
الآيـة

قَالَ تَعَالَىٰ:

﴿ إِنَّ فِي خَلْقِ ٱلسَّمَوَتِ وَٱلْأَرْضِ وَٱخْتِلَفِ ٱلنَّيْلِ وَٱلنَّهَارِ لَآيَنَتِ لِأُولِيهِ ٱللَّهِ فَي خَلْقِ ٱللَّهِ عَلَى جُنُوبِهِ اللَّهُ وَي اللَّهُ وَي اللَّهُ وَي اللَّهُ عَلَى جُنُوبِهِ اللَّهُ وَي اللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ اللَّهُ وَاللَّهُ وَاللَّهُ اللَّهُ وَاللَّهُ وَلَا اللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَلَا اللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَلَا اللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَلَا اللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَاللَّهُ وَا اللَّهُ وَاللَّهُ وَلَي اللَّهُ وَاللَّهُ وَاللْمُوالِمُ اللَّهُ وَاللَّهُ وَاللَّهُ اللَّهُ وَاللَّهُ وَاللَ

صدق الله العظيم

سورة آل عمران: الآيات (١٩٠ – ١٩١)

Dedication

To my mother...With warmth and faith

To my father...With love and respect

To my friends...whom me cherish their friendship

To my special people...who mean so much to me

To all my teachers ...in whom I believe so much

Acknowledgement

First of all, I would like to grate my supervisor Ust. Abdalla Salih Ali who always offered support and ideas to make this thesis a success.

In addition, I would like express my thanks to my friend Eng. Khalid Mohamed Ahmed for his helpful and all engineers whom introduced their assistances for me.

Finally I would also like to thanks the staffs of Sudan University of Science and Technology for their help.

Abstract

Power saving is a reduction in the amount of energy consumed in a process or system or by an organization or society, through economy and rational use. Power consumption become one of the problems in Sudan due to the high rate of KW that vary in price depending on the usage, in universities and educational institutes the consumption of power become a problem due to the high power usage daily within the working hours or on the break time, that affect the overall budget.

The aim of the thesis is to reduce power consumption by designing and implementing power monitoring and control circuit to reduce the power consumption in lecture room. The circuit uses wireless link between the class room and the power mains, while the Radio Frequency Identification (RFID) tag of the lecture is identified. Passive RFID module was used to detect the RFID tag and transmit it to the receiver in order to switch ON/OFF the class room appliances and start counting to the end of the lecture time in order to switch off.

مستخلص

توفير الطاقة هو تخفيض كمية الطاقة المستهلكة في عملية أو نظام على يد المنظمة أو المجتمع من خلال الأقتصاد وترشيد الأستخدام. أستهلاك الطاقة الكهربائية أصبحت واحدة من المشاكل في السودان بسبب أرتفاع معدل الكيلوواط التي تختلف في الأسعار اعتماداً على الأستخدام. كما في الجامعات و المعاهد العليا بسبب أستهلاك الطاقة العالية يوميا في قاعات الدراسة التي تعمل عادة طوال اليوم. لذلك توثر على الميزانية العامة وتسبب هدر للطاقة الكهربائية.

يهدف هذا البحث لتقليل من أستهلاك الطاقة الكهربائية عن طريق تصميم وتنفيذ دائرة تحكم لمراقبتها وللحد من أستهلاك الطاقة في قاعات المحاضرة .أستخدمت الموجات الراديوية كوصلة لاسلكية بين قاعات المحاضرة ومصدر التيار الكهربائي الرئيسي، ويتم تحديدها عن طريق الرقاقات الراديوية (البطاقة السلبية) التي تعمل كمفتاح للتيار الكهربائي في قاعة المحاضرة لأيقاف وتشغيل الأجهزة الكهربائية لتستند الى أوقات المحاضرات.

Table of Contents

	Page		
الاية	i		
Dedication	ii		
Acknowledgment	iii		
Abstract	iv		
مستخلص	V		
Table of Contents	vi		
List of Figures			
List of Tables	xi		
Chapter One: Introduction			
1.1 Preface	1		
1.2 Problem Statement	3		
1.3 Objectives	3		
1.4 Methodology	3		
1.5 Thesis Layout	3		
Chapter Two: Literature Review			
2.1 Radio-Frequency Identification	5		
2.1.1 Design of RFID	5		
2.1.2 Uses of RFID	9		
2.1.3 RFID working mechanism	9		
2.2 Active, Semi-Passive and Passive RFID Tags	10		
2.2.1 Advantages	12		
2.2.2 Disadvantages	12		
2.3 RFID Security	13		
2.4 Block Diagram	14		
2.5 Recruitments and Components	15		

2.5.1 Microcontroller			
2.5.2 Programs			
2.5.3 RFID reader			
2.5.4 Capacitor	18		
2.5.5 Relay			
2.5.6 ULN2804			
2.5.7 Voltage regulator	20		
2.5.8 Resistor	20		
2.5.9 Crystal oscillator			
2.5.10 Amplitude shift keying	22		
2.5.11 Encoder and decoders working mechanism	24		
2.6 Liquid Crystal Display	26		
Chapter Three: Main Circuit Implementation			
3.1 Transmitter Flowchart	28		
3.2 Receiver Flowchart			
3.3 Transmitter Circuit Diagram			
3.4 Receiver Circuit Diagram	31		
3.5 Programming Environment	31		
3.6 ATMEL AVR	32		
3.6.1 AVR overview			
3.6.2 AVR pin description	34		
Chapter Four: Circuit Testing, Simulation and Results			
4.1 Introduction	35		
4.2 Transmitter Circuit	35		
4.3 Receiver Circuit	36		
Chapter Five: Conclusion and Recommendations			
5.1 Conclusion	39		
5.2 Recommendations	39		

References	40
Appendix A: Transmitter Code	41
Appendix B: Receiver Code	48
Appendix C: ATmega 16, ATmega 16L Data Sheet	C1
Appendix D: 2 ¹² Series of Encoders Data Sheet	D1
Appendix E: 2 ¹² Series of Decoders Data Sheet	E1
Appendix F: ASK Super Regenerative Receiver	F1
Appendix G: ASK Transmitter Module Data Sheet	G1
Appendix H: ULN2803 and ULN2804 Data Sheet	H1
Appendix I: Positive Voltage Regulator Data Sheet	I1

List of Figures

Figure	Title	Page
2.1	Electronic product code	7
2.2	Tree binary method of identifying an RFID tag	8
2.3	RFID tags used for tracking luggage	10
2.4	Transmitter block diagram	15
2.5	Receiver block diagram	15
2.6	Microcontroller architecture	16
2.7	RFID reader module	17
2.8	Electrolyte capacitor	18
2.9	Relay device structure	19
2.10	Current amplifier integrated circuit (ULN2804)	19
2.11	Voltage regulator	20
2.12	Crystal oscillators	22
2.13	ASK carrier signal	22
2.14	Demodulator	23
2.15	ASK modulator	23
2.16	Encoders HT12E	25
2.17	Decoders HT12D	26
2.18	Liquid crystal display	26
2.19	LCD interface to microcontroller	27
3.1	Transmitter flowchart	28
3.2	Receive flowchart	29
3.3	Transmitter circuit	30
3.4	Receive circuit	31
3.5	AVR ATMEGA16L microcontroller	33
4.1	Simulation of transmitter circuit	35
4.2	Transmitter circuit	36

4.3	Simulation of receiver circuit	36
4.4	Receiver circuit	37

Lists of Tables

Table	Title	Page
4.3	Distance required for tag	37
4.4	Time required to read tag	38
4.6	Response time	38