance problem through 

conducting several experiments and introduced a hybrid ensemble approach as a solution 

for multi class problem. We introduce the experiments that contains three different 

phases including direct multi class classification, homogenous ensembles using  meta 

learning methods and finally the proposed hybrid ensemble for multi class classification. 

We also present the results of the analysis using different evaluation measures. 

 

5.1 Experiments Design  

The phases followed in performing the targeted experiments are outlined in the 

following sub sections:  

 

5.1.1 Phase One: Testing Classifiers Using the Original Data 

Distribution 

Firstly, in our experiments we implemented multi class classification by directly adapted 

specific algorithms using single classifier with multiple outputs. We tested the 

performance of seven selected classifiers (Naïve Bays (NB), Support Vector Machine 

(SVM), Back Propagation Neural Networks (BP), Radial Basis Function Network 

(RBF), C4.5, Random Tree (RT), and Random Forest (RF)). The main objective of this 

phase is to compare the performance of different classifiers to reveal those sensitive to 
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class imbalanced class problem. However, as we were dealing with imbalance class 

problem, the overall accuracy  was biased to the majority class regardless the minority 

classes with lower samples, which leads to poor performance on the minority classes. 

5.1.2 Phase Two: Using Meta Learning Methods 

 In this phase we compare the classifiers’ performance when applied them as base 

classifiers for homogenous ensemble methods such as Bagging and AdaBoost. From this 

phase we display the impact of using homogenous ensemble approaches and their effects 

on the performance of classifiers when dealing with imbalanced classes data.  

5.1.3 Phase Three: The proposed Approach Methodology 

Our proposed solution is based into multi binary classification, which is accomplished 

by transformation and decomposition of the multi class problem into small binary sub 

problems. Then ensemble is made of those binary classifiers and the final output of the 

ensemble is a combination of binary classifiers outputs. There are several approaches  

for multi binary classification differ on the used decomposition and integration 

techniques. The most popular ones are One against All, One against One and Error 

Correcting Outputs code.  

Our proposed method based on Error Correcting Output Code (ECOC) multi binary 

classification approach was proposed by Ditterich and Bakiri [107]. This approach 

converts the k multi class problem into N binary sub problems. Instead of assigned a 

class label, it assigns a binary string of length N which referred as a codeword. The code 

words represented by a KxN  code matrix such that each row is associated with specific 

class and each column is associated with specific classifier output [108]. When 

constructing the code matrix, row and column separation must be considered. The best 

row separation is determined by well separating distance measure from each other rows. 

The best column separation is determined by uncorrelated output bit forming each 

classifier i.e. each bit function should be uncorrelated with function for other bit 

positions (columns must neither identical nor complementary).   

The output code word for each class can be determined using two methods [107]: 
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a. One per Class coding: Specify classifier for each class, the classifier’s output 

should be 1 for this class.  

Table  5.1. One per Class coding 

Class 1 1000 

Class 2 0100 

Class 3 0010 

Class 4 0001 

 

b. Distributed Output Coding: each class assigned a unique code word from 0 to 

 2N-1 where N the number of classifiers. 

Table  5.2. Distributed output coding 

Class 1 00000 

Class 2 00111 

Class 3 11001 

Class 4 11110 

 

Our ECOC solution consists of two stages: encoding and decoding. The encoding stage 

includes the design of code matrix according to one per class coding methods. Then each 

classifier is trained on a two meta class problem.  In decoding stage, run all classifiers. 

Aggregate their outputs to obtain code word. The obtained codeword compared with all 

code words in the code matrix using specific distance measure to determine the closest 

code word as a final output for ECOC ensemble. Figure 5.1 the Pseudo code of the 

algorithm of the proposed method. 
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Figure 5.1 The Pseudo code of the proposed method for multi class problem 

 

The training phase of the proposed method starts with constructing an m x m code words 

matrix according to one per class method. Each class is assigned one row that has one 

position set for specific class and zero in positions for the other classes.  Then each 

classifier is trained on specific Meta binary problem. In the testing phase, we apply each 

of the n single-bit classifiers to the test sample and Combine the predictions to form a 

binary string of length n (code word). The class is determined by finding the nearest 

code word using weighted hamming distance. We adapt ECOC for class imbalance 

problem by adding a weight to the distance function that is equal to 1/ no of instances in 

the class. This weight is significant and important for decision when there is an instance 

has same distance between more than one classes. Clearly it gives the higher priority to 

the minority classes.  

 

Training Phase 

1. Given a problem with m classes, create an m x m binary matrix M according to 

one per class coding method. 

2. Each class is assigned one row of M (Each column divides the entire class space 

into two parts). 

3. Train the base classifier to learn the n binary functions (one for each column 

since each column divides the data set into two groups). 

Test Phase 

1. Apply each of the n single-bit classifiers to the test sample. 

2. Combine the predictions to form a binary string of length n (code word). 

3. Classify to the class with the nearest code word using weighted hamming 

distance where as: 

The hamming distance between two vectors u; v: 

d(u; v) = the number of places where u and v differ. 

Weight = 1/ number of the instances for the specific class. 
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5.2 Results Analysis and Discussion 

In our experiments we used five data sets with different imbalance ratios as summarized 

in Table 5.3 (Section 3.1.2) and seven selected classifiers NB, SVM, BP, RBF, C4.5, RF 

and RTs (Section 3.3).  

 

Table 5.3. Dataset summary 

Data set 

Total 
number 
of 
instance 

# of 
Attributes 

# of 
classes 

# of 
instances 
in 
Majority 
class 

# of 
instances 
in 
Minority  
class 

# of 
instances 
per class 

Imbalance 
Ratio 

Intrusion 
Detection 5092 42 5 3002 27 

1000: 
500: 
3002: 
27: 563 

111.2 

Thyroid 3772 22 3 3488 
(92%) 

93 
(2%) 

93: 191: 
3488 37.5 

Lymphography 148 19 4 81 
(55%) 

2 
(1%) 

2: 81: 
61: 4 55 

Glass 214 10 6 76 
(36%) 

9 
(4%) 

70: 76: 
17: 13: 
9: 29 

8.4 

Landsat 4435 37 6 1072 
(24%) 

415 
(9%) 

1072: 
479: 
961: 
415: 
470: 
1038 

2.6 
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5.2.1  Results Analysis and Discussion for  Phase One 

Table 5.4 depicts results in term of accuracy for all data sets and Tables 5.5-5.9   explain 

the results for each data sets using detection rate for each class as evaluation measures. 

 

Table 5.4. Performance of classifiers on different datasets in term of accuracy 

Method Intrusion 

Detection 

Thyroid Lymphography Glass Landsat 

NB 0.834 0.957 0.811 0.495 0.835 

SVM 0.874 0.927 0.777 0.692 0.038 

BP 0.993 0.962 0.824 0.673 0.887 

RBF 0.942 0.936 0.811 0.659 0.831 

C4.5 0.948 0.997 0.784 0.659 0.847 

RF 0.988 0.995 0.824 0.738 0.847 

RT 0.828 0.985 0.791 0.696 0.835 

 

Table 5.5. Detection rates per class in Intrusion Detection data set 

Method Class 1 Class 2 Class 3 Class 4 Class 5 

NB 0.99 0.57 0.89 0.44 0.3 

SVM 0.63 0.57 0.996 0 0.98 

BP 0.997 0.994 0.997 0.56 0.975 

RBF 0.99 0.56 0.99 0.44 0.94 

C4.5 0.995 0.85 0.99 0.48 0.67 

RF 0.997 0.99 0.99 0.48 0.95 

RT 0.58 0.85 0.95 0.16 0.54 
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Table 5.6. Detection rates per class in Thyroid data set 

Method  class 1 class 2 class 3 

NB 0.828 0.366 0.993 

SVM 0 0 1 

BP 0.795 0.497 0.992 

RBF 0.616 0 0.996 

C4.5 0.978 1 0.997 

RF 0.989 0.984 0.996 

RT 0.903 0.864 0.994 

 

From the obtained results for Intrusion Detection data set and as evident from Tables 5.4 

and 5.5, we noted that all classifiers have overall accuracy (up to 82%) but if we 

compare this with detection rates for each class we find that all classifiers have highest 

detection rates for class 3 and class 1 (the most majority classes) except SVM, which has 

lowest detection rate for class 1. Also, All classifiers have rather good detection rates for 

class 2 and class5 (minority classes but with large numbers of samples) however, we 

find that all classifiers have bad detection rates for class 4 which is a class with lowest 

number of samples and SVM is the most effective classifier which has detection rate 

equal 0 for class 4. So as we are dealing with imbalance class problem the overall 

accuracy biased to the majority classes regardless of the minority class with lower 

samples, which leads to poor performance on the minority class. 

 

As evident from Table5.6, we note that all classifiers have highest detection rates for 

class 3 (majority class). C4.5, RF, RT  are the most robust to classify other classes 

correctly however, NB, SVM, BP, RBF have lower detection rates for class1 and class 2 

(minority classes) and SVM has the lowest detection rates equal 0for them. 

 

 



61 
 

Table5.7. Detection rates per class in Landsat data set 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 7 

NB 0.968 0.885 0.933 0.612 0.838 0.81 

SVM 1 0 0 0 0 0.033 

BP 1 0.957 0.948 0.633 0.81 0.92 

RBF 0.935 0.967 0.981 0.327 0.857 0.83 

C4.5 0.935 0.967 0.926 0.456 0.867 0.866 

RF 0.935 0.967 0.926 0.456 0.867 0.866 

RT 1 0.957 0.862 0.503 0.867 0.857 

 

Table5.7 depicts the detection rates per class in Landsat data set. We notice that all 

classifiers have lowest detection rates for class 4 (the class with minimum number of 

instances). Clearly, SVM biased totally to the most majority class (class 1) and failed to 

detect other classes. 

Table 5.8. Detection rates per class in Lymphography data set 

Method  Class 1  Class 2  Class 3  Class 4 

NB 0 0.877 0.754 0.75 

SVM 0 0.914 0.672 0 

BP 0 0.864 0.787 1 

RBF 0 0.889 0.77 0.25 

C4.5 0 0.852 0.705 1 

RF 0 0.938 0.721 0.5 

RT 0.5 0.827 0.77 0.5 

 

Table 5.8 explains the detection rates per class in Lymphography data set. It depicts that 

all classifier have fail to detect class 1 (the class with lowest number of instances) except 

RT. Also, for class 4only NB, BP and C4.5 succeeded to classify it. 
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Table 5.9. The detection rates per class in Glass data set 

Method  class 1  class 2  class 3  class 5  class 6  class 7 

NB 0.714 0.197 0.353 0.231 0.889 0.828 

SVM 0.814 0.75 0 0.692 0.222 0.793 

BP 0.8 0.658 0 0.538 0.667 0.862 

RBF 0.729 0.632 0.118 0.538 0.778 0.897 

C4.5 0.714 0.566 0.294 0.846 0.889 0.828 

RF 0.814 0.737 0.353 0.692 1 0.724 

RT 0.7 0.75 0.353 0.538 0.667 0.828 
 

Table5.9 explains the detection rates per class in Glass data set. It depicts that all 

classifiers have lowest detection rates for class 3 and class 5. SVM and BP are the most 

affected ones to detect class 3. 

 

5.2.2 Results Analysis and Discussion for Phase Two 

In the next phase, we used homogenous ensembles Bagging and AdaBoost and the same 

classifiers as base classifiers. Tables 5.10- 5.14 depict results when using Bagging and 

Tables 5.15- 5.19 depict results when using AdaBoost. 

Table 5.10. Detection rates when using Bagging in Intrusion Detection data set 

Method  class 1  class 2  class 3  class 4  class 5 

NB 0.99 0.58 0.72 0.44 0.3 

SVM 0.64 0.57 0.998 0.36 0.98 

BP 0 0 0.717 0 0.011 

RBF 0.995 0.91 0.71 0.4 0.85 

C4.5 0.995 0.85 0.987 0.48 0.68 

RF 0.997 0.996 0.998 0.4 0.98 

RT 0.997 0.99 0.99 0.48 0.95 
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Table 5.11. Detection rates when using Bagging in Thyroid  data set 

Method  class 1  class 2  class 3 

Bagging+NB 0.808 0.322 0.989 

Bagging+SVM 0 0 1 

Bagging+BP 0.041 0 1 

Bagging+RBF 0.603 0 0.995 

Bagging+C4.5 0.973 1 0.993 

Bagging+RF 0.986 1 0.992 

Bagging+RT 1 1 0.992 
 

Table  5.12. Detection rates when using Bagging in Landsat data set 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 7 

Bagging+SVM 1 0 0 0 0 0.031 

Bagging+BP 1 0 0 0 0 0 

Bagging+RBF 0.938 0.971 0.964 0.364 0.777 0.843 

Bagging+C4.5 0.935 0.967 0.967 0.517 0.867 0.917 

Bagging+RF 1 0.976 0.981 0.558 0.943 0.926 

Bagging+RT 1 0.967 0.974 0.524 0.962 0.902 
 

 

Table 5.13. Detection rates when using Bagging in Lymphography data set 

Method  Class 1  Class 2  Class 3  Class 4 

Bagging+NB 0 0.877 0.77 0.25 

Bagging+SVM 0 0.926 0.672 0 

Bagging+BP 0 0.864 0.459 0 

Bagging+RBF 0 0.901 0.787 0.25 

Bagging+C4.5 0.5 0.84 0.803 0.75 

Bagging+RF 0 0.938 0.77 0.5 

Bagging+RT 0 0.938 0.721 0.5 



64 
 

Table 5.14. Detection rates when using Bagging in Glass data set 

Method  Class 1  Class 2  Class 3  Class 5  Class 6  Class 7 

Bagging+NB 0.8 0.237 0.059 0.308 0.778 0.897 

Bagging+SVM 0.814 0.763 0 0.615 0.222 0.759 

Bagging+BP 0 0.184 0 0.154 0 0.862 

Bagging+RBF 0.671 0.763 0.176 0.462 0.667 0.966 

Bagging+C4.5 0.8 0.737 0.235 0.769 1 0.897 

Bagging+RF 0.857 0.842 0.235 0.769 0.889 0.828 

Bagging+RT 0.814 0.737 0.353 0.692 1 0.724 
 

Table 5.15. Detection rates when using AdaBoost in Intrusion detection data set 

Method  Class 1  Class 2  Class 3  Class 4  Class 5 

NB 0.99 0.577 0.899 0.44 0.304 

SVM 0.68 0.999 0.99 0.4 0.98 

BP 0.997 0.994 0.997 0.56 0.975 

RBF 0.99 0.99 0.98 0.44 0.92 

C4.5 0.94 0.999 1 0.6 0.989 

RF 0.997 0.99 0.99 0.24 0.98 

RT 0.92 0.84 0.97 0.52 0.4 
 

Table 5.16. Detection rates when using AdaBoost in Thyroid data set 

Method  class 1  class 2  class 3 

NB 0.808 0.328 0.987 

SVM 0 0 1 

BP 0.795 0.497 0.992 

RBF 0.658 0.011 0.993 

C4.5 0.959 0.994 0.995 

RF 0.986 1 0.991 

RT 0.918 0.927 0.992 
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Table 5.17. Detection rates when using AdaBoost in Lymphography data set 

Method  class 1  class 2  class 3  class 4 

NB 0 0.84 0.787 0.75 

SVM 0.5 0.852 0.803 0.5 

BP 0 0.852 0.754 0.5 

RBF 0 0.827 0.787 0.5 

C4.5 1 0.864 0.82 0.75 

RF 0.5 0.951 0.82 0.75 

RT 1 0.753 0.705 0.5 

 

 

Table 5.18. Detection rates when using AdaBoost in Landsat data set 

Method class 1 class 2 class 3 class 4 class 5 class 7 

NB 0.968 0.885 0.933 0.612 0.838 0.81 

SVM 1 0 0.026 0 0 0.214 

BP 0.973 0.958 0.911 0.586 0.874 0.883 

RBF 0.935 0.975 0.948 0.364 0.757 0.842 

C4.5 0.968 0.971 0.967 0.544 0.895 0.914 

RF 1 0.971 0.981 0.571 0.933 0.908 

RT 1 0.947 0.874 0.503 0.8 0.842 
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Table 5.19. Detection rates when using AdaBoost in Glass data set 

Method Class 1 Class 2 Class 3 Class 5 Class 6  Class  7 

NB 0.714 0.197 0.353 0.231 0.889 0.828 

SVM 0.729 0.763 0 0.615 0 0.793 

BP 0.786 0.724 0.412 0.615 0.667 0.897 

RBF 0.786 0.789 0.294 0.615 0.667 0.897 

C4.5 0.857 0.803 0.353 0.769 1 0.828 

RF 0.871 0.829 0.294 0.769 0.889 0.828 

RT 0.757 0.711 0.412 0.846 0.556 0.759 

 

As evident in Tables 5.10- 5.14, we note that using Bagging does not increase the 

detection rates for minority classes but in reverse using bagging in most data sets 

decreases the detection rates for other classes which are noticeable when using bagging 

with SVM and BP classifiers wherever SVM and BP totally biased to the most majority 

class and became blind from other classes as depicted in figures 5.2-5.6.  

About using AdaBoost in Intrusion Detection data set as depicted in Table 5.15 

AdaBoost has made insignificant improvement on the performance of all classifiers 

however; it clearly improves the performance of SVM in the lowest minority class (class 

4).Table 5.16 explains the performance of AdaBoost in Thyroid data set, we notice that 

using AdaBoost does not increase the performance of all classifiers. In Lymphography 

data set as shown in Table5.17 using AdaBoost increase the detection rates but still NB 

and SVM are failed to detect class1. In Glass data set as depicted in Table 5.19, using 

AdaBoost has made a minor improvement especially in the detection rate of class 3 

when using with BP but SVM is still blind from class 3 and class 6. Figures 5.2-5.6 

explain the effects of using the bases classifiers alone or with Bagging and AdaBoost 

ensemble in all datasets per class. 
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Figure 5.2 Detection rates per class in Intrusion Detection dataset 

 

 

 

Figure 5.3 Detection rates per class in Thyroid dataset 
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Figure 5.4 Detection rates per class in Land sat  dataset 

 

 

Figure 5.5 Detection rates per class in Lymphography dataset 
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Figure 5.6 Detection rates per class in Glass dataset 

 

5.2.3 Results Analysis and Discussion for Phase Three 

To tackle the class’s imbalance problem, increase detection rates for each class and 

minimize false alarms, we propose an ensemble model based on Error-Correct Output 

Codes (ECOC). In which, the multiclass problem decomposes into several binary sub-

problems,and trains a standard classifier for each class. The constructed model must 

distinguish the samples of a single class (positive class) from all samples in remaining 

classes (negative class) (See Section 5.1.3). Also here, we tested the performance of 

seven selected classifiers NB, SVM, BP, RBF, C4.5, RF and RT and compare their 

result when applied homogenous ensemble methods such as Bagging and AdaBoost for 

the five classes. For each data set, the m class problem transformed into binary meta sub 

problems. Then each base classifier is trained to learn specific class. Appendices A-E 

explains the detailed performance evaluation measures (Recall, Precision and f-measure) 
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We noticed that using binary classifiers for each Meta binary sub problem perform 

significant improvements in the detection rates for each class in the binary meta 

problem. The constructed models for each class are combined together to construct the 

ECOC ensemble. Then, the predicted class for each testing instance is determined by 

combined the output of those models to form the codeword. However, there are still 

misclassifications for those minority classes. So, we noted that in most data sets the 

performance of using AdaBoost is better than using basic classifiers alone or with 

Bagging. Hence, to increase the performance of our ECOC ensemble and boost the 

detection rates of those minority classes, we make a hybrid ensemble that using 

AdaBoost to learn each classifier for each class. The predicted class is the class with 

nearest codeword, which is measured by weighted Hamming distance (see Section 

5.1.1). Tables 5.20-5.24 explain the performance of the suggested ECOC ensemble per 

class for each class. 

 

 

 

Table5.20. Detection rates per class in Intrusion Detection data set using the proposed 

hybrid ECOC ensemble 

Method Class 1  Class 2  Class 3  Class 4  Class 5 

NB .995 .994 .993 .92 .992 

SVM .991 1.00 .984 .92 .943 

BP 1.00 .996 .998 .96 1.00 

RBF .996 .993 .993 .88 .94 

C4.5 1.00 1.00 .936 1.00 1.00 

RF 1.00 1.00 .987 1.00 1.00 

RT 1.00 1.00 .985 .96 1.00 
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Table5.21. Detection rates per class in Thyroid data set using the proposed hybrid ECOC 

ensemble 

Method  Class 1  Class 2 Class 3 

NB .968 .995 .995 

SVM .992 .993 .999 

BP .992 .994 .99 

RBF .99 .992 .989 

C4.5 1.00 1.00 .998 

RF 1.00 1.00 .995 

RT 1.00 1.00 .993 

 

 

 

Table 5.22. Detection rates per class in Landsat data set using the proposed hybrid 

ECOC ensemble 

Method Class 1 Class 2 Class 3 Class 4 Class 5 Class 7 

NB .924 .967 .976 .928 .933 .958 

SVM .938 .923 .935 .940 .937 .943 

BP .971 .979 .976 .937 .957 .962 

RBF .943 .981 .922 .904 .911 .921 

C4.5 .973 1.00 .978 .976 .979 .993 

RF .96 1.00 .973 .964 .983 .992 

RT .945 1.00 .969 .964 .981 .987 
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Table5.23. Detection rates per class in Lymphography data set using the proposed 

ECOC ensemble 

Method Class 1 Class 2 Class 3 Class 4 

NB 1.00 .914 .918 1.00 

SVM 1.00 .889 .951 1.00 

BP 1.00 .852 .951 1.00 

RBF 1.00 .852 .918 .75 

C4.5 1.00 .889 .97 1.00 

RF 1.00 .901 1.00 1.00 

RT 1.00 .84 .97 1.00 

 

 

 

Table 5.24. Detection rates per class in Glass data set using the proposed hybrid ECOC 

ensemble 

Method Class 1 Class 2 Class 3 Class 5 Class 6 Class 7 

NB 1.00 .914 .941 .942 .992 .974 

SVM 1.00 .889 .824 1.00 1.00 .966 

BP 1.00 .901 1.00 1.00 1.00 1.00 

RBF 1.00 .852 .882 1.00 1.00 1.00 

C4.5 1.00 .889 1.00 .981 1.00 1.00 

RF 1.00 .901 1.00 1.00 1.00 1.00 

RT 1.00 .901 1.00 .981 1.00 1.00 

 

 

 



73 
 

Clearly the results shown in Tables  5.20-5.24 depicted the significant improvements of 

the proposed ECOC ensemble in the performance. Most of these noticeable 

improvements are produced by the adaptation of ECOC for class imbalance problem by 

adding a weight to the Hamming distance function that is equal to 1/ (number of 

instances in the class). This weight is effective and important for decision when there is 

an instance has same distance between more than one classes, it gives the higher priority 

to the minority classes. So, by using this weight we increase the power of our ECOC 

ensemble by having large codeword distance between any pair of classes and 

independent bit errors. As a result, we increase the detection rates for each class even 

those minority classes and minimize false alarms. 

 

5.3. Summary 

In this chapter, we investigated the multi imbalanced class problem and compared the 

performance of three multiclass approaches: the direct multiclass, Bagging and 

AdaBoost as homogenous ensembles seven of data mining and machine learning 

algorithms. Also, we proposed a novel hybrid error-correcting code (ECOC) ensemble 

approach that significantly improves the detection rates for all classes even those 

minority classes. 
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CHAPTER SIX 

CONCLUSIONS 
 

6.1 Conclusion 
The class imbalance is a common problem due to the unequal distribution of data 

between classes. It is considered as a challenge and critical problem for machine 

learning and data mining algorithms because the performance would be biased to the 

majority classes by discarding the minority classes. 

 

In this dissertation, we study the problem of imbalanced class data in both two class data 

and multi class data using seven of the top data mining and machine learning algorithms 

and proposed two hybrid ensembles to solve them. 

 

Firstly, we investigated the problem of building models for two class imbalanced data 

and compared their results when using resampling methods (undersampling and 

oversampling) and homogenous meta learning methods such as Bagging and AdaBoost. 

The results revealed that all the tested classifiers are very sensitive for imbalanced 

classes but the most influenced one is Support Vector Machine, which was biased totally 

to the negative class and produced True Positive rates equal to zero.  Furthermore, 

employing resampling methods without/with homogenous  learning methods improve 

the performance on the positive class and inversely degrade the performance on the 

negative class in most cases. This is due to loss of significant and important samples 

excluded by undersampling and overfitting caused by oversampling. To improve thus 

problems, we developed a hybrid ensemble approach to improve the performance with 

an objective to maximize TPRs, precision, f-measure. Our new approach gains the 

merits for resampling methods and overcome their drawbacks by using both of them at 

various rates to construct several models for different balanced data sets. 

 

Experimental results on multiple two imbalanced class real data sets with different 

imbalance ratios, confirms that our approach effectively improve the performance of 
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classifiers in two class imbalance problem especially when the data is highly 

imbalanced. 

 

Secondly, we investigated the problem of multi class imbalanced data sets and compared 

their results when using direct multi class classification and homogenous meta learning 

methods such as Bagging and AdaBoost. Empirical results revealed that Bagging does 

not increase the detection rates for minority classes but decreased the detection rates for 

other classes in most data sets mainly when using Support Vector Machine and Back 

Propagation Neural Network. 

 

Next, we developed a novel Error Correcting Output Code ensemble approach that 

utilized weighed hamming distance and AdaBoost to train each model in the ensemble. 

Experimental results on multiple multi imbalanced class real data sets with different 

imbalance ratios, assures that our novel hybrid approach effectively improve the 

performance of classifiers in the multi class imbalanced when the data sets are low, 

moderate or highly imbalanced data. Moreover, the proposed approach significantly 

improved the classifiers performance even those very sensitive ones by improving the 

detection rates and decreasing the false alarms. 

 

The proposed hybrid ensembles can be applied to all classifiers since the work is mainly 

in the preprocessing stage of the data, and this property makes them effective and 

scalable. 

 

6.2 Future Works 
Imbalance class problem is a common problem associated with many real world 

applications. Hence more studies are definitely needed to continue with many complex 

problems such as class imbalance with class noise, missing attribute values (attribute 

noise) in both two and multi class classification problems. Other issues must be taken 

into account such as small disjuncts and class overlap. Overcoming these problems can 

be the key for developing new approaches for solving and improving the correct 
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identification of both the minority and majority classes.  Also, tackling other data mining 

and machine learning tasks in class imbalance could be a part of future research. 
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APPENDIX A 
Table A.1 Performance evaluation measures for class 1 meta problem of Intrusion 

detection data set 

Method 

 

TPR Precision  f-measure 

NB 0.991 0.671 0.8 

SVM 0.634 0.824 0.717 

BP 0.997 0.979 0.988 

RBF 0.972 0.995 0.983 

C4.5 0.996 0.978 0.987 

RF 0.997 0.996 0.997 

RT 0.539 0.943 0.686 

Bagging+NB 0.994 0.676 0.805 

Bagging+SVM 0.634 0.829 0.716 

Bagging+BP 0 0 0 

Bagging+RBF 0.995 0.985 0.99 

Bagging+C4.5 0.996 0.983 0.989 

Bagging+RF 0.997 0.999 0.998 

Bagging+RT 0.997 0.996 0.997 

AdaBoost+NB 0.991 0.671 0.8 

AdaBoost+SVM 0.701 0.835 0.762 

AdaBoost+BP 0.997 0.979 0.988 

AdaBoost+RBF 0.995 0.937 0.965 

AdaBoost+C4.5 0.996 0.998 0.997 

AdaBoost+RF 0.996 0.997 0.997 

AdaBoost+RT 0.996 0.898 0.944 
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TableA.2. Performance evaluation measures for class 2 Meta learning problem of 

Intrusion detection data set 

Method TPR Precision  f-measure 

NB 0.571 0.35 0.434 

SVM 0.566 0.995 0.721 

BP 0.994 0.993 0.994 

RBF 1 0.926 0.962 

C4.5 0.993 0.85 0.916 

RF 0.853 0.99 0.916 

RT 0.987 0.96 0.973 

Bagging+NB 0.574 0.423 0.487 

Bagging+SVM 0.566 0.995 0.721 

Bagging+BP 1 0.123 0.219 

Bagging+RBF 0.566 0.983 0.718 

Bagging+C4.5 0.994 0.848 0.915 

Bagging+RF 0.923 0.998 0.959 

Bagging+RT 0.853 0.99 0.916 

AdaBoost+NB 0.956 0.868 0.91 

AdaBoost+SVM 0.996 0.99 0.993 

AdaBoost+BP 0.994 0.993 0.994 

AdaBoost+RBF 0.993 0.99 0.998 

AdaBoost+C4.5 0.993 0.991 0.992 

AdaBoost+RF 0.936 0.989 0.962 

AdaBoost+RT 0.986 0.99 0.988 
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Table A.3. Performance evaluation measures for class 3 meta problem of Intrusion 

detection data set 

Method TPR Precision  f-

measure 

NB 0.93 0.694 0.795 

SVM 0.991 0.884 0.9334 

BP 0.998 1 0.999 

RBF 0.783 0.62 0.692 

C4.5 0.996 0.997 0.996 

RF 0.98 0.999 0.98 

RT 0.936 0.999 0.966 

Bagging+NB 0.92 0.695 0.792 

Bagging+SVM 0.985 0.884 0.932 

Bagging+BP 1 0.995 0.997 

Bagging+RBF 0.715 0.714 0.714 

Bagging+C4.5 0.996 0.997 0.996 

Bagging+RF 0.996 1 0.998 

Bagging+RT 0.998 0.999 0.998 

AdaBoost+NB 0.993 0.941 0.966 

AdaBoost+SVM 0.984 0.892 0.936 

AdaBoost+BP 0.998 1 0.999 

AdaBoost+RBF 0.716 0.99 0.831 

AdaBoost+C4.5 1 0.993 0.996 

AdaBoost+RF 0.987 1 0.994 

AdaBoost+RT 0.955 0.755 0.843 
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Table A.4. Performance evaluation measures for class 4 Meta problem of Intrusion 

detection data set 

Method TPR Precision  f-measure 

NB .40 .049 .088 

SVM 0 0 0 

BP .667 .783 .72 

RBF .333 .643 .439 

C4.5 .88 .88 .88 

RF .52 .867 .65 

RT .64 .400 .492 

Bagging+NB .40 .051 .091 

Bagging+SVM .12 .6 .12 

Bagging+BP .333 .643 .439 

Bagging+RBF .04 1.00 .077 

Bagging+C4.5 .84 .875 .857 

Bagging+RF .667 1.00 .8 

Bagging+RT .52 .867 .65 

AdaBoost+NB .4 .049 .088 

AdaBoost+SVM .704 .826 .76 

AdaBoost+BP .667 .783 .72 

AdaBoost+RBF .28 .778 .412 

AdaBoost+C4.5 .76 .905 .826 

AdaBoost+RF .28 .778 .412 

AdaBoost+RT .6 .75 .667 
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Table A.5. Performance evaluation measures for class 5 Meta problem of Intrusion 

detection data set 

Method TPR Precision  f-measure 

NB 0.927 0.737 0.821 

SVM 0.922 0.944 0.933 

BP 0.679 0.691 0.685 

RBF 0.943 0.953 0.948 

C4.5 0.92 0.998 0.957 

RF 0.655 0.997 0.791 

RT 0.992 0.974 0.947 

Bagging+NB 0.92 0.698 0.794 

Bagging+SVM 0.92 0.942 0.931 

Bagging+BP 0.094 1.00 0.172 

Bagging+RBF 0.948 0.308 0.465 

Bagging+C4.5 0.92 0.998 0.957 

Bagging+RF 0.666 0.997 0.799 

Bagging+RT 0.655 0.997 0.791 

AdaBoost+NB 0.941 0.90 0.92 

AdaBoost+SVM 0.94 0.981 0.96 

AdaBoost+BP 0.995 0.956 0.975 

AdaBoost+RBF 0.911 0.966 0.938 

AdaBoost+C4.5 0.943 1.00 0.971 

AdaBoost+RF 0.964 0.998 0.981 

AdaBoost+RT 0.613 0.969 0.751 
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APPENDIX B 

Table B.1. Performance evaluation measures for class 1 Meta problem of Thyroid data 

set 

 

 

   

Method 

 

TPR Precision F-Measure    

NB .882 .739 .804 

SVM 0 0 0 

BP .839 .788 .813 

RBF .387 .766 .514 

C4.5 .957 .967 .962 

RF .903 .944 .923 

RT .892 .902 .897 

Bagging+NB .828 .819 .824 

Bagging+SVM .71 .846 .772 

Bagging+BP .839 .788 .813 

Bagging+RBF .731 .773 .751 

Bagging+C4.5 .452 .875 .596 

Bagging+RF .978 .958 .968 

Bagging+RT .903 .955 .928 

AdaBoost+NB .903 .944 .923 

AdaBoost+SVM .828 .819 .824 

AdaBoost+BP .71 .846 .772 

AdaBoost+RBF .839 .788 .839 

AdaBoost+C4.5 .978 .773 .751 

AdaBoost+RF .925 .945 .935 

AdaBoost+RT .903 .913 .908 
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Table B.2. Performance evaluation measures for class 2 Meta problem of Thyroid data 

set 

 

   

Method 

 

TPR Precision F-Measure    

NB .012 .209 .153 

SVM 0 0 0 

BP .366 .729 .488 

RBF 0 0 0 

C4.5 1.00 .96 .979 

RF .969 .959 .964 

RT .874 .861 .868 

Bagging+NB .115 .253 .158 

Bagging+SVM 0 0 0 

Bagging+BP 0 0 0 

Bagging+RBF 0 0 0 

Bagging+C4.5 1.00 .965 .982 

Bagging+RF .979 .979 .977 

Bagging+RT .969 .959 .964 

AdaBoost+NB .44 .683 .535 

AdaBoost+SVM 0 0 0 

AdaBoost+BP .366 .729 .488 

AdaBoost+RBF .016 1.00 .031 

AdaBoost+C4.5 .995 .974 .984 

AdaBoost+RF .969 .959 .964 

AdaBoost+RT .843 .861 .852 
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Table B.3. Performance evaluation measures for class 3 Meta learning problem of 

Thyroid data set 

 

   
Method 

 

TPR Precision F-Measure    

NB .993 .991 .992 

SVM 1.00 .925 .961 

BP .99 .979 .984 

RBF .998 .929 .963 

C4.5 .997 .999 .998 

RF .995 .999 .997 

RT .991 .993 .992 

Bagging+NB .993 .959 .976 

Bagging+SVM 1.00 .925 .961 

Bagging+BP .995 .933 .963 

Bagging+RBF 1.00 .925 .961 

Bagging+C4.5 .996 .999 .998 

Bagging+RF .997 1.00 .998 

Bagging+RT .995 .999 .997 

AdaBoost+NB .995 .957 .975 

AdaBoost+SVM .999 .932 .964 

AdaBoost+BP .99 .979 .984 

AdaBoost+RBF .984 .955 .969 

AdaBoost+C4.5 .998 1.00 .997 

AdaBoost+RF .995 1.00 .997 

AdaBoost+RT .993 .991 .992 
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APPENDIX C 

Table C.1. Performance evaluation measures for class 1 Meta problem of 

Lymphography data set 

 

   

Method 

 

TPR Precision F-Measure    

NB 1.00 .333 .50 

SVM 0 0 0 

BP 1.00 .667 .8 

RBF .50 .50 .50 

C4.5 0 0 0 

RF 0 0 0 

RT .5 1.00 .667 

Bagging+NB 0 0 0 

Bagging+SVM 0 0 0 

Bagging+BP 0 0 0 

Bagging+RBF 0 0 0 

Bagging+C4.5 0 0 0 

Bagging+RF 0 0 0 

Bagging+RT .50 1.00 .667 

AdaBoost+NB 0 0 0 

AdaBoost+SVM 0 0 0 

AdaBoost+BP 1.00 .667 .8 

AdaBoost+RBF 0 0 0 

AdaBoost+C4.5 0 0 0 

AdaBoost+RF 1.00 1.00 1.00 

AdaBoost+RT .50 .50 .50 
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Table C.2. Performance evaluation measures for class 2 Meta problem of 

Lymphography data set 

 

   
Method 

 

TPR Precision F-Measure    

NB .889 .837 .862 

SVM .914 .771 .836 

BP .852 .841 .847 

RBF .852 .841 .847 

C4.5 .864 .843 .854 

RF .84 .872 .855 

RT .778 .768 .773 

Bagging+NB .914 .841 .876 

Bagging+SVM .914 .771 .836 

Bagging+BP .889 .837 .862 

Bagging+RBF .901 .849 .837 

Bagging+C4.5 .852 .863 .857 

Bagging+RF .926 .824 .872 

Bagging+RT .84 .872 .855 

AdaBoost+NB .914 .841 .876 

AdaBoost+SVM .889 .828 .857 

AdaBoost+BP .852 .841 .847 

AdaBoost+RBF .852 .852 .852 

AdaBoost+C4.5 .889 .847 .867 

AdaBoost+RF .901 .88 .89 

AdaBoost+RT .753 .753 .753 
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Table C.3. Performance evaluation measures for class 3 Meta problem of 

Lymphography data set 

 

   
Method 

 
TPR Precision F-Measure 

NB .852 .852 .852 

SVM .672 .872 .759 

BP .77 .825 .797 

RBF .787 .842 .814 

C4.5 .738 .763 .75 

RF .721 .846 .779 

RT .686 .724 .706 

Bagging+NB .82 .877 .847 

Bagging+SVM .705 .843 .768 

Bagging+BP .77 .87 0.817 

Bagging+RBF .82 .847 .833 

Bagging+C4.5 .803 .754 .778 

Bagging+RF .738 .9 .811 

Bagging+RT .721 .846 .779 

AdaBoost+NB .803 .817 .81 

AdaBoost+SVM .721 .772 .746 

AdaBoost+BP .77 .825 .797 

AdaBoost+RBF .803 .817 .81 

AdaBoost+C4.5 .738 .763 .75 

AdaBoost+RF .738 .818 .776 

AdaBoost+RT .738 .703 .72 
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Table C.4. Performance evaluation measures for class 4 Meta problem of 

Lymphography data set 

 

   
Method 

 

TPR Precision F-Measure    

NB 1.00 .571 .727 

SVM 0 0 0 

BP .75 1 .857 

RBF 1.00 .667 .8 

C4.5 .75 1.00 .857 

RF .50 1.00 .50 

RT .75 0.60 .667 

Bagging+NB 1.00 .571 .727 

Bagging+SVM 0 0 0 

Bagging+BP 0 0 0 

Bagging+RBF 0 0 0 

Bagging+C4.5 .50 1.00 .667 

Bagging+RF .75 1.00 .857 

Bagging+RT .50 1.00 .667 

AdaBoost+NB .75 1.00 .857 

AdaBoost+SVM .50 .667 .571 

AdaBoost+BP 1.00 1.00 1.00 

AdaBoost+RBF 0 0 0 

AdaBoost+C4.5 .75 1.00 .857 

AdaBoost+RF .75 1.00 .857 

AdaBoost+RT .75 .60 .667 
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Table D.1. Performance evaluation measures for class 1 Meta learning problem of 

Landsat data set 

 

   

Method 

 

TPR Precision F-Measure   

NB .833 .892 .862 

SVM 0 0 0 

BP .971 .982 .977 

RBF .94 .936 .938 

C4.5 .938 .955 .947 

RF .952 .98 .966 

RT .945 .938 .941 

Bagging+NB .831 .891 .86 

Bagging+SVM 0 0 0 

Bagging+BP 0 0 0 

Bagging+RBF .942 .94 .941 

Bagging+C4.5 .951 .972 .961 

Bagging+RF .958 .975 .967 

Bagging+RT .952 .98 .966 

AdaBoost+NB .924 .95 .924 

AdaBoost+SVM .938      .957 .947 

AdaBoost+BP .971 .982 .977 

AdaBoost+RBF .943 .947 .945 

AdaBoost+C4.5 .973 .983 .978 

AdaBoost+RF .96 .983 .971 

AdaBoost+RT .945 .949 .947 
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Table D.2. Performance evaluation measures for class 2 Meta learning problem of 

Landsat data set 

 

   
Method 

 

TPR Precision F-Measure    

NB .90 .966 .90 

SVM 0 0 0 

BP .965 .973 .969 

RBF .981 .85 .911 

C4.5 .944 .966 .955 

RF .947 .995 .971 

RT .939 .949 .944 

Bagging+NB .90 .966 .932 

Bagging+SVM 0 0 0 

Bagging+BP 0 0 0 

Bagging+RBF .979 .856 .913 

Bagging+C4.5 .965 .967 .966 

Bagging+RF .962 .971 .962 

Bagging+RT .954 .974 .964 

AdaBoost+NB .923 .957 .939 

AdaBoost+SVM 0 0 0 

AdaBoost+BP .965 .973 .969 

AdaBoost+RBF .96 .966 .963 

AdaBoost+C4.5 .967 .977 .972 

AdaBoost+RF .967 .979 .973 

AdaBoost+RT .946 .946 .946 
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Table D.3. Performance evaluation measures for class 3 Meta learning problem of 

Landsat data set 

   
Method 

 

TPR Precision F-Measure    

NB .956 .882 .917 

SVM 0.024 1.00 0.047 

BP .964 .938 .951 

RBF .96 .898 .928 

C4.5 .953 ..933 .943 

RF .969 .948 .959 

RT .94 .931 .936 

Bagging+NB .956 .882 .918 

Bagging+SVM 0.014 0 0.027 

Bagging+BP 0 0 .0 

Bagging+RBF .957 .896 .925 

Bagging+C4.5 .976 .94 .958 

Bagging+RF .983 .944 .963 

Bagging+RT .969 .948 .959 

AdaBoost+NB .968 .897 .931 

AdaBoost+SVM .17 1.00 .291 

AdaBoost+BP .964 .938 .951 

AdaBoost+RBF .922 .918 .92 

AdaBoost+C4.5 .978 .978 .691 

AdaBoost+RF .973 .95 .961 

AdaBoost+RT .932 .938 .935 
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TableD.4.  Performance evaluation measures for class 4 Meta learning problem of 

Landsat data set 

 

   

Method 

 

TPR Precision F-Measure    

NB .876 .492 .63 

SVM .024 1.00 0.047 

BP .807 .798 .802 

RBF .601 .535 .566 

C4.5 .718 .727 .722 

RF .729 .879 .797 

RT .737 .725 .731 

Bagging+NB .872 .492 .629 

Bagging+SVM 0 0 0 

Bagging+BP 0 0 0 

Bagging+RBF .577 .562 .569 

Bagging+C4.5 .746 .844 .792 

Bagging+RF .748 .875 .806 

Bagging+RT .729 .879 .797 

AdaBoost+NB .876 .492 .63 

AdaBoost+SVM .057 1.00 .107 

AdaBoost+BP .81 .801 .805 

AdaBoost+RBF .792 .855 .822 

AdaBoost+C4.5 .802 .912 .854 

AdaBoost+RF .746 .724 .735 

AdaBoost+RT .81 .801 .805 
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Table D.5. Performance evaluation measures for class 5 Meta learning problem of 

Landsatdata set 

  
Method 

 

TPR Precision F-Measure    

NB .829 .434 .569 

SVM .002 1.00 0.004 

BP .937 .922 .929 

RBF .534 .746 .622 

C4.5 .914 .916 .915 

RF .911 .975 .942 

RT .891 .886 .889 

Bagging+NB .827 .433 .568 

Bagging+SVM .001 1.00 .002 

Bagging+BP 0 0 0 

Bagging+RBF .534 .746 .622 

Bagging+C4.5 .914 .954 .934 

Bagging+RF .933 .973 .953 

Bagging+RT .911 .975 .942 

AdaBoost+NB .829 .434 .569 

AdaBoost+SVM 0.015 1.00 0.029 

AdaBoost+BP .937 .922 .929 

AdaBoost+RBF .812 .853 .832 

AdaBoost+C4.5 .941 .959 .95 

AdaBoost+RF .957 .975 .966 

AdaBoost+RT .886 .876 .881 
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Table D.6. Performance evaluation measures for class 7 Meta learning problem of 

Landsat data set 

   Method 

 

TPR Precision F-Measure    

NB .891 .813 .85 

SVM .108 1.00 .195 

BP .946 .924 .935 

RBF .963 .833 .893 

C4.5 .921 .912 .917 

RF 0.943 .941 .942 

RT .921 .91 .916 

Bagging+NB .891 .813 .85 

Bagging+SVM .072 1.00 .134 

Bagging+BP 0 0 0 

Bagging+RBF .962 .836 .894 

Bagging+C4.5 .953 .934 .943 

Bagging+RF .962 .942 .952 

Bagging+RT .943 .941 .942 

AdaBoost+NB .898 .824 .86 

AdaBoost+SVM .146 1.00 .255 

AdaBoost+BP .946 .924 .935 

AdaBoost+RBF .897 .882 .889 

AdaBoost+C4.5 .958 .944 .951 

AdaBoost+RF .963 .956 .959 

AdaBoost+RT .921 .91 .916 
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Table  E.1. Performance evaluation measures for class 1 Meta learning problem of Glass 

data set 

 

   

Method 

 

TPR Precision F-Measure    

NB .975 .599 .742 

SVM .916 .746 .822 

BP .911 .844 .876 

RBF .871 .669 .757 

C4.5 .911 .818 .862 

RF .911 .915 .913 

RT .871 .876 .873 

Bagging+NB .975 .602 .745 

Bagging+SVM .916 .749 .824 

Bagging+BP 0 0 0 

Bagging+RBF .851 .696 .766 

Bagging+C4.5 .916 .889 .902 

Bagging+RF .931 .913 .922 

Bagging+RT .911 .915 .913 

AdaBoost+NB .975 .599 .742 

AdaBoost+SVM .95 .715 .816 

AdaBoost+BP .916 .853 .883 

AdaBoost+RBF .856 .816 .836 

AdaBoost+C4.5 .936 .9 .917 

AdaBoost+RF .941 .936 .938 

AdaBoost+RT .896 .887 .892 
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Table E.2. Performance evaluation measures for class 2 Meta learning problem of Glass 

data set 

  
Method 

 

TPR Precision F-Measure    

NB .941 .636 .759 

SVM .862 .708 .777 

BP 0.809 .778 .794 

RBF .862 .686 .764 

C4.5 .776 .825 .80 

RF .862 .832 .856 

RT .882 .832 .856 

Bagging+NB .941 .636 .759 

Bagging+SVM .849 .713 .775 

Bagging+BP 0 0 0 

Bagging+RBF .875 .689 .771 

Bagging+C4.5 .855 .844 .855 

Bagging+RF .868 .857 .863 

Bagging+RT .862 .885 .873 

AdaBoost+NB .868 .663 .752 

AdaBoost+SVM .809 .715 .759 

AdaBoost+BP .849 .849 .827 

AdaBoost+RBF .809 .715 .759 

AdaBoost+C4.5 .855 .878 .867 

AdaBoost+RF .901 .938 .919 

AdaBoost+RT .829 .773 .8 
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Table E.3. Performance evaluation measures for class 3 Meta learning problem of Glass 

data set 

 

  
Method 

 

TPR Precision F-Measure    

NB .882 .355 .506 

SVM 0 0 0 

BP .765 .788 .776 

RBF .735 .588 .654 

C4.5 .853 .866 .859 

RF .838 .905 .87 

RT .721 .817 .766 

Bagging+NB .882 .361 .513 

Bagging+SVM 0 0 0 

Bagging+BP 1.00 .258 .41 

Bagging+RBF .618 .689 .651 

Bagging+C4.5 .853 .879 .866 

Bagging+RF .853 .892 .872 

Bagging+RT .838 .905 .87 

AdaBoost+NB .882 .355 .506 

AdaBoost+SVM .618 .525 .568 

AdaBoost+BP .824 .80 .812 

AdaBoost+RBF .838 .781 .809 

AdaBoost+C4.5 .838 .838 .838 

AdaBoost+RF .853 .921 .885 

AdaBoost+RT .894 .778 .80 
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Table  E.4. Performance evaluation measures for class 5 Meta learning problem of Glass 

data set 

 

  
Method 

 

TPR Precision F-Measure    

NB .712 .755 .733 

SVM 1 .912 .954 

BP .981 .836 .903 

RBF .904 .87 .887 

C4.5 .923 .889 .906 

RF .923 .96 .941 

RT .885 .939 .911 

Bagging+NB .692 .8 .742 

Bagging+SVM .942 .907 .925 

Bagging+BP 0 0 0 

Bagging+RBF .885 .92 .902 

Bagging+C4.5 .942 .925 .933 

Bagging+RF .981 .962 .971 

Bagging+RT .923 .96 .941 

AdaBoost+NB .923 .873 .897 

AdaBoost+SVM 1 .912 .954 

AdaBoost+BP .981 .836 .903 

AdaBoost+RBF .942 .961 .951 

AdaBoost+C4.5 .942 .875 .907 

AdaBoost+RF .942 .961 .951 

AdaBoost+RT .904 .904 .904 
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Table E.5. Performance evaluation measures for class 6 Meta learning problem of Glass 

data set 

 

 

 

  

Method 

 

TPR Precision  F-measure 

NB 0.972 0.897 0.933 

SVM 0.972 0.875 0.921 

BP 1 0.9 0.947 

RBF 0.944 0.944 0.944 

C4.5 1.00 0.973 0.986 

RF 0.944 1.00 0.971 

RT 1.00 0.973 0.986 

Bagging+NB 0.972 0.875 0.921 

Bagging+SVM 0.972 0.875 0.921 

Bagging+BP 0 0 0 

Bagging+RBF 0.944 0.944 0.944 

Bagging+C4.5 1.00 0.947 0.973 

Bagging+RF 1.00 0.973 0.986 

Bagging+RT 0.944 1.00 0.971 

AdaBoost+NB 0.972 0.921 0.946 

AdaBoost+SVM 0.972 0.921 0.946 

AdaBoost+BP 1.00 0.9 0.947 

AdaBoost+RBF 0.944 0.971 0.958 

AdaBoost+C4.5 0.972 0.946 0.959 

AdaBoost+RF 0.944 1.00 0.971 

AdaBoost+RT 0.944 0.944 0.944 
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Table E.6. Performance evaluation measures for class 7 Meta learning problem of Glass 

data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Method 

 

TPR Precision F-Measure    

NB .922 .939 .93 

SVM .94 .973 .956 

BP .948 .948 .948 

RBF .957 .965 .961 

C4.5 .931 .90 .915 

RF .94 .956 .948 

RT .957 .902 .929 

Bagging+NB .922 .947 .934 

Bagging+SVM .94 .982 .96 

Bagging+BP .284 .465 .353 

Bagging+RBF .94 .948 .944 

Bagging+C4.5 .948 .965 .957 

Bagging+RF .94 .956 .948 

Bagging+RT .905 .921 .913 

AdaBoost+NB .951 .921 .913 

AdaBoost+SVM .957 .982 .969 

AdaBoost+BP .966 .933 .949 

AdaBoost+RBF .974 .958 .966 

AdaBoost+C4.5 .966 .941 .953 

AdaBoost+RF .948 .973 .961 

AdaBoost+RT .948 .94 .944 
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