## Appendices

## APPENDIX 1

## MEDIA

### 1.1. Nutrient Agar

| Ingredients | Gms / Litre |
| :--- | :---: |
| Peptic digest of animal tissue | 5.000 |
| Sodium chloride | 5.000 |
| Beef extract | 1.500 |
| Yeast extract | 1.500 |
| Agar | 15.000 |

Final pH (at $25^{\circ} \mathrm{C}$ ) $7.4 \pm 0.2$

## Directions

Suspend 28 grams in 1000 ml distilled water. Heat to boiling to dissolve the medium completely. Dispense as desiredand sterilize by autoclaving at 15 lbs . pressure $\left(121^{\circ} \mathrm{C}\right)$ for 15 minutes. Mix well before pouring.

### 1.2. Peptone Water

Ingredients Gms / Litre
Peptic digest of animal tissue 10.000
Sodium chloride 5.000
Final pH (at $25^{\circ} \mathrm{C}$ ) $7.2 \pm 0.2$

## Directions:

Suspend 15.0 grams in 1000 ml distilled water. Add the test carbohydrate in desired quantity and dissolve completely.Dispense in tubes and sterilize by autoclaving at 15 lbs pressure $\left(121^{\circ} \mathrm{C}\right)$ for 15 minutes.

### 1.3. Simmons Citrate Agar

| Ingredients | Gms / Litre |
| :--- | :---: |
| Magnesium sulphate | 0.200 |
| Ammonium dihydrogen phosphate | 1.000 |
| Dipotassium phosphate | 1.000 |
| Sodium citrate | 2.000 |
| Sodium chloride | 5.000 |
| Bromothymol blue | 0.080 |
| Agar | 15.000 |
| Final pH ( at $\left.25^{\circ} \mathrm{C}\right) 6.8 \pm 0.2$ |  |
| Directions |  |

Suspend 24.28 grams in 1000 ml distilled water. Heat to boiling to dissolve the medium completely. Mix well and distribute in tubes or flasks. Sterilize by autoclaving at 15 lbs pressure $\left(121^{\circ} \mathrm{C}\right)$ for 15 minutes.

### 1.4. Starch Agar

| Ingredients | Gms / Litre |
| :--- | :---: |
| Peptic digest of animal tissue | 5.000 |
| Sodium chloride | 5.000 |
| Yeast extract | 1.500 |
| Beef extract | 1.500 |
| Starch, soluble | 2.000 |
| Agar | 15.000 |
| Final pH (at $\left.25^{\circ} \mathrm{C}\right) 7.4 \pm 0.2$ |  |

## Directions

Suspend 30 grams in 1000 ml distilled water. Heat to boiling to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure $\left(121^{\circ} \mathrm{C}\right)$ for 15 minutes. Mix well and pour into sterile Petri plates.

### 1.5. Urea Agar Base (Christensen)

| Ingredients | Gms / Litre |
| :--- | :---: |
| Peptic digest of animal tissue | 1.000 |
| Dextrose | 1.000 |
| Sodium chloride | 5.000 |
| Disodium phosphate | 1.200 |
| Monopotassium phosphate | 0.800 |
| Phenol red | 0.012 |
| Agar | 15.000 |
| Final pH (at $\left.25^{\circ} \mathrm{C}\right) 6.8 \pm 0.2$ |  |

## Directions

Suspend 24.01 grams in 950 ml distilled water. Heat to boiling to dissolve the medium completely. Sterilize byautoclaving at 10 lbs pressure $\left(115^{\circ} \mathrm{C}\right)$ for 20 minutes. Cool to $50^{\circ} \mathrm{C}$ and aseptically add 50 ml of sterile $40 \%$ UreaSolution (FD048) and mix well. Dispense into sterile tubes and allow setting in the slanting position. Do not over heator reheat the medium as urea decomposes very easily.

### 1.6. Nutrient Broth

Ingredients Gms / Litre
Peptic digest of animal tissue 5.000
Sodium chloride 5.000
Beef extract ..... 1.500
Yeast extract ..... 1.500
Final pH (at $25^{\circ} \mathrm{C}$ ) $7.4 \pm 0.2$

## Directions

Suspend 13 grams in 1000 ml distilled water. Heat, if necessary, to dissolve the medium completely. Dispense as desired and sterilize by autoclaving at 15 lbs pressure $\left(121^{\circ} \mathrm{C}\right)$ for 15 minutes.

# APPENDICES TWO <br> REAGENT 

### 2.1. Lugol's iodine solution

To make 1 litre:
Potassium iodide 20 g
Iodine $\quad 10 \mathrm{~g}$
Distilled water 1000 ml

## Direction

Weigh the potassium iodide, and transfer to abrown bottle premarked to hold 1 litre.
Add about a quarter of the volume of water, and mix until the potassium iodide is completely dissolved. Weigh the iodine, and add to the potassiumiodide solution. Mix until the iodine is dissolved.

### 2.2. Oxidase reagent

Prepare freshbefore use.
To make 10 ml :
Tetramethyl-p-phenylenediamine 0.1 g
dihydrochloride*
Distilled water 10 ml

## Direction

Dissolve the chemical in the water

### 2.3. Crystal violet Gram stain

To make 1 litre:
Crystal violet 20 g
Ammonium oxalate 9 g

Ethanol or methanol, absolute 95 ml
Distilled water
1000 ml

## Direction

Weigh the crystal violet on a piece of clean paper (pre weighed). Transfer to a brown bottle premarked to hold 1 litre. Add the absolute ethanol or methanol (technical grade is suitable) and mix until the dye is completely dissolved.

Weigh the ammonium oxalate and dissolve in about 200 ml of distilled water. Add to the stain. Make up to the 1 litre mark with distilled water, and mix well.

### 2.4. Kovac's Reagent for indole

P-dimethylaminobenzaldehyde 5 g

Amyl alcohol 75 ml

ConcHcl 25ml

## Direction

Disolve the aldhyde in alcohol by gently warming in water path (50-55c), cool and add acid with care. Protect from the light,store at $4^{\circ} \mathrm{C}$.

### 2.5. Nitrate Broth

| Beef extract | 3.0 g |
| :--- | ---: |
| Prptone | 5.0 g |
| Potassium nitrate | 1.0 g |

## Direction

This medium used concentration 0.9 g in 100 ml of distilled water.

Sterlize by autoclaveing $121^{\circ} \mathrm{C}$ for 15 mintes.

### 2.6.Sulphanilic acetic acid Reagent

To make 20 ml

Sulphanilic acid
0.16 g

Acetic acid 20 ml

## Direction

Prepare by mixing 5.7 ml of glacial acetic acid with 14.3 ml of distilled water.

Weight the sulphanilic acid transfer to clean bottle, then add acetic acid mix and dissolve the chemical.

Lable the bottle, store at room temperature.

### 2.7. Alpha Naphthylamine Reagent

To make 20 ml

Alpha Naphthylamine 0.1 g

Acetic acid, $5 \mathrm{~mol} / \mathrm{l}$
20 ml

## Direction

Prepare by mixing 5.7 ml of glacial acetic acid with 14.3 ml of Distelled water

Dissolve and mix, label the bottle, store at $2-8^{\circ} \mathrm{C}$.

