الاستهلال

بسم الله الرحمن الرحيم

قال تعالي

(وقل إعملوا فسيرى الله عملكم ورسوله والمؤمنون وستردون الى

عالم الغيب و الشهادة فينبئكم بما كنتم تعملون)

صدق الله العظيم

سورة التوبة الاية (105)

DEDICTION

Each challenging work needs to self-efforts as well as guidance of elders especially those who were very close to our heart.

My humble effort dedicates to my sweet and loving

MOTHER AND FATHER

Whose affection, love, encouragement and pry days nights make me to able to get such success and honor, Along with all hard working and respected teachers.

ACKNOWEDGMENTS

I would like to state my sincere thanks to my supervisor Dr Obai Younis Taha for his guidance motivation supervision and patience.

I wish to offer very special thanks to my parents.

I would like to express my thanks to my friend

Eng Foad Elmahi Mostfa for his help.

I would like to express my thanks to my friend Eng Mohammed Ibrahim for his help.

ABSTRACT

The aim of this study is to develop a Boom motion model of the hydraulic system of an Excavator. Excavator hydraulic system components are modeled and analyzed in the same environment using the physical modeling toolboxes inside the commercially available simulation software MATLAB/Simulink interaction between the bodes and response of the hydraulic system are obtained by cooperating the hydraulic analyses variables such as pressure flow and displacement are measured on a physical machine and then compared with the simulation results.

Two simhydraulic model was found, boom raising in high speed and the other is the boom normal raising; boom normal lowering.

required The between the values and compared simulation results found, the errors was between the simulation results and real values found was and maximum in simulation result is 40% error in cylinder pressure in Boom raising of high speed.

مستخلص

الهدف من هذه الدراسة هو نمذجة الحركه الهيدروليكيه للبوم في الحفار وذلك بتحليل و نمذجة مكونات النظام الهيدروليكي في نفس البيئه و ذلك بإستخدام النمذجة الفيزيائيه داخل برنامج المحاكاة. وعن طريق تشغيل النظام الهيدروليكي وذلك بعمل نمذجة لمكونات النظام الهيدروليكي تم الحصول على نتائج لمقياس الضغوطات ومعدلات السريان للمائع والازاحه للبوم. تم عمل نمذجة لكل حركات البوم من خلال مخطتين وهما الأول الرفع عند السرعه العاليه و الثاني السرعه الاعتياديه الرفع والنزول . كما تم مقارنة النتائج المتحصل عليها بواسطة النمذجة والقياسات الموجوده في الكتب النتائج المتحصل عليها بواسطة النمذجة والقياسات الموجوده في الكتب وكانت أعلى نسبة هي نسبة الضغط في الاسطوانه وتساوى 40% وهي حالة الرفع عند السرعه العاليه.

TABLE OF CONTENTS

Subject	Page
الاية	.I
DEDICATION	.II.
ACKNOWLEGMENTS	.III.
ABSTRACT	.IV
مستخلص	.V
TABLE OF CONTENTS	.VI
CHAPTERS	.VII
LIST OF FIGURES AND TABLES	.VIII
LIST OF SYMBOLS AND ABREVIATION	.IX

CHAPTERS

Number	Subject	Page	
	CHAPTER ONE		
1.1	General	1	
1.2	Motivation	2	
1.3	Scope of work	2	
1.4	Literature review	3	
CHAPTER TWO			
2.1	DESCRIPTION OF THE SYSTEM	5	
2.2	Basic Hydraulic System Components	6	
2.3	Hydraulic Main Components	10	
2.4	Pilot Control Valves	12	
2.5	Boom Hydraulic System And Operation	14	
2.5.1	Boom Raise High Speed	14	
2.5.2	Boom Raise Low Speed	19	
2.5.3	Boom Lower Operation	22	
CHAPTER THREE			
3.1	Simulation Model	26	
3.2	Oil Tank Model	29	
3.3	Electrical Motor Model	29	
3.4	Hydraulic Pump Model	30	

3.5	P R V Model	32
3.6	D C V Model	35
3.7	Excavator System Model	37
3.7.1	Hydraulic Cylinder Model	37
3.7.2	Excavator Load Model	38
3.7.2	Control Module Lift Load	39
3.9	Sensors Model	39
3.9.1	Position Sensor	41
3.9.2	Pressure Sensor	41
3.9.3	Flow Rate Sensor	42
	CHAPTER FOUR	
4.1	Verification Of The Model	44
4.2	Measuring Instruments And Data Acquisition	44
4.3	Model Verification	44
4.3.1	Group 1	44
4.3.2	Group 2	48
	CHAPTER FIEF	
5.1	Conclusion And Recommendation	56
5.2	conclusion	56
5.3	Recommendation for feature works	56
6	REFERENCE	58

LIST OF FIGURES AND TABLES

Figure	Subject	2000
No	Subject	page
1.1	Excavator CAT 320	1
2.1	Principle of Hydrostatic System	6
2.2	Energy Conversion in Hydrostatic	7
2.3	Simple Hydraulic Circuit	8
2.4	Hydraulic System Components	9
2.5	Block Diagram of Hydraulic System	11
2.6	Hydraulic Main Components	11
2.7a	A Pilot Control Valves	12
2.7b	B Pilot Control Valves	12
2.8	The Monitor	13
2.9	Hydraulic Block System Diagram	13
2.10	Hydraulic Schematic Boom Raise High	15
2.11	Main Control Valves Compartment	16
2.12	Boom Drift Reduction Valve	16
2.13	Boom I Control Valve	17
2.14	Boom II Control Valve	18
2.15	Hydraulic Schematic Boom Raise Low	20
2.16	Boom I Control Valve Raise Position	23
2.17	Boom Regeneration Valve	24
3.1	SimHydraulic Model Two Pump	27
3.2	SimHydraulic Model One Pump	28
3.3	Hydraulic Reference	29
3.4	Electrical Motor	30
3.5	Hydraulic Pump Block	30
3.6	Parameters in Pump Block	31
3.7	Pressure Relief Valve Block	33
3.8	Relation Between Passage Area and Pressure	34
3.9	Parameters in Pressure Relief Valve Block	35
3.10	5/3 Directional Valve	36
3.11	Block Built of 5/3 D C V	36
3.12	Parameters in Directional Valve	37
3.13	Parameters in Double Acting	38
3.14	Load System	39
3.15	Full Excavator Subsystem	40
3.16	Control Module Lift Block	40
3.17	Position Sensor	41
3.18	Pressure Sensor	42
3.19	Flow Rate Sensor	43

4.1	Control Module Lift Raise High speed	45
4.2	Simulation Plot for Pressure Raise H S	46
4.3	Simulation Plot for Boom Raising H S	46
4.4	Simulation Plot for Flow in Raise H S	47
4.5	Control Module Lift Normal Raise One Pump	49
4.6	Simulation Plot for Pressure Cy & Pressure Pu	50
4.7	Simulation Plot Boom Normal Raise One Pu	50
4.8	Simulation Plot Flow Normal Raise One Pu	51
4.9	Control Module Lift Lowering One Pump	52
4.10	Simulation Plot Cy Pressure & Pu Pressure	53
4.11	Simulation Plot Normal Lowering One Pump	53
4.12	Simulation Plot Flow Normal Lowering	54
TABLES		
Table 4.1	Comparison Simulation & Re Values(high S)	48
Table 4.2	Comparison Simulation & Re Values(low S)	55

LIST OF SYMBOLS AND ABBREVIATIONS

SYMBOLS:

Symbols	Description	Unit
A _{leak}	Closed valve leakage area	m^2
x	Control member displacement	m
x_{max}	Control member maximum stroke	m
Re_{cr}	Critical Reynolds number	_
C_D	Flow discharge coefficient	_
ρ	Fluid density	kg/m^3
μ	Fluid dynamic viscosity	N.s/m
\overline{v}	Fluid kinematic viscosity	cSt
A_{max}	Fully open valve passage area	m^2
k_{HP}	Hagen-Poiseuille coefficient	_
A(p)	Instantaneous orifice passage area	m^2
p_A , p_B	Gauge pressures at the block terminals	kpa
P_P , P_T	Gauge pressures at the block terminals	kpa
k _{leak}	Leakage coefficient	_
q_{leak}	Leakage flow	m^3/s
p_{cr}	Minimum pressure for turbulent flow	kpa
$ ho_{nom}$	Nominal fluid density	kg/m³
v_{nom}	Nominal fluid kinematic viscosity	cSt
ω	Pump angular velocity	rad/s
P	Pressure differential across the pump	kPa
q	Pump delivery	m^3/s
Ď	Pump instantaneous displacement	m
D_{max}	Pump maximum displacement	m
η_{mech}	Pump mechanical efficiency	_
ω_{nom}	Pump nominal angular velocity	rad/s
P_{nom}	Pump nominal pressure	kpa
η_V	Pump volumetric efficiency	_
p_{reg}	Regulation range	kpa
T	Torque at the pump driving shaft	N.m
D_H	Valve instantaneous hydraulic diameter	m
p_{max}	Valve pressure at maximum opening	kpa
p_{set}	Valve preset pressure	kpa

ABBREVIATIONS

PRV: PRESSURE RELEIF VALVE

DCV: DIRECTION CONTROL VALVE