I dedicated this thesis to:
The soul of my mother
My father
My husband
My sisters and brothers, all relatives.
ACKNOWLEDGMENT

I am extremely grateful to my supervisor, Professor Abdelrahman Elhassn Mohamed Osman for his encouragement and fruitful suggestions.

I am indebted most to my co-supervisor, Professor Mustafa Mohammed Osman Ahmed for his support and encouragement throughout the study. I am sincerely grateful to Dr. Mohammed Abduelsalam, Hajo Edriss, Dr. Salih Ali Salih and Dr. Mohamed Yahi who assisted me during sample collection.

I extended many thanks to Noserdin Ragab who assisted me during samples preparation and measurements. Many thanks to colleagues in Sudan Atomic Energy Commission (SAEC), namely Walid. I acknowledged gratefully the assistance given to me by engineering Elgundi Salih. Many thanks to the staff of safety institute and applied Nuclear Research Laboratory - Khartoum University. My thanks also to my colleagues of Dalling University, thanks physics Department, Faculty of sciences- Sudan university of sciences and Technology.

Not the least, I extended many thanks to all those who positively contributed to my learning and to this research, for their names, I symbolically leave this space, and my sincere gratefulness.

Finally I would like to send special thanks to my family for a wonderful understanding during these years.
This study was conducted to assess the natural radioactivity level and doses calculation in some areas in South Kordofan State. Samples were collected contain soil, rock and some crops from northern and eastern regions of South Kordofan State. Activity concentration of 238U, 232Th, 40K and 137Cs has been measured by γ-ray spectroscopy equipped with high efficiency NaI (Tl). The average concentrations were 108.82, 98.03 and 1059.13 Bq/kg for soil samples, 282.76, 142.79 and 1081.50 Bq/kg for rock samples and 12.70, 14.54 and 866.32 Bq/kg for crops samples for 238U, 232Th and 40K respectively, the concentration of 137Cs was found to be 7.32 Bq/kg this means very little contribution to the total exposure for crops samples. The obtained results were found to be relatively higher than those mentioned in UNSCEAR data publications for normal background areas.

Absorbed dose rate in air at a height of 1m from the ground was measured and calculated using four sets of dose rate conversion factors and the corresponding annual effective dose was estimated. On the average, the values obtained were: 153.76, 132.14, 139.14 and 153.65 nGyh$^{-1}$ for soil samples, 262.27, 222.39, 233.94 and 261.98 nGy/h for rock samples, 50.79, 45.10, 47.60 and 50.63 nGy/h for crops samples, and annual effective dose are: 188.70, 162.17, 170.75 and 188.56 μSv$^{-1}$ for the soil samples, 321.87, 272.92, 287.10 and 321.52 μSv$^{-1}$ for rock samples and 62.33, 55.35, 58.41 and 62.32 μSv/y for crops samples, respectively for DRCFs (SAITO, MCNP, GEANT and UNSEAR). These values lie within the areas of high background radiation.
المستخلص

أجريت هذه الدراسة لتقييم مستوى النشاط الإشعاعي الطبيعي وحساب الجرعات في بعض المناطق في ولاية جنوب كردفان. اشتملت العينات التي تم جمعها على: تربة، وصخور ومع بعض المحاصيل، أخذت من المناطق الشمالية والشرقية للولاية. تم قياس متوسط التركيز الإشعاعي لكل من: ^{137}Cs، ^{232}Th، ^{238}U، ^{40}K باستخدام مطيافية جاما المزودة بكاشف (بوديد الصوديوم المنظم بالثاليوم) عالي الكفاءة. وجد أن متوسط التراكيز هو: 108.82، 98.03، 1059.13 بيكيل/كم لعينات النترة، و 142.79، 50 بيكيل/كم لعينات الصخور و 14.54، 866.32 بيكيل/كم لعينات المحاصيل ^{137}Cs، ^{238}U، ^{232}Th، ^{40}K وذلك لكل من بيكيل/كم، مما يعني أن مساهمته ضئيلة في الجرعة الكلية لعينات المحاصيل. أشارت النتائج المتحصل عليها إلى أن التركيز الإشعاعي للكنوز هو أعلى من المتوسط العالمي حسب ما ورد في منشورات لجنة الأمم المتحدة للوقاية من أثار الإشعاعات الذرية.

تم قياس و حساب الجرعة الإشعاعية الممتتة في الهواء على ارتفاع 1 متر من سطح الأرض، وذلك باستخدام أربع مجموعات من ثوابت تحويل معدل الجرعة (DRCFs) كما تم حساب الجرعة الفعلية السنوية حيث وجد أن متوسط نتائج الجرعة الممتتة هو: 153.76، 132.14، 139.14 نانو جراي/ساعة/عينات النترة، و 262.39، 222.10، 60، 47.60 نانو جراي/ساعة/عينات الصخور و 0.79، 50.78 نانو جراي/ساعة/عينات المحاصيل. والجرعة الفعلية السنوية هي: 188.70، 172.97، 162.17، 88.56 ميكرودسيفرت/سنة/عينات النترة، 321.87، 321.52، 287.10، 238.52 نانو جراي/ساعة/عينات الصخور و 0.86، 62.33، 55.35، 41.00، 58.41 و 32 منشآت المحاصيل على التوالي للثوابت: (UNSCEAR، GEANT، MCNP، SAITO). وبيبت هذه النتائج أن متوسطات المتحصل عليها تقع في نطاق المناطق ذات الخلفية الإشعاعية العالية.
CONTENTS

Dedication... I
Acknowledgment... II
Abstract... III
Arabic abstract... IV
Contents.. V
List of tables.. VI
List of figures.. VII

CHAPTER ONE

1. INTRODUCTION
1.1 Background radiation .. 1
1.2 Problem statement.. 3
1.3 Research aims... 4

CHAPTER TWO

2. LITERATURE REVIEW
2.1 Theory of radiation. .. 5
2.1.1 Gamma decay. .. 6
2.2 Natural gamma radiation. .. 7
2.2.1 Cosmic radiation. ... 7
2.2.2 Terrestrial radiation. .. 7
2.2.2.1 Potassium (K). .. 8
2.2.2.2 Uranium (U). .. 9
2.2.2.3 Thorium (Th). ... 10
2.3 The radioactivity of the earth’s crust. 11
2.3.1 Radioactivity of rocks. 11
2.3.2 The radioactivity of soil. 13
2.3.3 Radioactivity of water. 16
2.3.4 Radioactivity of plant. 17
2.4. Environmental radioactivity. ... 19
2.4.1 Guidance on radiation protection. .. 21
2.5 Exposure radiation. .. 22
2.5.1 Absorbed dose rate in air (D). ... 23
2.5.2 External and internal hazard indices...................................... 23
2.5.3 Annual effective dose equivalent (E) 24
2.6 Radiation dose limits... 24
2.7 Previous studies... 25

CHAPTER THREE
3. MATERIAL AND METHODS
3.1 The study area... 33
3.2 Geological information of Nuba Mountains........................... 33
3.3 Sample collection and preparation.. 34
3.3.1 Soil samples... 34
3.3.2 Rock samples... 34
3.3.3 Crops samples.. 35
3.4 Gamma-ray spectroscopy .. 42
3.4.1 System calibration of gamma... 44
3.4.1.1 Energy calibration.. 44
3.4.1.2 Efficiency calibration.. 46
3.5 Evaluation of the gamma dose rates in air outdoors................. 47
3.6 Dose rate conversion factors (DRCFs)................................. 47
3.6.1 UNSCEAR... 48
3.6.2 K. Saito and P. Jacob (1995) ... 48
3.6.3 Monte Carlo codes... 49
3.6.3.1 The MCNP code... 49
3.6.3.2 The GEANT code .. 50
3.7 Calculation of absorbed dose rate in air.............................. 52
CHAPTER FOUR
4. RESULTS AND DISCUSSION
4.1 The results of gamma spectroscopy measurements………………….. 58
4.2 Annual effective dose results………………………………………….. 74
4.3 The results of X-ray fluorescence…………………………………….. 89
4.4 DISCUSSION ……………………………………………………………….. 94
CONCLUSION………………………………………………………………. 100
References…………………………………………………………………….. 101
Appendix……………………………………………………………………… 108
LIST OF TABLES

Table (2.1) Characteristics of the \(^{40}\text{K}\) decay scheme......................... 9
Table (2.2) Principal characteristics of the \(^{238}\text{U}\) decay series................. 9
Table (2.3). Principal characteristics of the \(^{232}\text{Th}\) decay series.............. 10
Table (2.4). Concentration of some radioisotopes in water (Kogan et al, 1971)..... 16
Table (2.5). ICRP recommendation on protection against environmental radioactivity. 22
Table (2.6). The recommended dose limits (ICRP. 1991).............................. 25
Table (3.1). Location names with their coordinates in soil samples.............. 35
Table (3.2). Location names with their coordinates in rock samples.......... 38

Table (3.3). Absorbed dose rates in air at 1 m height (nGy/h) were measured by Radose and annual effective dose (µSv/y) as derived using UNSCEAR DRCFs in soil samples

Table (3.4). Absorbed dose rates in air at 1 m height (nGy/h) were measured by Radose and annual effective dose (µSv/y) derived using UNSCEAR DRCFs in rock samples

Table (3.5). Types of mixed radionuclides used for system calibration and their corresponding gamma energies

Table (3.6). Types of radionuclides used for efficiency calibration and their corresponding gamma energies

Table (3.7): Conversion factors for different radionuclides as deduced by Kocher and Sjoreen, Beck et al., Saito and Jacob, recent results from various Monte Carlo technique obtained by (Clouvas et.al.,2000) and UNSCEAR values in units of nGy h\(^{-1}\)/Bq kg\(^{-1}\) (Kohshi et.al.,2001)

Table (3.8): Energy calibration (Kev) of the system illustrating K-line of Fe and Zn.

Table (4.1): Activity concentrations (Bq/kg) of gamma emitters from \(^{238}\text{U},^{232}\text{Th}\) and \(^{40}\text{K}\) in soil samples

Table (4.2): Activity concentrations (Bq/kg) of gamma emitters from \(^{238}\text{U},^{232}\text{Th}\) series and \(^{40}\text{K}\) in soil samples

Table (4.3): Activity concentrations (Bq/kg) of gamma emitters from \(^{238}\text{U},^{232}\text{Th}\), \(^{40}\text{K}\) in soil samples

Table (5.1) Description of the system used in the study

Table (5.2) Radiation levels in the environment

Table (5.3) Comparison of the results with other studies

Table (5.4) Discussion of the findings

Table (5.5) Conclusion

Table (5.6) Literature review

Table (5.7) Acknowledgments

Table (5.8) References
Table (4.4): Activity concentrations (Bq/kg) of gamma emitters from 238U, 232Th series and 40K in rock samples

Table (4.5): Activity concentrations (Bq/kg) of gamma emitters from 238U, 232Th series, 137Cs and 40K in crops samples

Table (4.6): Activity concentrations (Bq/kg) of gamma emitters from 238U, 232Th series, 137Cs and 40K in crops samples

Table (4.7): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (μSv/y) in South Kordofan State using different DRCFs in soil samples

Table (4.8): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th series and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (μSv/y) in South Kordofan State using different DRCFs in soil samples

Table (4.9): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (μSv/y) in South Kordofan State using different DRCFs in rock samples

Table (4.10): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th series and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (μSv/y) in South Kordofan State using different DRCFs in rock samples

Table (4.11): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (μSv/y) in South Kordofan State using different DRCFs in crops samples

Table (4.12): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th series and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (μSv/y) in South Kordofan State using different DRCFs in crops samples

Table (4.13): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th and 40K with their relative contribution to the total absorbed dose rate and the
annual effective dose (mSv/y) in South Kordofan State using UNSCEAR DRCFs in study sample groups; soil samples, rock samples and crops samples

Table (4.14): Statistical summary of absorbed dose rate in air at 1 m height (nGy/h) (mean and range) due to γ-emitters from 238U, 232Th series and 40K with their relative contribution to the total absorbed dose rate and the annual effective dose (mSv/y) in South Kordofan State using UNSCEAR DRCFs in study sample groups; soil samples, rock samples and crops samples.

Table (4.15): Heavy metal content in the evaluation in soil samples concentrations in p.p.m.

Table (4.16): Heavy metal content in the evaluation in soil samples concentrations in p.p.m.

Table (4.17): Heavy metal content in the evaluation in soil samples concentrations in p.p.m.

Table (4.18): Heavy metal content in the evaluation in rock samples concentrations in p.p.m.

Table (4.19): Heavy metal content in the evaluation in crops samples concentrations in p.p.m.

Table (4.20): Comparison of absorbed dose rate in air at 1 m height (derived using UNSCEAR DRCFs) with similar data from Sudan and different Countries

Table (4.21): Areas of high natural radiation background (UNSCEAR 2000)
Appendix

Table (1): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using SAITO DRCFs and annual effective dose (µSv/y) in soil samples.

Table (2): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using MCNP DRCFs and annual effective dose (µSv/y) in soil samples.

Table (3): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using GEANT DRCFs and annual effective dose (µSv/y) in soil samples.

Table (4): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using UNSCEAR DRCFs and annual effective dose (µSv/y) in soil samples.

Table (5): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th series and 40K as derived using SAITO DRCFs and annual effective dose (µSv/y) in soil samples.

Table (6): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th series and 40K as derived using MCNP DRCFs and annual effective dose (µSv/y) in soil samples.

Table (7): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th series and 40K as derived using GEANT DRCFs and annual effective dose (µSv/y) in soil samples.

Table (8): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th series and 40K as derived using UNSCEAR DRCFs and annual effective dose (µSv/y) in soil samples.

Table (9): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using SAITO DRCFs and annual effective dose (µSv/y) in rock samples.

Table (10): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using MCNP DRCFs and annual effective dose (µSv/y) in rock samples.

Table (11): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using GEANT DRCFs and annual effective dose (µSv/y) in rock samples.

Table (12): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from 238U, 232Th and 40K as derived using UNSCEAR DRCFs and annual effective dose (µSv/y) in rock samples.
Table (13): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using SAITO DRCFs and annual effective dose (µSv/y) in rock samples.

Table (14): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using MCNP DRCFs and annual effective dose (µSv/y) in rock samples.

Table (15): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using GEANT DRCFs and annual effective dose (µSv/y) in rock samples.

Table (16): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using UNSCEAR DRCFs and annual effective dose (µSv/y) in rock samples.

Table (17): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th and ^{40}K as derived using SAITO DRCFs and annual effective dose (µSv/y) in crops samples.

Table (18): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th and ^{40}K as derived using MCNP DRCFs and annual effective dose (µSv/y) in crops samples.

Table (19): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th and ^{40}K as derived using GEANT DRCFs and annual effective dose (µSv/y) in crops samples.

Table (20): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th and ^{40}K as derived using UNSCEAR DRCFs and annual effective dose (µSv/y) in crops samples.

Table (21): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using SAITO DRCFs and annual effective dose (µSv/y) in crops samples.

Table (22): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using MCNP DRCFs and annual effective dose (µSv/y) in crops samples.

Table (23): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using GEANT DRCFs and annual effective dose (µSv/y) in crops samples.

Table (24): Absorbed dose rates in air at 1 m height (nGy/h) due to gamma emitting nuclides from ^{238}U, ^{232}Th series and ^{40}K as derived using UNSCEAR DRCFs and annual effective dose (µSv/y) in crops samples.
LIST OF FIGURES

Fig. (3.1) Geological map of Nuba Mountains…………………………………… 33
Fig. (3.2): Sampling location (South Kordofan State)…………………………... 39
Fig. (3.3): Block diagram of gamma-ray spectrometer………………………… 44
Fig. (3.4): Energy calibration curve………………………………………………. 45
Fig. (3.5): Efficiency calibration curve…………………………………………….. 47
Fig. (3.6): A schematic view of the (XRF) principle and measuring setup……….. 55
Fig. (3.7): A general view of the (XRF) measuring arrangement……………… 55
Fig. (3.8): Plot of energy calibration of the system illustrating peak of the Fe and Zn. 57
Fig. (4.1): Average activity concentrations of ^{238}U, ^{232}Th and ^{40}K in soil samples from South Kordofan State 68
Fig. (4.2): Average activity concentrations of ^{238}U, ^{232}Th series and ^{40}K in soil samples from South Kordofan State 69
Fig. (4.3): Average activity concentrations of ^{238}U, ^{232}Th and ^{40}K in rock samples from South Kordofan State 70
Fig. (4.4): Average activity concentrations of ^{238}U, ^{232}Th series and ^{40}K in rock samples from South Kordofan State 71
Fig. (4.5): Average activity concentrations of ^{238}U, ^{232}Th, ^{137}Cs and ^{40}K in crops samples from South Kordofan State 72
Fig. (4.6): Average activity concentrations of ^{238}U, ^{232}Th Series, ^{137}Cs and ^{40}K in crops samples from South Kordofan State 73
Fig. (4.7): Relative contribution of ^{238}U, ^{232}Th and ^{40}K to the total absorbed dose rate in air as calculated using different DRCFs in soil samples 83
Fig. (4.8): Relative contribution of ^{238}U, ^{232}Th series and ^{40}K to the total absorbed dose rate in air as calculated using different DRCFs in soil samples 84
Fig. (4.9): Relative contribution of ^{238}U, ^{232}Th and ^{40}K to the total absorbed dose rate in air as calculated using different DRCFs in rock samples 85
Fig. (4.10): Relative contribution of ^{238}U, ^{232}Th series and ^{40}K to the total absorbed dose rate in air as calculated using different DRCFs in 86
rock samples.

Fig. (4.11): Relative contribution of 238U, 232Th and 40K to the total absorbed dose rate in air as calculated using different DRCFs in crops samples.

Fig. (4.12): Relative contribution of 238U, 232Th series and 40K to the total absorbed dose rate in air as calculated using different DRCFs in crops samples.