

Dedication

This research work is dedicated to my parents, brothers, sisters, husband and teachers.

Acknowledgements

I would like to express my deep gratitude and sincere thanks to my supervisor Professor Mubarak Dirar Abdallah. Deep thanks to him for his faithful help and assistance. My thanks are also extended to the Department of Physics, Faculty of Science of Sudan University and Technology, the Faculty of Engineering and Technology of Al-Jazeera University and the Faculty of Education, Hantoub, Department of Physics and Mathematics which made their libraries available to me.My gratitude goes also to my family for their patience and financial support, especially my father. At last, but not at least, I thank everyone that helped me in the course of undertaking this research work. Firstly and finally, thanks and praise be to Allah, the almighty.

Abstract

The physics of conduction by hopping in superconductivity is not yet well established. This work is concerned with trying to throw light on conduction by hopping in superconductivity. It uses Schrödinger equation for energy wave function which time and spatial dependent or spatial dependent only. It is found that the wave function is highly localized in most cases which means that electrons conduct through hopping to adjacent atoms only. One solution shows the possibility to electron travelling which agrees with Cooper model. The critical temperature is shown to depend on binding energy. Plasma equation is also used to find new Schrödinger temperature dependent equation. The solution of these equations are based on free particle solution beside quantum expression for resistance. This expression for resistance splits into real and imaginary positive negative one. The real or and positive superconductivity resistance, which represents super resistance vanishes beyond a certain critical temperature, which requires large binding energy and hopping mechanism. This work can be extended to use a new quantum model applications in nano particles, thermodynamics properties and the super fluidity behavior.

مستخلص

تعتبر دراسة التوصيل بالقفز من الدراسات الغير ناضجة. تهدف هذه الدراسة إلي تسليط الضوء علي كيفية التوصيل بالقفز عبر المواد فائقة التوصيل تستخدم الدراسة معادلات (شرودنجر) لموجات فراغ الطاقة المعتمدة علي الزمان والمكان أو المكان فقط توصلت الدراسة إلي أن الموجات تتموضع في أغلب الحالات مما يعني أن توصيل الالكترونات يكون بالقفز للذرات المجاورة فقط تظهر أحد الحلول إمكانية انتقال الالكترونات وهذا يتسق مع نموذج كوبر،حيث تعتمد درجة الحرارة الحرجة علي طاقة الربط استخدمت معادلات البلازما أيضا للحصول علي معادلة (شرودنجر) جديدة تعتمد علي درجة الحرارة حيث تعتمد حلول هذه المعادلة علي حل الجسيمات الحرة بجانب التعبير الكمي للمقاومة وهذا التعبير للمقاومة ينقسم إلي حقيقي وتخيلي أو موجب وسالب حيث ينعدم الجزء الحقيقي والموجب الممثل للمقاومة الفائقة عند درجات الحرارة الاقل من الحرجة وهذا يتطلب طاقة ربط عالية وتوصيل بالية القفز هذا العمل يمكن أن يمتد باستخدام تطبيقات نماذج الكم في جزيئات النانو، والخصائص الديناميكية الحرارية و حالة الميوعه الفائقة.

Contents

Title	Page No
Dedication	I
Acknowledgements	ii
Abstract(Arabic)	iii
Abstract	Iv
Chapter 1	1
Introduction	1
1.1 Problems of Quantum Field Theory (Q.F.T)	2
1.2 Literature Review	2
1.3 Aim of the Work	2
1.4 Presentation of the thesis	3
Chapter 2	4
Quantum field Equations	4
2.1 Introduction	4
2.2 Quantum Equation for the Field	4
2.3 Fields with more than one component	5
2.4 Quantization of the Non-relativistic Schrödinger Equation	6
2.5 Quantum Equations	12
2.6 The N Representation	14
2.7 creation, distraction and number operator	16
2.8 Harmonic oscillator	18
2.9 The Hubbard model	26
2.9.1 Introduction to Hubbard model and exact diagonlization	26
2.9.2 Non – interacting electron	27
2.9.3 Strong correlation and spin physics	31
2.9.4 Hubbard model for superconductivity and Mott insulator	32

Chapter 3 Literature Review	35
3.1 Introduction	35
3.2 On the Heisenberg and Schrödinger pictures	35
3.3 The simplified Hubbard model in one and two dimensions	42
3.4 On the particle – hole symmetry of the fermionic spin less Hubbard model in D=1	55
3.5 On the Quantization of One –Dimensional Conservative System with Variable Mass	61
3.6 One-dimensional Hubbard model of quarter filling on periodic potential	62
3.7 Anomalous Self-Energy Features in the 2D Hubbard Model	73
3.8 Summary and Critique	76
Chapter 4	
Quantum Schrödinger Model in Energy	77
Space	
4.1 Introduction	77
4.2 The Equation of motion	77
4.2. In the energy space	77
4.2.2 Spatial dependent Energy Wave function	78
4.2.3 The time and Spatial Evolutions	81
4.2.4 Harmonic oscillator	83
4.2.5 Crystal field	85
4.2.6 Dirac Equation	87
4.2.7 Klein-Gordon	89
4.2.8 A relationship between state vector and many particle system	91
4.2.9 Harmonic oscillator Critical Temperature	93

4.2.10 Spatial dependent energy wave function and particles in a box	95
4.2.11 Complex Quantum Resistance Model	98
4.3 Discussion	103
4.4 Conclusion	105
4.5 Future Work	105
4.6 References	106