· يَرَى اللَّهُ عَمَ لَكُمْ وَرَسُولُهُ وَ الْمُؤَمِنُ وَنَ الْعَدَيْ جِمَ وَ الشَّمَ احَةِ فَيَ ذَبَرٌ بِذُكُمُ بِمَ اكُذْتُهُ ة ع م أون ﴾

الآية

ال**توبة (105)**

DEDICATION

То

My Dearest Parents who are the part of my soul and whose love, affection and confidence enabled me to achieve this goal.

ТО

my brothers Khidir, Yousif and Mohammed and to my sister Alzahraa for their help and patience, for every period I was away.

ТО

the soul of my grandmother (Fatima), may Allah forgive her

and grant her his highest paradise (Ameen).

ACKNOWLEDGEMENT

To the Almighty **God "ALLAH"** Who have granted me all these graces to fulfill this work and Who blessed and supported me by His power in all my life. Without this guidance I would have never reached this position where I am writing this page. To Him I extend my heartfelt thanks. I also offer my humblest thanks from the deepest core of my heart to the **Holy Prophet MUHAMMAD** (peace be upon him), Who is forever a torch of guidance and knowledge for humanity as a whole.

I would like deeply to express my thanks and gratitude to my supervisor **Dr**. **Abdel Aziz Youssef Mohammed** for his faithful supervision and his great patience during the period of the research.

I wish to thank all my friends for their support, specially my friend **Abdelrahman Elrayh Makki Dafalla** for his assistance and encouragement during all the period of the study in the Sudan University of Science and Technology and my thanks go to **his famil**y for their Hospitality.

I would like to thank also my friend **Eng. Khalid Ibrahim Yahya** for his help and support during this study.

Finally, my thanks to my mother **Batol Mansour** and my father Bashir for Their encouragement and support. I also want to thank my brothers **Mohammed, Yousif and Khidir** and my sister **Elzahraa**, for their support.

Abstract

The Static VAR Compensator provides reactive power and voltage support to the transmission system by switching local SVC capacitors and controlled reactor. The SVCs are needed the most during network disturbances. At these occasions they may make the difference between a network collapse and successful continued operation, The basic task of the SVC fault clearance system is to detect a specified class of power system faults and abnormalities and to disconnect the associated item of plant from the rest of the power system, The fault clearance system shall perform with high reliability, speed, selectivity and sensitivity.

This thesis will focus on the control based over/under-current and thermal overload protection for the SVC and also on the relay-based protection included in the SVC installation will also be discussed.

The simulation will focus on applying different types of faults which may accrue in LOCALMARKET SVC substation and how they can be detected and cleared by the protection system of the SVC. The analysis is carried out using MATLAB SIMULINK software.

المستخلص

معوضات القدر ة الرد فعلية الساكنة تقوم بدعم نظام الجهد والقدرة الردفعلية بالنسبة لمنظومة نقل القدرة الكهربية. هذه المعوضات يجب توفرها في حالة حدوث مشكلة في منظومة القدرة الكهربية عند هذه اللحظات قد يمثل وجود هذه المعوضات الحد الفاصل بين استمرار واستقرارية النظام وبين الانهيار التام. المهمة الاساسية لمنظومة الحماية الكهربية لهذه الوحدات هي ان تقوم باكتشاف الاعطال داخل هذه المنظومات وعزل الاجزاء المتضررة عن بقية المنظومة. يجب ان يتصف نظام الحماية بالاعتمادية و الحساسية و الاستقرارية و السرعة عند فصل الاعطال.

في هذا البحث يتم التعرض لطرق حماية وحدات معوضات القدر ة الرد فعلية الساكنة المبنية في منظومة التحكم و كذلك تلك المخصصة لحماية كل مكون من مكونات منظومة معوضات القدر ة الرد فعلية.

نمذجة النظام التي سوف تتم بواسطة برنامج MATLAB SIMULINK ستوضح كيف ان لنظام الحماية القدرة علي ان يكتشف و ان يعزل عدد من الاعطال التي تم يمكن ان تحدث لمعوضات القدرة الردفعلية الساكنة الموجودة في محطة السوق المحلى التحويلية.

TABLE OF CONTENTS

		Page		
	الاية	i		
	DEDICATION			
	ACKNOWLEDGEMENT	iii		
	ABSTRACT	iv		
	المستخلص	V		
	TABLE OF CONTENTS	vi		
	LIST OF FIGURES	xi		
	LIST OF TABLES	xvi		
	LIST OF SYMBOLES	xvi		
	LIST OF ABBREVIATION	xvii		
	CHAPTER ONE			
	INTRODUCTION			
1.1	Background 1			
1.2	Problem Statement 5			
1.3	Objectives 5			
1.4	Methodology			
1.5	Thesis Layout	6		
	CHAPTER TWO			
r	ICR PROTECTION AND CONTROL BASE	D		
PROTECTIONS				
2.1	Introduction	7		
2.2 TCR protection				
2.2	2.1 Differential protection of TCR	9		
2.2.2 Over current protection of TCR				

2.2	2.3	Protection against Unsymmetrical operation of	18
		TCR	
2.2	2.4	Thermal overload protection of TCR	19
2.3	Cont	rol-based protection TCR control system	19
2.3	3.1	Over-voltage protection	20
2.3	3.2	Under-voltage protection	20
2.3	3.3	Over-current protection	20
		CHAPTER THREE	
FIXI	ED CA	APACITOR BANK AND HARMONIC FIL	TERS
		PROTECTION	
3.1	Introd	uction	22
3.2	3.2 C	apacitor Bank Types	23
3.2	3.2.1 Externally fused capacitors		24
3.2	2.2	Internally Fused Capacitors	24
3.2	2.3	Fuseless Capacitors	25
3.2	2.4	Unfused Capacitors	26
3.3	Capa	citor Bank Design	26
3.3	3.1	Grounded Wye-Connected Banks	27
3.3	3.2	Multiple Units in Series Phase to Ground - Double	28
		Wye	
3.3	3.3	Ungrounded Wye-Connected Banks	28
3.3	3.4	Delta-connected Banks	29
3.3	3.5	H Configuration	29
3.4	Prote	ction of capacitor banks	29
3.4	4.1	Voltage Differential (87V)	29
3.4	4.2	Unbalanced protection for single capacitor ungrounded	33
		why bank	

3.4.3		Unbal	anced Protection For Single Capacitor Grounded	31	
		Why I	Bank		
3.4	4.4	Unbal	anced Protection For Ungrounded Double-Wye	32	
		Banks			
3.4	4.5	Unbal	anced Protection For Grounded Double-Wye	33	
		Banks			
3.4	4.6	3.4.6	Unbalanced Protection of H Configuration		
		Capac	bitors		
3.4	4.7	Short	Circuit and Earth-Fault Protection		
3.4	4.8	Negat	ive-Sequence Overcurrent Protection		
3.4	4.9	Under	voltage and Undercurrent Protection		
3.4	.10	Overv	voltage Protection		
3.5	3.5 H	armon	ic Filters	32	
3.6	3.6Protection of harmonic filters33			33	
	CHAPTER FOUR				
	P	JWE	R TRANSFORMER PROTECTION		
	1				
4.1	Introd	uction		42	
4.2	Tran	sform	er faults	42	
4.2	2.1	Faults	within the transformer tank	42	
4.2	2.2	Faults	on transformer connections	46	
4.	2.3	Overh	peating	46	
4.	2.4	Faults	external to the transformer zone	46	
4.3	Prote	ction S	Schemes of Power Transformer	47	
4.	3.1	differe	ential Protection	47	
	4.3.1.1	I	Starting ratio	47	
4.3. 1.2					
	4.3. 1.2	, ,	Basic setting	48	

4.3. 1.4			Instantaneous differential current stage	49
4.3. 1.5			Second harmonic blocking (Ratio I ₂ f/I ₁ f>)	49
4.3.2 Restric		lestric	cted earth fault protection	50
4.3	3.2.1		Operate voltage setting	51
4.3	3.2.1		Primary operate current (fault setting)	52
4.3	3.2.2		Series stabilizing resistance	52
4.3.3	0)ver c	surrent and earth fault protection	53
4.3.4	В	Suchh	olz protection	54
4.3.5	0	Verlo	pading	54
	l		CHAPTER FIVE	
			SIMULATION AND RESULTS	
5.1	Back	grou	nd	56
5.2	Syste	em Si	imulation Based	57
5.3	5.3Normal operation of SVC without faults		60	
5.4	5.4 short-circ		uit at the terminal of one of two reactors in	63
	TCR			
5.5	phase	e faul	Its inside and outside of the TCR	67
5.5	5.1	p	bhase fault inside the TCR	67
5.5	5.2	p	bhase fault outside of the TCR	70
5.6	earth	fault	ts inside and outside of the TCR	73
5.0	5.1	S	Single line to ground fault inside and outside of	73
1		tl	he TCR	
5.0	5.6.2		Single line to ground fault outside of the TCR	76
5.7 thyristor		stor c	lamage after fault clearance	79
5.7.1		N	No damage in thyristor after fault clearance	79
5.7	7.2	L L	Thyristor is short circuited after fault	81
		c	elearance	

5.7.3		Thyristor is open circuited after fault	82
		clearance	
		CHAPTER SIX	
	CO	NCLUSION AND RECOMMENDATIONS	
6.1	Conclusi	on	85
6.2	Recomm	endations	85
REFERI		ENCES	86
APPENI		DIX (A)	87
APPENI		DIX (B)	89

LIST OF FIGURES

Figure	Title	Page
2.1	TCR components	7
2.2	current waveform for various values of delay angle	8
2.3	Typical arrangements for TCR in SVC unit and protective	9
	zones	
2.4	High Impedance differential schemes	10
2.5	High Impedance differential schemes in reactor	11
2.6	Differential protection operation during external faults	12
2.7	Differential protection operation during internal faults	12
2.8	low impedance differential protection tripping characteristics	13
2.9	relay characteristics for different settings	15
2.10	Relay characteristics to IEC 60255	17
2.11	Relay characteristics according to North American standard	18
3.1	Capacitor unit	23
3.2	Externally fused capacitors	24
3.3	Internally Fused Capacitors	25
3.4	Fuseless Capacitors	26
3.5	Unfused Capacitors	26
3.6	Grounded Wye-Connected Banks	27
3.7	Multiple Units In Series Phase To Ground – Double Wye	28
3.8	Ungrounded Wye-Connected Banks	29
3.9	Voltage differential application to grounded (a) and	30
	ungrounded (b) banks.	
3.10	unbalanced protection for ungrounded capacitor bank	31
3.11	unbalanced protection for grounded capacitor bank	32
3.12	unbalanced protection for ungrounded Double-Wye Banks	33
3.13	unbalanced protection for grounded Double-Wye Banks	34
3.14	unbalanced protection of H configuration capacitors	35

3.15	Passive tuned filters: (a) single tuned, and (b) double tuned	38
3.16	Passive high-pass filters: (a) first-order, (b) second-order and	38
	(c) third-order.	
3.17	Typical harmonic filter protection system	39
4.1	Transformer fault current for resistance earthed transformer	43
	star winding	
4.2	Transformer fault current for solidly earthed transformer star	44
	winding	
4.3	Transformer fault current for transformer delta winding	45
4.4	Differential protection scheme	47
4.5	Setting parameters of the differential relay	48
4.6	restricted earth fault protection	50
4.7	setting of the over current protection for the transformer	53
4.8	Buchholz relay in the transformer	54
5.1	single line diagram of TCR of Local Market substation	56
5.2	Model in MATLAB SIMULINK	57
5.3	TCR model	58
5.4	protection control subsytem	58
5.5	protection control sytem	59
5.6	Pulse Control and protection reference subsystem	59
5.7	Pulse Control and protection reference	60
5.8	Phase currents when $\alpha = 90$	60
5.9	Phase currents $\alpha = 120$	61
5.10	Phase currents $\alpha = 135$	61
5.11	Phase currents $\alpha = 150$	61
5.12	Line currents $\alpha = 120$	62
5.13	Line currents $\alpha = 135$	62
5.14	Line currents $\alpha = 150$	62
5.15	RMS of phase currents during a short circuit in the	63

	terminal of one of the reactors $\alpha = 120$	
5.16	RMS of line currents during a short circuit in the terminal of	64
	one of the reactors $\alpha = 120$	
5.17	phase currents during a short circuit in the terminal of one of	64
	the reactors $\alpha = 120$	
5.18	line currents during a short circuit in the terminal of one of	64
	the reactors $\alpha = 120$	
5.19	phase currents during a short circuit in the terminal of one of	65
	the reactors $\alpha = 150$	
5.20	ine currents during a short circuit in the terminal of one of	65
	the reactors $\alpha = 150$	
5.21	RMS of phase currents during a short circuit in the terminal	65
	of one of the reactors $\alpha = 150$	
5.22	RMS of line currents during a short circuit in the terminal of	66
	one of the reactors $\alpha = 150$	
5.23	RMS of phase currents during 3 phase fault inside the TCR	67
	when $\alpha = 120$	
5.24	RMS of line currents during a 3 phase fault inside the TCR	67
	when $\alpha = 120$	
5.25	phase currents during a 3 phase fault inside the TCR	68
	when $\alpha = 120$	
5.26	line currents during a 3 phase fault inside the TCR when $\alpha =$	68
	120	
5.27	phase currents during a 3 phase fault inside the TCR	68
	when $\alpha = 150$	
5.28	line currents during a 3 phase fault inside the TCR when $\alpha =$	69
	150	
5.29	RMS of phase currents during a 3 phase fault inside the TCR	69

	when $\alpha = 150$	
5.30	RMS of line currents during a 3 phase fault inside the TCR	69
	when $\alpha = 150$	
5.31	RMS of line currents during a 3 phase fault outside the TCR	70
	$\alpha = 120$	
5.32	line currents during a 3 phase fault outside the TCR $\alpha = 120$	70
5.33	line currents during a 3 phase fault outside the TCR α =	70
	150	
5.34	line currents during a 3 phase fault outside the TCR α =	71
	150	
5.35	RMS of phase currents during a single line to ground fault	73
	inside the TCR $\alpha = 90$	
5.36	RMS of line currents during a single line to ground fault	73
	inside the TCR $\alpha = 90$	
5.37	phase currents during a single line to ground fault inside the	74
	TCR $\alpha = 90$	
5.38	line currents during a single line to ground fault inside the	74
	TCR $\alpha = 90$	
5.39	phase currents during a single line to ground fault inside the	74
	TCR $\alpha = 150$	
5.40	line currents during a single line to ground fault inside the	75
	TCR $\alpha = 150$	
5.41	RMS of phase currents during a single line to ground fault	75
	inside the TCR $\alpha = 150$	
5.42	RMS of line currents during a single line to ground fault	75
	inside the TCR $\alpha = 150$	
5.43	RMS of phase currents during a single line to ground fault	76
	outside the TCR $\alpha = 120$	
5.44	RMS of phase currents during a single line to ground fault	76

	outside the TCR $\alpha = 150$	
5.45	RMS of line currents during a single line to ground fault	76
	outside the TCR $\alpha = 120$	
5.46	RMS of line currents during a single line to ground fault	77
	outside	
5.47	line currents during a single line to ground fault outside the	77
	TCR $\alpha = 120$	
5.48	line currents during a single line to ground fault outside the	77
	TCR $\alpha = 150$	
5.49	RMS values of Thyristors currents when the thyristor is	79
	healthy	
5.50	RMS values of lines currents when the thyristor is	80
	healthy	
5.51	Thyristors currents during the fault when the thyristor is	80
	healthy	
5.52	lines currents during the fault when the thyristor is	80
	healthy	
5.53	RMS values of Thyristors currents when the thyristor is	81
	shorted	
5.54	RMS values of lines currents when the thyristor is	81
	shorted	
5.55	thyristors currents when the thyristor is shorted	81
5.56	lines currents when the thyristor is shorted	82
5.57	RMS of thyristor currents when the thyristor is opened	82
5.58	RMS of lines currents when the thyristor is opened	82
5.59	thyristors currents when the thyristor is opened	83
5.60	lines currents when the thyristor is opened	83

LIST OF TABLE

Table	Title	Page
2.1	Relay characteristics according to IEC 60255	16
2.2	North American IDMT relay characteristics	16
5.1	line and phase currents for different firing angles.	61
5.2	currents during a short circuit in the terminal of one of the reactors	66
5.3	currents during 3 phase faults inside the TCR	55
5.4	currents during 3 phase fault outside of the TCR	71
5.5	currents during single line to ground fault inside the TCR	78
5.6	currents during 3 phase fault outside of the TCR	78

LIST OF SYMBOLS

α	Thyristor firing angle
i	Current [A]
L	Inductance [H]
V	Voltage [V]
Х	reactance of reactor
Р	Active power [W]
Q	Reactive power [VAr]
S	Apparent power [VA]
ω	Synchronous speed
Х	Reactance [Ω]
R	Resistance
R _s	stabilizing resistor
In	Rated CT Secondary Current
R _{ct}	CT resistance

R _l	Pilot wire resistance
87V	Voltage Differential protection

LIST OF ABBREVIATIONS

FACTS	Flexible Alternating Current Transmission System
SVC	Static Var Compensator
TCR	Thyristor Controlled Reactor
СТ	Current Transformer
DC	Direct Current
AC	Alternating Current
CB	Circuit Breaker
FC-TCR	Fixed Capacitors & Thyristor Controlled Reactor
TSC-TCR	Thyristor Switched Capacitors & Thyristor Controlled
	Reactor
IDMT	Inverse Definite Minimum Time
SI	Standard Inverse
VI	Very Inverse
EI	Extremely Inverse
DT	Definite Time
TMS	Time Multiplayer Setting
I _s	relay setting current
TD	Time Dial setting
SCB	Shunt Capacitor Bank
MV	Mideum voltage
HV	High voltage
LV	Low voltage