
Chapter One

1.1 Introduction :

More than 600,000 people die from hepatocellular carcinoma (HCC) each year. Worldwide 

research on the disease needs to be intensified in both the medical and pharmaceutical fields, 

especially with a focus on providing help to areas where resources are limited. Treatment 

approaches depend on the stage of the disease at diagnosis and on access to complex treatment 

regimens. However, advanced disease is not curable, and management of advanced disease is 

expensive and only marginally effective in increasing quality-adjusted life-years.  The delivery 

of health-care services for HCC can be improved by developing centers of excellence. 

Concentrating medical care in this way can lead to an increased level of expertise, so that 

resections are performed by surgeons who understand liver disease and the limitations of 

resection and other relevant procedures “World Gastroenterology Organization, 2009”.

 HCC is the sixth most common malignancy worldwide. It is the fifth most common malignant 

disease in men and the eighth most common in women. It is the third most common cause of 

death from cancer, after lung and stomach cancer. HCC is the most common malignant disease in 

several regions of Africa and Asia (Y. Hoshida, A etal, 2008).

 Other  important  factors  include  poor  compliance,  with  inadequate  or  absent attendance in 

surveillance programs and thus late presentation of patients with large tumors; low awareness of 

the benefits of HCC treatment and ways of preventing underlying  liver  disease;  and  a  

negative  opinion  among  some  physicians  about screening.“ World Gastroenterology 

Organization, 2009.

HCC  is  associated  with  liver  disease  independently  of  the  specific  cause  of  the disease 

either; infectious: chronic hepatitis B or C., nutritional and toxic: alcohol, obesity (nonalcoholic 
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fatty liver disease), aflatoxin (co-factor with HBV), tobacco. Secondly, genetic: tyrosinosis, 

hemochromatosis (iron overload). However, iron overload as a cause per se and as a result of 

dietary intake (due to cooking in iron pots) is a subject of controversy. α1-Antitrypsin deficiency. 

Immunologic: autoimmune chronic active hepatitis, primary biliary cirrhosis “ World 

Gastroenterology Organization, 2009”.

Computed Tomography (CT) in now a widely applied tool for diagnosis of hepatic tumors. The 

visual analysis of image series, acquired usually before a contrast product injection and during its 

propagation, enables doctors to detect lesions and to recognize, to a certain extent, the type of 

pathology. However, in most cases, visual inspection of CT scans could not be sufficient for 

proper image interpretation. Even for experienced radiologists, the correct differentiation of 

tumor affected tissue is a difficult task. The definitive diagnosis often requires invasive 

procedures like needle biopsy or even surgery, which carry a risk of complications. New 

computer-aided image processing methods (in particular methods of their texture analysis), in 

combination with effective classification algorithms, can considerably improve the accuracy of 

the diagnosis. Extracting the information not normally detected by the human eye, those 

techniques could reduce or even eliminate the necessity of performing the invasive techniques 

(Bruno A., et al 1997)

An objective and explicit characterization of image regions is one of the crucial problems to deal 

with when a computer aided image analysis is performed. One of the most useful sources of 

information about analyzed image regions could be their texture [Haralick R. M]. The texture 

analysis consists in extracting a set of numerical parameters (so-called texture features) to 

characterize Regions of Interest (ROIs) defined in the organs under study. Each of the texture 

parameters expresses a specified property of the texture, like coarseness, homogeneity, or the 
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local contrast. So far, a great variety of texture features extraction methods has been investigated. 

[Galloway M. M et al 1998].

The first application of texture analysis for characterization of pathologically changed regions of 

liver tissue in tomographic images was presented in [Mir A. H., et al 1995]. In the work it was 

shown that values of the gray level distribution derived from the run- length matrix were 

significantly different in normal and malignant tissue. [Chen ,et al 1989] proposed an automatic 

diagnostic system for CT liver image classification that was able to automatically find, extract the 

liver boundary and to further classify its two major malignant lesions. The system used an 

artificial neural network in combination with fractal and co-occurrence features. A similar 

approach (the back- propagation neural network based on first order and co-occurrence features) 

was applied to recognizing a normal and abnormal liver [Husain , et al 2000]. In the combination 

of four different fractal dimension estimators (corresponding to the power spectrum method, box 

counting method, the morphological fractal estimator and the kth-near- est neighbor method) and 

the fuzzy C-Means algorithm were applied to differentiate normal liver parenchyma from 

hepatocellular carcinoma. Recently presented a system that used co-occurrence descriptors and 

three sequentially placed feed-forward neural networks for classification of normal and 

pathological liver regions. Finally, in a computer-aided diagnostic system to classify focal liver 

lesions by an ensemble of neural network and statistical classifiers was proposed. This system 

used first order statistics, co-occurrence matrix and gray-level difference matrix features, Laws’ 

texture energy measures, and fractal dimension estimators to characterize four different types of 

liver tissue. All aforementioned systems were applied to non-enhanced CT scans and did not 

consider dynamic CT. In our investigations , texture classification of the hepatic metastasis was 

performed on the basis of dynamic CT. Images corresponding to three acquisition phases (non-

enhanced images and after a contrast product injection, in arterial and portal phases) were 
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analyzed separately. It was shown that considering the acquisition moments could improve the 

classification accuracy. In [Duda D., et al 2004], for the first time, three CT scans with the same 

slice position and corresponding to three acquisition moments were analyzed simultaneously. 

The preliminary results showed that taking into account texture evolution when the contrast 

product is propagated led to a considerably better image recognition[Duda D., et al 2004]. 

Only cancers that start in the liver are called liver cancer. To understand liver 

cancer, it helps to know about the normal structure and function of the liver. 

The liver is the largest internal organ. It lies under your right ribs just 

beneath your right lung. It is shaped like a pyramid and divided into right and 

left lobes. The lobes are further divided into segments  (American Cancer 

Society. Cancer Facts & Figures 2014) . 

Unlike most other organs, the liver gets blood from 2 sources: the hepatic 

artery supplies the liver with blood rich in oxygen from the heart, and the 

portal vein brings nutrient-rich blood from the intestines (American Joint 

Committee on Cancer 2010). 

You cannot live without your liver. It has several important functions:

• It breaks down and stores many of the nutrients absorbed from the 

intestine that your body needs to function. Some nutrients must be 

changed (metabolized) in the liver before they can be used by the rest 

of the body for energy or to build and repair body tissues.

• It makes most of the clotting factors that keep the body from bleeding 

too much when you are cut or injured.

• It secretes bile into the intestines to help absorb nutrients (especially 

fats).
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• It filters out and breaks down toxic wastes in the blood, which are then 

removed from the body.

1.2 Problem of study:

Generally in radiology the pathology or any abnormality was diagnosed by the radiologist as 

abnormal area if it reveals agreed upon defect on the image. This trend of diagnosis depend on 

visual perception; which is subjective and affected by many factors like experiences, oversight 

and so on. This situation leads  sometimes to send normal patient to biopsy as well as abnormal 

patient might not been send to biopsy for conformation . Therefore texture analysis can provide 

second opinion for the radiologist to diagnose liver pathology with some confident as well as it 

will draw his attention to the area of interest.  

1.3 Objectives: 

1.3.1 General Objectives: is to characterize Hepatocellular carcinoma in CT abdominal 

images using higher order statistic and Daubechies wavelet coefficient in order to reduce the 

miss detection rate as well as, to limit the usage of biopsy.

1.3.2 Specific objective:  

• To write an algorithm and function that can be used to extract textural feature from CT 

images 

• To extract texture feature from liver tissue and HCC tissue (ROI).

• To extract texture feature using Linear discriminant analysis.  

• To delineate the ROI (HCC) on the CT images.

• To classify the extracted features using Grey Level Run Length Matrix (GLRLM).

• To classify the extracted features using Daubechies wavelet.
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• To calculate the sensitivity, specificity and accuracy.

1.4 Overview of study: 

This study is concerned with characterization of hepatocellular carcinoma in 

CT image using higher order statistic and Daubechies coefficient, it falls into five 

chapters. Chapter one is an introduction, which include preparation of the 

problem of study and hepatocellular carcinoma, and liver as vital organ in 

human body as well as statement of the problem and study objectives. While 

Chapter two will include a comprehensive scholarly literature reviews 

concerning the previous studies. Chapter three deals with the methodology, 

where it provides an outline of material and methods used to acquire the 

data in this study as well as the method of analysis approach. While the 

results were presented in chapter four, and finally Chapter five include 

discussion of results, conclusion and recommendation followed by references 

and appendices.
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Chapter two

Literature review

2.1 Hepatocellular Carcinoma:

HCC its Most primary liver cancers are classified as hepatocellular carcinoma. 

Hepatocellular carcinoma is a malignant tumor composed of cells resembling 

hepatocytes ; however, the resemblance varies with the degree of 

differentiation . Hepatocellular carcinoma is commonly associated with 

cirrhosis (Figure 

2.1)

Figure 2.1. A, Cirrhotic liver with focal tumor; B, histological appearance

This type of liver cancer is potentially curable by surgical resection. However, 

only those patients with localized disease are surgical candidates. Liver 

function impairment and degree of tumor localization determine patient 

prognosis proliferation . Clinical trials offer alternative treatment options for 

patients who are not candidates for resection (Ahmet Gurakar et al 2013).

2.1.1 Symptoms of HCC: 

In the U.S., a significant number of hepatocellular carcinoma cases are 

detected during surveillance or investigation of underlying liver disease. 

Often, patients present with symptoms related to their underlying liver 
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disease. In a report from Hong Kong, 76% of patients with hepatocellular 

carcinoma presented to their hepatoma clinic with abdominal distention or 

discomfort; less common presentations included weight loss (4.4%), 

gastrointestinal hemorrhage (4.4%), and jaundice (2.6%). In the Hong Kong 

series, only 2% were asymptomatic. Rarely, hepatocellular carcinoma can 

present as an acute abdomen resulting from spontaneous rupture of the 

tumor into the peritoneal cavity. Hepatocellular carcinoma should be 

considered in the differential diagnosis of hemorrhagic ascites (Ahmet 

Gurakar et al 2013).

2.1.2 Anatomy of liver: 

The liver is the largest organ in the abdominal cavity and the most complex. 

It consists of a myriad of individual microscopic functional units call lobules. 

The liver performs a variety of functions including the removal of 

endogenous and exogenous materials from the blood, complex metabolic 

processes including bile production, carbohydrate homeostasis , lipid 

metabolism, urea formation, and immune functions.

The liver arises from the ventral mesogastrium and only the upper posterior 

surface is outside of thatstructure. The ligamentum teres and falciform 

ligament connect the liver to the anterior body wall. The lesser omentum 

connects it to the stomach and the coronary and triangular ligaments to the 

diaphragm. The liver is smooth and featureless on the diaphragmatic surface 

and presents with a series of indentations on the visceral surface where it 

meets the right kidney, adrenal gland, inferior vena cava, hepatoduodenal 

ligament and stomach (Figure 2), (Ahmet Gurakar et al 2013)
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Figure 2.2 .A, 

Normal gross 

anatomy of a liver; B, histological slide; B’, histological view.

The liver can be considered in terms of blood supply hepatocytes, Kuepfer 

cells and biliary passages. The liver receives its blood supply from the portal 

vein and hepatic artery, the former providing about 75% of the total 1500 

ml/min flow. Small branches from each vessel the terminal portal venule and 

the terminal hepatic arteriole enter each acinus at the portal triad. Pooled 

blood then flows through sinusoids between plates and hepatocytes in order 

to exchange nutrients. The hepatic vein carries efferent blood into the 

inferior vena cava and a supply of lymphatic vessels drains the liver (Ahmet 

Gurakar et al 2013). 

Parenchymal cells or hepatocytes comprise the bulk of the organ and carry 

out complex metabolic processes. Hepatocytes are responsible for the liver’s 

central role in metabolism (Figure 2.2 B'). These cells are responsible for the 

formation and excretion of bile ; regulation of cabohydate homeostasis ; lipid 

synthesis and secretion of plasma lipoproteins; control of cholesterol 

metabolism; and formation of urea, serum albumin, clotting factors, 
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enzymes, and numerous proteins. The liver also aids in the metabolism and 

detoxification of drugs and other foreign substances.

Kupffer cells line the hepatic sinusoids and are part of the reticuloendothelial 

system, filtering outminute foreign particles, bacteria, and gut-derived 

toxins. They also play a role in immune processes that involve the liver. 

Biliary passages begin as tiny bile canaliculi formed by hepatocytes. These 

microvilli -lined structures progress into ductules, interlobular bile ducts, and 

larger hepatic ducts. Outside the porta hepatis, the main hepatic duct joins 

the cystic duct from the gallbladder to form the common bile duct, which 

drains into the duodenum (Ahmet Gurakar et al 2013).

2.1.3 Causes of HCC : 

Hepatitis B and C : The two most important etiological factors contributing 

to hepatocelluar carcinoma are hepatitis B andhepatitis C (Figure 2.3). In 

parts of China and Taiwan, 80% of hepatocellular carcinoma is due to 

hepatitis B. In the United States and Europe, hepatitis C and hepatitis B 

contribute equally to disease cases. In Japan, where the prevalence of 

hepatitis B and hepatitis C is similar, the incidence of hepatocellular 

carcinoma is higher in patients with hepatitis C compared to hepatitis B 

(10.4% vs. 3.9%). The pathogenesis of hepatocellular carcinomain the 

presence of hepatitis B virus may be due toincreased cell turnover from 

chronic liver disease, or a combination of processes specific to the hepatitis 

B virus. These may include integration of the hepatitis B DNA genome into 

the host genome, thereby disrupting the regulatory elements of cell cycling, 

or via transactivation of host oncogenes by either HBx protein ora truncated 
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protein derived from pre-S2/S region of hepatitis B genome. The 

pathogenesis of hepatocellular carcinoma in hepatitis C is less understood. It 

is possiblethat some of these patients had previous exposure to hepatitis B 

virus (Ahmet Gurakar et al 2013).

Figure 2.3 Causes of hepatocellular 

carcinoma

Cirrhosis, irrespective of its etiology , is a risk factor for the development of 

hepatocellular carcinoma. The risk is 3–4 times higher in patients with 

cirrhosis compared to those with chronic hepatitis in a given population. An 

increase in hepatocellular proliferation maylead to the activation of 

oncogenes and mutation of tumor suppressor genes. These changes, in turn, 

may initiate hepatocarcinogeneses. In low-incidence areas, more than 90% 

of patients with hepatocellular carcinoma have underlying cirrhosis. 

However, the presence of cirrhosis is less (approximately 80%) in high-

incidence areas, which is probably related to vertical transmission of

hepatitis B virus in these areas (Figure 2.3) (Ahmet Gurakar et al 2013).

Other Factors: Other etiological factors affecting disease incidence include 

aflatoxins, alcohol, hemochromatosis , and anabolic steroid use (Figure 2.3). 

Exposure to dietary carcinogenic aflatoxins, produced by Aspergillus 
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parasiticus and Aspergillus flavus, is common in certain regions of Southeast 

Asia and sub-Saharan Africa. Hepatitis B is also common in these areas. The 

relative contribution of aflatoxins and the hepatitis B virus to the 

pathogenesis of hepatocellular carcinoma in these parts of the world are 

poorly understood. In patients with hepatitis C viral infection, alcohol has 

been found to be another contributing factor. Whether this is related to a 

more aggressive disease due to a combination of hepatitis C virus and 

alcohol, or whether alcohol is an independent factor remains unknown. The 

incidence of hepatocellular carcinoma in patients with hemochromatosis can 

be as high as 45%, and often the tumor is multifocal (Ahmet Gurakar et al 

2013).

 2.2 Diagnosis  of HCC:

2.2.1 Alpha-Fetoprotein (AFP) :

 Alpha-fetoprotein levels may be assessed by a blood test. Alpha-fetoprotein 

(AFP) is a tumor marker that is elevated in 60–70% of patients with 

hepatocellular carcinoma. Normally, levels of AFP are below 10 ng/ml, but 

marginal elevations (10–100) are common in patients with chronic hepatitis. 

However, all patients with elevated AFP should be screened (abdominal 

ultrasound, CT scan or MRI) for hepatocellular carcinoma, especially if there 

has been an increase from baseline levels. In our experience, a steadily 

rising AFP is almost diagnostic of hepatocellular carcinoma. The specificity of 

AFP is very high when the levels are above 400 ng/ml. Undifferentiated 

teratocarcinoma and embryonal cell carcinoma of the testis or ovary may 
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give false-positive results and should be considered in the differential 

diagnosis of elevated AFP (Ahmet Gurakar et al 2013).

The doubling time of AFP is around 60–90 days. Therefore, it may be 

advisable to check AFP every 3–4 months to screen high-risk cirrhotic 

patients (hepatitis C, hepatitis B, and hemochromatosis) for hepatocellular 

carcinoma. 

2.2.2 Radiographic Diagnosis:

 The diagnostic accuracy of ultrasound, CT , magnetic resonance imaging 

(MRI) and angiography is dependent on a number of variables: expertise of 

the operator (especially with ultrasound), sophistication of equipment and 

technique, presence of cirrhosis and, most importantly, experience of the 

interpreter. For small tumors (<2 cm), the diagnostic accuracy ranges from 

60–80%. The diagnostic accuracy increases significantly with an increase in 

tumor size, ultimately reaching 100% with  very large tumors with all 

modalities (Figure 2.4).

Figure 2.4.Computed 

tomography (CT) scan of hepatocellular carcinoma

Liver Biopsy and Histological Grading Liver biopsy is indicated when 

diagnosis is in doubt (Figure 2.4). If AFP is significantly elevated and a tumor 
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is seen in the liver, it is reasonable to assume a diagnosis of hepatocellular 

carcinoma and a liver biopsy is not warranted (Ahmet Gurakar et al 2013).

Figure 2.5 A, Biopsy of 

focal tumor; B, 

histological appearance; 

C, 

percutaneous approach to the liver

The World Health Organization has suggested that hepatocellular carcinoma 

might be classified into histological types based on the structural 

organization of tumor cells: trabecular or sinusoidal type, pseudoglandular or 

acinar type, and compact or scirrhous sclerosing agent type. The tumor could 

also be graded based on the degree of cell differentiation into well, 

moderately, and poorly differentiated (Ahmet Gurakar et al 2013).

2.3 Therapy of HCC: 

The optimal management of hepatocellular carcinoma depends on a variety 

of factors including the size, number, and distribution (unilobar vs. bilobar ) 

of tumors, the relationship of the tumor to hepatic vasculature, the status of 

distant metastases, the severity of liver disease (Child-Pugh score), the 

suitability of the patient for liver transplantation, the functional status of the 
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patient, and local expertise. The mean survival of symptomatic patients with 

hepatocellular carcinoma is approximately 2–3 months. The doubling time of 

the tumor size is 2–3 months. Optimal management should attempt to 

prolong without compromising quality of life (Ahmet Gurakar et al 2013).

2.4 Computed Radiography: 

Over more than 30 years of advances in technologies, including x-ray 

generation, filtration design, detector, firmware, and post-processing, CT has 

developed into a medical imaging modality with the capability of obtaining 

excellent resolution for both high contrast and  low contrast tasks, as well as 

the capability to perform volumetric imaging by the  implementation of 

multi-row detectors (MDCT). It has been a major diagnostic tool and has been 

impacting patient healthcare throughout the entire world. Today CT is 

routinely used as a key component in Radiology and Oncology departments 

for many areas of medical applications. To  name a few, within Radiology 

department, it is used in head scans to detect infarction,  hemorrhage, or 

trauma; it is used in thoracic scans for detecting both acute and chronic 

changes  in the lung parenchyma; it is used in Cardiology to diagnose 

cardiovascular diseases; it is used in  abdomen or pelvic scans to determine 

the stage of cancer and to follow progress; it is also used  in extremity scans 

to image complex fractures, especially one around joints because of its ultra-

high spatial resolution. Within Oncology department, CT is used to obtain 

attenuation properties for body tissues in order to perform necessary 

calculations of radiation dose distribution in treatment planning (Mettler, et 

al 2008). 
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CT scanners use x-ray tubes to generation photons. In this process, electrons 

are emitted from cathode via thermionic emission and are accelerated within 

the tube towards anode driven  by the potential difference between the 

cathode and the anode. The highly energetic electrons  then interact with 

matter (usually tungsten) and convert their kinetic energy into heat and  

electromagnetic radiation (photons) through the process of bremsstrahlung. 

Figure 1 shows the  physical look of the anode. The fluence of photons 

depends on kVp and mAs. kVp is defined as  the peak tube potential between 

the cathode and the anode. It determines the highest energy of photons 

within the beam. mAs is the multiplication of tube current (the rate of the 

charge of  electrons from the cathode to the anode) and exposure time. mAs 

is proportional to the fluence of  the x-ray beam (Mettler,  et al 2008).

During the CT scan a patient lies on the table while the x-ray tube and the 

detector ring spin in the gantry in a very fast speed (as fast as 0.27s/rotation 

for certain manufacturer). Fan  shaped beams are used in modern CT 

scanners as shown in figure (2.2) There are two different scan  modes with 

respect to the pattern of the movement of the bed: axial scan and helical 

scan. In  axial scan, the bed moves incrementally after every rotation so the 

anatomy is captured section  by section; in helical scan, the bed moves 

continuously while the tube and detector are rotating. 

Under helical scan mode, pitch is defined as the advance of the table in a 

rotation divided by the nominal collimation width in z direction. Helical scan 

was introduced in 1990s and it has  dramatically increased the time 

efficiency of CT scans.
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The number of CT scans in United States has increase from 18.3 million in 

1993 to 62.0 million in 2006, with an estimated annual growth rate of 10% 

5,6 . Especially since the  introduction of MDCT in mid 1990s, the use of CT 

has increased dramatically due to its  improved capacity. In clinical practice, 

CT exams consists 15% of the total number of  radiological imaging 

procedures, but it contributes to 50% of the population radiation exposure  

from medical procedures, and it contributes to 25% of the population 

radiation exposure from all  sources, including background radiation. This has 

lead to concerns about the potential risks of  radiation hazards to patients 

(Mettler, 2008). 

Imaging is basically a process consisting of two distinct stages: image 

recording and image display (Wagner 1983, ICRU 1996). This division is 

especially important in digital imaging, where these stages are clearly 

separate. In digital imaging the image recording stage (or the image data 

stage) determines the information that has been captured in the image data 

and can be analyzed in terms of the pixel values. Performing actual physical 

measurements of the display stage is cumbersome and its evaluation is for 

the most part done mainly visually.

2.5 Biomedical Image Processing:

By the increasing use of direct digital imaging systems for medical 

diagnostics, digital image processing becomes more and more important in 

health care. In addition to originally digital methods, such as Computed 

Tomography (CT) or Magnetic Resonance Imaging (MRI), initially analogue 
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imaging modalities such as endoscopy or radiography are nowadays 

equipped with digital sensors (Deserno et al 2007).

Digital images are composed of individual pixels (this acronym is formed 

from the words “picture” and “element”), to which discrete brightness or 

color values are assigned. They can be efficiently processed, objectively 

evaluated, and made available at many places at the same time by means of 

appropriate communication networks and protocols, such as Picture 

Archiving and Communication Systems (PACS) and the Digital Imaging and 

Communications in Medicine (DICOM) protocol, respectively. Based on digital 

imaging techniques, the entire spectrum of digital image processing is now 

applicable in medicine (Deserno et al 2007).

Fig.2.6 .Modules of image processing, In general, image processing covers 

four main
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areas: image formation, visualization, analysis, and management. The 

algorithms

of image enhancement can be assigned as pre- and postprocessing in all 

areas .

2.5.1 Steps of Image Processing : 

The commonly used term “biomedical image processing” means the 

provision of digital image processing for biomedical sciences. In general, 

digital image processing covers four major areas (Figure 2.6) :

• Image formation includes all the steps from capturing the image to 

forming a digital image matrix.

• Image visualization refers to all types of manipulation of this matrix, 

resulting in an optimized output of the image.

• Image analysis includes all the steps of processing, which are used for 

quantitative measurements as well as abstract interpretations of 

biomedical images. These steps require a priori knowledge on the 

nature and content of the images, which must be integrated into the 

algorithms on a high level of abstraction. Thus, the process of image 

analysis is very specific, and developed algorithms can be transferred 

rarely directly into other application domains.

• Image management sums up all techniques that provide the efficient 

storage, communication, transmission, archiving, and access (retrieval) 
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of image data. Thus, the methods of telemedicine are also a part of the 

image management .

In contrast to image analysis, which is often also referred to as high-level 

image processing, low-level processing denotes manual or automatic 

techniques, which can be realized without a priori knowledge on the specific 

content of images. This type of algorithms has similar effects regardless of 

the content of the images. For example, histogram stretching of a radiograph 

improves the contrast as it does on any holiday photograph. Therefore, low-

level processing methods are usually available with programs for image 

enhancement (Deserno et al 2007).

2.6 Texture analysis:

Texture  analysis  is  presented  here  as  a  useful  computational  method  

for  discriminating between pathologically different regions on medical 

images because it has been proven to  perform  better  than  human  

eyesight  at  discriminating  certain  classes  of  texture  (Julesz, 1975). 

2.6.1 First-Order Statistical Texture Analysis 

First-order  texture  analysis  measures  use  the  image histogram,  or  pixel  

occurrence  probability,  to  calculate  texture.  The  main  advantage  of  this 

approach  is  its  simplicity  through  the  use  of  standard  descriptors  (e.g.  

mean  and  variance)  to  characterise  the  data  (Press,  1998).  However,  

the  power  of  the  approach  for  discriminating  between  unique  textures 

is limited in certain applications because  the method does not consider the 

spatial   relationship, and correlation, between pixels. For anysurface, or 
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image, grey-levels are in  the range   where Ng   is the total number of distinct 

grey-levels , If  (Ni) is the  number of pixels with intensity i 

and M  is the total number of pixels in an image, it follows  that the 

histogram, or pixel occurrence probability, is given by,

In general seven features commonly used to describethe properties of the 

image histogram,  and  therefore  image  texture,  are  computed.  These  

are:  mean;  variance;  coarseness;  skewness; kurtosis; energy; and entropy.

2.6.2 Second-Order Statistical Texture Analysis

The human visual system cannot discriminate between texture pairs with 

matching second order statistics (see Fig. 2.6) (Julesz et al, 1975). The first 

machine-vision framework for calculating  second-order or pixel co-

occurrence texture information was developed for analysing aerial  

photography images (Haralick et al., 1973). In this technique pixel co-

occurrence matrices,  which  are  commonly  referred  to  as  grey-tone  

spatial  dependence  matrices  (GTSDM),  are  computed. The entries in a 

GTSDM are the probability of finding a pixel with grey-level  i at  a  distance  

d  and  angle  α from  a  pixel  with  a  grey-level j . This  may  be  written  

more  formally  as P(I,j:d,α ) .  An  essential  component  of  this  framework  

is  that  each  pixel  has eight nearest-neighbours connected to it, except 

atthe periphery. As a result four GTSDMs  are required to describe the texture 
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content in thehorizontal (PH= 00 ) , vertical  (PV= 900 ) , right- (PRD= 450 ) ,  and 

left-diagonal  (PLD= 1350 ) ,   directions. This is illustrated in Fig. 8

Fig.  2.7.  Eight nearest-

neighbour  pixels  used  in  the  GTSDM  framework  to  describe  pixel  

connectivity. Cells 1 and 5 show the horizontal  (PH)   4 and 8 the right-

diagonal   (PRD) ,  3 and  7 the vertical   (PV) , and   2 and 6 the left-diagonal  

(PLD)   nearest-neighbours.

An  example  of  the  calculation  of  a  horizontal  co-occurrence  matrix  (PH) 

on  a  4×4  image  containing four unique grey-levels is shown in Fig.6. A 

complete representation of image  texture  is  contained  in  the  co-

occurrence  matrices  calculated  in  the  four  directions. 

Extracting  information  from  these  matrices  using  textural  features,  

which  are  sensitive  to  specific  elements  of  texture,  provides  unique  

information  on  the  structure  of  the  texture  being investigated. Haralick 

et al., proposed a set of 14 local features specifically designed  for  this  

purpose  (Haralick  et  al.,  1973).  In  practice  the  information  provided  by  

certain  features may be highly correlated or of limited practical use. A 
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feature selection strategy is  therefore useful with this approach to take 

account of redundant, or irrelevant, information. 

This is discussed in more detail in section 5. It is also interesting to note that 

prior to any processing the GTSDMs, which are symmetric, can provide some 

useful information on the  characteristics of the image being studied. For 

example, the co-occurrence matrix entries for  a  coarse  texture  will  be  

heavily  focused  along  the  diagonals  relative  to  the  distance  d between 

the pixels studied.

Fig.  2.8.  Simple  example  demonstrating  the  formation  of  a  co-

occurrence  matrix  from  an  image.  Left,  4*4  image  with  four  unique 

grey-levels.  Right,  the  resulting  horizontal  

co-occurrence matrix (PH).

Angular second moment 

Contrast,

Correlation,
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where, Nq is the number of distinct grey-levels in the input and, µx, µy, σX ,   are 

the 

means and standard deviations of  P(i,j) . Throughout,   P(i,j)= P(i,j)/R where 

P(i,j) is (PH,PV,PLD,PRD)    and R is the maximum number of resolution cells in a 

GTSDM.

2.6.3 Higher-Order Statistical Texture Analysis 

The  grey-level  run  length  method  (GLRLM)  is  based  on the  analysis  of  

higher-order  statistical information (Galloway, 1975). In this approach 

GLRLMs contain information on  the run of a particular grey-level, or grey-

level range, in a particular direction. The number  of  pixels  contained  

within  the  run  is  the  run-length.

  A  coarse  texture  will  therefore  be dominated by relatively long runs 

whereas a fine texture will be populated by much shorter  runs. The number 

of runs r  with gray-level i , or lying within a grey-level range i , of 

runlength j in  a  direction  α is  denoted  by R(α) = {r(I,j)/α} .

This  is  analogous  to  the  GTSDM technique  (Haralick  et  al.,  1973)  as  

four  GTRLMs  are  commonly  used  to  describe  texture  runs  in  the  

directions (00 , 900, 1800 AND 1350 ) . on  linearly  adjacent  pixels.  An  

example  of  the  calculation of a horizontal GLRLM is shown in Fig. 2.10.
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Fig. 2.10 Simple example demonstrating the formation of a GLRLM. Left,  4*4 

image with four unique grey-levels. Right, the resulting GLRLM in the 

direction 00 .

 A set of seven numerical texture measures are computed from the GTRLMs. 

Three of these  measures are presented here to illustrate the computation of 

feature information using this  framework.

 Short Run Emphasis, 

Long Run Emphasis,

Grey-Level 

Distribution,

Where Ng  is the maximum number of grey-levels, Nr  is the number of 

different run lengths in the matrix and,
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TR serves as a normalizing factor in each of the run length equations.

2.7 Fourier Power Spectrum:

Two-dimensional transforms have been used extensively  in  image  

processing  to  tackle  problems  such  as  image  description  and  

enhancement  (Pratt,  1978).  Of  these,  the  Fourier  transform is one of the 

most widely used (Gonzalez and Woods, 2001). Fourier analysis can be  used  

to  study  the  properties  of  textured  scenes,  for  example  the  power  

spectrum  reveals  information  on  the  coarseness/fineness  (periodicity)  

and  directionality  of  a  texture.  Texture  directionality  is  preserved  in  the 

power  spectrum  because  it  allows  directional  and  nondirectional  

components  of  the  texture  to  be  distinguished  (Bajscy,  1973).  These  

observations  have given rise to two powerful approaches for extracting 

texture primitives from the Fourier  power  spectrum,  namely,  ring  and  

wedge  filters.  Working  from  the  origin  of  the  power  spectrum  the  

coarseness/fineness  is  measured  between  rings  of  inner  radius r1 and r2 

.  

The  size of the rings can be varied according to the application. The 

directionality of the texture is  found by measuring the average power over 

wedge-shaped regions centred at the origin of the  power  spectrum.  The  

size  of  the  wedge ϕw=ϕ1-ϕ2 depends  upon  the  application.  Fig.  8  

illustrates  the  extraction  of  ring  and  wedge  filters  from  the  Fourier  
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power  spectrum  of  a 32× 32  test  image  consisting  of  black  pixels  

everywhere  except  for  a   3 ×3 region  of  white 

pixels centred at the origin.

Fig.  2.11  Fourier  power  spectrum  showing  the  extraction  of  ring  and 

wedge  filters.  The  spectrum  was  generated  on  a   32× 32  test  image 

consisting  of  black  pixels  everywhere except for a  3× 3 region of white 

pixels centred at the origin.

In  image  analysis  the  Fourier  transform P(u,v) is  considered  in  its  

discrete  form  and  the  power spectrum P(u,v)   is calculated from,

The average power contained in a 

ring centred at the origin with inner and outer radii

r1 and  r2 respectively, is given by the summation of the contributions along 

the direction ϕ .

27



he  contribution  from  a  wedge  of  size ϕw  is  found  from  summation  of  

the  radial components within the wedge boundaries. That is,

where n is the window size. 

2.8 Guide to Wavelets:

Fourier theory its a signal can be expressed as the sum of a, possibly 

infinite, series of sines and cosines. This sum is also referred to as a 

Fourier expansion. The big disadvantage of a Fourier expansion however 

is that it has only frequency resolution and no time resolution. This means 

that although we might be able to determine all the frequencies present 

in a signal, we do not know when they are present. To overcome this 

problem in the past decades several solutions have been developed which 

are more or less able to represent a signal in the time and frequency 

domain at the same time (she et al 1996).

The idea behind these time-frequency joint representations is to cut the 

signal of interest into several parts and then analyze the parts separately.

The problem here is that cutting the signal corresponds to a convolution 

between the signal and the cutting window. Since convolution in the time 

domain is identical to multiplication in the frequency domain and since 

the Fourier transform of a Dirac pulse contains all possible frequencies the 

frequency components of the signal will be smeared  out all over the 

frequency axis. In fact this situation is the opposite of the standard Fourier 

transform since we now have time resolution but no frequency resolution 
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whatsoever (she et al 1996).

The underlying principle of the phenomena just described is Heisenberg’s 

uncertainty principle, which, in  signal processing terms, states that it  is 

impossible to know the exact frequency and the exact time of occurrence 

of this  frequency in a  signal. In other words, a  signal can simply not be 

represented as a  point in the time-frequency space.  The uncertainty 

principle shows that it is very important how one cuts the signal (she 96).

The wavelet transform or  wavelet analysis is probably the most recent 

solution to overcome the shortcomings of the Fourier transform. In wavelet 

analysis the use of a fully scalable modulated window solves the signal-

cutting  problem. The  window is shifted along the signal and for every 

position the spectrum is calculated. Then this process is  repeated many 

times with a slightly shorter (or longer) window for every new cycle. In the 

end the result will be a collection of time-frequency representations of the 

signal, all with different resolutions. Because of this collection of 

representations, we can speak of a multiresolution analysis. In the case of 

wavelets we normally do not speak about time-frequency representations 

but about time-scale representations, scale being in a way the opposite of 

frequency,  because the term frequency is reserved for the Fourier 

transform (she 96).

2.8.1 Wavelet properties

The most important properties of wavelets are the admissibility and the 

regularity conditions and these are the  properties which gave wavelets 

their name. It can be shown [She96] that square integrable functions 5(t) 
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satisfying the admissibility condition,

can be used to  first analyze and then reconstruct a  signal without loss of 

information. The admissibility condition implies that the Fourier transform 

of 5(t) vanishes at the zero frequency, i.e.

This means that wavelets must have a band-pass like spectrum. This is a 

very important observation, which we will use later on to build an efficient 

wavelet transform.

A zero at  the zero frequency also means that the average value of the 

wavelet in the time domain must be zero,

and therefore it must be oscillatory. In other words, 5(t) must be a wave.

The time-bandwidth product of the wavelet transform is the square of the 

input signal and for most practical applications this is not a  desirable 

property.  Therefore one  imposes some additional conditions on the 

wavelet functions in order to  make the wavelet transform decrease 

quickly with decreasing scale s.  These are the regularity conditions and 

they state that the wavelet function should  have some smoothness and 

concentration in both time and frequency domains. Regularity is a quite 
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complex concept and we will try to explain it a little using the concept of 

vanishing moments.

If we expand the wavelet transform  we get 
[She96]:

Here ƒ
(p) 

stands for the p
th 

derivative of ƒ and "(n+1) means the rest of 

the expansion. Now, if we define the 
moments of the wavelet by M

p
,

then into the finite development

From the admissibility condition we already have that the 0
th 

moment M
0 

= 0 so that the first term in the right-hand side is zero. If we now manage 

to make the other  moments up  to  M
n 

zero as well, then the wavelet 

transform coefficients f(s,-) will decay as fast as s
n+2 

for a smooth signal 

ƒ(t). This is known in literature as the vanishing  moments
3 

or 
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approximation order. If a wavelet has N vanishing moments, then the 

approximation order of the wavelet transform is also N. The moments do 

not have to  be exactly zero, a  small value is often good enough. In fact, 

experimental research suggests that the number of vanishing moments 

required depends heavily on the application [Cal et al 1996].

Summarizing, the admissibility condition gave us the wave, regularity and 

vanishing moments gave us the fast decay  or the let, and put together 

they give us the wavelet. More about regularity
 
can be found for instance 

in [Bur et al 1998] and [Dau et al992].

2.8.2  The continuous wavelet transform

The  wavelet analysis described in the introduction is known as the 

continuous wavelet transform or CWT. More formally it is written as:

where * denotes complex conjugation. This equation shows how a function 

ƒ(t) is decomposed into a set of basis  functions 
Ψ

s,-
(t), called the 

wavelets. The variables s and - are the new dimensions, scale and 

translation, after the wavelet transform. For completeness sake equation 

gives the inverse wavelet transform. I will not expand on this 
since we are 

not going to use it:
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The wavelets are generated from a single basic wavelet 5(t), the so-called 

mother wavelet, by scaling and translation:

In s is the scale factor, - is the translation factor and the factor s
-1/2 

is for 

energy normalization across the different scales (cal et al 1996).

This is a  difference  between the wavelet transform and the Fourier 

transform, or other transforms. The theory of wavelet transforms  deals 

with the general properties of the wavelets and wavelet transforms only. It 

defines a framework within one can design wavelets to taste and wishes.

2.8.3  Discrete wavelets

the wavelet transform is calculated by continuously shifting a continuously 

scalable function over a signal and calculating the correlation between the 

two. It will be clear that these scaled  functions will be nowhere near an 

orthogonal basis
  

and the obtained wavelet coefficients will therefore be 

33



highly  redundant. For most practical applications we would like to remove 

this redundancy.

Even without the redundancy of the CWT we still have an infinite number of 

wavelets in the wavelet transform and  we would like to see this number 

reduced to a more manageable count. This is the second problem we have.

The third problem is that for most functions the wavelet transforms have no 

analytical solutions and they can be calculated only numerically or by an 

optical analog computer. Fast algorithms are needed to be able to exploit the 

power of the wavelet transform and it  is in  fact the existence of these fast 

algorithms that have put wavelet transforms where they are today.

As mentioned before the CWT maps a one-dimensional signal to a two-

dimensional time-scale joint representation that is highly redundant. The 

time-bandwidth product of the CWT is the square of that of the signal and 

for most  applications, which seek a  signal description with as  few 

components as possible, this is not efficient. To overcome this problem 

discrete wavelets have been introduced. Discrete wavelets are not 

continuously scalable and translatable  but can only be scaled and 

translated in discrete steps. This is achieved by modifying the wavelet 

representation 
to create [Dau92]

Although it  is  called a  discrete wavelet, it  normally is  a  (piecewise) 
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continuous function. In (10) j and k  are integers  and s
0 

> 1 is a fixed 

dilation step. The translation factor -
0 

depends on the dilation step. The 

effect of discretizing the  wavelet is that the time-scale space is now 

sampled at  discrete intervals. We usually choose s
0 

=  2  so  that the 

sampling of the frequency axis corresponds to dyadic sampling. This is a 

very natural choice for computers, the human ear and music for instance. 

For the translation factor we usually choose -
0
=1  so that we also have 

dyadic

Figure 2.12 Localization of the discrete wavelets in the time-scale space 

on a dyadic grid.

When discrete wavelets are used to transform a continuous signal the result 

will be a series of wavelet coefficients, and it is referred to as the wavelet 

series decomposition. An important issue in such a decomposition scheme 

is of course the question of reconstruction. It is all very well to sample the 
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time-scale joint representation on a dyadic grid, but if it will not be possible 

to  reconstruct the signal it will not be of great use.  As it turns out, it is 

indeed possible to  reconstruct a  signal from its wavelet series 

decomposition. In [Dau92] it  is  proven that the necessary and sufficient 

condition for stable reconstruction is that the energy of the wavelet 

coefficients must lie between two positive 
bounds, i.e.

Where ƒ 
2 

is the energy of ƒ(t), A > 0, B <    and A, B are independent of 

ƒ(t). When equation  is satisfied, the family of basis functions 5
j,k

(t) with j, 

k    Z is referred to as a frame with frame bounds A and B. When A = B the 

frame is tight and the discrete wavelets behave exactly like an 

orthonormal basis. When A ¹ B exact reconstruction is still possible at the 

expense of a dual frame. In a dual frame discrete wavelet transform the 

decomposition wavelet is different from the reconstruction wavelet.

We  will  now immediately forget the frames and continue with the 

removal of all redundancy from the wavelet transform. The last step we 

have to take is making the discrete wavelets orthonormal. This can be 

done only with  discrete wavelets. The discrete wavelets can be made 

orthogonal to  their own dilations and translations by special choices of 

the mother wavelet, which means:
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An arbitrary signal can be reconstructed by summing the orthogonal 

wavelet basis functions, weighted by the  
wavelet transform coefficients 

[She96]:

Equation shows the inverse wavelet transform for discrete wavelets, which 

we had not yet seen. Orthogonality is not essential in the representation of 

signals. The wavelets need not be orthogonal and in some applications the 

redundancy can help to reduce the sensitivity to noise [She96] or improve 

the shift invariance of the transform [Bur et al 1998]. This is a disadvantage 

of discrete wavelets: the resulting wavelet transform is no  longer shift 

invariant, which means that the wavelet transforms of a  signal and of a 

time-shifted version of the same signal are  not simply shifted versions of 

each other.

2.9 Previous Study: 
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Daniel Smutek et al (2011) is developing a computer-aided diagnostic (CAD) 

system for focal liver lesions in CT images.  The texture analysis methods are 

used  for  the  classification  of  hepatocellular  cancer  and  liver  cysts.  CT 

contrast enhanced images of 20 adult subjects with

hepatocellular carcinoma or with non-parasitic solitary liver cyst were used 

as entry data. A total number of 130 spatial and second-order probabilistic 

texture  features  were  computed  from  the  images.  Ensemble  of  Bayes 

classifiers was used for the tissue classification.

Classification success rate was as high as 100% when estimated by leave-

one-out method. This high success rate was achieved with as few as one 

optimal descriptive feature representing the average deviation of horizontal 

curvature  computed  from original  pixel  gray  levels.  This  promising  result 

allows further amplification of this approach in distinguishing more types of 

liver diseases from CT images.

Samia A.  F.  Ahmed et al  (2014)  in  this  study A new approach to texture 

characterization from dynamic CT scans of the liver is presented. This study 

was  aimed  to  use  the  texture  analysis  and  classification  methods  to 

characterize the hepatocellular carcinoma (HCC), liver and other abdominal 

regions in CT images using image processing program (IDL, interactive data 

language). Tri-phasic Multi detectors CT with contrast enhanced

images of 200 adult subjects with hepatocellular carcinoma were used as 

entry  data.  Tiff  format  was  created as  IDL  variables  and  then using 3x3 

window the  image  was  scanned and  based  on  the  image  histogram the 
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selected feature also called FOS was calculated using this window. Linear 

discriminant analysis was used for the tissue classification. The study found 

that the HCC texture reveal a different 

underlying pattern compared to the liver and other abdominal tissues with 

classification sensitivity and specificity 96.5% and 86.6% respectively, and 

the combination of the texture features throughout the different tri-phasic 

image phases provide the highest predictive overall accuracy of 89.1 % using 

linear discriminant analysis.

in this study carried by  Gunasundari S et al  (2013) studied Liver diseases by 

considered  seriously  because  liver  is  a  vital   organ  to  human  beings. 

Computer  aided  liver  analysis  is  atechnique  that  can help  radiologists  to 

accurately identify diseases that can help in reducing the risk of liver surgery.

The computer aided diagnosis (CAD) system consists of the segmentation of 

liver and lesion, extraction of features from a lesion and characterization of 

liver diseases by means of a classifier. In the last decade, the use of many 

segmentation  techniques  and  classifier  systems  have  been  proposed  by 

many authors with the intention to increase the performance of CAD systems 

This article focuses on various textural analysis methods used so far for the 

classification of liver

diseases  from  abdominal  Computed  Tomography  scans.  It  reviews  the 

techniques  and  results  of  the  various  methods  are  analyzed  and 

summarized. The future direction for the research is also discussed.
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Characterization of CT Liver Lesions Based on Texture Features and a Multiple 

Neural Network Classification Scheme S. Gr. Mougiakakou et al  (2003) using 

a  Computer  Aided  Diagnosis  (CAD)   system  for  the  characterization  of 

hepatic  tissue  from  Computed  Tomography  (CT)  images  is  presented. 

Regions of Interest (ROI’s) corresponding to normal liver, cyst, hemangioma, 

and hepatocellular carcinoma, are drawn by an experienced radiologist on 

abdominal  non-enhanced  CT  images.  For  each  ROI,  five  distinct  sets  of 

texture  features  are  extracted  using  the  following  methods:  first  order 

statistics,  spatial  gray  level  dependence  matrix,  gray  level  difference 

method,  Laws’  texture  energy  measures,  and  fractal  dimension 

measurements.  If  the  dimensionality  of  a  feature  set  is  greater  than  a 

predefined threshold, feature selection based on a Genetic Algorithm (GA) is 

applied.  Classification  of  the ROI  is  then carried  out  by a  system of  five 

neural networks (NNs), each using as input one of the above feature sets. 

The members of the NN system (primary classifiers) are 4-class NNs trained 

by  the  backpropagation  algorithm  with  adaptive  learning  rate  and 

momentum. The final decision of the CAD system is based on the application 

of a voting scheme across the outputs of the individual NNs. The multiple 

classification  scheme  using  the  five  sets  of  texture  features  results  in 

significantly  enhanced  performance,  as  compared  to  the  classification 

performance of the individual primary classifiers.

M. Gletsos et al  (2001) in different study using a computer-aided diagnostic 

system for the classification of hepatic lesions from Computed  Tomography 
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(CT)  images  is  presented.  Regions  of  Interest  (ROI’s)  taken  from  non-

enhanced  CT  images  of  normal  liver,  hepatic  cysts,  hemangiomas,  and 

hepatocellular carcinomas (a total of 147 samples), have been used as input 

to the system.

The  system  consists  of  two  levels:  the  feature  extraction  and  the 

classification levels. The feature extraction level calculates the average grey 

scale and 48 texture characteristics, which are derived from the spatial grey-

level co-occurrence matrices,  obtained from the ROI’s. The classifier level 

consists of three  sequentially placed feed-forward Neural Networks (NN’s), 

which  are  activated  sequentially.  The  first  NN  classifies  into  normal  or 

pathological liver regions. The pathological liver regions are classified by the 

second  NN  into  cysts  or  “other  disease”.  The  third  NN  classifies  “other 

disease”  into  hemangiomas  and  hepatocellular  carcinomas.  In  order  to 

enhance the performance of the classifier and improve the execution time, 

the dimensionality of the initial feature vector has been reduced using the 

sequential  forward floating selection method for  each individual  NN input 

vector. A total classification rate of 98% has been achieved.

Paola Campadelli (2009) this  work has been devoted to the development of 

semi-automatic

and automatic techniques for the analysis of abdominal CT images. Some of 

the current interests are the automatic diagnosis of liver, spleen, and kidney 

pathologies and the 3D volume rendering of the abdominal organs. The first 

and  fundamental  step  in  all  these  studies  is  the  automatic  organs 
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segmentation, that is still  an open problem. In this paper we propose our 

fully  automatic  system  that  employs  a  hierarchical  gray  level  based 

framework to segment heart, bones (i.e. ribs and spine), liver and its blood 

vessels, kidneys, and spleen. The overall system has been evaluated on the 

data of 100 patients, obtaining a good assessment both by visual inspection 

by three experts, and by comparing the computed results to the boundaries 

manually traced by experts.

In a novel study carried by ROBERT M. HARALICK, et al (1973) Texture is one 

of  the  important  characteristics  used  in  identifying  objects  or  regions  of 

interest in an image, whether the image be a photomicrograph, an aerial 

photograph,  or  a  satellite  image.  This  paper  describes  some  easily 

computable textural features based on graytone spatial dependancies, and 

illustrates their application in category identification tasks of three different 

kinds of image data: photomicrographs of five kinds of  sandstones, 1:20 000 

panchromatic  aerial  photographs  of  eight  land-use  categories,  and  Earth 

Resources Technology Satellite (ERTS) multispecial imagery containing seven 

land-use categories. We use two kinds of decision rules: one for which the 

decision regions are convex polyhedra (a piecewise linear decision rule), and 

one for which the decision regions are rectangular parallelpipeds (a min-max 

decision rule). In each experiment the data set was divided into two parts, a 

training set and a test set. Test set identification accuracy is 89 percent for 

the photomicrographs, 82 percent for the aerial photographic imagery, and 

83 percent for the satellite imagery. These results indicate that the easily 
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computable textural features probably have a general applicability for a wide 

variety of image-classification applications.

M. Gletsos et al  (2001) in this study they using a computer-aided diagnostic 

system for the classification of hepatic lesions from Computed  Tomography 

(CT)  images  is  presented.  Regions  of  Interest  (ROI’s)  taken  from  non-

enhanced  CT  images  of  normal  liver,  hepatic  cysts,  hemangiomas,  and 

hepatocellular carcinomas (a total of 147 samples), have been used as input 

to the system.

The  system  consists  of  two  levels:  the  feature  extraction  and  the 

classification levels. The feature extraction level calculates the average grey 

scale and 48 texture characteristics, which are derived from the spatial grey-

level co-occurrence matrices,  obtained from the ROI’s. The classifier level 

consists of three  sequentially placed feed-forward Neural Networks (NN’s), 

which  are  activated  sequentially.  The  first  NN  classifies  into  normal  or 

pathological liver regions. The pathological liver regions are classified by the 

second  NN  into  cysts  or  “other  disease”.  The  third  NN  classifies  “other 

disease”  into  hemangiomas  and  hepatocellular  carcinomas.  In  order  to 

enhance the performance of the classifier and improve the execution time, 

the dimensionality of the initial feature vector has been reduced using the 

sequential  forward floating selection method for  each individual  NN input 

vector. A total classification rate of 98% has been achieved.
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Matheus Alvarez , (2014) for a wavelet this research about Hepatocellular 

carcinoma (HCC) is a primary tumor of the liver. After local therapies, the 

tumor  evaluation  is  based  on  the  mRECIST  criteria,  which  involves  the 

measurement  of  the  maximum diameter  of  the  viable  lesion.  This  paper 

describes a computed methodology to measure through the contrasted area 

of  the  lesions  the  maximum diameter  of  the  tumor  by  a  computational 

algorithm.  63  computed  tomography  (CT)  slices  from  23  patients  were 

assessed. Noncontrasted liver and HCC typical nodules were evaluated, and 

a virtual phantom  was developed For this purpose. 

Optimization of the algorithm detection and quantification was made using 

the  virtual  phantom.  After  that,  We  compared  the  algorithm  findings  of 

maximum diameter of the target lesions against radiologist measures.

Computed results of the  maximum diameter are in good agreement with the 

results obtained by  radiologist evaluation, indicating that the  algorithm was 

able  to  detect  properly  the  tumor  limits.  A  comparison  of  the  estimated 

maximum diameter by radiologist versus the algorithm revealed differences 

on the order of 0.25 cm  for large-sized tumors (diameter > 5 cm), whereas 

agreement lesser than 1.0cm was found for small-sized tumors.

Differences between algorithm and radiologist measures  were accurate for 

small-sized tumors with a trend to a small increase for tumors greater than 5 

cm. Therefore, traditional  methods for measuring lesion diameter should Be 

complemented  with  non-subjective  measurement  methods,  which   would 

allow  a  more  correct  evaluation  of  the  contrast-enhanced  areas  of  HCC 

according to the mRECIST criteria. 
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Another author [Herwig Wendt et al ,2012] Wrote about Image classification 

often relies on texture characterization. Yet texture characterization has so 

far  rarely  been based  on  a  true  2D multifractal  analysis.  Recently,  a  2D 

wavelet Leader based multifractal formalism has been proposed. It allows to 

perform an accurate,  complete and low computational  and memory costs 

multifractal  characterization  of  textures  in  images.  This  contribution 

describes  the  first  application  of  such  a  formalism  to  a  real  large  size 

(publicly  available)  image  database,  consisting  of  25  classes  of  non 

traditional textures, with 40 high resolution images in each class. Multifractal 

attributes are estimated from each image and used as classification features 

within a standard k nearest  neighbor classification procedure.  The results 

reported here show that this Leader based multifractal analysis enables the 

effective  discrimination  of  different  textures,  as  performances  in  both 

classification  scores  and  computational  costs  compare  favorably  against 

those  of  procedures  previously  proposed  in  the  literature  on  the  same 

database.

For  daubechies  wavelet  [Cédric  Vonesch  et  al  ,  2007]   present  a 

generalization of the orthonormal Daubechies wavelets and of their related 

biorthogonal  flavors  (Cohen-Daubechies-Feauveau,  9/7).  Our  fundamental 

constraint is that the scaling functions should reproduce a predefined set of 

exponential polynomials. This allows one to tune the corresponding wavelet 

transform to a specific class of signals, thereby ensuring good approximation 
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and sparsity properties. The main difference with the classical construction of 

Daubechies et al. is that the multiresolution spaces are derived from scale-

dependent generating functions. However, from an algorithmic standpoint, 

Mallat’s  Fast  Wavelet  Transform  algorithm  can  still  be  applied;  the  only 

adaptation consists in using scale-dependent filter banks. 

Finite support ensures the same computational efficiency as in the classical 

case. We characterize the scaling and wavelet filters, construct them and 

show several examples of the associated func-

tions.  We prove that  these functions  are square-integrable  and that  they 

converge to their classical counterparts of the corresponding order.

Another  auther  [Saima Rathore  et  al,  2011]  deal  with classification using 

Texture  is  a  combination  of  repeated  patterns  with  regular/irregular 

frequency.  It  can  only  be  visualized  but  hard  to  describe  in  words.  Liver 

structure  exhibit  similar  behavior;  it  has  maximum  disparity  in  intensity 

texture inside and along boundary which serves as a major problem in its 

segmentation and classification. Problem gets more complicated when one 

applies  simple  segmentation  techniques  without  considering   variation  in 

intensity  texture.  The  problem of  representing  liver  texture  is  solved  by 

encoding it in terms of certain parameters for texture analysis. Numerous 

textural analysis techniques have  been devised for liver classification over 

the years some of which work equally work well  for most of  the imaging 

modalities. Here, we attempt to summarize the efficacy of textural analysis 

techniques devised for Computed Tomography (CT),  Ultrasound and some 
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other imaging modalities like Magnetic Resonance Imaging (MRI), in terms of 

well-known performance metrics.

Chapter Three

Materials and Methods

3.1 Material:

 All patients examined on a Helical Multi detector CT scanner scanner (Somatom Siemens 

scanner dual slice, GE Dual slice, Philips Brilliance 64 slice and Aquilion ,CXXG-012A 

Toshiba scanner 64 slice) in Alnilein Medical Diagnostic Center, Medical Modern Center, Dar 

elaj specialized hospital and Royal care international hospital respectively,  used for collecting 

data from CT Abdominal images. With 8 second rotation Time, Large SFOV, 120 kVp and (250-

320 mAs) which differ through the phases.   
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the protocol used for Abdomen scanning triple-phase helical CT with KVp of 120 and 250 to 320 

mAs, slice thickness 5mm, thin data require slice thickness of 5mm for reformatted images. 

3.2 Design of the study: 

This is an analytical study where selected the patient selected 

conventionally.

3.3 Population of the study:

The population of this study was data set (patients with CT Abdomen using 

triple phase portocol),  The study include both gender with their age ranged 

from 26 years to 89 years old.

3.4 Sample size and type:

 This study consisted of 180 patients diagnosed with hepatocellular 

carcinoma (HCC). 

3.5 Data collection

Data collected from radiologist reports with Special designed sheet from findings which appear 

in different CT cuts. The variable data collected from the acquisition of the CT image .

3.6 Data based acquisition: 

Technique : Imaging protocols :Images from 180 patients was gathered. The 

acquisitions were performed with MDCT device and the standardized acquisition protocol was 

applied:  helical scanning, with lice thickness 5 mm for each patient,  an appropriate amount of 

60% Iodinated Contrast material (about 70 - 90 ml), was injected at 4 ml/s rate. The acquisition 

of the images in the arterial phase started about 20 seconds after contrast injection. Images 

corresponding to how the contrast acting with liver tissue (arterial , vinous and delay phase) were 
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acquired with delay of 50–60s sequences with single Breath-holds.  All images had a size of 

512×512 pixels with 8-bit gray levels and were represented in DICOM format.

3.7 Methods of analysis:

The images that collected from the PACS viewed using RadiAnt Dicom Viewer 

software , Then the images in DICOM format  were converted to JPEG image 

to suit IDL manipulation,  Then the image were read by IDL in JEPG format 

and the user clicks on areas represents the back ground, HCC, normal liver, 

spine and ribs. The pixel intensity in these areas was assigned as 

classification centre, and by using the Euclidian distance between these 

classes and all the pixels the whole image classified into one of these 

classes. Then the classification map were further processed by region label 

to segment the liver from the rest of the structure and convert the 

segmented live from the classification map to binary image to extract the 

HCC from the whole original image. 

The extracted features classified into; HCC, liver, spine and ribs. to extract 

the features using Gray level Run Length Matrix (GLRLM).

When using GLRLM in this study we clicks on areas represents these classes; 

in these areas a window of 3×3 pixel were set and the higher order statistic  

were calculated, which include Short Run Emphasis (SRE), Long Run 

Emphasis (LRE), Gray-Level Nonuniformity (GLN),  Run Length Nonuniformity 

(RLN),  Run Percentage (RP), Low Gray-Level Run Emphasis (LGLRE),  High 

Gray-Level Run Emphasis (HGLRE),  Short Run Low Gray-Level Emphasis 

(SRLGLE),  Short Run High Gray-Level Emphasis (SRHGLE), Long Run Low 

Gray-Level Emphasis (LRLGLE), Long Run High Gray-Level Emphasis 

49



(LRHGLE), These features were assigned as classification centre used by the 

Euclidian distances to classify the whole image. The algorithm scans the 

whole image using a window of 3×3 pixel and computes the higher order 

statistic and computes the distance (the Euclidean distance) between the 

calculated features and the class’s centers and assigns the window to the 

class with the lowest distance. Then the window interlaced one pixel and the 

same process started over till the entire image were classified and a 

classification map were generated. After all images were classified the data 

concerning the HCC, liver, spine and ribs entered into SPSS with its classes to 

generate  a classification score using stepwise linear discriminate analysis; to 

select the most discriminate features that can be used in the classification of 

HCC. 

3.8 Ethical approval

The ethical approval was granted from the hospital and the radiology 

department; which include commitment of no disclose any information 

concerning the patient identification.

Chapter Four

4.1 Results
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The main goal of this study to characterize the hepatocellular carcinoma in 

CT  Images  ,  the  patients  who  diagnosed  with  HCC  and  examined  by 

Computed Tomography , and the characterization of image done by higher order 

statistic and Daubechies coefficient based on Texture Analysis.

The study  include 180  patients with hepatocellular carcinoma  The result of 

this study represented in figures and tables.  

 Table (4.1) Shows Gender distribution of  patients with HCC 

Gender Frequency Percenta

ge
Male 79 44 %

Female 101 56 %

Figure 4.1 show gender distribution of  patients with HCC

Gray Level Run Length Matrix (GLRLM):

Figure 4.2 show Scatter plot generated using discriminante analysis function 

for four classes represents: HCC, Liver, Spine and Ribs .
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Table 4- 2 Classification score matrix generated by linear discriminate 

analysis with classification accuracy of  85.4%.

    Original group

Predicted Group 

Membership
Tota

lHCC Liver

Spin

e Ribs

Class

es

HCC

98.8 1.2 0 0

100

%
Liver

9.9 85.2 4.9 0

100

%
Spine

0 6.2 75.3 18.5

100

%
Ribs

0 0 18.1 81.9

100

%
 Total classification accuracy = 85.4%  
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Figure 4.3show error bar plot for the  Short  Run Emphasis (SRE) textural 

features.

Figure 4.4 show error bar plot for the  Gray Level Non-uniformity (GLN)
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Figure 4.5 show error bar plot for the  High Gray Level Run Emphasis  (HGRE)
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Figure 4.6 show error bar plot for the Short Run High Gray Level Emphasis 

(SRHGLE)

Figure 4.7 show error bar plot for the  Long Run Low Gray Level Emphasis 

(LRLGE)
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Daubechies wavelets based on Texture Analysis 
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In this section the features were extracted from Hepatocellular Carcinoma 

(HCC) CT images using Daubechies wavelets based on Texture Analysis. and 

this features showed significant correlation with the predefined classes (HCC, 

Liver, Spine and Ribs) . 

Figure 4.8 show Scatter plot generated using discriminante analysis function 

for four classes represents: HCC, Liver, Spine and Ribs.
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Table 4.3  Showed the classification accuracy of the HCC using linear 

discriminant analysis:

             Classes

Predicted Group 

Membership

Total

HCC Liver Spine Ribs

Original

HCC 97.1 2.9 .0 .0 100.0
Liver 8.3 91.7 .0 .0 100.0
Spin

e
2.9 .0 97.1 .0 100.0

Ribs .0 .0 8.8 91.2 100.0
 94.2% of original grouped cases correctly classified
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Figure 4.9 CT images image (A) 

and classification map (B), the original image (A) classified to (B) 

color map demonstrate the liver lesion.

.

(A)                                                                                   (B)

Chapter Five
Discussion, Conclusion and Recommendations
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5.1 Discussion:

By  the  increasing  use  of  direct  digital  imaging  systems  for  medical 

diagnostics, digital image processing becomes more and more important in 

health care.

Digital  imaging  technologies  have  become indispensable  components  for 

clinical  procedures.  Major  advances  in  the  field  of  medical  imaging  and 

computer technology have created opportunity for quantitative analyses of 

medical images and provided powerful  techniques to probe the structure, 

pathology and function of the human body. The availability of many different 

imaging modalities increased the requirement for significant innovations to 

obtain accurate and fast results in all aspect of image processing.

However, in characterization of hepatocellular carcinoma using CT images 

The  system involves  use  of  different  measures,  such  as  texture  features 

(GLRLM),  grey  scale,  fractal  dimension  estimators  or  shape  descriptors, 

combined with a classifier using two method of analysis the data Gray Level 

Run  Length  Matrix  (GLRLM)  and  Daubechies  wavelet  based  on  texture 

analysis .

In This is analytical study, performed for 180 patients, male and female who 

are presented for CT Abdomen to liver abdominal using multi detector helical 

CT Scan (MDCT).  In  this  study the higher order  statistic  (GLRLM) contain 

elven features extracted from Triple phase CT images using 3×3 window. 

Three of them showed well classification with the predefined classes (HCC, 

Liver, Spine and Ribs) they includes short  run emphasis ,  gray level non-
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uniformity  ,  high  gray  level  run  emphasis  ,  short  run  high  gray  level 

emphasis and long run low gray level emphasis .

Table 4.1 shows Gender distribution for hepatocellular carcinoma patient's, show that the female 

had higher rate 44:56 % male to female, and figure 4.1 show the distribution of gender where 79 

represent the male and 101 represent the female.

Figure 4.2  show Scatter plot generated using discriminate analysis function 

for four classes represents: HCC, Liver, Spine and Ribs , with the Gray Level 

Run Length Matrix (GLRLM) and the classification showed that the HCC were classified 

well. 

Table 4- 2 show Classification score matrix generated by linear discriminate analysis for the 

scatter  plot,  the   linear  discrimination  analysis  was  applied  to  assign  the 

classified region to their respective class, in order to find the accuracy of 

classification. Where the classification accuracy for the whole classes was 

85.4%, with 98.8% classification for HCC, liver, spine and ribs was 85.2%, 

75.3 and 81.9 respectively. 

 Figures 4.3 , 4.4, 4.5, 4.6 and 4.7 show Error bar plot for the  Short  Run 

Emphasis (SRE) , Error bar plot for the  Gray Level Non-uniformity (GLN),  

Error bar plot for the  High Gray Level Run Emphasis  (HGRE), Error bar plot 

for the Short Run High Gray Level Emphasis (SRHGLE) and  Error bar plot for 

the  Long Run Low Gray Level Emphasis (LRLGE), that selected by the linear 

stepwise discriminate function as a discriminate feature where it  

discriminate between all features between HCC, Liver, Spine and Ribs . were 

computed from Gray Level Run Length Matrix (GLRLM) and the results are 

represented that there is a well concentration of features around the class 
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centers which give a remarkable difference among the four classes 

especially between the HCC and liver.

Figure 4.8  show Scatter plot generated using discriminante analysis function 

for four classes represents: HCC, Liver, Spine and Ribs , with the Daubechies 

wavelet based texture analysis  and the classification showed that the HCC were 

classified well. 

Table 4-3 show Classification score matrix generated by linear discriminate analysis for the 

scatter plot, the linear discrimination analysis was applied to assign the 

classified region to their respective class, in order to find the accuracy of 

classification. Where the classification accuracy for the whole classes was 

94.2%, with 97.1% classification for HCC, liver, spine and ribs was 91.7%, 

97.1 and 91.2 respectively. 

Finally, HCC and other abdominal organ in CT images for simplicity can be diagnosed and 

classify by using higher order statistic and Daubechies coefficient.

 Excellent discrimination between hepatocellular carcinoma and other abdominal organ can be 

established based on GLRLM and Daubechies coefficient serves as a second method to perform 

more characterization of the tumor.
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5.2 Conclusions : 

Digital imaging technologies have become indispensable components for 

clinical procedures. Major advances in the field of medical imaging and 

computer technology have created opportunity for quantitative analyses of 

medical images and provided powerful techniques to probe the structure, 

pathology and function of the human body. The availability of many different 

imaging modalities increased the requirement for significant innovations to 

obtain accurate and fast results in all aspect of image processing.

The texture reveals a different underlying pattern of the HCC compared to the liver and other  

abdominal tissues with classification sensitivity 98.8%, and the combination of the GLRLM 

throughout the different triphasic image phases provides the highest predictive  overall accuracy 

of 85.4 % using stepwise linear discriminant analysis. 
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In the Daubechies wavelet transformation the classification sensitivity 97.1 %, and the 

combination of the texture features throughout the different triphasic image phases provides the 

highest predictive  overall accuracy of  94.2 % using stepwise linear discriminant analysis. 

This study dictate that texture analysis is superior to visual perception system where texture  

reveals the change and the difference of the image pattern objectively in respect to the ground  

truth. 

Gray level intensity values can be used as a valuable quantitative tool that would be helpful in 

improving the confidence in HCC diagnosis as well as facilitating more accurate diagnosis.  

5.3 Recommendations 

 Existing techniques can be applied to classify and differentiate 

other types of liver   lesions.

 More texture features and techniques can be used to improve the 

performance. 

 Texture analysis can be carried out in all image slices where the 

tumor were visible therefore  to get  volume of the tumor and 

this can be used for planning process of diagnostic radiotherapy  

treatment. 

 Study can also be  done in depth for other types of medical 

images like US and  MRI  .  
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 Initiation of image processing unit in the radiology department 

can help a lot in activation of  image processing projects.  

 Further classification of liver that associated with any hepatic 

disease.
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