

يقول الله تعالى:

" قال إن حلاتي ونسكي ومدياي ومماتي لله ربد العالمين لا شريك له وبذلك أمرت وأنا أول المسلمين "

صدق الله العظيم الأنعام – آية 17

Dedication

To the success of taught me patience
To those who missed him in the face of
difficulties
Minimum stayed he was fed with affection
for.... My father ♥♥
And to those who are racing to come out
words expressing the innermost same
Who taught me and suffered difficulties to get
to what I am.... My mother ♥♥
And to all my brothers and my family

Acknowledgements

First of all, I am grateful to **ALLAH** the Almighty for all blessing in this life and for giving me power and ability that were necessary to achieve this goal. All thanks and praise belongs to **ALLAH** "Al-hamdulillah".

I would like to express my sincere appreciation to my supervisor **Dr: Fath Elrahman Mohamed Adam** for his professional guidance, valuable help, encouragement, understanding and endless patience not only throughout this study but also for other situations. also his beneficial suggestions and valuable comments for this study which helped to improve the quality of the work.

I would like to thank my friend Mr. Mohamed Khider Hassan for their assistance & support during this study.

Abstract

This thesis presents a method for the design of high elevated flat slab formwork. The method defines the primary stages of the design process, determines the detailed procedure within each stage, and identifies the basic data needed for exercising the design.

The proposed method is aimed at producing design solutions that meet both quality and economy criteria. The method used in this thesis was based on designing a program using Microsoft excels software to test flat slab elements of constructing building selected as a case study and the method procedure was done according to the requirements of the (ACI-347) Code.

Carefully the output data from the program were studied and verified to insure about the safety and economics of the proposed formwork for flat slab.

مستخلص الدراسة

تقدم هذه الاطروحه طريقة لتصميم الفرم الخرسانية لبلاطة مسطحه لمبنى سكنى مكون من أربعة طوابق. تتناول الطريقة المراحل الأولية لعملية التصميم، بالإضافة للاجراءات المفصلة لكل مرحلة، وتحدد البيانات الأساسية اللازمه لممارسة التصميم.

تهدف الطريقة المقترحة إلي انتاج حلول التصميم التي تلبى كل من متطلبات الجودة والاقتصاد على حد سواء. طريقة التصميم التي إستخدمت في هذه الاطروحه اعتمدت على عمل برنامج بالإستعانة ببرنامج مايكروسوفت اكسل لاختبار الفرم الخرسانية للبلاطات المسطحة لمبني تم أخذه كدراسة حالة وجرت خطوات طريقة التصميم وفقا لمتطلبات المدونة الأمريكية ACI- 347.

تمت دراسة مخرجات البرنامج بعناية والتحقق منها بغرض الوصول إلي ضمان تحقق الأمان والاقتصاد لمقترح الفرم الخرسانية للبلاطات المسطحه.

Table of Contents

Title	Page
الاية	I
Dedication	II
A acknowledgement	III
Abstract	IV
مستخلص الدراسة	V
Table of Contents	VI
List of Tables	X
List of Figures	XI
Chapter One Introduction	
1.1 General Introduction	1
1.2 Definitions	3
1.3 Statement of the Research Problem	4
1.4 Objectives of the Research	5
1.5 Research Methodology	6
1.6 Hypotheses of the Research	6
1.7 Research out line	6
Chapter Two Literature Review	
2.1 Introduction	8
2.2 Formwork System	10
2.3 Formwork Economy and Significance	10
2.3.1 Speed of Construction	12
2.3.2 Safety	12
2.3.3 Quality	13
2.4 An Integrated Concrete/Formwork Life Cycle	13
2.4.1 Choose a Formwork System	14
2.4.2 Fabricate Formwork	15
2.4.3 Erect Formwork, Place Inserts, and Reinforcement	15
2.4.4 The Placing of Concrete	17
2.4.5 Consolidation of Concrete	17
2.4.6 Concrete Finishing	17
2.4.7 Curing of Concrete	17
2.4.8 Strip Forms	18
2.4.9 Providing of Re-shores/Backshores	18
2.4.10 Removing of Re-shores or Backshores	19

2.4.11 Repairing and/or Reuse Formwork	19
Title	Page
2.5 Considerations for Multistory Construction	19
2.6 Loading of vertical formwork	22
2.7 Loading of horizontal formwork	22
2.8 Construction Process	23
2.8.1Two levels of shores and one level of re-shores	24
2.8.2Three Levels of Shores	24
Chapter Three Analysis &Design of Formwork	
3.1 Introduction	26
3.2 The main elements of the formwork	26
3.3 Types of Formwork	27
3.4 Types of form work according to the elements	28
3.4.1Slab Formwork	28
3.4.2 Foundation Formwork	29
3.4.3 Wall Formwork	30
3.4.4 Beam Formwork	31
3.4.5 Column Formwork	32
3.5 Formwork Materials	33
3.5.1 Wood	34
3.5.2 Plywood	38
3.5.3 Ply-form	39
3.5.4 Steel	39
3.5.5 Aluminum	40
3.5.6 Glass-Reinforced Plastic	40
3.6 Formwork for Concrete Slabs	43
3.7 Formwork for Concrete Beams	45
3.8 Formwork for Foundation	45
3.9 Loads on Concrete Formwork	47
3.9.1 Lateral Pressure of Concrete	47
3.9.2 Gravity Loads on Formwork	48
3.9.3 Lateral Loads	50
3.10 Slab Formwork Design	50
3.11 Simplifying Assumptions for Design	51
3.11.1Mechanical Properties of Lumber	52
3.11.2Design Values of Mechanical Properties	53

3.11.3 Size Factor	54
Title	Page
3.11.4 Effect of Moisture	54
3.11.5 Load Duration Factor	55
3.11.6 Temperature Factor	56
3.11.7 Bearing Area Factor	56
3.12 Design Methodology and Design Equations	57
3.13 Design Loads	60
3.13.1Vertical Loads	61
3.13.2 Horizontal Load	62
3.14 Design Steps	62
3.15 Size, Length, and Spacing of Joists	63
3.16 Stringers and Shores	63
3.17 Wall Formwork Design	67
3.17.1 Wall Form Components	67
3.17.2 Design loads	68
3.18 Method of Analysis	72
3.19 Stresses Calculations	72
3.20 Determination of Maximum Allowable Span	74
3.21 Design of Lateral Bracing	74
3.22 Columns Formwork Design	77
3.22.1 Pressure on Column Forms	78
3.22.2 Designing Forms for Square or Rectangular Columns	79
3.22.3 Sheathing for Column Forms	82
3.22.4 Tables for Determining the Maximum Span Length of Ply-	82
form Sheathing	
3.22.5 Column Clamps for Column Forms	83
3.22.6 Design of Wood Yokes for Columns	84
3.22.7 Steel Column Clamps with Wedges	87
Chapter Four Case Study & Design	
4.1Introduction	89
4.1.1 Case study	89
4.2 In-put Data	90
4.2.1 Slab Input	90
4.2.2 Design Load on formwork	93
4.2.3 Design of Sheathing	94

4.2.4 Design of stringer	94
Title	Page
4.2.5 Design of joists	97
4.2.6 Design of Shore	96
4.3 Distribution of Joist& Stringers	97
4.3.1 Distribution of Joist for length13.5m	97
4.3.2 Distribution of Joist for length17m	98
4.4 Desiccation	98
Chapter Five Conclusion and Recommendation	
5.1 Conclusion	101
5.2 Recommendation	102
References	103
Appendix (A)	
Appendix (B)	
Appendix (C)	

List of Tables

Title	Page
Table (3.1): Load Duration Factor	55
Table (3.2): Temperature factor	56
Table (3.3): Bearing Area Factor	57
Table (3.4): Design Equations for Different Support Conditions	64
Table (3.5): Bending Moment, Shear, and Deflection Equations	65
Table (3.6): Pressure Values for Concrete Walls	69
Table (4.1): Program Output	99

List of Figures

Title	Page
Figure (2.1): Distribution of costs for cast-in-place concrete slab& wall	11
Figure (2.2): Integrated concrete formwork life cycle	14
Figure (3.1): Slab Formwork	28
Figure (3.2): Foundation formwork	29
Figure (3.3): Wall formwork (vertical section)	30
Figure (3.4): Beam formwork	31
Figure (3.5): Column formwork	33
Figure (3.6): Bending stresses	37
Figure (3.7): Plywood orientation	42
Figure (3.8): All-wood conventional formwork system	44
Figure (3.9): Formwork for isolated footing	46
Figure (3.10): A diagram showing the hydrostatic pressure distribution in fresh concrete	48
Figure (3.11): Force and direction of grains	53
Figure (3.12): Wall Form Components	67
Figure (3.13): Bracing of formwork	74
Figure (3.14): Forms for Square Column	80
Figure (3.15): Column forms with wood yokes	84

Figure (3.16): Column form with steel clamps and steel wedges	88
Figure (4.1): Case Study	90
Figure (4.2): Slab Form Components	93
Figure (4.3): Distribution of Joist	100
Figure (4.4): Distributions of Stringers	100