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Abstract

In this research we treat the problem of integrability of Hamiltonian systems
. There have been several methods for treating this problem depending on different
situations. These methods include the first integral method obtained via the
Poission bracket and generalized in the context of Lie bracket . The latter
generalization is based on Hamiltonian mechanics and symplectic structure. The
method that we emphasized in this research is the Cartan method of moving
frame. We have utilized this method of moving frame where the killing tensor is
major entity that is involved in the treatment .In particular, we have used the
intrinsic geometry provided by the Guass and main curvature to extract the
separable  system of coordinates by employing the method of moving frame.
Then the corresponding Killing tensor , the potential function and the first integrals
are recovered .We have applied this procedure of separation of variables to
surfaces of rotation and surface of constants curvature .
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Introduction

The problem of the itegrability of Hamiltonian system is a long standing
problem. Several trials has been achieved to approach a complete solution. In fact
there has been roughly three main approaches. The first approach is the classical
approach where one seeks first integrals of the Hamiltonian system and then the
solution is written via these integrals. A first integral F satisfies:

%+ {F,H} =0, where { } is the Poisson bracket and H is the Hamiltonian

function . In this approach one uses Calculus as an analytical tool. However one
can also utilize Lie bracket instead of Poisson bracket. The Lie bracket is
considered as a geometrical approach, where we involve vector fields, called
Hamiltonian vector fields, corresponding to Hamiltonian functions. The next stage
in the development of integrability of Hamiltonian system is due to Eisenhart and
Cartan approach. Eiserhart used the frame field and Cartan used the coframe field
and thus exterior Calculus is to be the geometrical tool for a free coordinates
description of Hamiltonian system and Hamilton’s equation. In this late approach
prove existance and uniqueness of solutions of the system , which is problem of
integrability . Of particular interest to us as a technique to solve Hamiltonian
system is the method of separation of variables . The key idea behind this method
is to seek a k-set of special coordinates : g = (g%, ..., ¢%) in which corresponding
Hamilton- Jacobi partial differential equation admits a complete integral of the
form

W(q, C) — Wl(qli C) + ot Wn(qni C)

This method of separability has been considered by several mathematician
such as Dall’ Acqua, Eisenhart, Levi-Civita , Riai , Stackel and others. In this
research we develop the method of separability and use it in the same cases.

Lastly we want to mention that these is another third approach to the
problem of integrability of Hamiltonian system. This approach is purely
geometrical .

Indeed here mathematicians construct the solutions as submanifolds of some
ambient manifold . The first integrals of the system or their corresponding vector
fields are interpreted as generators of the flows and provide the symmetries of the

\Y



system .The reduction of order of the Hamiltonian equations is achieved in such a
way that for each symmetry the order is reduced by two .

So the geometrical properties of the symplectic form and the corresponding
Lie symmetries that come from first integrals are utilized to construct the
submanifolds of solutions.

Vi
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Chapter One

Differentiable Manifolds and Lie Groups



Chapter One
Differentiable Manifolds and Lie Groups

1.1Manifold

1. the definition of differentiable manifolds:
(1.1.1)Definition:

If U cR™is openand V < R™ is open, Y:U — V is said to be differomorphism if i is
infinitely differentiable map with infinitely differentiable inverse, and the objects defined on U
will counter partson V.

(1.1.2)Definition:

An m-dimensional manifold is a set M, together with a countable collection of subsets for
U, € M, called coordinate charts, and one-to-one functions ¢: U, — V,, onto connected open
subset V,of R™, where 7, ¢ R™called local coordinate maps which satisfy:-

1. The coordinate charts cover M.
2. On the overlap of any pair of coordinate charts U, N Ugcomposite map

(pﬁo(pc;l: (pa(Ua n UB) - (pB(Ua n UB)
is smooth (or infinitely differentiable) function.
3. W of g,(x) inV, and W of @z(x) in V such that

oz (W) Nngp(w) =@

EF e TN T
e
T — — 3 o
Ci;- et &5

Figure 1.1

Coordinate Charts on manifold
Example(1):

The sample n-dimensional manifold is just Euclid’s space R"itself. There is a single
coordinate chart U = R™ with local coordinate map given byX = I:R"™ — R™, more generally
any open subset U < R™ is an n-dimensional manifold with a single coordinate chart given
Uitself, with local coordinate map the identity again. Conversely, if M is any manifold with a
single global coordinate chart



X:M->V c®R"
We can identify M with image V, an open subset of R™.

Example(2):
The unit sphere
S2={(x,vy,2):x* +y%? +2z2 =1}

Is an example of non-trivial two-dimensional manifold realized as a surface in R3 let U1= 52\
{(0,0)} , U2 =52\ {(0,0,1) }be the subset obtain by deleting the north and south poles respectively
let

0., U, & R ~{(x,y,0)},a=12

be stereographic projection from respective poles,

o1 (x,y,2) = (=-2)

1-z'1-z

P2 (x,y,2) = (=)

1+z'1+z

It can be easily checked that on the overlap Uin U> .

The Hausdorff separation property follows easily from that of R3, so S? is a smooth,
indeed two-dimensional manifold. The unit sphere is particular case of the general concept of
surface in R3, which historically provided the principle motivating of the general theory of
manifolds.

(1.1.3) Definition

The set U € M is open if and only if Vx € U there is a neighborhood of x contained in U so x €
o Hw), x € gz (w) c U,where ¢,: U, — V,is coordinate chart containing x, and w is open
subset of 17, .

e The degree of differentiability of the overlap functions ¢z° ¢, ' determines the degree

of smoothness of the manifold M.
2. Map between manifolds:

(1.1.4)Definition:

If M and N are smooth manifolds, a map f:M — N is said to be smooth if its local
coordinate expression is a smooth map in every coordinate chart.

In other words, for every coordinate chart ¢,:U, - V, € R™on M and every chart @g: UB -
Vg c R onN.



The composite map
@p° f “pat R o R (1.1)

IS @ smooth map. In other words, a smooth map is of the form y= f(x), where f is a smooth
function on the open subsets given local coordinates x on M and y on N.

M
U o R F /F(?

QQ)

Figure 1.2
Map between manifolds
3. The maximal rank condition:

(1.1.5) Definition:

Let f: M -»N be a smooth maping from an m-dimensional manifold M to an n-
dimensional manifold N. the rank of f at a point x € M is the rank of the n x m Jacobin matrix
(0f%/ axY) at x, where y= f(x) is expressed in any convenient local coordinates near x. The
mapping f is of maximal rank on a subset ScM if for each x € S the rank of f is large as
possible (i.e. minimum of m and n).

4.Submainfold:

(1.1.6) Definition:

Let M be a smooth manifold. A submanifold of M is a manifold N ¢ M, together with a
smooth, one-to-one map @: N - N ¢ M satisfying the maximal rank condition everywhere,

3



where the parameter N is some other manifold and N = @(N) is the image of @. In particular,
the dimension of N is the same as that of N, and does not exceed the dimension of M.

Example (3):

In all these examples of submanifolds, the parameter space N =R is the real line,
with @: R — M parametrizinga one-dimensional submanifold N = @(*R) of some manifold M

a) Let M=R3. Then
@(t) = (cost,sint,t)

defines a circular helix spiralling up the z-axis.

Here @ is clearly one to one and @ = (—sint, cost,1) never vanishes, so the maximal rank
condition holds.

b) Let M =R? and
@(t) =((1 + e~t) cost, (1+e~t)sint) then as t —oo, N spirals into the unit circle x? +
y? = 1. Similarly, ¢(t) = (et cost, et sint) defines a logarithmic spiral at origin.

(1.1.7)Definition:

A subset N of a C*- manifold M is said to have n-submanifold property if each PeN has
a coordinate neighborhood (U, ¢) onM with local coordinates x1, ..., x™ such that

@ ¢ = (00,..0)

(i) o) = C™(0)

(i) ¢ @WnNN)={xeC™(0)x"1=--=xm=0}
If N has this property, coordinate neighborhood of this type are called preferred coordinater
(relative to N)

(1.1.8) Definition:

A regular submanifold N of a manifold M is a submanifold parametrized by ¢: N —» M
with the property that for each x in N there exist arbitrarily small open neighbourhoods U of x in
M such that) ¢ ~*[U n N] is a connected open subset of N.

(1.1.9)Definition:

A differentiable mapping F: M — N is called an immersion if rank F = dim M at all
point of M. Thus every regular mapping from one manifold to another define an immersion
provided dimM < dim N.

(1.1.10)Definition:



A subset N ¢ M (with a differentiable structure is called an immersed submanifold of M
if the inclusion map I: N - M is an immersion.

(1.1.11)Definition:

Let F: M — N be one-to-one immersion such that M is homeomorphic to its image M =
F(M)with respect to topology which M receives as subspace of N, then F is called an imbedding
and M is called an imbedded submanifold.

(1.1.12)Definition:

A subspace M of a C*- manifold N having the submanifold property is called a regular
submanifold of N if the differentiable structure induced is one which is determined by preferred
coordinate neighborhood of N (relative to M).

1.2 Lie Groups
1. Lie Groups:

A Lie group appears to be a somewhat unnatural marriage between on the one hand the
algebraic concept of a group, and on the other hand the differential - geometric notion of a
manifold.

(1.2.1) Definition:

A group G which is also a manifold is Lie group provided that mapping of G X G = G
defined by (x,y) — xy and the mapping of G — G defined x — x~! are both C*mapping.

(1.2.2) Definition:

An r-parameter Lie group G, is a Lie group which also carries the structure of an r-
dimensional manifold in such a way that both the group operation.

mG xXG - G
m(g,h) = g.h, g, heG
and the inversion
i:G - G, i(g) = gt geG

are Smooth maps between manifolds.



Example (4):

GL(n, R) the set of non singular n < n matrices, is as we have seen, an open submanifold

of u,, (R), the set of n x n real matrices identified with R™* moreover GL(n, R) is a group with
respect to matrix multiplication.

In fact an n < n matrix A is nonsingular if and only if det( A) # O, butdet (AB) =
detA.det B, so if A and B are non singular, that det A # 0 if an only if A has a multiplicative
inverse, thus GL (n, R) is a group. Both the map (4,B) » ABand A - A~! are C” - the
product has entries which are polynomials in the entries of A and B and these entries are exactly
the expression in local coordinates of the product map which is thus C* here C* the inverse of
A= (a;;) may written as A~' = (1/detA)(a;;) where the @;; are cofactor of A (thus
polynomials in theses entries which does not vanish on GL(n, R). It follows that the entries of
A~1are rational function on GL (n, R) with non-vanishing denominators, hence C”, there for GL

(n, R) is Lie group.
2. Local Lie groups
(1.2.3) Definition:

An r-parameter local Lie group consists of connected open subsets V, c V c R"
containing the origin 0, and smooth maps.

mV xV - R (1.2)
defining the group operation, and
i:V,-V,
defining the group inversion, with the following properties

a) Associativity if x,y,z € V, and also m(x,y) and m(y, z) are in V, then
m(x,m(y,z)) = m(m(x,y),z).

b) Identity element, for all x in V,,m(o,x) = x = m(x,0).
c) Inverses, for each x in V,, m(x,i(x)) =0 = m(i(x),x).
Example (5):

Here we present a nontrivial example of a local about not global, one-parameter Lie
group. Let V = {x: |x| < 1} c R with group multiplication.

2xy —x—Yy
m(x,y):—xy_1 ., X yEV



A straight forward computation verifies the associativity and identify laws for m. The
inverse map is i(x) = x/(2x — 1), defined for x € V, = {x: |x| < %} Thus m defines a local
one-parameter Lie group.

3. Local transformation groups:
(1.2.4) Definition:

Let M be a smooth manifold. A local group of transformations acting on M is given by a
local Lie group G, an open subset n, with

{e}xMcncGxM

which is the domain of definition of the group action, and smooth map iy =n — M with the
following properties.

a) If (h,x) €n, (g,¥(h x))€ nandalso (g.h,x) € n then
¥(g,¥(h,x)) = ¥(g.h,x)

b) Forallx e M
P(e,x) = x
c) If (g,x) € nthen (g~,1(g,x)) € nand
V(g P(g.x) =x

4. Orbits
(1.2.5) Definition:

An orbit of a local transformation group is a minimal nonempty group invariant subset of
the manifold M. In other words, O c M is an orbit provided it satisfies the conditions.

a) Ifx €0,g € Gand g.x is defined, then g.x € O

b) 1fO c 0, and O satisfied part (a) then either 0 = 0 or is empty.

In the case of a global transformation group, for each x € M the orbit through x has the
explicit definition 0, = {g.x: g € G}.For local transformation group, we must look at products
of group elements acting on x

0, ={91"92" g xk=1,9,€G,g," g, ... gx - x is defined }.

As we will see, the orbits of a Lie group of transformations are in fact submanifolds of
M, but they may be of varying dimensions, or may not be regular.

(1.2.6) Definition:
Let G be a local group of transformations acting on M.

7



(a) The group G acts semi-regularly if all the orbits O are of the same dimension as submanifolds
of M.

(b) The group G acts regularly if the action is semi-regular, and in addition, for each point x €
M there exist arbitrarily small neighbourhoods U of x with the property that each orbit of G
intersects U in a pathwise connected subset.

Example (6):
Examples of transformation groups-
(a) The group of translations in R™: let a # O be a fixed vector in R™, and let G = R. Define
Y(e,x)=x+eca, x ER™, c€R. (1.3)

This is readily seen to give a global group action. The orbit are straight lines parallel to a, so
the action is regular with one-dimensional orbits.

(b) Groups of scale transformations : Let G = R*be the multiplication group. Fix real numbers
@y, Ay, ... ,a,notall zero. Then R* acts on R™ by the scaling transformations

YA, x) = (A%xt ... A%mx™) A€ RT, x = (x1,...,x™) € R™.

The orbit of this action are all one- dimensional regular submanifold of R™, except for the
singular orbit consisting of just the origin {0} for instance, in the special case of R?
with ¥(2, (x,y)) = (Ax, 2%y) the orbits are halves of the parabolas y = kx? (corresponding to
either x > 0 or x < 0) the positive and negative y-axis, and the origin. In general, this scaling
group action is regular on the open subset R™\{0}.

5. The Action of a Lie Group on manifold
(1.2.7) Definition:
Let G be a group and X a set, then G is said to act on X (on the left) if there is a mapping
=06 x X - X (1.4)
Satisfying two conditions:

1) If e the identity element of G, then
O(e,x) =x forallx € X

2) If g1,9, € G then
0(g1,0(g2.x)) = (9,95, x) forallx € X (1.5)



e When G is a topological group X is a topological space and 0 is continuous, then the
action is called continuous.
e When G is Lie group, X is a C*.manifold and 6 is C*, then the action is called C* action.
e We define right action
(1) 8(x,e) = x
(2)6(0(x, g1)-92) = 6(x,9192)
(1.2.8) Definition:

If G acts on set X, then the map g — 8 ; is a homomorphism of G into S(x). Conversely,
any such homomorphism determines an action 6(g, x) = 6, (x).

(1.2.9) Definition:

Let a group G act on a set M and suppose that A c M is subset, then GA denotes the set
{ga: g € G and a € A}. The orbit of x € M is the set G, if G,=x then x is fixed point of G, and
if G, = M for some x, then G is said to be transitive on M. In this case G, = M for all x.

(1.2.10) Definition:

Let G be a group acting on set X and, let x € X, the stability isotropy group of x denoted
by G, is the subgroup of all element of G leaving X a fixed G,={geG | g. x = x}.

(1.2.11) Definition:

If G, X be as in previous definition then G is said to act freely on X if gx = x
implies g = e the identity is the only element of G having a fixed point.

1.3 Vector Fields
1. The tangent space at a point of a manifold:
(1.3.1) Definition:
We define a differentiable curve («) on manifold M as follows:

a.l € R - Mis differentiable function (C*differentiable means differentiable infinity many
times) where I is an interval in R i.e. a(t) = (a;(t), a5 (t), ..., a,, (t)) = P(t) a point in M.

(1.3.2) Definition:

Suppose C is a smooth curve on a manifold M, parameterized by ¢:1 — M, where I is a
subinterval of R. In local coordinates x = (x1,..,x™), C is given by m smooth functions
¢(e) = (p1(¢€),... ,d™(¢)) of the real variable e. At each point x = ¢(¢) of C the curve has a
tangent vector, namely the derivative ¢(¢) = d¢p/de = (¢p1(e),...,p™(€)). In order to



distinguish between tangent vectors and local coordinate expressions for points on the manifold,
we adopt the notation.

Ve = ¢e) = 01 () s + 0% -+ o+ 0™ (e) s (1.6)
for the tangent vector to C at x = @(¢), then V|, is called the tangent vector.
Example (7):
The helix
@(c) = (cose, sing, €)

In R3, with coordinates (x, y, z) has tangent vector

(6) = —si 4 6+6_ 6+ 6+6
P (e) = smsax cossay F yax xay Fp

At the point (x,y, z) = @(e) = (cose, sing, €).
(1.3.3)Remark:
Two curves € = {@(e)} and € = {@#(6)} passing through the same point.
x=0(e) = 6(67) (1.7

For some €, 8* have the same tangent vector if and only if their derivatives agree at the point.

L) =2 (97) (L8)

de ae

This concept is independent of local coordinate system used near x.If x = @(¢) =
(@ (¢),..., @™ (&)) is the local coordinate expression in terms of x; = (x1,..,x™) and y =
W(x) is any diffeomorphism, then y = y(@(¢)) in the local coordinate formula for the curve in

terms of the y-coordinates. The tangent vector V|,=@(g), which has the formula (1.6) is the x-
coordinates, takes the form.

vhly = QD(X) ::E:ﬂgiéélpj(05(£))5§3 ::}:7;1}:Z;]i;g;(qj(g))ggf_fl_(1}”

de oyl
In the y-coordinates the Jacobin matrix Z—i’; is invertible at each point (1.8) holds if and only if
“y(p(e) = v (8(6")) (1.10)

The (1.9) tells how a tangent (1.6) behaves under the given change of coordinates y =

P(x).

10



(1.3.4) Definition:

The collection of all tangent vectors to all possible curves passing through a given point x

in M is called the tangent space to M at x, and is denoted by TM|,. If M is an m-dimensional
]

ﬁ’"'

manifold, then TM|, is an m-dimensional vector space, with { ’axim} providing a basis for

TM|,in the given local coordinate.
(1.3.5) Definition:

The tangent bundle of M is the collection of all tangent spaces corresponding to all points
x in M denoted by

TM = Uyey TM|, (1.11)
2. A vector field:
(1.3.6) Definition:

A vector field V on M assigns a tangent vector V|, € TM|,to each point x € M, with V|,
varying smoothly from point. In local coordinates (x1, ..., x™), a vector field has form

VI, = gl(x)%w(x)%jL S + ¢ ()55 (1.12)

Where each El (x) is a smooth function of x.
1.4 Flows
(1.4.1) Definition:

If V is a vector field, we denote the parameterized maximal integral curve passing
through x in M by y(e, x) and call y the flow generated by V. The flow of a vector field has the
basic properties:

1) v, y(e, x)) =y (5te, x), x €M (1.13)
for all 8, € € R such that both sides of the equation are defined.

2)y(0,x) = x. (1.14)

3) (e, 2)= Vly(es (1.15)

This mean that V is tangent to the curve y(e, x) for fixed point x.

The flow generated by a vector field is same as local a group action of Lie group R on manifold
M, often called one parameter group of transformation. The vector field is called the
infinitesimal generator of the action since by Taylaor’s theorem, in local coordinate

11



P(e x) =x+eg (x) +O(?)

1 . . :
where = (€, ..., §m) are the coefficients of V' . the orbits of the one-parameter group action are
the maximal integral curves of the vector field V.

Conversely if y (g, x) is any one-parameter group of transformations acting on M, then it
is infinitesimal generator is obtained by specializing (1.15) at e=0

d
Ve = - le=o(e x) (1.16)
Uniqueness of solutions to ‘;—’: = fl(x), i =1,2,...,m guarantees that the flow generated

by V coincides with the given local action of R on M the common domain of definition.

Thus, there is one -to-one correspondence between local one - parameter groups of
transformation and their infinitesimal generators.

The computation of the flow or one - parameter group generated by a given vector field V
(in other words, solving the system of ordinary differential equations) is often referred to as
exponentiation of the vector field. The suggestive notation

exp(ev) x = P (g, x)

In terms of this exponential notation, the above three properties can be restated as

expl(6 + &)v]x = exp(6v) exp(ev)x (1.17)
Whenever defined
exp(Ov) x = x (1.18)
And
= [exp(ev)x] = Vlexp(enysfor all x € M (1.19)
Example(8):

Examples of vector field and flows.

a) Let M=R with coordinate x, and consider the vector field v = ;—x = 0,

(In the squad, we will often use the notation d,. for :—x to save space)
Then

exp(ev) x = exp (e0,) x = x +¢

12



which is globally defined for the vector field xd, we recover the usual exponential
exp(exd,)x = efx,

Since it must be the solution to the ordinary differential equationx = x with initial value x at ¢ =
0.

b) Inthe case of R™, a constant vector field

G
Va:zalaxi

a = (al,..,a™) exponentiates to the group of translations

exp(eV,)x = x +¢a , X € R™,
in direction a. similarly, a linear vector field

m

m
=\ 2o [

i=1 \j=1

where A = (a;;) is an m x m matrix of constants, has flow
exp(eV,) x = e®4x,
where e®4 =1+ eA + 1e2A% + --- is the usual matrix exponential

c) Consider the group of rotations in the plane
Y(e (x,y)) = (xcose — ysine, x sine + y coseg)

Its infinitesimal generator is a vector field.
V=238(x,y)0x + n(x,y)dy,

Where according to (1.16)

d
€(x,y) = Elgo(x COSE —ysins) = -y

n(x,y) = P |s=o(x sine + y cose) = x

Thus

V=-yo, +x0,

13



is the infinitesimal generator , and indeed, the above group transformations agree with the
solution to the system of ordinary differential equations

dx dy
de de  ~
d)finally, consider the local group action
— X y
U ) = (10 7o)

Differentiating as before, we find the infinitesimal generator to be
V =x%0, + xyo,
This demonstrates that a smooth vector field may still generate only a local group action.
1. Action of functions:
(1.4.2) Definition:

Let IV be a vector field on M and f: M — R a smooth function we are interested in seeing
how f changes under the flow generated by ¥, meaning we look at f(exp(ev)x) as € varies in

local coordinates, if V = Y7, £(x) % then using the chain rule and (1.19) we find

o 9
%f(exp(sv) x) = Zl: &(exp(ev) x) 63]; (exp(ev) x) = V()lexp(ev) x]

In particular at
2 e=of (exp(ev) x) = X2y Ei(x)% (x) = V() (x) (1.20)

Now the reason underlying our notation for vector fields becomes apparent, the vector
field V acts as first order partial differential operator on real valued functions f(x) on M.
Furthermore, by Taylor’s theorem.

f(exp(ev) x) = f(x) + ev(f)(x) + o(e?),

So, v(f) gives the infinitesimal change in the function f under the flow generated by v. We can
continue the process of differentiation and substitution into the Taylor series, obtaining

gk

Flexp(ev) x) = F() + ev(F) () + 5 v2 (@) + =+ ok () + 0(e-+1)

14



Where v2(f) = v(vf), v3(f) = v(v3(f)), etc .If we assume convergence of the entire Taylor
series in g, then we obtain the Lie Series,

f(exp(ev) x) = Z,‘f:(,i—ka () (1.21)

for the action of the flow on f .The same result holds for vector - valued functions F: M —
R, F(x) = (F'(x)..,F™*(x)) where we let v act component-wise on F =v(F)=
(w(FY) ...,v(F™)) in particular , If we let F be the coordinate functions X, we obtain (again
under assumptions of convergence) a Lie series for the flow itself , given by :

ek

exp(ev) x = x + gé(x) + Z—Z!v(g‘)(x) + =3 = vR(x), (1.22)

3
Where & = (£1,...,&™),v(§) = (v(&1),...,v(E™)), etc. Providing even further

justification for our exponential notation .According to our new interpretation of the symbols %

, each tangent vector v|, at a point x defines a derivation on the space of smooth real valued
functions f defined near x in M.

2. Differentials:
(1.4.3) Definition:

Let M and N be smooth manifolds and f:M — N a smooth map between them. Each
parameterized curve ¢ = {@(e): e € I} on M is mapped by F to a parametrized curve ¢ = F(c) =

{B(e) = F(9(e)):e €1} on N.

Thus F induces a map from the tangent vector d@/de to C at x = @(¢) to the corresponding
tangent vector d@/de to C at the image point F(x) = F(@(¢)) = @(e). This induced map is
called the differential of , and denoted by :

dF (@' (e)) = - {F(8(2))} (1.23)

As every tangent vector v|, € TM is tangent to some curve passing through x, the differential
maps the tangent space to M at x to the tangent space to N at F(x)

The local coordinate formula for the differential is found using the chain rule in same manner as
the change of variables formula (1.9). If




is a tangent vector at x € M then

. oF]

dF(l,) = Ty (S 855 () 5 = L v(F (1) 577 (1.24)

Note that the differential df|,is linear map from TM|, to TN|g(), Whose matrix
expression in local coordinates is just the jacobian matrix of F at x.

If we prefer to think of tangent vectors as derivations on the space of smooth function
defined near a point x, then the differential dF has the alternative definition

dF(],)f(y) =v(feo F)(x), y = F(x) (1.25)

For all v|, € TM, and all smooth f:N — R, the equivalence of (1.23) and(1.25) is easily
verified using local coordinates .

Example (9):

Let M = R?, with coordinates (x,y) and N = R with coordinates s, and let f = R? —
R beany map s = F(x,y). Given

— d d
Vlxy) = age +bg;

Then, by (1.24)

dF (V(xy)) ={a 575G+ b 55 (0 ) Hel pey)

For example, if F(x,y)=ax + By is linear projection ,then

dF (Vl(yy) = (@@ + BB 2| _aspy
3.Lie Brackets
The most important operation on vector field is their Lie bracket or commutator.
(1.4.4)Definition:

If V and W are vector fields on M, then their Lie bracket [V, W] is the unique vector
field satisfying

[v.w1(f) = v(w (N)-w V() (1.26)

For all smooth functions f: M — R. It is easy to verify that [V, W] is indeed a vector
field .in local coordinates if
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n

V=) f s W= ini(x)%
i=1

i=1

then:

[0 WI=S, £ 00 E - w(E)2 = SRR (e 2 - 28 (Lar)

Axt axJ dxt) axt

Note that in (1.26) the terms involving second order derivatives of f cancel .

Example (10):

— W_ 2 + a
VYo T T Y%y

then
[V, W] = V(x?) -+ V(xy)5 —W () == xy =+ 2
(1.4.5)Definition :

Let vy, ...,v, be vector field on a smooth manifold M. An integral submanifold of
{vy, ..., v} in a submanifold N c M whose tangent space TN|, is spanned by the vector

{vlly, ,vrly} for each y € N. The system of vector fields {vy, ..., v} is integrable if through
every point x, € M there passes an integral submanifold.

(1.4.6)Definition:

A system of vector field {v,,...,v,.} on M is in involution if there exist smooth real -
valued functions Cf(x),x € M,i,j,k = 1,..., 7, such that for each i, j= 1,....r,

[viv] = Zpos CE - v (1.28)
4. Lie algebras

If G is a Lie group, then there are certain distinguished vector field on G characterized by
their invariance (in sense to be defined shortly) under the group multiplication .As we see, these
invariant vector fields from a finite dimensional vector space, called the Lie algebra of G, which
IS in a precise sense the “infinitesimal generator” of G.

(1.4.7) Definition :

17



The Lie algebra of a Lie group G, traditionally denoted by the corresponding lower case
German letter g is the vector space of all right — invariant vector field on G.

Note that any right-invariant vector field is uniquely determined by its value at the
identity because

v|, = dRy(v],), (1.29)

Since Ry (e) = g. Conversely, any tangent vector to G at e uniquely determines a right -
invariant vector field on G by formula (1.29). Indeed,

ng(vlh) = ng(dRh(vle)) = d(Rg ° Rh)(vle) = dRhg(vle) = vlhg

Proving the right-invariance of v. Therefore we can identify the Lie algebra g of G with the
tangent space to G at the indentify element.

g =TG|, (1.30)
(1.4.8) Definition :
A Lie algebra is a vector space g together with bilinear operation
L.]1=g*xg~yg
called the Lie bracket for g, satisfying the axioms.
(a) Bilinearity
[cv +c'v',w] = c[v,w] + [V, W],
[v,cw + c'wW'] = c[v,w] + ¢'[v,w'], for the constants ¢,c’ € R
(b) skew-symmetry
[v,w] = —[w,v]
(c) Jacoi Identity

[u, [v, W]] + [W, [u, v]] + [v, [W,u]] =0

forall u,v,v',w,w'ing

Example (11):
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If G =R, then there is, up to constant multiple a single right- invariant vector field ,
namely

d, = 0/0x. Infact givenx ,y € R
R,(x)=x+y
hence
dR,(3,) = 0,

Similarly , if G = R* then, the single independent right - invariant vector field is xd, ,
finally ,for So(2) the vector field dy is again the unique independent right -invariant one .Note
that the Lie algebras of R.R* and So(2) Are all the same, being one- dimensional vector space
with trivial Lie brackets ([v,w] = 0 for all v,w).

Example (12):

Here we compute of the Lie algebra of the general linear group GL(n). Note that since
GL(n) is n* - dimensional we can indentify the Lie algebra g|, = R"* with the space of all
n X n matrices .Indeed, coordinates on GL(n) are provided by the matrix entries x;;, i,j =
1,...,n , so the tangent space to GL(n) at the identity is the set of all vector fields

| 2
Vali = Z aij l
07 0%

Where A = (a;;) is an arbitrary n xn matrix. Now given (y;;) € GL(n) , the matrix
R, (X) = X,, has entries

n

Z Xik Yki

k=1

Therefore , according to (1.29 ) we find

Valy = dRy(val))
:Zi,m Zi,j aij%j(Zk X1k Yiem )ﬁ
:Zi,j,m AijYim ﬁ '
or, interms of X € GL(n),
als = Xoy (i Gae 1) 5 (131)
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To compute Lie bracket:

[vA’vB] = Z [alp xpma (blkxk]) blp pmax (alk k])]a

:Zi,j,k [Xi(byay — ay by)] xkj%ij

where [A,B] = BA — AB is the matrix commulator. Therefore, the Lie algebra g|(n) of the
general linear group GL(n) is the space of all n x n matrices with the Lie bracket being the
matrix commulator.

5. One - parameter subgroup of a Lie group

One parameter subgroups of Lie group G are one - to - one correspondence with element
of T,(G).

We shall use this to help determine all one parameter subgroups of various matrix groups
we first consider G = GL(n,R), the matrix entries x;;, 1< i,j < n forany x = (x;;) € GL(n,R)
are coordinates on a single neighborhood covering the group which is an open subset of
U, (R), the n x n matrices over R. Therefore a;’—u , 1< i,j < n is a field of frames on G and
relative to these frames as a basis at e there is an isomorphism of ,,(R), as a vector space on to
T.(G) given by

= (a;;) = X ai; (52 )e [when G = GL(n,R), e is the n x n identity matrix I ].

6. Sub algebra
(1.4.9) Definition :

In general a sub algebra n of Lie algebra L is a vector space which is closed under the Lie
bracket so [v,w] € n whenever v,w € n .if H is a Lie subgroup of a Lie group G, any right
invariant vector field v on H can be extended to a right- invariant vector field on G .(Just set
vlg =d R, (v]e).g €G.

In this way the Lie algebra n of H is realized as sub algebra of the Lie algebra L of G.
Correspondence between one - parameter sub group of a Lie group G and one - dimensional sub
spaces n (sub algebras ) of its Lie algebra L generalized to provide a complete one - to - one
correspondence between Lie sub groups or G and sub algebra of L.

7. Lie algebra of local lie groups

20



Turning to local wversion we consider a local Lie group V < R with
multiplication m(x,y). the corresponding right multiplication map R,:V — R" is Ry(x) =
m(x,y).A vector field v on V is right invariant if and only if

dmy = (le) = vli}t(x) = Vlm(x,y)

whenever x,y and m(x.y) are in V . As in the case of global Lie groups, any right invariant
vector field is determined uniquely by its value at the origin (identity element), v|, = dR,(v]y)
and hence the Lie algebra g for the local Lie group V,determined as the space of right invariant
vector field on V, is on r-dimensional vector space .

8. Infinitesimal group actions

Suppose G is a local group of transformations acting on manifold M, g.x =
Y(g,x) for (g,x) €En c G x Mthere is a corresponding “infinitesimal action” of the Lie
algebraL of G on M. Namely, if v € L we define y(v) ,to be the vector field on M whose flow
coincides with the action of the one parameter sub group exp(ev) of G on Mthis means that for
xX€EM

d
PO = 32 lemo Wlexp(en). ) = i (v1o),
Where Y, (g) = (g, x). Note further that since

Yy o Ry(h) =y(h.g,x) =P(h, g.x) =Py, (h)

Where ever defined, we have
dpn(vlg) = dipge (vle) = Y (W) gx
for any geG,.It follows from the property df ([v,w]) = [df (v),df (w)] of the

Lie bracket that i is a Lie algebra homomorphism from L to the Lie algebra of vector fields on
M

[ ), yWM] =y(v,w]), vwel

Therefore the set of all vector field y(v) corrosponding to veg forms a Lie algebra of vector
fieldon M.

Conversely, given a finite- dimensional Lie algebra of vector field on M, there is always
a local group of transformation whose infinitesimal action is generated by the given algebra .
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(1.4.10) Definition):

Let M be a manifold of dimension m = n + k and assume that to each p € Mis assigned
an n-dimensional subspace A,of Tp(M). Suppose moreover that in a neighborhood
Uof eachp € M. There are n-linearly independent C* — vector fields X4, ..., X;,which form a
basis of Aq for every g € U then we shall say that A is c®n-plane distribution of dimensionn on
M and x4, ..., x, is local basis of A , we shall say that the distribution"A" is involutive if there
exists a local basis x;, ..., x;, in a neighborhood of each point such that

n

xpxi|= ) ckx, 1<i,j<n
j J

k=1
(the ci"jwill not in general be constant ,but will be ¢*function on aneighborhood)

Finally, if A is a C* distribution of M and N is a connected C* submanifold of M such
that for each g € N we have T,(n) c A,, then we shall say that Nisan integral manifold of

A. Note that an integral manifold may be of lower dimension than A, and need not be a regular
submanifold .

Let A be a C* distribution on M of dimension n, the dimension of M being m =n +
k.We shall say that is A completely integral if each point p € M has a cubical coordinate
neighborhood u . ¢ such that if x?,...,x"denotethe local coordinate, then the n vectors E; =

ot (%) ,i=1,...,nare local basis on U for A. Note that in this case there is an n-dimensional

integral manifold N through each point g of U such that T, (N) = Aq that is dim N = n in fact
Jif (al,..,a™) denote the coordinates of g, then an integral manifold through ¢ is the n-slice
defined by

Xn+1 — an+1 Xm: am
That is
N=¢ ' [nepx =d, j=n+1,..,m]|

a slice of U of course in this case the distribution is in volutive for

[Ei’Ej]ng*_l[a 6]20, 1<ij<n

We shall call U, ¢ flat with respect to A. Thus complete integrability is equivalent to every point
having a flat coordinate neighborhood .

Thus any completely integrable distribution is invlutive . However most distributions are
involutive .
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(1.4.11) Proposition:

Suppose v is a vector field not vanishing at a point x € M: v|, # 0. Then there is a local
coordinate chart y = (y?1,...,y™) at x, such that in terms of these coordinates, v = a/dy’ .

Proof:

First linearly change coordinates so that x, =0 and v|,, = d/0x’. By the continuity the
coefficient &/ (x) of 0/0x! is positive in a neighbourhood of x,. Since &/(x) > 0, the integral
curves of v cross the hyper plane {(0,x?,...,x™)} transversally, and hence in a neighbourhood
of x, =0, each point x = (x,...,x™) can be defined uniquely as the flow of some point (O,
y2,...,y™) on this hyper plane. Consequently

x = exp(y'v) (0,y?,...,y™),

for y1 near 0, gives a diffeomorphism form (x1,...,x™) to ( y%,..,y™) which defines the y-
coordinates. (Geometrically, we have “straightened out” the integral curves passing through the
hyper plane perpendicular to the x-axis.) In terms of the y-coordinates, we have by (1.17), for
small ¢,

exp(ev) ( y1, .., y™) = (y* +&y?, .., y™),

so the flow is just translation in the y-direction. Thus every nonvanishing vector field is locally
equivalent to the infinitesimal generator of a group of translations. (course, the global picture can
be very complicated, as the irrational flow on the torus makes clear.)

1.5 Riemannian Manifolds
1- Riemannian Metrics
(1.5.1) Definition:

Given differentiable manifold, define a Riemannian metric g on M, to be a mapping that
associates with each p € M an inner product g:M, x M, » R satisfying the following
differentiability property : If U is any open set in M and X,Y are differentiable vector fields on
U then the function g(X,Y): U — R given by

g(X. Y)(p) = g, (Xp, Vp)

g is differentiable on U.
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e By a Riemannian manifold we mean a differentiable manifold with given Riemannian
metric .
(1.5.2) Definition:

Let M,N be differentiable manifolds, h a Riemannian metric on N,p:M - N
differentiable, and M, ={p € M : ¢,,, is one to one}. Of course M, is possibly empty, open
submanifold of M. The pull back ¢*h of h is defined to be Riemannian metric on M, given by

(p*h) (& 1) = h(p.&, @.0) (1.32)

where &,n € M,,p € M,

If € M\M, , then (1.32) defines a symmetric bilinear form on M, , but the form is only
nonnegative.

(1.5.3) Definition:

Let M be a Riemannian manifold with Riemannian metric g, then we say that ¢ is a
local isometry of M, into N if g = ¢*h on M,. If M is connected, then g = ¢*h also implies
that M,= M, that, ¢ is a Riemannian immersion if ¢ is an imbedding satisfying g = ¢*h then we
call an isometry of M into N.

e Anisometry of M is diffeomorphism of M onto itself that is an isometry.
2. The metric space structure

Let M, N be differentiable manifold and A an arbitrary set in M. Recall that a map
@:A—> Nis Ckon A, k =1, if there exist an open set U such that AC U € M and a
map @:U - N € C* satisfying @|A = .

(1.5.4) Definition:

For a given differentiable manifold M,k =1,..,0, we let D¥ denote the
collection of all maps, w form closed intervals of R into M that are continuous and
piecewise C¥, that is, w is given by w:[a, f] » M < C° and there exist a = t. < t; <
e <t; =B such w|[tj_q, t;] € Crforj=1,..,1.

Let M be a Riemannian manifold. For any &{eTM, define the length of & by

HEXRIE
For any path w: [a, ] = M € D?! define the length of w, [(w) by

B
(o) = f lo()ldt
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For M connected (our usual assumption), p, geM define the distance between p and g,
d(p,q) by

d(p.q) = infl(w)
Where w range over all w: [a, ] = M € D Isatisfying w(a) =p, w(B) = q.
Example (13):
We want to show [;(w) = f:lw’l dt
For any D! path w: [a, b] — M. one easily form the definition of [, that
Lo(w) < [lo'| dt
so the real issue is the opposite inequality . the argument is as follow:

One proves that given any compact k in M and any real 1 > 1, there exists a finite cover
of k, {uy, ..., ux} with charts x;: U; — R™such that

1]
-1
A= [€]gn

(where |¢]gn denotes the standard norm on R™) forall { € TU;, j =1,..,k and

11 < dp.a)  _
% () — x;(9)|

<A

Forall p,q € U;, j=1,..,k formthis

lo(w) 2 272 [ |'| dt forall 2> 1
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Chapter Two

Exterior Differential Forms and Geometric Calculus

Chapter Two
Exterior Differential Forms and Geometric Calculus

Differential forms play a fundamental role in the topological aspect of differential
geometry.

2.1 Differential Forms
(2.1.1)Definition:

A smooth 1-form ¢on R™ is a real- valued function on the set of all tangent vectors to
R"™, le...

¢ =TR" > R (2.1)
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with the properties that

1. ¢is linear on the tangent space T,R™ for each xeR™
2. For any smooth vector field V = v(x) the function ¢p(v): R™ — R is smooth.
Given a 1-form ¢, for each xeR™ the map

¢y =T, R" - R (22)

is an element of the dual space (T,,R™), when we extend this notion to all of R™, we see that the
space of 1-forms on R™ is dual to the space of vector fields on R™

In particular, the 1-form dx!, ..., dx™ are defined by the property that for any vector v =
vt ..., v") € T, R",

dxi(v) = vt (2.3)

The dx"s form a basis for the 1-forms on k™, so any other 1-form ¢ may be expressed in the
form

¢ =Xy fi ()dx! (24)
If a vector field v on R™, has the form
v(x) = (vl(x), ,v“(x)),
then at any point xe®R"
(V) = Xy f; ()v'x (25)
(2.1.2)Definition:

Let M be a smooth manifold and TM]|, its tangent space at x. The space A, T*M]|,of
differential k-form at x is set of all k-linear alternating functions

w:TM|, %,..,x TM|, - R" (2.6)

Specifically, if we denote the evaluation of w on the tangent vectors vj,...,vy.,€ TM|,
by(w; v4, ..., vx), then the basic requirements are that for all tangent vectors at x

(W;cvq, o e+ vy, o) = Wi g, 0, Vg, Uk) (W0, o, U )
forc,c’ eR,1<i<k,
W; vygiv o, V) = ()W, vq, ..., 1) 2.7

for every permutation 7 of the integers {1, ..., k} with (—=1)™ denoting the sign of ©. The space
A T*M|,is, in fact, a vector space under the obvious operations of addition and scalar
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multiplication, A O-form at x is, convention just a real number, while the
space T*M|,.=A; T*M|,of one forms, called the cotangent space to M at x, the space of linear
functions on TM|,i.e. the dual vector space to the tangent at x. A smooth differential k- form w
on M (or k-form for short) is a collection.

Smoothly varying alternating k-linear maps w|, €A, T*M|,for each x € M, where we require
that for all smooth vector fields v, ..., v

W; vy, V() = Wlys Vil oo s Vi) (2.8)

is a smooth, real-valued function of x.In particular, a O-form is just a smooth real-valued function
ffM—->%R

(2.1.3)Definition:

Let (x1,..,x™) are local coordinates, thenTM|, has basis {0/0x!,..,0/0x™}.The dual
cotangent space has a dual basis, which is traditionally denoted {dx?,...,dx™}; Thus (dx*;d/
dx’) = &} for all i, j where & is I for i = j and 0 otherwise.

(2.1.4)Definition:
A differential one-form w thereby has the local coordinate expression
w = h;(x)dx® + -+ h, (x)dx™, (2.9

where each coefficient function h;(x) is smooth. Note that for any vector field v =
Y & (x)a/ox’,

wiv) = D i (0§(x)

is a smooth function. Of particular importance are the one- forms given by the differentials of
real-valued functions.

df =¥, Ldxt with (df;v) =v(f)  (2.10)

i=1 Ixt
(2.1.5)Definition:

To proceed to higher differential forms, we note that given a collection of differential one-
forms wy,...,w,, we can form a differential k-form,w; A, ... ,Aw, called the wedge product,
using the determinately formula

(Wi Ayl AWKV, V) = det((wi; vj)) (2.11)
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the right-hand side being the determinant of a k < k matrix with indicated (i, j) entry. Note that
the wedge product itself is both multi-linear and alternating

Wi AL A(ew; H WAL AW, =cWi A AW A AW (W A AW AL wy),
W A AWy = (—1)"wy AL AWy (2.12)
In local coordinates, A, T*M|, is spanned by the dasis k-forms:
dx' = dx A ... Adx (2.13)
where I ranges over all strictly increasing multi-indices 1<i; <i, <:--<i<m.

m) ; in particular, A, T*M|, = {0} If k > m.

Thusa, T*M|, has dimension (k

Any smooth differential k-form on M has the local coordinate expression.
w =Y, a,(x) dx’ (2.14)

Where, for each strictly increasing multi-index I, the coefficient a; is a smooth real-valued
function.

Example (1):
A two-form in R® takes the form
w=a(x,y z)dy A dz + B(x,y,z)dz A dx y (x,y,z)dx A dy (1.15)

using the basis dy Adz, dzAdx = —dx Adz, and dx Ady, attuned to the notation for
surface integrals we have

(w; $0x + ¢y +ndz,§0x + {ay + noz) = a({h — {n) + B(n§ —nE) + y(£¢ - £7).

Ww=wgAN..ANw, ,06=0;N..N6G
are decomposable forms, their wedge product is the form
WA =w; A Aw AN ANLAB
with the definition extending bilinearly to more general types of forms:
(cow+c'w)NO=clw+0)+ (v +0),
wA(B+c'0)=clwnB)+c'(wNE);

for ¢ ,c’eR this wedge product is associative:
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wAOAE)=(wAO)NE, (2.16)
And anti-commutative,
wA8=(DoAw (2.17)

for w a k-form and 6 an I-form. For example the wedge product of (1.15) with a one-form 6 =
Adx + udy + ydz is the three - form.

wAO = (ad+Bu+oy)dx ANdy Adz (2.18)
2.2 Pull Back and change of coordinates
(2.2.1)Definition:

If F: M — N is a smooth map between manifolds its differential dF maps tangent vectors
M to tangent vectors on N. There is thus an induced linear map F*, called the pull-back or co-
differential of F, which takes differential k-forms on N back to differential k-forms on M,

F*: AY" T*NlF(x) —> Ay T*Mlx (219)
It is defined so that if w € Ay T*N|g(y),
(F*(w); vy, ...,v;) = (w; dF (vy), ..., dF (v})) (2.20)

For any set of tangent vectors vy, ..., v, eTM|,. In contrast to the differential, the pull-back does
take smooth differential forms on N back to smooth differential forms on M. if x = (x1,...,x™)

are local coordinates on M and y = (y1, ... ... ,y™) coordinates on N, then
* [\ — 0 i i
Fr(dy') = ZJt 55 0x/ (2.21)

Where y = F(x); gives the action of F* on the basis one-forms. We conclude that in general
% Iy — ay! Ji
Fr(Era()dy") = X1y a;(F(x)) 55 dx/, (222)

1 i
Where % stands for the Jacobian determinant det(gi'—j’:) corresponding to the increasing multi-

indices I = (iq,.... i), J = Uqroor .. , jk). In particular, if y = F(x) determines a change of
coordinates on M, then (2.22) provides the corresponding change of coordinates for differential
k-form on M. Note also the pull-back preserves the algebraic operation of wedge product.

F*(wAB) =F*(w) ANF*(0) (2.23)
1- Closed and Exact form
(2.2.2)Definition:
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A k-form w is called closed if dw = 0 ,closed forms are the kernel of d.
(2.2.3) Definition:

wis called exact if w = da for (k-1)-form « exact forms are the image of d because d? =
0 every exact form is closed.

(2.2.4)Definition:

A differential 1- form w defined on a domain € is a map that to each point p € Q assigns
w(p)e(R™)* given by

w(p) = a,(p)dx, + -+ a,(p)dx, (2.24)
Such that each a;: Q < R™ — R is smooth function.
Example (2):

The 1-form

=~ +y2dx+x2 T2
Defined on Q = R? — (0,0)
(2.2.5)Definition:

A differential 1- form w defined on a domain Q is said to be closed if

aai 6
0%, (p) =

a.
j ..
o7, (p),Vi,jand x € Q

we say that a differential 1- form w is exact if there exists a smooth function f: Q — R such that

w=df (2.25)
Example (3):
Let us consider the differential 1-form
_ Y X
a)—x2+y2dx+x2 +y2dy

We claim that w is closed but not exact 1-form.In fact let y be closed curve such
that y:[0,2] - R?, 6 — (cos8,sinb)

Computing the line integral

31



f f Y dx+—> 4
W= X y
y y x2_|_y2 x2_|_y2

[ sinf _ cos 6
B fo sinZ 6 + cos? 6 (=sinf)dt sin? 6 + cos? 0 (cos6)dt

21
- [ a
0

Since fy w # 0, w is not exact .

On odor hand it we compute dw we have

dw = dAANdx +dB Ady

__ 7y —
A=—2_ B=

x2+y x2+y

Where
do = (Pdx + g_;‘dy) Adx + (Cdx + ‘;_l;dy) Ady
_ a4 aB
= @dy/\dx+adx/\dy

_ 04 B
= —@dx Ady + de Ady

( a—A ) Adxdy
=0

Thus w is a closed 1-fom but not exact.
2-Interior Products

(2.2.6)Definition:

If w is a differential k-form and v a smooth vector field, then we can form a (k-1)- form
v_/ w called the interior product of v with w, defined so that

W 0 vq, .., V1) =W, V,Vq, oo, Vgeeyq) (2.26)

for every set of vector fields vy, ..., vy_;. The is bilinear in both its arguments, so it suffices to
determine it for basis elements:
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0
dxt

(~1)?

L dxIU A L N dx T Adxdkr AL dxR T =
0 ,i+#Ji

J(@xIr A, ... A OxTK) = {

Example (4):
0, /dxANdy =dx, 0, /dzAdx=dx, 9,/ dx Adz=0Sso thatif w is as in (1.15)
(60, + ¢, +10,)_) @ = (B — {y)dx + (&y —na)dy + ({a + B)dz
Note that the interior product acts as an anti-derivation on forms, meaning that
v/ (@A8)=(v/w)A8+ (-1 w A (v_]0) (2.27)
whenever w Is ak-form, 6 an 1-form
3-The Differential Exterior derivative

The exterior derivative of differential form of degree k is a differential form of degree k +

IF f is a smooth function (a 0-form) then the exterior derivative of f is the deferential of
that df is the unique 1-form such that for every smooth vector field X, df (x) = d, f where is the
direction of X

(2.2.7)Definition:

In local coordinate , if w = Ya;(x)dx" is a smooth differential k-form on a manifold M its
differential or exterior derivative is the (k+1)-form

dw = Yda; Adx' = Z%dxf Adxt (2.28)

The differential or the exterior derivative d , taking k- form to (k+1)-form has the following
properties :

1- Linearity
d(co AC'w'") =cdw + c'dw’ for ¢, ¢’ constants.

2- Anti-derivation
d(wA8) =d(w) A0 + (—1)cwdd, for w a k-form, 6 an 1-from

3- Closure
d(d w) =0

4- Commuttion with Pull-Back
f*(dw) = d(f*w)for f: M - N smooth , w a k-form on N.
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Example (5):
If M = R3, then the differential of one —form ,
d(Adx + pdy +ydz) = (v, — p,)dy A dz + (A, — v, )dzAdx + (u, — A,)dx Ady,
can be indentified with curl of its coefficients :
VxA=Vx(Auy). Similarly the differential of a two-form
d(ady Adz + Bdz A dx + ydx Ady)= (a, + B, +7v,)dx Ady A dzp

can be identified V.a = V. (a, 3,y). The closure property therefore translates into the familiar
vector calculus identities

Vx(Vf) =0 , V(Vx1)=0
2.3 Lie Derivatives

Let o be a differential form or vector field defined over . Given a point x € M, after “time”
¢ it has moved to exp(ev)x and the goal is to compare the value of ¢ at exp(ev) x with original
value at x. However, o|.xp(ev)x and |, as they stand are strictly speaking incomparable as they
belong to different vector space e.9. TM|cyp(ev)x and TM], in the case of vector field. To effect
any comparison, we need to “transport”o | exp(ev)» 0ack to x in some natural way, and then make
our comparison. For vector field, this natural transport is the inverse differential.

¢: =dexp(—ev): TM|exp(evyx = TM|y, (2.29)
whereas for differential forms we use pull back map
¢e = exp(ev)” : Ay T"M|exp(evyx = T M|y, (2.30)
This allows to make the general definition of a Lie derivative
(2.3.1)Definition:

Let V be a vector field on M and o a vector field or differential form defined on M. The Lie
derivative of o with respect to V is the object whose value at x € Mis :

Qj:(alexp(sv)x) - O-lx
&

- a *
V(O-)lx = LI_III) = 6_50 |£=O®£(O-|exp(£v)x (231)

(Note that V(o) is an object of the same type as c.)

(2.3.2)Proposition:
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LetV and w be smooth vector fields on M. The Lie derivative of w with respect toV
coincides with the Lie bracket of Vand w.

Viw)=[V,w] (2.32)
Proof:

Let (x1,...,x™) be local coordinates, with

V= Z Ei(x)a/axi, w = wlexp(sv)x

= YD + V() + 0]

L

Hence, using (1. 24) and (1. 22)

s . . ?
dexp(=2v) [Wlexp(enrs] = ) ') + e[V (n) - ()] + 02}

Substituting into the definition (2.31). We deduce (2.32) from (1. 28).

Turning to differential forms, we find that the derivative can be most easily reconstructed form
its basic properties.

a) Linearly
V(icw + c'w') = cV(w) + c'V(w'), c,c’ constant (2.33)
b) Derivation

ViwAB)=V((w) N +wAV(6) (2.34)
¢) Communication with the differential
V(dw) = dV(w) (2.35)
Thus we have the use full formula
VW w) = [V, W/ w+W_] V(w), (2.36)

For vector fields V and W and w a differential form.

In local coordinates, the Lie derivative of differential form determined as follows. If

SN
V:;s‘(x)axi

Then
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dxJ
j=1

V(dxt) = dv(x!) = dét = . 0x/

Therefore, we have the general formula
V(Ziai(x)dxt) = Tf{V(a)dx! + T, aydxt A AdER A A dxi} (2.37)

*Note, the three properties (2.31), (2.33) along with its action on smooth functions sever to
define the Lie derivative operation uniquely.

Example (6):
Let M = R? and

V=¢&(x,y)ox + 71 (x,y) 0y
Then the Lie derivative of a two form is

V(y(x,y)dxAdy) = V(y)dxAdy + ydéAdy + ydxAdn = {&y, + nyy + Y& JdxAdy.

(2.3.3) Proposition:

A differential k-form on M is invariant under the flow of a vector field V:
Wlexp(evyx = exp(—ev)*(e/x),

if and only if v(w) = O (A similar result holds for vector fields).

Proof:

Applying ¢; = exp(ev)* to (2.30) and using the basic group property of the flow, we find

exp(ev)* (v(w)|exp(enyx) = %{exp(gv)*(wlexp(sv)x)}(2-38)
For all € where defined:
(2.3.4) Proposition;
Let w be a differential form and V be vector field on M. then

V(w) =d(V_/w)+V_/(dw) (2.37)

Proof:

36



Define the operator g,,(w) by the right hand side of (2.37). Since the Lie derivative is uniquely
determined by its action on function and the properties (2.31), (2.33) it suffice to check that
genjoy the same properties.

First:
g,(f) = v/ df = (df;v) = v(f),

So the action function is the same. Linearly of g, is clear while the closure property of d
immediately proves the communication property:

g,(dw) = d(v_/ dw).
Finally, if w is a k-form and 6 an 1-form, we use (1.52) (1.54) to prove that

gr(wAB) = d[(v_/ a)) NG+ (=D*w A (v_/ 9)] +v [ [(dw) A 0(=1)kw A (d6)]
=d(v/w) A1) (v ] w) Add + (1) (dw) A (v_] 8) + (—1)**w
Ad(v ] 0) + (v /dw) Ao+ (1) d(w) A(v/0) + (-1)*(v_/ w) A dB
+ (—1)*w A (v_/ db)

= gy(w) N0+ w A g,(0),

The remaining terms cancelling.
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Chapter Three

The Lie - Poisson Structure
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Chapter Three
The Lie - Poisson Structure

The guiding concept of a Hamiltonian system of differential equations forms the basis of
much of more advanced work in classical mechanics, including motion of rigid bodies, celestial
mechanics, quantization theory.

(3.1) Poisson Brackets

On a smooth manifold M, a Poisson bracket assigns to each pair of smooth , real - valued
functions F,H: M — R another smooth real-valued function, which are denote by {F, H}. there
are certain basic properties that such a bracket operation must satisfy in order to qualify as a
Poisson bracket .

(3.1.1) Definition:

A Poisson bracket on smooth manifold M is an operation that assigns a smooth real -
valued function {F,H} on M to each pair F, H of smooth, real valued functions, with the basic
properties :

a) Bilinearity:
{cF +c¢'P,H} = c{F,H} + c'{P, H},
{F,cH + c'P} = ¢{F,H} + ¢'{F, P}, for constants c,c’ € R
b)Skew - symmetry :
{F,H} = —{H,F}
c)Jacobi Identity:
{F,H}, P} +{{P,F},H}+ {{H P},F} =0
d)Leibniz’s Rule :
{F,.H.P}={F,H}.P + H.{F,P}

(here. Denotes the ordinary multiplication of real- valued functions) in all these equations
F,H and P are arbitrary smooth real-valued functions on M.

A manifold M with a Poisson bracket is called a Poisson manifold, the bracket defining a
Poisson structure on M.
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The notion of a Poisson manifold is slightly more general then that of a symplectic
manifold, or manifold, or manifold with Hamiltonian structure; in particular, the underlying
manifold M need not be even - dimensional.

Example (1):

Let M be the even - dimensional Euclidean space %R2"™ with coordinates (p,q) =
@t ....p™ q%, ....q™). (in physical the p’s represent momenta and q's positions of the
mechanical objects.) if F(p,q) and H(p,q) are smooth functions, we define their Poisson
bracket to be the function
_ dF @0H  9F 0H
{F HY = S, (555 - ) (3.)
This bracket is clearly satisfying the basic properties of the Poisson bracket. We note that
the particular identities

pip}=0 {d'¢’}=0 ({¢'p/}=4 (32)

In which i and j run from 1 to n and 6}' is the kroneck symbol, whichis 1 if i = jand O
otherwise.

More general, we can determine a Poisson bracket on any Euclidan space R™ . Just let
(r.q,.z) = (p*, ....p™ q%, ... q™ 2z, ... z") be the coordinates so 2n+L= m and define the Poisson
bracket between two functions F(p,q,z),H(p,q,z) by the formula (3.1). In particular, if the
function F(z) depends on the z’s only, then {F,H} = 0 for all functions H. Such functions in
particular the z*’s themselves, are known as distinguished functions, or cassimere functions and
are characterized by the property that their Poisson bracket with any other function is always
zero. We suplement the basic coordinate bracket ( 3.2) by the additional relations

{p', 7z} ={q', 2%} = {z/,z¥} = 0, (3.3)
Forall i=1,..,n,and j,k=1,..,1.
(3.1.2) Definition:

Let M be a Poisson manifold. A smooth, real-valued function C:M — R is called a
distinguished if the Poisson bracket of C with any other real valued function vanishes identically,
.e{C,H}=0forH:M — R.

In the case of canonical Poisson bracket (3.1) on 2", the only distinguished functions are the
constants, which always satisfy the requirements of the definition. At the other extreme if the
Poisson bracket is completely trivial i.e .{F,H} =0 for every F,H then every function is
distinguished.
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(3.2) Hamiltonian Vector Field
(3.2.1) Definition:

Suppose that H(p, q) is a smooth function of its arguments for p and g € R™.Then the
dynamical system

. d
b= (3.4)
d
G==5: (3.5)

where (i = 1,2,...,n) is called a Hamiltonian system and H is the Hamiltonian function ( or
just the Hamiltonian) of the system. Equation (3.4) are called Hamilton’s equations.

(3.2.2) Definition:

Let M be a Poisson manifold and H: M — R a smooth function. The Hamiltonian vector field
associated with H is the unique smooth vector field V,; on M satisfying

Vy(F) ={F,H} = —{H,F} (3.6)

for every smooth function F: M — R the equations governing the flow of 7, (F) are referred to
as Hamilton’s equation for the “Hamiltonian” function H.

Example (2):
In the case of the canonical Poisson bracket (3.1) on R™, m = 2n + 1, the Hamiltonian vector
field corresponding to H(p, q, z) is clearly

5 OH 0 OH 0
H =1 apt aqt dqt apt (3 )

The corresponding flow is obtained by integrating the system of ordinary differential equations

dgt _ 8H o9pt _  OH

ac — apl 'dr  oqi

i=1..,n (3.8)

2 _9 j=1,..1, (3.9)

dt

which are Hamilton’s equations in this case. In the nondegenerate case m = 2n we have just
(3.8), which is the canonical form Hamilton’s equations in classical mechanics. More generally
(3.9) just add in the constancy of the distinguished coordinates z/ under the flow. In particular,
if H depends only on the distinguished coordinates z, its Hamiltonian flow is completely trivial.
This remark hold in general: A function C on a Poisson manifold is distinguished if and only if
its Hamiltonian vector field V. = 0 vanishes everywhere

41



(3.2.3) Proposition:

Let M be a Poisson manifold, let F,H: M — R be smooth function with corresponding
Hamiltonian vector field V. ,V, . The Hamiltonian vector field associated with the Poisson
bracket of F and H is, up to sign, the Lie bracket of two Hamiltonian vector fields:

V{F,H} = _[VF’VH] = [VH’VF]- (3.10)
Proof

Let P: M — R be any other smooth function. Using the commutator definition of the Lie
bracket, we find

[V, Ve P = Vg - Up (P) = U - Ve (P)
= Vu{P,F}-V:{P,H}
= {{p,F}, H} - {{P,H}, F}
={pr,{F,H}}
= Vi (P),

Where we have made use of the Jacobi identity, the skew- symmetry of the Poisson
bracket , and the definition (3.2.2) of a Hamiltonian vector field . since P is arbitrary.

Example (3):

Let M = R? with coordinates (p,q) and canonical Poisson bracket {F,H} = F,H, —
E,H, . For a function H(p, q) the corresponding Hamiltonian vector field is Vy = H,0, — H,0,.
Thus for H = i(p2 + g%) we have Vy = pd, — qd,, whereas for F = pq, Vz = qd, — pd,. the
Poisson bracket of F and H is {F,H} = p? — q?, which has Hamiltonian vector field V{F'H} =
2pd, — 2qd,. this agrees with the commutator [V, Vz|.

1. The structure functions\
(3.2.4)Definition:

The general local coordinate picture for a Poisson manifold, at the Hamiltonian vector
fields. Let x = (x1,...,x™) be local coordinates on M and H(x) a real - valued function. The

associated Hamiltonian vector field will be of the general form V,, = >7, Ei(x)% , where the

coefficient function &!(x) which depend on H are to be determined. Let F(x) be a second
smooth function. Using (3.6) we find
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oF
dxt

FHY = 0,(F) = ) §()

But, by (3.6)
£ (x) = Wy (x) = {x, H},
So this formula becomes
m i 0
{F,H} = X1 {x H} 5 (3.11)

Using the skew - symmetry of the Poisson bracket, we can compute the letter set of
Poisson bracket in term of the particular Hamiltonian vector fields V; = ¥/ associated with the
local coordinate functions x*, n- amely

{xi,H} — —{H,xi} i ]Z(H) = — ;ﬂ:l{xj,xi}a_H

axJ '

The last equality following form a second application of (3.11),with H replacing F and x*
replacing H. thus we obtain the basic formula

j}OF oH
dxt xJ

{FHY=3Y2 Y7 {xix (3.12)

For the Poisson bracket. In other words, to compute the Poisson bracket of any pair of
functions in some given set of local coordinates it suffices to know the Poisson brackets between
the coordinate function themselves. These basic brackets

JU={x\x}, i,j=1,.m (3.13)

Are called the structure functions of the Poisson manifold M relative to the given local
coordinates, for convenience, we assemble the structure functions in to a skew-symmetric m %
m matrix J(x), called the structure matrix of M. Using VH to denote the *’column’’ gradient
vector for H, the local coordinate from (3.12) for the Poisson bracket takes the form :

{F,H} =VF-JVH (3.14)
Example (4):

In the case of the canonical bracket (3.1) on ™ = 2n + 1 the structure matrix has the

simple form
0O -1 0
J=11 0 O
0O 0 O
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relative to the (p,q,z) — coordinates. Where I is the n X n identity matrix. The Hamiltonian
vector field associated with H(x) has the form

dxt xt

T = 20 (2709 () 2 2), (3.15)

or in matrix notation V,;(JVH) - d,, 9, being the “vector” with entries /dx. Therefore in the
given coordinate chart, Hamilton’s equations take the form

2 = 1(x)VH(x) (3.16)

dat
Alternatively, using (3.11), we could write this in the “ bracket form”

dx
E - {x!H}

The i-th component of the right-hand side being {x¢, H}.

Any system of the first order ordinary differential equations is said to be a Hamiltonian system if
there is a Hamiltonian function H(x) and a matrix of functions J(x) determining a Poisson
bracket (3.15) whereby the system takes the form (3.16). of course, we need to know which
matrices J(x) are the structure matrices for Poisson brackets.

(3.2.5)Proposition:

Let J(x) = (]if(x)) be an m x m matrix of functions of x = (x, ..., x™) defined over an

open subset M € R™. Then J(x) is the structure matrix for a Poisson bracket {F,H} = VF - VIH
over M if and only if it has the properties of :

a) Skew- symmetry
Ji(x)=—J9(x) i,j=1,...,m
b) Jacobi identity:
L Utegik + Koy + ok} =0, ij,1,..,m (3.17)

]
For all x € M. (Here, as usual 9, = W')

Proof

In its basic form (3.14) the Poisson bracket is automatically bilinear and satisfies Leibniz’s rule.
The skew-symmetry of the structure matrix is clearly equivalent to the skew- symmetry of the
bracket. Thus we need only verify the equivalence of (3.17) with Jacobi identity. That by (3.12)
and (3.13)
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{(xt, 2}, 24} = B, % ()0 (),

So (3.17) is equivalent to the Jacobi identity for the coordinate functions x! x/ and x*. More
generally, for F,H,P:M — R,

{{F H} P} Zkl 1]lk i {Zl} 1]l]a_Fa_H}axk_lek 1{]lkaLU6_Fa_Ha_P ]lk]l](aF !

doxt xJ dx! axt 9xJ axk dxlxt
OH 0P 4+ 9F OF 0%H oapP 9P yy
dxJ axk axJ " axlx) axk

Summing cyclically on F, H, P we find that the first set of terms vanishes by virtue of
(3.17), while the remaining term can conform to skew- symmetry of structure matrix.

(3.3) The Lie —Poisson Structure
(3.3.1) Definition:

Let g be r - dimensional Lie algebra, and CU, i,j,k=1,..,r, be the structure constants
of g relative to a basis{v,, ..., v,.} ,let V be another r - dimensional vector space, with coordinates
x = (x1,...,x") determined by a basis {wy, ..., w,.}. We define the Lie- Poisson bracket between
two functions F,H:V - R,

6F 6H
Ck k
6x xJ

{F H} Zl]k 1 (318)

This takes the form (3.12) with linear structure functions /¥ (x) = Xj._, C5x*

(3.3.2) Definition:

Let VV be any vector space and F:V — R smooth, real - valued function, then the gradient
VF(x) at any point x € V is naturally an element of the dual vector space V* consisting of all
(continuous) linear functions on V defined by

(VE(x);y) = |£|_rB Pt S};) —F) forany y eV

Where (; ) is the natural pairing between V and its dual V*, we identify the vector space V used
in our initial construction of the Lie Poisson bracket with dual space g* to the Lie algebra
g,{wy, ..., w,} begin the dual basis to {V;, ..., V,.}. If F:g* — R is any smooth function, then its
gradient VF (x) is an element of (g*)* = g (since g is finite dimensional). Then the Lie Poisson
bracket has the coordinate free form

{F,H}(x) = (x;[VF(x),VH(x)]), x € g* (3.19)
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Where [,] is the ordinary Lie bracket on the Lie algebra g if H:g —» R is any function, the
associated system of Hamilton’s equation take the form

dx' _ v
dt Jik=1

0H

k. k
Cijx P

i=1,..,r,

In which the coordinates x* themselves appear explicitly.
Example (5):

Consider the 3 - dimensional Lie algebra So(3) of the rotation group So(3). Using the basis
Vi =y0, — z0,,V, = 20, — x9,,V3 = x0, — yd, of infinitesimal rotation around the x, y and z
axes of R3 (or their matrix counter parts ), we have the commutation relations [V;,V,] =
—V3, V5,11 = =V, [V, V5] = =V, let wy,w,, w5 be a dual basis for So(3)* ~ R3 and u =
ulw; + u?w, +udw; at typical point therein. If F:So(3)* - R, then the gradient is the
vector

oF oF

VF = vV, +
oul 't gu?

F
V; € So(3)

vV, +
27 ous

Thus from (3.19) we find the Lie - Poisson bracket on So(3)* to be

0F OH 0F OH 0F OH 0F OH 0F OH 0F O0H
F H} = ul (—————) + 2 (—————) + 3 (—————) = —uVF x
{ ! } ou3 ou? odu?oud oulou3 ou3oul ou2oul oulou?
VH,

using the standard cross product on R3. Thus the structure matrix is
0 —-u® u?
Ja)=( v 0 —u'| u€So(d)
—u?  ul 0

Hamilton’s equations corresponding to Hamiltonian function H (u) are therefore

du XUl
T (x)

1. The correspondence Between one forms and vector fields:

A Poisson structure on a manifold M sets up a correspondence between smooth function
H:M — R and their associated Hamiltonian vector field ¥, on M. In local coordinates this
correspondence is determined by multiplication of the gradient VF by the structure matrix J(x)
determined by the Poisson bracket. This can given a more intrinsic formulation if we recall that
the coordinate - free version of the gradient of real - valued function H is its differential dH.
Thus the Poisson structure determines a correspondence between differential one - forms
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dH on M and their associated Hamiltonian vector fields V,; which in fact extends to general one -
forms.

2. Rank of a Poisson structure:

(3.3.3) Definition:

Let M be a Poisson manifold and x € M . The rank of M at x is the rank of the linear map
Bly: T*M|, = TM|, .

In local coordinates B|, is the same as multiplication by the structure matrix J(x), so the rank
of M at x equals the rank of J(x), independent of the choice of coordinates.

3. Symplectic Manifolds:
(3.3.4)Definition:

Poisson manifold M of dimension m is symplectic if it Poisson structure has maximal rank m
everywhere.

4. Maps between Poisson Manifolds:
(3.3.5) Definition :

If M and N are Poisson Manifold map is a smooth map ¢: M — N preserving the Poisson
brackets:

{Fop,Hop}y ={F, H}yo¢p forall FH:N - R.
e Inthe case of symplectic manifolds these are canonical maps of classical mechanics .
(3.3.6) Proposition:

Let M be a Poisson manifold and V;; a Hamiltonian vector field . For each t , the flow
exp(tVy): M — M determines a (local) Poisson map from M to itself .

Proof
Let F and P be real - valued functions, and let ¢, = exp(tV). If we differentiate the Poisson

condition {F o ¢, P o ¢} = {F, P} o ¢ with respect to t we find the infinitesimal version
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{V,(F),P} +{F,V,(P)} = V', {F, P})

at the point ¢.(x). By (3.6) this is the same as the Jacobi identity . At t =0, ¢, is the
identity, and trivially Poisson, so a simple integration proves the Poisson condition for general ¢.

Example (6):

If M = R? with canonical coordinates (p, q), then the function H= i(p2 —q?)

generates the group of rotations in the plane, determined by V, = pdq — q0, . Thus each rotation

in R? is a canonical map . Since any Hamiltonian flow preserves the Poisson bracket on , in
particular it preserves its rank.

(3.3.7) Corollary:

If 7, is a Hamiltonian vector field on a Poisson manifold M, then the rank of M at
exp(tV, ) x is the same as the rank of M at x for any t € R.

e For instance, the origin in So(3)*, being the only point of rank 0 ,is a fixed point of any
Hamiltonian system with the given Lie - Poisson structure. In fact, any point of rank 0 on a
Poisson manifold is fixed point for any Hamiltonian system there.

5. Poisson submanifolds:
(3.3.8) Definition:

A submanifold N c M is a Poisson submanifold if its defining immersion ¢: N — M is a
Poisson map.

e An equivalent way of stating this definition is that for any pair of F,H:M — R which
restrict to functions £, H: N — R on N, their Poisson bracket {F, H},, naturally restricts to a
Poisson bracket {F,H} .

(3.3.9) Proposition:

A submanifold N of a Poisson manifold M is a Poisson submanifold if and only if TN|, 5
H|,for all y € N, meaning every Hamiltonian vector field on M is everywhere tangent to N.

In particular, if TN|,, = H|, forall y € N is a symplectic submanifold of M.

Proof
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Since a Poisson bracket is determined by its local character , we can without loss of
generality assume that N is a regular submanifold of M and use flat local coordinates

(y,w) = @1, ...,ymwt o owr™) with N ={(y,w):=w =0}. First suppose that N is a
Poisson submanifold , and let A: N — R be any smooth function. Then we can extend H to a
smooth function H:M — R defined in a neighbourhood of N, with H = H\N. In our local
coordinates, H = H(y)and H(y,w) is any function so that H(y,0) = H(y).if F:N - R has a
similar extension F, then by definition the Poisson bracket between F and H on N is obtained by
restricting that of F and H to N.

{F.H}, ={F,H}/N.

In particular, for any choice of F, H , the bracket {F, H}/N cannot depend on the particular
extensions F and H which are selected. Clearly, this is possible if and only if {F, H}/N contains
on partial derivatives of either F or H with respect to the normal coordinates w*, so

_ ¥ 0F 0H __ o 0F 0H
{F.H}N =%;;]Y(y, O)a_yiﬁ = Zi,j]”(}’)a—yi@ : (3.20)
but then the Hamiltonian vector field 7 restricted to N, takes the form
5 Sijgoy OH 0
VyIN = Zi,j]”(}’)@a—yi, (3.21)

and is thus tangent to N everywhere.

Conversely, if the tangency condition H|, c TN|, hold for all y € N, any Hamiltonian
vector field, when restricted to N must be combination of the tangential basis vectors 8/0y*

only, and hence of the form (3.21) if F(w) depends on w alone, then {F,H} = V,;(F) must
therefore vanish when restricted to N.

In particular ,
{yiw/}={wkwi}=0 on Nforallij,k,

And hence the Poisson bracket on N takes the form (3.2) in which Ji(y)=]4(y,0) =
{y',y/}IN . The fact that the structure function j¥(y) of the induced Poisson bracket on N
satisfy the Jacobi identity easily follows (3.17) since on restriction on . All w-terms vanish. Thus
N is a Poisson submanifold.

Note that the rank of the Poisson structure on N at y € N equals the rank of the Poisson
structure on M at the same point.
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Example (7):

For the Lie - Poisson structure on So(3)*, the subspace H|u at u € So(3)* is spanned by the
elementary ~ Hamiltonian  vectors  V, = u3d, — u?d;, V, = u'd; —ud,, V3 = u?09; —
u'a,, (9; = d\du' , corresponding to coordinate functions u®,u?, u® respectively. If u # 0, there
vectors span a two-dimensional subspace of TSo(3)*|,, which coincides with the tangent space to
the sphere S7 = {u:|u| = p} passing through u = H|,, = TS}|,, lul = p. Proposition (3.3.8)
therefore implies that each such sphere is a symplectic submanifold of So(3)*. In terme of
spherical coordinates u' = pcosésing,u? = psin@sing,u® =pcose onS? , the Poisson
bracket between F (8, ¢)and H (0, ¢) computed by extending them to a neighbourhood of S2, set
F(p,8,¢9) = F(6,9), H(p,0,¢9) = H(H, p), computing the Lie- Poisson bracket {F,H} and
then restricting to S2. However, according to (3.12) , {F, H} = {0, 9}(F,H, — F,Hy) so we only
really need compute the Lie-Poisson bracket between the spherical angles 9, ¢

-1
psing’

{6,0} = —u.(V,0 xV,p) =

Thus

{ﬁ', ﬁ} —_ -1 (61; 0H OF aﬁ)

(psing) \80dp ag a6

is the induced Poisson bracket on Sz < So(3)*

e Thus if Nc M is a Poisson submanifold , any Hamiltonian vector field V,; on M is
everywhere tangent to N and thereby naturally restricts to Hamiltonian vector field V,; on N,
where H = H|N is the restriction of H to N and we are using the induced Poisson structure
on N to compute 7, .

If we are only interested in solution to the Hamiltonian system corresponding to H on M with
initial conditions x- on N we can restrict t. the Hamiltonian system corresponding to H on N
without loss of information, thereby reducing the order of the system.

In particular as far as finding particular solutions of the Hamiltonian system goes, we may as
all restrict to the minimal Poisson submanifolds of M, these are always symplectic submanifolds
so every Hamiltonian system can be reduced to one in which the Poisson bracket is symplectic .

(3.3.10) Theorem:

Let M be an m - dimensional Poisson manifold of constant rank 2n < m everywhere. At
each x. €M there exist canonical local coordinates (p,q,2) =
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(L, ....p".q% ... q" 2%, ..., zY), 2n+ L = m, in terms of which the Poisson bracket takes the
form

_gp, (2o ar on)
{F’ H} - Zi=1 (aqi 6pi 6pi aqi

The leaves of the symplectic foliation intersect the coordinate chart in the slices {z! =
¢y, ...,z" = ¢;} determined by the distinguished coordinate .

Poof:

If the rank of the Poisson structure is O everywhere there is nothing to prove. Indeed, the
Poisson bracket is trivial : {F,H} =0 for all F,H, and any set of local coordinates z =
(2%, ..., 2zY), 1 = m satisfies the condition of the theorem. Otherwise, we proceed by induction on
the “half - rank” n. since the rank at x- is non zero, we can find real - valued functions F and P
on M whose Poisson bracket does not vanish at x. :

{F,P}(x-) = Vp(F)(x-) # O.

In particulare, V|,. # 0, so proposition (1.4.11) to straighten out ¥, in a neighbourhood U of
x- and thereby find a function Q(x) satisfying

7.(Q)={0,P}=1 forall xeU

(In notation of proposition (1.4.11), Q would be the coordinate y! ), since {Q, P} is constant,
(3.10) and (3.15) imply that

[Vp. Vo] = Vigpy =0

For all x € U. on the other hand V,(Q) ={Q,Q} =0, so V» and ¥, form a commuting, linearly
independent pair of vector fields defined on U. If we set p = P(x),q = Q(x), then allows us to
complete p,q to form a system of local coordinates (p,q,y3,...,y™) on possibly smaller
neighborhood U c U of x, with V, = a,,V, = —a,, therefore the bracket relations {p,q} =

1,{p.y'} =0={q,y'}, i=3,..,m imply that the structure matrix takes the form
0 1 0
J(p.q.y) = (—1 o 0 )
0 0 Jj(p.qy)

Where J has entries J¥ = {y!,y/},i,j = 3,...,m finally we prove that  is actually independent
of p and q, and hence form the structure matrix of a Poisson bracket in the y variable of rank two
less than that of J, from which the induction step is clear. To prove the claim, we just use the
Jacobi identity and the above bracket relations, for instance
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o= () =iy} Py =0

and similarly for P.
6. The coadjoint representation:
(3.3.11)Definition:

Let G be a Lie group with Lie algebra g. The co-adjoint action of a group element g € G is
the linear map Ad*g: g* — g* on the dual space satisfying

(Ad*g(w); w) = {w; Adg~*(w)) (3.22)

for all w € g*,w € g . Here (;) is the natural pairing between g and g*, and Adg the adjoint
action of G on .

e If we identity the tangent space Tg*|,, with g* itself and similarly for g, then the
infinitesimal generators of the co-adjoint action are determined by differentiating (3.22):

(ad*v|,;w) = —(w; advl,) = (w; [v,w]), (3.23)
Forvwe g,w € g*
(3.3.12)Theorem:

Let G be connected Lie group with co-adjoint representation Ad* G on g*. Then the orbits
of Ad*G are precisely the leaves of the symplectic foliation induced by the Lie Poisson bracket
on g*. Moreover, for each g € G,the co- adjoint map Ad*gis Poisson mapping on
g" preserving the leaves of the foliation.

Proof

Letv € g and consider the linear function H(w) = H,(w) = (w,v) on g*. Note that for

w € g*, the gradient VH(w), considered as an elementof T g*|, = g, is just v, itself. Using
the intrinsic definition of the Lie Poisson bracket , we find

Vi (F)(w) = {F, H{(w) = (w; [VF(w), VH (»)])
= (w; [VF(w), v]) = (w, adv(VF(w)))
= —(ad"v(w); VF (w))
for any F: g* — R on the other hand,
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Vi (F)(w) = (Vylw; VF (w))

is uniquely determined by its action on all such functions. We conclude that Hamiltonian vector
field determined by linear function H = H, coincides, up to sign, with the infinitesimal
generator of the co-adjoint action determined by v € g:V; = —adv. Thus the corresponding one
— parameter groups satisfy

exp(tVH) = Ad*[exp(—tv)].

proposition (3.3.6) and the usual connectivity arguments show that Ad*g is a Poisson mapping
for each g € G.

Moreover, the subspace H|, w € g*, is spanned by the Hamiltonian vector
fields V,; corresponding to all such linear functions H = H,, vE€g  hence H|, =
ad* 4|, coincides with the space spanned by the corresponding infinitesimal generators ad*V|,,
.Since ad*g|,, precisely the tangent space to the co-adjoint orbit of G through w, which is
connected, we immediately conclude that this co-adjoint orbit is the corresponding integral
submanifold of # .

(3.3.13) Corollary:

The orbits of the co-adjoint representation of G are even - dimensional submanifolds of g*.
7. Hamiltonian Transformation Groups:
(3.3.14)Definition:

Let M be a Poisson manifold. Let G be Lie group with structure constants Ci’j-,i,j,k =

1,...,r, relative to some basis of its Lie algebra g. The functions P;,...,B.: M — R, generate a
Hamiltonian action of G on M provided their Poisson bracket satisfy the relations.
(PP} == ClPe, Lj=1..r1

Note that by (3.10), the corresponding Hamiltonian vector field V; = l7,,isatisfy the same
commutation relation (up to sign)

[‘71"7}']: Yk=1 Cikjvk,

And therefore generate a local action of G on M by theorem (1.4.11). Given a Hamiltonian
system on M, will say that G is Hamiltonian symmetry group if each generate functions P;is
first integral {P; ,H} =0, i=1,....r,
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Which implies that each V; generates a one-parameter symmetry group. Any first order system
of differential equations on a manifold M which admits a regular symmetry group G reduces to
a first order system on the quotient manifold M /G ( of course, if G is not solvable, we will not
be able to reconstruct the solutions to the original system from those of the reduced system by
quadrature , but we ignore this point at the moment.) In the case M is a Poisson manifold and, G
a Hamiltonian group of transformations, the quotient manifold naturally inherits a Poisson
structure, relative to which the reduced system is a Hamiltonian. Moreover, the degree of
degeneracy of the Poisson bracket on M /G  will determine how much further we can reduce
the system using any distinguished functions on the quotient space.

(3.3.15) Theorem:

let G be a Hamiltonian group of transformation acting regularly on the Poisson manifold M.
then the quotient manifold M/G inherits a Poisson structure so that whenever F. H : M/G —
R correspond to the G-invariant function F,H: M - R, their Poisson bracket {ﬁ,H}M/G
correspond to the G-invariant function {F,H},, Moreover, if G is Hamiltonian symmetry

group for Hamiltonian system on M, then there is a reduced Hamiltonian system on M/G
whose solutions are just the projections of the solution system on M.

PROOF:

First note that the fact that the Poisson bracket {F, H} of two G-invariant function remains
G-invariant is a simple consequence of the Jacobi identity and the connectivity of G; we find,
fori=1,....r,

V,({F,HY) = {{F, 0}, P, } ={{F,P}H} + {F{H.P}} =0

Since F and H and invariant, verifying the infinitesimal invariance condition . thus the Poisson
bracket well defined on M /G; the verification that it satisfy the properties of definition(3.1.1) is
trivial .

Now if H: M - R has G as Hamiltonian symmetry group, then H is automatically a G-
invariant function:V;(H) = {H,P;} = Osince each P; is by assumption, first integral. Let
H:M/G - R be the corresponding function on the quotient manifold . to prove the
corresponding Hamiltonian vector field are related , de(F) = , m:M —» M/G the natural
Projection, it suffices to note that by (1.25)

de(Vy)(F)°m= VylF °ml ={ °m H}y

Forany F : M/G — R but this equals
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{F,B}yjgon = Va(F)°m
By the definition of Poisson bracket on M /G , and hence proves correspondence.
Example(8)

consider the Euclidean space R® with canonical coordinates (p, q) = (p*,p?, 3, q*,q% q3). The
functions

p1 =q¢*P®—-qa*>p*  p. =¢p' = q'p® p3=q'p*—q°p!
Satisfy the bracket relations

{p:1.p2} = D3, {p2 .03} = D1, {3 .01} =02

And hence generate a Hamiltonian action of the rotation group SO (3) on R® , which is , in fact,
given by (p, q) — (R,,R,), R € SO(3).this action is regular on the open subset M =
{(p,q): p, q are linearly independent}, with three dimensional orbits and global invariants

§p.)= 5 Ipl? n(.q) =p.q. ((p.q) = Slql?

We can thus identify the quotient manifold with the subset M/G = {(x,y,2z):x >0,z>0y% <
4xz } of R3, where x = &, y =1, z = { are the new coordinates.

How do we compute the reduced Poisson bracket on M/G? According to (3.12), we need only
compute the basic Poisson brackets between the corresponding invariants &,7,...using the
Poisson bracket on M itself, and re-expressing them in terms of the invariants themselves. For
instance, since

_ 9§ 0 & an\ _ N2 —
=S, (Goro — o) = — S ()2 = 2¢,

We have {x, y}y,; = —2x Similarly the bracket relations {¢,{} = —n,{n,{} = 2{ on M lead
to the structure functions {x, y}y,c = —2z On M/G . the structure matrix on M /G is thus

0 —-2x -y
J/G = (Zx 0 —22)
y 2z 0

With Poisson bracket

>
)
>

{F"H}:_Zx(ﬁxﬁy_ﬁyﬁx)_y(x z~ zﬁx)_zz(y z~ 1z y)
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Any Hamiltonian system on M admitting angular momenta P; as first integrals will reduce to a
Hamiltonian system on M /G For example, the general kepler problem of a mass moving in a
central force field with potential v(r) is such a candidate. Here the Hamiltonian function is the

energy H(p,q) = %lpl2 + V(|ql). The reduced system on M /G is obtained by rewriting H in
terms of the invariants and then using the given Poisson bracket to reconstruct the Hamiltonian

vector field. We find reduced Hamiltonian H(x,y,z) = x +... where #(z)= v(¥2z), and
reduced system

Xe ==y 0U(z) y: =2x—22z0(2). z; = y. (3.24)
(The reader many enjoy deriving this directly from Hamilton's equations on M.)

Now M /G is three-dimensional, so there is at least one distinguished function. This is easily
seen to be C(x,y,z) = 4xz — y?, which is an invariant of any Hamiltonian system M/G (In
the original variables, C = |p x q|?.)The hyperboloids 4xz — y? = k?, being the level sets of
C, are the leaves of the symplectic foliation, and hence we can restrict (3.24) to any such leaf
Using (X, y) as coordinates , we find the fully reduced system

x = —Vdxz — k2 V(2), z=—dxz — k?, (3.25)

Which is Hamiltonian relative to induced Poisson bracket {F 6H}= —V4xz — k2 (E.H, —
E,H,)on the hyperboloid. This final two-dimensional system can be solved by method of
Proposition (4.2.12). so can solve the reduced system (3.24) by quadrature. however, at this
stage we cannot use the solution to integrate the original central force problem because SO(3) is
not a solvable group. But, as we will soon see, this difficulty can be circumvented by an
alternative approach to the reduction procedure .

8.The Momentum Map

The above approach to the reduction problem, while geometrically appealing, leaves something
to be desired form a computational standpoint. The problem is that we are concentrating initially
on the more complicated aspect of Hamiltonian symmetry group, namely the group
transformations and ignoring the first integrals, which are also present, until after the symmetry
reduction has been effected, at which point they manifest their presence as distinguish
functions. A more logical approach would be to use the first integrals at the outset , restricted
they system to common level set thereof , and then completing the reduction by using any
residual symmetry Properties of the resulting system . this turns out to be equivalent to the
above procedure, but now we stand a better chance of being able to reconstruct the solution
to the original system by quadratures alone.
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The first step here is to organize the first integrals furnished by a Hamiltonian group of
symmetries in more natural framework. It is here that the dual to the lie algebra of symmetry
group and, subsequently, the co-adjoint action makes its appearance.

(3.3.16) Definition:

let G be a Hamiltonian group of transformation acting on the Poisson manifold M,
generated by the real-valued functions P, ..., B.. The momentum map for G is the smooth map
P:M — g* given by

P(x) = Z p1(x)0)i,

In which {w,, ..., w, }are the dual basis to g*for the basis {V,,..., .} of g relative to which the
structure constants Cikj were computed.

Explains why we allowed it to take values in g*, is its invariance ( or more correctly, "
equivariance ") with respect to the co-adjoint representation of G on g*.

(3.3.17) Proposition:

let P: M — g* be the momentum map determined by a Hamiltonian group action of G
on M. Then

p(g. X)=Ad" g (p(x)) (3.26)
forall x € M, ge G.
PROOF .
As usual, it suffices to prove the infinitesimal form of this identity which is
dP(9;],) =ad” D (), XEM (3.27)
For any generator 17] €g, Jj=1.. rofG. ifweidentify Tg*|,) with g~ itself, Then

dp(9j|x) = Zir=1‘7(Pi)0)i = i=1{Pi’Pj}(x)wi = —Cikjpkwi

Cf. (1.25), (3.6). by (3.23) this expression is the same as the right-hand
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To prove (3.26), we note that if g= exp(e?;) and we differentiate with respect to  ,then we
recover (3.27) at X = exp(e¥;)x since this holds at all X the usual connectivity arguments prove
that (3.26) holds in general.

Example (9):

consider the Hamiltonian action of SO (3) on ]R{Gpresented in Example (8). The momentum
map is
P(p.q) = (a°p® — ¢’ pP)w, + (¢°p' — q'pP)w; + (¢'p* — ¢*pY)ws,

Where {w;, w,, w3} are the basis of so (3)* of Example (5). note that if we identify so(3)* with
R3, P(p,q) = q x p is the same as the cross product of vector in R3. In this case. SO(3) acts on
so (3)* by rotations, and the equivariance of the momentum map is just a restatement of the
rotational invariance of the cross product: R(q,p) = R(q) x R(p) for R € SO(3) .

Now , as remarket earlier, any Hamiltonian system with G as a Hamiltonian symmetry group
naturally restricts to system of ordinary differential equations on the common level set {
P;(x) = c;} of the given first integrals.

Note that these common level sets of momentum map, denoted ¢, = { x: P(x) = a} where a =
Y. c;w; € g*. Moreover, the reduced system will automatically remain invariant under the
residual symmetry group

G ={0 € G:0.904 C @u}

Of group elements leaving the chosen level set invariant, there is any easy characterization of
this residual group.

(3.3.18)Proposition:

let P: M - g* be the momentum map associated with a Hamiltonian group action.
Then the residual symmetry group of a level set ¢, = {x:P(x) = a} is the isotropy subgroup
of element xe g*:

G ={g€G: Ad" g(a)=a }.

Moreover if ge G, has the property that it takes one point x € ¢.to point g. x € ¢, , then
property forall x € @y

Proof . By definition, ge G, if and only if P(g. X)= @ whenever P(x) a. But, by the
equivariance of P,

58



a = P(g. X)= Ad" g(P(x)) = Ad" g(a),
So g is in the isotropy subgroup of a. The second statement easily follows from this identity.

Not that the residual Lie algebra corresponding to G, is the isotropy subgroup g, ={V €

g:ad’V |, =0}, which is readily computable. In particular, the dimension of G.can be computed
as the dimension of its Lie algebra g, . For instance, if G, is an abelian Lie group, its co-adjoint
representation is trivial, Ad" g(a) = «a for all g€ G, @ € g*, hence G, = G  For every a.
Therefore any Hamiltonian system admitting an Aeolian Hamiltonian symmetry group remains
invariant under the full group , even on restriction to a common level set ¢, This will imply
that we can always reduce such a system in order by 2r, twice the dimension. on the group. As a
second example, consider the two-parameter solvable group of Example 6.40. Here there
momentum map is

P(p.q.p, §) = pw; + (pq + pw,,

Where {w,, w,} are a basis of g*dual to the basis {v, w} of g. The co-adjoint representation of
g=exp(e, V + &,w) is found to be

Ad" g(ciw; + w; = e g + (g1651(e7%2 — 1) ¢y + ;) w,

(with appropriate limiting values if e, = 0). Thus the isotropy subgroup of « = c;w; + c,w,
is just {e} unless ¢c; =0, in which case it is all of G. Thus we expect that the restriction of
Hamiltonian system with symmetry group G to a level set o = {p = ¢, pq +P = c, } will
retain no residual symmetry group unless ¢, = 0, in which case the entire group G will remain
. This is precisely what we observed.

Once we have restricted the Hamiltonian system to the level set @the idea is then to
utilize the methods of Section5 in chapter2 to reduce further using the residual symmetry group
G«. Under certain regularity assumptions on the group action, the quotient manifolde,. /G, , on
which the fully reduced system will live, has a natural identification as a Poisson submanifold
of M/G. Thus the fully reduced system inherits a Hamiltonian structure itself .

In particular , if the residual group G, is solvable (rather than G itself being solvable)
we can reconstruct the solution to the original system on ¢,/ G, the general result follows:

(3.3.19) Theorem :

let M be a Poisson manifold and G a regular Hamiltonian group of transformations. Let «e
g*. Assume that the momentum map P: M - g™ is of maximal rank everywhere on the level
set o« = P~{a}, and that the residual symmetry group G, acts regularly on the submanifold
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@«. Then there is a natural immersion @ making ¢,/G, into Poisson submanifold of M/G 1S
such a way that the diagram

Commutes (Here m and m, are the natural projection and i the immersion realizing ¢, as
submanifold of M.) Moreover, any Hamiltonian system on M which admits G as a Hamiltonian
symmetry group naturally restricts to systems on the other space in (6.39), which are
Hamiltonian on M /G and¢../G«, and which are related by the appropriate maps. In particular,
we obtain a Hamiltonian system on ¢ /G, by first restricting to ¢ and

Then projecting using .
Proof :

Assume G is a global group of transformations, although the proof is easily modified
to incorporate the local case. According to the diagram if z = m (x) € @. /G« then we
should define @ (z) = n (x) € M/G. Note that m,(x) = (%) if and only if x=g . % for
some g € G, but this means m(x) = (%) and hence @ is well defined. Similarly, @ is one-to-
one since if x,%¥ € ¢, and w(x) = mw (%), then x = g . ¥ for some g € G; according to
Proposition (3.3.18), g € G, and hence m,(x) = m,(%). Finally, @ is an immersion, meaning
d® has maximal rank everywhere, since d@ ° dm, = dm ° di, and by Proposition (3.3.18)

Kerdm, = g, =g N Te, =ker(dr ° di).

Let H: M/G — R correspond to the G-invariant function H : M — R, so by theorem (3.3.14)
the corresponding Hamiltonian systems are related : Vy = dn(VH). We also know that V, is
everywhere tangent to the level set @, And hence there is a reduced vector field V' on ¢, with
Vy = di(V) there Moreover, as V; has G as a symmetry group .... Retain G as a residual
symmetry group and there is thus a well-defined vector field V*= dm,(V*)on the quotient
manifold ¢, /G, furthermore , this vector field agrees with the restriction of ¥z to submanifold

? (p«/Gy) since

dp(V*)=d¢ ° dn. (V) = dr ° di(V) = dn(Vz)= Vg
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there.
This last argument proves that every Hamiltonian vector field on

M /G is everywhere tangent to ¢ (@« /Gy). Proposition (3.3.9)then implies that ¢ makes ¢/ G
into a Poisson submanifold of M/G and, moreover, the restriction of Hamiltonian vector field
Vg on M/G top./Gy(i.e. V* ) is with Hamiltonian respect to the induced Poisson restriction.
This completes the proof of the theorem and hence the reduction procedure.

If M is symplectic, then it is not true that M /G is necessarily symplectic However, it is
possible to show that the submanifolds ¢/G.form the leaves of the symplectic foliation of
M/G.

Example (9).

consider the abelian Hamiltonian symmetry group G acting on $R®, with canonical coordinates
(p,q) = (Pt %, p% 9, q% q3), generated by the functions P =p3 Q = q'p? — q?p* .The
corresponding Hamiltonian vector fields

d d d d

Generate a two-parameter abelian group of transformation. Any Hamiltonian function of the
form H(p,0,7,¢,7), where p = \/(q1)? + (¢%)? o= J@H)2+ @»)? y=q'p*-
g’pt &= p3 has G asasymmetry group; In particular H = ilpl2 + V(p), a cylindrically

energy potential is such a function.

The method of proposition (3.3.19) will allow us to reduce the order of such a Hamiltonian
system by four.(and H does not depend on 7 , we can integrate the entire system by quadratures

.) First we restrict to the level set ¢ ={P =&, Q = y}foré,y constant. If we use the p =
(o cosy,osiny, &), forqandp, then

y = pasin(y —6) = posin ¢,

Where ¢ = yp — 6. In term of the variables p, 6, ¢,z the Hamiltonian system , when
restricted to ¢, takes the from

p; = COS¢.H, ¢, = sing(o~1H, — p~tH,) (3.284a)

6, = p~'singpH, + H, z, = Hg (3.28h)
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The subscripts on H denote partial derivatives. These are also designed so ¢ ,V1 =0,, V2 =0q
Theorem (3.3.19) guarantees that (3.28a), (3.28b) is invariant under the reduced symmetry group
of ¢ Which owing abelian character of G, is all of G itself. This is reflected in the fact that

neither z nor 6 appears explicitly on the right-hand sides of (3.28a). Thus once we have

determined p(t) and ¢(t) to solve the first two equations, 6(t) and z(t) are determined by
quadrature.

Moreover, Theorem (3.3.19) says that (3.28a) forms a Hamiltonian system in its own right.
Fixing y and &, let

H(p,¢,t) =H(p,v/(psing),y &, ¢)

be the reduced Hamiltonian . Note that

{o.$} = —yp~lo7? = —y~'psin’p.

An easy computation using the chain rule shows that (3.28a)is the same as
pe =~y 'psinpHy, b =y~ 'psinpHy, (3.29)

Which is indeed Hamiltonian. In particular, if H(and hence H) is independent of t we can, in
principle, integrate (3.29) by quadrature and hence solve the original system. (In practice,
however, even for simple functions H, the intervening algebraic manipulations may prove to be
overly complex.)

In general, if a Hamiltonian system is invariant under an r-parameter
abelian Hamiltonian symmetry group, one can reduce the order by 2r. This is
because the residual symmetry group is always the entire abelian group itself
owing to the triviality of the co-adjoint action. A 2n —th order Hamiltonian
system with an n-parameter abelian Hamiltonian symmetry group, or, equivalently
possessing n first integrals P, (x), ..., B,(x) which are in involution

{Pl-,Pj}:O for all i,j,

Is called a completely integrable Hamiltonian system since, in principle, it’s
solutions can be determined by quadrature alone. Actually, much more can be said
about such completely integrable system and the topic forms a significant chapter
in classical theory of Hamiltonian mechanics.
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Chapter Four

Integrability of Hamiltonian Systems

Chapter Four

Integrability of Hamiltonian Systems

(4.1) Introduction :
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In this chapter we consider the notion of complete integrability of
Hamiltonian system . In spite of the recent development of the methods and
technique of complete inegrability that have been invented in the last three decades
(i.e the method of Lax pairs, the bi-Hamiltonian method etc -) the classical 19"
century approach to complete integrability via the Hamilton - Jacobi method of

separation of variables is being revived.

One of the main impetuses for the renewed interest in this method was
Cartan’s discovery that geodesic equation in Kerr black holes space-time can be
integrated by separation of variables .Remarkably , in the course of the last ten
years ,this classical method has been effectively linked with the method of the lax
representation and the bi-Hamiltonian method , thus leading to new theories in the

area of integrable Hamiltonian system.

The key idea behind the method of separation of variables is to see k - set of
special coordinates q := (g%, ...,g™) in which the corresponding Hamilton Jacobi

partial differential equation
lglowow+V=E (4.1)
admits a complete integral of the form
w(g,c) = wy(q*,c) + -+ wy(q",©) (4.2)
The above Hamilton-Jacobi equation (4.1) in fact corresponds to the Hamiltonian
Ho = 2g(a)p; py +V(@), i,j=1,...n (4.3)

where ¢ = (¢4, ...c,) are the constants of integration . These constants are the n
first integrals in involution with respect to w, = Y1, dp' Adg; (w.is canonical

symplectic structure) or p, = Y1, d; A d' (p, is Poisson bi-vector) that guarantee
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the complete integrability of (4.3).A complete integral w can be interpreted as an
n-dimensional Lagrangian submanifold on M lying on the level surface H,=const.
The coordinates (g, ...,g™) in (4.2) are called separable coordinates. Moreover, if
the metric g of (4.3) is diagonal in these coordinates, they are also said to be
orthogonal and the system defined by the Hamiltonian (4.3) is said to be
orthogonally separable. In what follows , we concentrate our attention on this type
of separable Hamiltonian system. We note that the orthogonal case has been
extensively studied in the past in numerous articles by such famous scholars as
Dall’ Acqua, Eisenhart, Levi-Civita, Ricci, Stackel and others. Major advances in
the area have been achieved in recent years by Bbenenti, Klnins and Miller

Shapovalov , as well as many others.

The main objective of this chapter is to combine the theory of orthogonally
separable Hamiltonian system and the method of moving frames . The method has
been extensively studies and successfully applied under different names (for

instance, “the method of quasi-coordinates’’, non-coordinate

basis’’,”...orthogonal enuples’”) in such areas of mathematics and physics as
differential geometry, general relativity and theory of Lie groups. Introduced by
Darboux and developed by Cartan , the method has been chiefly used in two cases:
As an alternative method to the classical tensor calculus to avoid ,in Cartan’s , the
“debauch d’indices” and as an effective tool to study geometrical invariants of
submanifolds under the action of transformation Lie groups . In the present work,
we are mainly concerned with the former case, when the application of the moving
frames method can significantly alleviate the complications of dealing with

tensorial geometrical quantities, in this chapter defined in a Riemannian manifold

(M,g). We note that an equivalent version of the method of moving frames based
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on the frame of vectors, unlike Cartan’s approach via co-vectors, was effectively

used by Eisenhart .
(4.2) Hamiltonian Systems

(4.2.1) Definition:

Let H(x,p) and L(x,p) be differentiable functions of their arguments for x
and p € R" the Poisson bracket of H with L,

{HL}= 2?21(01-1 oL _ oH a_L)

opl 9xi  9xi opl

A quantity L is called a first integral of Hamiltonian system if it’s a constant of

motion ( i.e if i=0 under the flow implied by Hamilton’s equation ).
(4.2.2) Corollary:

The quantity L is a first integral of Hamiltonian system with Hamiltonian H if
{H,L} =0.

(4.2.3) Definition:

A Hamiltonian system is said to be completely integrable if it has n first
integrals (including the Hamiltonian itself), where n is the number of degrees of

freedom .
(4.2.4) Proposition:
A function P(x, t) is first integral for the Hamiltonian system if and only if

P+ {P,H}=0 (4.4)
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for all x ,t. Particular, a time - independent function P(x) is a first integral if and

only if {P, H} = 0 every where.
Proof

Let Vy be the Hamiltonian vector field , then if x(t) is any solution to

Hamitlon’s equation,
PG, 0} = T (), 1) + V(P (x (1), 1),
Thus % = 0 along solution if and only if (4.4) hold everywhere.

(4.2.5) Corollary:

If x, = JVH is any Hamiltonian system with time - independent Hamiltonian

function H(x) ,then H(x) itself is automatically a first integral.
(4.2.6) Corollary:

If x, = JVH is a Hamiltonian system , then any distinguished function C(x)

for the Poisson bracket determined by J automatically a first integral .
1. Hamiltonian symmetry groups:

(4.2.7) Definition:

The first integral arise from variational symmetry groups; For Hamiltonian
systems this role is played by the one - parameter Hamiltonian symmetry groups
whose infinitesimal generators (in evolutionary form) are Hamiltonian vector fields

Any first integral leads to such a symmetry group.

(4.2.8) Proposition:
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Let p(x,t) be a first integral of a Hamiltonian system. Then the Ham-

iltonian vector field Vp determined by P generates a one parameter symmetry

group of the system.
Proof

Note first that since the structure matrix J(x) does not depend on t the

Hamiltonian vector field associated with % IS just t-derivative :Ltp of that
associated with P. Thus the Hamiltonian vector field associated with the
combination % + {P, H} occurring in (4.4) using (3.8) in chapter 3

aVp
ot

+ {Vy, Vp} .

If P is a first integral, this last vector field vanishes, which is just condition
?—tQ +{Vp, Vo } = 0 that Vp generate a symmetry group.

In particular ,if H(x) is time - independent, the associated symmetry group is

generated by Vi which is equivalent to the generator d, of the symmetry group of
time translations reflecting the autonomy of the Hamiltonian system .A

distinguished function C(x), the corresponding symmetry is trivial : V. = 0
Example (1):

Consider the equation of a harmonic oscillator p, = —q, g = p which form
a Hamiltonian system on M = R? relative to the canonical Poisson bracket. The
Hamiltonian function H(q,p) = %(p2 + g2) is thus a first integral, reflecting the

fact that the solution move on the circles p? + g2 = constant.

(4.2.9) Corollary:
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Every Hamiltonian symmetry group corresponds directly to first integral.
(4.2.10) Theorem:

A vector w generates a Hamiltonian symmetry group of a Hamiltonian
system of ordinary differential equations if and only if there exist a first integral

P(x,t) so that w = \7p Is the corresponding Hamiltonian vector field. A second

function P(x,t) determines the same Hamiltonian symmetry if and only if

P =P+ C for some time - dependent distinguished function C(x, t).
Proof:

The second statement follows immediately from definition (3.2.4) in
chapter 3 of a distinguished function applied to the difference P — P .To prove the
first part, let w = V5 for some function P(x, t). The symmetry condition says that (
a;’—f + {VP,VQ} = 0) implies that the Hamiltonian vector field associated with the

function 2 + {P, H} vanishes everywhere, and hence this combination must be a

time - dependent distinguished function C(x,t) :

dP __ 9P 5 ~
S=2+{PH}=C

Set C(x,t) = fOtC(x,r)dr , o that C is also distinguished. Moreover for

solution x(t) of the Hamiltonian system ,

The modified function P = P — C has the same Hamiltonian vector field ,

o] — - - - dP — -
Vp = w ,and provides a first integral == = 0 on solution.

2. Reduction of order in Hamiltonian systems:
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(4.2.11) Theorem:

Suppose Vp # 0 generates a Hamiltonian symmetry group of the
Hamiltonian system x° = JVH corresponding to time - independent first integral
P(x). Then there is reduced Hamiltonian system involving two fewer variables
with the property that every solution of the original system can be determined

using one quadrature from those of reduced system .
Proof:

Let p=P(x),q=0Q(x),y = (.., y™ 1) = Y(x) which straighten out
the symmetry , so Vp = aq in the (p,q,y) - coordinates . In terms of these coor-

dinates the structure matrix has the form

0 1 0
J(.q,y) = [—1 0 {l]
0 —-af J

Where (p,q,y) is a row vector of length m-2 and J(p,y) is an (m-2)
x(m-2) skew - symmetric matrix , which is independent of g, and for each fixed
value of p is the structure matrix for a Poisson bracket in the y variables.
(if =y ..,y™ 2 ) are chosen as flat coordinates as in the proof of Darboux
theorem then a = 0 and J(y) is independent of p also ,as we saw earlier . However,
to effect the reduction procedure this is not necessary, and indeed may be
impractical to achieve, the proofs of the above statements on the form of the

structure matrix follow as in the “flat” case.

The reduced system will be Hamiltonian with respect to the reduced
structure matrix J(p,y) for any fixed value of the first integral P = P(x) . Note that

in terms of the (p, g, y) coordinates.
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0 ={P,H} = —V,(H) = —aH/aq,

Hence JH = H(p, y) also only depends on p and y. Therefore Hamilton’s equations

takes the form

dp _
~=0 (4.5)
dq _ 0H —2 OH
a = Top T Z= AP 0)
d i e OH .
T =Yy o i=1.. m =2 (4.7)

The first equation says that p is constant (as should be). Fixing a value of p,
we see that the (m-2) equations (4.7) form a Hamiltonian system relative to
reduced structure matrix j(p,y) and the Hamiltonian function H(p,y); this is the
reduced system referred to in the statement of the theorem. Finally (4.6), which
governs the time evolution of the remaining coordinate g, can be integrated by a
single quadrature once we know the solution to the reduced system (4.7) since the

right- hand side does not depend on q.
Example (2):

Let M = R* with canonical Poisson bracket and consider a Hamiltonian

function of the form

H(py1, P2, 01, 02) = 2(p% + p3) + V(d1,9).

The corresponding Hamiltonian system

d 1 d 2 d 1 d 2
dit: P1, dit: P2 %:Vl(%’%),%zvl(%a%) (4.8)
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Determines the motion of two particles of unit mass on a line whose
interaction comes from a potential V(r) depending on their relative displacements
.This system admits an obvious translational invariance V = dq,; + dq,; the
corresponding first integral is the linear momentum p,,p,. According to the
theorem above we can reduce the order of the system by two if we introduce new

coordinates.
P=P1+P2 =01, Y=P1, =0, —0Qy,
Which straighten out V = dq. In these variables, the Hamiltonian function is
H(p, y, 1) =y* —py +3p* + V(n), (4.9)
and the Poisson bracket is

dFo0H oFoH aFaH dFoH o0FoH oFoH

=345y "aray “aqop ayaq ayar apaq

Further, the Hamiltonian system splits into

JH d 0H = 0H
@ == ’ q —+— _y’
dt aq dt ap ay
and
dy JH OH 1 dr JH
Y =——_——=-V(r), —=— =2y — 4.1
dt dq or (n), dt dy y—»p (4.10)

The solution to the first pair

p=a, q=[y(t)dt+b,

(a , b are constant) can be determined from the solutions to the second pair (4.10).

These form a reduced Hamiltonian system relative to the reduced Poisson bracket
{F.H} = F,H; — FyH, for function of y and r, with the energy (4.9) obtained by
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fixing p = a. presently, we will see how the two-dimensional system (4.10) can be

explicitly integrated ,thereby solving the original two-particle system (4.8).

(4.2.12) Proposition:

Let x = JVH Dbe a Hamiltonian system in which H(x) does not

depend on t. Then there is a reduced, time —dependent Hamiltonian system in
two fewer variables, from whose solutions those of the original system can be

found by quadrature.

Proof :

The reduction in order by two per se is easy. First, since H S constant,
we can restrict to a level set H(x) = ¢, reducing the order by one.
Furthermore, the resulting system remains autonomous and so can be
reduced in order once more using the method in example (2.67) the
problem is that unless we choose our coordinates more astutely, the
system resulting from this reduction will not be of Hamiltonian form in
any obvious way. The easiest way to proceed is to first introduce the

coordinates (p, q, y), relative to which the original system takes the form

dp  9H dq OH dyi_§2~ij()aH
dt  dq' dt ap dt ISP

J=1

Assume that dH/dp # 0, so that we can solve the equation w = H(p,q,y)
locally for p = K(w, q,y). (If dH/dp = 0 everywhere, q is a first integral and we

can use the previous reduction procedure ). We take t, w and y to be the new
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dependent variables and g the new independent variable, in terms of which the

system takes the form

dt 1 0K dw
Z = = — — = 411
dq O0H/op ow' dq 0, ( )

dH/dy' _
dyi/op

dvi i
==y (y)

—2 i 0K
mRp X (412)

The system (4.11) is Hamiltonian using the reduced Poisson bracket corresponding
value of w, once we have solved (4.12) we can determine the remaining variable

t(q) from (12) by a single quadrature. This completes the procedure.
Example(3):
In case of an autonomous Hamiltonian system

. _0H . _ _0H
q - ap’ - aqa

in the plane, we can use this method to explicitly integrate it. We first

solve w = H(p,q) for one of the coordinates, say p, in terms of g and

w, which is constant. The first equation, then, leaves an autonomous

equation for g, which we can solve by quadrature. For example, in the

case of a single pendulum H(p, q) = lp2 + (1 — cosq), so on the level
2

curve H=w +1, p=,/2(w +cosq). The remaining equation

dq

— =p=./2 +
=P J2(w +cosq)

Can be solved in terms of Jacobi elliptic functions
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q(t) = 2sin"Ysn(k~1(t + §),k)},

where sn has modulus k = /2/(w + 1).

Similarly, in the case of the two-particle system on the line from

example (2), setting H(y,r) = w + %pz, we find

1
y=35p + . Jow—V(r).
Thus we recover the solution just by integrating

a _, - 70
=2 p=E2Jw V().

Example(4):

Consider the equations of rigid body motion (4.20a), which were realized as
a Hamiltonian system on so(3)*. The distinguished function € (w) = |u|? naturally
reduces the order by one by restriction to a level set or co-adjoint orbit. Provided
the moments of inertia I, I,, I3 are not all equal, the Hamiltonian itself provides
a second independent first integral. We conclude that the integral curves of this the
Hamiltonian vector field are determined by the intersection of a sphere {C(u) =
|u|? = c} and an ellipsoid {H(u) = w} forming the common level set of these
two first integrals. The explicit solutions can be determined by eliminating two of
the variables, say u? and u3, from the pair of equations C(u) = ¢, H(u) = w.
Proposition (2.4.12) then guarantees that the one remaining equation for u! =y

Is autonomous, and hence can be integrated. It turns out to be of the form
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dy
= =Va(B? =) (* —y),
t
and hence the solutions can be written in terms of elliptic functions.

(4.3) The geometrical machinery:

This section will be devoted to the geometrical setup needed for the rest of
the chapter. Mainly we shall develop the theory of moving frame due to Cartan.

The essence of the method of moving frames can be briefly described as follows .

In a given n-dimensional pseudo-Riemannian manifold (M, g) at each point
pEM we replace for the natural basis of the cotangent space
TI\7|I’;: (dg?, ..., dgMarising from a coordinate system (q,...,q™)by a basis of n
pointwise linearly independent one-forms (co-vector ) E!,.. EM € TI\7II’;, that can
be adapted to the geometric situation. In the considerations that follow the natural
choice is that in which the metric tensor g takes itis algebraic canonical form. In

other words, with respect to the basis E?,a = 1, ..., n, we have .
9., = diag(q,...1,-1,...,-1) (4.13)

The co-frame of one-frames E!, ..., E™ is said to be rigid in this case. One
can new proceed to study the relations between the one-forms E? € TI\7|I’; their
exterior derivatives dE®and the dual basis (E;,...,E,) of the tangent space TI\~/Ip
independently of local coordinates. Thus, we can consider an open set A 3 p and
(orthonormal) moving co-frame EZ, ... ,E® of one-forms defined in A for which the
metric tensor g takes the form (4.13). We note that the elements of the moving co-
frame E? and their counterparts E, are connected with the natural basis associated

to local coordinates (g, ..., ™) about p € A as follows
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E* =hidq" E,=hi7; (4.14)
The structure functions C, are defined by
[Ea Ep] = CS,E. or dE? = —1C EP AES (4.15)

Now by (4.14) Cg, = hf(h,hy;i —hyih,ji).ab.c,i,j=1,..,n. Here and
below, we denote the usual partial derivative with respect to the coordinate. We
introduce the connection coefficients l“jik corresponding to the Levi-Civita

connection V associated to g, as follows:

Vg Ep = [Ec, Vg EP = —ToEM
The vanishing of the torsion tensor of V is expressed by
g.—T3 —Ci.=0 (4.16)
while the curvature tensor of V is given by

bead = EcIdy + Tiplée — Eald,—TepTde — Coalan (4.17)

We now define a one - form valued matrix wj called the connection one -

form by
wp = TGE". (4.18)
Further, we define
Wab = JacWp -

On account of the above connection one-forms, w,, are obviously skew —
symmetric . The condition (4.16) and the definition (4.17)may be expressed in the

language of differential forms as
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dE? + w2 AEP =0 (4.19)
and
dwp + w2 A wp, = 03, (4.20)

1pa

Where A is exterior multiplication, d the exterior derivative an 0f := R} 4E€ A Ed
the curvature two-form. Taking the exterior derivative of (4.19) and (4.20) yields

the first and second Bianchi identities , respectively
@2 AEP =0 (4.21)
and
dej + Wi AOy — 02 Awp =0 (4.22)

Finally, the equations satisfied by a valence two, symmetric, covariant

killing tensor K can be written in frame components as
K@b:c) =0 (4.23)
Where ; denotes the covariant derivative defined by
Kabic = EcKab — KaoT& = Kaal%, (4.24)

This is all the geometric machinery that we need in the forthcoming sections
to study integrability of Hamiltonian systems by the method of separation of

variables.

(4.4) Orthogonal Separation

The orthogonal separability of Hamiltonian systems (4.3) has a long history.
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It was Stackel who first found the necessary and sufficient conditions for the
system (4.3) to be orthogonally separable. In spite of their complicated form these
fundamental conditions are still being used today by many mathematicians to study

orthogonal separability.

Levi-Civita established (local) criterion of separability (not necessarily
orthogonal) of the Hamilton - Jacobi equation associated with a general
Hamiltonian system defined by (4.3) in local coordinates (q',...,q" pq,....Py)

consisting of the 1/2n(n — 1) equations
0'9HoHOH — 9;0H'HOH + 0; 9;HO'HA'H — 0'9;HO;HO'H = 0 (4.25)

The next breakthrough was by Eisenhart who presented in turn necessary and
sufficient conditions for a Hamiltonian system defined by the geodesic

Hamiltonian.
Hg = 20"pip; (4.26)

To be of the Stackel type and thus orthogonally integrable. The result was
based on the fact that the n first integrals involution (including the Hamiltonian)
are necessarily quadratic in momenta, when the system defined by (4.26) is
considered in natural position - momenta coordinates. Moreover, the involution of

any of these n-1 first integrals F,, ... ,\F_q :

Fr = %Kirjpipj, r=1...n-1

with the Hamiltonian (4.24)

{Hg,Fr}=0, r=1..,n-1
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entails the killing tensor equation

[9,K;]=0, r=1,..,n-1
which is equivalent to

Ke@bey =0, r=1,..n—1,

where the indices of Ky, ...,K,_; have been lowered. Hence, the first integrals
Fi,..,F,—1are defined by the n-1 valence two killing tensors Ky, ..., K,_; that
share, in view of Eisenhart’s result, certain geometrical properties. In particular,
they must possess the same eigenvectors and these eigenvectors are normal which

means that each eigenvector is normal to an (n-1) - dimensional hypersurface .

Kalnins and Miller have further improved the results of Eisenhart. In
particular, they have studied the n-dimensional Abelian Lie algebra of killing
tensors of order 2, K4, ...,K,,, where K; =g, ...,K, = K,_; in the notation above.
Indeed, we note that the Schouten bracket satisfies the Jacobi identity in the space
of two - contravant tensors (Symmetric or otherwise). Moreover, they concluded
that every Killing tensor K;,i = 2,...,n that is linearly independent of g = K, and
defines (locally) a separable coordinate system for the Hamilton-Jacobi equation
(4.1) on (Mg), and conversely, every separable coordinate system arises in this

way.

We note, however, that the complications arising from dealing with the n killing
tensors (including the metric) connected via certain algebraic and differential

conditions makes this result difficult to apply.

Finally generalized the result above and obtained a characterization of orthogonal

separability in terms of a single killing tensor. The result is the following theorem.
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(4.4.1) Theorem:

A Hamiltonian system defined by (4.3) is orthogonally separable if and only if

there exists a valence two Kkilling tensor K with pointwise simple and real
eigenvalues, orthogonally integrable eigenvectors and such thatd(KdV):O,

where the linear operator K is given by K := Kg (or in the index forK; == K'lgy;) .
(4.4.2) Remark:

We note that starting with one K that satisfies the conditions of theorem (4.4.1)
one can reconstruct the n-dimensional Abelian Lie algebra of Killing tensors
(including the metric ) by either finding the sets of separable coordinates or using
the intrinsic iterative process described in which does not require having separable
coordinates. Conversely, having the n-dimensional Abelien Lie algebra , we can
easily obtain the killing tensor K of theorem (4.4.1) by considering the total sum of
elements. Another way to see this is the following :The killing equation (4.41) for
K is equivalent to a system of n linear partial differential equation , the general
solution of which naturally depends on n constants of integration, where in turn
can be viewed as the dimension of the corresponding Abelian Lie algebra of killing
tensors. Further, the killing tensor K does not define a single set of separable
coordinates, for example, by varying its eigenvalues (i.e, intrinsic invariants) or
otherwise, we can extract all the sets of orthogonally separable coordinates for a

given Hamiltonian system defined by (4.3).

(4.4.3)Remark:
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The statement of theorem (4.4.1) implies that there exists an additional first

integral quadratic in momenta (say):
F(g,p) = 2K (a)p;p; + U(a), (4.27)

where the matrix KU is that of K the involutiveness {H,, F} = 0 yields the killing
equation [g, K] = 0, and the condition d(KdV) = O(which entails locally that dU =
Kdv).

Theorem (4.4.1) offers the advantage of working with a single geometrical
quantity instead of n such quantities. However, in general it is still very difficult to
check whether or not a given killing tensor K has normal eigenvector .This is
rather non-trivial task even in three-dimensional pseudo-Riemannian
manifolds (I\7I,g). The main difficulty is the computational effect required by the
straightforward approach. To solve the killing equation in this case in given
position momenta coordinates yields six functions(i.e., K11, K22 K33 K12 K13 K23)
depending upon 20 constants of integration that represent the dimension of the
space of (2,0) killing tensor in R™. Conceivably, for n=4,where n=dimM the
problem of finding the normal eigenvectors of K is practically insurmountable

without employing computer algebra.

Therefore, in this chapter , we propose the use of the moving frame approach
where the frame vectors are chosen to be a set of suitably normalized eigenvectors
of K. it appears that the method not only results in a significant algebraic
simplification, but also allows one to consider the problem in much more general
setting, namely without any restrictions at all on the curvature of the pseudo-

Riemannian manifold (M, g).
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To demonstrate how the method works and give a flavor of its applications, we
begin by proving the following criterion for orthogonal separability in cartesian

coordinates.

(4.4.4) theorem:

The Hamiltonian system (4.3) is orthogonally separable with respect to
cartesian coordinates if the associated pseudo-Riemannian manifold (M, g) admits
a valence two covariant Killing tensor K with pointwise simple eigenvalues and

vanishing Nijenhuis tensor Ng .
Proof

Consider a C*pseudo-Riemannian manifold (M,g) associated to the
Hamiltonian (4.3) which possesses a symmetric C*tensor field K of type (0,2).

The eigenvalue equation
admits n pointwise simple eigenvalues A4, ..., A,. We note that since (|\7|, g)

Is the Riemannian eigenvalues are necessarily real. Let E;,..,E,be a set of
eigenvectors of K corresponding to the eigenvalues 24, ..., A,. It can be shown that
the eigenvectors are real, mutually orthogonal and that none of them is a null

vector. Thus, the eigenvectors can be normalized such that
9(Es El) =1 (4.29)
The above set of eigenvalues is uniquely determined up to sign.

Since g and K are C® tensor fields, and the operations of solving for the
eigenvalues and eigenvectors and normalizing the eigenvectors are rational
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operations it follows that the eigenvectors E4, ..., E, define a set of C® pointwise
linearly independent vector fields on some open set A c M . hence, we may choose
these vectors as a rigid moving frame on A with respect to which the components

of g and K are given by
9., = diag(1,...,1) (4.30)
and
Ko, = diag(Aq, ..., A,) (4.31)
it follows that the metric tensor has the form
ds? = (dx1)? + --- + (dx™)? (4.32)
A rigid co-frame can thus be chosen as follows:
El =dx?!, ... E® =dx™
with corresponding dual frame being
E, =0, ..,0, (4.33)

It is obvious that the frame vector fields are orthogonally integrable. Consider

now the (0,2) tensor K, the components of which in the above co-frame are given

by
Kap = diag(dy, ..., ,)

with A, are constants satisfying A, # Ay, for all a,b =1,...,n, a#b. it is clear that E,
Is an eigenvector corresponding to the eigenvalue A, for each a=1,...,n. Since the

connection coefficients for frame (4.33) are zero, Eg (4.24) has the form

Kab;c - acKab .
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It thus easy to verify that the tensor (4.31) satisfies the killing equation (4.23) we
conclude that the tensor defined by (4.31) is the killing tensor, the existence of
which is guaranteed by theorem (4.4.1). it follows from (4.30) and (4.31)that

K = diag(7;, ..., A,) (4.34)

and that K has a trivially vanishing Nijenhuis tensor .this fact may be established

from the following expression of Ni in local coordinates:

NiEjk = alBli<Bj1 - alBjiBll< + akleBli — 9;BB} =0 (4.35)

where i ,j, k=1,...,n. note that Nli—i].k = —Nigk]-

let K be a (0,2) killing tensor with pointwise simple and real eigenvalues and
vanishing Nijenhuis tensor. In the rigid moving frame of eigenvectors Eq, ..., E,, of
K the condition (4.33) reads

Ng(Ea Ep) = (K—2,) (K= 2,)CSE: + (A — Ap)(Ea(A)EL + Ep(A)E) =0 (4.36)

and taking into account (4.34) can be decomposed into the following system of

equations :
5 =0, ab,caredistinct. (4.37)
E.(0)(A, —A,) =0 a,baredistinct. (4.38)

Concurrently, the killing equation(4.23) for K with lower indices decomposes as

follows:

K(aaza) = 0 & E;Ky, = 0 nequations, (4.39)

n .
Keab) = 0 = Ep(Aa) = 2L (A — Ay) 2 (2) equations, (4.40)
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n :

K@ab:e) =0 (3) equations (4.41)
where a, b and c are distinct. Therefore, since A; — A, are distinct, the connection
coefficients I, vanish. Hence, the Riemannian space (M,g) is flat and the
eigenvalues of K are constants. This implies that the Hamiltonian system defined

by (4.3) is separable only with respect to Cartesian coordinates.
(4.4.5) Remark :

It is instructive to contrast the above result with an analogous result for
Poisson - Nijenhuis manifolds. Recall that in the case of two compatible Poisson
bi-vectors P, and P,, the linear operator A :=P,P;! with the components
A} = PzimPl‘n}j (if P, is non-degenerate) has a vanishing Nijenhuis tensor Ny = 0
we observe that the killing tensor equation [g, K] = O satisfied by the two Killing
tensors g and K resembles the condition [P; P,]=0 of Compatibility of the two
Poisson bi-vectors in the theory of bi - Hamiltonian systems. However, as may be
seen from the proof of theorem (4.4.4) the killing tensor equation is not equivalent
to the vanishing of the Nijenhuis tensor of the corresponding linear operator K :=
Kg. Moreover, as we have just seen, the vanishing of the tensor Ni appears to be a

very restrictive additional condition on K .
(4.5) Moving Frame in a Surface and Separability

We start our considerations in arbitrary Riemannian manifold (M, g),
dimM =2 defined by (4.3) making a priori no assumptions on its curvature. Using
the techniques presented in the previous two sections, we introduce a rigid moving
frame of co-vectors E, E2 with respect to which the metric g and killing tensor

k of theorem (4.4.1) take the following forms:
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Oab = 84,E2 O EP (4.42)
Kap = A.0.,E2 © EP, (4.43)

where © is the symmetric tensor product and a,b = 1,2 and A; A, along with the
dual vectors E;, E, are the eigenvalues and eigenvectors of K respectively. In this
case we have two independent connection coefficients I;;, and I,;, and one
component of the Riemann curvature tensor R,,;, . FOr convenience we write
a = I1, and B == I,;, then the formulas (4.15),(4.17) and (4.24) become

[E;, E;] = aE; — BE; (4.44)
dE' = «E' AE?, dE? = BE! AEZ, (4.45)
Riz212 = —E1B + Eya — o — B2, (4.46)

El}\l - O, Ez}\l - 20((7\2 - }\1), El}\z - 28(?\2 - }\1), EZ}\Z - O (447)

where (4.14) has been used. Our next observation is that in a two-dimensional

Riemannian manifold the conditions of orthogonal intergrability for E;and E,,

E2 AdE? = 0,a = 1,2 are automatically satisfied. Hence, by Frobenius’ theorem,

there exist functions f, g, u and v such that
El = fdu, E? =gdv. (4.48)

we choose (u,v) as coordinates, while the functions f and g remain to be
determined by the condition of problem. Clearly with respect to (u,v) we have

a = a(u,v),B = B(u,v) and the eigenvectors E,,E, of K are given by

E;=(f)"0u E;=(9)7"0, (4.49)

substituting (4.48) into (4.45), yields
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a=—(fg) " d.f, B=(fa)"" 0,0 (4.50)

Consider again the Hamiltonian function (4.3) in natural ( position- momenta, say)

coordinates :
H = glpip; +v
in a rigid moving frame in view of the above, we have
H= %gabpapb +V (4.51)

where g2 = gUh?h? and p, = hip, where h} is defined in (4.14) and V is a
function of u and v. next we apply the vector field [E;,E,] toA, and A, to obtain

the following integrability conditions :
Eia = —3ap, (4.52)
E,B = 3aB, (4.53)

Now it is natural to analyze the following three cases defined with respect to

a and .
Cl a = B =0 & A, and A, constant,
Cll a=0,B # 0(ax # 0, = 0) & A, constant ( A, constant),
C111 aff #+# 0 & A; and A, both non — constant.

This classification is intrinsic since the rigid moving frame we are using is defined

up to a sign. The general forms of the separable metric

ds? = (E1)? + (E2)?, (4.54)
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and the corresponding Killing tensor K (4.43) will be derived in each case. Having
found the killing tensor, we shall derive the form of the most general separable
potential V(u,v) admitted by original Hamiltonian (4.3). To accomplish this, we
take into consideration the condition d(BdV) = 0 of theorem (4.4.1) which may

be written in terms of the moving frame as
E,E,V + 3BE,V —2aE,V =0 (4.55)

Once the potential V is found, we derive the second first integral of the Hamilonian

system defined by (4.3) given by F = K2®p,p,, + U or
F(u,v,p1,P2) = Apf + A2p3 + U(u, v) (4.56)

In the moving frame, by solving the equation dU = 2BdV. writing this condition in

the moving frame, we immediately obtain the following system
E,U = 2)E,V, (4.57)
E,U = 2),E,V, (4.58)
Casel:a=p=0

It follows immediately form (4.48) that f = f(u)andg =g(v) therefore,
E! = f(u)du,E? = g(v)dv, and the metric takes the form

ds? = f2(u)du? + g?(v)dv?
We observe that there exist coordinate transformations (u, v) — (i, ¥) ,such that

El = f(uw)du = dii, E? =g(v)dv =dv (4.59)
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Where

= jf(u)du, % =jg(v)dv.

The remaining coordinate freedom is
u=utu+uy, Uv=70U+vy
Thus, for C1 we have
El=du, E?=dv (4.60)
Where the tilders have been dropped. Thus, the metric (4.54) has the form
ds? = du? + dv? (4.61)

We conclude that the separable coordinates in this case are Cartesian. We also
observe, by (4.46), that R;,,, = 0, in C1, which means that the case when both
eigenvalues of K are constant is compatible with only a flat two-dimensional
Riemannian space. Now taking into account the above facts along with the killing
equation, we easily recover that A, =c, and A, = c, where c;and c, are co-

nstants .hence
K = diag(cy,c,) (4.62)
And in view of (4.53), we have
V(u,v) =V, (u) + V,(v) (4.63)
Similarly, by making use of (4.57) and (4.58), we find the corresponding U to be

U(u,v) = 2kV,(u) + 21V, (v) (4.64)
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We conclude that a second first integral F that is functionally independent of the

Hamiltonian H is

F(U,V, Py, Py) = P3 + 2V, (V) (4.65)

We note that the class of Hamiltonian systems just described has the properties of
being bi-Hamiltonian in the separable coordinates (u,v) with respect to the

constant Poisson bi-vectors Pyand P, :
Po=0yA0dp, +3, A0y, Pr=0,A0p, —0y A0, (4.66)

and having a Lax representation defined by matrices L and M of the form

— Ll 0 _ Ml 0
B <O Lz)’ M= ( 0 I\/Iz)’ (4.67)
where
Li = £i(w;) 1 ) M; = S <E (ﬂ) —2p->’ (4.68)
o i\dt \y2 j

herei,j=12,i #jw; = UuU,w, =vandf,,f, € C}(R)

are arbitrary functions. We note that the separable coordinates (u, v)in this case are
simply the Darboux — Nijenhuis coordinates, defining bi-Hamiltonian structure
(4.66).

Case1ll: a=0,#0(axa#0,=0)

The condition oo = 0 in (4.50) immediately yields f = f(u) and by an appropr- iate
coordinate transformation, we may set f=1 .similarly, we use (4.53) to

conclude g = B(u), which entails in turn after solving (4.53) that g = C(u)D(v),
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where C(u) and D(v) are arbitrary functions. We may absorb D(v) by a further
coordinate transformation to obtain g = g(u). Hence, the metric in this case is

given by
ds? = du? + g2(u)dv? (4.69)

Where g(u) is an arbitrary function. To solve the killing equation and find the

corresponding K, we observe that in view of the above B = d,9/g .now (4.47)

transform into the following system of partial differential equations
Ouly = 0yA; =0y, =0, 9ydy = 8,997 (A — Ay), (4.70)

Solving for A; and A, we find A; =k, A, = Ig%(u) + k, where |, k are arbitr-

ary constants. Hence, the killing tensor in this case takes the form:
K = diag(k, Ig2(u) + k) = kg + IK, (4.71)

where K; = diag(0,9%(u)) and g,K; span two dimensional Abelian Lie algebra
of Kkilling tensors. We note that, since the variable v is ignorable, the killing tensor
K,is simply the square of the corresponding killing vector corresponding to the

first integral linear in the momenta.
(4.5.1) Remark

This observation illustrates the fact that Beneti’s approach is in fact equivalent
to the approach due to Eisenhart and Kanlnins and miller. In the most general case
the killing tensor K of theorem (4.4.1) is simply a linear combination of the n

killing tensor (including the metric) g, ..., K1

Next, taking into account that o« = 0 and f = 1, we solve equation (4.55) for V

to obtain
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Va2 (V)

V(U, V) = Vl(U) + m, (472)
where V;and V, are arbitrary functions. it follows by (4.55) that
2kV, (v
U(u,v) = 2kV, (u) + 21V, (v) + gzélf))’ 4.73)

Finally, substituting (4.72) and (4.73) in (4.56) and removing the expression for the
Hamiltonian we find a second first integral F for this family of separable

Hamiltonian systems just described, namely

KV, (V)

F(u 'V, pl’ pZ) — kgz(u)p% + IVl(u) + ZIVZ(V) + gz(u) ) (474)
or, in terms of the separable coordinates:
¢V, (V)
F(U,V, Py Py) = C2(U)P2 + €V (U) + 26,V (v) + ;Zﬁ (4.75)
We note that (4.46) in this case becomes
0.9\ (0u9\’ _ ¢
R :_a<U)_< ) —_2 (4.76)
1212 u g g g
or, simply
g +ag =0, (4.77)

where a(u) =R;;:,(u). The case a=#0,=0 corresponds to metric

ds? = f2(v)du? + dv?, which can be obtained from (4.69) in an obvious way.

Case 111: a3 # O
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We begin by proving first that in this case the functions f and g may be assume

equal. equation (4.52) and (4.53) imply that
Ela - _Ezﬁ,

Which, on account of (4.50), may be written as

3, 9, (In (é)) -0

It follows In(f/g) = G(u) + H(v), where G and H are arbitrary functions, from

which we obtain
f=g(u,v)C(u)D(v) (4.78)

Where C(u) = e®M™ and D(v) = eH™. After appropriate coordinate transfor-

ations applied to the metric, we get
f(u,v) = g(u,v), (4.79)

We now proceed to determine the general form of metric. In view of (4.79), either
of (4.52) and (4.53), yields

9, 0,f%(u,v) = 0.
Therefore,
f2(u,v) = A(u) + B(v) (4.80)
where A and B are arbitrary functions. It follows that the metric has the form

ds? = (A(u) + B(v))(du? + dv?) (4.81)
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(4.5.2) Remark:

We note immediately that the metric (4.81) is that of the well-known Liouville
surface. Hence, in this case the dynamics of (4.3) can be viewed as the motion of a
liouville surface under the action of a conservative force with potential energy
V(u,v).

We proceed to find the corresponding killing tensor K. substituting (4.50)
along with (4.80) in to (4.47) leads to the following system of partial differential
equations with respect to A; and A:

BI
0y (u,v) = 0,2, (u,v) =0, .\ (u,v) = A w(LVI)S(v) A1 (u,v) = 2;(u,v)

A'(w)
A(u)+B(v)

A, (u,v) = (A2 (u,v) — A1 (u,v)) (4.82)

Solving (4.80), we obtain A; = KB(v) + L and A, = KA(u) + L, where K and

L are arbitrary constants. Thus
K = diag(kB(v) +L,—kA(u) + L) = Lg + kK, (4.83)
where K; = diag(B(v) — A(u)) (remark (4.5.1)). Equation (4.55) for V (u, v).
may be written as
9, 0y[(AU) + B(v))V(u,v)] =0
which has the solution

_V(UY) + VoY)
™ =T

(4.84)
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where V; and V, are arbitrary functions. It follows that (4.57) and (4.58) may be

solved to obtain

B(V)V;(u,v) — A(u)V,(u, V)

U(u,v) = 2IV(u,v) + 2k A(D) +B(Y) (4.85)
We conclude that the second first integral independent of H has the form
V;(u,v) +V,(u,v)
— 2 _ 2 1 2
F(uv.pu.py) = BOWIPE — AW +2 (s bl (486)

Noting that hl =f~1 hZ =f~1 hZ = hl =0, we may rewrite (4.84) in terms of

the coordinates as

B(V)(p& + 2V (u)) — A(u)(p2 + 2V, (V)
A(u) + B(v)

F(U,V, pu, Pv) = (4.87)

We note that the form of the Hamiltonian H (4.3) in the coordinates (u, v) becomes

pa — Ps L Vi) + Vo (V)
2(A(u) +B(v))  A(u) +B(v) °

H(u, v, py, py) = (4.88)

The forms (4.87) and (4.88) demonstrate that the Hamiltonian system under
consideration is a Liouville system in the separable coordinates (u, v). Conversely,
it is easy to see that the Hamilton-Jacobi equation corresponding to(4.88) separates

in the coordinates (u, v). Indeed in this case (4.1) takes the following form:

1
2(A(u) + B(v))

(@uW)? + @, W) +2(Vy (1) +V, (1)) = E

Now, putting W(u,v) = W, (u) + W(v), we find the complete integral W to be

W(u,v) = j\/B — 2V, (u) + EA(u) du + j V=B — 2V, (v) + EB(v) dv.
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Differentiating W with respect to  and E, we can find the solutions for specific
choices of A(u),B(v),V;(u),and V,(v). Hence, without imposing any restriction
on the curvature of the corresponding pseudo-Riemannian manifold we have

proven the following criterion of separability.
(4.5.3) Theorem
The following conditions are equivalent.

1- The Riemannian manifold (M, g) defined by (4.3) admits a valence two
killing tensor K with distinct eigenvalues;

2- There exist coordinates (u,Vv) with respect to which the metric takes the
form (4.81);

3- The Hamiltonian system defined by the Hamiltonian
H=2g"(@pip; + V(@) i.j=12 (4.89)

in the Riemannian manifold (M, g) of an arbitrary curvature can be integrated

by separation of variables.

Having derived the explicit formula (4.87) for the second first integral F, we
can now investigate whether or not the Liouville system (4.88) admits a bi-
Hamiltonian representation with respect to the coordinates (u,v). Recall that
the bi-Hamiltonian property is a combination of algebraic and differential
conditions, which can be quite restrictive for low-dimensional Hamiltonian
systems. Indeed, it is easy to see that the symplectic w; corresponding to

F:ix,wq = —dF is given by

w; = 2B(v)du A dp, — 2A(u)dv A dpy, (4.90)
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Clearly, (4.91) satisfies the differential conditions dw; =0 and Ly, (w;) = 0 iff

A(u) = B(v) = cont. in this case w, is equivalent to P;in (4.66). we answer the
question of whether there exists a second Hamiltonian representation with respect

to F by the following result.
(4.5.4) Proposition

The Liouville system defined by (4.88) admits a bi-Hamiltonian representa-

tion in the separable coordinates (u, v) iff the coordinates are Cartesian.

Finally, we note that the formula (4.46) assumes in this case the following form

R = =100 () + 0. ()] - (3) - (3" (491)

Where f2(u,v) = A(u) + B(v).
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Hamiltonian Systems on Some Surfaces
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Chapter Five
Hamiltonian Systems on Some Surfaces

(5.1) Surface Theory:
We shall review surface theory in this section.

We first introduce parameterized surface in Euclidean three- dimensional
space. Then we study the shape operator that we shall utilize to introduce the
normal curvature, Gauss curvature and mean curvature.

A surface M in E3 (Euclidean three dimensional space).

May be parameterized by a differentiable X (u, v)of two variable u and v .we
wired a pointp in M as :

X(u,v) = (x(u,v), y(w,v),z(u,v)) =p
1- Carton Method of the moving frame:
(5.1.1) Definition:

A smooth 1-from @ on R" is a real - valued Function on the set or all tangent
vectors to R™ | ie

p:R" >R (5.1)
with the properties that :

1- @ is linear on the tangent space T,R"™ for each x € R"
2- For any smooth vector field V = V(x) the function
PV(x)=:R" >R
Given a 1-from @ , for each x € R™ the map
Dy T, DR" >R (5.2)

Is an element for the dual space (T,,@%R™), wgen we entend the nation all of R"
.we see that the space of 1-from on R™ is dual to the space or vector field on R" .
In particular, the 1-formdx!, ..., dx™ are denied by the property that for any
vector.
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V=W V") eTR" dxi(v) = v (5.3)
The dx%S from a basis for 1-from on R" , so any other 1-from @ may be
enpressed in the from

0= XL, f; (x)dx' (5.4)
If a vector field von R™ has the from

V(x)=(Vi(x),.. V(%))

Then at any point x € R"
O =3 fi () Vi(x) (5.5)
(5.1.2) Definition:

A definition 1-from @ defined on a domain R is said to be closed if
z—:(p)Z z—Z(p) Vi,jand x € R (5.5)
We say that a differential 1-from @ is enat it there enist a smooth function F =~ R
such that
¢ =dF (5.6)
(5.1.3) Definition:

A smooth a differential x from won M is collection of smoothly varying
alternating k-linear maps

w/x € A, T™I, for each x € M, where we require that for all smooth vector field
Vi, Vi

(w,Vq, ..., Vi )(n) ={wL,, Vi1, ..., V,I.) is a smooth read-valued function of X.

We reviewing cartons formulation of local differential geometry in terms of
moving frames.

Let S < R3 be a surface and let the dot product of R3. Be given {.,.) let a local
chart for S be given by the map X:V — R? where U,V an open set in a
neighborhood of a point we choose a local orthonormal frame, smooth vector fields
{e1, e,, e3} such that

(ei, e]) = 511 = 1, 2, 3 (57)
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We choose the from a dappled in such a way that e5 is the unit normal vector and
e; and e, span the tangent space Tp,S. The corresponding coframe field of one
forms {W'} is defined by the differential

dx = wle; + w?e, (5.8)
In local coordinates (ut, u?) € U the one forms are linear functional of the form.
w()=P,utu?)du+Py(ulu?)du? (5.9)

Where P is asmooth function in U, du'are the differentials for the coordinate
functions u * = U —» R which from a basis for the linear functional on the vector
spaces T (u!,u?)Y. The vectors in local coordinals have the expression

d d
— 1 (1,2 + 12 (ylqy2
1% v:(uu )dul ve(u-,u )duz

The one form (5.3) acts by
w@)=viutu?)Putu?d)+ viul, u?Py(ul u?)

The usual identifications between X: U —» X(U)or = T (ut,u?)U - Tys , the
one forms can be interpreed as linear functional on T,s as well . for example if
choose vector fields E; in U such that dx(E;) = e; then we may set

w(e;) = w(Ey).

In particular w'(e;)= 6}. it also means that metric takes the form ds? = (w')? +

w?)? then wt is aciform and the vector fields e; determined by duality w(e;)=
6} . are corresponding orthonormal frame .

One form can be integrated on curves in the usual way.

If oc: {0, L} - U is a piecewise smooth curve where o (t) = (u't), (u?t ) then
J Weory = foL w( (t)dx = [ o ({o, LY19% " +p,du?

Is the usual line integral. Two one forms may be multiplied (wedged) to give a
Two form, which is askew symmetric bilinear from on the tangent space. For
example if 8 and where one forms then vector field X,Y we have the form

103



(BAw) (X,Y):=0X)w) —()w(X)
in local coordinates this gives
(prdu '+pydu ?) A(qidu H+qadu ?) := (p1q1+p2q2)du’ A du?

Because there vectors are dependent there are no skew symmetric three forms in
R? and the most general two forms is

£ =A@t u?)du® A du?
When evaluated on the vectors
d d
V=vliulu 2)m(u lud)+ viulu 2)T(u Tu?),
d d
Z=zWulu 2)m(u tu?)+ z%2(ut u 2)T(u Tu?)
The two forms gives
B(V,Z) = At u?) vi(ut,u?) z2(ut, u?) -v? (wu?) zt(utu?)
A two from say, may be integrated over a region R c V' by the:
JuB=J g Alut,u?) dudu?
Where du'du? denotes lebesgue measure on U
The first fundamental form the metric, has expression form
ds? = (dX,dX)
= (w'e; + w?ey;, wle; +wle;) (*)
— (W1)2 +(W2)2

The area from is w1 A w 2. That is because by using (5.8) to write in terms of
the e, basis, the area of the parallelogram spanned by dx(d/du) and dx(d/dv) is

11) z(i)_ 1,4 z(i): 1 204 d.
w (du w dv W(dv)W du woAw (du’dv)
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The Weingarten equations express the rotation of the frame when moored along
the surfaces

de; = [w] e (5.10)

l

this equation derived the 3 x 3 matrix of one forms W2 which is called the
matrix of connect ion forms or E3 . the fact that the frame is or thonormal implies
that when §;; = (e; , e;) is different tiated using (5.10)

= d{e; , €;)
= (de; ,ej;) + (e; ,de;)

= (X wf er,eg) + (ei,Zij ex )

= w; +w} (5.11)

This equation says that the matrix of connection forms is skew so there are

only three distinct wij . Geometrically it says that the motion of the vectors is
already determined in large part by the motion or the vectors in the frame.

The forms wi determine the motion or the normal vector and hence define second
fundamental form is given using (5.9), (5.10) and (5.11)

IL(.,.) = (des, dx)
= (wzeitwie, ,whe;+w?e;)
= —wiQ®w! £#<-w2@w?
=wi@wl+wl Qw? (5.12)
We may express the connection forms using the basis
wi = hywl+h,w? (5.13)
w3 = hyw M+hpw ?
Thus Inserting into (5.12)
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I (., ) = Z hl] w i(X) W]
In particular, if one searches through all unit tangent vectors
Ve - =c0s (P)eg +sin (D)e,

for which Il (Vg , V) is maximum and minimum, one finds that the extreme occur
as Eigen vector hy; and the principle curvatures k; are the corresponding Eigen
values. The Gaub and mean curvatures are

Tl — klkz — det(hll) — hllhzz_ h12h21 (514)
1 1
1= > (ky+ky) = > (h11)+(hy1+hy3)
2- Covariant differentiation:

Of a vector field y in the direction or anther vector field V =} vi% onUisa
vector field denoted V,,. y. It is determined by orthogonal projection to the tangent
space V,,y = proj (dy(v)), Hence , in the local frame .

Vye; = proj (de;(V)) = X w/ (Ve
Covariant differentiation extends to all smooth vectors fields v,w on U, and y,z
on S and smooth functions @, ¢ by the formulas

1) VoV + pwz = dVvz+eV,,z (Linearity)
2) V,(Py + @z)=X(P)y + dxy + X(¢)z+ ¢V,z  (Leibnitz)
3) Wy, z) =(V,y,z) +(y,V, z) (Metric compatibility).

With these formulas one can deduce V,, (3 y'e;). As
3- Gauss equation and intrinsic geometry:

We will have to differentiate (5.2) and (5.6) once more. The exterior derivative
d is the differential on functions. The exterior derivative of a one from (5.3) is a
two form given by
— P11 2y _ (4Pi. 1 .2
dw = _ (u*,u®) (duz(u , U”)

1

Thus d? = 0 because, for functions f,
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D(f) = d=L(u* u?) d =L (ut ,u?) du?

__af 1 2y _4d* 2
= —=u , U”) dZdlu u?) dul Adu?=0

The formula implies that if f (u!, u?) is a function and w a one form then
D(dw) =df Aw + fdw, butd(fw) = dwf —w A df

Greens formula becomes particular hyelegant:

Jaw = [ g prdu+pydu® = [ (zzzl — dp1 (u u?)=[Ldw
Differentiating (5.8) and (5.10)
0=d?’x=dXwie)=Yw'e;- Y w! Ade;
=Ywlie+YwiAw! e
0=d?e=d(Tw/ ey) =X wfex-Twfde
=Y wf e - T wf Awiey
Now collect coefficients for the basis vectors e;,
O=dw/-XwiAwf
0= W - W A W (5.15)

Now are called the first and second structure equations: by taking also the e;
coefficient of d?x

OZZWj/\ij

so follow that h;;= h;; is a symmetric matrix. In the tent, we saw this when we
proved the shape operator. de; was self a djoint

The Second structure equation enables to complete Gauss curates form the
connection matrix indeed b by (5.13)

dwZ =Y wiAw? =w3d Aw? =wi Awj
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= —(hy hyy- R2))wiAw? =-kw!l Aw? (5.16)
The remarkable thing is that the conditions (5.11) and (5.8)
dw'! =Y wt A Wji

determine w? unequal. Since w' is known once the metric is known by (*) this
says that w# and thus k can be determined form the metric alone.

Computation of curvature from the matrix.

Let us compute the curvature of a metric in orthogonal coordinates, for simplicity
sake, | take coefficients to squares. Thus we are given the metric

d s? =E? du? +G?dv
Where E (u,v), G(u,v) > o are smooth functions in U. It is natural to guess that
w!l = Edu, w? = Gdv

wl=E, Advdu=w?A W21:de%du1
w? = E, Adudv =w! A wi :Edui—udv

Thus we may take

Hence by differentiating a gain

kwt Aw? = —kEGdu A dv =d w? = (&) + (&) du A dv
du' E dav' G

form which it following that

K= (G + )
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(5.2) On The Gaussian and Mean Curvature of Certain Surfaces

The Gaussian and mean curvatures of surfaces are real valued functions of
two real variables. We apply our software for differential geometry to represent the

Gaussian and mean curvatures of various types of surfaces.
1. Introduction and notations:

Throughout this chapter we assume that D < R? is a domain and surfaces are

given by a parametric representation
% (u) = (M@t u?), 2@t u?), Bt u?) (@ u?) e D) (5.18)

where the component functions x/: D — R (j = 1,2,3) have continuous partial
derivatives of order r > 1, denoted as usual by ¥ € C"(D), and the vectors x;, =
ax/ou® (k = 1,2) satisfy ¥; x ¥, # 0. If we denote the surface normal vectors, the

first and second fundamental coefficients of a surface S given by (5.18) by

% (u) x %, (u')

V) = R Gy =z () = %) = Blu) - and
. oo . . 0°%% _
ij(u‘) = N(u‘) * Xjx where xjk(u‘) = EET forj k=12,

respectively, then the functions K : D — R and H : D — R with

L

1
K = E and H = Z(L11912912 + Ly2011),

Where g = det(g;) and L = det(Ljy), are the Gaussian curvature- and the mean
curvature of S. We use our software to give a graphical representation of the

Gaussian and mean curvatures of some interesting surfaces.
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2. Pseudo-Spheres:

Pseudo-spheres are surfaces of revolution with constant Gaussian curvature.
Let 1 be a curve with parametric representation X (s) = (r(s), 0, h(s)) and r(s) > 0
(s € I € R), where s is the arc length along y and RS be the surface of revolution
generated by the rotation of y about the x3-axis. Putting u' = s and writing u? for the
angle of rotation, we obtain the following parametric representation for RS on D =
| < (0,2m)

x(u') = (r@®) cosu? r(ut)sinu?, h(u'))((w',u?) € D) (5.19)

Omitting the argument u!, we find that the fundamental coefficients of RS are
given by g,,= (r')>+(h")?>= 1, since u' is the arc length along y, g1,= 0, g,, = I?,
Lii=r" h"—r"h', Lio= 0 and Ly= rh'. So the Gaussian curvature of RS is given by K
= r~1(r'h" —r"h"). Since (r)%+ (h')>= 1 implies r'r" + h'h" = 0, we obtain K =

r=3(r'h"h' —r"(h")?) = —r~1((r)? + ("")dr" = —r"/r and consequently
r"" (@) + K@Hr@w!) = 0. (5.20)

first, we assume K = 0. Then r = cu! + ¢? with the constants ¢; and c,. If we
choose c¢; = 0 then h' = +1 implies h = + u' + d with some constant d, and we obtain
a circular cylinder. If ¢c; # 0 then (r')?+ (h")?>= 1 implies |c,| < 1. For |¢;| = 1, we
have h' = 0, hence h =const, and we obtain a plane. For 0<|c,|< 1 and a suitable
choice of the coordinate system, we have r = c;u! and h = dyu' for some constant d

with ¢ + d? = 1, and we obtain a circular cone.

Let K # 0. Then we may assume K = 1.
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Let K = 1. Then the general solution of (5.20) is given by r(u') = C . cos (u* + u}).
By a suitable choice of the arc length, we may assume that C > 0 and uj= 0. Now
(r")?+ (h')>= 1 implies

h(ut) = [ /1 — C%sin2(ul) du’. (5.21)

The choice € = 1 yields the unit sphere. For C # 1, the integral in (5.21) is
elliptic. It exists on (—n/2,n/2) if C < 1, on (—arcsin(1/C), arcsin(1/C) if
c >1.

finally, let K = —1. Then the general solution of (5.21) is given by r( u!) Cy

coshu! + C, sinhul. In the special case C; = 1/2 = —C,, we obtain

r(u!) = e % and h(ul) = j\/ 1—e~2u" dut foru! > 0.

Figure 5.1: Pseudo-spheres

K=1,C=0.75K=1,C=15and K=-1,C; =1/2 = -C,.

3. Exponential Cones:
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Let h: C — C be an analytic function and f = |h| : R%2 > R. We write
z= ul+ iu? Then the function h generates an explicit surface with the

parametric representation
x(u') = (ul,u?, f(ut, u?))((ut, u?) € R?) (5.22)

in a very natural way, and represents the modulus of h. A classification of
surfaces of this kind with Gaussian curvature K of constant sign. The surfaces
generated by the function h defined by h(z) = z%**“# for real constants aand
Pare called exponential cones. Here the cases @« = 1 and a < 1 correspond to K >0

and K < 0, respectively. Using the representation of complex numbers by polar
coordinates z = pe'®for p> 0 and ¢ € (0,27), we obtain f(2)= p%e~F®. We put

ul= p and u?= ¢. Then exponential cones on D = (0,c0) x(0,2m)are given by
x(u') = (u! cosu? ul sinu?, (ul)“e'ﬁuz)((ul,uz) € D);
are special cases of screw surfaces given by
x(u') = (u' cosu?, ul sinu?, f(ul,u?)). (5.23)
since the first and second fundamental coefficients of exponential cones are

1)2a—2[)’u2 1)2a—2[)’u2

g =1+a*(u , g1z = —ap(u
Gy = (ul)z(u + BZ(uZ)Za—Ze—ZBuZ)’
g= (u1)2(1 + (a? + BZ)Z(ul)Za—Ze—Z[)’uZ)

1
L1 = —=a(a— 1)(U1)a_1e_8u2,

NG

112



1

NG

L, = —=(1 — a)p(ut)*te P’

1 2
Ly, = — (a + B2)(ut)atlePu
g

g

we obtain, putting § = a? + 2 and y = (a — 1),

(ul)Zae—ZBu2 (ul)Za—4e—2ﬁu2

) = —1)6 =
K(u ) (a—1) g2 14 (1 N 6(u1)2“‘2e‘25”2)2

and similarly

(ul)a—ze—ﬁuz (1 + a(ul)Za—Ze—Zﬁuz)

2(1+ 5(u1)2a—ze—2ﬁu2)3/2

H(ui) = §

Figure 5.2: Exponential cone,

a=-1, f =—0.1 and its Gaussian and mean curvature.
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Figure 5.3: Exponential cone,

a= 0.5, B = —0.05 and its Gaussian and mean curvature.

Figure 5.4: Exponential cone,

a = 2, Band its Gaussian and mean curvature.

4. Minimal surfaces :
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Surfaces with identically vanishing mean curvature are called minimal
surfaces. It is well known (cf. e. g. that if S is a surface the boundary of which is a
closed curve such that the surface area of S is less than or equal to the surface area
of any other "neighboring" surface with the same boundary then S has identically.

vanishing mean curvature.

The mean curvature of surfaces of revolution with parametric representation
(5.19) is given by H = (r(r'h"—r"h")+rh")/(2r?). Now H = 0 is equivalent with
r(r h" —r" h') + h'= 0. If h'= 0, we obtain a plane. If h"'= 0 then, multiplying by h'
and using h"h'= —r'r" and (r')?+(h")?>= 1, we obtain r"r = (h")?. This yields (r?)" = 2,
since r'r = 1/2(r3)"—(r")? and (r')>+ h')>= 1. By a suitable choice of the parameter
ul we obtain r(ut) = \/(u')2 + c2(ule R) where ¢ is a constant. Ifc # 0, then r'(u?)
= u! since r(u!) > 0, and then h'(u?) = 0, and we obtain a plane. If ¢ #0, then r'(u?)
= ul((uh)?+ ¢?)2, and ()2 + (h')2= 1 yields (h")%= c2((ut)? + c?)?, hence h'(u?) =
|c|/\/m. Therefore h( u!) = C. arcsinh(ul/c) for a suitable choice of the

coordinate system. Putting u™ = h(u) and u*?= u?, we obtain
X(u*) = (lc] coshu*t cosu*?, |c| coshu*! sinu? ,u*?)
((wt,u*?) e R x (0.2m)).
Thus the minimal surfaces of revolution are planes and catenoids.

Another minimal surface is Scherk's surface, given by a parametric representation

x(u') = <u1,u2, log <cosu2>> ((ul,uz) € 9ij)

cosul

where, for k, je Z 7L, with k + j€ 2- Z
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ety = (6= (D)< (- ()

It is easy to see that the Gaussian curvature of Scherk's minimal surface is given by

K(u?, u?) = - cos?ut cos?u?(1— sin?u'sin?u?)?.

aim

’f{'{{:':'.'.','r"

KA
‘_ gty .g

......

aaaaaaa

Figure 5.5: Scherk's minimal surface and its Gaussian curvature.
5. Surfaces generated by the modulus of analytic functions:

The Gaussian and mean curvatures of surfaces with parametric representa-

tion (5), where f = |h| and h is an analytic function, are given by

IR (Y o
K= Re —1) where g=1+|h'|* and

g2 h''h
2 h')>?
H = 3 |h| < g — |h”|2Re <(hll)h ))
gi

we consider the function h defined by h(z) = 1/sinz (z € Z), and put w = w(z) =
cos 2rz and Y (z)= (h'(2))?(h"(2)h(z)) 2. Since 2cos?mz = 1 + cos 2mz= 1 + wand 2

sinmz = 1 - cos 2mz= 1 - w, we obtain

h'?
h
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cosmnz

sin? rz’

h'(z) = —m

sinmz+2cos?mz w2 w+3

h''(z) = 2 - = —— :
(2) sin3 tz 2 sin3 ntz

and so

_27T2C0327Tz_w+1
C m(w+3) w+3

Therefore
R 1=%R D=me(Y 1) = 2w
(P) ~ 1= Re(w) 1) = Re (2~ 1) = —2e ()
1,_
B ( 1 N 1 )_ §(W+W)+3_ 2(3 + Re(w))
 \w+3 w+1l/) lw+3]2 lw+3]2
Furthermore
r* |w + 3|?
112 - . — _ 2 + +
|h"| 2 Tsin? nz|2’and with p(w) = |w — 1| + 2m|w + 1]
4= 1+T[2 |1 + w]?
g= B 2 |sin? mz|?
=———(|2sin®nz|? + 2n?|w + 1]) = ;(],’)(W)
4|sin? nz|? 4|sin? nz|? '
and so

_ I

k=" ey -1 = 4mrlw — 1](3 + %e(w))l
g

¢ (w)

Finally putting
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w, (u') = Re(w) = cosh 2ru? cos 2ru?,

, 1 , 1
w,(u') = |w — 1| = —(cosh 4nu? + cos 4ru' + 4w, (u') + 2)2,

V2

: 1 | .
W3(ul) — |W + 1| = _(COSh 47Tu2 + C034ﬂu1 + 4W1(ul) + 2)2

V2
and w, (u') = p(w) = (Wz(ui))z + 2wy (u'), we have

K(u) = - = WZ((: )(E:)fl(” ) (5.24)

similarly, putting

ws(ul) = (Wg(ui))z we(ut) = w2(u)w,(u') — 2r?ws(v') and

f(d) = 1h()] = L (5.25)

vcosh 2mu?—cos2mul’

We represent the Gaussian and mean curvatures of exponential cones and ex-

plicit surfaces as screw surfaces and explicit surfaces by putting f = K and f = H in
(5.23) and (5.22), respectively.
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Figure 5.7: Gaussian curvature given by (5.24).
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Figure 5. 8: Mean curvature given by (5.25).

(5.3) Applications to Hamiltonian Systems

We now apply the classifications of the previous section to Hamiltonian systems

defined in particular Riemannian spaces.
1. Two-dimensional Euclidean space E?:
In this case Ri212 = 0, which entails
E,a —Ef = a? + 2.

Consider now the following three separable cases (SC), defined with respect to the

functions a and p.

SCla =B =0,
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in this case the separable coordinates are obviously Cartesian and Riz;2 = 0, is

automatically satisfied.
Solving Eq. (4.75) we obtain that the metric can be written as follows:
ds? + du? + u?dv?, (5.26)

which  we immediately recognize as the Euclidean metric in polar

coordinates.SCIII: aff # O.

Employing (4.44.) (af # 0,R1212 = 0)to find the functions A(u) and B(v) defining
the formula for the metric of a Liouville surface, we arrive at the following

equation.

(AQw) + B@))(A"(w) + B"(v) = (4'w))” + (B'W))",
which after taking partial derivatives reduces to

Arrr +BIII(1]) — 1,2
Ar(u) Br(v)

(5.27)

for some constant k > 0. Solving (5.27) separately for k = 0 and k # 0 yields the

metrics
ds? = (u? + v?)(du? + dv?), (5.28)
and
ds? = a?(cosh?(u) — cos?(v))(du? + dv?), (5.29)

Respectively, where a is a scaling parameter. We note that the expressions (5.28)
and (5.29) represent the Euclidean metric in parabolic and elliptic—hyperbolic

coordinates, where a represents half the distance between the foci. Hence, we have
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extracted the four separable systems of coordinates in the Euclidean space by

employing the method of moving frames.

The corresponding Killing tensors, second first integrals and potential functions

can be recovered by making use of the formulas derived in Section (4.5).
2. Surfaces of rotation:

A surface of rotation is the surface generated by the rotation of a plane curve C
around an axis in its plane. If C is parameterized by the equations p = p(u) and z =
z(u), the position vector of the surface of rotation is r = {p(u) cos v, p(u) sin v,
z(u)}, where u is the parameter of the curve C, p is the distance between a point on
the surface and the axis z of rotation and v is the angle of rotation, which is the

ignorable (cyclic) coordinate. The metric of the surface of rotation is
ds? = ((p')? + (2')?)du? + p?dv?. (5.30)

Clearly, the metric (5.30) can be reduced to the form (4.67) by an appropriate
coordinate transformation. Once the curvature R 1212(u) is known, the function(s)

g(u) and the corresponding

metric(s) may be recovered from (4.75) and vice versa. Consider an example. The

metric
4 2
ds? = a?du? +\£? (1 +-.C0s u) dv? (5.31)

defines the surface of a two-dimensional torus T 2, where a and ¢ are the radii of
the rotating and axial circles, respectively. We note that in this paper we do not
consider global properties of two-dimensional pseudo-Riemannian manifolds;
hence here T 2 is not a topological torus. Locally, the metric (5.31) yields one
(1 + (a/f) cos(u/a),

system of separable coordinates with g(u)
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Rix12 = cos(u/a)/(af+ a cos(u/a)) and the other quantities as in Case Il of

Section(4.3) corresponding to the given g(u).
3. Surfaces of constant curvature:

In this section, we assume the curvature Rizi2 = ea?, where e= +1 and a >0

Is constant. Let us consider again the two cases: a =0, f # 0 and o # 0.

Case I: o = 0, p # 0. In this case the coordinate v is ignorable (cyclic). Solving
(4.75) for a(v) = const, yields:

g(u) = cycosau + ¢, sinau = ¢, cosau + ¢, Esinu, e =1,

1
g(u) = cze™ + ce™ = ¢z coshau + é,—sinhau, e = —1.
a

Now varying the constants of integration we recover four distinct solutions for g(u)

corresponding to the following metrics.

ds? = %(du2 +sinaudv?), e€=1, (5.32)

ds? = du® + cosh? au dv?, e=-1, (5.33)
2 _ 2 sinh au 2 2

ds? = du +( - ) dv?, (5.34)

ds? = du® + e~ 2%qp?2, (5.35)

using the explicit expression for the function g(u) above and the formulas (4.69),
(4.70) and (4..72) we can write down in each case the corresponding potentials,

Killing tensors and second first integrals.

Case II: af = 0. Again, assume R 1212 = ea?. Then (4.89) reads
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(A+B)(A" +B") - (4")? — (B')?> = —2ea?(A + B)3, (5.36)

where A = A(u) and B = B(v). Eq. (5.36) can be separated as follows:

r r

+ 12ea’A = —

_ 2p —
T 5 12€a*B = A.

Hence, we arrive at the following two equations for A and B, respectively,
A" +12ea?AA’ = AA', B'"' + 12ea’BB’' = —AB’. (5.37)

Assuming 4 # 0 and solving (5.37) with respect to u and v, we get

+dy = a4 . (5.38)

(—4ea?A3+21A2+2£A+2m)2

+dy = a5 - (5.39)

(—4€a?B3—AB2+2¢B+21)2

where p3(x) = x® + px + g with arbitrary coefficients p and q. Note that we have
derived the metric (5.40) without solving (5.38) and (5.39) for A and B,
respectively. Comparing the metrics (4.79) and (5.40) we see that the latter metric
Is not in the Liouville form and so we cannot complete the analysis by deriving the
corresponding first integrals, potentials and Killing tensors. However, since the
functions A and B and their derivatives in (5.38) and (5.39) essentially parametrize
appropriate elliptic curves, clearly it can be done by expressing A and B in terms of
the Weierstrass function . Indeed, by appropriate linear transformations Eqgs.
(5.38) and (5.39) can be transformed into the corresponding form of the
Weierstrass differential equation

(dﬁ)2 = 4p° — g, — g3, (5.40)

dz
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thus leading to the following solutions for the functions A(u) and B(v),

respectively:
A) = p(av—eu + cy; w1, w3) — 4, (5.41)
B(v) = p(av—€ev + ¢z, wy, —w;) + A, (5.42)

where c1, Cp, A are arbitrary functions and wi, w2 define the periods of the
meromorphic, doubly periodic function . Now we can use the expressions (5.41)
and (5.42) and the analysis of Section 3 to derive in each case the corresponding
separable potential (formula (4.82)), Killing tensor (formula (4.81)), as well as the

second first integral (formula (4.84)).

Let x1, X2 and x3 be the roots of ps: ps(X) = (X —X1)(X —X2)(X —X3).Without loss of
generality we impose the condition A > B. To extract all the metrics depending on
different choices of x1, xo and X3, we impose the condition that the right-hand side
of (5.40) must be positive definite. When e= 1 there is only one possibility for A

and B for which (5.40) is positive definite, while e= —1 leads to six different

possibilities:

X1 <B<xy<A<x3 €=1, (5.43)
X1 <x, <B<x3<A, €=-1, (5.44)
B <x; <x,<x3 <A, (5.45)
B<x3 <A, x;=1X,, (5.46)
X1 =X, < B <x3 <A, (5.47)

B <x;=x) <x3 <A, (5.48)
B <x;=x,=x3 <A (5.49)
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we observe that these separable cases were first derived by Olevsky, while
studying separability of Laplace-Beltrami’s operator in the spaces of constant
curvature. He used Eisenhart’s (coordinate) approach to the problem. The moving
frame method applied to two-dimensional separable Hamiltonian systems yields
the same results without considering initially a particular system of coordinates.
We note that the separable coordinates (A,B) are essentially the eigenvalues of the
Killing tensor K in (4.81).
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