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Chapter 3 
Singular Integral Operators   

 
 We will see that some of our proofs immediately extend to analogues 

of Radon transforms for such singular integral operators. 
 

Section (3.1): Introduction and Theorems in the Multiplicity One Case: 

Let ݊ ≥ 2 and let ܾ(ݔ) be a real-analytic function on a neighborhood of 

the origin in ܴ with ܾ(0) = 0. By resolution of singularities, there is a 

number ߜ > 0 such that on any sufficiently small neighborhood ܷ of the 

origin, ∫ |݂|ିఋ
 = ∞ for ߜ ≥ ∫ , andߜ |݂|ିఋ

 < ∞ for ߜ <  . The numberߜ

  is sometimes referred to as the ”critical integrability exponent” of ݂ at theߜ

origin.We consider operators of the form 

(ݔ)݂ܶ = න ݔ)݂ − ,ݔ)ߙ(ݕ ݕఋబ݀ି|(ݕ)ܾ|(ݕ)݉(ݕ
ோ

                    (39) 

Here ݔ)ߙ,  is a bounded real-valued (ݕ)݉ is a Schwartz function, and (ݕ

function on a neighborhood of the origin such that ݉(ݕ)|ܾ(ݕ)|ିఋబ satisfies 

natural derivative and cancellation conditions deriving from ܾ(ݕ) that allows 

ܶ to be considered as a type of singular integral operator. The focus will be to 

determine the boundedness properties of such ܶ on ܮ  spaces for 1 <  <

∞. Most of our results will concern the ܮଶ situation. As we will see, the 

operators we will consider with generalize local singular integral operators 

such as local versions of Riesz transforms, and also classes of local 

multiparameter singular integrals. 

We will see that some of the proofs immediately extend to analogues 

of singular Radon transforms for such singular integral operators. Namely, 
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results will cover some operators of the following form, where ݔ ∈ ܴ and ℎ 

is a real-analytic map from a neighborhood of the origin in ܴ into ܴ with 

ℎ(0) = 0. 

ܶᇱ݂(ݔ) = න ݂൫ݔ − ℎ(ݕ)൯ݔ)ߙ, ݕఋబ݀ି|(ݕ)ܾ|(ݕ)݉(ݕ
ோ

                (40) 

To help define what types of kernels we allow, we now delve into the 

resolution of singularities near the origin of a real-analytic function ܾ(ݔ) with 

ܾ(0) = 0. For this we use the resolution of singularities theorem, but other 

resolution of singularities theorems including Hironaka’s famous work can be 

used in similar ways. 

By [G1], there is a neighborhood ܷ of the origin such that there exist 

finitely many coordinate change maps {ߚ(ݔ)}ୀଵ
ெ  and finitely many vectors 

{(݉ଵ, . . . , ݉)}ୀଵ
ெ  of nonnegative integers such that if (ݔ)ߩ is a nonnegative 

smooth bump function supported in ܷ with (0)ߩ ≠ 0, then (ݔ)ߩ can be 

written in the form (ݔ)ߩ = ∑ ெ(ݔ)ߩ
ୀଵ  in such a way that each ߩ ∘  ,(ݔ)ߚ

after an adjustment on a set of measure zero, is a smooth nonnegative bump 

function on a neighborhood of the origin with ߩ ∘ (0)ߚ ≠ 0. The 

components of each ߚ(ݔ) are real-analytic. In addition, ߚ  is a bijection from 

ݔ} ∶ ߩ ∘ (ݔ)ߚ ≠ 0, ݔ ≠ 0 for all ݅} to {ݔ ∶ (ݔ)ߩ ≠ 0} − ܼ  where ܼ  has 

measure zero, and on a connected neighborhood ܷ  of the support of ߩ ∘

ܾ the function (ݔ)ߚ ∘  is well-defined and ”comparable” to the (ݔ)ߚ

monomial ݔଵ
భ … ݔ

, meaning that there is a real-analytic function ܿ(ݔ) 

with |ܿ(ݔ)| > ߳ > 0 on ܷ  such that ܾ ∘ (ݔ)ߚ = ܿ(ݔ)ݔଵ
భ … ݔ

  on ܷ. 

This decomposition is such that the Jacobian determinant of ߚ(ݔ) can be 
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written in an analogous form ݀(ݔ)ݔଵ
భ … ݔ

  on ܷ; again the ݁ are 

integers and |݀(ݔ)| > ߳ > 0 on ܷ. 

In view of the above, one has 

න ݔ݀(ݔ)ߩఋି|(ݔ)ܾ|
ோ

=  න ݔ݀(ݔ)ߩఋି|(ݔ)ܾ|
ோ

ெ

ୀଵ

 

=  න |ܾ ∘ ߩఋ൫ି|(ݔ)ߚ ∘ ଵݔ(ݔ)൯ห݀(ݔ)ߚ
భ … ݔ

ห݀ݔ
ோ

ெ

ୀଵ

                     (41) 

=  න |ܿ(ݔ)|ିఋ ቚ݀(ݔ)ݔଵ
ିఋభାభ … ݔ

ିఋାቚ ൫ߩ ∘ ݔ൯݀(ݔ)ߚ
ோ

ெ

ୀଵ

  (42) 

Since ߩ ∘ (0)ߚ ≠ 0, the ݅th term of the sum (4) is finite if each – ݉ߜ +

݁ > −1; that is, if ߜ <
ೕାଵ

ೕ
. Thus the number ߜ is given in terms of the 

resolution of singularities of ܾ(ݔ) by inf
,

ೕାଵ
ೕ

. 

 

Definition (3.1.1)[3]: The multiplicity of the critical integrability exponent ߜ 

of ܾ(ݔ) at the origin is the maximum over all ݅ of the cardinality of 

൜݆ ∶
ೕାଵ

ೕ
=  .ൠߜ

One example of the significance of the multiplicity is as follows. Let ܤ 

denote {ݔ ∈ ܴ ∶ |ݔ| <  and let ݉ denote the multiplicity of the exponent {ݎ

ݎ at the origin. It can be shown that if (ݔ)ܾ  forߜ > 0 is sufficiently small 

then as ߳ → 0 one has asymptotics of the form  

ݔ}| ∈ ܤ ∶ |(ݔ)ܾ| < ߳}| = ܿ߳ఋబ(ln ߳)ିଵ + (lnߜ߳) ߳)ିଵ)          (43) 

Here ܿ > 0. One obtains analogous asymptotics for various oscillatory 

integrals associated with ܾ(ݔ). Note that (5) shows that the multiplicity is 

independent of the which resolution of singularities process is being used. 
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Let ܾ(ݔ) be a real-analytic function on a neighborhood of the origin, 

not identically zero, with ܾ(0) = 0. Let (ݔ)ߩ, ୀଵ{(ݔ)ߚ}
ெ , and 

{(݉ଵ, . . . , ݉)}ୀଵ
ெ  be as above. We will define singular integrals associated 

to ܾ(ݔ) as follows. For a given ݅, we move into the ”blown-up” coordinates 

determined by ߚ(ݔ) and define a type of singular integral that is of 

magnitude bounded by ܥหݔଵ
భ … ݔ

ห
ିఋబ , with corresponding bounds on 

first derivatives, which is supported on the support of ߩ ∘  An .(ݔ)ߚ

appropriate cancellation condition will be assumed that will ensure that the 

kernels are distributions. A singular integral associated to ܾ(ݔ) will then be 

defined to be a sum from ݅ = 1 to ݅ =  of the blow-downs of such singular ܯ

integrals into the original coordinates. 

Specifically, we consider ݇(ݔ) = ∑ ݇,భ,...,
∋(భ,...,)(ݔ) , where for 

some fixed ܥ the function ݇,భ,...,
ݔଵ, supported on ൛ܥ is (ݔ) ∶ |ݔ| ∈

ൣ2ି ,  2ି൧ for all ݈ൟ, and satisfiesܥ

ห݇,భ,...,
,ଵݔ) . . . , )หݔ < ଵݔหܥ

భ … ݔ
ห

ିఋబ                              (44) 

We also assume that for each ݈ = 1, . . . , ݊ we have 

ห߲௫݇,భ,...,
,ଵݔ) . . . , )หݔ < ܥ

1
|ݔ| ଵݔหܥ

భ … ݔ
 ห

ିఋబ                    (45) 

The cancellation condition we assume for the multiplicity one case is that for 

some ߳ > 0, whenever ݅ and ݈ are such that ାଵ


=   (the minimumߜ

possible value), then where ܿܽܬఉ
ߚ denotes the Jacobian determinant of (ݔ)  

we have 

ቮන ݇,భ,...,
,ଵݔ) . . . , ఉܿܽܬ(ݔ

,ଵݔ) . . . , ݔ݀(ݔ
ோ

ቮ < 2ିఢబܥ             (46) 
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To ensure that our singular integrals are well-defined, we also assume that 

the support of ݇,భ,...,
ߩ is contained in that of (ݔ) ∘  We next make .(ݔ)ߚ

the following definition. 

Definition (3.1.2)[3]: If ܾ(ݔ) has multiplicity one at the origin, we define a 

singular integral kernel associated to ܾ(ݔ) to be a function (ݔ)ܭ of the form 

(ݔ)ܭ = ∑ ݇(ݔ)ߩ ቀߚ
ିଵ(ݔ)ቁெ

ୀଵ , where ݇  satisfies (6)−(8) and the support 

condition stated afterwards. 

One can simply explicitly construct (ݔ)ܭ satisfying Definition (3.1.2) for 

any given ܾ(ݔ) with multiplicity one at the origin, but a familiar example can 

be derived from local Riesz transforms: 

Example (3.1.3)[3]: Let (ݔ)ܮ be the local Riesz transform kernel given by 

(ݔ)߶ ௫
|௫|శభ for a cutoff function ߶(ݔ) supported near the origin. Then (ݔ)ܮ 

satisfies Definition (3.1.2) for ܾ(ݔ) = ଵݔ
ଶ + ⋯ + ݔ

ଶ. Here ߜ = 
ଶ
. For one can 

write (ݔ)ܮ = ∑ (ݔ)ܮ
ୀଵ  where ܮ(ݔ) is supported on a cone centered at the 

(ݔ)ߚ -axis. Then ifݔ = ,ଵݔݔ) . . . , ,ିଵݔݔ ݔ , ,ାଵݔݔ . . . ,  ), the functionsݔݔ

ܮ ∘ ଵݔ will satisfy (6)−(8) with (ݔ)ߚ
భ … ݔ

 = ݔ
ି. Nonisotropic versions 

of (ݔ)ܮ will satisfy Definition (3.1.2) for ܾ(ݔ) of the form ݔଵ
ଶభ + ⋯ + ݔ

ଶ  for 

positive integers ݇ଵ, . . . , ݇. 

Each (ݔ)ܭ satisfying Definition (3.1.2) can be viewed in a natural way 

as a distribution as follows. Let ݇(ݔ) denote the truncated version of ݇(ݔ) 

given by 

݇(ݔ) =  ݇,భ,...,
(ݔ)

(భ,...,)∈: ழ   

                        (47) 
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Define the corresponding truncated ܭ(ݔ) by ܭ(ݔ) = ∑ ெ(ݔ)ܭ
ୀଵ , where 

(ݔ)ܭ = ݇(ݔ)ߩ ቀߚ
ିଵ(ݔ)ቁ. Note that ܭ(ݔ) is a smooth compactly 

supported function. If ߶(ݔ) is a Schwartz function, then one has 

න ݔ݀(ݔ)߶(ݔ)ܭ
ோ

=  න ݇(ݔ)ߩ ቀߚ
ିଵ(ݔ)ቁ ݔ݀(ݔ)߶

ோ

ெ

ୀଵ

 

=  න൫ߩ ∘ ఉܿܽܬ(ݔ)൯݇(ݔ)ߚ
߶൫(ݔ) ∘ ݔ൯݀(ݔ)ߚ

ோ

ெ

ୀଵ

                                (48) 

=  න  ൫ߩ ∘ ൯݇,భ,...,(ݔ)ߚ
ఉܿܽܬ(ݔ)

߶൫(ݔ) ∘ ݔ൯݀(ݔ)ߚ
(భ,...,):ழ   ோ

ெ

ୀଵ

 (49) 

Let ߰(ݔ) = ൫ߩ ∘ ߶൯൫(ݔ)ߚ ∘  is a smooth compactly (ݔ)൯. Then ߰(ݔ)ߚ

supported function. Note that we do use the fact from  that the function 

ߩ is defined and smooth on a neighborhood of the support of (ݔ)ߚ ∘  (ݔ)ߚ

so that there are no issues concerning the smoothness of ߶ ∘  on the (ݔ)ߚ

boundary of the support of ߩ ∘  Thus we can rewrite the expression .(ݔ)ߚ

(11) for ∫ ோݔ݀(ݔ)߶(ݔ)ܭ  as 

=  න  ݇ , ݆ଵ, . . . , ݆(ݔ)ܿܽܬఉ
ݔ݀(ݔ)߰(ݔ)

(భ,...,):ழ   ோ

ெ

ୀଵ

       (50) 

If ݅ is such that หݔଵ
భ . . . ݔ

ห
ିఋబหܿܽܬఉ

ห(ݔ) ∼ หݔଵ
భ . . . ݔ

ห
ିఋబหݔଵ

భ . . . ݔ
ห is 

integrable on a neighborhood of the origin, then by (6), the form of the ݅th 

term of (12) ensures that the kernel ܭ(ݔ) is a distribution that converges as 

ܮ → ∞ to a finite measure which we denote by ܭ(ݔ). 

Next, we show that for the ݅ for which หݔଵ
భ . . . ݔ

ห
ିఋబหܿܽܬఉ

 ห is(ݔ)

not integrable, the cancellation condition (8) ensures that such an ܭ too 

converges as ܮ goes to infinity in the distribution sense to some ܭ(ݔ). We 
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will then define (ݔ)ܭ = ∑ ெ(ݔ)ܭ
ୀଵ . To see why this is the case, note that 

since ܾ(ݔ) has multiplicity one, for each such ݅ there is exactly one value ݈ 

for which 
బାଵ

బ
= , and ାଵߜ


> (ݔ) for all other values of ݈. Write ߰ߜ =

߰൫ݔଵ, . . . ,బିଵݔ 0, ,బାଵݔ . . . , ൯ݔ + ,ଵݔ)ߦబݔ . . . , ߦ ), withݔ  smooth. 

The ݅th term of (12) can be written as the sum of two terms. In the 

first, ߰(ݔ) is replaced by ߰൫ݔଵ, . . . ,బିଵݔ 0, ,బାଵݔ . . . ,  ൯ and in the secondݔ

߰(ݔ) is replaced by ߦ(ݔ) and ݇,భ,...,
 The second .(ݔ)బ݇,భ,...,ݔ by (ݔ)

term is handled exactly as we handled the terms for which 

หݔଵ
భ ݔ …

ห
ିఋబหܿܽܬఉ

బݔ ห is integrable since the additional(ݔ)  factor causes  

us to once again have absolute integrability of the limiting kernel. As for the 

first term, we perform the ݔబ integration first in the ݅th term of (12). The 

cancellation condition (8) implies that the limiting kernel of the result of this 

integration is similarly absolutely integrable in the remaining ݊ − 1 variables, 

and thus the limit again defines a distribution. 

Thus we see that ܭ(ݔ) is a well defined distribution for all ݅ and 

therefore (ݔ)ܭ = ∑ ெ(ݔ)ܭ
ୀଵ  gives a well-defined distribution. Hence if 

,ݔ)ߙ  is a Schwartz function on (ݔ)݂ is a Schwartz function on ܴା and (ݕ

ܴ then ݂ܶ(ݔ) = ∫ ݔ)݂ − ,ݔ)ߙ(ݕ ோݕ݀(ݕ)ܭ(ݕ  is well-defined. If for some 

1 <  < ∞ and some constant ܥ the operators ݂ܶ(ݔ) = ∫ ݔ)݂ −ோ

,ݔ)ߙ(ݕ ‖ are such that ݕ݀(ݕ)ܭ(ݕ ܶ‖→ ≤  ݂ for all Schwartz functions ܥ

and all ܮ, then an application of the dominated convergence theorem gives 

that one also has ‖݂ܶ‖(ோ) ≤  (ோ) for all Schwartz functions, for the‖݂‖ܥ

same constant ܥ. 

The first theorem is simply that ܶ is bounded on ܮଶ(ܴ). 
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Theorem (3.1.4)[3]: Whenever the critical integrability exponent of ܾ(ݔ) at 

the origin has multiplicity one, then there is a neighborhood ܷ of the origin 

such that if (ݔ)ܭ is supported in ܷ, there is a constant ܥ such that for all 

Schwartz functions ݂(ݔ) one has ‖݂ܶ‖మ(ோ) ≤  .మ(ோ)‖݂‖ܥ

It turns out that it is no harder prove ܮଶ boundedness for singular 

Radon transform generalizations of ܶ. Namely, let (ݔ)ܭ be as above, and let 

ℎଵ(ݔ), . . . , ℎ(ݔ) be real-analytic functions on a neighborhood of the origin in 

ܴ with ℎ(ݔ) = 0 for all ݅. Let ݔ)ߙ, be a Schwartz function on ܴ (ݕ × ܴ. 

Then for a Schwartz function ݂(ݔ) in m variables, we define ܶᇱ݂(ݔ) by 

ܶᇱ݂(ݔ) = න ݂൫ݔଵ − ℎଵ(ݕ), . . . , ݔ − ℎ(ݕ)൯ݔ)ߙ, ݕ݀(ݕ)ܭ(ݕ
ோ

         (51) 

The operator ܶ above corresponds to ݉ = ݊ and ℎ(ݕ) = ݕ  for all ݅. We 

have the following theorem. 
 

Section (3.2):  Theorems when the Multiplicity is Greater than One 

When the critical integrability exponent ߜ has multiplicity greater 

than one at the origin, the coordinate changes ߚ(ݔ) used in the multiplicity 

one case will lead to trying to prove ܮଶ boundedness of an operator that 

resembles a multiparameter singular Radon transform, rather than a (one-

parameter) singular Radon transform. Unfortunately since the ߚ(ݔ) here 

involve blowups, one often ends out with a multiparameter singular Radon 

transform that is not bounded on ܮଶ. As a result, instead of trying to find a 

general correct notion of singular integral and prove a general result, when 

the multiplicity is greater than one we will focus on theorems that can be 

proven in the original coordinates. 



50 
 

One can often determine the criticial integrability exponent of a 

function at the origin and its mutliplicity through the use of Newton 

polyhedron of the function. We turn to the relevant definitions. 

Definition (3.2.1)[3]: Let ܾ(ݔ) be a real-analytic function with Taylor series 

∑ ܾఈݔఈ
ఈ  on a neighborhood of the origin. For each ߙ for which ܾఈ ≠ 0, let 

ܳఈ  be the octant {ݐ ∈ ܴ ∶ ݐ ≥ ߙ  for all ݅}. The Newton polyhedron ܰ(ܾ) of 

 .is defined to be the convex hull of all ܳఈ (ݔ)ܾ

A Newton polyhedron can contain faces of various dimensions in 

various configurations. The faces can be either compact or unbounded.       

We consider each vertex of ܰ(ܾ) to be a compact face of dimension zero. 

Definition (3.2.2)[3]: Let ܨ be a compact face of ܰ(ܾ). Then if ܾ(ݔ) =

∑ ܾఈݔఈ
ఈ  denotes the Taylor expansion of b like above, we define ܾி(ݔ) =

∑ ܾఈݔఈ
ఈ∈ி . 

We will also use the following terminology. 

Definition (3.2.3)[3]: Assume ܰ(ܾ) is nonempty. Then the Newton distance 

݀(ܾ) of ܾ(ݔ) is defined to be inf{ݐ ∶ ,ݐ) ,ݐ . . . , ,ݐ (ݐ ∈ ܰ(ܾ)}. 

Definition (3.2.4)[3]: The central face of ܰ(ܾ) is the face of ܰ(ܾ) of minimal 

dimension intersecting the line ݐଵ = ଶݐ = ⋯ =  .ݐ

In Definition (3.2.4), the central face of ܰ(ܾ) is well-defined since it is 

the intersection of all faces of ܰ(ܾ) intersecting the line ݐଵ = ଶݐ = ⋯ =  .ݐ

An equivalent definition that can be used  is that the central face of ܰ(ܾ) is 

the unique face of ܰ(ܾ) that intersects the line ݐଵ = ଶݐ = ⋯ =   in itsݐ

interior. 

We showed that if the zeros of each ܾி(ݔ) on (ܴ − {0}) are of order 

less than ݀(ܾ), then the critical integrability index ߜ is equal to ଵ
ௗ() and the 

multiplicity is equal to ݊ minus the dimension of the central face of ܰ(ܾ). 
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This can be used to compute ߜ and its multiplicity for specific 

examples of interest, such as in the following two examples Suppose ܾ(ݔ) =

ଵݔ
భ + ⋯ + ݔ

  with each ݇  even. Then ߜ = ቀ ଵ
భ

+ ⋯ + ଵ


ቁ
ିଵ

 and ݉ = 1. 

On the other hand, if ܾ(ݔ) = ଵݔ
భ + ⋯ + ݔ

 then ߜ = ଵ
୫ୟ୶




 and ݉ is equal 

to the number of times ݇ that max


݈   appears in {݈ଵ, . . . , ݈}. For in the former 

case the line ݐଵ = ⋯ = ݊  intersects ܰ(ܾ) in the interior of theݐ − 1 

dimensional face with equation ௧భ

భ
+ ⋯ + ௧


= 1, while in the latter case the 

line ݐଵ = ⋯ = ݊  intersects ܰ(ܾ) in theݐ − ݇ dimensional plane determined 

by the equations ݐ = max


݈  for all ݈ such that ݈ = max


݈. 

In order to understand the behavior of functions satisfying the finite-

type condition, it is often helpful to consider the function ܾ∗(ݔ) defined by 

(ݔ)∗ܾ =  หݔଵ
௩భ … ݔ

௩ห
(௩భ,...,௩)  ௩௧௫  ே()

                           (52) 

There is a constant ܥ such that for all ݔ one has |ܾ(ݔ)| ≤  In Lemma .(ݔ)∗ܾܥ 

(4.2.1) we will see that given any ߜ > 0 there is a ߜᇱ > 0 such that |ܾ(ݔ)| >

on a portion of any dyadic rectangle with measure at least 1 (ݔ)∗ᇱܾߜ −  ߜ

times that of the rectangle. Hence |ܾ(ݔ)| ∼  except near the zeroes of (ݔ)∗ܾ

 .|(ݔ)ܾ|

Next, observe that the Newton polygon of any first partial ߲௫ܾ(ݔ) is a 

subset of the shift of ܰ(ܾ) by −1 units in the ݔ  direction. Hence the above 

considerations tell us that 

ห߲௫ܾ(ݔ)ห ≤ ܥ
1

|ݔ|  (53)                                           (ݔ)∗ܾ

If ܾ(ݔ) ≠ 0, we also have 
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ห߲௫൫|ܾ(ݔ)|ିఋబ൯ห ≤ ܥ
1

|ݔ| ଵିఋబି|(ݔ)ܾ|(ݔ)∗ܾ                         (54) 

Singular integrals when the multiplicity is greater than one. 

When the multiplicity is greater than one, the class of ܾ(ݔ) where we 

will prove ܮଶ boundedness of associated singular integrals are the ܾ(ݔ) 

analyzed that were discussed above (52). Namely, using the terminology of 

Definitions (3.2.1)-(3.2.4), we will assume that for each compact face ܨ of 

ܰ(ܾ), each zero of each ܾி(ݔ) in (ܴ − {0}) has order less than ݀(ܾ). As 

mentioned above, in this situation we have ߜ = ଵ
ௗ() . Note that our 

theorems do not require the multiplicity to be greater than one, and in fact 

the theorems here will include some multiplicity one operators not covered 

by Theorem (3.1.4). 

In the situation at hand, we define a singular integral associated to 

,ݔ)ߙ as follows. Let (ݔ)ܾ  be a Schwartz function on ܴା. We will consider (ݕ

kernels of the form ݔ)ߙ,  is as follows. We assume that (ݕ)ܭ where ,(ݕ)ܭ(ݕ

∑ can be written as (ݕ)ܭ భ,...,ܭ
∋(భ,...,)(ݕ)  such that for some fixed ܥଵ the 

function ܭభ,...,
ݔis supported on ൛ (ݕ) ∶ |ݔ| ∈ ൣ2ି , ଵ2ିܥ ൧ for all ݈ൟ, is ܥଵ 

on {ݔ ∶ (ݔ)ܾ ≠ 0}, and satisfies the estimates 

หܭభ,...,
,ଵݕ) . . . , )หݕ < ,ଵݕ)ܾ|ଵܥ . . . , )|ିఋబݕ                            (55) 

Motivated by (17), we also assume that if ܾ(ݕଵ, . . . , (ݕ ≠ 0 then for each ݈ 

we have 

ห߲௬ భ,...,ܭ
,ଵݕ) . . . , )หݕ < ଵܥ

1
|ݕ| ,ଵݕ)∗ܾ . . . , ,ଵݕ)ܾ|(ݕ . . . ,  )|ିଵିఋబ    (56)ݕ

We further assume the cancellation conditions that for each ݈ we have 

න భ,...,ܭ
,ଵݕ) . . . , ݕ݀(ݕ

ோ

= 0                                     (57) 
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In Lemma (3.2.7),we will see that in the settings of our theorems (Definitions 

(3.2.1) and (3.2.2)) each ܭభ,...,
,ଵݕ) . . . ,  ) is integrable, so (57) makes senseݕ

if we assume it holds whenever ܭభ,...,
,ଵݕ) . . . , ݕ ) is integrable in theݕ  

variable for fixed values of the other ݕ variables. 

We will also assume that ܭభ,...,
,ଵݕ) . . . ,  ) is identically zero whenݕ

ൣ2ିభ , ଵ2ିభ൧ܥ × ⋯ × ൣ2ି ,  ଵ2ି൧ is not contained in a certainܥ

neighborhood of the origin to be determined by our arguments. 

Some motivation for our definition of a singular integral associated to 

 is the fact that for traditional multiparameter singular integrals, often a (ݔ)ܾ

sufficient and necessary condition for ܮ  boundedness is that the kernel be 

expressible as a dyadic sum of terms satisfying standardized estimates as well 

as a cancellation condition.  

Example (3.2.5)[3]: Let ܾ(ݔ) = ଵݔ
భ  . . . ݔ

  for nonnegative integers ܽଵ, . . . , ܽ 

with at least one ܽ  being nonzero. Then ߜ = ଵ
୫ୟ୶




 here. If ߶(ݔ) is a cutoff 

function supported on a sufficiently small neighborhood of the origin, 

(ݔ)ܭ = (−1)௦(௫భ)ା...ା௦(௫)߶(ݔଵ
ଶ, . . . , ݔ

ଶ)|ܾ(ݔ)|ିఋబ  will satisfy (55)−(57). 

In particular, (ݔ)ܭ = (−1)௦(௫భ)ା...ା௦(௫)߶(ݔଵ
ଶ, . . . , ݔ

ଶ) ଵ
|௫భ...௫| qualifies. 

Example (3.2.6)[3]: Let ݂(ݔଵ, . . . ,  ) be any real-analytic function withݔ

݂(0, . . . , 0) = 0, and let ܾ(ݔ) = ଵݔ)݂
ଶ, . . . , ݔ

ଶ). Then if ߶(ݔ) is a cutoff 

function supported on a sufficiently small neighborhood of the origin, 

(ݔ)ܭ = (−1)௦(௫భ)ା...ା௦(௫)߶(ݔଵ
ଶ, . . . , ݔ

ଶ)|ܾ(ݔ)|ିఋబ  will satisfy (55)−(57). 

For a fixed value of ݔ, the function ݔ)ߙ,  can be viewed in a (ݕ)ܭ(ݕ

natural way as a distribution in the ݕ variable as follows. This will resemble 

the discussion following (47). Let ܭ(ݕ) = ∑ భ,...,ܭ
ழ   (ݕ)  and let 

 be a Schwartz function. Then (ݕ)߶
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         න ,ݔ)ߙ ݕ݀(ݕ)߶(ݕ)ܭ(ݕ
ோ

 

= න  భ,...,ܭ
,ݔ)ߙ(ݕ) ଵݕ݀(ݕ)߶(ݕ . . . ݕ݀

ழ   ோ

   (58) 

Let ߪ௫(ݕ) = ,ݔ)ߙ (ݕ)௫ߪ Then we may write .(ݕ)߶(ݕ = ,௫(0ߪ ,ଶݕ . . . , (ݕ +

,ଵݕ)௫ߦଵݕ . . . , ,ଵݕ)௫ߦ ) for some smoothݕ . . . ,  ). Then the right-hand side ofݕ

(58) can be rewritten as 

න  భ,...,ܭ
,ଵݕ) . . . , ,௫(0ߪ(ݕ ,ଶݕ . . . , .ଵݕ݀(ݕ . . ݕ݀

ழ   ோ

                     

+ න  భ,...,ܭ
,ଵݕ) . . . , ,ଵݕ)௫ߦଵݕ(ݕ . . . , ଵݕ݀(ݕ . . . ݕ݀

ழ   ோ

   (59) 

Because of the cancellation condition (20) in the ݕଵ variable, the first integral 

of (59) is zero. We next similarly write ߦ௫(ݕଵ, . . . , (ݕ = ,ଵݕ)௫ߦ 0, ,ଷݕ . . . , (ݕ +

,ଵݕ)ሚ௫ߦଶݕ . . . ,  ) and insert it into (59), obtainingݕ

න  భ,...,ܭ
,ଵݕ) . . . , ଵݕ)ሚ௫ߦଶݕଵݕ(ݕ , . . . , .ଵݕ݀(ݕ . . ݕ݀

ழ   ோ

          (60) 

Going through all the ݕ  variables in this way, we see that 

∫ ,ݔ)ߙ ோݕ݀(ݕ)߶(ݕ)ܭ(ݕ  is equal to an expression 

න  భ,...,ܭ
ଵݕ) , . . . , ,ଵݕ)௫ߟଶݕଵݕ(ݕ . . . , .ଵݕ݀(ݕ . . ݕ݀

ழ   ோ

        (61 ) 

Here ߟ௫(ݕଵ, . . . ,  variables. We will see in ݕ and ݔ ) is smooth in both theݕ

Lemma (3.2.7) that the condition on the order of the zeroes of the functions 

ܾி(ݔ) on (ܴ − {0}) implies that the integral of |ܾ(ݔ)|ିఋబ  over any dyadic 

rectangle in ܷ is uniformly bounded. Thus (55) implies that 
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భ,...,ܭ
.ଶݕଵݕ(ݕ) . . ,ݔ)ߙ  is absolutely integrable over ܷ. Henceݕ  is (ݕ)ܭ(ݕ

naturally a distribution in ݕ when (ݕ)ܭ is supported in ܷ if its action on ߶(ݕ) 

is given by 

,ݔ)ߙ〉 ,(ݕ)ܭ(ݕ  〈(ݕ)߶

= න  భ,...,ܭ
,ଵݕ) . . . , ଶݕଵݕ(ݕ … ,ଵݕ)௫ߟݕ . . . , .ଵݕ݀(ݕ . . ݕ݀

(భ,...,)∈ோ

(62) 

One can then use (61) to define ݂ܶ(ݔ) = ∫ ݔ)݂ − ,ݔ)ߙ(ݕ ோݕ݀(ݕ)ܭ(ݕ  for 

Schwartz functions ݂, and then examine boundedness of such integral 

operators on ܮ  spaces. We have the following theorem in this regard for 

 = 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

Chapter 4 

Kernels Associated with Negative Power of Real-Analytic Functions 

We determine the bounded properties ܲܮ spaces for 1<ܲ<ߙ and we 

will generalize local singular integral operators such as local revisions of Pierz 

transforms 

Section (4.1): Proofs of Theorems When the Multiplicity is Equal to One: 

Since Theorem (3.1.4) is a special case of Theorem (3.1.5), we prove Theorem 

(3.1.5). 

Theorem (4.1.1)[4]: Whenever the critical integrability exponent of ܾ(ݔ) at 

the origin has multiplicity one, then there is a neighborhood ܷ of the origin 

such that if (ݔ)ܭ is supported in ܷ, there is a constant ܥ such that for all 

Schwartz functions ݂(ݔ), one has ‖ܶᇱ݂‖మ(ோ) ≤  మ(ோ)‖݂‖ܥ

To give a rough idea of how our proofs will work, note that (50) can be 

written as 

 න ݂൫ݔଵ − ℎଵ(ݕ), . . . , ݔ − ℎ(ݕ)൯ݔ)ߙ, ݇(ݕ)ߩ(ݕ ቀߚ
ିଵ(ݕ)ቁ ݕ݀

ோ

ெ

ୀଵ

 (63) 

Let ܶ be the operator corresponding to the ݅th term of (51). Doing a change 

of variables from ݕ to ߚ(ݕ) in the integral of (51) leads to 

݂ܶ(ݔ) = න ݂൫ݔଵ − ℎଵ ∘ ,(ݕ)ߚ . . . , ݔ − ℎ ∘ ,ݔ൫ߙ൯(ݕ)ߚ ൯(ݕ)ߚ
ோ

 

൫ߩ ∘ ఉܿܽܬ(ݕ)൯݇(ݕ)ߚ
 (64)                                     ݕ݀(ݕ)

ܶ is a sort of singular Radon transform with kernel ߙ൫ݔ, ߩ൯൫(ݕ)ߚ ∘

ఉܿܽܬ(ݕ)൯݇(ݕ)ߚ
 which we will be able to analyze by reducing to singular ,(ݕ)

Radon transform estimates. 
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Proof: Theorem (3.1.5) will follow if we can prove each that for each ݅ there 

is a constant ܥ such that ‖ ݂ܶ‖మ(ோ) ≤  మ(ோ) for all Schwartz‖݂‖ܥ

functions ݂(ݔ). Here ܶ is as in (53). Let ݉ and ݁ be the monomial 

exponents of ܾ ∘ ఉܿܽܬ and (ݔ)ߚ
ߜ as before. If ݅ is such that (ݔ) <

ଵାೕ

ೕ
 for 

each ݆, then the kernel of ܶ is absolutely integrable and ܮଶ boundedness is 

immediate. Thus it suffices to consider only the ݅ for which there is some ݈ for 

which ߜ = ଵା


. Since we are assuming ܾ(ݔ) has multiplicity one, there will 

only be one such ݈ for each such ݅. Writing ℎ ∘ (ݕ)ߚ = ൫ℎଵ ∘ ,(ݕ)ߚ . . . , ℎ ∘

 ൯, can be rewritten as(ݕ)ߚ

݂ܶ(ݔ) = න ݂൫ݔ − ℎ ∘ ,ݔ൫ߙ൯(ݕ)ߚ ߩ൯൫(ݕ)ߚ ∘ ఉܿܽܬ(ݕ)൯݇(ݕ)ߚ
ݕ݀(ݕ)

ோ

 (65) 

It is more convenient for our proofs that there be no nonzero ߣ such that ߣ ·

൫ℎ ∘  This can be accomplished as follows. If .ݕ ൯ is a linear function of(ݕ)ߚ

there is a nonzero ߣ such that ߣ · ൫ℎ ∘  ൯ is the zero function, then on(ݕ)ߚ

each hyperplane orthogonal to ߣ, the operator ܶ restricts to an operator of 

the same type as ܶ here, except the ambient space is of one lower 

dimension. Repeating as necessary, we may assume that ߣ · ൫ℎ ∘  ൯ is(ݕ)ߚ

never the zero function for any nonzero ߣ. It is worth mentioning that we are 

using the fact that ℎ ∘  extends to a connected neighborhood of the (ݕ)ߚ

support of ߩ ∘  to ensure we don’t have different functions on different (ݕ)ߚ

connected components to worry about. 

One can further ensure that ߣ · ൫ℎ ∘  ൯ is never linear by letting(ݕ)ߚ

,ଵݕ) . . . , (ݕ = ଵݖ)
ଷ, . . . , ݖ

ଷ) with the corresponding change from ߚ(ݕଵ, . . . ,  (ݕ

to ߚ෨(ݖ) = ଵݖ)ߚ
ଷ, . . . , ݖ

ଷ). The exponents ݉ and ݁ can change, but 
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(44)−(46) and the other properties from resolution of singularities that we 

are using will still hold. Thus in the following, without loss of generality we 

will always assume that we are working in a situation where ߣ · ൫ℎ ∘  ൯ is(ݕ)ߚ

not linear for any nonzero ߣ. 

Let ݇(ݔ) = ∑ ݇,భ,...,
ழ   :(భ,...,)(ݔ)  as in (9), and let ܶ be 

defined by 

݂ܶ(ݔ) = න ݂൫ݔ − ℎ ∘ ,ݔ൫ߙ൯(ݕ)ߚ ߩ൯൫(ݕ)ߚ ∘ ఉܿܽܬ(ݕ)൯݇(ݕ)ߚ
ݕ݀(ݕ)

ோ

  (66) 

In order to prove Theorem (3.1.5), it suffices to show that ܶ is bounded on 

ߩWe can reduce to the case where  ൫ .ܮ ଶ with bounds uniform inܮ ∘

,ݔ൫ߙ൯(ݕ)ߚ  i.e. the operator is) ݕ ൯ is replaced by a function of(ݕ)ߚ

translation-invariant) through the following lemma. 

Lemma (4.1.2)[4]: Define ܷ  by 

ܷ݂(ݔ) = න ݂൫ݔ − ℎ ∘ ఉܿܽܬ(ݕ)൯݇(ݕ)ߚ
ݕ݀(ݕ)

ோ

                 (67) 

If there is a constant ܥ depending on ܾ(ݔ) (and the resolution of singularities 

procedure we are using on it), ℎଵ(ݔ), . . . , ℎ(ݔ), and the constant ܥ of 

(44)−(46), such that ‖ ܷ݂‖ ≤  then there ,ܮ  for all Schwartz ݂ and all‖݂‖ܥ

is a constant ܥᇱ such that ‖ ܷ݂‖ ≤  .ܮ ᇱ‖݂‖ for all Schwartz ݂ and allܥ

Proof. Let ݔ)ߛ, ߩbe the Schwartz function ൫ (ݕ ∘ ,ݔ൫ߙ൯(ݕ)ߚ  ൯. We use(ݕ)ߚ

the Fourier inversion formula in the ݔ variable and write 

,ݔ)ߛ (ݕ = න ,ݐ)ߛ ݐ௧భ௫భା...ା௧௫݀݁(ݕ
ோ

                          (68) 

Here ߛ(ݐ,  ݃ variable only. If ݂ and ݔ refers to the Fourier transform in the (ݕ

are Schwartz functions then ∫ ݂ܶ(ݔ)݃(ݔ)݀ݔோ  is equal to 
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න  න න ݂൫ݔ − ℎ ∘ ,ݐ)ߛ൯(ݕ)ߚ ఉܿܽܬ(ݕ)݇(ݕ
ݕ݀(ݕ)

ோோோ

 

× ቀ݁௧భ௫భା...ା௧௫݃(ݔ)ቁ ൩ݔ݀  (69)                           ݐ݀

Stated another way, let ܷ௧ denote the operator 

ܷ௧݂(ݔ) = න ݂൫ݔ − ℎ ∘ ,ݐ)ߛ൯(ݕ)ߚ ఉܿܽܬ(ݕ)݇(ݕ
ݕ݀(ݕ)

ோ

         (70) 

Then ∫ ݂ܶ(ݔ)݃(ݔ)݀ݔோ  is equal to 

න න ܷ௧݂(ݔ) × ቀ݁௧భ௫భା⋯ା௧௫݃(ݔ)ቁ ݐ݀ݔ݀
ோோ

                    (71) 

Since ߛ(ݐ,  is Schwartz, under the assumptions of this lemma there is a (ݕ

constant ܭ such that 

‖ ܷ௧‖(ோ)→(ோ) ≤ ܭ
1

1 + ାଵ|ݐ|                                (72) 

Thus by (72) and Hölder’s inequality we have 

න ݂ܶ(ݔ)݃(ݔ)݀ݔ
ோ

≤ ‖݃‖ᇲ‖݂‖ܭ න
1

1 + ାଵ|ݐ| ݐ݀
ோ

               (73) 

Thus the ܶ are bounded on ܮ uniformly in ܮ and we are done with the 

proof of Lemma (4.1.1). 

We now proceed to proving uniform bounds on the ܷ. Taking Fourier 

transforms, we get 

పܷ (ߣ) = መ݂(ߣ) න ݁ఒ·൫∘ఉ(௬)൯݇(ݕ)ܿܽܬఉ
ݕ݀(ݕ)

ோ

                 (74) 
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Hence in order to prove Theorem (3.1.5), it suffices to show that there is a 

constant ܥ such that |ܤ(ߣ)| ≤ ,݅ for each ܥ  where ,ߣ and ܮ

(ߣ)ܤ = න ݁ఒ·൫∘ఉ(௬)൯݇(ݕ)ܿܽܬఉ
ݕ݀(ݕ)

ோ

                        (75) 

Without loss of generality, to simplify notation in the following we will 

assume that the ݈ for which ߜ = ଵା


 is ݈ = 1. Next, we write the factor 

݇(ݕ)ܿܽܬఉ
∑ in (75) as (ݕ) ழ(ݕ) , where we add over the dyadic 

pieces in the ݕଶ , . . . ,  :(ݕ)  variables to formݕ

(ݕ) =  ݇,,మ,...,
ఉܿܽܬ(ݕ)

(ݕ)
(మ,...,):ழ   வଵ

            (76) 

Then (44) implies the estimates 

|(ݕ)| ≤ ଵ|ିఋబభାభݕ|ܥ  . . .  |ିఋబା                        (77)ݕ|

Similarly, (44)−(45) implies that for each ݈ we have 

ห߲௬ (ݕ)ห ≤ ܥ
1

|ݕ|
ଵ|ିఋబభାభݕ|  . . . |ିఋబାݕ|                (78) 

The cancellation condition (46) gives 

ቮන ଵݕ) , . . . , ଵݕ݀(ݕ
ோ

ቮ <  2ିఢబ                              (79)ܥ

Note that – ݉ଵߜ + ݁ଵ = −1 here, while the other exponents are all greater 

than −1. If one changes variables ݕ = ݖ
ே ,in (75) for some ݈ > 1, instead of 

having a factor |ݕ|ିఋబା in (77)−(78) one has a factor of |ݖ|(ିఋబା)ே. 

One also gains an additional factor of ܰ|ݖ|ேିଵ from the Jacobian of the 

coordinate change. Thus overall one has a factor of |ݖ|(ିఋబାାଵ)ேିଵ. 

Since – ݉ߜ + ݁ > −1, if ܰ is large enough this factor will be bounded by 

just |ݖ| and thus one can remove the ݕ  variable from (77)−(78). Stated 
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another way, if one changes ݕ = ݖ
ே for all ݈ > 1 (making ܰ odd to ensure 

it’s a one-to-one map), (75) becomes 

(ߣ)ܤ = න ݁ఒ·(∘ఉ)൫௭భ,௭మ
ಿ,...,௭

ಿ൯ݍ(ݖ)݀ݖ
ோ

                      (80) 

Here ݍ(ݖ) = ∑ ழ(ݖ)ݍ , where ݍ(ݖ) satisfies 

|(ݖ)ݍ| ≤  ଵ|ିଵ                                               (81)ݖ|ܥ

ห߲௭భݍ(ݖ)ห ≤ ,ଵ|ିଶݖ|ܥ ∀݈ > 1ห߲௭ݍ(ݖ)ห ≤  ଵ|ିଵ           (82)ݖ|ܥ

ቮන ,ଵݖ)ݍ . . . , ଵݖ݀(ݖ
ோ

ቮ ≤  2ିఢబ                               (83)ܥ

Letting ݂(ݖ) = ℎ ∘ ,ଵݖ)ߚ ଶݖ
ே, . . . , ݖ

ே), (80) becomes 

(ߣ)ܤ = න ݁ఒ·(௭)ݍ(ݖ)݀ݖ
ோ

                                   (84) 

In view of the discussion above (84), we may assume that ߣ · ݂(ݖ) is not 

linear for any nonzero ߣ. Therefore, writing ߣ = ߱ for ߱|ߣ| ∈ ܵିଵ, by a 

compactness argument on ܵିଵ × supp(ݍ), we may restrict consideration 

to ߱ to a small neighborhood ܰ in ܵିଵ and replace ݍ(ݔ) by ݍ(ݔ)ߪ(ݔ) 

for a function (ݔ)ߪ supported on a ball ݔ)ܤ, ߳ ) on which there is anݎ > 0 

and a single directional derivative ߲௩ such that |߲௩
ఈ(߱ · ݂)(ݖ)| > ߳ on 

,ݔ)ܤ ߙ ) for someݎ ≥ 2. We can do this in such a way that ݒ has a positive 

߱ , forݔ denotes the first component of ݔ̅ ଵ component. Thus ifݔ ∈ ܰ we are 

attempting to bound ∫ ,ߣ)ܦ ,ଶݖ . . . , .ଶݖ݀(ݖ . . ோషభݖ݀ , where 

,ߣ)ܦ ,ଶݖ . . . , (ݖ = න ݁|ఒ|(ఠ·)൫(௫̅,௭మ,...,௭)ା௧௩൯ߪ൫(̅ݔ, ,ଶݖ . . . , (ݖ + ൯ݒݐ
ோ

 

× ,ݔ̅)൫ݍ ,ଶݖ . . . , (ݖ +  (85)                      ݐ൯݀ݒݐ
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Thus to prove Theorem (3.1.5), it suffices for our purposes to bound 

,ߣ)ܦ ,ଶݖ . . . , ,ܮ ) uniformly inݖ ,ߣ ,ଶݖ . . . , ߱  forݖ ∈ ܰ. For this, it suffices to 

bound ܦ෩൫ߣ, ,ሚߣ ,ଶݖ . . . , ,ܮ ൯ uniformly inݖ ,ߣ ,ሚߣ ,ଶݖ . . . , ߱  forݖ ∈ ܰ, where 

,ߣ෩൫ܦ ,ሚߣ ,ଶݖ . . . , ൯ݖ = න ݁|ఒ|(ఠ·)൫(௫̅,௭మ,...,௭)ା௧௩൯ାఒ෩௧ߪ൫(̅ݔ, ,ଶݖ . . . , (ݖ + ൯ݒݐ
ோ

 

× ,ݔ̅)൫ݍ ,ଶݖ . . . , (ݖ +  (86)                      ݐ൯݀ݒݐ

But similarly to (74)−(75), such uniform bounds for ܦ෩൫ߣ, ,ሚߣ ,ଶݖ . . . ,  ൯ݖ

follows from uniform boundedness on ܮଶ of the singular Radon transforms 

along curves in ܴଶ of the form 

ܷఠ௭మ...௭݂(ݔଵ, (ଶݔ = න ݂ ቀݔଵ − ,ݐ ଶݔ − (߱ · ݂)൫(̅ݔ, ,ଶݖ . . . , (ݖ + ൯ቁݒݐ
ோ

           

× ,ݔ̅)൫ߪ ,ଶݖ . . . , (ݖ + ,ݔ̅)൫ݍ൯ݒݐ ,ଶݖ . . . , (ݖ +  (87) ݐ൯݀ݒݐ

Note that 

หݍ൫(̅ݔ, ,ଶݖ . . . , (ݖ + ൯ݒݐ − ,ݔ̅)൫ݍ ,ଶݖ . . . , (ݖ + ,ଵݒ)ݐ 0, . . . , 0)൯ห 

≤ |ݐ|ܥ max
வଵ

sup
௭

ห߲௭ݍ(ݖ)ห                      (88) 

By (82), since |ݐ| < |ଵݖ| ଶି andܥ ∼ 2ି we have 

หݍ൫(̅ݔ, ,ଶݖ . . . , (ݖ + ൯ݒݐ − ,ݔ̅)൫ݍ ,ଶݖ . . . , (ݖ + ,ଵݒ)ݐ 0. . . , 0)൯ห ≤  ᇱ (89)ܥ

Hence by the cancellation condition (47) one has 

න ,ݔ̅)൫ݍ ,ଶݖ . . . , (ݖ + ݐ൯݀ݒݐ
ோ

<  ᇱᇱ2ିఢబ                           (90)ܥ

Since ߪ൫(̅ݔ, ,ଶݖ . . . , (ݖ + ൯ݒݐ = ,ݔ̅)ߪ ,ଶݖ . . . , (ݖ +    using (81) one also ,(|ݐ|)ܱ

න ,ݔ̅)൫ߪ ,ଶݖ . . . , (ݖ + ,ݔ̅)൫ݍ൯ݒݐ ,ଶݖ . . . , (ݖ + ݐ൯݀ݒݐ
ோ

<  ᇱᇱᇱ2ିఢబ    (91)ܥ
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In other words, we have a cancellation condition in (87) derived from (83). 

The constant ܥᇱᇱᇱ in (91) depends on ܾ(ݔ), ℎଵ(ݔ), . . . , ℎ(ݔ) and the constant 

  ofܥ and the constant (ݔ)ܾ of (81)−(83), which in turn depends on ܥ

(44)−(46). 

The arguments of [G3] provide ܮଶ bounds for the operators 

ܷݖ߱ܮଶ. . .   under the assumptions (81)−(83) and a lower bound onݖ

|߲௩
ఈ(߱ · ݂)(ݖ)| that are uniform in ܮ, ߱, ,ଶݖ . . . , ߱  forݖ ∈ ܰ. (A slightly 

stronger cancellation condition is assumed but (83) suffices). This is because 

the bounds obtained in [G3] are at least as strong as the bounds obtained 

when the convolution is over the curve (ݐ,  ఈ), in which case the bounds canݐ

be expressed in terms of the constant ܥ of (81)−(83), the constant ܥᇱᇱ of (90), 

and the function ℎ ∘ ,ݔ)ܤ For the ball .(ݔ)ߚ  ,is supported (ݔ)ߪ ) on whichݎ

how small ݎ needs to be for the uniform bounds to hold will also be uniform 

in the various parameters but may be smaller than the ݎ we originally 

selected. However, this can be corrected by writing (ݔ)ߪ as a finite sum of 

bump functions with smaller support if needed. This completes the proof of 

Theorem (3.1.5). 
 

Section (4.2): Proof of Theorems when the Multiplicity is Greater than One: 

   We start with some facts from [G1] - [G2] which will help us the understand 

the distribution function of ܾ(ݔ) and related properties of integrals of 

 ఋబ. The constructions in [G1] are slightly better for our purposes soି|(ݔ)ܾ|

we bring our attention to them. if ܷ is a sufficiently small neighborhood of 

the origin, up to a set of measure zero one may write ܷ =  ⋃ ܷ
ே
ୀଵ  as a finite 

union of open sets such that the following hold. Each ܷ  is contained in one 

of the 2݊ octants determined by coordinate hyperplanes. For each ݅, there is 

some integer 1 ≤ ݇ ≤ ݊ and a function ߛ ∶ ܴ → ܴ such that each 
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component of ߛ(ݔ) is plus or minus a monomial and ߛ
ିଵ ( ܷ) satisfies the 

following. If ݇  <  ݊, then there are cubes (0, )ߟ  and (0, ߟ
ᇱ ) with ߟ

ᇱ  >

ߟ   and bounded open sets ܱ  ⊂  ܱ
ᇱ whose closures are a subset of {ݔ ∈

 ܴି ∶ ݔ   >  0 for all ݈}, such that 

 (0, )ߟ ×  ܱ  ⊂ ߛ
ିଵ ( ܷ)   ⊂ (0, ߟ

ᇱ )  × ܱ
ᇱ                     (92) 

If ݇  =  ݊, then there are cubes (0, ,) and (0ߟ ߟ
ᇱ )  with ߟ

ᇱ  > ߟ   such 

that 

(0, )ߟ  ⊂ ߛ
ିଵ ( ܷ)  ⊂ (0, ߟ

ᇱ )                            (93) 

In either case, there is a monomial ݉(ݔଵ, . . . , ,ܥ ) and constantsݔ ܥ
ᇱ such 

that on ߛ
ିଵ ( ܷ)   one has 

,ଵݔ)݉ܥ . . . , (ݔ  <  |ܾ∗ |(ݔ)ߛ    < ܥ 
ᇱ݉(ݔଵ, . . . ,  )            (94)ݔ

If ݇  =  ݊, then (94) holds with ܾ∗ ߛ ߧ(ݔ)  replaced by ܾ ߛ ߧ(ݔ) If ݇  <  ݊, 

then on ߛ
ିଵ(ܷ)  the function ܾ ߛ ߧ(ݔ) can be expressed as ݉൫ݔଵ, . . . ,    ൯ݔ

݃(ݔ , . . . , ,ଵݔ) where ݉൫ݔ . . . , ,ଵݔ)൯ is a monomial and where ݃ݔ . . . ,   (ݔ

satisfies the following. One may write ߛ
ିଵ( ܷ)  = ∪ୀଵ

ெ
ܸ
   such that for each 

݅ and ݆ there is an ߳ > 0,  a compact face ܨ  of ܰ(ܾ), and a directional 

derivative ߲௩ೕ  in the last ݊−݇  variables, such that| ߲௩ೕ

ೕ  ݃(ݔଵ, . . . , |(ݔ >

߳ on ܸ  for some ܽ =  0,  which is at most the maximum order of any zero 

of ܾி
,ଵݔ) . . . , ܴ) ) onݔ − {0}). When ܽ = 0, we interpret ߲௩ೕ

ೕ
݃(ݔ) to 

just mean ݃(ݔ). 

For a given > 0 , the following lemma explicitly bounds the measure of 

the portion of a dyadic rectangle where |ܾ(ݔ)/ܾ∗(ݔ)| < ߳ in terms of the 

maximum order of the zeroes of the ܾி(ݔ)  on (ܴ − {0}). 

Lemma (4.2.1)[4]: Suppose  > 0  is an integer such that the zeroes of each 

ܾி(ݔ) on (ܴ − {0}) are all of order at most . Then there is a neighborhood 
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ܷ of the origin and a constant ܥ > 0  such that if ܴ ⊂   is a set of the form 

൛ݔ ∈ ܴ ∶ 2ି < |ݔ| < 2ିାଵൟ for integers ݆݈, then 

∋ ݔ}|  ܴ ∶ (ݔ)ܾ|  ⁄(ݔ)∗ܾ |  <  ߳}|  < ߳ܥ 
భ
  |ܴ|                      (95) 

∋ ݔ}| It suffices to show for each i an estimate of the form .݂ݎܲ  ܴ ∩  ܷ ∶

 | (ݔ)ܾ ⁄(ݔ)∗ܾ |  < ߳|  < ߳ܥ  
భ
|ܴ|. Since the components of ߛ(ݔ) are all 

monomials, the absolute value of the Jacobian of ߛ(ݔ) is of the form 

ܿݔଵ
భ  . . . ݔ

  for some integers ݁ଵ, . . . , ݁ and some ܿ  >  0. Viewing |{ݔ ∈

 ܴ ∩  ܷ ∶  | (ݔ)ܾ ⁄(ݔ)∗ܾ |  < ߳}| as the integral of 1 over {ݔ ∈  ܴ ∩  ܷ ∶

|ܾ (ݔ)ܾ ⁄(ݔ)∗ܾ |  < ߳ } and changing coordinates via ߛ(ݔ), one obtains 

                |{ܴ ∩  ܷ ∶ (ݔ)ܾ| ⁄(ݔ)∗ܾ | < ߳}| 

න ܿݔଵ
భ  . . . ݔ

 ݔ݀ 
{௫∈ఊ

షభ (ோ)∩ఊ
షభ (): |∘ ఊ(௫)/∗∘ ఊ(௫)|ழఢ}

       (96) 

Note that by (94) and the following paragraph, one has |ܾ ∘ ∗ܾ/(ݔ)ߛ ∘

|ߛ > ᇱܥ 
݃(ݔ) for some constant ܥ′ (We can include the ݇  =  ݊ situation 

here by defining ݃(ݔ)  =  1). Thus in order to bound (96) by an expression of 

the form ܥఢ
ଵ


 |ܴ|, it suffices to show the following estimate of the following 

form for each ݅ and ݆. 

න ܿݔଵ
భ  . . . ݔ

 ݔ݀ 
{௫∈ఊ

షభ (ோ)∩ ೕ: (௫)|ழఢ}
< ߳ܥ

భ
 |ܴ|      (97) 

If the multiindex aij in the paragraph after (94) is zero, then ݃(ݔ) is bounded 

below, and thus (97) reduces to showing that ∫ ଵݔ
భ  . . . ݔ

 ఊݔ݀ 
షభ (ோ)∩ ೕ

 is 

bounded by a constant times |ܴ|, which follows immediately from changing 

back into the original coordinates using ߛ. Thus it suffices to assume ܽ ≥ 1. 

Note that this only occurs if ݇ <  ݊. Since the final ݊ –  ݇  variables are 

bounded below on ܸ  , it suffices to prove a bound 
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න ଵݔ
భ  . . . ݔ

ೖ ݔ݀ 
{௫∈ఊ

షభ (ோ)∩ ೕ: (௫)|ழఢ}
< ߳ܥ 

భ
 |ܴ|         (98) 

We now integrate the left-hand side of (98) starting with the ݒ direction. 

Since ܽ  , by the measure version of the Van der Corput lemma (see [C] for 

details), the integral in the ݒ direction is at most ݔܥଵ
భ  . . . ݔ

ೖ ߳
భ
  . If we 

next perform the integration in the remaining ݊ − ݇  − 1 directions of last 

݊ − ݇  variables (if any exist), then if ߨ  denotes the projection on ܴ onto 

the first ݇   variables, we obtain 

       න ଵݔ
భ ݔ … 

ೖ ݔ݀ 
ቄݔ ∈ ߛ

ିଵ (ܴ) ∩  ܸ: ݃(ݔ)ቚ< ߳ቅ
 

≤ ߳ܥ 
భ
 න ଵݔ

భ  . . . ݔ

ೖ ଵݔ݀ 
గ൫ఊ

షభ (ோ)∩ ೕ൯
… ݔ݀                             (99)  

= ߳ܥ 
భ
 න ଵݔ

భ  . . . ݔ

ೖ ଵݔ݀ 
గ൫ఊ

షభ (ோ)∩ ೕ൯×[ଵ,ଶ]షೖ
… ݔ݀              (100)  

= ߳ܥ 
భ
 න ଵݔ

భ  . . . ݔ
 ݀ݔଵ

గ൫ఊ
షభ (ோ)∩ ೕ൯×[ଵ,ଶ]షೖ

…                  (101)ݔ݀

Because the last ݊ − ݇   coordinates of the points in ܷ  are bounded above 

and below away from zero, there is a constant C0 > 1 such that if (ݔଵ, . . . ,  (ݔ

∈ ߛ൫ߨ 
ିଵ (ܴ) ∩  ܸ൯ × [1,2]ି then there is a point (ݕଵ , . . . , (ݕ  ∈

ߛ
ିଵ (ܴ) ∩  ܸ such that ଵ

బ
< ௬

௫
<   for each ݈. This property is preservedܥ 

under monomial maps (perhaps with a different constant ܥଵ), so the image of 

ߛ൫ߨ
ିଵ (ܴ) ∩  ܸ൯ × [1,2]ି under ߛ  is a subset of a corresponding dilate 

of ߛ൫ߛ
ିଵ (ܴ) ∩  ܸ൯, which in turn is a subset of the dilate of ܴ. Denote this 
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dilate by ܴ∗. Changing coordinates in (101) back into the original coordinates 

via ߛ, we see that 

߳ܥ
భ
 න ଵݔ

భ  . . . ݔ
 ଵݔ݀ 

గ൫ఊ
షభ (ோ)∩ ೕ൯×[ଵ,ଶ]షೖ

… ݔ݀ ≤ ᇱᇱ߳ܥ
భ
 න ݔ1݀

ோ∗
 

= ᇱᇱᇱ߳ܥ 
భ
  ܴ|                                                          (102) 

This is the desired estimate (98) and we are done. 

We also will make use of the following result. 

Lemma (4.2.2)[4]: Suppose the zeroes of each ܾி − ܴ) on (ݔ)   {0}) are all 

of order less than ݀(ܾ). Then there is a neighborhood ܷ of the origin and 

constants ܥ, < ߟ  0 such that if ߳ >  0 and ܴ ⊂  ܷ is a set of the form 

൛ݔ ∈ ܴ: 2ି < |ݔ| < 2ିାଵൟ, then ∫ ఋబି|(ݔ)ܾ| < ఎ߳ܥ 
{௫∈ோ: |(௫)|ழఢ|∗(௫)|} . In 

particular, since there is a constant ܥ′ such that |ܾ(ݔ)|  ≤  on any (ݔ)∗ᇱܾܥ 

such ܴ, there is a constant ܥ′′ such that ∫ ఋబି|(ݔ)ܾ|ܴ < ோ′′ܥ  for such ܴ ⊂ ܷ. 

Proof. Since the terms of ܾ∗(ݔ) are absolute values of monomials, there is a 

constant ܿ >  1 and an ݔ  ∈  ܴ such that ܾܿ∗(ݔ)  ≥ (ݔ)∗ܾ  ≥ ଵ


 on (ݔ)∗ܾ 

ܴ. Hence it suffices to prove an estimate of the form 

∫ ఋబି|(ݔ)ܾ| < ఎ߳ܥ 
{௫∈ோ: |(௫)|ழఢ|∗(௫బ)|} . By the relation between ܮ norms and 

distribution functions, applied to ଵ
|(௫)| , one has 

න ఋబି|(ݔ)ܾ|

{௫∈ோ: |(௫)|ழఢ|∗(௫బ)|}
  

= ߜ  ∫ ఋబିଵஶݐ
  ቚቄݔ ∈  ܴ: |(ݔ)ܾ| < min ቀ߳|ܾ∗(ݔ)|, ଵ

௧
ቁቅቚ  (103)                        ݐ݀

It is natural to break up (103) into two pieces, the first where ݐ <  ଵ
ఢ∗(௫బ) and 

the second where ≥  ଵ
ఢ∗(௫బ) . Then the right-hand side of (103) becomes 
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= ߜ  න ఋబିଵݐ
భ

ച್∗(ೣబ)


∋ ݔ}|   ܴ: |(ݔ)ܾ| <  ݐ݀|{|(ݔ)∗ܾ|߳

ߜ + න ఋబିଵݐ
ஶ

భ
ച್∗(ೣబ)

 ฬ൜ݔ ∈  ܴ: |(ݔ)ܾ| <
1
ݐ

ൠฬ  (104)                           ݐ݀

Performing the first integral in the first term of (67) results in 

߳ିఋబ ఋబି|(ݔ)∗ܾ|  ∋ ݔ}|   ܴ ∶ |(ݔ)ܾ|  <  (105)                  |{|(ݔ)∗ܾ|߳ 

By Lemma (4.2.1), (105) is bounded by ܥ |ܾ∗(ݔ)|ିఋబ  ߳
భ
 –ఋబ  |ܴ|  for some 

>  ݀(ܾ) = ଵ
ఋబ

. Hence we have 

න ఋబି|(ݔ)ܾ|

{௫∈ோ: |(௫)|ழఢ|∗(௫బ)|}
≤ ఋబି|(ݔ)∗ܾ| ܥ  ߳

భ
 –ఋబ |ܴ| 

ߜ + න ఋబିଵݐ
ஶ

భ
ച್∗(ೣబ)

 ฬ൜ݔ ∈  ܴ: |(ݔ)ܾ| <
1
ݐ

ൠฬ  (106)                           ݐ݀

Note that ቄݔ ∈  ܴ: |(ݔ)ܾ| < ଵ
௧
ቅ ⊂  ቄݔ ∈ ܴ ∶ |(ݔ)ܾ|  <  బ

௧∗(௫బ)  ቅ, so by(ݔ)∗ܾ

Lemma (4.2.1) for some constant ܥ we have 

න ఋబି|(ݔ)ܾ|

{௫∈ோ: |(௫)|ழఢ|∗(௫బ)|}
≤ ఋబି|(ݔ)∗ܾ| ܥ  ߳

భ
 –ఋబ |ܴ| 

ܥ + න ఋబିଵݐ
ஶ

భ
ച್∗(ೣబ)

 ൬
ܿ

൰(ݔ)∗ܾݐ
భ
  (107)                           ݐ݀|ܴ|

Note that the exponent ߜ –  1 −  ଵ

 is less than −1 since  <  ݀(ܾ) = ଵ

ఋబ
. 

Hence integrating the second term on the right of (107) leads to the following 

for some constant C1. 

න ఋబି|(ݔ)ܾ|

{௫∈ோ: |(௫)|ழఢ|∗(௫బ)|}
≤ ఋబି|(ݔ)∗ܾ| ܥ  ߳

భ
 –ఋబ |ܴ| 

ఋబି|(ݔ)∗ܾ|ଵܥ+  ߳
భ
 –ఋబ |ܴ|                (108) 
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Since |ܴ|  ∼ .ଵݔ|  . . ,ଵݔ) | for anyݔ . . . , (ݔ  ∈  ܴ, in order to prove Lemma 

(4.2.2) with ߟ = ଵ


 –  ଶ suchܥ , it suffices to show that there is a constantߜ

that for any ݔ we have 

.ଵݔ| . . ൯(ݔ)∗|൫ܾݔ
ିఋబ  ≤  ଶ                                                  (109)ܥ 

Since ߜ  =  ଵ
ௗ()

 in the case at hand, (72) is equivalent to the statement that 

(ݔ)∗ܾ  ≥ .ଵݔ|ଷܥ  . .  |ௗ()                                                  (110)ݔ

Since (݀(ܾ), . . . , ݀(ܾ)) is on the Newton polyhedron ܰ(ܾ), there are 

nonnegative ߙ with ߙଵ+. . . ߙ + =  1 such that each component of 

(݀(ܾ), . . . , ݀(ܾ)) is greater than or equal to that of ߙଵݒଵ+. . .   for someݒߙ+

vertices ݒଵ, . . . , .ଵݔ|  of ܰ(ܾ). Henceݒ . . |ௗ()ݔ  ≤ ௩భ|ఈభݔ|   . . .  ௩ೖ| ఈೖ . So byݔ|

the generalized AM-GM inequality one has |ݔଵ. . . |ௗ()ݔ ≤ ∑ |௩ݔ|ߙ  ≤
ୀଵ

 .as needed. This completes the proof of Lemma (4.2.2) (ݔ)∗ܾ 

Similar to the multiplicity one case, in order to show ‖݂ܶ‖  ≤  ‖݂‖ܥ 

for all Schwartz ݂ for a given 1 < >    ∞, it suffices to show the that if 

 is supported on a sufficiently small neighborhood of the origin there is (ݕ)ܭ

a constant C such that ‖ ݂ܶ‖ ≤  where ,ܮ  for all Schwartz ݂ and each‖݂‖ܥ

݂ܶ(ݔ) = ∫ ݔ)݂ − ,ݔ)ߙ(ݕ (ݕ)ܭ ோ .Hereݕ݀ (ݕ)ܭ(ݕ  = ∑  ழ    as(ݕ)భ,...,ܭ

in (60). As in Lemma (4.1.1) for the multiplicity one case, we may also replace 

,ݔ)ߙ by just 1. Thus we focus our attention on ܷ (ݕ  given by 

ܷ݂(ݔ)  = න ݔ)݂ − ݕ݀ (ݕ)ܮܭ(ݕ
ܴ݊ 

                                             (111) 

Our goal will be to prove ܷ  is bounded on ܮ  with a norm independent of 

 under the hypotheses of Theorem (3.2.7) or (3.2.10). The next two lemmas ܮ

provide bounds on the |ܭఫభ,...,ఫ
  that allow us to prove such uniform |(ߦ)

bounds. 
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Lemma (4.2.3)[4]: Under the assumptions of Theorem (3.2.7), there is a 

constant ܥ >  0 such that if l is such that 2ି|ߦ| ≤  1, then 

หܭఫభ,...,ఫ
 ห(ߦ)  ≤ 2ିܥ   |ߦ| 

Proof. |ܭఫభ,...,ఫ
  is given by |(ߦ)

หܭఫభ,...,ఫ
 ห(ߦ) = න భ,...,ܭ

కభ௫భି...ିక௫ି݁(ݔ)  ݔ݀ 
ோ

                 (112) 

Since the integral of ܭభ,...,
ݔ in the (ݔ)  variable is equal to zero by (59), one 

can subtract ܭభ,...,
∑݁(ݔ) ିకೖ௫ೖೖಯ  from the integrand in (112) without 

changing the integral, so we have 

หܭఫభ,...,ఫ
 ห(ߦ) = න భ,...,ܭ

൫݁ିక௫(ݔ) − 1൯݁∑ ିకೖ௫ೖೖಯ  ݔ݀ 
ோ

    (113) 

Since |ߦݔ| ∼  2ି |ߦ|   ≤ (ݔ)భ,...,ܭ when ܥ  ≠ 0, in (113) one has that 

൫݁ିక௫ − 1൯  ≤ |ݔߦ|ܥ  < 2ି′ܥ   | and we getߦ| 

หܭఫభ,...,ఫ
 ห(ߦ) ≤ 2ି′ܥ  |ߦ|   න หܭభ,...,

 ݔ݀ ห(ݔ)
ோ

                (114) 

Using Lemma (4.2.2) we obtain the desired estimate 

หܭఫభ,...,ఫ
 ห(ߦ) ≤ 2ି′′ܥ   |                                            (115)ߦ| 

Lemma (4.2.4)[4]: Under the assumptions of Theorem (3.2.7), there are 

constants ߩ, < ܥ  0 such that if ݈ is such that 2ି |ߦ|   ≥  1, then 

หܭఫభ,...,ఫ
 ห(ߦ) ≤ ܥ 

1
2ି |ఘߦ|                                              (116) 

Proof. Let ߪଵ(ݔ) be a smooth increasing nonnegative function on Rା with 

(ݔ)ଵߪ = 1 for |ݔ| < 1 and ߪଵ(ݔ)  =  0 for |ݔ| >  2. Let ߪଶ(ݔ) =  .(ݔ)ଵߪ – 1

For a constant ߩ  >  0 to be determined by our arguments, for any fixed ݔ 

in the dyadic rectangle corresponding to (݆ଵ, . . . , ݆) we write 
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หܭఫభ,...,ఫ
 ห(ߦ) = න ଵߪ ቆ൫2ି |൯ߦ| 

 ఘబ  
|(ݔ)ܾ|
(ݔ)∗ܾ

ቇ భ,...,ܭ
కభ௫భି...ିక௫ି݁(ݔ)  ݔ݀ 

ୖ
 

+ න ଶߪ ቆ൫2ି |൯ߦ| 
 ఘబ  

|(ݔ)ܾ|
(ݔ)∗ܾ

ቇ భ,...,ܭ
 ݔ݀ కభ௫భି...ିక௫ି݁(ݔ)

ୖ
   (117) 

The first term of (117) is bounded by 

න หܭభ,...,
ห(ݔ)

ቄ௫:|(௫)|ஸଶ൫ଶషೕ  |క|൯
 ഐబ  ∗(௫బ)ቅ

                         (118) 

Using (57) and Lemma (4.1.1), we see that this term is at most ܥ൫2ି |ߦ|൯
ିഐబ

  

for some ݀, which gives the bound of the right-hand side of (116). 

Proceeding to the second term of (117), we integrate by parts, 

integrating the ݁ିకభ௫భି...ିక௫ factor in the ݔ  variable and differentiating 

the remaining factors. The resulting term is given by 

1
ߦ݅

= න ߲௫ ቈߪଶ ቆ(2ି |) ఘబߦ|   
|(ݔ)ܾ|
(ݔ)∗ܾ

ቇ భ,...,ܭ
(ݔ) ݁ିకభ௫భି...ିక௫  ݔ݀ 

ୖ
 (119) 

If the ݔ  derivative in (119) lands on the Kj1,...,jn(x) factor, one obtains a term 

which by (58) is bounded by 

 

ଵܥ
1

|ߦ| න 2ߪ ቆ൫2−݆݈  ห݈ߦห൯
0ߩ   

|(ݔ)ܾ|
ቇ(0ݔ)∗ܾ

1
|  R݊ݔ|

ଵିఋబି|(ݔ)ܾ|(ݔ)∗ܾ  (120)     ݔ݀ 

Due to the σ2 factor in (120), on the support of the integrand of (120) we 

have |ܾ(ݔ)|  ≥ ൫2−݆݈  ห݈ߦห൯ܾ∗(ݔ). Thus (120) is bounded by 

ଵܥ            
1

|ߦ| න ଶߪ ቆ൫2ି |൯ߦ| 
 ఘబ  

|(ݔ)ܾ|
ቇ(ݔ)∗ܾ

1
|  ோೕభ,…,ೕݔ|

 

൫2ି(ݔ)∗ܾ |൯ߦ| 
 ఘబ(ଵାఋబ)

 ൫ܾ∗(ݔ)൯
ିଵିఋబ݀(121)            ݔ 
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Here ܴభ,..., denotes the (expanded) dyadic rectangle-like set on which 

(ݐ)ଶߪ భ,..., is supported. Sinceܭ ≤ 1 for all ݐ, |ݔ| ∼ 2ି  on ܴభ,...,, and 

 on ܴభ,...,, (121) is bounded by ((ݔ)∗ܾ is within a constant factor of (ݔ)∗ܾ

ଶܥ ൬
1

2ି|ߦ|൰ ൫2ି |൯ߦ|
ఘబ(ଵାఋబ)

න ൫ܾ∗(ݔ)൯
ିఋబ݀ݔ

ோೕభ,...,ೕ

             (122) 

By Lemma (4.2.2) which applies to negative powers of the smaller function 

 we see that the above is bounded by ,(|(ݔ)ܾ|

ଷܥ ൬
1

2ି|ߦ|൰ ൫2ି|ߦ|൯
ఘబ(ଵାఋబ)

                                  (123) 

Thus so long as ߩ is chosen so that ߩ(1 + (ߜ < ଵ
ଶ
 for example, this term of 

(119) satisfies the bounds needed in this lemma. 

We now bound the term where the derivative in (119) lands on the 

ଶߪ ቀ൫2ି |൯ߦ|
ఘబ |(௫)|

∗(௫బ)ቁ factor. Observe that 

            ߲௫ ቌߪଶ ቆ൫2ି |൯ߦ|
ఘబ ห߲௫ܾ(ݔ)ห

(ݔ)∗ܾ ቇቍ 

= ± ቆ൫2ି |൯ߦ|
ఘబ |(ݔ)ܾ|

ቇ(ݔ)∗ܾ ଶߪ
ᇱ൫2ି |൯ߦ|

ఘబ |(ݔ)ܾ|
 (124)         (ݔ)∗ܾ

Since |ܾ(ݔ)| ≥ ൫2ି |൯ߦ|
ିఘబܾ∗(ݔ) in the support of the ߪᇱ factor, by (57), 

on the support of the integrand of this term of (119) we have 

หܭభ,...,
ห(ݔ) ≤ ସ൫2ିܥ |൯ߦ|

ఘబఋబ|ܾ∗(ݔ)|ିఋబ                         (125) 

As a result, the absolute value of the term of (119) in question is bounded by 

ఋబି|(ݔ)∗ܾ|ߜߩ(|ߦ|2ି)|ିଵߦ|ସܥ න อ߲௫ ൭ߪଶ ቆ(2ି|ߦ|)ఘబ
|(ݔ)ܾ|
ቇ൱อ(ݔ)∗ܾ ݔ݀

ோೕభ,...,ೕ

 (126) 
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We first integrate in the ݔ  variable in (126). By the hypotheses of Theorem 

(3.2.7) concerning zeroes of ߲௫ܾ(ݔ), for any fixed value of the remaining ݊ −

1 variables (outside a set of measure zero) the domain of integration in the ݔ  

variable can be written as the union of boundedly many intervals on which 

߲௫ ൬ߪଶ ቀ൫2ି  ቁ൰ does not change sign. Thus on each of(ݔ)∗ܾ|(ݔ)ܾ|ߩ|൯ߦ|

these intervals this derivative integrates back to the function. Since ߪଶ is 

bounded this means the ݔ  integrals in (126) are uniformly bounded in the 

remaining variables. Thus doing the ݔ  integral first and then integrating over 

the remaining variables shows that (126) is bounded by 

|ିଵ൫2ିߦ|ହܥ |൯ߦ|
ఘబఋబ|ܾ∗(ݔ)|ିఋబ2∑ ିಯ                          (127) 

Since ܾ∗(ݔ) ∼  on ܴభ,...,, (127) is bounded by (ݔ)∗ܾ

|ିଵ൫2ିߦ|ܥ |൯ߦ|
ఘబఋబ2 න ݔ݀ ఋబି|(ݔ)∗ܾ|

ோೕభ,...,ೕ

                    (128) 

As in (123), the integral in (128) is uniformly bounded and we obtain the 

bound 

൫2ିܥ |൯ߦ|
ఘబఋబ 1

2ିభ|ߦ|
                                          (129) 

So as long as ߩߜ < 1, we see from (129) that the term of (119) under 

consideration is also is bounded by the right-hand side of (116). We have 

now shown that the first term of (117) and each term of (119) all are 

bounded by the right-hand side of (116) and thus we are done with the proof 

of Lemma 4.4.  

Theorem (4.2.5)[4]: Suppose each polynomial ܾி(ݔ) only has zeroes of order 

less than ݀(ܾ) on (ܴ − {0}). Suppose also that there is a ܥ > 0 and a 

neighborhood ܷ of the origin such that for each ݈, there is a set ܼ ⊂ ܴିଵ of 
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measure zero such that the function ߲௫ܾ(ݔ) has at most ܥ zeroes in ܷ on 

any line parallel to the ݔ  coordinate axis whose projection onto the plane 

ݔ = 0 is not in ܼ. Then there is an ܴ > 0 such that if each ܭభ,...,
 satisfies (ݕ)

(18)−(20) and is supported on |ݕ| < ܴ, then there is a constant ܥ such that 

‖݂ܶ‖మ(ோ) ≤  .(ݔ)݂ మ(ோ) for all Schwartz functions‖݂‖ܥ

The condition concerning zeroes on lines parallel to the coordinates 

axes is needed for technical reasons in the proof. Note that this condition 

holds whenever ܾ(ݔ) is a polynomial, and it is not hard to see that it always 

holds in two variables, using the Weierstrass Preparation Theorem for 

example. We does not know if it holds for all real-analytic functions, so it is 

included as an assumption in Theorem (3.2.7) (and in Theorem (3.2.8) 

below). 

For  ≠ 2, we have a weaker statement. To motivate the statement of 

the theorem, in Lemma (3.2.7) and the line afterwards we will see that if 

each polynomial ܾி(ݔ) is nonvanishing on (ܴ − {0}), then there are 

constants ܥଵ and ܥଶ such that 

(ݔ)∗ଵܾܥ < |(ݔ)ܾ| <  (130)                                        (ݔ)∗ଶܾܥ

Hence in this situation (94) becomes 

ห߲௬ భ,...,ܭ
,ଵݕ) . . . , )หݕ < ଵܥ

ᇱ 1
|ݕ| ൫ܾ∗(ݕଵ, . . . , )൯ݕ

ିఋబ               (131) 

For the ܮ theorem, we need bounds on derivatives of higher order in order 

to apply the Marcinkiewicz multiplier theorem. Hence we assume that each 

భ,...,ܭ
,ଵݕ) . . . ,  such that for ܥ ାଵ function and there is a constantܥ ) is aݕ

any multiindex ߙ with 0 ≤ |ߙ| ≤ ݊ + 1 we have 

ห߲ఈܭభ,...,
,ଵݕ) . . . , )หݕ ≤ ܥ

1
ଵ|ఈభݕ|  . . . |ఈݕ|

൫ܾ∗(ݕଵ, . . . , )൯ݕ
ିఋబ         (132) 
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The condition (104) is motivated by the fact that by iterating (55), the bounds 

(104) hold for |ܾ(ݔ)|ିఋబ whenever each ܾி(ݔ) is nonvanishing on (ܴ −

{0}). 

The ܮ theorem is as follows. 

Proof : We will prove ܮଶ boundedness of ܷ  uniformly in ܮ by bounding the 

Fourier transform ܭ(ߦ) uniformly in ܮ and ߦ. Since หܭ(ߦ)ห =

∑ ఫభ,...,ఫܭ
 :ழ for all ∋(భ,...,)(ߦ) , we have the bound 

หܭ(ߦ)ห ≤  หܭఫభ,...,ఫ
 ห(ߦ)

(భ,...,)∈:ழ for all 

                  (133) 

We use the better of the two estimates from Lemmas (4.2.2) and (4.2.3) in 

each term of (133) then add the result. Let (݇ଵ, . . . , ݇) be the vector of 

integers such that for each ݈, 2  is the nearest power of 2 to |ߣ|. For any ܯ 

the number of (݆ଵ, . . . , ݆) such that max


|݆ − ݇| =  ,ିଵܯܥ is bounded by ܯ

and for each such (݆ଵ, . . . , ݆) Lemma (4.2.3) or (4.2.4) gives a bound 

หܭఫభ,...,ఫ
 ห(ߦ) ≤ ଵߩ for some ܯᇱ2ିఘభܥ > 0. Hence in (133) the sum over all 

terms with max


|݆ − ݇| =  ିଵ2ିఘభெ. Adding over allܯᇱᇱܥ is bounded by ܯ

  .gives a uniform bound and we are done ܯ

Theorem (4.2.6)[4]: Suppose each polynomial ܾி(ݔ) is nonvanishing on 

(ܴ − {0}). Suppose also that there is a ܥ > 0 and a neighborhood ܷ of the 

origin such that for each ݈, there is a set ܼ ⊂ ܴିଵ of measure zero such that 

the function ߲௫ܾ(ݔ) has at most ܥ zeroes in ܷ on any line parallel to the ݔ  

coordinate axis whose projection onto the plane ݔ = 0 is not in ܼ. Then 

there is an ܴ > 0 such that if each ܭభ,...,
 satisfies (57), (67), (59) and is (ݕ)

supported on |ݕ| < ܴ, then if 1 <  < ∞ there is a constant ܥ such that 

‖݂ܶ‖(ோ) ≤  .(ݔ)݂ (ோ) for all Schwartz functions‖݂‖ܥ
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Going back to the examples preceding (59), in the first example where 

(ݔ)ܾ = ଵݔ
భ  . . . ݔ

 eachkernel  (ݔ)ܭ =

(−1)௦(௫భ)ା...ା௦(௫)߶(ݔଵ
ଶ, . . . , ݔ

ଶ)|ܾ(ݔ)|ିఋబ will be covered by Theorems 

(3.2.1) and (3.2.2). As for the second example where ܾ(ݔ) = ଵݔ)݂
ଶ, . . . , ݔ

ଶ), 

the maximum order of any zero of any ܾி(ݔ) on (ܴ − {0}) is the same as 

the maximum order of any ி݂(ݔ) on (ܴା). So when this quantity is less than 

݀(ܾ) = 2݀(݂),  will fall under the conditions of Theorem (3.2.7). When (ݔ)ܭ

each ி݂(ݔ) is nonvanishing on (ܴା), then (ݔ)ܭ will fall under the conditions 

of Theorem (3.2.8) as well. 

Proof : We will make use of the Marcinkiewicz multiplier theorem (see 

Theorem 6’ on p.109 of [S]), which implies that ܮ bounds on ܷ  that are 

uniform in ܮ will follow if we can show that there is a constant ܥ such that for 

each multiindex ߙ with |ߙ| ≤ ݊ and each ܮ we have the estimate 

หߦଵ
ఈభ  . . . ߦ

ఈ߲ఈܭ(ߦଵ, . . . , )หߦ ≤  (134)                                ܥ

Returning to the ݔ variables, this will follow as in the proof of Theorem 

(3.2.7) if we can show that for each multiindex ߙ with 0 ≤ |ߙ| ≤ ݊ the kernel 

߲ఈ ቀݔఈܭభ,...,
 ቁ satisfies the conditions of Lemmas (4.2.3) and (4.2.4). But(ݔ)

the fact that (67) holds for ܭభ,...,
 immediately implies that (67) also holds (ݔ)

for ߲ఈ ቀݔఈܭభ,...,
 ቁ. The cancellation condition (59) also holds for(ݔ)

߲ఈ ቀݔఈܭభ,...,
 it can be shown ߙ ቁ; if the xl variable is not represented in(ݔ)

by multiplying (59) through by ݔఈ  and then applying ߲ఈ  under the integral 

sign, while if the ݔ  variable is represented in ߙ, then the integral (59) is zero 

simply because one is integrating the derivative of a compactly supported ܥଵ 

function. Hence each kernel ߲ఈ ቀݔఈܭభ,...,
 ቁ satisfies Lemmas (4.2.3) and(ݔ)

(4.2.4) and Theorem (3.2.8) follows. 
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