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Abstract 

We investigate nonlinear evolution equations with Lax integrability using the 

tool of differential forms and exterior differential systems. We restate the Lax 

equations of the nonlinear evolution equation in the form of an exterior differential 

system. Therefore, we embark on an attempt to apply the method of Estabrook-

Wahlquist EW prolongation structure, which has reviewed and developed the new and 

extended EW technique. We also extended our analysis to a study of differential 

systems which defined equations that include the Camassa-Holm and Degasperis-

Procesi equations as specific cases.  
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 الخلاصة

غير الخطية مع قابلية لاكس للتكامل وذلك طور التمعادلات  بدراسةسوف نقوم في هذه الدراسة، 

كما شرعنا في المحاولة لمعاينة وتطوير نهج  .باستخدام أدوات الصيغ التفاضلية وأنظمة التفاضل الخارجي

ليشمل تفاضلي النظام لللدراسة اتم تمديد تحليل كما هيكل الاطالة. استابروك ووالكوست وهو ما يعرف ب

 .بروسيس" كحالات خاصة-"ديجاسبيرسهولم" و-"كاماسا معادلتي
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Introduction 

 An exterior differential system on a manifold is a natural generalization of a 

system of partial differential equations. The theory is highly geometrical and 

computational simultaneously. Created and developed by Cartan-Kähler, exterior 

differential system theory has been used largely by differential geometrics. 

An exterior differential system is defined to be a finite set of homogeneous 

analytic differential forms on a domain 𝐷 in a real Euclidean space; analytic functions 

are considered as differential forms of degree zero. A submanifold 𝐷1 of 𝐷 is called 

an integral manifold (or integral, or solution), of the system if the differential forms on 

𝐷1 induced by those in the system are always zero forms. The main purpose of the 

theory of exterior differential systems is, it seems to the writer to find an effective 

method to construct all integral manifolds and to clarify the structure of the set of all 

integral manifolds. The theory is essentially a theory of systems of partial differential 

equations. Namely, given a system of partial differential equations, for instance  

𝐹(𝑥, 𝑦, 𝑢, 𝜕𝑢 𝜕𝑥⁄ , 𝜕𝑢 𝜕𝑦⁄ ) = 0,   

we construct, introducing new variables 𝑝 and 𝑞, a differential system consisting of 

𝐹(𝑥, 𝑦, 𝑢, 𝑝, 𝑞) = 0,
𝑑𝑢 − 𝑝𝑑𝑥 − 𝑞𝑑𝑦 = 0,

                  

on an appropriate domain in the five dimensional Euclidean space (𝑥, 𝑦, 𝑢, 𝑝, 𝑞). If 𝐷1 

is a two dimensional integral manifold of this system and if 𝑑𝑥 and 𝑑𝑦 are linearly 

independent on 𝐷1, we can express the submanifold in the form 

(𝑥, 𝑦, 𝑢(𝑥, 𝑦), 𝑝(𝑥, 𝑦), 𝑞(𝑥, 𝑦)). Then the function 𝑢(𝑥, 𝑦) is a solution of the original 

equations. Conversely if 𝑢(𝑥, 𝑦) is a solution of the original equations, the 

submanifold 𝐹(𝑥, 𝑦, 𝑢(𝑥, 𝑦), 𝜕𝑢(𝑥, 𝑦) 𝜕𝑥⁄ , 𝜕𝑢(𝑥, 𝑦) 𝜕𝑦⁄ ) is an integral manifold of the 

system. 
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The above observation suggests the following restriction to the problem. Fix a 

set of linearly independent Pfaffian forms 𝑑𝑥1, … , 𝑑𝑥𝑝 on 𝐷 and restrict our attention 

to the integral manifolds on which 𝑑𝑥1, … , 𝑑𝑥𝑝 are linearly independent. In this case, 

the functions 𝑥1, … , 𝑥𝑝 will be called independent variables. 

The thesis involves five chapters. Firstly, we dealt with exterior differential forms. 

Some algebraic properties of exterior forms are revealed and a degree decreasing 

operation called the interior product of a form with a vector field is defined. Then the 

ideals of the exterior algebra are defined, the exterior derivative of differential forms 

is introduced as to satisfy certain requirements. After briefly glancing over closed 

ideals, the Lie derivative of a form with respect to a vector field is introduced. 

Secondly, we introduced the concepts of closed exterior differential system, 

outlined the theory of completely integrable systems (Frobenius theorem) and the 

Pfaffian equation. Cauchy characteristics of exterior differential systems come up 

naturally. Some arithmetic invariants are introduced for Pfaffian systems. Then, we 

present the integral elements and Cartan-Kähler theorem which is gives as 

generalization of the Cauchy-Kowalewsky theorem, we arrive at the notion of Kähler-

regular flag of the integral elements. Moreover, then we introduce the substantial 

concepts of involution and prolongation which are plays an enormous role on 

forthcoming chapters. 

Eventually, we investigate with Lax integrability using the tool of differential 

forms and exterior differentials. The relation between complete integrability and Lax 

integrability will also be discussed. on the other hand, the Lax equation of the NLEE 

will be restated in the exterior differential form. Last but not least we devote our study 

about the method of Wahlquist-Estabrook, we attempt to apply prolongation 

structures to generalized Korteweg-deVries (KdV) equation. Furthermore, we 

illustrate the method in detail for Lax-integrable versions of the nonlinear generalized 

(KdV) equation and conservation laws arise and can be expressed in this context will 

be discussed based on the defining exterior differential system. Finally, this work is 
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extended to a study of a differential system of one-forms which define an equation 

that includes the Camassa-Holm equation and Degasperis-Procesi equations as 

specific cases. 
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