Dedication

To my father who is guiding and supporting me in all of my life
To my lovely mother who taught me the meaning of life
To my Wife for supporting and encouraging me

To my brother and sister
To all those whom I love

To my subject teacher who never failed to teach and guide me
To all my colleagues in the study in the Masters Division in Sudan University of Science and Technology
And most of all to God who gives me strength and good health while doing this
Acknowledgment

Firstly, I deeply thank my God upon completion of this work successfully.

I am very thankful to everyone who all supported me, for I have completed my project effectively.

I would like to express my special thanks of gratitude to my supervisor Dr. Nadir M. Hassanien who gave me the golden opportunity to this wonderful project on the topic of strengthening of reinforced concrete structures. I am really thankful to him.

I am equally grateful to my teacher Eng. Asim ElSanosi & UZ. Mahmoud Ahmed Mohammed Khogali who gave me moral support and guided me in different matters regarding the topic. He had been very kind and patient while suggesting me the outlines of the project and correcting my doubts. I thank him for his overall supports.

I would also like to thank my parents and friends who helped me a lot in finishing this project. Thanking you

I am making this project not only for marks but to also increase my knowledge.

Thanks again to all who helped me
ABSTRACT

Errors in planning or construction due to insufficient design dimensions and/or insufficient reinforcing steel or damage to structural parts. This is due to aging of construction materials also Load increases due to higher live loads. The concrete structures must be Strengthen.

This research discusses strengthening of reinforced concrete structures, (Columns, Beams, Foundations and Slabs) for a local building. This building is subjected to failure due to bad construction methods and the difference between the design detailing and the structural section for existing building.

Based on the analysis results the following conclusions had been drawn:
The capacity of the footings was checked for adequacy to carry the obtained footing loads under load combination 2 (Service Load). The results show that 30 of the 60 footing in the analyzed part of the building were inadequately sized by more than 30%. After re-designed of the foundations, the Pad Foundation enlarge to Raft foundation to meet the code requirements to make the building safe.

The results after re-design were to increase all the Internal Columns sections 250 x 600mm for (short, ground, first and second floor columns) to column section 550 x 900 with steel reinforcement (4 Ø 20mm + 8 Ø 12mm) by strengthening the columns with concrete jacket to increase the section capacity to carry the load.
And also to increase all the External Columns sections 300 x 600mm for (short, ground, first and second floor columns) to column section 450 x 900mm with steel reinforcement (4Ø20mm+5Ø12mm) by strengthening the columns with concrete jacket to increase the section capacity to carry the load.

The Slabs in the building (case study) were structurally analyzed under ultimate loads (load combination 1) using the three dimensional model. Reinforcement module and the needed reinforcements for the slab section were checked and the results indicate that the slab design for this building is adequate.
المستخلص

الإخطاء في التخطيط أو التنفيذ بسبب عدم كفاية أبعاد التصميم أو عدم كفاية حديد التسليح أو تدهور بعض الأعضاء الإنشائية بسبب عدم جودة مواد البناء أو التدهور بسبب زيادة الاموال الحية في المبنى، عليه يجب تقوية الهيكل الخرساني.

يهدف هذا البحث مناقشة موضوع تقوية أو تعزيز أعضاء هيئات الخرسانة المسلحة ل(أعمدة، أعمدة، أساسات و بلاطات) لمبنى تعرض للخطأ أثناء التنفيذ السيء، وعدم مطابقة الرسومات التصميمية مع التنفيذ.

وبناءاً على نتائج تحليل المبنى تم التوصل إلى عدم قدرة الأساسات على تحمل الاموال المسلطة عليها وأظهرت النتائج ان 30% من 60 قاعدة بها زيادة في التحميل أكثر من 30%. وبعد إعادة التصميم تم التوصل الى اكتمال القواعد الخرسانية التي اساس حصيرة لجعل المبنى آمن.

وبعد إعادة تصميم الأعمدة تم زيادة المقاطع الخرسانية للأعمدة الداخلية من 250*600مم الي 550*650مم وياضا زيادة حديد التسليح بملع (4 Ø 20mm + 8 Ø 12mm)

وبعد إعادة تصميم الأعمدة الخارجية تم زيادة المقاطع الخرسانية للأعمدة من 300*600مم الي 450*600مم وياضا زيادة حديد التسليح بنفس معدل الاموال الداخلية لزيادة قدرة التحمل.

وبعد مراجعة التصميم للبلاطات الخرسانية تحت تأثير الحمل التصميمي الأقصي وجد أن البلاطات ملائمة لتحمل الاموال الواقعة عليها. وعلى وبعد عمل المعالجات يكون المبنى آمناً للاستخدام.
List of content

Content Page No.

Dedication...I
Acknowledgment...II
Abstract..III
List of content..VI
List of figures..X
List of tables...XII
List of symbols...XIII

Chapter one

INTRODUCTION...

.....1

1.1. General Introduction...1
1.2. Objective of the research..6
1.3. Organization of the research...7
Chapter Two

LITERATURE REVIEW OF STRENGTHENING TECHNIQUES.8

2.1. Introduction...8

2.2. Problems which exposed to the Slabs...9

2.2.1. Strengthening of Reinforced Concrete Slabs..............................10

2.3. Problems which exposed to the Beams.......................................14

2.3.1. Strengthening of Reinforced Concrete Beams............................14

2.4. Problems which exposed to the Columns...................................24

2.4.1. Strengthening of Reinforced Concrete Columns..........................24

2.4.1.1. Reinforced concrete jacket..25

2.4.1.2. Steel jacket..28

2.5. Problems which exposed to the Foundations...............................30

2.5.1. Strengthening of Reinforced Concrete Foundations....................30

2.6. Strengthening of R.C Walls..33

Chapter Three

CASE STUDY: STRUCTURAL ANALYSIS AND ASSESSMENT
OF LOCAL BUILDING..35

3.1. General Description..35

3.2. Loading Conditions and Materials Properties..............................36
4.3.2. Sample Design Calculation for Strengthening of External Column (E2)……………………………………………………………………………….61

4.4. Foundations problems and solutions……………………………………….64

4.4.1. Design of foundation……………………………………………………….64

4.4.1.1. Design of Raft Foundation……………………………………………..65

4.5. Flat slab Assessment………………………………………………………….69

4.5.1. Punching shear check for flat slab………………………………………..71

Chapter Five

CONCLUSION AND RECOMMENDATIONS ………………….72

5.1. The research summary………………………………………………………72

5.2. The research conclusion……………………………………………………74

5.3. Recommendations………………………………………………………….76

5.3.1 Recommendations from the research…………………………………..76

5.3.2 Recommendations for future studies……………………………………77

REFERENCES……………………………………………………………………78

APPENDICES……………………………………………………………………82
List of Figures

Figure 2.1: Strengthening a slab by increasing its depth from bottom…12
Figure 2.2: Strengthening a slab by increasing its depth from top……..13
Figure 2.3: Holes in the span of a beam……………………………………17
Figure 2.4: Strengthening a beam without increasing the cross sectional area………………………………………………………………………………18
Figure 2.5: Strengthening a beam by increasing the cross sectional area and the bars…………………………………………………………………………………20
Figure 2.6: *Strengthening a beam by adding steel plates*………………22
Figure 2.7: Reducing the load on the beam using steel beams………..23
Figure 2.8: Strengthening an existing building…………………………..23
Figure 2.9: Increasing the cross sectional area of a column by RC jacketing………………………………………………………………………………27
Figure 2.10: Increasing the cross sectional area of a column by steel jacketing ………………………………………………………………………………29
Figure 2.11: Strengthening of an isolated footing………………………31
Figure 2.12: Practical way of jacketing a footing by reinforced concrete………………………………………………………………………………………32
Figure 2.13: Strengthening of reinforced concrete walls………………34
Figure 3.1: Rendered View of Model..40

Figure 3.2: Footing designation...41

Figure 3.3: Inadequately sized short columns..........................45

Figure 3.4: Inadequately sized ground floor columns.................46

Figure 3.5: Inadequately first floor columns sized....................47

Figure 4.1: Critical Punching shear areas..................................71
List of Tables

Table 1.1: Advantages and disadvantages of concrete……………………3

Table 3.1: Design live Loads………………………………………………38

Table 3.2: Design load combination……………………………………..39

Table 3.3: Material Properties……………………………………………..39

Table 3.4: Foundation forces due to service load…………………………43

Table 3.5: short columns results………………………………………….48

Table 3.6: Ground floor columns forces due to ultimate load……………..51

Table 3.7: First floor columns forces due to ultimate load…………………52

Table 3.8: Second floor columns forces due to ultimate load………………53

Table 4.1: Slab reinforcement…………………………………………………70
List of Symbols

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.C</td>
<td>Allowable bearing capacity</td>
</tr>
<tr>
<td>f_{cu}</td>
<td>Characteristic strength of concrete</td>
</tr>
<tr>
<td>f_y</td>
<td>Characteristic strength of reinforcement</td>
</tr>
<tr>
<td>K</td>
<td>Effective length factor for a compression member</td>
</tr>
<tr>
<td>l_a</td>
<td>lever arm factor = z/d</td>
</tr>
<tr>
<td>N_x</td>
<td>Axial load subject to member</td>
</tr>
<tr>
<td>M_x</td>
<td>Bending moment in x-x axis of member</td>
</tr>
<tr>
<td>M_y</td>
<td>Bending moment in y-y axis of member</td>
</tr>
<tr>
<td>M_z</td>
<td>Bending moment in z-z axis of member</td>
</tr>
<tr>
<td>Q_y</td>
<td>Shear force in y-y direction</td>
</tr>
<tr>
<td>Q_z</td>
<td>Shear force in z-z direction</td>
</tr>
<tr>
<td>P_u</td>
<td>Ultimate design load</td>
</tr>
<tr>
<td>R_z</td>
<td>Axial reaction at footing</td>
</tr>
<tr>
<td>R_x</td>
<td>Horizontal reaction in x-x axis at footing</td>
</tr>
<tr>
<td>R_y</td>
<td>Horizontal reaction in y-y axis at footing</td>
</tr>
<tr>
<td>R_{xx}</td>
<td>Bending moment force at footing level in axis x-x</td>
</tr>
<tr>
<td>R_{yy}</td>
<td>Bending moment force at footing level in axis y-y</td>
</tr>
<tr>
<td>v</td>
<td>Longitudinal shear per unit length</td>
</tr>
</tbody>
</table>