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Abstract

In this research we considered the geometrical interpretation of the wave
equation. We have constricted the geometrical set up for the problem such as
fiber bundle and it's coresection . We have also utilized Lorentzian geometry
to formulate our problem, where we have described our boundary conditions
on Cauchy hyper-surface. This has led to a parallel construction of Green's
Function appropriate to a global description of wave equation on differential
manifold. The formulation of the solution yields the local solution on space
time as known before.
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Introduction:

The thesis developed Green’s function techniques for both single and
multiple dimension problems in differential equations,[1, 2] then applied
these techniques to solve and describe the different sorts of boundaries and
boundary conditions which can occur for the N-dimensional problem and
write the solution for the N-dimensional problem in terms of the Green’s
function[3, 4] . As the geometric meaning of Green’s function, the thesis
discusses the solution theory of geometric wave equations as they arise in
Lorentzian geometry[5, 6], for a normally hyperbolic differential operator the
existence and uniqueness properties of Green functions and Green operators
has been discussed including a detailed treatment of the Cauchy problem on a
globally hyperbolic manifold both for the smooth and finite order setting,[7-
10] An introduction to the theory of distributions on manifold is also
discussed [5, 11], The thesis is composed of five chapters.

In the first chapter the Green's function methods was described and
developed to n-dimensional spaces, Section 1.1 described an Inner product
and was used to introduce the notation of orthognality in a Hilbert spaces and
the geometry of Hilbert spaces is almost in complete agreement with the
intention of linear spaces [12, 13] . Also described some important classes of
bounded linear operators on Hilbert space, including Projections, adjoint
operators, unitary operators, and self-adjoint operators. also the ( Riesz
representation ) Theorem 1.1.8 was proved, which characterizes the bounded
linear functional on Hilbert spaces , some general definitions of unbounded
operators, adjoin and self-adjoint of linear differential operators was given .

Section 1.2 was aimed to describe the theory of one- dimensional Green’ s
function for a second order ordinary linear differential equation with a
homogeneous boundary conditions, and concerned with a self-ad joint
equation (1.13) and gave some properties of the Green Function and
generalization to equation of n™ order [14, 15].

Section 1.3 extended the study of one- ndimensional Green's functions of
linear ODEs to higher dimensional Green's functions of linear PDEs of
mathematical physics, and represented a geometrical structure called an m-
dimensional manifold or surface in the n-space. The section also considered
Cauchy problem[16-18].
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In the second chapter the stage for the relevant analysis on manifolds
was set, In Section 2.1 the test function and test section spaces was introduced
and investigated their locally convex topologies. The central result will be
Theorem 2.1.9 establishing the LF topology for compactly supported smooth
sections as well as important properties like completeness of this topology.
Moreover, continuous linear maps between test section spaces has been
studied[19-21], Section 2.2 discussed differential operators and their
symbols. In particular, introduced a global symbol calculus based on the
usage of covariant derivatives[22, 23]. and showed that differential operators
have adjoints for various natural pairings and compute the adjoints explicitly
by using the global symbol calculus, in Theorem 2.2.19 . Section 2.3 led to
the definition of distributions or, more precisely, of generalised sections. and
defined the weak topolpgy and explain the support and singular support of

generalized sections[24, 25] .

Chapter 3 contains a rough overview on Lorentz geometry, as Proper
actions and locally homogeneous Lorentzian 3-manifolds[11], Deformations,
Einstein Universe. Section 3.1 recalled some basic concepts from semi-
Riemannian geometry like parallel transport and the exponential map of a
connection. Section 3.2 mainly focused on true Lorentzian geometry on
aspects related to the causal structure. Also, for the wave equations, recalled
some features of general relativity[26, 27]. This gives the notions of time
orientability, causality, and ultimately, of Cauchy hypersurfaces[10]. Also
discussed the characterization of globally hyperbolic spacetimes by the
existence of smooth Cauchy hypersurfaces in Theorem 3.7.22.[28, 29]

Even though Chapter 4 deals with the local construction of Green
functions and needs already geometric concepts like parallel transport and the
exponential map.Section 4.1 starting with the wave equation on flat
Minkowski spacetime and obtaining the advanced and retarded Green
functions by constructing an entirely holomorphic family {Ri (a)}aecof
distributions[5, 6, 30] .Section 4.2 used the exponential map to transfer the
Riesz distributions to the curved situation, at least in a small normal

neighborhood of a given point. However, the curvature will now cause
slightly different features of the Riesz distributions which results in the failure

of R*(p,2) being a Green function of the scalar d’Alembert operator[31-34].
the Section 4.3 formulated an heuristic Ansatz for the true Green function

Vi



coefficients. As an application of this general approach, the Hadamard
coefficients for the Klein-Gordon equation in flat spacetime explicitly was
computed and obtained an explicit formula for the advanced and retarded
Green functions in Theorem 4.3.8. Section 4.4 showed how a true Green
function with good causal properties can be obtained from the Hadamard
coefficients[35]. The result is a parametrix which can be modified in a second
step to obtain the Green functions in Theorem 4.4.15. As a first application
we use the local Green functions to construct particular solutions of the
inhomogeneous wave equation for distributional and smooth inhomogeneities
in Section 4.5 in Theorem 4.5.9.[36, 37]

Chapter 5 is then devoted to the global situation. First the notion of the
time separation on a Lorentz manifold was recalled in Section 5.1 which is
then used to prove uniqueness of solutions in Theorem 5.1.8 with either future
or past compact support provided the global causal structure is well-behaved
enough[8, 38]. Section 5.2 contains the precise formulation of the global
Cauchy problem as well as its solution for globally hyperbolic spacetimes and
discusses both the smooth situation as well as certain finite differentiability
versions of the Cauchy problem in Theorem 5.2.10.[39-41]The continuous
dependence on the initial values in the Cauchy problem follows from general
arguments using the open mapping theorem[42, 43]. This feature is then used
in Section 5.3 to obtain global Green functions and the corresponding global
Green operators[3, 4]. The difference of the advanced and retarded Green
operator provides an “inverse” to the wave operator in the sense of a specific
exact sequence discussed in Theorem 5.3.16.[44, 45]
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Chapter (1)

Green’s Functions on N-dimensional Spaces



Chapter (1)
Green’s Functions on N-dimensional Spaces

(1.1) Linear Differential Operators
(1.1.1) Inner Products:
Definition (1.1.1):[46]

An inner product on a complex linear space X is a map (.,.) : XXX - C
,Such that, for allx,y.z € Xand A,u € ¢

(a) x,by+pnz)=r(x,y)+ un(x, z) (linear in the second argument )

(b) (v,x )=(Xy ) (Hermitian symmetric ) .

(¢) (x,x)>0 (nonnegative )

(d) (x,x)=0 ifand if x = 0 (positive definite ) . We call a linear space with
an inner product an inner product space or a pre- Hilbret space .

Definition (1.1.2):

A norm on Xif X is a linear space with an inner product (.,.) , then we can
define a norm on X by

Ixll = V&%) (1.1)

Thus, any inner product space is a normed linear space. We will always use
the norm defined in (1.1) on an inner product space.

Definition (1.1.3):[12]
A Hilbert space is a complete inner product space.

In particular, every Hilbert space is a Banach space with respect to the norm
in (1.1).

( 1.1.2) Orthogonality:

Ifx , y are vectors in a Hilbert space H, then we say that x and y are
orthogonal x L y, if (x,y) = 0 ,The subsets A, B are orthogonal, A L B if
x Ly for every x € A andy € B. the orthogonal complement A of a subset
A is the set of vectors orthogonal to A. A = {x € H| x L yforally € A}



Theorem (1.1.4):(Projection) [17]
Let M be a closed linear subspace of a Hilbert space H .

(a) For each x € H there is a unique closest point y € M such that

min

i llx—zl (12)

Ix —yll =
(b) The point y € M closest to x €H is the unique element of M with the
property that (x - y) LM.

The decomposition x=y+z ,with yeEM , z€ N is unique if and
only if M NN = {0}

Definition (1.1.5):
A Projection on a linear space X is a linear map
P:X - X such that P> =P (1.3)

assciated with x =m+n with ,yeM ,z€N
hince ranP =M and N

Theorem (1.1.6):

let X be a linear space.

(a) if P:X — Xis a Porojection ,then X = ran P @ kerP.
(b)if X =M @ N,where M and N are linear subspaces of X,
then there is a Porojection P: X — X

withran P= Mand ker P =N
Definition(1.1.7):Orthogonal Projection

Orthogonal Projection on Hilbert space H i1s a linear map P:X —
X that satisfies

P2=P. (Px,y)= (x Py) forall x,y € H.
Orthogonal Projection is necessarily bounded
Theorem (1.1.8) ( Riesz Representation )

If ¢ is abounded linear functional on a Hilbert space H then there is



a unique vectory € H Such that:
¢(x) = (y,x) forall x,y € H, (1.4)
proof. if ¢ = 0and y = 0, so let that ¢ # 0, then ker ¢ is proper closed

subspace of H, and anone zero vector z € H such that z L ker ¢. we define
a linear map p: H — H by
3 w@ﬂz

p(2)

then p? = p, so theorem (1.1.6) implies that H = ran P @ kerP. Morover

p(x)

ran P = {az | a € C},ker P = ker ¢,
so thatran P L ker P. It follows that P is an orthognal projection,and
H={az |a€C}Dkerg
is an orthognal direct sum,then
x=az+n, a€Candn€Kkerep
taking the inner product of this decompostion with z, we get

_fax)
IzI12

and evaluating @ on x = az + n, we find

@(x) = ap(2).
50 p(x) = (y,x),
where
o(2)
Y 22"

thus, every baunded linear functional is given by the inner product with a
fixed vector.



(1.1.3) Bounded Operators: [13]
Definition (1.1.9) The Adjoint of an Operator:
The adjoint of a bounded operator on a Hilbert space. Is defining as adjoint
A*eB (H) ofan operator A € B(x) such that

(x,Ay) = (A*x,y) for all x,y € H. (1.5)
The definition implies that

(A")*=A (AB)" = B'A"

Definition (1.1.10) Self-adjoint Operators:[3]

Abounded linear operator A:H — H on a Hilbert space H is Self-
adjoint if A" = A.Equivalently, a bounded linear operator Aon H is self-
adjoint if and only if

(x,Ay) = (Ax,y)forallx,y € H
Example (1.1.11) :[47]
Let k :L2([0,1]) = L2([0,1]) be an integral operator of the form Kkf(x) =
) 01 k(x, y)f(y)dy , is self- adjoint if and only if k(x,y)= k(y,x) .
Given linear operator A : H — H we may define sesquilinear form ,
aaHxH ->C

bya(x,y) = (x,Ay).if A is self-adjoint, then this form is Hermitian
symmetric, or symmetric, meaning that

akxy) = a[,%)
It follows that the associated quadratic form q(x) = a(x, x),
Or q(x) = (x, Ax) (1.6)
Is real-valued. We say that A is nonnegative if it is self-adjoint and
(x,Ax) = 0 forallx € H
And A is positive, or positive definite , if it is self-adjoint
And (x,Ax) > 0 for everynonzerox € H.

If A 1s a positive, bounded operator, then



x,y) = (x,Ay)
Defines an inner product on H .
If, in addition, there is a constant ¢ > 0 such that
(x,Ax) = c||x||? forallx € H (1.7)

Then we say that A is bounded from below , and norm associated
with (.,.) is equivalent to the norm associated with (.,.)

Corollary (1.1.12):

If A is a bounded operator on a Hilbert space then||A* A||= ||A|l? JIf A is
self-adjoint , then ||A]|? = ||A? ||

Definition (1.1.13) Unitary (Orthogonal ) Operators:

A linear map U : H; — H, between real or complex Hilbert spaces H;
and H, is said to be orthogonal or unitary, respectively, if it is invertible and
if (uy,uy)y, =(x,y)y, forallx,y € H.Since Hjand H; are isomorphic as
Hilbert spaces if there is a unitary Linear map between them, Thus, a unitary
operator is one-to-one and onto, and preserves the inner product.
U : H - H isunitary if and only if

U'u=00" = 1 (1.8)

Example (1.1.14):

The operator U: L2 (T) » e2?(z)that maps a function to its Fourier
coefficient is unitary. Explicitly, we have

Uf = (cplnez, N "f(x)e X d(x) (1.9)

1 2
= 7o

Thus, the Hilbert space of square inferable  functions on the circle is
isomorphic to the Hilbert space of sequences on Z

(1.1.4) Unbounded Operators:
Definition (1.1.15):

The definition of an unbounded linear operator A : D(A)cH->H,
acting on Hilbert space H therefore includes the definition of its domain
D(A). An operator A is an extension of A. or A is a restriction of A,



If D(A)>D(A) and Ax=Ax for all x€D(A), we can write

A> AorAc A. The adjoint of an unbound operator A: D(A) c H— H is
an operator A* : D(A") c H - H ,then (Ax,y) = (x,A"y)

for all x € D(A) and ally € D(A") (1.10)

Definition (1.1.16):

Let A:D(A) c H—- H is densely defined unbounded linear operator on
Hilbert space H the adjoint operator A* : D(A*) € H — H is the operator
with domain,

D(A*) = {y € Hthereisaz € H},
with (Ax,y) = (x,z) forall x € D(A)

Ify € D(A*) then we define A"y =2z , where z is the unique element such
that (Ax,y) = (x,z) forallx € D(A),we can say that the adjoint of
differential operator is another differential operator ,which we obtain by using
integration by parts, the domain D(A) defines adjoint boundary conditions for
A, and the domain D(A*) defines adjoint boundary conditions for A*, the
boundary conditions ensure that the boundary terms arising in the integration
by parts vanish.

Definition(1.1.17):
An unbounded operator A is self-adjoint if
A* = A meaning that D(A*)=D(A), And A* x =Ax forall x € D (4),

An unbounded operator A is symmetric if A* is an extension of A meaning
that, D(A") D D(A)and A*x = Ax forall x € D(A).

Proposition (1.1.18):

if A :D(A) c H-H ,is a densely defined linear operator on a Hilbert space H
with a bounded inverse A™!: H - H, then (A*)™!=(A"1)*

Definition(1.1.19):

The adjoint of a differential operator, we consider differential operators
acting on smooth functions,take a linear ordinary differential operator



Au=Y,a;u® (1.11)
Where u® denotes the jth derivative of u, and the coefficients a; are real or
complex-valued functions. Our goal is to study B V Ps
( boundary value problems),For (ODs) of the form
A,=f,and B, =0, (1.12)
where B;, = o denotes a set of linear boundary conditions.
(1.2) One-dimensional Green's Functions:
(1.2.1) Introduction: [2, 48]
We are concerned with a self-ad joint equation of the form
Liy) =[Pyl +a®y =X (1.13)

Where P(x) and q(x)are continuous functions of X on a given interval
l:a<x<b andp(x)>0

Domain and Range of The Operators (1.2.1)

L2[a, b] is the Hilbert Space of all square integrable functions on [a, b],
since i.e., f € L*(a,b]) if [ ]f|2dx < oo.
let S be the linear manifold of L?[a, b]

such that for y(x)eS, L(y)el?[a,b] and y(x) satisfies given boundary
conditions,then S and L?[a,b] will be the domain and range spaces of the
differential operators L involved in the problems. S will be called the space
of testing functions of the operators, from equation (1.13) with

By: ajy(a) +azy(a) =0
By: byy(b) +byy(b) =0
If L~ 1denotes the operator inverse to equation (1.13) with B;. B,
y(x) = L7 f(x).

Since Lis a differential operator, we expect L™ to be an integral operator.
thus y will be of the form



v (6)= [ 6,0 (e (14

then G(x,t) defined ona < x < b,a < t<b is called the Green's Function of
the differential problem .

let y;(x) be a solution of the homogeneous equation satisfying conditionB;,
but not B, and y,(x) a solution satisfying condition B, but not
B, then y; (x),y,(x) will be linearly independent, we shall call y;(x) and
y,(x) respectively the left hand and right hand solutions,their Wronskian is
non-vanishing.

ie. W(x) = W(y,y;) # 0 ,where

W(x) = y1(X)yz (%) — y2(x)yy’(x) then

y(x) = AX)y1(x) + B(x)y (1.15)

be the solution of (1.13).Then
A (x)y;(x) + By, (x) =0 (1.16)
Ay () + BRIy () = 5 (1.17)

Solving (1,16) and (1,17) for A’(x) and B’ (x) we have

/ _ _ ¥ (x)f(x) / _ y1(0f(x)
Ax) = PCOW)” B'(x) = e (1.18)

we now show that A (b) = 0,B(a) =0
from (1.16) y'(x) = AX)yy'(x) + B(x) y»'(x)
hence 0 =ayy(a) +azy’(a)
= a;{A(a)y;1(a) + B(a)y,(a)} + a,{A(a)y:'(a) + B(a)y,'(a)
= B(a){a1y,(a) + azy,'(a)}

Since a,y,(a) + a,y’(a) # 0, we have B(a) = 0. Similarly using condition
B, we can prove that A(b) = 0, using the Abel’s formula

P(x)W(x) = constant = C

weget A = [[2% 4 c=POW®



B(x) = j%ﬁ(o dt.

using(i) we get

= [7G(x Df(t)dt (1.19)
Y1(X2:}’2(t) <x<t<b

where G(x,t) = (1.20)
—yl“)cyz(x) axt<x<b

from the symmetry of x and t in G(x, t) , we can rewrite ( 1.19) as

y(® = [ G(x, f(x) dx (1.21)
( 1.2.2) Properties of Green's Function:[43, 49]

The Green’s function G(x,t) of a self-adjoint homogeneous boundary-value
problem.

Lyy=0 a<x<b
By:a;y(a) +azy(a) =0
Byt byy (b)tbyy'(b) =0
is characterized by the following properties

(1) G(x,t) is continuous in the domaina < x, t<b.

.4 0GKxY . .. . . . .
(ii) % is discontinuous at x = t, with the jump given by

0G(t-0)  9G(t+0,) _ -1
ax ax  p( (1.22)
0G(t-0t) _ [ dG(x,Y) dG(t+0,t) _ [ AG(x,t)
where = [ ™ ]x=t when x <t , and — = [ ™ ]x=t When
x=>t

(iii) withx as the independent variable, G(x,t) satisfies the differential
equation L(y) = 0 except at x = t.

(iv) G(x,t) as a function of x satisfies the boundary conditions B, B,,.



(v) G(x,t) = G(t, x).
the above properties are said to define G(x, t).
Remark (1.2.2)

If G(x,t) is regarded as a function of t,then the jump (1.22) could be
expressed in the form
0G(x,x+ 0) B 0G(x,x —0) 1
at B at "~ p(®)

Remark (1.2.3):[50]
(L G(x,t) as a distribution), let L(y) = f(x)
ona=—o,b=oo,theny(x) = [_. G(x,)f(D)dt
take y(x) = L' f(x), then L(y) = (LL"Df () = (%)

S5 LG, Df ®dt = f(x) (1.23)

where L is a function on x by using Dirac’s Function

j S(x)dx =1
Dirac’s Function has the following sifting property
[2 8¢ —f@®)dt = f(x)... (1.24)

Comparing (1.23) and (1.24) we have

LG(x,t) = 6(x —t) ,A solution of L(y) = 6(x —t) satisfies properties
(i), (ii) and (iii) of a Green's function and hence is a fundamental solution
of the equationL(y) = 0.

(1.2.3) Generalization to Equation of nth Order :

Consider the BVP

L(y) = Po(x)y™ + P (x)y™ ™V + B (x)y=0  ...(M)
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BC:YL 1 aj y ™ (@) + Xy by® P (b) = 0(k = 1,...,1) ....(N)
where the p;(x)are continuous and p, > 0 on the interval
[=a<x<bh.
the Green’s function of the BVP (M), (N) is a bivariate function
Gx,t),a<x,t<b
Characterized by the following properties

(i) G(x, t)Is continuous in x,t and has continuous derivatives with respect to
x or t up to order n — 2 on the interval I.

0" 1G6(x,t)

(i) 6

is discontinuous at x = t with a jump given

0" G(t—ot) d"M'G(ttot) _
9xn—1 gxn—1 - 1/P(t)

(iii) G(x, t) satisfies the equation L(y) = 0 exceptatx =t

(iv) G(x,t) as a function of x satisfies the boundary conditions (N).

In addition if L is a self-adjoint differential operator, thenG (x, t) is symmetric,

G(x,t) =G(t,x), (1.25)
Note: Heavisile’s unit functio
_(1 x>0 N
H(x) _{O o H@=5® (1. 26)

Theorem (1.2.4)
Let G(x, t)is the Green’s Function of the homogeneous problem.

Ly) =(@y) +qy=0 (1.27)
B, : a;(a) + ayy'(a) = 0,B; : by(b) + byy'(b) =0,

p>0,a<x<b.
then
L(y) = f(x) (1.28)

with conditions B; B, is given by y(x) = f; G(x,t)f(t)dt

11



the converse holds.
Green's Function as a Convolution Kernel (1.2.5):[51]

One of the technique of operational calculus, is integral transforms, the
following examples illustrate Laplace, Fourier, Mellin and Hankel transforms

= (ZiE)"F($)
Definition(1.2.6):

Let G (x) be a frequency function and let
fO) =[" Glx—1t) () dt (1.29)

then the kernel G (x) is said to be variation diminishing if the number of sign
changes in f (x) never exceeds the number of sign changes in

G(x)on —o0 < x < o0,
Green’s Function as Reproducing Kernel(1.2.7):

Let X be a real or complex inner product space of function on R. A function
K (x,t) of two variables x,t € R is called reproducing kernel for the space
X if
(a) For each fixed t K(x,t) € X.
(b) For every f(x) € X, the reproducing property

fG) = (f (@), k(x, 1)) , holds.

The reproducing property of the Green’s function actually emanates from
the reproducing (i.e., sifting) property of the Dirac’s delta function

8 (x — t).for if we define an inner product in L2[0,1] by

(f,9)c = J, F(D.g(Ddt (130)
The suffix in the bracket indicating variable of integration, then
fO) = 7, f©)8(x = O)dt = (F (), 8(x = 1)) (131)

The Green’s function of an operator of L(D) satisfies
L(D)G(x,t) = §(x —t).

Suppose we define an inner product of f, g by

12



(f.9) = [*, fGLD). g(Ddt ,
Then (f (£), G (x,£)) = [ [£(£). LID)G (x,1)] dt
= [Z f©) 60 —t)dt = f(x) (1.32)

Thus with appropriate inner product. a Green’s function can be made to act as
a reproducing kernel.

Energy Inner Products (1.2.8):[18]

Some of the specific of inner products are particularly suited to the
variational methods in finite elements Energy inner products is an example.

Definition (1.2.9):

A linear operator A in inner product space X 1is said to be positive definite if
(Ax,x) > unlessx = 0

The operator is said to be symmetric if
(Ax,y) = (x,Ay) forallx,y, € X.
Definition (1.2.10):
Let X=L1[0])

where

(f.¢), =] f()g()de (1.33)

Let A be a positive definite and symmetric operator on X.

Then a new inner product on X be induced byA with the relation
(f.8),=(47.g)=]4r(t)-g(t)ds

Clearly (f-g )A = (g°f)A

Such inner products are called energy inner product, for / = g we have the
energy norm (or energy integral)

13



1, - {J Af-fdr}

They are so called, because they are used to minimize the protential energy of
physical systems.
Example (1.2.11):

Let x denote the linear space of function f(x) in L’[,0]which are n-fold
integrals i.e.,

F (x)-= f%f(t)dt.

o S ()
Introduce in X an inner product by means a bilinear differential expression
(F,G)Azj{iiaiO)Fo)O)Go)Q)}dt (1.34)

Where a, >0,a, >0,a,>0,i=12,......,n—1and A is an operater

AF = Zl C1)la, ¢F O )](i) (1.35)

integration by parts in(1) leads to

(7.6), =+ [ 2 0 @F 00 o O

1 n 4 4 .
=04 [1% 0 {a 0y 6 )6 ()
0 i=1
where P, Q are constants, If conditions are imposed such that P=Q=0, the

(F,G), =(4F ,G)=(F, AG )= (G, F)

A is thus symmetric
also (AF,F):0:>Zai(t)[F"(t)T:o
i=0

i=1,2,..,n = F©()=0

Hence f=0=F=0.
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Hence A is positive definite. Thus the inner product (F,G)" is an energy inner
product.

Now let, G (x,7)be the Green’s function of the BVP,
DE: 4y = 0

BGIY Yo, G)F O =0 =12

At x=0 and x=1.

Reproducing kernel for the inner product space.
It can be verified that G(x,¢) is the reproducing kernel for the problem.
Definition( 1.2.12) (Kernel of an operator):
Let p,(D)=D"+aD"" +a,D"” +....... +a, be a polynomial operator.
Then

kerpn(D)z{feC”:p”(D)f=O}
is called the kernel of the operator p, (D).

Definition(1.2.13) (L-Spline):

Let a function s(x) be defined on [a, b]. We say that s(x) is an L-Spline of
ordern, if there exist is an nth degree polynomial p,(x) and a sequence of

knots X, =a<x, <X, <. <x, <k, =bsuch that

i. On every non-empty interval [x,x,,] s(x) € Ker P, (D)
ii. If every x, has multiplicity j, then s has a continuous (n-1-j)th
derivative in a neighborhood of x, If

Our concern in this note is to define an L-Spline as a Green’s function.
Let ¢< Ker p"(D) and

$(0)=¢'(0)= ... = 2(0)=0,6""0)=1.
SIS

Then ¢, (¢) 1s called the Green’s function of the I[IVP
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p,(D)y =0

y(0)=»"(0)=...= »"1(0)=0. (1.36)

If the knots i have multiplicity "+ then an L-spline s(%)can be represented
as

koor;=1 )
s(x)=gG)+ 2 > a9+ (x-x,)
i=1 j=0 (1.37)
Where % are real numbers and & € ker p,.
Definition( 1.2.14):
A function f(x)is said to be locally integrable on I if
i f(x)is defined on I with the possible exception of a set s, of isolated points

of I called the singularities of 1.
ij f(x)is continuous in I except the singularities The integral of fover any

closed sub-interval of I containing no singularities of fin its interior exists
either as proper Riemann integral or as an absolutely convergent improper
integral. A locally intergrable function f will be

written as f ELOC(])

(1.3) Higher Dimensional Green’s Functions

Let D be a domain in an n-dimensional Euclidean space £, of points

)_c:(xl,xz....,xn).

A PDE of order m of the form.
0" u ( x j ) )

Z Az e G b (xj =/ (x j

(1.38)

Where i, +i, +....+4i,=m and L is a partial differential operator of order less
than m is called

¢ Quasilinear if it is linear only in its highest derivatives.
e Semilinear if it is linear in all its derivatives.
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e Linear if u and all its derivatives are linear and the coefficients are all

functions of x only,
e Non-linear otherwise.
Given a linear partial differential operator

) ok x|, L ou N :
L(u);la,.j(xjw(xj)@b,(x)aL%H(x)u(xjf(x) (139

i=1

=
—

Where;c=(x1,x2, ..... ,X, )€ D,u(xj=u(xl,x2, ..... , X

the inverse of L(u) is an integral operator, the kernel of which is a the
Green’s function. It satisfies the equation.

L(u)=5(xj=5(xl,x2, ...... ) (1.40)

Where 6(}2) is the n-dimensional Dirac delta function. from (1.39) case n=2

1S

o 0 : 0w
G , - ) . 1.41
(ax axj]” i,zjzlaf(xjaxiaxj (141)
And

o ,, 2 )= _anlai/(leilj (1.42)

By transformations

(1.3.1) Partial Differentials of Mathematical Physics:[18, 52]

take the linear PDEs of the form
0°u ou

+ —+vu + h 1.43
ot? H Ot ! (1.43)

Where h is a given function of positive ; 4 , f# ,V

VZiu = A

are certain physical constants and V * is the Laplace operator in coordinates
of the relevant space. For example in Cartesian coordinates.
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eIn one dimension: V? o= >
0x

5 0 ? 0°
eIn two dimensions: Vo= P + 0y °
[ ]

5 a 2 a 2 a 2
eIn three dimensions: V- o= P + 3y Py

. . - a 2 a 2 a 2

elnn dimensions: Vo= P + P ot ox

(1.3.2) Manifolds : [53]

Any consideration of a PDE draws heavily upon geometrical concepts. Hence
we explain certain terms related to geometrical structures in a Euclidean n-
space. In the Cartesian xy-plane, an equation of the form y = f (x) denotes

a curve. For example both functions y = +( )/ represent the same circle

y*+x*=11In R * , equations x = x(t),y = y(t),z = z(t) denote

a space curve.

Acurve x,=x(t),(i=12,..,n), a<t<bin n-space is called a C" curve if

each x, (t)e C". Since the mapping u = a + (b - a) ! maps the unit interval

I=[0,1] onto [a,b] in a one-one continuous manner, there is no loss of

generality in assuming the parameter interval to be [ ie.? 6[0, 1] .A curve in n-

space is defined to be a continues map x : I — R".it is closed curve if
x(0)=x(1) ,acurve x:I — R". is plane curve.

In the three-dimensional space R ° , a surface may be represented by two
parameters u , vV as

xX= x(u,v),y = y(u,V),Z = Z(u,V)

6(x y) 6(x Z)
6(x v) O(u v)

Provided
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S in general if m<n, then for real independent parameters S5 S5 5.-.5 5, |

the equations

X=X(8,8,,...,5,)

ie., X; =X; (51952,---,Sm) (i=1,2,...,n) (1.44)

represent a geometrical structure called an m-dimensional manifold or surface
in the n-space. If m=n-1, the manifold is called a hypersurface. A curve is a
one-dimensional manifold. An equation of the form

f( ;cj =/ (xy.xr..ux, ) = c TOPrESENtS A hypersurface. If the parameters

S15875..-58, appear in the first degree, the manifolds are called planes.
In particular:

A zero dimensional plane is a point

A one-dimensional plane is a straight line

An (n-1)- dimensional plane is a hyperplane

When m=n the plane is the whole space.

If L, is an m-dimensional subspace of R" and Xo €R’ is a fixed

vector, then Xo + L,, is an m-dimensional plane parallel to L , .If xe R",
then the equation

a(x.x)+2b(x)+c =0 L (1.45)

is called a quadratic hypersurface, where a(; 1)is a quadratic form, b(}) 1s a
linear form and c is a constant.

if the running coordi-nates of the point x are X;,X%,..,X, ,then (1.45) can
be written in the form

Zn aijxixj+22}f b,x, + ¢ = 0 (1.46)

i, j=1 i=1

the following canonical forms are noteworthy:
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a) X, +x,+...+x, =7r (Sphere)

b) xlz - x% + o+ xz =1 (Ellipsoid)
al a 2 a n
2 2 2 2.2

c) x—12+...+ sz —%—...— al nz (Hyperboloid)
a, ak a; ., an

2

d) Ax,+A,x; +...+ A, x., —2uxn=0. (Paraboloid)

the equation

X-—a Z(Xl—al)z+...+(Xn—an)2=l/'2

Is the sphere with radius r and centre
a= (al,az,...,an)
we can now introduce the notation of a family of curves and surfaces. If't
is real parameter, the equation

f(x,p5t)=0 (1.47)
represents a single infinity of curves on plane.
the curve will then be represented by

X = x(s;to),y = y(S;to)
In general the system
X, =X, (S;tl,tz,...,tk)(i = 1,2,...,n)

defines a k-parameter or k-fold infinity of curves in n-space. More generally,
for m<n, the system

X, =X, (Sl,sz,...,sm;tl,tz,...,tk)(i = 1,2,...,n)

defines a k-fold family of manifolds.
If m=2 the system

X, =X, (Sl,sz;tl,tz,...,tk)(iz1,2,...,n)

defines a k-fold infinity of surfaces.

(1.3.3) Domain and Range of Operators:[54]

Let dV denote the Euclidean volume element of an n-dimensional region T.
for example, in n-space with Cartesian coordinates
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dV = dxdx,...dx, .
For n=3 in polar coordinates

dV = r’sin Odrd 0d¢

f e ¢ if f is continuous w.rt X;, X,,..., X, oforder n

A function u (?) defined on a domain T is said to be squar-integrable in
the Lebesgue sense if

j u’dV <o,
the space of all such square integrable functions is denoted by L*(T).

an inner product in I2(T) is defined by (u,v)= J- ruvdV

Which induces the norm
||u||= (u,u)% = q Tude )1/2

. : o’
the operators we are going to discuss are V *, aa— and P
t

and their domains will be subsets of L’ (T ) satisfying additional conditions.

The domain of V’ is a subset of Lz(T ) wither its members having
piecewise continuous, square integrable second derivatives and satisfy certain

boundary data on the boundary of T, the domain of the operator aa is the
t
subset of LZ(T ) whose members u are such that 2 is piecewise continuous

at
and square integrable over T and satisfies initial condition such as u(x,O) =0.
the domain of the operator 2 is a subset of L’ (T ) such that its members u
ot’

0’u
ot

have piecewise continuous second derivative

2
Also g—z’ are square integrable and initial conditions such as
t
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u (0 )= 0,‘2”; G.0)=0

are satisfied.

the domain of a combination of these operators is the intersection of the
domains of the operators involved.

(1.3.4) Boundary and Initial Value Problems:

The problem of finding a solution with conditions related to the
boundary is called a boundary value problem (BVP).

Let G be a domain in the (n-1)-dimensional subspace E, , of the variable,

say X;, X,,..., X, . then the following is a Cauchy problem.

Find the regular solution u(x) of the equation

"Zzlézu _0’u _ 0 (1.48)
—, 0x] Ox’ '
Satisfying the conditions
u(xl,xz,...,xn_l,O) = f(x) (1)
ou (xl,xz,...,xnfl,xn) —
ox. o e (x) (i)

For X = (xl,xz,...,xn_l)e G

and f, g are sufficiently smooth functions defined in G.

Conditions (i),(i1) are called Cauchy conditions or initial conditions are
called Cauchy data and the system (1.48), (i)-(i1) is called a Cauchy problem
or initial value problem (IVP). G is called the initial manifold or initial
domain. In the IVP G is the hypersurface obtained by the intersection of the

n-dimensional region T and the hyperplane X, = 0. An initial domain may
not be a proper subset of the boundary.

For example in E, consisting of points (x ,t), the initial domain may be

t = 0 ora subset of it.

22



In general elliptic equations are associated with boundary conditions and
hyperbolic and parabolic equations with initial conditions.

Example(1.3.1):

take the PDE:
0 *u 0 *u
2 = 0
0 x ot
ou
ICs: u(x,0)= f(x)aE: g(x)
The D’ Alembert’s solution to the Cauchy problem is
1 1 1 X+t
ul(x,t)= Ef(x + 1)+ Ef(x —t)+ ij_tg(s)ds ,t>0

The solution exists, is unique and depends continuously on the data f (x )

and g (x ) . Hence the Cauchy problem for the wave equation is well-posed.
diffention(1.3.2)Vectorial Differentiation :Inner and Outer Derivatives.

Let 4 (x ) be a scalar-valued ¢ ' function of position X = (xl, Xyyeues xn)

1.e.,and 9«  are continuous.
0x,

P(Cl)is a given point in space with position vector & = (ala Ayseees an) and

b= (bl ,by,....b, )a given unit vector. The vectorial equation of the ray from

P parallel to bis given by
x=a+s Z_7, 5>0

If O (;) is any point on this ray, then the coordinates of Q are given by the

equations
x=a+sh, (i=12...4) (1.49)
The limit
6_u _ Lim ul\x )—ul\a
Ky s—0 Ky
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If exists, 1s called the directional derivative of u at P in the direction of the
ou Ou Ou

ox 0y 0z
rates of change of u in the directions of the x- and y- and z-axes respectively.
In an n-space

0 u 4 0 0ox, _ 4 0 u
as - Z a _Z bi (150)

u
— x, 0% el 0 x

unit vector b. For example, in 3-space re-present the

i

denotes differentiation in the direction of the
X .

1

0 - 0
thus — = b
0 s ,Z_:l "0

vector b. It is possible to express the directional derivative Z_u in (1.50) in
S

terms of vector differential operator A defined by

-

grad u =Vu = Ou , Ou y .. Ou
ox, Ox, ox

Vv u 1s called the gradient vector of the scalar function u.

using the inner product notation

n

UV=uy +uV, .oV, Where U= (U1t ), v=(V,V3,...,7, )

we can express the relation (1.50) in the form

G_u: b.Vu= d x
os ds

Vu (1.51)

If the angle between the vector » and vV u is 'y, then

ou

g = |V u |c0s 14 (1.52)

ou

N

1s maximum when y=0, i.e., b is parallel to grad u. this means the vector

grad u is in the direction of maximum increase of u.

let u(x) be scalar C' function and u(;c)=0 be given surface in n-spase. Then

d_x_is a unit tangential vector to S at the point x.
ds
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Ou Ou Ox, Ou 0x, dx

Now = +....+ = u . = 0 .
O0s Ox, Os ox, Os ds
. — \Y
hence Vu is a normal vector to the surface u=0, n = ﬁ
u

If Vu|#0s then the directional derivative of f along the unit normal n to u=0

of

1s given by P n .V f ,And is called the normal derivative of the scalar
n

function f ()_c) at x of the surface (v)= 0 .Sine ¢ ¥ is a unit tangent vector
ds

to the surface,
S :u(;c):O, if f (;) is a scalar function, then

o f d x

= Y
0 s ds S
Is a tangential derivative or inner derivative of f on the surface S.
In case c;—x.v w =0 ,then ¢ x isnota tangent vector to s and gf will
S ds S

not be a tangential derivative is called an outer derivative. the directional of a
vector function can also be defined on the same lines as of a scalar function as
given in(1.51)

let ;(;): (W, W,y w, )

. . 1 . .
Be a vector function with components W, € C being functions of
(xl s Xy X, ) . Then the directional derivative of w in the direction of the

vectorb is given by

ow _owdx, _(dx, 0 o [dx oo .
os Ox, ds ds Oxi ds (1.53)

where X=a-+sb ,the difference in the formula (1.51) and (1.53) should be
marked.
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Vectorial Integration-Green'’s theorem, (1.3.3) (Gauss’ Divergence Theorem )

Let w be a vector field in a region T bounded by a closed smooth surface
OT such that weC'in T and weC in TUOT (=T) And 7 in the outward
drawn unit normal to 07 , then by the divergence theorem of Gauss.

[ v wavr :j“(n.w )ds (1.54)
where dv is the volume element of 7' and ds the surface element of 67 .

the integral on the left of (1.54) denotes multiple integral of the nth order in
T and that on the right denotes multiple integral of the (n-1)th order over

o v .1f v 1s a scalar function and # is a unit normal to the surface V=C , then

normal derivative of v (i.e., the directional derivative of valong 7 ), which
we denote by

2; _ TV (1.55)
Ifwe put W=u.VV then
Vw=VuVv+uV2and nw= Z.(u.Vv): u.(Z.Vv) =u Z—:
Hence (1.54) leads to the first form of Green’ theore
[ (Vuvv+uviv) deLTuS—ZdS (1.56)

It is assumed that in (1.56) u,ve C’inTand u,ve C in T,

ve C'inTUdT ,veC*inTandu e C' inT.

Interchanging u and v in (1.56) subtracting we get the second form of Green’s
theorem

IT(MVZV—vVZu)dV =J~ aT(uZ—v—vZ—ude (1.57)
n n

where
u,veC' inTUOT and uyveC®inT inT.

let # = v be harmonic in T , then (1.56) gives

IT(Vu)dezj”uZZ dS (158)
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If we take v =1 in (1.57) then we get

0 u
0 n

[,v wav = [

Remark(1.3.4):

(a) for a three-dimensional closed volume T, o7 is a surface.
In Cartesian coordinates dV =dxdydz. 4s is a surface element.

(b) for a two-dimensional closed plane region T, dv=dxdy and or is a
curveand dS =ds .

Example(1.3.5):

in  two-dimensional space .Form of the Gauss’ theorem (1.54) is

[+ [Vwdxdy = [ .nwds Here v - 9 , ;% 7 isaplane region by a
0x oy

closed curve C and ds the element of arc. The unit tangent vector ¢ and the

unit normal vector n at point x= (x, y) of C are given respectively by

it ()7 (4]

ds ds ds ~ ds ds ds
It axy)=(flxyhelxy)) then Vo = ZL- e 98 oy &
X oy dx dx

hence we get two-dimensional form of Stoke’s theorem
0 0
[+] o 1 98 lixay = [ o (fdy — gdx ) (1.59)
0x oy

Example(1.3.6):

In three-dimensional space
n-o = (n,n,,n,) (o, ,0, 0,)

= (”10)1 +n,o, + ”30)3)

8a)1+8a)2 0w ,

Vo = +
0 x 0y 0z
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Hence by (1.54), we have

(01 S G v

[ [ (@ dydz+ 0, dzdx + o, dx dy) (1.60)
in the n-dimensional region in Cartesian coordinates we have
dV =x,dx,..dx,  dx dx, ..dx,
mdS =dS, = dx,.dx,..dx_dx,,..dx,
And
[V odxdx,,..dx, = [, (Y 0ids,) (1.61)
Diffention (1.3.7) Adjoint Operator and Green’s Theorems:
Given L (u) = f (x) then
vL (u)=ul(u)+Vao (1.62)
when L 1s linear partial differential operator with #» independent variables.

and U,V are continuously differentiable functions,

and
vL(u)—uszg (1.63)

Where @ = p(u,v) is an n -dimensional bilinear vector function L and L
are called adjoint operators.

L) -k ) =) |

The role of the differential operator dd is assumed by the operator
X

V in higher dimension.

[VL ) ~uZ () v = [Vaear

T
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= j n @ dS (1.64)

(1.64) is the analogue of Green’s formula.
Let u,ve L*(T) and that L(u) and L(v) be continuousin T,

then using the inner product

(f.g) =] feav ,

then (1.64) can epressed as

(v, L) = (L(v),u) = [ nodS

oT

In case the right hand side of (1.64) vanishes then

(v,L(u)) = (L(v).u) (1.65)

In view of relation (1.65) ,the use of the term adjoint operators for L and

L s justified Multi-index. If p, p,,...... p, are non —negative integers ,

then

p=(p,Pys-sP,)

Is called amulti — index . The following conventions are adopted in its
use :

(a) ‘p‘:p1+p2+---+pn.
(b) ;plep‘xzpz...xnp” where ;z(xl,xz,...,xn)
c p!'=p,'p,t...p,!
(d) [p]z[plj(pzj [pn]z p !
q q, a, ) \a, (p - qg)'q!

(e)If p, - _° _ thenthe multi — differential operator

X
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D=(D,D,,....D,) operates as follows

d|p|

Py
P P2
ox,” 0x,"0x,

D" =D/"D,"..D," =

(ﬂap = aplpz...pn

If we denote unit vectors along the orthogonal coordinate vectors X ; by k&
then ) /7 =1 and

V =1 0 +/ 0 + ...+ 0

1 2 n
ox, ox, ox,

the multi operator (D,,D,,...,D,) is not to be confused with the vectorial

differential operator

while powers of V appear in the sense of inner product, a of power D is
product of its consituents

. For example, for n=3

0’u 0’u

0 ’u
Viu = + + -
8x12 8x22 8x32 but if
= (1,0,1) and || = 2 i Du=DDDu=-2""
P »JU, an ‘p‘— an 1, s dx,0x,

The convention of multi-index enables us to make the following definition of
adjoint:

Definition(1.3.8):

A linear partial differential operation of order m  can be represented as:

L(u)= Zap(;)D”u, xeT (1.66)

‘p‘ém

Where
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p:(plapzaﬂ'apn)9D:(l)1,D2,---,Dn),;C:(xl,xz,...,xn) R
to L is given by

L(v)= Z (- 1)""D "(a,v)

‘p‘Sm

IfL=1L , the operator is called self-ad joint.

31

The adjoint operator

(1.67)



chapter (2)
Distributions and Differential Operators On Manifolds



chapter (2)
Distributions and Differential Operators On Manifolds

(2.1) Test Functions and Test Sections:

(2.1.1) The Locally Convex Topologies of Test Functions and Test
Sections:

Definition(2.1.1):[19]
Let E— F be a vector bundle of rank NV |, The dual frame will be denoted

by {e"}a: yoreny N Where €” eF‘”(E*‘U)are the local sections with e*(eB)=6,"
for ser~(£) we have s* =e“ c¢* (U) such that

S‘U =s% e” 2.1
we define the seminorms
1 o
oO's
PU,x,k,e,{ea}(s):sup - (p) . (2.2)
ek ax
=,
where  I=(i, yo.....i, )€ N, denotes a multi index of total length

M:il +.....4, . Clearly, the integer /eN, on the choice of the local base

sections. In case we have just functions, 1.e. sections of the trivial vector

bundle £ = M xC , we can find

7] o
0" (p)

; 2.3
oy (2.3)

PU ,x,k,e, (f) = sup

pek
‘I‘Se

of the seminorm fe/” (M)

Lemma (2.1.2) : [24]

For all choices of a chart(U , x) , a compact subset K < U , an integer /eN,
and local base sections {e, jof Eon U , the map
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PU,x,k,e,{ea}:Im(ﬂ )RS (2.4)

1s a well-defined seminorm .

Definition( 2.1.3) Symmetrized covariant differentiation

Let V¥ be a covariant derivative for a vector bundle E — M and let V a
torsion-free covariant derivative on M . Then

DY :T*(S'T"MQ®E ) >T*(S"'T"M®E ) (2.5)
is defined by
k+1 !
D (e ®s)(X,....... ,Xkﬂ):z(v%a@sm®VEX,s)(Xl,...,A,...,XkH) (2.6)
(=1
where aeI'*(S'T"M),se T*(E ), and X,,..... X,., e T*(TM ).

Proposition (2.1.4)[55]
The operator D”is linear, well-defined, and satisfies the following properties:

1) For E=MxC with the canonical flat covariant derivative and
fet” (M) we have

Df=df (2.7)
i1.) For aeT™(S*T"M), and p®s e (S'T"M ®E) we have
D ((avp)®s)=(Davp)®s+avD"(f®s) (2.8)

11.) Locally na chart (U, x) we have

D‘E(oz€<)s)|U=(ai)c"vvaoz]6<)s+a7x"v056<)VEa 5. (2.9)
P o

Lemma (2.1.5):

For all choices of a compactum kK c U ,and /eN, the map

P, :T*(E) > R, (2 .10)

,€

1s a well-defined seminorm ..

Definition (2.1.6) (¢ -Topology):[21]
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The natural Fréchet topology of I'” (E) is called the ¢* - topology.
Analogously , we call the natural Fréchet topology of TI'”(E) the ¢ -
topology.

Remark(2.1.7) (¢ -Topology):

1.) Asequence s, eI'"(E) converges to s with respect to the

(/" -Topology) ifand only if s, converges uniformly on all compact

n

subsets of M with all derivatives to s . Similar, the convergence in the
¢* - topology is the local uniform converges in the first & derivative.

ii.) If M is compact, we canuse K =M . This shows that the ¢* -topology
is even a Banach topology since we can also take the maximum 0</<k .

Proposition (2.1.8):[56]

For a vector bundle E— M the subspace T,” (M) of compactly supported
sections is dense in ' (M) with respect to the

¢*  -topology. Analogously, I'f (E) is dense in I'* (E) in
¢*  -topology forall keN, .
Theorem (2.1.9) (15 -topology): [20, 57]

Let keN,uU {+oof . The inductive limit topology on T (E) enjoys the
following properties:

i.) T} (E) is a Hausdorff locally convex complete and sequentially
complete topological vector space.

the topology does not depend on the chosen sequence of exhausting
compacta.

ii.) All the inclusion maps T; (E)—T; (E) are continuous and the

¢* -topology is the finest locally convex topology on T} (E)  with this
property every It (E) s closed in Iy (E) and induced topology on
I (E) isthe /% -topology .

iii.) A sequence s eI} (E) 1is a (% -Cauchy sequence if and only if there
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exists a compact subset KcM with s el (E) forall nands, is

¢% - Cauchy sequence. An analogous statement holds for convergent
sequences.

iv.) If v is alocally convex vector space, then a linear map @:T'{ (E)—>V

'Fk

is (5 -continuous if and only if each restriction ®| , R

(E)>v is

¢% continuous, it suffices to consider an exhausting sequence of compact .

v.) If M isnoncompact T, (E) is not first countable and hence not

metrizable.
(2.1.2) Continuous Maps Between Test Section Spaces:
Proposition( 2.1.10):[3, 58]

Let ¢:M >N beasmooth map. Then the pull-back ¢ :¢*(N)— ¢~ (M)

1s a continuous linear map with respect to the ¢* -topology.
Definition (2.1.11) (Proper Map) :

A smooth map ¢:M — N is called proper if ¢ ' (K )cM is compact for all
compact Kc N .

Proposition 2.1.12

Let ¢:M —»N be a smooth proper map. Then ¢ " :¢7(N)— ¢7(M) is
continuous in the -topology.

Lemma(2.1.12 ):[59]

Let ®:E—-F be a vector bundle morphism and wer‘”(F*) Then
(@ o), (s,)=0l,, @0 ,) for s €E, and pem defines a smooth

secion @ wer“(E") called the pull-back of by @ .
Proposition 2.1.13 Let ®:E— F be a vector bundle morphism. Then
o T (F )T (E")

is continuous with respect to the ¢* - topology.
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(2.2) Differential Operators
(2.2.1) Differential Operators and Their Symbols:

Let E->Mm and F— M be vector bundles over M .
Definition( 2.2.1) (Differential operators) :

Let D:T"(E)—>I'"(F) be alinear map. Then D is called differential operator
oforder  keN , if the following conditions are fulfilled.

1.) D can be restricted to open subsets U c M , i.e. for any open subset

Uc M there exists a linear map
Dy, :T*(E|,) >T*(F|,)
such that
Dy (s]y)= @), 2.11)

for all sections sel“(F)
ii.) In any chart (U,x) of M and for every local base sections
e, eF‘”(E‘U)and fﬁel“‘”(F‘U) we have

R i irp 0's” 212
o= P (12

r:Or!

Ds

with locally defined functions D~ < ¢~ (U), , totally symmetric

in i, ..i, The set of differential operators p.r-(z)- r-(r) of order

keN , 1s denoted by Diffo pK(E;F) and we define

Diffo p'(E;F):(}Diﬁ’o pK(E;F) (2.13)

Remark( 2.2.2) (Differential operators):

1.) Clearly, Diffo pK(E;F) 1s a vector space and we have
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Diffp* (E;F)< Difip" " (E; F) (2.14)
for all keN, . Thus Diffop>(E;F) 1is a filtered vector space. Note
however that (2.13) does not yield a graded vector space.

ii.) The restriction of a differential operator D is important since we also want
to apply D to sections whichare only locally defined .

i) If we are given an atlas of charts and local bases and locally defined

functions D(i}'"i’ﬁ then we can define a global differential operator D by

specifying its local form as in (2.12), provided the functions D(i}'"i’ﬁ

transform in such a way that two definitions agree on the overlap of any two

charts in that atlas.
iv.) Differential operators are local, i.e. (DS) c supp (S )

Lemma (2.2.3) (Leading Symbol):[23]

If D:T”(E)>T"(F) is adifferential operator of order keN, , locally
given by (2.12), then the definition

_l il...ikf a a a
oD =D oV o ® f, ®e (2.15)

[24

yields a globally well-defined tensor field , called the leading symbol of D
o, (D)el*(S'TM ® FRE") (2.16)
we can interpret the leading symbol  o(D) also as a section
o, (D)e I (S*TM ® Hom(E, F)) (2.17)
for k <0
DiffoP*(g;7) = {0} (2.18)

and for kK > 0 inductively

DiffoP" (¢;7) = {D € Hom, (&;7)

[D,L, ] Diffo pK_l (s;r)vaeA}, (2.19)

where L. denotes the left multiplication of elements in the module with a.
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As before we set

DiffoP*(&;7) = U Diffo P* (¢:7) (2.20)
and
Diffo P*(¢;7)  DiffoP*"' (¢;7) (2.21)

whence (2.20) is again filtered . Moreover, DiffoP*(&;7)is a k-vector
space and a left A-module via

(a -D)e)=a -D(e). (2.23)
where a € A, D e DiffoP*(¢;7) andec¢

If g is yet another A -module then the composition of differential operators
is defined and yields again differential operators. In fact,

Diffo P*(r;g)e Diffo P'(g;7)< Diffo P**' (&) (2.24)
holds for allk,¢e z . It follows that
Diffo P* (¢) =Diffo P* (¢ : ¢) (2.25)
is a filtered subalgebra of all k-linear endomorphisms End_(¢)of ¢ .
Moreover, by definition we have
Diffo P°(¢;7) = Hom, (¢,7). (2.26)
Theorem(2.2.4):

for A =£°M)and e =T'*(E),f = '°(F) the algebraic definition
of DiffoP*(g;7). yields the usual differential operators Diffo P*(E; F).

(2.2.2) A Global Symbol Calculus for Differential Operators:

For the operator of symmetrized covariant differentiation D” as in

Definition 2.1.3 we have in any chart (U.%) and with respect to any local base
sections e,
a/;Sa

(DE)[S US AT A dx"' v ..dx" ® e, +(lower order terms), (2.27)
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for every section seI'”(F).[44] and i1s an easy consequence of the local

expression  D®|,=dx' vV , together with a simple induction on ¢.
ox'

Now let X el™(S'TM ® Hom{E,F)) be given. Then locally we can write

1 il..ikB a a a
X‘U —EX “ o V..V o ®f,®e (2.28)

this indicate how we can define a differential operator out of X and D".

we use the natural pairing S*“TM - part of (DE )k s and apply the

Hom(E, F)— partof X tothe E — part of (DE )Ks This gives a well-defined section
of F.

we adopt the following convention, best expressed locally as

<X , (D § )k S> —K'x ' Ma % Sp (lower order terms ) (229)

with other words, this 1s the natural pairing of
V®..QV (ktimes)with V' ®..QV" (ktimes) restricted to symmetric tensors
without additional prefactors. Indeed, note that the tensor indexes of

a/,/S{x

(DE )k s are given by (DE)/S v =k!l.1—al./abci1 v ..dx" ® e, +(lower order terms ),
..ox"

according to our convention for the symmetrized tensor product V.

Definition(2.2.5)[3] (Standard Ordered Quantization):

Let Xel'” (S'TM ® Hom (E, F)) be a notnecessarily homogeneous

section and let h>0. Then the standard ordered quantization
estd(X) :T”(E)—> T'”(F) of x 1sdefined by

estd (X)s =Y L'(h—,jr<x(’>,l'(1)f)’s>, (2.30)

— ri\i r!

for s e T*(E) , Wher X =Y. X" with X eT*(S'TM ® Hom (E,F)) are

the homogeneous parts of X . note that by definition of the direct sum there
are only finitely many X ) different from zero whence the sum in (2.30) is
always finite.
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Theorem(2.2.6)(Global Symbol Calculus):[60]

The standard ordered quantization provides a filtration preserving £ (M) —
linear isomorphism

Istd; él““’(S"TM ® Hom(E, F)) — Difip" (E; F), (2.31)

k=0

such that for x e 1" (S*TM ® Hom (E,F)) we have
h k
o, (Istd(X)) = [—J X (2.32)
1

Proof. From the local expression of (DE)(s it is clear that estd(X) is indeed a
differential operator. Note that the sum is finite and for
X =X"eT™(S*TM ® Hom(E, F)) — Diffp"(E; F),

the differential operator estd(X) has order k.
forf=0"(M) we clearly have  tstd(fX)= festd(X)

since the natural pairing is ¢*(M )_bilinear. This shows that (std is a filtration

preserving ¢* (M )_linear map.
1(nY 1/ v
fStd(X)S|U :F(Tj <X’F(D ) S>|U=

k P
k!lk!(éj X Lfﬂ + (lower order terms )

“ ox™...ox"

hence (2.32) is clear by the definition of o, as in (2.15). Now let

D e Diffop (E; F), be given.Then
G{D - (;’—) estd (Gk(D))Jz 0

A\ K
hence D- [%j estd (o, (D)) is a differential operator of order at most & —1.

By induction we can find D, =o,(D), D_,....D, with
D,eT*(S'TM ® Hom(E, F)),such that
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o-eua(% (5] 0. ) (2.33)

which proves surjectivity. The injectivity is also clear, aso, (D) is uniquely
determined by D and by induction the above D, ,........ ,D, are unique as well.

Remark(2.2.7)(Global Symbol Calculus):
i.) where E=F =M xC is the trivial line bundle and T*(S°TM) is identified ,

there is a unique algebra isomorphism

6:ér°°(SkTM)3XI—>8(X)epol*(T*M) (2.34)

k=0

with a(f)=z"f and d(x)e, )=, (Xx(p)) for fer*(M)=r=(s°T M) and
Xer“(rm) where a,el,'M .

ii.) For X ® 4eT"(ITM ® Hom(E,F)) with Xel*(TM) and AeD”(Hom(E,F))
we simply have

estd(X ® A)s = E,A(vf( S). (2.35)
1
also
estd (A) = A (2.36)
is just a is £ (M)-linear operator.
(2.2.3) Continuity Properties of Differential Operators:

Theorem(2.2.8) (Continuity of Differential Operators):

Let D eDiffop'(E;F) be a differential operator of order k. Then for all
leN, the map

D :T""(E) - I''(E) (2.37)
is well- defined and continuous with respect to the ¢*** —and (° —topology

Proof. If(U,x) is a chart and e, eI (E|,) and f, eT"(F|,) are local base
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ol

4 roa
5 _ l il..irp a N
sections then PU,x,k,e, {fﬁ}(DS)_il;p - ;r' . “(p)—ax“.‘.ax” (p) .
‘_I(Se_
il...ir
U a\f\ o s*
S S Dll Larf S - ,
l;rﬁul) (p* fg]}) ox” ox"...ox" (p*

<c' max. PU ,x,k, e( /; )max PU ,x,k,e+ r,{ea }(s)

SC, PUaxakaeﬂ{ea }9 {fﬁ }(D)PU’X’K’€+k’ {ea}(S),

where ¢’ 1s a combinatorial factor depending only on ¢ and k , and

a‘I‘Dilmirﬁ
PU,x,k, 0, {e, b1, b (D) = sup| —2—(p)|,
| OX

‘I‘Se
il...,ir

But this is the desired estimate to conclude the continuity with respect to the
% —and (° —topology .

Corollary(2.2.9):

A differential operator D e Diffop’(E;F) is continuous with respect to the
0° —topology .

In the proof of Theorem 2.2.8 we have made use of the quantities

alez/lzrﬁ
PU,X,k,E,{ea},{fﬁ},(D):Sukp 8x1 . (p) s (2‘38)
PpE
a.p

‘I‘Se
il...,ir

which are easily shown to be seminorms on Diffop (E;F) For a fixed keN,
these make Diffop’ (E; F) Frechet space .then

Ustd : érw (S'TM ® Hom(E, F)) — Diffop (E; F). (2.39)

e=0
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is a continuous isomorphism with continuous inverse. However, all
differential operators  Diffop (E; F) will have to be equipped with an

inductive limit topology similar to the construction of the /,” —topology .

then consider the restriction of D e Diffop’(E;F) to compactly supported
sections T'“*'(E) , Since Supp (Ds)c Supp s we have

D:TH(E) > L (F) (2.40)
for all closed subsets 4 < M . Since in the estimate
PU,x,k,e,{f;}(Ds) < cPU,x,k,e,{e,},{f;(D)PU,x,k,e,{e,}s) (2.41)
we have the same compactum on both sides, we find that
D T (E) > TH(F) (2.42)
is continuous in the ¢, "' —topolog y and ¢,' —topology .
Theorem(2.2.10):

Let D e Diffop* (E;F) be a differential operator of order ke N, then for all

¢ € N,restriction
DTy (E) = T (F) (2.43)
is continuous in the ¢, — and ¢, —topology . Moreover
D:T2(E) > T (F) (2.44)
is continuous in the ¢,” —topology

(2.2.4) Adjoints of Differential Operators:

For a section seTl”(E)and uel”(E"®|A”|T"M) the natural pairing of

Eand E* gives a density u(s)el” (E ®‘A""’ T°M) , which we can integrate,

provided the support is compact[61]. Therefore we define
(s,1)= IMu(S) =IM S.u, (2.45)

whenever the support of at least one of s or p is compact.
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Lemma(2.2.11):

The pairing (2.45) is bilinear and non-degenerate. Moreover s,
(s, fu)=(fs.u) for fet”(M)
Proof.

Let seT"™"(E) be not the zero section and let peMm be such that
s(p)#0 . Then we find an open neighborhood U of p and a section
¢eT,”(E") with compact support sup pp cU such that

o(s) >0and qo(s)‘p >0

Using local base sections this is obvious. Now choose a positive density

vel”(A”|T*M) then ¢®vel,”(E"®A”

T*M) will satisfy
(s,p,®v)=0.This shows that (2.45) is non-degenerate in the first argument.
The other non-degeneracy is shown analogously. The second statement is
clear.

In particular , (., . ) restricts to a non-degenerate pairing

(... 5Ty (E)xT (E*®A|T* M) — C. (2.46)

As an immediate consequence we obtain the following statement. First recall
that an operator

D:V—>W (2.47)

is adjointable with respect to bilinear pairings

<.,.> VxV —>C  and <,,,>WW;W><VI7—>C, (2.48)

A%

if there is a map

such that

(Dv,#), =(v.DT#) . (2.49)
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If the pairings are non-degenerate then an adjoint D’ is necessarily unique
(if it exists at all) and both maps bp, p” are linear maps. Clearly, D’ is
adjointable , too with

o) -»

Thus in our situation, adjointable maps with respect to the pairing (2.45) or
(2.46) have unique adjoints and are necessarily linear.

Proposition(2.2.12):[3]

Let DeDiiffof (E;F)  be a differential operator of order k. Then
D:Ty(E)—>T;(F) 1s adjointable with respect to (2.45) and the (unique)
adjoint

D" :T*(F* ®A™ NPT M) (2.50)

T"M)—>T*(E'®

is again a differential operator of order k

Proof. Let{(U,,x,)}_, bealocally finite atlas and let

iel
e, €l”(E\,) and fl.ﬁel“‘”(F\U)

be local base sections. Moreover let  {X,}_, be a locally finite partition of
unity subordinate to the atlas with supp X, being compact. As usual, we

write
LI 0" s.?
D — o Dllmlrﬁ i
S‘ U ,2:(; P Y /P Ox" .. ox"”
where S‘U’ =S e, with S,* =¢,"(s)et”(U,) for puel™(F'®|A”|T"M)

we write

with u, e ¢*(U,) . Here ‘d XA Ad xi"‘ denotes the unique locally

defined density with value 1 when evaluated on the coordinate base vector
fields

O 9 Then we compute

ox'’ “ox”"
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<Ds,u> = J.u(Ds) = Z _[()liﬂ(DS))oxild”xi

Note that the integrand consists of compactly supported functions only. Thus
we can integrate by parts and obtain

(Ds,u)=Y. I (i f - a ( s gDy ) ia}xi_ld”xi

~ o\ Ox" DX’

Now the function 4, u,Dy;~"?, has compact support in U, from y,.

Thus it defines a global function in ¢,”(M). It follows that

Ho= I (i Sl : o ( T Je ®‘dx A e nd x,"

- | il ir
e =R ox" ... Ox

is a global section in T, (E*®|A”

T*M) with compact support in U,.

Since the y,. are locally finite , the sum
D' H :Z:ui

is well-defined and yields a global section

D" el (E*®A”|T*M) such that

(Ds,p) = <s ,D" u>
this shows that D is adjointable. Thus
Atop

D" e Diffop" (F * ®A'”

T*M,E*®

T*M)
follows. then
D:T*(E)>T*(F)
be a differential operator of order zero. Thus D can be viewed as a section of
Hom(E,F),ie. DeI'” (HomE, F)).

Then in u(Ds) we can simply apply the pointwise transpose of D to the
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F" —partof u . This defines D" u pointwise in such a way that
(DTy)(S): u(Ds). Clearly (Ds, )= <S,DT/1>

for differential operators of order ¢ < k-1 the adjoint has order ¢, too. Thus
let  Diffop" (E;F) and fet” (M) ,then we have ,
(fDs.u) = (Ds,fu) = (s.D" fu)

and
(/Ds, p) =(|f,D|s, u) +(D(fs) , 1)
:<S, f,D|T M> +<s , /D" H> .
hence by the non-degeneracy of < C > we conclude that
[r.0" = [1.D] eDiffop* " (F*@A™ |1* M, E*&|A|T* M)

by induction. But this shows

D" eDiffop* (F*Q|A’|T * M ,E*®A”|T*M) ,as wanted.

Corollary (2.2.13):
Let De Diffop" (E;F) . Then for the leading symbol

o, (D7 )er*(s*TM ® Hom (F*@|A™ AT M)

T*M,E*®

we have o, (D7 )=(-1)0,(D) ®id (2.51)

A |7 M
where o,(D") denotes the pointwise transpose from Hom(E, F )to Hom(F" ,E" )

Proof. From the local computations in the proof of Proposition (2.24) we
obtained
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D"y =) ui and ) xi =1 We conclude that

_ (_ l)k pDilirB 'ak'uiﬁ

—e” ®‘d XA And xi”‘+ (lower order term)
=(-1)'c (D "' ®id w e +lower order term
‘A ‘TM

Remark (2.2.14) (Other Pairings):

1.) There are several variations of the above proposition. On one hand one can
consider the natural pairing ofa —and (1-a) - a- densities for any aeC to

obtain

() TE (E®A | T*M)xTy (B ®[A”] “T*M)—C (2.52)
then D=I7 (E®A”| T*M)—>T7 (E°®A”|" T*M)—>C (2.53)
and obtain differential operators

D= (F* @A " T*M) ST (E* ®|A”| “T*M)> C (2.54)

by the same kind of computation as in Proposition 2.2.12. There, we
considered the case a=0=.

1.) Another important case is for complex bundlesE with a (pseudo-)
Hermitian fiber metricz, Then we can use the C-sesquilinear pairings

<S,t®u>=IMh(S,t)u, (2.55)

1-

Atop

where s,te T”(E) and pueTl” [ "T*M )] and at least one has compact

support. Clearly, this extends to

1-

(o)=T" (ExTy(E®A”| " T*M) > C (2.56)

in a C-sesquilinear way. While p— p” is  C-linear now the adjoint D"
depends on D in an antilinear way.

1i1.) A very important situation is obtained by merging the above possibilities.
For a Hermitian vector bundle E — M with Hermitian fiber metric h we
consider the sections
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1
2T* M)

I (E®A”
On factorizing sections we can define
<S®u,t®v>: Ih(s,t)ﬁv, (2.57)
M

since uv is a 1-density. Then the pairing extends to a

1 1
() : T (E®A 2 T*M)XTy (E®A” |2 T*M ) —> C (2.58)

which is not only non-degenerate but positive definite. Thus

1
TP (E®|A”|2T*M)

becomes a pre-Hilbert space. Moreover, taking E to be the trivial line bundle
with the canonical fiber metric gives a pre-Hilbert space

1
[ (E®|A”|2T*M) , For a vector bundle E — M ,we then have the pairing

<S,(D>H = [, o()n, (2.59)
forseT*(E)and ¢eT”(E") , at least one having compact support. Clearly,
(5.0) =(s.0@u) (2.60)

with the original version (2.45 ) of the pairing <,> since u>0 it easily

follows that (2.60) is non-degenerate and satisfies
(f.0), =(s. /o), 2.61)

for all for fer”(m) . For the action of differential operators we again have
adjoints .

Theorem(2.2.15):
Let D e DiffoO pk (E; F) be a differential operator of order x <nN, Then

there exists a differential operator

D" e Diffop" (F";E")
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such that
<Ds,(p>u =<s ,D"¢p ># (2.62)
forall forser”(E)and per”(F") , atleast one having compact support

Remark (2.2.16):

i.) Note that D" as in Theorem 2.2.15 depends on the choice of p >0 while
the adjoint as in Proposition 2.2.12 is intrinsically defined, though of course
between different vector bundles . However, we shall not emphasize the
dependence of D" on p in our notation. It should become

ii.) Analogously to Corollary 2.2.13 we see that the leading symbol of D’
is given by
o, (D" )=(-1) o, (D) (2.63)

where again o, (DT)eF‘”(Hom(F*,E*)) is the pointwise adjoint of
o, (D" )eT™(Hom(F,E)) .

then its covariant divergence is defined by
div(X)=tr(Y =V, X),

in local coordinates (U, x) we have

divv (X))

. = dx"[vaxJ (2.64)

Clearly, we have for fer¢“(M) and xer”(7M) the relation
divV (fX) = X(f)+ fdivV(X). (2.65)
Definition(2.2.17)(Covariant Divergence):

Let v be a torsion-free covariant derivative for M and let vZ be a covariant
derivative for E. For xer=(s'7m ® £) we define

div,(X)=i,(d x)V o X. (2.66)

ox
Lemma(2.2.18):

By (2.66) we obtain a globally well-defined operator
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divE :T*(S'TM ® E) >T*(S*'TM ®E), (2.67)

which is given on factorizing sections by

k e
divg (X, v.vX,®)=> X, V... VX, ®(divV(X,) +VEs) (2.68)
e=1
k e
+ 3 (VX)X VAL v Xy ®s, (2.69)
e,m=1
where X.........X, €T (TM) and s T *(E).

Theorem(2.2.19)(Neumaier):

LetX e FW(SKTM®H0m(F,E)) and let Vand V*,V" be given then the adjoint
operator to ¢ (X ) with respecto (.,.) is explicitly given by

£ =) £, 00 57) were w=oso L e

and where we use the induced covariant on Hom(E, F)and Hom(E" , F")

(2.3) Distributions on Manifolds.
(2.3.1) Distributions and Generalized Sections:

For M =R" we define distributions as continuous linear functionals on the
test function spaces:

Definition(2.3.1) (Distribution) :
A distribution u on M is a continuous linear functional

uzel (M) - C (2.70)

The space of all distributions is denoted by e (M ) or D' (M ) .

Remark(2.3.2)(Distributions):

i.) The continuity of course refers to the L F topology of e (M) as

introduced in Theorem 2.2.9 In particular, a linear functional is continuous if
and only if for all compacta K < M the restriction
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el (M) > C (2.71)

€K

u

is continuous in the e; -topology. This is the case if and only if for all
¢e el (M) we have constant ¢>0 and (€N , such that

lu(p ) <cmaxPK,¢'(p) (2.72)

<t

Analogously, we could have used the seminorms PU,x,k,¢ avoiding the

usage of a covariant deriva-tive but taking a maximum over finitely many
compacta in the domain of a chart. we can combine this to

lu(p )| <cPK.,0(p) (2.73)
In the following, we shall mainly use this version of the continuity.

Since each ef (M ) is a Fréchet space, u restricted to e (M ) is continuous

iff it is sequentially continuous. This gives yet another criterion: A linear
functional

u:el (M) — C is continuous iff forall ¢, eey (M) with

o, —> ¢ inthe ¢ -topology we have

u(e,) - ule) (2.74)

i1.) The minimal ee N, such that (2.2.3) is valid is called the local order
ord , (u)ofuonk . Clearly,

this is a quantity independent of the connection used for Pk,/ and can
analogously be obtained from the seminorms PU,x,k,/ as well. The

independence follows at once from the various estimates between the
seminorms of u is defined as

ord (u) = supord ((u)eN,U{+w} (2.75)

K

and the distributions of total order <t are sometimes denoted by »'* (M ).
Their union is denoted by D/, (M ) and called distributions of finite order.

iii.) The distributions D'(M ) as well asp'* (M ) andD), (M) are vector
spaces. We have p'* (M )<D" (M ) for k <¢ . It can be shown that already for
M = R" all the inclusions D'* (M )cD'' (M )cD, (M )cD'(M ) are proper.
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1v.) If u has order <k it can be shown that u extends uniquely to a continuous
linear function

ul P (M)—-C (2.76)
with respect to the ¢; -topology provided ¢ <k.

Example(2.3.3) (6-functional):

For p <M the evaluation functional
8,0y (M)s pe(p)eC (2.77)

is clearly continuous and has order zero. More generally, if v eT M isa

tangent vector then
v, o v, (p) (2.78)
1s again continuous and has order one .

Definition(2.3.4)(Generalized Section):[62]

Let E—>M be a smooth vector bundle. Then a generalized section (or:
distributional section) of E is a continuous linear functional

s (E @A |7 M)>C (2.79)

The generalized sections will be denoted by T (£ ) .
Remark(2.3.5)(Module Structure):

The generalized sections T~ (E£) become a ¢*(M )-module via the
definition

(f.s)o)=s(fo) (2.80)

Indeed o — fo i1s ¢ -continuous and hence (2.80) is indeed a continuous
linear functional  f.s e (£ ). The module property is clear.

Remark(2.3.6)(Order of Generalized Sections):[63]

The continuity of s e I (E£) 1s again ex-pressed using the seminorms of

s:Ty (E "Q|N|TM )—>C in the following way. For every compactum

K cM there are constants ¢>0 and € ¢ e N, such that
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|s(w)£cr9§>5 PK, 0" (o), (2.81)

for all w :T'} (E T®IACT|TT M) . Again, the local order of son K is defined to

be the small  such that (2.81) holds. This also defines the global order
ord(s)=supord , (s) (2.82)
K

as before. As in the scalar case, a generalized section s e I~ (£ ) with
global order ord(s)<K extends uniquely to a ¢, -continuous functional

s TUE @A |1 M)>C (2.83)

for ¢ >k . We shall denote the distributional sections of order <¢byT =" (E)
note that T ° (£ ) are not just the continuous sections.

We also want to topologize the distributions. Here we use the most simple
locally convex topology:

Definition (2.3.7) (Weak~ Topology):

The  weak ™ topolpgy for T (E) 1s the locally convex topology obtained
from all the seminorms

P, (s)=|s(@)| (2.84)

[0

where a):l"g°(E*® AP T*M)in the following we always use the

weak " topolpgy for T = (E) . We have the following properties:
Theorem( 2.3.8):
( weak " topolpgy of I =~ (E) )

1.) Asequence sn eI ~(E) convergesto s e "~ (E)1if and only if for
all wery (£ ®|A"|T" M)

s, (0)>s(o) . (2.85)

1.) 1~ (E) 1s sequentially complete, 1.e. every weak * Cauchy sequence
converges.

iii.) The inclusions T*(E)cT ™(E) are continuous in the
(% — and weak” topology for all ke N,U{+w} .
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iv.)) The map T *(E )sst> fsel “(E) is weak continousforall fe!” (M) .

v.) The sections I'” (E ) are sequentially weak™ densein T * (E).

(2.3.2) Calculus with Distributions:
Definition( 2.3.9) (Restriction and Support):

Let UcMmbeopen and s eI *(E).

1.) The restriction s|, is defined by

S‘U(a))zs(w) (2.86)
for wery(E"®|A°" |7 M|,), ie for wery (£ ®|Ar|r" M) with
Supp o < U
i1.) The support of s 1is defined by

Supp s= A.
pp ACMQlosed (2 . 87)
S| M\a=0

Definition(2.3.10)(Singular support):
Let s er ~(E).

1) S is called regular in pem if there is an open neighborhood

Uc M of p such that
s|y er” (£, ).
i1.) The singular support of s 1is
singsupps = { p € M | sis not regularin p|
The singular support of s indeed behaves similar to the support.
Theorem (2.3.11)(Generalized sections with compact support): [64]

Let s e r (£ ) have compact support. Then we have :

i) $ has finite global order °7¢ (s)<0
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i1.) s has a unique extension to a linear function
s: Ty (E7®|Aer |1 M) >c, (2.88)
which is continuous inthe ¢~ -topology.

Conversely, if s: 7 (£ ® |AP |1 M ) ¢, is a continuous linear functional
then its restrictionto T (£ ® |AP T M ) . is a generalized section of E

with compact support.
Proposition (2.3.12):[65]

Let s er “(£) be a Generalized sections ,then there exists a unique

~

extension 5§ of s toa linear functional
s {a)e re (E " ®‘A“’p ‘T " M)|Suppa)ﬁSuppsis compact} —>C, (2.89)

i) 5 coincides with S on row(E*®‘Amp‘T*M)>

if) S :=1if Supp s N Supp o =¢

Definition(2.3.13)(Push-forward of Distributions):

Let ¢: M - N be a smooth map. The push-forward of compactly supported
generalized densities

.. ro(E | ar|r M) > 17 (B ®|A |17 N) (2.90)
isdefinedon s er¢” (M) by
(6.u)(s)=u(s"r) 2.91)

Proposition(2.3.14) (Push-forward of Distributions):

Let ¢: M - N be a smooth map.

1.) The push-forward d.uof we I,” (‘A“’P ‘T ' M) is a well-defined

generalized density with compact support
.ue " (|ar|rN)
The map ¢ . is linear and continuous with respect to the weak * ropoipgy .

i1.) Assume ¢ is in addition proper. Then the push-forward extends uniquely
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to I~ ( AP\ T M ) and gives a linear continuous map

6. r([ar|r M) ST (| AT N) (2.92)

with respect to the weak * topolpgy , Explicitly, for all ¢e ¢7(N) the push-
forward ¢.u of u 1s givenby

@) =uls o), (2.93)
1i1.) We have
(id,) .= id I (‘A ‘T*M)
and
(pop). = ¢.c0. (2.94)

Definition(2.3.15) (Differentiation of Generalized Sections):[66, 67]
Let diffop® (E; F) then
D: T " (E)>T ~"(F) (2.95)
is defined by
(Ds)(u) =s (D" 1) (2.96)

forall s er—~(£)and pe T,"(F @A |T" M)

This definition indeed gives a reasonable notion of differentiation of
generalized sections as the following theorem shows

Theorem(2.3.16):[22]

1.) For all s eI ”(E) the definition (2.96) gives a well-defined
generalized section Ds e T (£ ) and the map

D: T "(E)>T*(F) (2.97)
is linear and weak™ continous . Moreover, we have for all /e N,
D:T ' (E)>T "*(F). (2.98)

ii.) The map D is the unique extension of D: T (E)— " (F) whichis
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linear and weak continous .

iii.) With respect to the ¢” (M ) -module structure of T*(E) and T*(F) ,
the map D as in (2.97) is a differential operator of order £ in the sense of
the algebraic definition of differential operators, i.e.

D e Diffop" (I (E), T (F)) (2.99)

iv.) We have
Supp(Ds ) cSupps (2.100)
and Sing Supp (D s ) < Sing Supp s (2.101)

v.) For every open subset UcM we have
Ds|, =D, (s], ) (2.102)

(2.3.3) Tensor Products
Definition(2.3.17)(Vector-valued Generalized Sections):[68]

Let E — M be a vector bundle and V a finite-dimensional vector space,
then a V' -valued generalized section of E is a continuous linear map.

s (E e | A | M)y (2.103)

the set of all V -valued generalized sections of E is denoted by
r=(ev).

Proposition(2.3.18):[69]

For a finite-dimensional vector space ¥ and a vector bundle E — M we
have the canonical isomorphism

L “(E)®V>50v > (@ s (w)v)el “(E;V) (2.104)
Remark(2.3.19):
For the external tensor product
®:T “(E)®T “(F)>T "(E®F) (2.105)

one immediately obtains
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Supp (s®1t )= Supp sx Suppt (2.106)
whence we also have
®: T, (E)®T,"(F)—> I, “(E®F). (2.107)

It can be shown that for compactly supported s and t, the abve equations hold.
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chapter(3)
Lorentz Geometry and Causality
(3.1) Basics Concept

In this section ,we introduce elementary notions on 3-dimensions Minkowski
space , its relationship to the hyperbolic plane, and its isometries.

(3.1.1) Affine Space and Its Tangent Space:[70]

We define n-dimensional affine space 4" to be the set of all n-tuples of real
numbers (p, ..., p,). An affine space could be defined over any field,but we

will restrict to the field of real numbers. Elements of affine space will be
called points.

tl
for p = (p1 ,---,pn)eA” and ¢=| : ,we define :
t

n

p+t= (p1 +t1,...,pn+tn)eA” (3.1)

Thus the vector space R", considered as a Lie group, acts transitively
on A" by translations; the translation by :eRr" , denoted <, is defined

as follows:

T,:R"xA" > A"

(t.p ) p+t (3.2)
(3.1.2)The Inner Product and (2+1)-dimensional Minkowski Space:[71, 72]

A Lorentzian vector space of dimension 3 is a real 3-dimensional vector
space ¥ endowed with an inner product of signature (2,1). The
Lorentzian inner product will be denoted:

VxV—>R
(V,u)l—w.u

We also fix an orientation on V. The orientation determines a nonde-
generate alternating trilinear form
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Det
VxVxV —>R
which takes a positively oriented orthogonal basis e¢,e,,e; with inner

products
e.e=e.6=1,e.e,=—1

to 1. The oriented Lorentzian 3-dimensional vector space determines
an alternating bilinear mapping VxV —V, called the Lorentzian cross-
product, defined by

Det (u,v,w)=uxv.w. (3.3)

We call the affine space modeled on V' Minkowski space and denote it E.
This is an oriented manifold, since ¥ is oriented. Alternatively, £ can
be defined as a 3-dimensional, oriented, geodesically complete,i-
connected,flat Lorentzian manifold.

(3.1.3) Light, Space and Time. The Causal Structure of Minkowski
Space:[73, 74]

The inner product induces a causal structure on V: a vector V=0 1S
called

o timelike if V-V <0
e null (or lightlike) if v.v =0 , or
* spacelike if V.V >0 .
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We will call the corresponding subsets of V¥ respectively v_,v,,r,. The

set V, of null vectors is called the light cone.

(3.1.4) Null Frames:

The restriction of the inner product to the orthogonal complement s* of
a spacelike vector s is indefinite having signature (1, 1). The intersection
of the light cone with S* consists of two null lines intersecting
transversely at the origin, for a unit spacelike vector s:

SXS§ =8 .
S><S+ = S+
The basis defines linear coordinates (a, b,c) on V: v:=as+bs +cs”
so the corresponding Lorentz metric on E is:
da’—dbdc
(3.1.5) Relationship to The Hyperbolic Plane:

Let H> c V the set of unit future-pointing timelike vectors, that is

H 2={veV—|v.v=—1|}, denote the restriction of the Lorentzian metric to H?,

denoted dJH?, is positive definte for u,v e H?:cosh (de(u,v ))=u.v

the resulting metric is a Riemannian metric with constant curvature

—1, and we identify H2 with the hyperbolic plane.

Geodesics in the hyperbolic plane correspond to indefine planes in V,

which are precisely the planes that intersect H2, equivalently, these are
Lorentzian-perpendicular planes to spacelike vectors. Thus spacelike
vector s 1S 1dentified with a geodesic n H.
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(3.1.6) Components of The Isometry Group:

The group 0(2,1) has four connected components. The identity
component SO°(2,1)consists of orientation-preserving linear isometries
preserving time-orientation. It is isomorphic to the group PSL(2,R) of

orientation-preserving isometries of the hyperbolic plane. The group
0(2,1) is semi direct product

0(2,1)=(Z/2x2/2)xS0°(2,1)
(3.1.7) Transvections , Boosts, Homotheties and Reflections:/75, 76/

In the null frame coordinates ,the one-parameter group of linear isome-
tries

1 0 0
E, =10 e 0
0 0 e

1

(for teR) fixes s and acts on the (indefinite) plane s——. These trans-

formations, called boosts, constitute the identity component SO°(i,1)of

the isometry group of V*.The one-parameter group RT  of positive
homotheties

o

0
0

eS
n,:=0
0

(e}

e
(where s € R) acts conformally on Minkowski space, preserving orien-

tation. The involution
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-1 0 O
p=0 0 -1
0 -1 0

preserves orientation, reverses time-orientation, reverses s, and inter-

changes the two null lines Rs ™~ and Rs™.

(3.2) Proper Actions and Locally Homogeneous Lorentzian
3-Manifolds

(3.2.1) Groups of Isometries :[77]
Definition(3.2.1):

Let x be a locally compact space and G a group acting on x. We
say that G acts properly discontinuously onxif for every compact
K < X, the set:

{yeG|meK¢O} 3.4)

1s finite,
Theorem (3.2.2):[78]

Let x be a Hausdorff manifold and let G be a group that acts freely and
properly discontinuously onx . Then X/G is a Hausdorff manifold

Remark(3.2.3):

A group that acts properly discontinuously on Eis discrete. But the converse,
which holds for Riemannian manifolds, is false for group actions on E
Definition(3.2.4):

Let X be a topological space and G a group acting on X. LetFcX be
a closed subset with non-empty interior. We say that F' is a fundamental
domain for the G-action on X if ;

e X =U, 7 F;

« for all. y;tneG,int(yF)m int(nF)¢¢)

Theorem(3.2.5):
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Let X be a topological space and G a group acting on X . Suppose there exists
a fundamental domain F for theG -action on X. Then G acts properly
discontinuously on X and:

X/G=F|G (3.5)
Definition(3.2.6):
A Margulis spacetime is a Hausdorff manifold £/G
where G is free and non-abelian.
(3.2.2) Examples of Margulis Spacetime ; Crooked Planes :
Definition(3.2.7):[79]

Let XeR* be a future-pointing null vector. Then the closure of the
following halfplane:

Wing (X )={ue X*|xX=u" | (3.6)

is called a positive linear wing.
In the affine setting, given pekE,p + Wing (X) is called a positive
wing, observe that if ueR”>' is spacelike:

ue Wing (u+)

—ue Wing (u_)

ue Wing (u+)m ue Wing (u_) =0
The set of positive linear wings is S 0O(2,1)-invariant.
Definition(3.2.8):[80]
Let ueR> be spacelike. Then the following

Stem(u):{XeuL‘ x.xSO}

is called a linear stem. For peE, p + Stem(u) , is called a stem .

Observe that Stem(u)is bounded by the lines Ru* and Ru and thus respectively

intersects the closures of Wing (u+) and Wing (u‘) in these lines.
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Definition(3.2.9):

Let pek and ueR™ be spacelike. The positively extended crooked plane
with vertex p and director u is the union of:

* the stem p+ Stem(u);

* the postivewing + Wing (u+);
* the postivewing +Wing (u_);
It is denoted C(p,u).

(3.2.3) Crooked Halfspaces and Disjointness:

The complement of a crooked plane in C(p,u)eE consists of two
crooked halfspaces, respectively corresponding to u and —u. A crooked

halfspace will be determined by the appropriate stem quadrant,.
Definition(3.2.10):

Let ueV be spacelike and peE. The associated
stem quadrant 1s:

OQuad (p,u)=p+lau” —bu*|a,b>0} (3.7)

The stem quadrant Quad (p,u) is bounded by light rays parallel to
u and —u" .
Definition(3.2.11):[81]

Let pecE and ueV be spacelike,the crooked half-space H (p,u) is the
component of complement of C (p,u)containing int (Quad (p,u)).

by defintion crooked halfspaces are open. While the crooked planes
C(p.u),C (p,-u)are equal, the crooked halfspaces H (p,u).H (p,—u),are
disjoint, sharing C (p,u)as a common boundary.
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Definition(3.2.12):[82]

Let oc£ and u,u,eV be spacelike.The vectors are said to be

consistently oriented if the closures of the crooked halfspaces
H (o,u,) and H (o,u, )intersect only in o.

Definition(3.2.13):

Let u,,u,eV be a pair of consistently oriented ultraparallel spacelike
vectors.The set of allowable translations

for u,,u,is:
A(u, ,u,) =int(Quad (p,u,)-Quad (p,u,))cV

where pe E can be arbitrarily chosen.

(3.3) Deformations.

(3.3.1) Lorentzian Transformations and Affie Deformations:

Let Isom'(E) denote the group of all orientation-preserving affine trans-
formations that preserve the Lorentzian inner product on the space of
directions; Isom'(E) is isomorphic to S0O(2,1)« R>' then the projection is

Isom’ (E) —350(2,1)
Definition(3.3.1):[78, 82]
Let geSO'(2]) be anon identity element;

* g 1s hyperbolic if it has three, distinct real eigenvalues;

« & is parabolic if its only eigenvalue is 1;
« & is elliptic otherwise.

We also call yelsom (E) hyperbolic (respectively parabolic, elliptic) if its
linear part L(y) is hyperbolic (respectively parabolic, elliptic).

Letl[,cSO(2,1) be a subgroup. An affine deformation of T, is a
representation

p:Ty— Isom * (E) (3.9)
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(3.3.2) The Lie Algebraci(2,R)asV :

The Lie algebra ¢:(2,R) is the tangent space to PSL(2,R)at the identity
and consists of the set of traceless 2x2 matrices[83].The three-

dimensional vector space has a natural inner product , the Killing
form ,defined to be

<v,w>=%Tr(v,w) (3.9)
A basis for ¢(2,R) is given by

I 0 0 1 0 1
o PR TS R S B (3.10)

Evidently, <E1’El>:<E2=E2>:1 ) <E3=E3> _land<Ei ,Ej>= 0 forizj

that is, ¢(2,R) is isomorphic to¥ as a vector

S{XE +yE, +zE,=V }

~
Il
N =

the adjoint action of PSL(2,R) onci(2,R):

g (v)=gvg™ corresponds to the linear action of SO'(2]1) onV Using these
1dentifications, set:

G= PSL(2,R)=S0"(2,1) g=ci(2,R)=V .

(3.3.3) The Margulis invariant:

LetgeG be a non-elliptic element. Lift g to a representative in SL(2,R);
then the following element of g is a g -invariant vector which is
independent of choice of lift:

£ =l -T2 G.11)

where p(g) is the sign of the trace of the lift.

We define the non-normalized Margulis invariant of p(g)e p(T, )to be:
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a,(g)={ulg). ) (3.12)

If p(g) is hyperbolic, then r, is spacelike and

o ___2pg) (g_Tr(g)[j

- Tr(g)2—4 2

1s the unit-spacelike vector, then

o, (2)=(ulg). x?) (3.13)

In Minkowski space, «,(g) is the signed Lorentzian length of a closed

e, ()

geodesic in

(3.4) Length Changes in Deformations:

Let p,:z,(8)»T,cG be a holonomy representation and let
p:T,—Isom (E) be an affine deformation of p,, with corresponding

cocycle uez'(r,.g).

The affine deformation p induces a path of holonomy representations p,

as follows:
P, (Z)—)G ,

y—exp(tu(g))g,

where g=p,(7),and u is the tangent vector to this path at ¢.

Conversely, for any path of representations p,

p, (v)=exp (e (g)+0(*))g (3.14)
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where uez'(r,,¢)u and g=p,(y) .Suppose g is hyperbolic. Then the
length of the corresponding closed geodesic in T is

I(g)=2cosh™ [%g)j

where g is a lift of g to SL(2,R). With p,p, since the Margulis invariant

of pcan also be seen to be a function of its corresponding cocycle u
,then

a,(g)=a,(g)
and

d

dt

i) = &) (3.15)

2

so we may interpret «, as the change in length of an affine deformation

Although ; (y) 1s not differentiable ato for parabolic ¢

_aleg)
t=0 2

a
di

Tr(p, (r))=4, (g) (3.16)

(3.4.1) Deformed Hyperbolic Transformations:[84]

Let geSL(2,R) be a hyperbolic element, thus a lift of a hyperbolic
isometry of H*. Given a tangent vector in Veci(2,R), and

T, g —> exp (V ).g (3.17)
and
T, g g. (exp(V)_1 ):g. exp(—7) (3.18)

Therefore,

S e ()
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whose trace is 7r(g)=2cosh(s) the eigenvalue frame for the action of g on

Gi(2,R) is

where

gX, g =X,

g
- -1 -2s v —
ngg =e Xg
+ -1 2s +
gX, g =e X,
then Ve gi(2,R)

Vma X(g)+b X (g)e X (g)= {“ b } (3.19)

c —a

then

. . 2
Tr(r,(g))=2cosh scosh \Ja’+bc + 24 sinh ssinh ya'+be

\/a2+bc
(3.20)
(3.4.2) Deformed Parabolic Transformations:
L 0 r where Oand Tr(p)=2
p_|:0 1:|’ = exp |:0 0:|’ r>0an F(p)
1 0 0 0 0 1
Xu — XO — Xc = .21
@y 5w o e G.21)

then the Trace of the deformation of p 1is

Tr (7, (p))=2coshya’ +bc + sinhy/a’ +bc

cr
2
sa +be
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(3.5) Einstein Universe.

The Einstein Universe Ein, can be defined as the projectivisation of the

lightcone of R™ .We will write everything for »n=3.

Let R* denote the vector space R° endowed with a symmetric bi-

linear form of signature (3, 2). Specifically, for x =(x,,.,x,) and

Y:(yl,...,y5 ) er’
set: XY = X ) +X Y, X3 Y3 =X, Y= Xs Vs
Let X* denote the orthogonal hyperplane to X: X l:{Y eR> |X Y :O}
Let N*? denote the lightcone of R** :
N*2={X eR*\0|X.X=0] (3.22)
the quotient of N** under the action of R* by scaling:
Ein,=N>?/R’ (3.23)

Denote by z (V) the image of Ve N**> under this projection. Wherever

convenient, for V = (vl ,vz,v3,v4,v5) we will also write:
7Z'(V) =(v1 TV, iy, :vs) (3.24)
Denote by Ein orientable double-cover of Ein,.Alternatively:
Ein, = N**/R* (3.25)

Any lift of Ein, to N*? induces a metric on Ein, by restricting , - to the
image of the lift. For instance, the intersection with N** of the
sphere of radius 2, centered at 0, consists of vectors X such that:

X7 X0 +x; =l=x; +x2 (3.26)

It projects bijectively to Ein, endowing it with the Lorentzian product
metric d g’ —dt’ , where d g’ is the standard round metric on the 2-spher S* ,

and dt* is the standard metric on the circle S' .
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Thus Ein, is conformally equivalent to:
S?xS'/~ whereX~—-X
Here -7 factors into the product of two antipodal maps.

Any metric on Ein, pushes forward to a metric on Ein,. Thus Ein,inherits

a conformal class of Lorentzian metrics from the ambient space- time R**.
The group of conformal automorphisms of Ein,is:

Conf{Ein) = PO(3,2)=S0(3,2)
As S0(3,2) acts transitively on N*?, Conf(Ein,)acts transitively on Ein,.

(3.6 ) Preliminaries on Semi-Riemannian Manifolds
(3.6.1) Parallel Transport and Curvature:[85]

Let vZ be a covariant derivative for a vector bundle E-— m as before. Then
the curvature tensor R of V* is defined by

R(X.,Y)s=V, V,s= V,V,s= Vs (3.27)

for x,yer(rm) and ser=(£), A simple computation shows that
Ris ¢~ (M) -linear in each argument and thus defines a tensor field

Rel*(End (E)®ANT'M) (3.28)

There are certain contractions we can build out of R. The most important one is
the pointwise trace of the End (E )-Part of R . This gives a two-from

rR(X,Y )= tr (s—>R(X,Y)s ), (3.29)

i.e. a section R el (A>T M).The following lemma gives an interpretation of
trR:

Lemma(3.6.1):

Let E be a covariant derivative for a vector bundle £ — m
i.) The two-form o 7er= (A>T M) is closed, dur R =0.
ii.) The two-form # R 1is exact. In fact,

tr R=—-da (3_30)
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where aer”(7'M) is defined by

_Viu

alX)== (3.31)

with respect to any chosen positive density pel” (A”’" E ) .

Definition (3.6.2) ( UnimodularCcovariant Derivative):[86]

A covariant derivative V* is called uni-modular if # RZ = 0.
Let y:7cR — M be asmooth curve defined on an open interval 7.

then a section ser” (y*E) with

Vis=0 (3.32)

dt

if {e, } are local base section of Eover some open subset UcM and y(I)c U

the ( 3.32) is equivalent to

0=V (s (e, (0= s “ (e, ()5 (0) 4L 7 (0)e, (r(0))

1.e.

) Ag[;(t)J s7(1)=0 (3.33)

Proposition(3.6.3):
Let vZ be a covariant derivative for E-— M and let
y:Ic R - M besmooth curve. Let 4 .,pe1.

i.) For every initial condition s,,€E,, there exists a unique solution
S(t)e E},(a) (332)

ii.) The map s, +>s(b) 1is a linear isomorphism E,, — E,,, which is denoted
by

P

y,a—b

:E},(a)—) E},(b) (334 )
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Definition(3.6.4)(Parallel Transport):

The linear isomorphism P

y,a—b

:E,,— E, 1s called the parallel transport along

y with respect to v*.

(3.6.2) The Exponential Map:

In the case E=7Mm a covariant derivative has additional features . First, we
have another contraction of the curvature tensor R given by

Ric(X,Y)=tr (z0>R(Z,X)Y ) (3.35)
or X,yer* (T M). The resulting tensor field
RiceT”(T"M ®T M) (3.36)

is called the Ricci tensor of v . Note that the trace in (3.35) only can be defined
for E=7M . The third contraction # (zr>R(Z,X)Y ) would give again the Ricci
tensor up to a sign. Thus (3.35) is the only additional interesting contraction.

For a covariant derivative Vv on 7 we have yet another tensor field , the
torsion

Tor(X,Y)=V Y-V, X-[X,Y] (3.37)
which gives a tensor field
Tor eT” (N°T"M ®TM ) (3.38)
then Vv is called torsion-free if 7or =0 .

Theorem (3.6.5) (Geodesics) :[87, 88]

Let v be a covariant derivative for M — M .

1.) For every v,eT, M there exists a unique solution y=/,, cR—>M of

¥ k ¢

(y(0)+T.( @)y (6)y () with #(0)=v, and maximal open interval 7, cR around?.
ii.) let Aerand v, el, M if y denotes the geodesic with j/(O):vpthen

v, (¢)=y(A¢) is the geodesic with 7~ ©0)=7,
ii1.) There exists an open neighborhood o< 7 M of the zero section such that

for all v,ev the geodesic with y(0)=v, is defined for all re[0,1]. We set
exp,(vp)=y (1) for this geodesic .
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iv.) for v, evc TMthe curve tsexp,(v,) isthe geodesic y with y(0)=y

vV

v.) The map exp vc T M — M is smooth.
vi.) The map 7z xexp: vc TMavp|—>(p,expp (vp))eM x M (3.39)

is a local diffeomorphism around the zerosection. It maps the zero section onto
the diagonal and for all pe M

T,, exp, =idT,M (3.40)
Definition (3.6.6) ,(Exponential Map):
For a given covariant derivative vV the map exp: vc TM —->M given by v.) of
Theorem 3.6.5 is called the exponential map of v
Definition( 3.6.7):

Uc M

An open subset is called

1.) geodesically star-shaped with respectto  p e M if there is a star-shaped

V.oV, withexp, (V)expp ‘V: y=U

ii.) geodesically convex if it is geodesically star-shaped with respect to any
point peU .

Definition(3.6.8)(Geodesic Completeness):

The covariant derivative V plete if all geodesics are defined for all times.

(3.6.3) Levi-Civita Connection and The D'Alembertian:

Definition(3.6.9)(Semi-Riemannian metric): [34]

A section g el (827°M) is called semi-Riemannian metric if the bilinear form
g, €8T, 'Mon T,M is non-degenerate for all pem . If in addition g, is

positive definite for all pem then g is called Riemannian metric. If g, has

signature (+,—,..,—) then g is called Lorentz metric.

Remark (3.6.10) (Semi-Riemannian Metrics):

1.) The signature of a semi-Riemannian metric is locally constant and hence
constant on a connected manifold, since it depends continuously on p and has
only discrete values.

ii.) For Lorentz metrics also the opposite signature (—,+,..,+) is used in the
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literature.

A semi-Riemannian metric specifies a unique covariant derivative and a unique
positive density

Proposition(3.6.11):[89]
Let g be a semi-Riemannian metric on M .

1.) There exists a unique torsion-free covariant derivative V , the Levi-Civita
connection, such that

V. =0. (3.41)

g

ii.) There exists a unique positive density — u, eI'” (‘A”’f’ T"M) such that

oy =1 (3.42)

whenever v, , ..., v, form a basis of 7 M with

gp(vi,v/.)zéﬁ in a chart (U ,x)

we have

ug|u:\/|det(gij)||dxl Ao Adx" |, (3.43)

iii.) The density , is covariantly constant with respect to the Levi-Civita

connection,
v =o0. (3.44)
Thus V unimodular.
Remark(3.6.12)(Semi-Riemannian Metrics) :
Let ¢ be a semi-Riemannian metric onM .

1.) For a semi-Riemannian metric we have a notion of geodesics, namely those
with respect to the corresponding Levi-Civita connection.

ii.) The covariant divergence div, (X) of a vector field x er~”(ra) and the
divergence with respect to the density I 1.e.
g

divug(X):‘@XMg (3.45)
Hy
coincide: we have
div (X) = divu, (X), (3.46)
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sinceV,, =0 then
div(X) = divV(X) = divu,(X) (3.47)
on a semi-Riemannian manifold
iil.) Since g eI”(S*7"M) is non-degenerate it induces a musical isomorphism
b:T,M>y 1y =gy ) eT;M, (3.48)
which gives a vector bundle isomorphism
b:TM — T'M. (3.49)
the inverse of b usually denoted by
#:T M —>TM (3.50)

extending #and b to higher tensor powers we get musical isomorphisms also

between all corresponding contravariant and covariant tensor bundles. If locally
in a chart (U,x)

g\Uzégjidxivdxj, (3.51)

i i i a ii . .
then V' =g Vdx', where v=v e If g",denotes the inverse matrix to the g,
' x

from (3.51),i.e. g’g, =5, g ,then

a’=g" aiizéik (3.52)
Ox;

i

or a one-form a=a,dx’ . This motivates the notion as » lowers the indexes

while # raises them. Finally, we have the dual metric locally given by

a1,y 0, 0 3.53
g ‘U 2g axivaxj’ (' )

which is a global section g~ e (S27TM).

iv.) The metric gel”(8T°M) can equivalently be interpreted as a
homogeneous quadratic function on 7M via the usual canonical isomorphism
from Remark 2.2.7, the function

T=n(g) € pol*(TM) (3.54)

is then usually called the kinetic energy function in the Lagrangian picture of
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mechanics. Analogously ¢~ er~(s?rm) , gives a homogeneous quadratic
function

Tzn(g’l)e pol*(T*M) (3.55)

v.) Using the inverse matrix g/ we have the following local Christoffel
symbols of the Levi-Civit connection

1, 0g, 0Og, 0g,
It =—gh (=L 2020 3.56
v 2g (ﬁx’ ox' Gx/) ( )

Since Proposition (3.6.11, iii.) for a semi-Riemannian manifold (M,g) the
Ricci tensor Ric is in fact symmetric

Ric eT*(S’T'M), (3.57)

we can compute a further “trace” by using the metric g. Note that while Ric
can be defined for every covariant derivative this further contraction requires g
. One calls the function

scal ={g™", Ric) € (M) (3.58)
the scalar curvature. Locally, scal is just

scall,= g"Ric,;. (3.59)

Definition(3.6.13)(Gradient and D’ Alembertian) :[90]
On a semi-Riemannian manifold (M,g) the gradient of a function is defined by
grad f =(df)’ eT*(TM) (3.60)
and the d’Alembertian of a function f e " (M) is
0f =div(gradf) ee” (M) (3.61)

In case of a Riemannian manifold we write Af = div (grad f). instead and call A
the Laplacian.

Proposition(3.6.14):[91]
Let (M,g) be a semi-Riemannian manifold and let (U,x) be a chart of M .

1.) The gradient of f /" (M) is locally given by
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of @

d =gl ——. 3.62
grad (f)], =8" 5= (3.62)
ii.) The divergence of XeI™(TM)is locally given by
div (X) |y = 2Tt x, (3.63)
ox
iil.) The d’Alembertian of f e/”(M) is locally given by
1r1e=g" oL L, (3.64)

ox'ox’ v ox*

iv.) The d’Alembertian is a second order differential operator with leading
symbol

o(0)=2g" eI (S’TM). (3.65)

Moreover, with respect to the global symbol calculus induced by the Levi-
Civita connection we have

0= (;l—)zifstd (2¢7). (3.66)
whence
1f=5(e D). (3.67)
Remark(3.6.15)(Hessian):

Sometimes %Dz feT”(S°T "M). is also called the Hessian

Hess(f)z%szeF‘”(SzT*M). (3.68)
Then the d’Alembertian is the trace of the Hessian with respect to g
Moreover, the gradient grad:(”(M)—T”(TM). is a differential operator of

order one, the same holds for the divergence div:I'™*(TM)— (*(M ).
Remark(3.6.16):
Take the Leibniz rules
grad (f g)=g grad (f)+ f grad (g) (3.69)
di(f X) = f div(x)+ X(f), (3.70)

O(fg)=gl0f+grad(g)f+grad(f)g+flg
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=gl f+2(grad (f),grad (g))+ fU g, (3.71)

for f,gel®M) and X eI'*(TM), they can easily be obtained from the
definitions.

Example(3.6.17) (Minkowski Spacetime) : [92, 93]

We consider the n-dimensional Minkowski spacetime. As a manifold we have
M =R" with canonical coordinates  x°,x',...x""". Then the Minkowski

metric non M 1s the constant metric
1 .
n= Enijdx vdx’ (3.72)

with n,, =diag(+1,-1,....-1). One easily computes that in this global chart all

Christoffel symbols vanish: (» ,n)is flat. Moreover, we have for the above
differential operators

g Of 0 & o 3.73
gad S = T T TR o o (3.73)
divx = X0 §Hoxt (3.74)
ox’ = Ox'
o f & oy (3.75)
0f= = >
T2 Zla(x')

This shows that ois indeed the usual wave operator or d’ Alembertian as known
from the theory of special relativity, . Finally, the Lorentz density with respect
to n is just the usual Lebesgue measure

H, Hdx’ A.Adx". (3.76)

(3.6.4) Normally Hyperbolic Differential Operators:
Definition (3.6.18) (Normally Hyperbolic Operator):[94, 95]

Let £E— M be a vector bundle over a Lorentz manifold (M,g). A differential
operator D:T”(E)—T”(E) is called normally hyperbolic if it is of second
order and

0,(D)=2g"' ®id,. (3.77)
Recall that (D) el™ (SZTM ®End(E)) which explains the second tensor factor
in (3.77) .
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Example(3.6.19)(Connection D’Alembertian):

Let £ be a covariant derivative for E— M and let v be the Levi-Civita
connection. This yields a global symbol calculus whence by

0%= (é)zfstd@g"l ®id,) = %<2g'1 ®idE,%(DE)2> (3.78)

a second order differential operator is given with leading symbol

o(07)= (%)2 o, (Istd Qg™ ®id,)) =2 ®id, (3.79)

by Theorem 2.2.6. Thus 0V is normally hyperbolic for any choice of v*

called the connection d’ Alembertian with respect to £ .

(3.7) Causal Structure on Lorentz Manifolds:

(3.7.1) Some Motivation from General Relativity:

In general relativity the spacetime is described by a four-dimensional manifold
M equipped with a Lorentz metric g subject to Einstein’s equation [96, 97].
One defined the Einstein tensor

G = Ric - %scal.g, (3.80)

which is a symmetric covariant tensor field
Gel™(S’T'M). (3.81)
It can be shown that the covariant divergence of G vanishes,
div G=0, (3.82)

while G itself needs not to be covariant constant at all. Physically, (3.82) is
interpreted as a conservation law. Einstein’s equation is then given by

G = kT, (3.83)

where T eT*(S’T°M). is the so-called energy-momentum tensor of all matter
gy

and interaction fields on M excluding gravity. The constant & is up to
numerical constants Newton’s constant of gravity. More generally, Einstein’s
equation with cosmological constant are

G+g = kT, (3.84)
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where 1 eR is a constant,

(3.7.2) Future and Past on a Lorentz Manifold:

Having a fixed Lorentz metric g on a spacetime manifold » we can now
transfer the notions of special relativity, to (M, g)[98]. In fact, each tangent

space (TpM , gp) is isometrically isomorphic to Minkowski spacetime (R” ,n)
with 5 =diag (+1,-1,..,-1), by choosing a Lorentz frame: there exist tangent
vectors e, eT, M with i=1,...,n such that

gp(el.,ej)znij:i&.j (3.85)
Remark(3.7.1)(Local Lorentz frame):

The pointwise isometry from (TPM , gp) to (R”,n) can be made to depend

smoothly on p at least in a local neighborhood : For every pe M there exists a
small open neighborhood U of p and local sections e,,...,e, eT*(E|,). such

that for all geU

g,le(q).e,(q))=n, (3.86)

in general the frame {e} =1,..,n can not be chosen to come from a chart

1

xon U ,then there exists a unique smooth function A:U —0O(1,n—-1) such that
e (P) =N P, (p). (3.87)

since the Lorentz transformations O(1,n—1) are precisely the linear isometries of
(R” ,77) . As in special relativity one states the following definition:

Definition(3.7.2):

Let (M,g) be a Lorentz manifold and v,e7,M a non-zero vector. Then v,
called

i) timelikeif g, (v,,v,)>0 ,
ii.) lightlike or nullif g, (v,,v,)=0,
iii.) spacelike if g, (v,,v,)<0.

Non-zero vectors with g (v,,v,)>0 are sometimes also called causal. To the

Zero vector,.
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Definition(3.7.3)(Time- orientability):
Let (M,g) be a Lorentz manifold.
i.) (M,g) is called a time- orientable if there exist a timelike vector field

XeT™(TM) .

i1.) The choice of a timelike vector field XeI'"(TM) is called a time-
orientation.

iii.) With respect to a time-orientation, a timelike vector v, eT,M is called
future directed if v, is in the same connected component as X, . It is called

past directed if —v, 1s future directed.
Definition(3.7.4):

Let (M,g) be a time-oriented Lorentz manifold and p,gem [74]. Then we
define

1.) p (¢ ifthere exists a future directed, timelike smooth curve from p ¢ ¢ .

il.) p <q ifeither p =g or there exists a future directed, causal smooth curve
from p 0 q .

i) p <qg if p <qg but p =gq.
Definition(3.7.5)(Chronological and Causal Future and Past):[99]
Let (M,g) be a time-oriented Lorentz manifold and pe m .

1.) The chronological future of p is

I"(p)={geM | p (q } (3.88)
i1.) The chronological past of p is
1 (p)=lgeM|qp} (3.89)
ii1.) The causal future of p is
J*(p)={geM|p<q | (3.90)
v.) The causal past of p is
J (p)=lgeM|q<p} (3.91)
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Definition(3.7.6)(Future and past compactness):

Let (M,g) be a time-oriented Lorentz manifold. Then a subset 4 c & is called
future compact if J;,(p) N4 is compact for all pem and past compact if
J,(p) N4 is compact forall pem .

Definition(3.7.7)(Causal Compatibility):

Let (M,g) be a time-oriented Lorentz manifold and U < M open. Then U is
called causally compatible if for all pe » we have

J5(p) =75 (p)nU (3.92)
(3.7.3) Causality Conditions and Cauchy-Hypersurfaces:
Definition(3.7.8)(Causal Subsets):[29]

Let U c M be an open subset. Then U is called causal if there is a geodesically
convex open subset U'c M such that U“c U’ and for any two points
p,qeU" the diamond J,, ( p,q) is compact and contained in U*' .

Definition(3.7.9)(A Causal and Achronal Subsets):[100]

Let 4 < m be a subset of a time-oriented Lorentz manifold. Then 4 is called
1.) a chronal if every timelike curve intersects 4in at most one point.

ii.) a causal if every causal curve intersects 4 in at most one point
Theorem(3.7.10)(A Chronal Hypersurfaces):

Let (M,g) be atime-oriented Lorentz manifold and 4 < » achronal. Then 4

is a topological hypersurface in M if and only if 4 does not contain any of its
edge points.

Definition(3.7.11)(Cauchy hypersurface):[29, 101]

Let (M,g) be a time-oriented Lorentz manifold. A subset = c m is called a
Cauchy hypersurface if every inextensible timelike curve meets £ in exactly
one point.

Definition(3.7.12) (Cauchy Development):[102]

Let 4<=M be a subset. The future Cauchy development D}, (4) =M of 4 is
the set of all those points pe m for which every past-inextensible causal curve
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through p also meets 4, Anolgously, one defines the past Cauchy
development D,, (4) and we call

D, (4)=Dy, (4) N D,, (4) (3.93)
the Cauchy development of 4.
Remark(3.7.13)(Cauchy Development):

Let 4 cMm be a subset, the physical interpretation of Dy, (4) is thatD,, (4) is
predictable from Analogously, D,, (4) consists of those points which certainly
influence 4 in their future. We have Ac D, (A) .

Remark(3.7.14):
For 4 < M we clearly have
Dy, (Dy, (4)=Dj; (4) (3.94)
and hence
D,, (D, (4))=D,, (4) (3.95)
Moreover, for 4 < B <M we have
Dy, (4) < Dy, (B) (3.96)
and
D, (4) c D,, (B) (3.97)
Definition(3.7.15)(Causality Condition):
Let (M,g)be a time-oriented Lorentz manifold.

1.) M is called causal if there are no closed causal curves in M .

ii.) An open subset U < M is called causally convex if no causal curve
intersects with U in a disconnected subset of U .

iii.) M is called strongly causal at pe M if every open neighborhood of p
contains an open causally convex neighborhood.

iv.) M is called strongly causal if M is strongly causal at every point pe M .
(3.7.4) Globally Hyperbolic Spacetimes:
Definition(3.7.16)(Globally Hyperbolic Spacetime):[103]
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A time-oriented Lorentz manifold (M ,g) is called globally hyperbolic if
i.) (M,g) is causal,

ii.) all diamonds J,,( p,q ) are compact for p.qeM .

Definition(3.7.17)(Time Function):[38]

Let (M,g) be a time-oriented Lorentz manifold and ¢:M — R a continuous
function. Then ¢ is called a

1.) time function if ¢ is strictly increasing along all future directed causal
curves.

ii.) temporal function if ¢ is smooth and grad ¢ is future directed and timelike.

1.) Cauchy time function if ¢ is a time function whose level sets are Cauchy
hypersurfaces.

v.) Cauchy temporal function if ¢ is a temporal function such that all level sets
are Cauchy hyper-surfaces.

Remark(3.7.18)(Time Functions):

1.) With the other sign convention for the metric a temporal function has past
directed gradient.

ii.) If t is temporal, its level sets are (if nonempty) embedded smooth
submanifolds since the gradient is non-zero everywhere and hence every value
is a regular value. Note that they do not need to be Cauchy hypersurfaces at all
, In fact, remove a single point from Minkowski spacetime then the usual time
function is temporal but there is no Cauchy hypersurface at all

ii1.) The gradient flow of ¢ gives a diffeomorphism between the different level
sets of ¢ . Since every timelike curve intersects a Cauchy hypersurface precisely
once we see that this gives a diffeomorphism

M=~t(M)xE, , (3.98)

and all Cauchy hypersurfaces are diffeomorphic to a given reference Cauchy
hypersurface £, , this gives a very strong implication on the structure of M.

iv.) By rescaling ¢ we can always assume that the image of ¢ is the whole real
line as the image of ¢ is necessarily open and connected (for connected M ).
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Theorem(3.7.19):

Let (M,g)be a connected time-oriented Lorentz manifold. Then the following
statements are equivalent:

i.) (M ,g) is globally hyperbolic.
i1.) There exists a topological Cauchy hypersurface.
ii1.) There exists a smooth spacelike Cauchy hypersurface.

In this case there even exists a Cauchy temporal function t and (M,g) is
isometrically diffeomorphic to the product manifold

RxZwith metricg=pdt’ — g, (3.99)

where Bel” (RxX) is positive andg, eI (S*T'L) is a Riemannian metric on X
depending smoothly on ¢. Moreover, each level set

2, ={to)erRxzjgcM (3.100)
of the temporal function ¢ is a smooth spacelike Cauchy hypersurface.
Example(3.7.20)(Minkowski strip):

We consider $=(a,b) an open interval with —w<a<b<+wand M=RxZcR’as
open subset of Minkowski space. ThenZ, is not a Cauchy hypersurface for any

t. This is clear from the observation that there are inextensible timelike
geodesics not passing

through X, . In fact, M is not globally hyperbolic at all: while M is causal (and
even strongly causal) , the metric is of the very simple form

g=dt’—dx’ (3.101)
Proposition(3.7.21):
Let M =RrRxx with Lorentz metric
gzédtv—dt—f(t)gZ (3.102)
where gT is a Riemannian metric on £ and fe/”(R) is positive. The time-
orientation is such that % is future directed. Then (M ,g)is globally

hyperbolic if and only if g= is geodesically complete.
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Theorem(3.7.22):

Let (M,g) be globally hyperbolic and let = c @ be a smooth spacelike
Cauchy hypersurface. Then there exists a Cauchy temporal function ¢ such that
the =0 Cauchy hypersurface coincides with = .

(3.8)The Cauchy Problem and Green's Functions .

Having the notion of a Cauchy hypersurface we are now in the position to
formulate the Cauchy problem for a normally hyperbolic differential operator
[104]. Here we still be rather informal only fixing the principal ideas

Thus let (Mm,g) be globally hyperbolic and> c # a smooth Cauchy

hypersurface which we assume to be spacelike throughout the following. At a
given point p e * ¢ M the tangent plane T,2cT, Mis spacelike whence there

exists a unique vector n,e7, M which satisfies

g,(n,T,X)=0 (3.103)
g,(n,,n,)=1 (3.104)
n,1s future directed (3.105)

This vector is called the future directed normal vector of Xar p. Taking all
points peX we obtain the future directed normal vector field of =, i.e. the

vector field ner”(TM|,) (3.106)

such that (3.103), (3.104), and (3.105) hold for every peX . Since X is a
smooth submanifold, » is smooth itself. We consider now a normally
hyperbolic differential operator D e Diffop (E)on some vector bundle £— M
Then this operator gives the homogeneous wave equation

D,=0 (3.107)
or more generally
D, =v (3.108)

where ver” (E£) 1s a given inhomogeneity and uer~ (£) is the field we are
looking for. Having specified the inhomogeneity which physically corresponds
to a source term, we can try to find a solution u which has specified initial
values and initial velocities on T . More precisely, we want

uly =u,er” (E],) (3.109)
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and VEuly =uoel” (E],) (3.110)

for u,,u, are given the fundamental solutions

F,er” (E)®E, ®|A”|1; M =u,er” (£|,) such that

DF, =3, (3.111)
where 5, is the & -distribution at peM viewed as E, ®A”|T, M -valued
generalized  section  of E , le. for a test section
pely (E"®N|T" M)=u,er” (E|,) we have

8,(1)=p (p)eE, ®|A™

T,M (3.112)
Definition(3.8.1)(Green's functions):

Let peM. A generalized section F of £ which satisfies (3.111) is called

fundamental solution of Darp . If a fundamental solution F, in addition

satisfies SuppF, =J,,(p), (3.113)

then F;is called advanced or retarded Green function of Dat p , respectively.
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Chapter(4)
The Local Theory of Wave Equations
(4.1) The D'Alembert Operator on Minkowski Spacetime

We consider the d’Alembert operator on flat Minkowski spacetime.

(4.1.1) The Riesz Distributions:[105]
Let N=—s-A 4.1)

with /= x* and % = (v',...x") by using Minkowsky metric 7 we have

n(x)=n(x.x) (4.2)

on R" clearly n ePol >(R? ) is a homogeneous quadratic polynomial then

n(xo ooy X" )=(x0)2 —':Z_;(x"f =1 — (x) (4.3)

Definition(4.1.1):

Let aeChaveRe(a)>n then

R* (@) (x) = c(a,n)n(x)2  forael*(0) (4.4)
0 else
where the coefficient is
2-n
l-a 2
c(a,n)= 2z 4.5)
(S
2 2
Remark(4.1.2)(Gamma Function)[35, 106]:
The Gamma function
r:c\{0,-1,-2,..} > C (4.6)

is known to be a holomorphic function with simple poles at —» for ne N,

we have the following properties:

1.) The residue at nenN, is given by
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res I'=-—=

ii.) For ze € \{0,-1,-2,...} one has the functional equation

[(z+1)=z(z) with 1(1)=1
iii.) For nen, we obtains from (4.8) immediately
C(n+1)=n!
iv.) For Re(z)>0 we have Euler’s integral formula
T(z)=["¢"e"dt

in the sense of an improper Riemann integral.

v.) Forall ze c\{0,-1,-2,...} we have Legendre’s duplication formula

r(z)r(z . %j 2"z 1(22)

Thus

ca,n)=0 iff « e{—2k|keN0}u{n—2k|keN0 }

since the nominator has clearly no zeros.

Lemma(4.1.3):

(4.7)

(4.8)

(4.9)

(4.10)

4.11)

(4.12)

Let AeL'(1,1-n) be an orthochronous Lorentz transformation and Re(a)> n

Then
AR*(a)=R*(a)
If 7 eL(1,1-n)is the time-reversal x°+>—x° then

T'R*(a)=R*(a)

Lemma(4.1.4):
Let Re(a)>n.
1.) For every xeRr" the function
a - R*(a)x)
is holomorphic.
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ii.) For every test function ¢ e/ (R) the function

a - R*(a)p) (4.16)
is holomorphic.
Lemma(4.1.5):
In the sense of continuous functions we have:
i.) For Re(a)>n we have
nR*(a)=oa(a —+2)R*(a +2)

ii.) For Re(a)> n+2k the function R*(a)is¢* and we have

O R*(a)=— R*(a~2),x’ (4.17)

o' a2
iii.) For Re(a)>n we have
grad n.R*(a )= 2agradR *(a +2) (4.18)
iv.) For Re(a)> n+2 we have
OR* (a+2)=R"(ax) (4.19)

Proof. At the first part We have

a+2-n

ala+2-n)R (a+2)=ala+2-n)c(a+2,n)y 2

a—n

—ala+2- n)c(a + 2,n)n777

=al@+2-n)(a+2,n)p

(on) nR*(a)
And
e S (o {a-n Lfa\(a-n
clav2n) > 7 F(zjr( 2 ”)_ ’ F(zjr( 2 ”) o (4.20)
c(a,n) - r[a;zjr[mz-mjz,,aﬂ? _ar(aja+2—nr(a—n+lj_a(a+2—n)
P 2 (2) 2 2

For the second part we recall that in 7= (0) the function R* («) is smooth as well
asi R*\J*(0).In /*(0) we compute

8R+
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 clawn) A rE x.(ﬁm 1
_c(a—2,n)( R 2),711' ’ (a-2)(a-n)

R*(a - 2)77l:,.x"'

(a—n)Ri(a—2)nl.jxj

(a-2)
Now if Re(a)> n+2k then Re(a-2)>n+2k-2is still larger than » for positive

keN. Thus the partial derivative il_Ria is the continuous function

Ox

(0)
(—2)Ri (=2)n, x’ inI* (0) (0—2) which continuously extends to R” by setting it
a p—

zero outside of 7% (0). We have

#
gradn = [a—n.dx’) = a—n.n"j on _ 2n,x'n" =2x' 0 _ 2E

X' ox' ox’ ox’

Thus grad 7 is twice the Euler vector field on R” , Using (4.17) we compute for
Re (a)> n

. p aRi(Ot +2) 0 if 1 + 0
2agradR * (o +2)=2an’ T o o 2an” a+2-2 R (et ox’
= R*(a)2x* —— = R*(a)gradn

For the last part we use (4.17) twice and obtain

N 0 0 N
UR™ 2)= U—_—_R7 2
((Z+ ) n o' ox’ ((Z+ )

) 1 .
=’ %(0‘+2_2R(a+2—2)}njkxk

L R oyt R (g 2
ox ox

R ] SO Y S epy
[04 [04

D(a=2)a-2-n+2) (
a(a—Z) a

SO )= ) @.21)



Since  a+»> R*(x) is a holomorphic family of distributions for Re(a)>n by
Lemma 4.1.4 ii.) the equation (4.21) and the previous Definition 4.1.1 coincide
as they coincide for Re(a)>n+2 by Lemma 4.1.5, iv.). Thus we can define

inductively for Re (a +2k)> n
R* (o) < R* (a +2k) (4.22)

Lemma(4.1.6):
Let aeC and define R*(«) by

R (a) =1 R* (o +2k) (4.23)

where ken,is such that Re(a+2k)>n . Then (4.23) does not depend on the

choice of & and yields an entirely holomorphic family of distributions which
extends the family

{Ri (a)}Re(a)>n .
Definition(4.1.7)(Riesz Distributions):

For aeC the distributions R*(x) are called the advanced Riesz distributions
and the R~ («) are called the retarded Riesz distributions.

Theorem(4.1.8)(Green's Function of 0):

The Riesz distributions r*(2)are advanced and retarded Green functions for the
scalar d’ Alembert operator [| on Minkowski spacetime [5, 107]

(4.1.2)The Riesz Distributions in Dimension n =1, 2:
Propostion(4.1.9):

Let » =1 then the advanced and retarded Green functions of

2

0 =% are explicitly given as the continuous functions

R (2)(0)= {; 4 OZ;O (4.24)
and
R (2)(t)= {g f‘”e ;;0 (4.25)

moreover , for Re (a) > 1, we have
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1 a-1 +
R*(a)(t)= 1 r( )|t| fort R (4.26)
0 else
Remark(4.1.10)(Riesz Distribution in One Dimension):
1.) take 5—22 R*(2) in the sense of distributions directly to show that
t
2
a?Ri(2)=50 (4'27)
11.) The functions R*(«) for Re (a)>1 then
+ L|t|a_1 fort eR*
R*(a)(t)= () (4.28)
0 else
in case n=1+1. by using the coordinates (¢,x )er*> with
n(t,x)=1> - x? (4.29)
then ¢ (a, n ) forn=2 . We have
21—95
(2)= (4.30)

a-2

In order to evaluate n > we introduce new coordinates on R?> . We pass to
the light cone coordinates

. Lz(t_x) and y :Lz(m) (4.31)
1.e.
1 1
tzﬁ(u+v) and x:ﬁ(v—u) (4.32)

Since this is clearly a global diffeomorphism we can evaluate R* («)in these
new coordinates. the function 1 in these coordinates is

n(u,v)= %(u+v)2 —%(v—u)2 = %(Lf +2uv+v' —u’ +2uv—v2)= 2uv (4.33)
Moreover, the future and past 7*(0)of 0 can be described by
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1°(0)= {(u,v)eR2 u,v>0} (4.34)

And

I*(O)z{(u,v)eR2 u,v<0} (4.35)

then we have for Re («)>2

2t (2uv)a7_2 for u,v e R*(0)

R* (o)) = F[Zj (4.36)

0 else,

a-2

2 NGl TN foruver

_ r(‘;‘jz (4.37)

0 else,

whence R* («) 1s factorizing in these coordinates. This suggests to consider the
following functions

r (o)) = r(d} N (4.38)

for Re (a)>2. Since the prefactor is still holomorphic for all aeC.

lemma(4.1.11):
In the light cone coordinates the d’ Alembert operator is

62

0= 4.39
Ooudv ( )

Proposition (4.1.12):[108]

Let u,v be the light cone coordinate on R’ then the distributions

R (2)(u,v)=r"(2)(u) r*(2)(v) . (4.40)

are advanced and retarded Green functions of [ of order zero .
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(4.2)The Riesz Distributions on a Convex Domain:

We pass now from Minkowski spacetime to a general Lorentz manifold (M ,g)
and try to find analogs of the Riesz distributions at least locally around a point
peM . The main idea is to use the Riesz distributions on the tangent space

7, M , which is isometric to Minkowski space , and push forward the Riesz

distributions via the exponential map[108].

(4.2.1) The Functions ¢ and 7 ,

From Proposition 3.6.11, ii.), we can use this density to identify functions and
densities once and for all. In particular, this results in an identification of the
generalized sections I'” (E) of a vector bundle £—M with the topological dual

of r7(E")and notof T (E@ A T*M) as we did before. for s e (E) , and

a test section ¢@eIy (E ) we first map @0e® pu, el (E@ A T*M) and then

apply s we set
sp)=slp®u,) (4.41)
and drop the explicit reference to n to simplify our notation. Since

I (E")>9m 9@ u, eIy (£ ®[A"T M) (4.42)

is indeed an isomorphism of LF spaces, we have an induced isomorphism of the
topological duals which is (4.48). Let y <7 M be a suitable open star-shaped

neighborhood of 0, and, let U =e¢ (/,)c Mmbe the corresponding open
neighborhood of P such that

exp,:V, > U, (4.43)
is a diffeomorphism. Then we define the function

U
¢ = |0, (4.44)

" exp, (DU,

Proposition 4.2.1:

Let (M ,g) be a time-oriented Lorentz manifold and peam . Moreover, let U cm
be geodesically star-shaped with respect to p .

i.) The gradient of 71,e(” (N) is given by
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gradn,|,= 2Texp,;'(q) exp, (exp;1 (q)) (4.45)

for geU .
i.) and we have
g(grad n,.grad 77,,): 4n , (4.46)

iii.) On 15 (p) the gradient of 5 is a future resp. past directed timelike vector
field.

iv.) and we have
n,= 2n+g(grad logﬂp,gradnp) (4.47)
(4.2.2) Construction of Riesz Distributions R} (a,p) :

For Re(a)>n the Riesz distributions R are even continuous functions on
Minkowski space , as such we can simply push-forward via exp  at least on the
star-shaped »c7,M continuous functions on UcM continuous functions

defines a distribution after multiplying with the density 4, .

Remark(4.2.2):

Let fe¢°(r,m) be continuous functions on the tangent space of p o view

/" as a distribution as usual via
flo)=[, r 0ol () (4.48)

for ge¢;(r,M),using exp, we can write this as follows ,let e ¢7(am)with
SupppUthen the continuous function exp . (f|V)e ¢°(U)can be viewed as a

distribution on U

exp - (1], )o)= [ exp - (f], ka)e(g)n, (4) (4.49)

exp - (1, )= [ exp - (£, Jexp - (exp - 0)(9)?, (g Xexp - 11, (P))(g) (4.50)
= [ exp (], exp), pexp), ¢, 1, (p)(q) (4.51)

= [, /0,07, 1,(p) (4.52)

=(L,1) (exp, 9) (4.53)

99



Definition(4.2.3)(Riesz Distributions on U ):

Let pem and let ucm be a geodesically star-shaped open neighborhood of
p . Moreover, let V=e (U)cT,M be the corresponding star-shaped open
neighborhood of 0e 7, . Then the advanced and retarded Riesz distributions
R:(a,p)ets (U) are defined by0

Rilenplo)=e . (R* (@), Jo)=R* (), (7, ¢, 0) (4.54)
for aeC and ¢er;(U) .
Proposition(4.2.4):

Let ucm be a geodesically star-shaped around pem , then Riesz
distributions R/ (a,p) have the following properties :

1.) If Re (o )>n then Ri(a, p)is continuous on U and given by

R:(ap) (q)z{cw,n)(m(q»z forqel? (p)

0 else.

ii.) for Re (a )>n +2k then the function R;(a,p)is even ¢“on U .

oa—n

iii.) for all R:(a.p)|,. ,=cla.n)n, = <t (1; (p) and

OZR;(OC,p) U\‘]Zf,(p)e e (U\J; (p))

Proposition 4.2.5 (Symmetry of R:(a,p)) Let UcM be geodesically
convex and aeC.[90, 108]

1.) If Re (& )>n then
R;(a.p)g)= R} (@, pa) (4.55)
forall p,qeU .

ii.) For all ®er; (UxU) we have

[ oR* (e, p)@(p. )i, (p)=[ R (@ 0 )D(, q)u, (q) (4.56)

(4.3) The Hadamard Coeffcients:

Differently from the flat situation, the Riesz distribution R;(2,p) does not
yield a fundamental solution for [J . we had to exclude the value of o needed
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for R:(2,p) explicitly. Instead, from

Un,—2n

+1jR; (a,p),

OR; (a—i—Z,p):[ "

(4.3.1) The Ansatz for The Hadamard Coeffcients:[109]
We consider a normally hyperbolic differential operator p=0"+B

on some vector bundle £E—Mm over M with induced connection v* and
BeT*(End(E)) as in Section 3.6.4. Moreover, for pe M we choose a
geodesically star-shaped open neighborhood U< M on which Ri(a,p) 1is

defined as before. According to our convention for distributions, the Green
functions are now generalized sections

R (p)el "(E)®E;, 4.57)

as we take care of the density part using n . The pairing with a test section

¢ e T (E") yields then an element in Ep The equation to solve is

DR*(p)=6

P

(4.58)

where 5 is viewed as E, -valued distribution on 1y (£°) and p%*(p) is defined
as usual. The Ansatz for 9%*(p) is now the following. Since the R} (a,p) have

increasing regularity for increasing Re(x ) we try a series

0

R (p)=D ViR (2+2k, p) (4.59)

k=0
With smooth section

vk er (g, )9k (4.60)
Then (4.59) should be thought of as an expansion with respect to regularity.

First we note that a scalar distribution like R} (a,p) can be multiplied with a

k

smooth section like V'

" and yields a distributional section

VERE(2+ 2k, p)e e (E7) ® B =T (E)® E; (4.61)

In Remark 2.3.5 it is only necessary that one factor of the product is actually
smooth. We compute now (4.58). First we assume that the series (4.59)
converges at least in the weak " 1opo log y so that we can apply D componentwise.
This yields
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o0

DR*(p)=DY VIR;(2+2k,p)

k=0
- iD(V;Rj (2+2k, p))
(4.62)
~ Z(D(Vpk JR: (242K, p)+2VE o VE+VERE(2+ 2k, p))

=~
Il

0

by the Leibniz rule of a normally hyperbolic differential operator , Inserting the
properties of R:(a,p) from Proposition 4.2.4 yields then

DR (p)=D(r? R (2.2p)+2V*, VO +VR:(2,2p)

dR;(2,2p)
N n, —2n
+> | Dy RS (2+ 2k, p)+ 2V viaprt e "2 R (2k,
kzll[ ( ) ( p) ZRL (2k P)gmdnl P P 4k U( p)
3 N n,—2n s
_zvj w Vo +V0 (2 p) kZ:(;D(Vpk) 2+2k p Z[ZVERL 2k P)gmzh; Vpk +Vpk [4k+lj]RU (Zk,p)
— E 0 i
- 2vgde5(2sp)VP + Vp U (2,p) +

k-1 E k np_zn k |p*
Z[ (vat)+2vh gmdiﬁ[—“k +1ijJRU(2k,p) (4.63)

k=1 4k
We view (4.63) as an expansion with respect to regularity. Thus, we ask for

(4.62) in each “order” i.e. (4.62) should be fulfilled for each component in front
of the R:(a,p) . This yields the following equations. In lowest order we have

for v the equation
V3wV tVi R (2.0)=5, (4,64)

gradR (2,

while for x>1 we have the recursive equations

1 Un,—2n _
2 Viean, V! +[2—k+1j vy=-D(V;") (4.65)

for y* .Equivalently, we can write this for K>1 as

1 ;
Ve Vs + (2 np—n+2ij; =—2kD(V,) (4.66)

Since (4.66) also makes sense for K =0 it seems tempting to unify (4.64) and
(4.66). To this end, we take (4.66) for k=0 and multiply this by R:(«x,p)
yielding
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1
vj:mdn/ Rb(a 2 p)V (E‘jrlp _I’ZJVO (a p) O (467)

which is equivalent to

v; vy +a(0R; (a+2.p)=R; (e, p))V; =0 (4.68)

2 gradRE (a+,2 p)
we obtain the condition
2V Ve F(ORS (2.9)=R; (0, p))V, =0 (4.69)
whose limit o — 0 exists and is given by

o+ (ORS(2,p)=R; (0, p))V; =0 (4.70)

gradRL

since R;; (o, p) is holomorphic in a for all «eC. Since moreover r:(0,p) =6, We

can evaluate the condition (4.65) further and obtain
2V~ V° +V,UR;(2,p)=V,5, (4.71)

gdeb (2.p)

Thus we conclude that (4.66) for k=0 implies (4.65) iff v°(p)=ia, . This

motivates that we want to solve (4.65) with the additional requirement
V) (p)=id,, (4.72)
Definition(4.3.1)(Transport Equations):[110]

Let keN and let DeDiffop?(E) be normally hyper-bolic. Then the recursive
equations

1 _
v+ (Ean—nJrzij: =2kDV," (4.73)

gmd n,

together with the initial condition

Vi(p)=id,, (4.74)
are called the transport equations for Vlf’ € F°°(E1 U)®E; corresponding to D
Remark(4.3.2)(Transport Equations):
Let DeDiffop * (E) be normally hyper-bolic.
1.) According to our above computation, the transport equation for k=0 implies

2V oV HVORG (2,0) =0, 4.75)

gde
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11.) The transport equations are the same for the advanced and retarded %*(p)

k
thus we only have to solve them once and can us the same coefficients ) for

both the Green Functions.
Definition (4.3.3)(Hadamard Coeffcients):

Let DeDiffop * (E) be normally hyperbolic and UcM geodesically star-shaped
around pe M as before. Solutions ¥, eF°°(E1U)®E; of the transport equations

are then called Hadamard coeffcients for D at the point p.

(4.3.2) Uniqueness of The Hadamard Coeffcients:

Since on U we have unique geodesics joining p with any other point geU ,

namely

7, (t)=exp, [t exp;' (9) (4.76)
For abbreviation, we set

Pysy = Ppogon 1 E, > E, (4.77)

Lemma(4.3.4):
The parallel transport along geodesics in yields a smooth map

Usq— P, cE ®F, (4.78)

which we can view as a smooth section
P, er(E],)®E, (4.79)

Theorem(4.3.5) (Uniqueness of the Hadamard Coeffcients):

Let UcM be geodesically star-shaped around p and let DeDiffop? (E) be
normally hyperbolic.

Then the Hadamard coeffcients for D at p are necessarily unique. In fact, they
satisfy

Vo——p (4.80)

and for k>1 and geU
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k 1 1 k-1 k-1
v, (q) = —km P, UO \/E(yp_)q (z'))r Pypwo_”D(Vp X}/p_)q Xr))dr.

(4.81)
(4.3.3) Construction of The Hadamard Coefficients:
Using (4.80) and (4.81) we recursively define V,f for k>0 by
1
v, (q)= P, (4.82)
BN
V) (a)= —\/&%Pm [Niry | @ Byl (DAY exp, (rexp, () dr (4.83)

for geU .
Proposition(4.3.6)(Smoothness of v*):

Let 0c UcMm be open subsets such that U 1s geodesi-cally star-shaped around
all peo. Then the recursive definitions (4.82) and (4.83) yield smooth sections

Vhel"(E' ®F| ) (4.84)
via the definition
v (p.q)=v,(9) (4.85)
for (p,q)eOxUand k=0 .

(4.3.4) The Klein-Gordon Equation:

Consider the flat Minkowski spacetime (r",n)but now the Klein-Gordon[111]
equation

U+m*)p=0 (4.86)

m? denotes a positive constant. compute the Hadamard coefficients at a single
point per’, choose p=0,and exp, is just the addition with » whence

exp,:T,R" =R" - R" (4.87)

is simply the identity map. Also the density function ¢, becomes very simple

as we have

0,=1 (4.88)
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for all p . Thus the recursion for the Hadamard coefficients simplifies

drastically. Finally, we note that the Klein-Gordon operator 0+m»* has already the
normal form with B =>. Therefor we have

VO

1
=——P , =id
P IZP p—>.

And V) (q) = —ﬁppﬁ, [Ny @B (DTSN o (@)

=—k[ DO p+t(g-p)edr

Now Vl? is constant. We claim that, since m? is constant as well, all Hadamard

coefficients are constant, too. Indeed, assuming this for & -1 shows that
1
Vi (q)=—k[ DI, " Yp+e(g-p)e*di
=—kD(V} )| 7 dr
P 0
=-D(V;™)
— V;—l’

which is again constant. Thus by induction we conclude the following:
Lemma(4.3.7):[112]

The Hadamard coefficients for the Klein-Gordon operator [+m* on Minkowski
spacetime are constant and explicitly given by

vh=(m?) (4.89)
for ken, and all pointsp € peRr" .
then
2-n
2{1_(2"_21(7)72'T 242k-n ﬂ-% P 4 90
R Q+2K) () =2 ——n(x) 2 = — ()2 (4.90)
rz 2" 22"’1k!1“(k+2—5)

for xer*(0)and O elsewhere. We want to estimate R*(2k)and its derivatives
over a compactum K cr'. To this end we compute the first partial derivatives of
R*(a) explicitly. We know already
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o . 1 1
P R’(a):ER*(a—Dn”jx :ER (@-2)x,, (4.91)

where we use the notation

X =y %0 (4.92)
Thus we get
0* o R'(a-4) RE(a—-2)
—— R~ = X.X. B 4
ol ox'? () (@—2a—4 XiXia +—0£ ) T]ili,z Mz (4.93)

since clearly —— X = Ty
ox'
we get
3 o
%Ri(a) = Rla-9) Xin Xip Xis
ox"Ox'“ox' (ax—2)a—-4)(a—-06)
R (o —4)
m(nimxiz + N30 X ) (4.94)
and
o* N R* (o -8
R (a)= ( ) it Xio Xi3Xig

ERCPNCPNCPND (@ —2)(a—4)a—6)a—8)
R* (ot —6)

+
(o =2)(ax—4)(a—6)

(MaiaXinXizs F Migia X Xy FMiziaXanXig F Mipin X3 Xeg + MininXinXiy )

R*(a—-4)

m (MiaMisia + MirisMinia + Miialliniz ) (4.95)

Theorem(4.3.8)(Green's Functions of The Klein-Gordon Operator):

Let p er". Then the series
Ri(p)zzw:(—mz)kRi(2+2k,p) (4.96)

converges in the weak” topology to the advanced and retarded Green function of
the Klein-Gordon operator [+m*respectively. More precisely, for 2+2k>2/+n
the series.

3 (m?) R* 2+ 2k, p) (4.97)

2+42k>20+n

converges in the ¢ —topology to ¢ - function on R" . Finally, on 71* the

107



series (4.96) converges in the ¢”—topology to a smooth function given by

w 2% 2 |k o
RO, =Y " ) n (4.98)

bk (k2 - g)

for p=o0 from which the other z:(p) can be obtained by translation.

(4.4) The Fundamental Solution on Small Neighborhoods [113].
Take the Hadamard coefficients as smooth sections

VY el™(E'® E|U,XU,). (4.99)

out of which we obtain the formal fundamental solution
Ri(p)ziV;R;(uzk,p) (4.100)
k=0

ony’'.

Of course, there is no reason to believe that (4.100) converges in general, even
not in the weak sense. However, the Riesz distributions R..(2+2k,p) are

continuous functions if k is large enough.In fact, by Proposition 4.2.4 we know

that R’ (2+2k,p) is at least continuous if & zg

(4.4.1) The Approximate Fundamental Solution:[114]

The idea is now that the finite sum

n—1 ’
S VERE (24 2k, p)ely (E ) (4.101)
k=0

take a cutoff function

X GK: (R) Wlth

_ (4.102)
447

supp;gg[—l,l], 0<y<land y

Lemma(4.4.1):

Let r¢eNandr'>¢+1 then there are universal constant ¢(¢,¢’) such that for all

0<e<l

Pk,O(dl [Z[tjt”JJSEC(z,z’)Pk,z(x) (4.103)

dt' £ >
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where K is any compactum containing [-1,1]
Lemma(4.4. 2):

Let g:ucr">rand f:R—R be smooth, then for every multi-index 7en;

3’ . df g Mg
pw) Og)=r:§‘¢,-1_._,-r P W (4.104)

Jlegr<l

C_;l..,jr EQ .

with some universal constants

Lemma(4.4. 3):

Let 7,ken, and jlarge enough such that j— N>k .then we have

Pk, xke,k(;(j)sac(k,f,j) : (4.105)

with constant c(k,¢,j)>0 independent of ¢ satisfying

c(k,z,j)sC(k’,ﬁ »j) (4.106)

for (<! andk<k’

Lemma(4.4.4):
Let ¢,ken, and j>N+k then the ;- term of the series (4.104 ) satisfies
estimate
n A . .
Pk, xkewk[;([g—jJVf R:(2+2, ,.)Jngc(k,z,])c(2+2j )Pk, xk,,(77) 4.107)

(4.4.2) Construction of the Local Fundamental Solution:[35]
Having an open subset U < U’ such that
U cu’ (4.108)

is compact , consider the X/ eI (E QF U’xU’) and ¢ a section of E"defined on

U “' then we can naturally pair K: (p.q).¢(¢)and integrate , this gives

(oP)(P) = [Ki(2.0) (@)1, (9) (4.109)
UL'I

Depending on the properties of ¢ the integral will be well-defined and yields a

109



rather nice section of £ defined on U’ .
Definition(4.4.5):
With respect to some auxiliary positive fiber metric on E* we define

r,(E )= {:U — E"|(g) €Ejand is bounded and measurable } (4.110)

here the fiber metric is used to define a norm on each fiber .

) .

s

Lemma(4.4.6)(The Banach space L (E,

Let U < M be open with compact closure.

1.) The definition of T, (£ ) does not depend on the auxiliary smooth fiber

metric.

11.) The vector space T, (E

) becomes a Banach space via the norm.

R (p)=suwlp(q)],. (4.111)

qeU

ii1.) Different choices of positive fiber metrics on E* yield equivalent Banach
norms(4.111)

iv.) The restriction map

Fk(E*)a(pH(pL/er(E*L/) (4.112)

is continuous for all ke N, U {+ «}.

Lemma(4.4.7):

Let ken, and U c U’ open with compact closure U cU'. .
1.)For per, (E ) we have Kipel”(E )

ii.) We have an estimate of the form

Po.(Kig)<volUP, . (KE)P, (@) (4.113)
forall per, (£ |U)and compact K cU".

Proof. We first proof continuity. Thus let PeU’ be fixed and consider p, — p..
Since the integrand K7 (P,,q).¢(q) 1s bounded by some integrable function,

n

namely by the constant function P

w0 (K0P (@) where K is any compactum

containing the convergent sequence p, we can apply Lebesgue’s dominated
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convergence and find

lim(K)(P) =lim] K7 (P.q)9g)11,()

lebesgue

= [ limK: (P,.0)0(9)m,(9)
[ KiPLa)o@u,(q)

=(K;9)(p)

which is the continuity of K ;¢ . then

0 iy Ko(P9) 4.114
- (Kig) =] T e @)r, (9) (4.114)

all with respect to some local trivialization of E* . Thus K¢ turns out to be /'
and by induction we get K g e ToE|) This shows the first part. For the

second, we use a local trivialization and
(4.114) to obtain

8\1\ 7] g+

. r 0K,
~&io), =] R0, @

from which we get

I

K,
= (Pn’q)

N 0
PU“,k (Ky)< SUI?] = J.Uu !

eU
(if<k

lo(@)|ee, ().

< VOZ((]C1 )PKXUUI K (Kli;' )PU,O ((D)~
Thus we have

L,(E™|, )29 Koo, €T,(E7] ). (4.115)

By some slight abuse of notation we denote the composition ¢ — K¢ K ¢

U

again simply by Kj¢

Lemma(4.4.8):
The linear operator

KT, (E7| )29 Kjol, eT,(E7)). (4.116)
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is continuous with operator norm

|&z| < vorwe) K. (4.117)

PU"le"l,O(

Proof. From Lemma 4.4.7 We know that for all p e, (£" ) we have

Py o(KG @) =P ((Kg 9)<vol(U) o (KD By (9)
which gives the continuity as well as the estimate on the operator norm (4.115).
Corollary(4.4.9):
If the open subset U €U’ is sufficiently small in the sense that

vol(U") . (K;).<1 (4.118)

xU°',0
then the operator

id+K;:T,(E"

) > L (E

) (4.119)

is invertible with continuous inverse given by the absolutely norm-convergent
geometric series

(a+k:)' = (-k:Y (4.120)

Jj=0

Definition(4.4.10)(The space T*(E"| )

U(‘l .

Let ke n, then a section ¢eI°(E”

o) s called ¢fon v if it can be

approximated by sections ¢, |, with g eT°(E"

,.)  with respect to the norm
where U, U< 1s open. The set of all such section is denoted by

D =le el (&) )| pist* ).

P

Utk

" (E°

Lemma(4.4.11):

The operator  «; (p):FO(E*‘UL,)—)FO(E*‘U”)I‘eStI‘iCtS to a continuous linear

operator

ko THET] )T (E ) (4.121)
for all ¥€Nowhose image are restrictions of smooth sections of E’ defined on
U the operator norm of (4.121) is bounded by

+
KU

<Vol (U"),yergr 4 (k)

112



Definition(4.4.12)(Local Fundamental Solution):

Let U < M be geodesically convex and U cU'be open with compact closure
U ' cu'such that the volume of v is small enough . then for p cU we define

Fi(p) :1"0°°(E*|U)3g0|—> (id+Kli/ )71 (Ei(.)((p))h €k,
Theorem(4.4.13)(local fundamental solution):

Let U < M be geodesically convex and let U c U’ be open with compact closure
U< cu'such that the volume of v is small enough . then for p euU the map

Fy (p):Iy ()~ E;
is local fundamental solution of Dar p such that for every eIy’ (E| U)

Fi ()e: pe Fi (p) (o)
is a smooth section of E"over U, in fact,

FETg(E|, o B ()@)eT(£7],) (4.122)

is a continuous liner map .
(4.4.3) Causal Properties of r;.
Lemma(4.4.14)):

Let UcU' pe in addition causal . Then for # € I"(£7|,.) we have

Supp(K . (D)Q J:. (Suppo)

Theorem(4.4.15)(Local Green's Functions):[115]

Let U c U’ be small enough and causal. Then the fundamental solutions £ (p)
from Theorem 4.4.13 are advanced and retarded Green functions, i.e.

we have

SuppFy; (p)=J;, (p) (4.123)

Proof. Let ¢ T (E" , )ybe a test section. Then

supp F2 ()o)=Supp id + k2 ) B2 (o)
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VAN )
cJt, (2 (Suppp))=J=. (Suppe) (4.124)
since Suppﬁi(p)‘U cJ..(p) whence for suponJi (p)=¢ we conclude
R;(p)(@)=0 Thus pe? . (supp o) implies Ry:(p)(p)=0.
Corollary(4.4.16):

Let DeDiffop * (E)be normally hyperbolic . Then every point in M has small
enough neighborhood v < such that on U we have advanced and retarded
Green functions F; (p)at peU,i.e.

DF*(p)=3, (4.125)
and
Supp F;f (p) < J5 (p) (4.126)
such that in addition
FE iy (B | )sem p Fr(p)er (27, ) (4.127)

is a continuous linear map .

(4.5) Solving the Wave Equation Locally:

In this section we show how the Green functions F* can be used to obtain

solutions to the wave equation
Du=v (4.128)

with a prescribed source term v[]16]- The main idea is that a suitable v can be
written as a superposition of 6-functionals. Since £, (P) solves (4.128) for v=5,

we get a solution to (4.128) for arbitrary o by taking the corresponding
superposition of the fundamental solutions F; (P). Of course, at the moment we

are restricted to v having compact support in U .

Then we are interested in two extreme cases: for a distributional v we can only
expect to obtain distributions u as solutions. However, if v has good regularity
then we can expect u to be regular as well.

(4.5.1) Local Solutions for Distributional Inhomogeneity:[117]

Let v eI (E|) be a generalized section of E with compact supportin U . We
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want to solve

Dut —o (4.129)
with some u* eT (£],)
Lemma(4.5.1):

Let U c M be a small enough open subset such that the construction of £ as in
Section 4.4 applies.

1.) The map Fr:T;(E ) >T7(E7|) induces a linear map
(F) T (E| ) >T 7 (E]) (4.130)

by dualizing, i.e. forv e[, "(E L) and ¢er,"(£'| ) we defines

(GRIORGAD) (4.131)

11.) The map (F;)’ 1S weak " continuous
i11.) We have

D(F})(v)=v (4.132)
forall ver,” (£ |U).

Proof. For the first part we recall that we have the identification

IJ(E" |U) 30> e®pu, € r0°°(E*|U QAT M)

from which we obtain the identification

F’w(EL/)auH ((pHu((p@ﬂg))eFf(E*|U)'. (4.133)

Since tensoring with ;4 >0 does not change the supports we can dualize the

continuous map
Fy:TP(E™| ) »T7(E"|)
to a map
(F7):T7(E"| ) =Ty (E7]) (4.134)

Using (4.133) and the fact that the dual space of all test sections are the
compactly supported generalized sections, see Theorem 2.3.11, we get
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*) G S &
[ 7(E| ) »T7(E"| ) > IO (E"| ) >T 7 (E)

whose composition we denote by (FF)" as well. This is the map (4.130).
Dualizing yields a  weak * continuous map in (4.134). Finally, the identifications
(4.133) are weak * continuous as well, hence it results in a weak * continuous Map

(4.130). This shows the first and second part. For the third part we unwind the
definition of DF; . Let T (E" ) be a test section and compute

(D((F7) ))@) = (F7) )D"p)
= u(p — F; (D" p) |p)

=v(p > (FZ (p))(D"9))
=v(p = ¢(p))
=v(p),

using the definition of the dualized map and the feature DF, (p)=§, . But this
means (4.132).

(4.5.2) Local Solution for Smooth Inhomogeneity:

Let U <M be open with U*' compact and let v<' cu’ with U' open. Moreover ,
let Kel” (E ®E| U,XU,) be a smooth kernel on the larger open subset U’'xU’ . For

sections ¢ T, (E |U)we consider the integral operator
(<) p) = [ . %P, @) 9@, (9) (4.135)

analogously to (4.102), where peU 18] - Repeating the arguments from

Lemma 4.4.7 and Lemma 4.4.11we obtain the following general result:
Lemma(4.5.2):

Let U cU“ cU’ with U,u’ open and U*' compact. For the integral operator «
corresponding to a smooth kernel K eT*(E" ® E |,.,) as in (4.121) the following

statements are true:
1.)For p e, (E” |U) one has xp e ' (E” |U“) forall ke }\/, and K¢|U e (E" |U).

ii.) The maps (all denoted by « )
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k:T,(E |U)3(pH K(peFk(E*L/“) (4.136)
And
K:Fb(E*L/)B(pH Kol eF"(E*L/“) (4.137)
are continuous. In fact, for x e v, we have
B (kp)<ch. (9) (4.138)

for some ¢>0 depending on «.

Lemma(4.5.3):[119]

Let UcU“ cU’'c M be as in Section 4.4 with U small enough and let «; be
the integral operator from (4.116).

1) For every k€ there is a ¢>0 such that for peI", (E*| ) we have
Yy 0 pel,( U,)

L (((i d+xi) ox; )«o))é P (@) (4.139)

11.) For ¢ e T*(E" ) there is a ¢ >0 such that

P (((id +ip ) )(¢| o ))s aP.. (p) (4.140)

Proof. we know that the operator (id+z<§)'lo;<§ has a smooth kernel in
I'“(E"QF |U' ) Thus the previous Lemma 4.5.3, ii.) applies and (4.138) gives
(4.139). For the second part we note that

(ia’+1<§)_1 (‘P|le)‘ ! =(p|U“ —(id+;<§ )_1 oxi((PX el

%

then

= PU“,K (((id + Kli/ )71 }(P‘ ue! ))

Pyei (id +Ky )_1 ((P| Ue! )‘ v Puak (o (id + K )_1 ° Ky ((p))SpU“,K (¢)+ch°l,0 ((0)

with ¢>0 from (4.139). Since £ (9)2F,. (p) we take ¢=I1+c to obtain
(4.140).
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Proposition(4.5.4):

Let UcuU“ cu® be as before and let F;=(id+x;)" oR:(), Then for all
compacta K cU and all k€ }\/| we have a such that

Py () Se i ina(@) (4.141)
forall p e (7| ).

Proof. We know already from the proof of Theorem 4.4.13 that the operator F;:

is continuous but (4.141) gives a more precise statement of this. We have by
(4.140) .

Py o (F2 (@)= Py i+ w2 ) (R o)
<p,. (R o)
<CC ygoraPrcsinn ()
which is (1.41).

Corollary(4.5.5):

The operator F; has a continuous extension to an operator
Fr:TSoW(E” |U)—> r“(E° |U) (4.142)
for all £>0, and the estimate (4.141)also holds for pe i (£ )
Lemma(4.5.6):
Let R be as before and let ke, there for all yer! (£ |,) we have
i.) R: dualizes to a weak " continuous linear map
(R T (E| ) > T (E| ) (4.143)

ii.) We have (R:)'(u) eT*(E| ) explicitly given by

(R2y@)g) =3 (7 ) R=(2+2/,9)(u) (4.144)

Jj=0

where
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Vi=v’ for j<N—1and V’ =Vj)(£lJforj >N
E .

J

for abbreviation and

T .o * 0 *
T*(E ><E|nyU,)—>1" (ExE |U,XU,)

is the canonical transportation also flipping the arguments .

Lemma(4.5.7):

Let K < U'be compact and k €Ny U {+ o}

1.) Assume #€T*""' (E"| ) has support in J7 (x).then
RV () =2 (77) R (2+2).)w)

J=0

. (" topdogy
converges in ’

ii.) Assume #I'*""" (E"] ) has support in J7 (k).then
R;(pe) =2V, R*(2+2].p)(p)
j=0

/" topdo
converges in opaosy

Lemma(4.5.8):

Let uely (£| ) then

!

() ) =R lgrula)- [ () (), ()
with 7; being the smooth integral kernel of (i d+x, )_1 oR;.

thus (£ ) W)ely (E|) -

Theorem(4.5.9):

(4.145)

(4.146)

(4.147)

Let ken,u{+w} and uerf (E|,) then (FUi) (u), explicitly given by (4.146) is

a (* —sectionof E|,, with

Supp(Fi )’ () J;: (Suppu) and D(Fi )’ (u)=u
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In particular ,we have a smooth local of solution of the wave equation for a
smooth and compactly supported inhomogeneity .
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Chapter(5)

The Global Theory Of Geometric Wave Equations

The topic in this chapter is now to globalize the (small) neighborhoods to the
whole Lorentz manifold. Here the global causal structure yields obstructions of
various kinds. Here the best situation will be obtained for globally hyperbolic
Lorentz manifolds. On such spacetimes we can then also formulate and solve
the Cauchy problem for the wave equation. This nice solutions theory allows to
treat the wave equation essentially as an ( in finite - dimensional) Hamiltonian
dynamical system. We will illustrate this point of view by determining the
relevant Poisson algebra of observables.

(5.1) Uniqueness Properties of Fundamental Solutions

(5.1.1) Time Separation:[11]

The time separation function 7 on M will be the Lorentz analogue of the
Riemannian distance 4 .However, in various aspects it behaves quite
differently . It will help us to formulate appropriate conditions on M to ensure
uniqueness properties for the fundamental solutions.

Definition(5.1.1)(Arc Length):[37]

Let y:[a,b]—>Mbe a piecewise e’ curve in a semi-Riemannian manifold

(M,g). Then its arc length is defined by

16)=[ g G 0.7 0)] 5.1)

Clearly, the definition makes sense for piecewise elcurve as well. The
following is obvious:

Lemma(5.1.2):

The arc length of a piecewise elcurve y is invariant under monotonous
piecewise elreparametrization. Unlike in Riemannian geometry, for different
points pand gthere may still be curves y joining p and ¢ which have arc
length 0, namely if y is timelike. This makes the concept of a “distance” more
complicated.

Definition(5.1.3)(Time Separation):
The time separation function 7: M x M — R U {+ «}in a time-oriented Lorentz

manifold (u,g) is defined by
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t (p , q)z sup {L (7/)| y isa future directedcausal curveformptoq } (5.2)

if geJ; (p)and t(p,q)=0if g & J,, (p)

In contrast to the Riemannian situation where one uses the infimum over all
arc lengths of curves joining p and ¢ to define the Riemannian distance, the

time separation 7 has some new features:

first it is clear that 7(p,q)=0may happen even for p = q; this is possible
already in Minkowski space time.

Moreover, in general z(p,q)is not a symmetric function as it involves the
choice of the time-orientation. Again, this can easily be seen for Minkowski
space time and points p = ¢ with g e 1;,(p)In this caser(p,q) is the Minkowski

length of the vector ;c}:q— p. The fact that all other future directed causal
curves from ¢(p,q) ptoq are shorter is the mathematical fact underlying the
so - called twin paradoxon. In the more weird examples of Lorentz manifolds it
may happen that © (p,q)=+o for some or even all pairs of points .

Recall that a light like curve y from ptogis called maximizing if there is
no time like curve from p toq . Then we have the following useful Lemma:

Lemma(5.1.4):

If there is a causal curve y from p togwhich is not a maximizing lightlike
curve then there also exists a time like curve from p roq.

Theorem(5.1.5)(Time separation):[120]
Let(M,g) be a time-oriented Lorentz manifold and p,q,r e M.
i.) Then z(p,q)>0 iff p<<gq.

ii.) If there exists a time like closed curve through p then we have 7(p,q)= +o
Otherwise T(p,q)= 0.

i) If 0< T(p,q)< +oo then T(p,q)= 0.
iv.) For p <q<r we reverse triangle inequality, i.e.

t(p,q)+t(q,r)£t(p,r) (5.3)

v.) Suppose p,q e U = M with an open geodesically convex U . if ge1; then

the geodesic ;/(t)=expp (texp;l (q)) maximizes the arc length of all causal curves
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from p to g which are entirely in Uand 1, (p,q) = \/ g, (exp;,1 (q)exp; (q)) .

vi.) The time separation function 7 is lower semi continuous, i.e. for
convergent sequence p, —» p and ¢, — ¢ one has

lim, . inf #(p,, q,) = t(g.r) (5.4)
(5.1.2) Uniqueness of Solutions to The Wave Equation:[30, 35]
In general, the wave equation
Du=0 (5.5)

has many solutions «er—~(£) , we know that the causal relation < is
called closed if for any sequence p - pand 4 —4 with p <4 we have
p < q as well. Equivalently, this means that

Iy ={(p,q)€MxM| qu}ngM (5.6)

1s a closed subset of M x M.

We consider now the following three properties which will turn out to be
sufficient to guarantee the uniqueness of the solutions to (5.5) with future or
past compact support.

i.) (M,g) is causal .

ii.) /u is closed.

ii1.) The time separation ris finite and continuous.

Concerning the relation among these three properties some remarks are in due:
Remark(5.1.6)(Causally Simple Space Times):

A time-oriented Lorentz manifold (M,g) which satisfies the causality
condition 1.) 1s called causally simple if in addition s} (p) are closed for all

peM, One can show that this is equivalent to being causal and /v being
closed which is equivalent to being causal and J;, (k) being closed for all
compact subsets K = M .

Thus i. ) And 1ii. ) just say that (M, g) is causally simple.
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Remark(5.1.7):
1.) The finiteness of 7 clearly implies that there are no timelike loops.

i1.) There are examples of causally simple spacetimes which do not satisfy iii.).
So this is indeed an additional requirement.

ii1.) Convex spacetimes satisfy all three requirements.

iv.) Also globally hyperbolic spacetimes satisfy all three conditionsWith these
conditions we can now prove the following theorem:

Theorem( 5.1.8):

Assume that a time-oriented Lorentz manifold (M,g) satisfies the three
conditions 1. ), i1.), 1il.). LetD e Diffop *(E) be a normally hyperbolic differential
operator on some vector bundle E— M and /ew e (E) be a distributional

section. If u has either past or future compact support and satisfies the
homogeneous wave equation

Du=0 (5.7)
then u=0.
Corollary(5.1.9):[103]

Let(M,g) be a causally simple Lorentz manifold with finite and continuous
time separation. Then for every normally hyperbolic differential operator
D e Diffop *(E) there exists at most one fundamental solution at peM with
past compact support and at most one with future compact support.

Proof. Indeed if DF=6,= DF then F-Fsolves the homogeneous wave
equation and has still past (or future) compact support .Thus F-F=0 by the
preceding theorem .Now we pass to a globally hyperbolic space time (uM,g)
.On one hand we know from Remark 5.1.7 that (M, ¢) satisfies the hypothesis

of Theorem 5.1.8 . On the other hand on a globally hyperbolic space time the
sub set J? (p) are always past/future compact: indeed, by the very definition of

global hyper bolicity, J; (p)NJ, (p)=7, (p.q)is a compact diamond for all
p.geM . This is just the statement that J; (p)is past compact and J;, (p)is
future compact. This gives immediately the following result:

Corollary (5.1.10):[9]
Let (M,g) be a globally hyperbolic Lorentz manifold. Then for every

normally hyperbolic differential operator D e Diffop *(£)there exists at most
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one advanced and at most one retarded Green functionat peM .
Example(5.1.11)(Uniqueness of Green's Functions):[6]

Let (R",n) be the flat Min kowski space time as before. Since this is a

globally hyperbolic space time we have the following global and unique Green
functions:

1.) The Riesz distributions r*(2)are the unique advanced and retarded Green
functions for 0 at 0.Their translates to arbitrary p e r” are the unique advanced
and retarded Green functions for [ at p.

ii.) The distributions ilN%i(p):Zf:O(—mz)kRi(2+2k, p)are the unique advanced

and retarded Green functions at pe R” of the Klein-Gordon operator [+m’
on Minkowski space time,

Finally, we mention that on convex domains we cannot conclude the
uniqueness of advanced and retarded Green functions without further
assumptions. Even though geodesically convex domains satisfy the hypothesis
of Theorem 5.1.8 it may not be true that J;(p) is past or future compact,
respectively. if in this situation we take the Green function r*(2)of on (r".n)
and restrict them to U we obtain advanced and retarded Green functions
{Ri(2)(p)|y}pey for all points peU. Taking now a point reR" and adding

Ri(2)(r] v to Ri(2)(q) y we still have an advanced Green function since
R*(2)r)=0 onU . However, as sing supp R*(2)r)= C*(r)by Proposition 3.1.12
for n even, we see that this new advanced Green function differs from
Ri(2)(q) v on the intersectionc*(r)NU, even in an essential way. Thus we

cannot hope for uniqueness of advanced and retarded Green functions in
general.

(5.2) The Cauchy Problem:

In order to pose the Cauchy problem[50, 95] we have to assume that we
have a Cauchy hyper surface on which we can specify the initial values[95].
Thus in this section we assume that (M,g) is a globally hyperbolic space time
and ::X+— Mis a smooth space like Cauchy hyper surface in M whose
existence is guaranteed by Theorem 3.7.19. Furthermore, the future directed
time like normal vector field of Y will be denoted by ner(TM‘Z)as in

Section 3.8 .
Remark (5.2.1) :

125



When solving the wave equation Dy = vin a distributional sense for
u,v e I'”(£)one might be tempted to ask for the initial conditions of uon ¥ .

However, since :: X > M is far from being a submersion the restriction ‘uis
not at all well-defined. To see the problem one should try to define :"s for the
s distribution on R and ¢: {0}~ R. Thus for the Cauchy problem to make
sense we either have to specify conditions on u and v which ultimately allow

to define :"uetc., or we restrict ourselves directly to regular initial conditions
and solutions of some ¢* -regularity. As usual, the most convenient situation
will be the ¢~ -case.

Given an in homogeneity ver“(£) we want to find a solution « e r*(£) of

Du =v (5.8)
for given initial conditions u, i, e T (*E), i.e.”

u=u, (5.9)

Here v* will always be the covariant derivative on E determined by D as
usual. Note that the left hand side of (5.9) is indeed well-defined as for pe

the value Vf(p)u €E, is defined as V* is function linear in the tangent vector

field argument. Thus we can interpret p+— V”E(p)u indeed as a section of ;* E

(5.2.1) Uniqueness of The Solution to The Cauchy Problem:

For the Cauchy problem the uniqueness will be easier to show than the
existence. We start with some preparatory material on the ad joint D" of D.
Recall from Theorem 2.2.15 that p” e Diffop *(£*) is determined by

[o(Pv)u,=[(D" ¢ )u, (5.10)

M

For ¢er~(e')and uwer=(e) with at least one of them having compact
support. We want to compute now D’ explicitly.

Lemma(5.2.2):

Let D e Diffop*(E) normally hyperbolic differential operator written as
D=0"+Bwith Ber”(End (E))and the connection d'Alembertion 0" build out of
the connection v*defined by D.

i.) The transported operator D’ e Diffop *(£*) is given by

D =0V 4B (5.11)
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where 07 is the connection d'Alembertion with respect to the induced
connection v* for E'coming from v*

i1.) for s e T”(E)and t;/el"“’(E*) we have

0(w(®) = @W(6) +y(@s) + (g7, (DF'y) v (DFs)) (5.12)
iii.) for se ”(E)and v el"m(E*) we have
(DTy/ Xs)— v (Ds)+=div (((DE‘ l//)(S)—l// (DE s))#j (5.13)
Lemma(5.2.3):

Assume uer(E|U)is a solution to the homogeneous wave equation

D, =0and /et p ey (E7|,) then we have

[o(p)-u(p), (0)=[ (V" G, () Juo(0)- G, (p)o )1ty (o)) (o) (5.14)

z
where u,=1"u ,i,=1"Viu € Fw(z#E)are the initial values of u on X.
Lemma(5.2.4):

Assume uer(E|U)is a solution to the homogeneous wave equation

D, =o0and letu,,i, e Fw(z#E),denote the initial values ofuon X,
Then

suppuc J,, (suppu0 Usuppu, ) (5.15)

Theorem (5.2.5) :[121]

Let (M, g)be globally hyperbolic and let /es ::¥ — M be a smooth space like
Cauchy hyper surface with future directed normal vector field » e~ (*Ti ).
and Let u e T (E) 1s a solution to the wave equation D, =0

Then u is uniquely determined by its initial conditions
u0=0=i10. (516)
Then
u=0 (5.17)
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Theorem 5.2.6:

Let Let(M,g)be globally hyperbolic and let /er :: ¥ — M be a smooth space
like Cauchy hyper surface with future directed normal vector field
nel”(*TM). Let v e"(E)be a continuous section and u e I'*(E)q ¢*-section
satisfying the inhomogeneous wave equation

D, =v. (5.18)
Then

u 1is uniquely determined by its initial conditions u, = *u and i, = 1*VEu ony .
(5.2.2) Existence of Local Solutions to The Cauchy Problem:

After the uniqueness we pass to the existence of solutions to the Cauchy
problem. We will assume that the Cauchy data as well as the inhomogeneity of
the wave equation have compact support.

The first statement is still a local result to the Cauchy problem:
Proposition(5.2.7 [122]:

Let (M ,g) be a time-oriented Lorentz manifold with a smooth spacelike
hypersur -face ::X+>M with future directed normal vector field n. Moreover,
let v cUu cvu'be a sufficiently small causal open subset of M such that
TNUmr U is a Cauchy hypersurface for U . Then there exists a unique

solution wel”(E |U) for given initial values u,,uo el (l#E|U) and given
inhomogeneity v eI (E B of the inhomogeneous wave equation
Du=v (5.19)
with *v =u, , and 1"V u =i, . 1n addition we have
supp uc J,, (supp u, U supp i, Usupp v ) (5.20)
Proposition(5.2.8):
Let k>2.Under the same general assumptions as in proposition 5.2.7 we

assume to have initial values u, e [;“""?(i"E| ) ,u, € R "(*E| ) and

inhomogeneity ve ry*"")(E| ).

Then there exists a unique solution 4 eT*(E |U)0f The inhomogeneous wave

equation
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Du=v (5.21)

with initial conditions :*v =u, , and 1"V ,u =u, .for the support we still have

supp u < J ,, (suppu, U supp i, Usupp v ) (5.22)

(5.2.3) Existence of Global Solutions to The Cauchy Problem:[41]

To approach the global existence of solutions we assume M is globally
hyperbolic with a smooth spacelike Cauchy hypersurface >~ . Now we again
use the splitting theorem M= RxX with the first coordinate being the Cauchy
temporal function and x, the Cauchy hypersurface of constant time ¢ where

we shift the origin to 5, =5. For every peM we have a unique time ¢ with
peY, Oneach z we have a Riemannian metric g, such that ¢=pds*-g, .
This allows to speak of the open balls around pex, of radius r > 0 with
respect to this metric g, . We denote these by B, (p) without explicit reference
to t. Note thap (p)cx, is open in =, but not in M , Here we use the
Riemannian distance 4, in x, with respectto g, for defining the ball, i.e.

. h . .
d,(p.q) =inf {[ gi(y(@),7(0)dz | y(a)=p.y(b) =q.7(r) € X, }7 (5.23)
where v is an at least piecewise ¢' curve joining p.q e, inside z, .

Having such a ball we consider its Cauchy development
D, (B,(p)) =D, ((p) v D, (B,(p) In Maccording to Definition 3.7.12, We now
want to find , small enough that D, (B,(p)) i1s a nice open neighborhood f p
allowing a local fundamental solution we call an open neighborhood

a relatively a compact causal open neighborhood of small valume or short
RCCSV for abbreviation.

Lemma(5.2.9):
The function p:M —(0,+] defined by

p(p)=suplr>0|D(B,(p) )isRCCSV} (5.24)

is well-defined and lower semi-continuous.
Theorem(5.2.10):
Let (M,g) be a globally hyperbolic spacetime with smooth spacelike Cauchy
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hyper-surface :3 - M

1) for u,,u el (i*E)and v Ty (E), there exists a unique global solution
uer”(E) of the inhomogeneous wave equation Du=y Wwith initial
conditions
*u=u, andi* V¥ u=uo, , We have

supp u < J,, (suppu, U suppii, Usupp v )

ii.) For k>2 and u, el"()z(k+”+1)+2(i#E) ,uAO el"oz(“””)”(i#E)and Ve l"()z(“””)(E)

there
exists a unique global solution u er*(£) of the inhomogeneous wave

equation Du=v with initial conditions *u=u, andi*VEu=u, . It also
satisfies (5.22)

(5.2.4) Well- posedness of The Cauchy Problem:
Theorem(5.2.11)(Open Mapping Theorem):

Let ¢,z be Fréchet spaces and let

¢:¢—& be a continuous linear map. If ¢ is surjective then ¢ is an open map.

As usual, a map ¢ is called open if the images of open subsets are again open
Corollary(5.2.12):

Let ¢:¢—& be a continuous linear bijection between Fréchet spaces. Then
¢~' 1s continuous as well.

Indeed, let Uc ¢ be open. Then the set-theoretic (¢)" (U), i.e. the pre-
image of U under ¢' , coincides simply with ¢ (U) which is open by the
theorem. Thus ¢ 1is continuous. Note that for general maps between

topological spaces a continuous bijective map needs not have a continuous
inverse at all.

We are now interested in the following situation: the result of Theorem
5.2.10 can be viewed as a map

IPG'EYQTI (("E)®Ty (E) - T (E), (5.25)
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Theorem(5.2.13)(Well-posed Cauchy Problem I):

Let (M,g) be a globally hyperbolic spacetime with smooth spacelike
Cauchy hypersurface: :x —-am . Then the linear map (5.25) sending the initial

conditions and the inhomogeneity to the corresponding solution of the Cauchy
problem is continuous.

Theorem(5.2.14)(Well-posed Cauchy Problem II):

Let (M,g) be a globally hyperbolic spacetime with smooth spacelike
Cauchy hypersurface ::3 —m and let k>2. Then the linear map

FOZ(kJrnJrl)+2(Z#E)®1—~02(k+n+l)+l(l#E)® FOZ(kJrnJrl)(E) N Fk(E) (5.26)

sending (u,,u,,v)to the unique solution u of the inhomogeneous wave
equation Du=v with initial " u=u, andi* Vu=uo continuous.

Thus we have in both cases a well-posed Cauchy problem. There are,
however, some small drawbacks of the above theorems:

First ,we are limited to inhomogeneities v with compact support in M .

Physically more appealing would be an inhomogeneity with compact support
only in spacelike direction, i.e. the “eternally moving electron”. Note that this
is clearly an intrinsic concept on a globally hyperbolic spacetime. Moreover,
the control of derivatives in Theorem 5.2.10 and hence in Theorem 5.2.13
seems not to be optimal. In particular, it would be nice to show that the map
(5.26) has some fixed order independent of k.

(5.3) Global Fundamental Solutions and Green's Operators
(5.3.1) Global Green's Functions.//23, 124]

We first consider the smooth version. Here we start with the following
theorem

Theorem( 5.3.1):

Let(M ,g) be a globally hyperbolic spacetime and D e Diffiop *(E) a

normally hyperbolic differential operator. For every point PeM there is a
unique advanced and retarded fundamental solution F:(P) of Datp.

Moreover, for every test section ¢ e I (E") the section.
M>P Fy(Ppek, (5.28)

is a smooth section of £* which satisfies the equation

131



D'Fi()p=o. (5.29)
Finally, the linear map
Fy Ty (ET) >0 Fy()p el ™ (E) (5.30)
is continuous.
Theorem(5.3.2):

Let(a,g) be a globally hyperbolic spacetime and D e Diffiop*(E)a
normally hyperbolic differential operator. Then the unique advanced and
retarded Green functions F(p)of D at p are of global order

ord Fi(p) <2n+6. (5.31)
More precisely, the linear map (5.30) extends to a continuous linear map
Fy Lg% (E") s Fy() 9e TF (E7) (5.32)
for all k > 2 such that we still have
D" Fy() ¢=9 (5.33)
(5.3.2) Green's Operators:

The fundamental solutions F:(p) were constructed as the map
o - (p Fi(p) ) beinga map Ty (E') - I'”(E), 1.e. the solution map from
the Cauchy problem. We shall now investigate this map more closely as it

provides almost an inverse to D. In general, one defines the following
operators.

Definition(5.3.3)(Green's Operators):

Let(M,g) be a time-oriented Lorentz manifold and D e Diffop > (E) a
normally hyperbolic differential operator. Then a continuous linear map

G : Ty (E) > T (E) (5.34)
with
1) DG =idTy (E),

ii.) GyD

. =idT; (E).

iii) Supp(Gﬁu) c J5 (Suppu ) forall ue Ty (E),
is called an advanced and retarded Green operator for D respectivly .
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Proposition (5.3.4)(Green's Operators and Fundamental Solutions):[125]

Let (M,g) be a time-oriented Lorentz manifold and pD e Diffop >(E) a
normally hyperbolic differential operator.

i.) Assume (G} (p)} is a family of global advanced or retarded fundamental
solutions of D" at every point P ¢ M with the following property: for every
test section ue I'7(E) the section p Gi(p)u 1S a smooth section of E
depending continuously on u and satisfying D G: (Yu=u.

Then
(Guu)(p)=G (pu (5.35)
yield advanced or retarded Green operator for D, respectively.

1..) Assume G: are advanced or retarded Green operator for D, respectively.
Then G: (p): Ty (E) - C defined by

(Gy) (P)u=(Gyu)p) (5.36)

defines a family of advanced and retarded fundamental solutions of D" at
every point p e M with the properties described in 1.), respectively.

Proof. For the first part we assume to have a family {G; ( p)} of advanced or

pPEM
retarded funda-mental solutions of D" with the above properties. By
assumption, the resulting linear map (5.35) is continuous. It satisfies

DGy, = id . ) also by assumption. Since the G (p) are fundamental solutions

of D" we have
(Gy, Du) (p) = Gy (p)(Duw) =(D" Gy(p)w) &, =u(p)

for all PeM and uery (). Thus G, D=id as well. Finally, we have to

Iy (E)
check the support properties thereby explaining the flip from *zFin (5.35).
Thus let p e M be given such that 0 = (GZu)(p) = G¥(p)u. Since the support of
the distributions G; (p) is in J7 (p)¢ this implies that supp u has to intersect
Ji(p)! . Since J](p)? = J(p)? , and since Supp u has an open interior which
is non-empty, we see that supp u also has to intersect 77 (p). But then p e
(supp u) whence supp (Giu) < I (supp w)® = J (supp u)® follows, proving
the first part for the second part assume G, is given and difine Gy,(p)= 6, -Gy,
according to (5.36) This is clearly a distribution since 5, is continuouse and

Gy, 1s continuous by assumption . by construction, the section section
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p Gi(pu = (Giu)(p) 1s smooth and depends continuously on u. We have
DG ()u = D(pr G (pu) =DG5u =u
as well as
(D" Gy (p)(u) = Gy (p)(Du)=(Gy (Du)) (p) = u(p),

whence G} (p) is a fundamental solution satisfying also D G ()u = u.. Finally,
for the support we can argue as before in part 1.).

Remark(5.3.5)(Green's Operators):

1.) If the causal relation '<" is closed then the definition of a Green operator
simplifies and also the above proof simplifies. This will be the case for globally
hyperbolic spacetimes.

i1.) At first glance, a Green operator of D looks like an inverse on the space of
compactly supported sections. However, this is not quite correct as G; maps
into r~(£) and not into r~(£). Nevertheless, the Green operator behaves very

much like an inverse of D D
0

ii1.) In general, Green operators do not exist: if e.g. M is a compact Lorentz
manifold and p =0 is the scalar d’ Alembertian then the constant function 1
has compact support but satisfied o 1=0 Thus G o 1=11s impossible for a linear
map G .

In the case of a globally hyperbolic spacetime our construction of advanced
and retarded fundamental solutions in Theorem 5.3.1 gives immediately
advanced and retarded Green operators:

Corollary (5.3.6):

On a globally hyperbolic spacetime any normally hyperbolic differential
operator has unique advanced and retarded Green operators.

Proof. Indeed, the fundamental solutions were precisely constructed as in the
proposition with the operator coming from the solvability of the Cauchy
problem in Theorem 5.3.1.Having related the Green operators of D to the
fundamental solutions of D" we can also relate the Green operators of D and
D" directly. First we notice that, the Green operators allow for dualizing:
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Proposition(5.3.7):

Let (M,g) be globally hyperbolic and let De Diffop *(E) be a normally
hyperbolic differential operator with advanced and retarded Green operators
G :TZ(E)>T*(E).

1.) The dual map (G:) :I,”(E") > T ™(E") 1S weak continuous and satisfies
D" (Gy) (p)=9= (Gy)'D" ¢ (5.37)
for all generalized sections ¢ <I';” (E") with compact support .
i1.) for generalized section ¢ <I',” (E") with compact support we have
Supp (Gy)'(p) = J5 (Supp ). (5.38)
Lemma(5.3.8):

Let (M,g) be globally hyperbolic and let D e Diffop *(E) be a normally
hyperbolic differential operator with advanced and retarded Green operators
G: , Moreover , denote the corresponding Green operator of D’ e Diffop *(E")

by F; .Then we have for ¢ eI’ (E") and uely (E)

J‘(Fﬁ qo).u,ugz I qo.(Glf4 u),ug . (5.39)

M M

Theorem (5.3.9):

Let(Mm,g) be a globally hyperbolic andpDe Diffop *(E) be a normally
hyperbolic differential operator. Denote the global advanced and retarded
Green operator of D byg,, and those of D"by F,; respectively .

1.) For the dual operators we have

G| =P (5.40)
(72 )’ e =On (5.41)
ii.) The duals of the Green operators restrict to maps
(G5) (&) 1 (). (5.42)
(F2) sy (B) >T° (B) (5.43)



which are continuous with respect to the ¢ —and §” —topolog y, respectively .

iii.) The Green operators have unique  weak *continuous extensions to
operators

G, (E)>T " (E), (5.44)
FeTy”(E")»T = (E"), (5.45)
satisfying
Supp (G u) = T4 (Suppu), (5.46)
Supp (Fi o) < J5 (Supp o), (5.47)

respectively. for these extensions one has

Gz = (F: rm), (5.48)

w*)), (5.49)

Remark(5.3.10):

With some slight abuse of notation we do not distinguish between the
Green's Operators and their canonical extension to generalized sections. This
gives the short hand version

’

G = (F;) (5.50)

of (5.48) and (5.49). In particular, the Green operators of D’ are completely
determined by those of D and vice versa.

Theorem(5.3.11):

Let (m,g) be a globally hyperbolic spacetime and b e Diffiop >(E) normally
hyperbolic with advanced and retarded Green operators G:
i.) The Green's Operators G ;T;” (E) >T *(E) , satisfy

DG =id

—GD (5.51)

L7 (E) L7 (E)

ii.) For every ver;”(E), every smooth spacelike Cauchy hypersurface
1: 2> M with
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Suppve 15 (Z) (5.52)

and all u,,u,el;” (z#E) , there exists a unique generalized section
uel ™ (E) , with

Du, =v, (5.53)

Suppu, gJM(Suppuo USuppu,UJ;, (Suppv)j (5.54)
Sing Supp u, < J;, (Supp v) (5.55)

u, =u, andi"VE u=u,. (5.56)

The section u, dependsweak” continuously onv and continuously onu, ,uAO .
1i1.) An analogous statement holds for the case supp vc 1, (2).

(5.3.3) The Image of The Green's Operators:[5, 125]

In this section we want to characterize the image of the Green operators
GiinT'” 1n some more detail.

Defintion(5.3.12) ( The Space [s®) ):
Let keNuU{+xo},For a time - oriented Lorentz manifold we denote by
[, T'®) those section u for which there exists a compact subset K < M with

SuppucJ, (K)

We are mainly interested in the globally hyperbolic case. The notion “sc”
refers to spacelike compact support. We want to endow the subspace
% (E)cT* (E)with a suitable topology analogous to the one of r¥(E).

Indeed, T X (E)isdense inT * (E) for the e* —topolpgy as TE(E)cTE(E)c T*(E)
SC 0 SC

is already dense. Thus we need a finer topology forr{ (£) to have good
completeness properties. Since J,, (K)is closed in Mon a globally hyperbolic
spacetime we can construct a L F topology for ¥ (£)as follows: Fork c k'
we have J,, (K) cJ,, (K)whence

Dty (B) = Ty (E) (5.57)

is continuous in the £, and(5,,, —topolpgy and we have a closed image
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Theorem(5.3.13)(LF Topology for TEX (E)) .

Let (M,g) be a time-oriented Lorentz manifold with closed causal relation
and let x e N, U{+wo}.Endow 1 (£)with the inductive limit topology coming
from ( 5.57)

1.) rX(E)is a Hausdorft locally convex complete and sequentially complete
topological vector space.

i1.) All inclusions F_/’fm(k) (E) > T%(E) are continuous and the ¢* —opo log y is the
finest locally convex topology on T ¥ (£)with this property. Every r*  (£)is
closed in T'’}, (E)and the induced topology from the ¢ —ropolog y is again the
’é/.{IM(K) —topo log y -

1i1.) A sequence un u, el X(E)IS @ ¢* cauchy sequence 1ff there is a compact
subsetk c M withun 4  « | (E) and i1s a (%, cauchy sequence . An analogous

statement holds for convergent sequences

iv.) If 7 is a locally convex vector space then a linear map
®:T* > Vist* —continous 1ff all restriction

)

P Tho(E)>V are t%,, . —continous  iff all exhausting sequence of
compacta .
v.) If in addition M is globally hyperbolic with a smooth spacelike Cauchy

hypersurface = then I'y.(E)=I""(E)is compact in which case the
(% and (s —topolpgycoincide ,otherwise the T'y. —topolpgy is strictly finer . in
fact

# K K. #

i T8 (E) > TN (E) (5.58)
is a surjective linear map which is continuous in the /5. and(s —topolpgy.. It

furthermore has a continuous right inverses.

Remark (5.3.14)(The ¥ -Topology):

We can repeat the discussion of continuous maps also for eX. —topop log y 1n
complete analogy to the case of the e —zpoplogy as in Subsection 2.1.2 and
Subsection 2.2.3. In particular, any differential operator p e piFFOp * (E;F)of
order k gives a
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continuous linear map D :TEN(E)> T4 (F) (5.59)

with respect to the eX*- and the e -topology for all een, U {+o}.
we also have approximation theorems resulting The space TI'”(E)c I'eo(E)is

the natural target space for the Green operators G7since the causality
requirement

Supp (G, ()< 7, (Supp u) (5.60)

immediately implies G (u) e I (£) The continuity of G} with respect to the
exo-topology on I'o(£) implies also the continuity with respect to the in general
strictly finer e topology

Proposition(5.3.15):

Let (M ,g) be a time-oriented Lorentz manifold with closed causal relation.
Assume that ¢:are advanced or retarded Green operators for a normally
hyperbolic differential operator b e Diffiop * (E)

Gy Ty (E) »>Ta(E) (5.61)
is continuous with respect to the e —and e —topo log y .

Proof. We know that G: .17 (E) —» I'"(E)is continuous by definition. Thus let
KcMbe compact then G :r7(E)—»T~"(E) 1s continuous in the
0% —and (7 —topo log y be Theorem 2.1.9, iv.). Since the image is in 1, . (E)
and th ¢% . ~topo log yof T, 18 the subspace topology inherited from 1~ (£)

we have continuity of
Gy i T (E) = Ty (E)
for all compact subsets Kk «m . By Theorem 5.3.13, ii.) we conclude that also
Gy 1T (E) > I (E)

is continuous. Since K was arbitrary, by Theorem 2.1.9 , iv.) we have the
continuity of (5.61).

then we find the main result of this section which describes the image of the
difference of the advanced and the retarded Green operator: as already in the
local case we consider the propagator

G, =G}, -Gy TP (E) 5T (E) (5.62)
if G are advanced and the retarded Green operators for normally hyperbolic
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differential operator D

Theorem(5.3.16):

Let (M ,g) be a time-oriented Lorentz manifold with closed causal relation.
Assume that a normally hyperbolic differential operator D e Diffiop *(E) has
advanced or retarded Green operators G, .

1.) The sequence of linear maps

D Gy D
0> (E) >I7(E) >T (E)>Ti(E) (5.63)
is a complex of continuous linear maps .

ii.) The complex (5.63) is exact at the first 7 (E).

iii.) if (M ,g) is globally hyperbolic then (5.63) is exact everywhere .
Theorem(5.3.17):

Let (M,g) be a globally hyperbolic spacetime and let ::x— A be a smooth
spacelike Cauchy hypersurface. Let D e DiFFOp *(E)be normally

hyperbolic and let 7 be the advanced and retarded Green operators of D' .
Then the solution uer?(£) of the homogeneous wave equations p, = o with

initial values *u =u, and 1*V*u =u, on = is determined by
[o(p)-u(p)n, (p)ZI[(Vf F, (9))(0).u,(0)-F, ()(0)., (6)) s (5.64)

for p e Ty (EY).
(5.4) A Poisson's Algebra:

In this section we describe first attempt to establish a Hamiltonian picture
for the wave equation based on a certain Poisson algebra of observables
coming from the canonical symplectic structure on the space of initial
conditions. Throughout this section, (M ,g) will be globally hyperbolic. For

the vector bundle £ —M we have to be slightly more specific , we choose E
to be a real vector bundle.

(5.4.1) Symmetric Differential Operators:
Now we equip the vector bundle E with an additional structure, namely a

fiber metric 4. In most applications this fibre metric will be positive definite, a

140



fact which we shall not use though. In any case, the fibre metric induces a
musical isomorphism »:E — E* with inverse #:E" — E. then we have

b:T*(E)surs u’ =h(u,)eT*(E"). (5.65)
Definition(5.4.1)( Symmetric Differential Operators ):

Let (E,n) be a real vector bundle with fibre metric and D e Diffop * (£) Then
the adjoint of D with respect to h is D™ e Diffop * (E)) with

Lwh(D*u,v)ug =th(u,Dv)ug (5.66)
forallu,veTy (E). The operator D is called Symmetric differential operators
D=D" (5.67)
Remark(5.4.2)(Symmetric Differential Operators):[126]

1.) The definition of the adjoint D*with respect to 4 is well-defined indeed.
Namely, i D e Diffop *(E) then

D'u=(D",u")" (5.68)

with the adjoint operator D’ e DiFFOp ¥ (E*) from Theorem 2.2.15. This
follows from the simple computation
[ (D" u") Wy, =1, (D"u"y ., =l u’ .Dv u, =1\ h,Dvu,, (5.69)

which shows that (5.68) solves the condition (5.66). It is clear that D*is again a
differential operator of the same order as D and it is necessarily unique since
the inner product is non-degenerate.

ii.) The adjoint D"depends on % but also on the density y, in the integration

(5.66). The map D > D"is a linear involutive anti-automorphism, i.e. we have
(D) =D and (DD)" =D"D" (5.70)
for D, BeDiﬁ’Op " (E),

ii1.) In the case of a complex vector bundle one proceeds similarly: for a given
(pseudo -) Hermitian fibre metric one defines the adjoint D* by the same
condition (5.66). Now D p*is antilinear in addition to (5.70) and
DiFFOp *(E)becomes " —algebra over C by this choice. Differential operators
with D = D*are now called Hermitian. A particular case is obtained for a
complexified vector bundle £, =E®C. If /& is a fibre metric on E then it

induces a Hermitian fibre metri on £, by setting
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he(u®z,v®Ow)=h (u,v)zw (5.71)

for u,ve E, and z,weC. . Then a symmetric operator D e DiFFOp *(E)yields a
Hermitian operator D, e Diffop *(E.)which commutes in addition with the

complex conjugation of sections.
Proposition(5.4.3)( Symmetry of Green's Operators ):

Let (M,g) be globally hyperbolic and let D eDifop *(E) be a normally
hyperbolic Differential operators on the real vector bundle £ .Assume that D
is Symmetric with respect to fiber metric ron E.

1.) For the Green's operators of Dand D" and u € T (E) we have
(Gyu) =Fyu’ (5.72)
ii.) Foru,ve I (E) we have
[wh@,Govy, = [y h(Gyuvp,. (5.73)

ii1.) The Green's Operators of The Canonical [125]

C —linear extension of Dto E . =E ® C are coninical C —linear extension of the Green operator G3, of D
c /4 M

They still satisfy (5.72) ,
[ e Gy, = [y he (G, (5.74)

foru,v eIy (E.) and the reality condition

Giu=Giu (5.75)

Proof. Clearly, u ey (£)has compact support iff »” has compact support,
making (5.72) meaningful. We comput for ¢ e ' (E")
Tt #h(M) + #\ #\b
D'(Gye") = (DG =(0") =9,
since Gi 1s a Green's operator of G; . Analogously,
(5.68) ,
+ ' +
(Ghz (D7) )f’ - (G5 Do = (0" =0,
Now ¢ — (G ¢")" is clear linear and continuous since (#,b), as well asG;; are

continuous. Finally,since #and b preserve supports we have supp

(G 0" < Ji (Supp ) This shows that the map ¢ — (G ¢")’1s indeed an
advanced and retarded Green operator for D" , respectively. By uniqueness
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according to Corollary 5.3.6 we get (5.73). Using this, we compute

J‘h(u,G;v),ug =I u”. (Gl\i4 v),ug
M

M

for wu,ver~(e). Now consider u,vel?(E.). Then Du = Du yields the
hermiticity p=p" with respect to . . With the same kind of uniqueness
argument we see that the Green operators G: of D canonically extended to
G . TJ(E.)>T"(E,) , yield the Green operators of the extension

DeDiffop*(E.) . Moreover, we clearly have (5.75) by construction. But then
(5.74) follows from (5.76) and (4.4.73) at once.

Remark(5.4.4):

Extending our notation of the adjoint to more general operators we can
rephrase the result of (5.73) or (5.74) by saying

(@) =0 (5.76)

Note that Proposition 5.4.3, iii.) still holds for arbitrary Hermitian p=p* on
arbitrary complex vector bundles except for (5.75). In both cases, it follows
that the propagator G,, = G,,—G,, is antisymmetric

G, =-G,, (5.77)

or anti-Hermitian in the complex case, respectively. In the complex case we
can rescale G,, by ito obtain a Hermitian operator

(iG,)=iG, . (5.78)
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