Chapter 3

Singular Integral Operators

We will see that some of our proofs immediately extend to analogues

of Radon transforms for such singular integral operators.

Section (3.1): Introduction and Theorems in the Multiplicity One Case:
Let n > 2 and let b(x) be a real-analytic function on a neighborhood of
the origin in R™ with b(0) = 0. By resolution of singularities, there is a

number 6, > 0 such that on any sufficiently small neighborhood U of the

origin, [, f|7% = oo for § = &, and [, |f|7® < oo for § < &,. The number
&, IS sometimes referred to as the “critical integrability exponent” of f at the

origin.We consider operators of the form

TF(x) = j (& = Yal y)mG)bG) | ody (39)
RTL

Here a(x,y) is a Schwartz function, and m(y) is a bounded real-valued
function on a neighborhood of the origin such that m(y)|b(y)|~% satisfies
natural derivative and cancellation conditions deriving from b(y) that allows
T to be considered as a type of singular integral operator. The focus will be to
determine the boundedness properties of such T on LP spaces for1 <p <
o0. Most of our results will concern the L? situation. As we will see, the
operators we will consider with generalize local singular integral operators
such as local versions of Riesz transforms, and also classes of local
multiparameter singular integrals.

We will see that some of the proofs immediately extend to analogues

of singular Radon transforms for such singular integral operators. Namely,
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results will cover some operators of the following form, where x € R™ and h
is a real-analytic map from a neighborhood of the origin in R™ into R™ with
h(0) = 0.

T'f(x) = j £ (x — h())alx, Y)mG)bG)|Hody (40)
RTL

To help define what types of kernels we allow, we now delve into the
resolution of singularities near the origin of a real-analytic function b(x) with
b(0) = 0. For this we use the resolution of singularities theorem, but other
resolution of singularities theorems including Hironaka’s famous work can be
used in similar ways.

By [G1], there is a neighborhood U of the origin such that there exist
finitely many coordinate change maps {5;(x)}!2, and finitely many vectors
{(m;1,...,my)PL, of nonnegative integers such that if p(x) is a nonnegative
smooth bump function supported in U with p(0) # 0, then p(x) can be
written in the form p(x) = Y™, p;(x) in such a way that each p; o B;(x),
after an adjustment on a set of measure zero, is a smooth nonnegative bump
function on a neighborhood of the origin with p; o 5;(0) # 0. The
components of each B;(x) are real-analytic. In addition, g; is a bijection from
{x :p;oBi(x) #0,x; # 0forall i} to {x:p;(x) # 0} — Z; where Z; has
measure zero, and on a connected neighborhood U; of the support of p; o
Bi(x) the function bo B;(x) is well-defined and “comparable” to the
monomial xfl & . x,™ meaning that there is a real-analytic function c;(x)
with [c;(x)] > € >0 on U; such that b o B;(x) = ¢;(x)x;"™ ... x;"™ on Uj.

This decomposition is such that the Jacobian determinant of B;(x) can be
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written in an analogous form d; (x)xe‘1 ...xfli” on U;; again the e;; are
integers and |d;(x)| > e >0on U,.

In view of the above, one has

j eI Sp(x)dx—z [ 1bGI201Gx)d

i=1Rn
Z [ 160 B2 (e o Bi) it . x| (41)
i=1Rn
Z [ el [dutang e oo (oo i) dx (42)
i=1Rn

Since p; o 5;(0) # 0, the ith term of the sum (4) is finite if each —&m;; +

> —1: that is, if § < S

€ij —— Thus the number &, is given in terms of the
ij
resolution of singularities of b(x) by |nf Zzﬂ
ij

Definition (3.1.1)[3]: The multiplicity of the critical integrability exponent §,

of b(x) at the origin is the maximum over all i of the cardinality of

.. eij+1 _
b= oof

One example of the significance of the multiplicity is as follows. Let B,

denote {x € R™ : |x| < r} and let m denote the multiplicity of the exponent
8, for b(x) at the origin. It can be shown that if » > 0 is sufficiently small
then as e — 0 one has asymptotics of the form

{x € B, : [b(x)| < €}| = c,e®(Ine)™ ! + 0(edy(INe)™ ™)  (43)
Here ¢, > 0. One obtains analogous asymptotics for various oscillatory
integrals associated with b(x). Note that (5) shows that the multiplicity is

independent of the which resolution of singularities process is being used.
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Let b(x) be a real-analytic function on a neighborhood of the origin,
not identically zero, with b(0)=0. Let p) {5, and
{(m;1,...,my,)HL, be as above. We will define singular integrals associated
to b(x) as follows. For a given i, we move into the "blown-up” coordinates

determined by p;(x) and define a type of singular integral that is of

mi; Mmin |_60

magnitude bounded by C|x o X, , with corresponding bounds on

first derivatives, which is supported on the support of p; o B;(x). An
appropriate cancellation condition will be assumed that will ensure that the
kernels are distributions. A singular integral associated to b(x) will then be
defined to be a sum from i = 1 to i = M of the blow-downs of such singular
integrals into the original coordinates.

Specifically, we consider k;(x) = Z(h iyezn ki, i (x), where for

[277t, Cy277] for all 1}, and satisfies

|ki,j1 ----- jn(x1! e xn)| << Co|xml1 x:lnin|—60 (44)

We also assume that foreachl = 1,...,n we have

-

mi; Min
Co|x e Xy

0.k j, . (g xn)|<Co (45)

The cancellation condition we assume for the multiplicity one case is that for

e+l __

some €, > 0, whenever i and [ are such that = §, (the minimum

my;

possible value), then where Jacg, (x) denotes the Jacobian determinant of g;

we have

jki,jl ..... ju 1y ) ac Cey, oy xn)dog | < Co27 00 (46)
R
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To ensure that our singular integrals are well-defined, we also assume that

the support of k; ; : (x) is contained in that of p; o 5;(x). We next make

the following definition.
Definition (3.1.2)[3]: If b(x) has multiplicity one at the origin, we define a

singular integral kernel associated to b(x) to be a function K(x) of the form
K(x) =", pi(x)k; (,Bi'l(x)), where k; satisfies (6)-(8) and the support
condition stated afterwards.

One can simply explicitly construct K (x) satisfying Definition (3.1.2) for
any given b(x) with multiplicity one at the origin, but a familiar example can
be derived from local Riesz transforms:

Example (3.1.3)[3]: Let L(x) be the local Riesz transform kernel given by

X]

o (x) pTES for a cutoff function ¢(x) supported near the origin. Then L(x)

satisfies Definition (3.1.2) for b(x) = x2 + --- + x2. Here §, = Z For one can

write L(x) = Y1, L;(x) where L;(x) is supported on a cone centered at the
x;-axis. Then if B;(x) = (ejxq,. .., x;%;_1, Xi, XiXit1, .-, X; X, ), the functions
L; o 5;(x) will satisfy (6)(8) with x;"® ... x;"™ = x; ™. Nonisotropic versions
of L(x) will satisfy Definition (3.1.2) for b(x) of the form xlzk1 + -+ x,zlk” for
positive integers k4, ..., k.

Each K (x) satisfying Definition (3.1.2) can be viewed in a natural way
as a distribution as follows. Let k;; (x) denote the truncated version of k;(x)
given by

kiL(x) - z ki,j1 _____ ]n(X) (47)
UprJn)EZ™: ji<L for all l
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Define the corresponding truncated K;(x) by K;(x) = 1 K. (x), where
K (x) = p;(x)k;; (,Bi‘l(x)). Note that K;(x) is a smooth compactly

supported function. If ¢(x) is a Schwartz function, then one has

M
| KoGrdx =" [ ok (67 ) pG)dx

RN i=1Rgn

M
= z j(Pi o ﬁi(x))kiL(x)]acﬁi(x)(cp ) ﬁi(x))dx (48)

i=1Rgn

= Z ] Z (pi © Bi(x)) k..., ()] acg (x) (¢ o Bi(x))dx (49)

i=1 Rn (jyujn)i<L for all 1
Let ;(x) = (p; © Bi(x))(¢ o B;(x)). Then ;(x) is a smooth compactly
supported function. Note that we do use the fact from that the function
B;(x) is defined and smooth on a neighborhood of the support of p; o ;(x)
so that there are no issues concerning the smoothness of ¢ o 8;(x) on the

boundary of the support of p; o B;(x). Thus we can rewrite the expression

(1) for [, K, (x)¢(x)dx as

M
= Y ke h@ag@n@ds (60)
=1 g% (jyjn) i<l for all

-

If i is such that |xm‘1. . m‘”| |]acﬁ (x)| |xm‘1. Lxtin

€i1 em|
n X, .

N is

integrable on a neighborhood of the origin, then by (6), the form of the ith
term of (12) ensures that the kernel K;; (x) is a distribution that converges as

L — oo to a finite measure which we denote by K;(x).

mi; Mmin |

Next, we show that for the i for which |x;"*...x,, |]acﬁ (x)| is
not integrable, the cancellation condition (8) ensures that such an K;; too

converges as L goes to infinity in the distribution sense to some K;(x). We
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will then define K(x) = 3, K;(x). To see why this is the case, note that
since b(x) has multiplicity one, for each such i there is exactly one value [,

ejlpt1 ej+1

for which = §,, and > §, for all other values of . Write y;(x) =

mjy, my
Wi(xy, ... X1,-1, 0, X 411 X ) + x1,i (%1, ..., %), With &; smooth.
The ith term of (12) can be written as the sum of two terms. In the
first, ;(x) is replaced by ;(xy,...%x;,-1,0,%; 41,...,%,) and in the second

Y;(x) is replaced by &;(x) and k; ;. j. (x). The second

term is handled exactly as we handled the terms for which

my, |—50|
n

|7 x Jacg, (x)| is integrable since the additional x; factor causes
us to once again have absolute integrability of the limiting kernel. As for the
first term, we perform the x,; integration first in the ith term of (12). The
cancellation condition (8) implies that the limiting kernel of the result of this
integration is similarly absolutely integrable in the remaining n — 1 variables,
and thus the limit again defines a distribution.

Thus we see that K;(x) is a well defined distribution for all i and
therefore K(x) = YM,K;(x) gives a well-defined distribution. Hence if

a(x,y) is a Schwartz function on R™™ and f(x) is a Schwartz function on
R™ then Tf(x) = fRnf(x —y)a(x,y)K(y)dy is well-defined. If for some

1<p<o and some constant C the operators T,f(x) = fRnf(x—
y)a(x,y)K, (y)dy are such that ||T;||.»_»p < C for all Schwartz functions f
and all L, then an application of the dominated convergence theorem gives
that one also has ||ITf || »zn) < ClIflL»&ny for all Schwartz functions, for the
same constant C.

The first theorem is simply that T is bounded on L2(R™).
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Theorem (3.1.4)[3]: Whenever the critical integrability exponent of b(x) at
the origin has multiplicity one, then there is a neighborhood U of the origin
such that if K(x) is supported in U, there is a constant C such that for all
Schwartz functions f (x) one has ||Tf1l;2zny < CIIf |2 (rm)-

It turns out that it is no harder prove L? boundedness for singular
Radon transform generalizations of T. Namely, let K(x) be as above, and let
h,(x),..., h,,(x) be real-analytic functions on a neighborhood of the origin in
R™ with h;(x) = 0O for all i. Let a(x,y) be a Schwartz function on R™ x R™,

Then for a Schwartz function f(x) in m variables, we define T' f (x) by

T'f(x) = j FGn = ). X — b)) KDy (51)
RTL

The operator T above corresponds to m = n and h;(y) = y; for all i. We

have the following theorem.

Section (3.2): Theorems when the Multiplicity is Greater than One

When the critical integrability exponent §, has multiplicity greater
than one at the origin, the coordinate changes B;(x) used in the multiplicity
one case will lead to trying to prove L? boundedness of an operator that
resembles a multiparameter singular Radon transform, rather than a (one-
parameter) singular Radon transform. Unfortunately since the B;(x) here
involve blowups, one often ends out with a multiparameter singular Radon
transform that is not bounded on L?. As a result, instead of trying to find a
general correct notion of singular integral and prove a general result, when
the multiplicity is greater than one we will focus on theorems that can be

proven in the original coordinates.
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One can often determine the criticial integrability exponent of a

function at the origin and its mutliplicity through the use of Newton
polyhedron of the function. We turn to the relevant definitions.
Definition (3.2.1)[3]: Let b(x) be a real-analytic function with Taylor series
Y.a bax® on a neighborhood of the origin. For each a for which b, # 0, let
Q, be the octant {t € R™ : t; > «; for all i}. The Newton polyhedron N (b) of
b(x) is defined to be the convex hull of all Q.

A Newton polyhedron can contain faces of various dimensions in
various configurations. The faces can be either compact or unbounded.
We consider each vertex of N(b) to be a compact face of dimension zero.
Definition (3.2.2)[3]: Let F be a compact face of N(b). Then if b(x) =
Y. b,x* denotes the Taylor expansion of b like above, we define bz (x) =
Yiaer bax®.

We will also use the following terminology.

Definition (3.2.3)[3]: Assume N(b) is nonempty. Then the Newton distance
d(b) of b(x) is defined to be inf{t : (¢t,¢t,...,t,t) € N(b)}.

Definition (3.2.4)[3]: The central face of N(b) is the face of N(b) of minimal
dimension intersecting the line t; = t, = -+ = t,,.

In Definition (3.2.4), the central face of N(b) is well-defined since it is
the intersection of all faces of N(b) intersecting the line t; = t, = --- = t,,.
An equivalent definition that can be used is that the central face of N(b) is
the unique face of N(b) that intersects the line t; =t, =+ =t, in its
interior.

We showed that if the zeros of each bz(x) on (R — {0})" are of order

less than d(b), then the critical integrability index &, is equal to $ and the

multiplicity is equal to n minus the dimension of the central face of N(b).
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This can be used to compute §, and its multiplicity for specific
examples of interest, such as in the following two examples Suppose b(x) =

-1
xfl + .o +xﬁ” with each k; even. Then §, = (ki+ +ki) and m = 1.

1 n

On the other hand, if b(x) = xil + -+ x,ll” then 6§, = @ and m is equal

to the number of times k that max {; appearsin{l,,...,[,}. Forin the former
l

case the line t; =--- =t, intersects N(b) in the interior of the n—1

dimensional face with equation ;—1 + e+ ]i—” = 1, while in the latter case the

1 n

line t; = --- = t,, intersects N(b) in the n — k dimensional plane determined

by the equations t; = max [; for all [ such that [ = max [;.
l l

In order to understand the behavior of functions satisfying the finite-

type condition, it is often helpful to consider the function b*(x) defined by

tn

b*(x) = z EEE (52)
(vq,..v) avertex of N(b)

There is a constant C such that for all x one has |b(x)] < Cb*(x). In Lemma
(4.2.1) we will see that given any § > 0 there is a §' > 0 such that |b(x)| >
8'b*(x) on a portion of any dyadic rectangle with measure at least 1 — §
times that of the rectangle. Hence |b(x)| ~ b*(x) except near the zeroes of
|b(x)|.

Next, observe that the Newton polygon of any first partial d,,b(x) is a
subset of the shift of N(b) by —1 units in the x; direction. Hence the above

considerations tell us that
1
|0,,b(x)| < Cmb*(x) (53)
l

If b(x) # 0, we also have

51



1
|0, (I(x)[~%0)| < Cmb*(X)Ib(X)I'l"S0 (54)

Singular integrals when the multiplicity is greater than one.

When the multiplicity is greater than one, the class of b(x) where we
will prove L? boundedness of associated singular integrals are the b(x)
analyzed that were discussed above (52). Namely, using the terminology of
Definitions (3.2.1)-(3.2.4), we will assume that for each compact face F of

N(b), each zero of each bz(x) in (R — {0})™ has order less than d(b). As

mentioned above, in this situation we have §, = Note that our

1
a)
theorems do not require the multiplicity to be greater than one, and in fact
the theorems here will include some multiplicity one operators not covered
by Theorem (3.1.4).

In the situation at hand, we define a singular integral associated to
b(x) as follows. Let a(x, y) be a Schwartz function on R™*™. We will consider

kernels of the form a(x,y)K(y), where K(y) is as follows. We assume that

LRRCTRNE Rt LICONEA (55)

Motivated by (17), we also assume that if b(y4,...,y,) # O then for each [

we have

1
yiKis..., jn(yl""’yn)|<Clmb*(yl,---,yn)lb(yl,...,yn)l‘l“s(’ (56)

We further assume the cancellation conditions that for each [ we have

G

j K. 01 y)dy, =0 57)
R
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In Lemma (3.2.7),we will see that in the settings of our theorems (Definitions
(3.2.1) and (3.2.2)) each K; i (v1,...,¥,) is integrable, so (57) makes sense

if we assume it holds whenever K; : (y;,...,¥,) is integrable in the y,

[2771, €271 x - x [27/n,€;27/7] i not contained in a certain
neighborhood of the origin to be determined by our arguments.

Some motivation for our definition of a singular integral associated to
b(x) is the fact that for traditional multiparameter singular integrals, often a
sufficient and necessary condition for LP boundedness is that the kernel be
expressible as a dyadic sum of terms satisfying standardized estimates as well

as a cancellation condition.

Example (3.2.5)[3]: Let b(x) = x;* ... x," for nonnegative integers a,, ..., a,

1 .
~a here. If ¢(x) is a cutoff

with at least one a; being nonzero. Then §, = -

function supported on a sufficiently small neighborhood of the origin,

K(x) = (—1)s9nGe)+4sgnlen) gy (52 x2)|b(x)]| "% will satisfy (55)-(57).

1

1.

In particular, K (x) = (—1)59nG)++sgnlen) gy (52 x2)

gualifies.

Example (3.2.6)[3]: Let f(xq,...,x,) be any real-analytic function with
f(0,...,0) =0, and let b(x) = f(x%,...,x2). Then if ¢(x) is a cutoff
function supported on a sufficiently small neighborhood of the origin,
K (x) = (—1)s9nbeo+-tsgnlbend g (x2, .., x2)|b(x)| % will satisfy (55)-(57).
For a fixed value of x, the function a(x,y)K(y) can be viewed in a
natural way as a distribution in the y variable as follows. This will resemble

the discussion following (47). Let K;(v) = X <L for a1 Kj,,..j,(v) and let

¢ (y) be a Schwartz function. Then
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j () K, () () dy

RTL

:f z Ki i Malx,y)o(y)dy;...dy, (58)

o j<LSoranl
Let 0,(y) = alx,y)p(y). Then we may write o,(y) = 0,(0,y;,..., ) +
y1&(y1,. .., yy) for some smooth &,.(y;4,...,¥,). Then the right-hand side of

(58) can be rewritten as

I<j1 !!!! jn(yl’""yn)o-x(oly21"-1yn)dy1...dyn

R" ji<L foralll

+f z Ky g1 ¥dy18 s v)dys. . dy, (59)

R" ji<L foralll
Because of the cancellation condition (20) in the y; variable, the first integral

of (59) is zero. We next similarly write &, (yq,...,y) = &1, 0,y3, ..., y) +
v,&(y1, ..., v,) and insert it into (59), obtaining

Ki .01, YY1Y2sx (s yaddyy. . dyy (60)

R" ji<L foralll

Going through all the y; variables in this way, we see that

Jeon @G, Y)K, (¥) 9 (y)dy is equal to an expression

Ki i O ydviyaen, o yn)dys. . dy,  (61)

Rn ji<L for alll
Here n,(y1,...,y,) is smooth in both the x and y variables. We will see in
Lemma (3.2.7) that the condition on the order of the zeroes of the functions
br(x) on (R —{0})" implies that the integral of |b(x)|~% over any dyadic

rectangle in U is wuniformly bounded. Thus (55) implies that
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naturally a distribution in y when K(y) is supported in U if its action on ¢ (y)
Is given by

(a(x, y)K(), ¢ (»))

=f z Ki i Ouay)dvaye o Yl (nn- o ¥n)dys. . dyy (62)
R7 (jy,n)EZT

One can then use (61) to define Tf(x) = fRnf(x —yalx,y)K(y)dy for
Schwartz functions f, and then examine boundedness of such integral
operators on LP spaces. We have the following theorem in this regard for

p = 2.
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Chapter 4

Kernels Associated with Negative Power of Real-Analytic Functions
We determine the bounded properties L? spaces for 1<P<a and we
will generalize local singular integral operators such as local revisions of Pierz
transforms
Section (4.1): Proofs of Theorems When the Multiplicity is Equal to One:
Since Theorem (3.1.4) is a special case of Theorem (3.1.5), we prove Theorem
(3.1.5).
Theorem (4.1.1)[4]: Whenever the critical integrability exponent of b(x) at
the origin has multiplicity one, then there is a neighborhood U of the origin
such that if K(x) is supported in U, there is a constant C such that for all
Schwartz functions f (x), one has [|IT'f [ ;2(gmy < ClIf Il 2rm)
To give a rough idea of how our proofs will work, note that (50) can be

written as

M
z j flxr = h ) xm = iy () (e, ) i (1) (ﬁi_l(y)) dy (63)

i=1Rn
Let T; be the operator corresponding to the ith term of (51). Doing a change

of variables from y to B;(y) in the integral of (51) leads to

Tf (x) = j F(1 = hy o Bi3)revs X — om0 B3 B (3))
RTL

(pi ° Bi)ki(y)]acg,(y)dy (64)
T; is a sort of singular Radon transform with kernel a(x,B;())(p; °
B; ()’))ki()’)]acﬁi (y), which we will be able to analyze by reducing to singular

Radon transform estimates.
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Proof: Theorem (3.1.5) will follow if we can prove each that for each i there
is a constant C such that ||T;f|l;z(gmy < ClIf|l;2¢gm) for all Schwartz

functions f(x). Here T; is as in (53). Let m;; and e;; be the monomial

1+eij for

exponents of b o B;(x) and Jacg,(x) as before. If i is such that §, <

mij

each j, then the kernel of T; is absolutely integrable and L? boundedness is

immediate. Thus it suffices to consider only the i for which there is some [ for
+e;;

which 6, = 1m— Since we are assuming b(x) has multiplicity one, there will
il

only be one such [ for each such i. Writing h o 8;(y) = (hy o ;(¥),..., Ry ©

B;i()), can be rewritten as

Tf (x) = j £(x— ko B))a(x B (p: o Bk acg (v)dy (65)
RTL

It is more convenient for our proofs that there be no nonzero A such that A -
(h o B;(y)) is a linear function of y. This can be accomplished as follows. If
there is a nonzero A such that A - (h ° ,Bi(y)) Is the zero function, then on
each hyperplane orthogonal to 4, the operator T; restricts to an operator of
the same type as T; here, except the ambient space is of one lower
dimension. Repeating as necessary, we may assume that A - (h ° ,Bi(y)) IS
never the zero function for any nonzero A. It is worth mentioning that we are
using the fact that h o B;(y) extends to a connected neighborhood of the
support of p; o B;(y) to ensure we don’t have different functions on different
connected components to worry about.

One can further ensure that 1 - (ko B;(y)) is never linear by letting
vy, ... ym) = (Z3,..., 23) with the corresponding change from £;(yy, ..., V)

to Bi(z) = Bi(z3,...,z3). The exponents m;; and e; can change, but
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(44)-(46) and the other properties from resolution of singularities that we
are using will still hold. Thus in the following, without loss of generality we
will always assume that we are working in a situation where A - (h o B (y)) IS

not linear for any nonzero A.

defined by

Tof(x) = ] £(x = ho B0 (x Bi3)) (s © B3k (W acs, () dy (66)

In order to prove Theorem (3.1.5), it suffices to show that T;; is bounded on
L? with bounds uniform in L. We can reduce to the case where (pi °
B:))a(x,B:(y)) is replaced by a function of y (i.e. the operator is
translation-invariant) through the following lemma.

Lemma (4.1.2)[4]: Define U;;, by

U f(x) = j £(x = ho B0k ) acs, () dy 67)
RTL

If there is a constant C depending on b(x) (and the resolution of singularities
procedure we are using on it), h,(x),..., h,,(x), and the constant C, of
(44)-(46), such that [|U; ]|, < CIIf|l, for all Schwartz f and all L, then there
is a constant C’ such that ||U;.f]l, < C'||f]l, for all Schwartz f and all L.

Proof. Let y(x,y) be the Schwartz function (p; o 5;(¥))a(x, B;(v)). We use

the Fourier inversion formula in the x variable and write

y(x,y) = f 7(t, y)ettrxat-FitmXm gy (68)
Rm

Here (¢, y) refers to the Fourier transform in the x variable only. If f and g

are Schwartz functions then [ en Lirf (x)g(x)dx is equal to
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j l j j f(x = ke Bi)7(t, )k ()] acp, (v)dy
R

x (eit1x1+“'+”mxmg(x)) dx|dt (69)

Stated another way, let U;; ; denote the operator

Upef (x) = j f(x = ho Bt NkuOacs,(Ddy  (70)
RTL

Then fRn T;.f (x)g(x)dx is equal to

[ [ sy > (eteveesienring 2)) axa (71)

R™ RM
Since 7(t,y) is Schwartz, under the assumptions of this lemma there is a

constant K such that

1
WUiLell e (rry—1p(rm) < K T+ ]mt (72)
Thus by (72) and Holder’s inequality we have
1
| Tureg@ax < Kifllgly [ rmerde (79)
R™ R™

Thus the T;; are bounded on LP uniformly in L and we are done with the
proof of Lemma (4.1.1).
We now proceed to proving uniform bounds on the U;; . Taking Fourier

transforms, we get

0.1 = f() f e A (B, (y)Jacy, (y)dy (74)
RTL
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Hence in order to prove Theorem (3.1.5), it suffices to show that there is a

constant C such that |B;; (1)| < C for each i, L and A, where

Ba) = [ e BNy ()ac, ()dy (75)
R‘)’L
Without loss of generality, to simplify notation in the following we will

1+ej;

assume that the [ for which §, = Is [ = 1. Next, we write the factor

mi
kit(y)Jacg (y) in (75) as Y Pim1(¥), Where we add over the dyadic
pieces in the y,,...,y, variables to form p;,,; (y):

pimL(y) = z ki’m’jzp__’jn(y)]acﬁi(y) (76)
Uzrnjn):1<L for all I>1

Then (44) implies the estimates

—8omyytejq

Dim W] < Cly, | o |y |~ Oomin* ein (77)
Similarly, (44)-(45) implies that for each [ we have

1
|ayl pimL(y)| < CW |yl|_60mi1+ei1 s |yn|_60min+ein (78)

The cancellation condition (46) gives

jpimL()’L---’Yn)d)ﬁ < (27 c™m (79)
R

Note that - 6,m;; + e;; = —1 here, while the other exponents are all greater
than —1. If one changes variables y, =z ,in (75) for some [ > 1, instead of
having a factor |y, |~%o™i*€u in (77)-(78) one has a factor of |z;|(-Somu+enN,
One also gains an additional factor of N|z/|Y~! from the Jacobian of the
coordinate change. Thus overall one has a factor of |z;|(-%o™uteutDN-1
Since —6,m;; + e; = —1, if N is large enough this factor will be bounded by

just |z;| and thus one can remove the y, variable from (77)-(78). Stated
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another way, if one changes y, = z! for all [ > 1 (making N odd to ensure

it’'s a one-to-one map), (75) becomes

Bu@) = | e 0Pt lg, ()dz (80)
R‘)’L
Here q;;,(2) = Xm<s Qim1(2), Where gy, (2) satisfies
1gim(2)] < Clz;|7* (81)

|621QimL(Z)| < Clle_z, vi> 1|azl‘JimL(Z)| < Clle_l (82)

jqimL(zlw--’Zn)dzl < (27 ¢ (83)
R

Letting f;(z) = h o B;(z,,2Y,...,ZY), (80) becomes

By, (1) = j em'fi(z)QiL(Z)dZ (84)
Bn

In view of the discussion above (84), we may assume that A - f;(z) is not
linear for any nonzero A. Therefore, writing 1 = |1|w for w € S™71, by a
compactness argument on ™1 x supp(q;,), we may restrict consideration
to w to a small neighborhood N in S™~1 and replace g;; (x) by o(x)q; (x)
for a function a(x) supported on a ball B(x,,r,) on which there isan e > 0
and a single directional derivative a, such that |0%(w - f;)(z)| > € on
B(x,,1,) for some a = 2. We can do this in such a way that v has a positive

x; component. Thus if X denotes the first component of x,, for w € N we are

attempting to bound fRn-1 D (A, 2y,...,2,)dz,...dz,, Where

Di(zy ... 2,) = j el FO(E222)+0) (5, 2,, .. 27) + tv)
R

% qi (%22, 2) + tv)dt (85)
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Thus to prove Theorem (3.1.5), it suffices for our purposes to bound
D;;. (4, 25,...,2,) uniformly in L, A, z,,..., z, for w € N. For this, it suffices to

bound D (4, 4,23, .., z,) uniformly in L, A, 4, z,, ..., z,, for o € N, where
Dyu(A Az 2,) = j M@ )@z z)+ o)+t G5 ((%, 7, .. 2,) + tv)
R

% qi (%22, 2) + tv)dt (86)
But similarly to (74)-(75), such uniform bounds for D;; (1, 4, z,, ..., 2y,)
follows from uniform boundedness on L? of the singular Radon transforms

along curves in R? of the form

Uiszz...znf(xsz) — j f (X1 —t,X; — (w 'fi)((f,Zz, o .,Zn) + tv))

R
xo((x, 25 ...,2,) + tv)qy ((%, 25, ..., 2,) + tv)dt (87)
Note that
|QimL((f,Zza o Zp) + tv) - QimL((f, Zy, .. Zn) + (14,0, .. -,O))|
< Clt] max Sl;p|azl‘JimL(Z)| (88)
By (82), since |t] < C?~™ and |z,| ~ 27™ we have

|9 (X 22, 2) + V) = Qi (%, 22, ..., 20) + t(v1,0...,0))| < €' (89)

Hence by the cancellation condition (47) one has

j qimL((f, Zoy... ,Zn) + tv)dt < ("D~ €om (90)
R

Since a((%,23,...,2z,) + tv) = 0(X,23,...,2,) + 0(|t]), using (81) one also

f o((x, 25, ..., 2) + tV) Qs ((%, 23, ..., 2,) + tv)dt < C""27%™ (91)
R
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In other words, we have a cancellation condition in (87) derived from (83).
The constant €' in (91) depends on b(x), h,(x),..., h,,(x) and the constant
C of (81)-(83), which in turn depends on b(x) and the constant C, of
(44)-(46).

The arguments of [G3] provide L? bounds for the operators
ULwz,...z, under the assumptions (81)-(83) and a lower bound on
|0%(w - f;)(z)| that are uniform in L, w,z,,...,z, for w € N. (A slightly
stronger cancellation condition is assumed but (83) suffices). This is because
the bounds obtained in [G3] are at least as strong as the bounds obtained
when the convolution is over the curve (¢, t%), in which case the bounds can
be expressed in terms of the constant C of (81)-(83), the constant €'’ of (90),
and the function h o B;(x). For the ball B(x,,1,) on which o(x) is supported,
how small r, needs to be for the uniform bounds to hold will also be uniform
in the various parameters but may be smaller than the r, we originally
selected. However, this can be corrected by writing o(x) as a finite sum of
bump functions with smaller support if needed. This completes the proof of

Theorem (3.1.5).

Section (4.2): Proof of Theorems when the Multiplicity is Greater than One:
We start with some facts from [G1] - [G2] which will help us the understand
the distribution function of b(x) and related properties of integrals of
|b(x)|~%. The constructions in [G1] are slightly better for our purposes so
we bring our attention to them. if U is a sufficiently small neighborhood of
the origin, up to a set of measure zero one may write U = U, U; as a finite
union of open sets such that the following hold. Each U; is contained in one
of the 2n octants determined by coordinate hyperplanes. For each i, there is

some integer 1 <k; <n and a function y; : R® - R™ such that each
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component of y;(x) is plus or minus a monomial and y; ! (U;) satisfies the
following. If k; < n, then there are cubes (0,7;)% and (0, n; )% with n; >
n; and bounded open sets 0; c O; whose closures are a subset of {x €
R™ ki : x, > 0forall I}, such that
(0,n)f > 0; eyt (U) < (On)s x0; (92)
If k; = n, then there are cubes (0,n;)% and (0,7} )* with n; > 5, such
that
0,k cy7t (U) < (0,7 )k (93)
In either case, there is a monomial m; (x4, ..., x,,) and constants C;, C/ such
thatony;* (U;) one has
Cimy(xq,.. X)) < |b° vi()| < Cimy(xq,.. xi,) (94)
If k; = n, then (94) holds with b* o y;(x) replaced by b o y;(x) If k; < n,
then on y; "(U) the function b o y;(x) can be expressed as m;(xy,..., xy,)
gi(x;, ..., xn) where m;(xy,...,x,,) is @ monomial and where g;(x;,...,x,)
satisfies the following. One may write y; *(U;) = U].Mzi1 V;; such that for each
i and j there is an € > 0, a compact face F; of N(b), and a directional
derivative 9, in the last n—k; variables, such that| afjjf 9;(xq, ... x0)| >
e on V;; for some a;; = 0, which is at most the maximum order of any zero
of bg(x1,...,x,) On (R —{O})™ When a;; =0, we interpret afiijjgi(x) to
just mean g;(x).

For a given > 0, the following lemma explicitly bounds the measure of
the portion of a dyadic rectangle where |b(x)/b*(x)| < € in terms of the
maximum order of the zeroes of the bz(x) on (R — {OPD™.

Lemma (4.2.1)[4]: Suppose p > 0 is an integer such that the zeroes of each
br(x) on (R — {0})™ are all of order at most p. Then there is a neighborhood

64



U of the origin and a constant € > 0 such that if R c is a set of the form

{x € R™: 277t < |x;| < 277/1*1} for integers j, then

x € R: b(x)/b* )] < €}l < Cev [R] (95)

Proof. It suffices to show for each i an estimate of the form |{x € R n U; :

|b(x)/b*(x)| <e€| < Ce%|R|. Since the components of y;(x) are all
monomials, the absolute value of the Jacobian of y;(x) is of the form
cix; ... x, ™ for some integers e;q, ..., ey, and some ¢; > 0. Viewing |{x €
RN U;: |b(x)/b*(x)| <e€}| as the integral of 1 over {x € R n U;:
|b b(x)/b*(x)| < €}and changing coordinates via y;(x), one obtains
{R N U;: [b(x)/b™(x)]| < €}l

j cx %t x,mdx  (96)

{xey; t (R)NY;H (UY: Ibe yi(x)/b*e yi(x)|<€}
Note that by (94) and the following paragraph, one has |be y;(x)/b* o
vil > C'g;(x) for some constant ¢’ (We can include the k; = n situation

here by defining g;(x) = 1). Thus in order to bound (96) by an expression of

the form CE% |R|, it suffices to show the following estimate of the following

form for each i and j.
. . 1
j cixle‘1 .x.mdx < Cer [R] (97)
{xey;t (RNV;: gi(x)|<e}
If the multiindex aij in the paragraph after (94) is zero, then g;(x) is bounded

below, and thus (97) reduces to showing that | _, ®)n sox L xm d s
i 13

bounded by a constant times |R|, which follows immediately from changing

back into the original coordinates using y;. Thus it suffices to assume a;; = 1.

Note that this only occurs if k; < n. Since the final n— k; variables are

bounded below on V;; , it suffices to prove a bound
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. 1
j x; x:lk‘ dx < Cer |R| (98)
{xey7L RNV gi(x)|<e} '

We now integrate the left-hand side of (98) starting with the v;; direction.
Since a;; p, by the measure version of the Van der Corput lemma (see [C] for

a1

details), the integral in the v;; direction is at most Cx;™ ...xrel”‘iep . If we
next perform the integration in the remaining n — k; — 1 directions of last
n — k; variables (if any exist), then if ; denotes the projection on R™ onto

the first k; variables, we obtain

€i1 eiki d
1 . Koo Xy
xey, " RNV gi(x)|< el

1 .
< Cegj x; x:lk‘ dxy ... dxy, (99)

m(vt (RN V) ‘

1 .

= Cer x; x:zk‘ dx; ...dx (100)

(vt (R)N V) x[1,2]" ki

1

= Cer x; L x ™ dxg . doxg, (101)

'[ﬂi()’fl (R)NV;j)x[1,2]" ki
Because the last n — k; coordinates of the points in U; are bounded above
and below away from zero, there is a constant Co > 1 such that if (x4,...,x,)

€ mi(y; ' (R)n V) > [1,2]" ¥ then there is a point (y;,...,¥,) €

vit(R)N Vi; such that Ci << C, for each [. This property is preserved

0 Xq

under monomial maps (perhaps with a different constant C,), so the image of
(vt (R) N V;;) < [1,2]" % under y; is a subset of a corresponding dilate

of y;(yi* (R) n V;;), which in turn is a subset of the dilate of R. Denote this
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dilate by R*. Changing coordinates in (101) back into the original coordinates

via y;, we see that

1 1
665] x L xm dxy L dxg, < C”egj 1dx
(vt (R)N V) x[1,2]" ki *

= C”’e% R| (102)
This is the desired estimate (98) and we are done.
We also will make use of the following result.
Lemma (4.2.2)[4]: Suppose the zeroes of each br (x) on (R — {0})" are all
of order less than d(b). Then there is a neighborhood U of the origin and
constants C,n > 0 such that if ¢ > 0 and R < U is a set of the form
{x e R 270 < x| < 270, then [ 1ioyi<elpcoplo G < Ce™.In

particular, since there is a constant C' such that |b(x)| < C'b*(x) on any

such R, there is a constant C"’ such that fR R|b(x)|=% < C" forsuchR c U.
Proof. Since the terms of b*(x) are absolute values of monomials, there is a
constant ¢ > 1 and an x, € R such that ch*(xy) = b*"(x) = % b*(xy) on

R. Hence it suffices to prove an estimate of the form

f{xER: |b(x)|<e|b*(xo)|}|b(x)|_6° < Ce". By the relation between L? norms and

distribution functions, applied to @ , one has

j 1b ()| =%
{xeRr: |b(x)|<elb*(x)I}

= 5o [ ¢%01 |{x € R:|b(x)| < min(elb*(xo)l,%)”dt (103)

It is natural to break up (103) into two pieces, the first where t < and

eb*(x)

the second where > Then the right-hand side of (103) becomes

1
eb*(xo)
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1

= 6 [TV 1 € RIBCOI < elb* o)t
0

(00)
+5°j ot

eb*(xo)

{x € R:|b(x)] <%}|dt (104)

Performing the first integral in the first term of (67) results in

€% |b*(xp)| % [{x € R: |b(x)| < €e|b*(xo) I} (105)
By Lemma (4.2.1), (105) is bounded by C |b*(x,)| % er 00 |R| for some

p <d(b) = 610. Hence we have

1
j Ib(x)| =% < € |b*(x0)] % €7 ° |R]
{x€R: [b(x)|<elb*(xo)I}
+ 8, t0o—1
1
eb*(xo)

{x € R:|b(x)] <%}|dt (106)

Note that {x € R:|b(x)| <%} c {xe R: |b(x)| < tbf("xo)b*(x)}, so by

Lemma (4.2.1) for some constant C, we have

1
j ()| % < C |b"(xo)| % er ™ |R|
{xer: [b(x)|<elb* (xo)l}

1

” So—1 o )5
+Coj ot (tb*(xo) |R|dt (107)

eb*(xo)
Note that the exponent 6, - 1 — % is less than —1 since p < d(b) = ai.
0
Hence integrating the second term on the right of (107) leads to the following
for some constant Cs.

1
j ()| % < C |b"(xo)| % er ™ |R|
{xer: [b(x)|<elb* (xo)l}

+C,|b* (x0)] % €2 |R| (108)
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Since |R| ~ |x;...x,| for any (x;,...,x,) € R, in order to prove Lemma

(4.2.2) with n :% — &, it suffices to show that there is a constant C, such

that for any x we have

-8
1% %, 1(b*(x)) ° < C, (109)

Since 6, = % in the case at hand, (72) is equivalent to the statement that
b*(x) = Clxy...x,|*®) (110)

Since (d(b),...,d(b)) is on the Newton polyhedron N(b), there are
nonnegative «; with a;+...+a, = 1 such that each component of
(d(b),...,d(b)) is greater than or equal to that of a;v;+...+a, v, for some
vertices vy,..., v, of N(b). Hence |x;...x,|%®) < [x¥1]|%: ... |xVk| % . So by
the generalized AM-GM inequality one has |x;...x,[¢®) < ¥¥ | a;|x7] <
b*(x) as needed. This completes the proof of Lemma (4.2.2).

Similar to the multiplicity one case, in order to show ||Tf]l, < CIIfll,
for all Schwartz f for a given 1 < p < oo, it suffices to show the that if
K(y) is supported on a sufficiently small neighborhood of the origin there is

a constant C such that ||T,f|,, < Cl|f|l, for all Schwartz f and each L, where

T.f(x)= fRn flx —y)alx, y)K, (y) dy.Here K, () = X<irorant Kj,...j, (V) @S
in (60). As in Lemma (4.1.1) for the multiplicity one case, we may also replace

a(x,y) by just 1. Thus we focus our attention on U, given by

U f(x) = | flx—y)K,(y)dy (111)

Rn
Our goal will be to prove U, is bounded on L? with a norm independent of

L under the hypotheses of Theorem (3.2.7) or (3.2.10). The next two lemmas

——

provide bounds on the |K, , (£)] that allow us to prove such uniform

bounds.
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Lemma (4.2.3)[4]: Under the assumptions of Theorem (3.2.7), there is a
constant C > 0 such that if | is such that 2‘fl|€l| < 1, then

Proof. |K _____ I (&)] is given by

Ky @ = f ..... j. ()~ Brximln¥n gy (112)

------

can subtract K; (x)eZr="¥k*k from the integrand in (112) without

------

changing the integral, so we have

Since 1&x;] ~ 2771|§] < € when K;,_; (x) #0, in (113) one has that

------

(e—iflxl — ]_) < Cl&x;| < €'277t|&| and we get

K, (O] < 27 g j K, (0] dx (114)

K, O] < €271 (115)
Lemma (4.2.4)[4]: Under the assumptions of Theorem (3.2.7), there are

constants p, C > 0 such that if [ is such that 277t |§,| = 1, then

1
Ky )] < C e

(116)
Proof. Let o;(x) be a smooth increasing nonnegative function on R* with
g,(x) =1 for |x] <1 and g,(x) = 0 for |x|] > 2. Let g,(x) = 1- g;(x).
For a constant p, > 0 to be determined by our arguments, for any fixed x,

in the dyadic rectangle corresponding to (j4,...,j,) We write
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J 0 |b(x)| —i& Xy = —i&px
| J1 Jn(€)| j 01 <(2_ﬂ |S(l|)p X (x )> _____ ( e~ iaX1 - EnXn gy

l Po | ( )l CiE Xy —iE
jan((Z Je)g) e )> ..... i (x)e Entn gy (117)

The first term of (117) is bounded by

- n(x)| (118)
'[{leb(x)|s2(2_jl 1£1) b*(xo)} "

Using (57) and Lemma (4.1.1), we see that this term is at most C (277 |Ei|)_%0
for some d, which gives the bound of the right-hand side of (116).

Proceeding to the second term of (117), we integrate by parts,
integrating the e~#%1%1~-~%n*n factor in the x; variable and differentiating

the remaining factors. The resulting term is given by

! - b)) e
E: ]Rn O, [02 <(2_“ |£,1) Po m) K; .. ]n(x)] §101=.~inxn dy (119)

If the x; derivative in (119) lands on the Kj1,...,jn(x) factor, one obtains a term
which by (58) is bounded by

1 . P X
CiEt ), o ((2‘11 6D ,L E );)ﬁ b*()Ib()| 7% dx - (120)

Due to the o2 factor in (120), on the support of the integrand of (120) we
have [b(x)| = (27 |¢,|)b*(xo). Thus (120) is bounded by

: o DI 1
0, <(2_]l |€l|)p bﬂ‘(ﬁo))ﬁ

(1+48,)

1-8 |

b*()(2771g]) " (b*(x))” (121)
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------

(2 T )(2_ |€l|)Po(1+5o) j (b* (o))" 0 4 (122)

By Lemma (4.2.2) which applies to negative powers of the smaller function

|b(x)]), we see that the above is bounded by

s (g @) (123)

Thus so long as p, is chosen so that p, (1 + 6,) < %for example, this term of

(119) satisfies the bounds needed in this lemma.

We now bound the term where the derivative in (119) lands on the

-j Po [b(x)|
0y ((2 1&l) b*(xo)) factor. Observe that

—ji Po |axzb(x)|
Oy, | 02 <(2 g ) W)

. b
=J_r<(z-h|fl|)”°,'9*gz;) as(27 |fl|)”°' (); (124)

since |b(x)| = (27711&,1) "°b*(x,) in the support of the ¢ factor, by (57),

on the support of the integrand of this term of (119) we have

IK;, i ()| < Co(2711E ) % b ()| %0 (125)

As a result, the absolute value of the term of (119) in question is bounded by

. b
o o (0 220
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We first integrate in the x; variable in (126). By the hypotheses of Theorem
(3.2.7) concerning zeroes of 9, b(x), for any fixed value of the remaining n —
1 variables (outside a set of measure zero) the domain of integration in the x;

variable can be written as the union of boundedly many intervals on which
Oy, (az ((2‘11|§l|)p0|b(x)|b*(x0))) does not change sign. Thus on each of

these intervals this derivative integrates back to the function. Since o, is
bounded this means the x; integrals in (126) are uniformly bounded in the
remaining variables. Thus doing the x; integral first and then integrating over

the remaining variables shows that (126) is bounded by
i 060 % — -
CsI& 171 (277118,1) 7 b* (xp) |00 2Eimt i (127)

Cole " (2 &) o2 j Ib* ()| % dx (128)

As in (123), the integral in (128) is uniformly bounded and we obtain the
bound

1
27111¢)]
So as long as pyé, < 1, we see from (129) that the term of (119) under

¢, (2711,])7 (129)

consideration is also is bounded by the right-hand side of (116). We have
now shown that the first term of (117) and each term of (119) all are
bounded by the right-hand side of (116) and thus we are done with the proof
of Lemma 4.4.

Theorem (4.2.5)[4]: Suppose each polynomial b (x) only has zeroes of order
less than d(b) on (R —{0})™. Suppose also that there is a C, >0 and a

neighborhood U of the origin such that for each [, there is a set Z ¢ R™ 1 of
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measure zero such that the function d,,b(x) has at most C, zeroes in U on
any line parallel to the x; coordinate axis whose projection onto the plane
(18)-(20) and is supported on |y| < R, then there is a constant C such that
ITf Il 2rny < CIIf |l 2¢gmy Tor all Schwartz functions f(x).

The condition concerning zeroes on lines parallel to the coordinates
axes is needed for technical reasons in the proof. Note that this condition
holds whenever b(x) is a polynomial, and it is not hard to see that it always
holds in two variables, using the Weierstrass Preparation Theorem for
example. We does not know if it holds for all real-analytic functions, so it is
included as an assumption in Theorem (3.2.7) (and in Theorem (3.2.8)
below).

For p #+ 2, we have a weaker statement. To motivate the statement of
the theorem, in Lemma (3.2.7) and the line afterwards we will see that if
each polynomial bg(x) is nonvanishing on (R —{0})", then there are
constants C; and C, such that

C1b"(x) < |b(x)| < C3b"(x) (130)

Hence in this situation (94) becomes

[} 1 * -6
|9,,K;. . ,-n(yl,---,yn)|<61m(b (7)) I (131)

For the LP theorem, we need bounds on derivatives of higher order in order
to apply the Marcinkiewicz multiplier theorem. Hence we assume that each
Ki. . (i...,¥n) isa C™* function and there is a constant C such that for

any multiindex a with 0 < || < n + 1 we have

|0°K;

O] < € (0 On)) " (132)

ly1 % ..y,
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The condition (104) is motivated by the fact that by iterating (55), the bounds
(104) hold for |b(x)|~% whenever each bg(x) is nonvanishing on (R —
{oh™.

The LP theorem is as follows.
Proof : We will prove L? boundedness of U, uniformly in L by bounding the
Fourier transform K (§) uniformly in L and &. Since |K.(¢)|=
Y (iungeznj<ttora 1 K, (§), we have the bound

LAGT D Y (Sl (133)

(irnJn)€Z™:ji<Lforall

We use the better of the two estimates from Lemmas (4.2.2) and (4.2.3) in
each term of (133) then add the result. Let (kq,...,k,) be the vector of
integers such that for each [, 2% is the nearest power of 2 to |4,]. For any M

the number of (j;,...,j,) such that mlaxljl — k;| = M is bounded by cM™™ 1,

and for each such (j;,...,j,) Lemma (4.2.3) or (4.2.4) gives a bound

terms with mlaxljl — k;| = M is bounded by ¢”"M™ 12-P1™ Adding over all
M gives a uniform bound and we are done.

Theorem (4.2.6)[4]: Suppose each polynomial bg(x) is nonvanishing on
(R — {0})™. Suppose also that there is a C, > 0 and a neighborhood U of the
origin such that for each [, there is a set Z ¢ R™~! of measure zero such that
the function d,,b(x) has at most C, zeroes in U on any line parallel to the x;
coordinate axis whose projection onto the plane x; = 0 is not in Z. Then
supported on |y| <R, then if 1 <p < o there is a constant C such that

ITfllLerny < CIIf |lLprmy for all Schwartz functions f (x).
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Going back to the examples preceding (59), in the first example where
b(x) = x;* ... x," eachkernel K(x) =
(—1)s9nx)+-Fsgnlxn) g (x2 . x2)|b(x)|~% will be covered by Theorems
(3.2.1) and (3.2.2). As for the second example where b(x) = f(x2,...,x2),
the maximum order of any zero of any bz (x) on (R — {0})" is the same as
the maximum order of any fz(x) on (R*)™. So when this quantity is less than
d(b) = 2d(f), K(x) will fall under the conditions of Theorem (3.2.7). When
each fr(x) is nonvanishing on (R*)™, then K (x) will fall under the conditions
of Theorem (3.2.8) as well.
Proof : We will make use of the Marcinkiewicz multiplier theorem (see
Theorem 6’ on p.109 of [S]), which implies that LP bounds on U, that are
uniform in L will follow if we can show that there is a constant C such that for
each multiindex a with |a| < n and each L we have the estimate
|65 g Ry (6, E) S € (134)
Returning to the x variables, this will follow as in the proof of Theorem

(3.2.7) if we can show that for each multiindex a with 0 < |a| < n the kernel

by multiplying (59) through by x* and then applying d% under the integral
sign, while if the x; variable is represented in «, then the integral (59) is zero

simply because one is integrating the derivative of a compactly supported C;

(4.2.4) and Theorem (3.2.8) follows.
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