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Chapter (4) 
Vector Calculus , Stoke’s Theorem and Potential 

Section(4.1):The Language of vector calculus and Stocke’s 

Theorem 
The operators grad, div, and curl are the workhorses of vector calculus. 

We will see that they are three different incarnations of the exterior 

derivative. 

Definition (4-1-1): (Grad, curl and div) 

 Let f :  U  IR be a C
1
 function on an open set n U IR , and let F be a C

1
 

vector field on U. Then the grad of a function, the curl of a vector field, 

and the div of a vector field, are given by the formulas below 
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These operators all look kind of similar, some combination of partial 

derivatives. (Thus they are called differential operators.) We use the 

symbol V to make it easier to remember the above formulas, which we 

can summarize . 
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Example (4-1-2 ): (Curl and div)  

 Let    be the vector field 
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The partial derivative      is the derivative with respect to the second 

variable of the function   , i.e.,
2 ( ) 1D x y  . Continuing in this fashion 

we get 
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               (4-2) 

 

The divergence of the vector  field  
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What is the grad of the function  2    f x y z  ? What are the curl and div 

of the vector field 
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 Check your answers below .The following theorem relates the exterior 

derivative to the work, flux and density form fields . 

Theorem (4-1-3 ): (Exterior derivative of form fields on IR
3
)  

Let f be a function on IR
3
 and let P be a vector field. Then we have the 

following three formulas . 

(a) df =              ; i.e., df is the work form field of grad f , 

(b) d   =            ; i.e., d      is the Bux form field of curl     , 

(c)      =              ; i.e., d      is the density form field of div    . 
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Example (4-1-4 ): (Equivalence of df and        .)  

In the language of forms , to compute the exterior derivative of a function 

in IR
3
, we can use part (d) of Theorem ( 4-1-3) to compute d of the 0-

form f : 

                 1 1 2 2 3 3  .df D f dx D fdx D f dx                                     ( 4 - 3) 
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  this 1-form gives 

                          
1 1 2 2 3 3( )df v D fv D fv D fv                            ( 4 - 4) 

 

 

In the language of vector calculus, we can compute 
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which evaluated on    gives 
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       ( 4 –5) 

Example (4-1-5 ) :(Equivalence of d    and         )  

Let us compute the exterior derivative of the 1-form in it IR3  

  xydx z dy yz dz                             ie                 
   =  

  
 
  
  

In the language of forms, 

(   ) ( ) ( ) ( )d xydx z dy yz dz d xy dx d z dy d yz dz         

1 2 3

1 2 3 1 2 3

( )

( ) ( )

D xydx D xydy D xydz dx

D zdx D zdy D zdz dy D yzdx D yzdy D yzdz dz

   

       
 

            ( ) ( 1)( )x dx dy z dy dz                               ( 4 – 6 ) 

Since any 2-form in IR
3
 can be written                                                          
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1 2 3       
G

dy dz dx dz dx dG yG G       

the last line of Equation (4 - 6 ) can be written     for  

Z 1

G 0

X
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This vector field is precisely the curl of   : 
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Proof of Theorem (4-1-3): 

 The proof simply consists of using symbolic entries rather than the 

specific ones of Examples (4.1.4) and (4.1.5) For part (a), we find 
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For part (b), a similar computation gives 

 

d    = d(  dx +   dy +   dz) = d   Ʌ dx + d   Ʌ dy + d   Ʌ dz 
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For part (c), the computation gives 
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Theorem (4-1-3) says that the three incarnations of the exterior derivative 

in IR
3
 are precisely grad, curl, and div. Grad goes from 0-form fields to   

1-form fields , curl goes from 1-form fields to 2-form fields, and div goes 

from 2-form fields to 3-form fields. This is summarized by the diagram in 

Table (2) , which you should learn. 

 

 

Vector Calculus in R
3
  From Fields in R

3
 

Functions                                         =                        0-form fields  

  gradient                                                                           d 

Vector fields                                 
      
                           1-form fields 

  curl                                                                                   d   

Vector fields                                 
      
                         2-form fields 

  div                                                                                    d   

Functions                                       
         
                      3-form fields  

 

Table (2). In IR
3
, 0-form fields and 3-form fields can be identified with 

functions, and 1-form fields and 2-form fields can be identified with 

vector fields. The operators grad, curl, and div are three incarnations of 

the exterior derivative d, which takes a k-form field and gives                   

a (k + 1)-form field .  

Now we will discuss geometric interpretation of the exterior derivative in 

IR
3
.We already knew how to compute the exterior derivative of any       

k-form, and we had an interpretation of the exterior derivative of a k-form 

was integrating W over the oriented boundary of a (k + 1)-parallelogram. 

Why did we bring in grad, curl and div? 

     One reason is that being familiar with grad, curl, and div is essential in 

many physics and engineering courses. Another is that they give a 

different  perspective on the exterior derivative in IR
3
, with which many 

people are more comfortable.  

 

Now we will express geometric interpretation of the gradient. 

The gradient of a function, abbreviated grad, looks a lot like the Jacobian 

matrix. Clearly grad ( ) [ ( )]Tf x Df x ; the gradient is gotten simply by 

putting the entries of the line matrix [ ( )]Df x  in a column instead of a row. 

In particular, 

                              ( ). [ ( )]gradf x v Df x v                                 ( 4 - 10) 

the dot product of v with the gradient is the directional derivative in the 

direction   . If   is the angle between grad f (x) and v, we can write 
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                     ( ).  ( )gradf x v grad f x v cos ,                                ( 4 - 11) 

 

which becomes             cos   if v is constrained to have length 1. 

This is maximal when   = 0, giving grad     )  ( gradf fx x . So we see 

that .The gradient of a function f at x points in the direction in which f 

increases the fastest, and has a length equal to its rate of increase in that 

direction. 

Remark (4-1-6): 

Some people find it easier to think of the gradient, which is a vector, and 

thus an element of R
n
, than to think of the derivative, which is a line 

matrix, and thus a linear function IR
n
. They also find it easier to think that 

the gradient is orthogonal to the curve (or surface, or higher-dimensional 

manifold) of equation    c  0f x    than to think that ker[D f (x)] is the 

tangent space to the curve (or surface or manifold). 

Since the derivative is the transpose of the gradient, and vice versa, it 

may not seem to make any difference which perspective one chooses. But 

the derivative has an advantage that the gradient lacks: as Equation (4-10) 

makes clear, the derivative needs no extra geometric structure on IR
n
, 

whereas the gradient requires the dot product. Sometimes (in fact usually) 

there is no natural dot product available. Thus the derivative of a function 

is the natural thing to consider. 

But there is a place where gradients of functions really matter: in physics, 

gradients of potential energy functions are force fields, and we really 

want to think of force fields as vectors. For example, the gravitational 

force field is the vector 

0

0

gm

 
 
 
  

 , which we saw in Equation (2-57) this is 

the gradient of the height function (or rather, minus the gradient of the 

height function). 

       As it turns out, force fields are conservative exactly when they are 

gradients of functions, called potentials . However, the potential is not 

observable, and discovering whether it exists from examining the force 

field is it big chapter in mathematical physics. 

Now we will study geometric interpretation of the curl. 

  The peculiar mixture of partials that go into the curl seems impenetrable. 

We aim to justify the following description.The curl probe. Consider an 

axis, free to rotate in a bearing that you hold, 

and having paddles attached, as in Figure  (4 -2 ). 
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Figure(4-2) 

We will assume that the bearing is packed with a viscous fluid, so that its 

angular speed (not acceleration) is proportional to the torque exerted by 

the paddles. If a fluid is in constant motion with velocity vector field F, 

then the curl of the velocity vector field at x, (    x   )(x), is measured as 

follows: 

      The curl of a vector field at a point x points in the direction such that 

if You insert the paddle of the curl probe with its axis in that direction, it 

will spin the fastest. The speed at which it spins is proportional to the 

magnitude of the curl. 

Why should this be the case? Using Theorem (4-1-3 ) (b) and Definition  

( 3-2-19 ) of the exterior derivative, we see that 

 

                          
0

1 2x

F

0
1 2x 20F

p (h v ,h v )dw

1
(p (v , v )) lim

n F

Ф W
h





                     ( 4 - 12) 

measures the work of     around the parallelogram spanned by     , and 

     (ie , over its oriented boundary). IF      and     2 are unit vectors 

orthogonal to the axis of the probe and to each other. this work is 

approximately proportional to the torque to which the probe will be 

subjected. 

Theorems (3-2-25) and (4-1-3) have the following important consequence 

in IR
3
: If f is a C

2
 function on an open subset 3U  IR  , then                   

curl grad f = 0. 

Therefore, in order for a vector field to be the gradient of a function, its 

curl must be zero. This may seem obvious in terms of a falling apple; 

gravity does not exert any torque and cause the apple to spin. In more 

complicated settings, it is less obvious; if you observed the motions of 

stars in a galaxy, you might be tempted to think, there was some curl, but 

there isn't . (We will see in Section (4.2) that having curl zero does not 

quite guarantee that a vector field is the gradient of a function.) 

Now we will illustrate geometric interpretation of the divergence. 

The divergence is easier to interpret than the curl. If you put together the 

formula of Theorem ( 4-1-3) (c) and Definition (3-2-19 ) of the exterior 

derivative, we see that the divergence of   at a point x is proportional to 

the flux of    through the boundary of a small box around x, i.e., the net 
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flow out of the box. In particular, if the fluid is incompressible, the 

divergence of its velocity vector field is 0: exactly as much must flow in 

as out. Thus, the divergence measures the extent to which flow along the 

vector field changes the density. 

    Again, Theorems (3-2-25) and (4-1-3)have the following consequence: 

If    is a C
2
 vector field on an open subset 3U IR , then div curl    = 0. 

Remark (4-1-7) : 

 Theorem (3-2-25 ) says nothing about 

 

div grad f, grad div   , or curl curl  , 
 

which are also of interest (and which are not 0); they are three 

incarnations of the Laplacian.  

      Now we will express the generalized Stokes’s theorem . We worked 

pretty hard to define the exterior derivative, and now we are going to reap 

some rewards for our labor: we are going to see that there is a 

higherdimensional analog of the fundamental theorem of calculus, 

Stokes's theorem. It covers in one statement the four integral theorems of 

vector calculus .  Recall the fundamental theorem of calculus: 

Theorem (4-1-8):(Fundamental theorem of calculus) 

 If f is a C
1
 function on a neighborhood of [a, b], then 

 

                                               1( )

b

a

f t dt f b f a                        (4-13) 

Restate this as 

                                           
   , ,

,
a b a b

df f


                                        (4-14) 

i.e., the integral of df over an oriented interval is equal to the integral off 

over the oriented boundary of the interval. In this form, the statement 

generalizes to higher dimensions 

Theorem (4-1-9 ):(Generalized Stokes's theorem)  

Let X be a compact piece-with-boundary of a (k + 1)-dimensional 

oriented manifold M ⊂IRn
. 

Give the boundary  X of X the boundary orientation, and let  be             

a k-form defined on a neighborhood of X. Then 

 

                                            
X X

d 


                                            (4-15) 

 

This beautiful, short statement is the main result of the theory of forms. 
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Example (4-1-10 ):(Integrating over the boundary of a square)  
You apply Stokes's theorem every time you use anti-derivatives to 

compute an integral: to compute the integral of the 1-form f (x) dx over 

the oriented line segment [a, b], you begin by finding a function g(x) such 

that    ( )dg x f x dx, and then say 

                     
   

   
, ,

b

a a b a b

f x dx dg g g b g a


                             (4-16) 

 

This isn't quite the way it is usually used in higher dimensions, where 

"looking for anti-derivatives" has a different flavor. 

For instance, to compute the integral fo x dy y dx
c

 , where C is the 

boundary of the square S described by the inequalities    ,       1, with 

the boundary orientation, one possibility is to parametrize the four sides 

of the square (being careful to get the orientations right), then to integrate 

    x dy y dx over all four sides and add. Another possibility is to apply 

Stokes's theorem: 

 

            

  2 8
c s s

xdy ydx dx dy dy dx dx dy                   (4-17) 

 

What is the integral over C of x dy + y dx? Check below. 

Example (4-1-11 ): (Integrating over the boundary of a cube) 

 Let us integrate the 2-form 

 

 

       2 3( )( )x y z dy dz dx dz dx dy                      ( 4 -18) 

 

over the boundary of the cube Ca. given by 0  x,  y,  z  a  . It is quite 

possible to do this directly, parametrizing all six faces of the cube, but 

Stokes's theorem simplifies things substantially. 

Computing the exterior derivative of   gives 

 
2 3 2 (1 2 3 2)d dx dy dz ydy dx ds z dz dx dy y z dx dy dz                             

( 4 -19) 

 

 

2(1 2y 3z )dx dy dz,

ac c




       
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                                      2

0 0 0

1 2y 3z dx dy dz,

a a a

                     (4-20) 

 

  2 2 3 2 2 3

0 0 0
( )

a aa
a x y z a a a a            

 

Example (4-1-12) : (Stokes's theorem: a harder example)  

Now let's try something similar to Example (4.1.11), but harder, 

integrating 

 

                2 3

1 2 3 1

1

n
n

n i n

t

x x x x dx dx dx


 
      

 
                 (4-21) 

 

over the boundary of the cube Ca. given by 
j0  x   a, j  1,...,n.    

    This time, the idea of computing the integral directly is pretty 

awesome: parametrizing all 2n faces of the cube, etc. Doing it using 

Stokes's theorem is also pretty awesome, but much more manageable. 

We know how to compute d , and it comes out to 

  

                       d  = (1+2x2+3  
 +…+ n  

   ) d   Ʌ … Ʌ d        (4-22) 

 

 

The integral of j   
   

 dx1 Ʌ . . Ʌ dxn over Ca is 

 

                                              
1 1

0 0

.

a a

j m j n

jx d x a                            (4-23) 

 

so the whole integral is  n n 1a l  a   a     .  

The examples above bring out one unpleasant feature of Stokes's 

theorem: it only relates the integral of a k -1 form to the integral of              

a k-form if the former is integrated over a boundary. It is often possible to 

skirt this difficulty, as in the example below. 

 

Example (4-1-13):(Integrating over faces of a cube)  

Let S be the union of the faces of the cube C given by 1  x,  y,  z 1     

except the top face, oriented by the outward pointing normal. What is 

?
F

s

X

Ф F Y

Z

 
 


 
  

  
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The integral of     over the whole boundary  C is by Stokes's theorem 

the integral over C of     = div   dx dy dz  3 dx dy dz     , so 

           C

dy dz 3 dx dy dz 24
F

C C

Ф div F dx


                        (4-24) 

Now we must subtract from that the integral over the top. Using the 

obvious 

Parametrization  

1

s
s

t
t

 
   

   
   

 

 gives 

1 1

1 1

1 0

det 0 1

1 0 0

s

t
 

 
 
 
  

   

So the whole integral is 24 - 4 = 20.  

 

Now we will study  Proof of the generalized Stokes's theorem. 

Before starting the proof of the generalized Stokes's theorem, we want to 

sketch two proofs of the fundamental theorem of calculus,             

Theorem (4-1-7). You probably saw the first in first-year calculus, but it 

is the other that will generalize to prove Stokes's theorem. 

 

Now we will illustrate first proof of the fundamental theorem of calculus 

Set    
0

F x  

x

f t dt   . We will show that 

                          '( ) ( )F x f x ,                                     ( 4 -  25) 

as Figure (4-3) suggests. Indeed, 

  
Figure(4-3) 

 

 

   
0

0 0

1
'( ) lim

x h x

h
F x f t dt f t dt

h





 
  

 
   
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                      

 

0
0

hf x

1
lim

x h

h
f t dt

h



                                     (4-26) 

 

(The last integral is approximately hf(x); the error disappears in the limit.) 

Now consider the function 

                                                

 '

0

with deny.f x

f x

x

f t dt                                  (4-27) 

The argument above shows that its derivative is zero, so it is constant; 

evaluating the function at x = a, we see that the constant is f (a). Thus 

                                        
b

a

f b f t dt f a                                    (4-28) 

 

Now we will discuss Second proof of the fundamental theorem of 

calculus. Here the appropriate drawing is the Riemann sum drawing of 

Figure (4-4) 

By the very definition of the integral 

 
Figure(4-4) 

 

                                     '

b

i i i

ia

f x dx f x x x                         (4-29) 

where    <    < . . <   ,,, decompose [a, b] into m little pieces, with a = 

   and b =    

By Taylor's theorem 

 

                             11    ' –  .           i i i i if x f x f x x x  ( 4-30 ) 

 

These two statements together give 

                 ' ( )

b

i i i i i i

i ia

f x dx f x x x f x x f x                       (4-31)  
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In the far right-hand term all the interior xi's cancel 

               
1

1 0 2 1 1

0

.
m

i i i m m

i

f x x f x f x f x f x f x f x f x






          

                                                                                                     (4-32) 

Leaving            . . .,    .m of x f x i e f b f a   

Let us analyze a little more closely the errors we are making at each step; 

we are adding more and more terms together as the partition becomes 

finer, so the errors had better be getting smaller faster, or they will not 

disappear in the limit. Suppose we have decomposed the interval into m 

pieces. Then when we replace the integral in Equation (4.32) by the first 

sum, we are making m errors, each bounded as follows. The first equality 

uses the fact that     

b

a

A b a A   . 

   
1 1

' '

1'( ) '( )
i i

i i

b a AAx x

i i i

x x

f x dx f x x x f x f x dx
 





 
    
 
 

   

                                     

1

''sup ( )
i

i

x

i

x

f x x dx


                                   (4-33) 

 
1

sup ''
i

i

x

i

x

f x x dx


   

  2
1

2

( )
sup '' sup ''

2 2

i ix x b a
f f

m

  
  

 

We also need to remember the error term from Taylor's theorem, 

Equation(4-31) , which turns out to be about the same. So all in all. we 

made m errors, each of which is   C1 /m
2
, where Cr is a constant that 

does not depend on m. Multiplying that maximal error for each piece by 

the number m of pieces leaves an m in the denominator, and a constant in 

the numerator, so the error tends to 0 as the decompositions becomes 

finer and finer. 

 

Now we will express An informal proof of Stokes's theorem Suppose you 

decompose X into little pieces that are approximated by oriented (k + 1)-

parallelograms   
 : 

                                            
0 0

1, 2, 1,, , .i i k ii xP P v v v 
 

  
 

                     (4-34) 

Then 

                                
0

1

0

i

i iX XP

d d P



   


                                (4-35) 
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The first approximate sign is just the definition of the integral; the tt 

becomes an equality in the limit as the decomposition becomes infinitely 

fine. The second approximate sign comes from our definition of the 

exterior derivative When we add over all the P,°, all the internal 

boundaries cancel, leaving
X




  . 

As in the case of Riemann sums, we need to understand the errors that are 

signaled by our signs. If our parallelograms P, have side c, then there are 

approximately  -(k+I) 
such parallelograms. The errors in the first and 

second replacements are of order  k+2
. For the first, it is our definition of 

the integral, and the error becomes small as the decomposition becomes 

infinitely fine. For the second, from the definition of the exterior 

derivative 

                     
0

1

0   i

P

d P terms of order 


                          (4-36) 

so indeed the errors disappear in the limit.  

 

Now we will illustrate A situation where the easy proof works 

We will now describe a situation where the proof in Section (4.1) really 

does work. In this simple case, we have a (k - 1)-form in IR
k
, and the 

boundary of the piece we will integrate over is simply the subspace         

E ⊂ IR
k
 of equation x1 = 0. There are no manifolds, nothing curvy.      

Figur (4-5)illustrates Proposition ( 4-1-14) . 

 
Figure(4-5) 
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Proposition (4-1-14 ) : 
 Let U be a bounded open subset of R

k
, and let U -  be the subset of U 

where the first coordinate is non-positive (i.e., x1   0). Give U the 

standard orientation of R
K
 (by det), and give the boundary orientation 

to  U_ = U   E. Let   be a (k - 1)-form on fl of class C
2
, which vanishes 

identically outside U. Then 

                                                            
U U

d 
  

                       (4-37) 

Proof: 
 We will repeat the informal proof above, being a bit more careful about 

the bounds. Choose   > 0, and denote by kIR  the subset of kIR , where       

1x   0  . 

Recall from the proof of Theorem (3-2-21 )  that there exists" a constant 

K and   > 0 such that when     <  , 

                      
0

1

0 1
1

, ,

, ,

kx

k
kx

P h e h e

d P h e h e kh  

 
  

 

  
    

  
             (4-38) 

 

That is why we required  to be of class C
2
, so that the second derivatives 

of the coefficients of   are bounded. Take the dyadic decomposition

 k

ND R , where h  2'N . By taking N sufficiently large, we can 

guarantee that the difference between the integral of d(p over U_ and the 

Riemann sum is less than  /2: 

 

                                      
( ) 2k

NC D RU

d d C 


 
 ٍ

 ٍ
                         (4-39) 

 

Now we replace the k-parallelograms of Equation (4-38) by dyadic cubes, 

and evaluate the total difference between the exterior derivative of V over 

the cubes C, and ,p over the boundaries of the C. The number of cubes of 

 k

ND R  that intersect the support of  is at most L2
kN

 for some constant 

L, and since h = 2
-N

, the bound for each error is now N(k 1)K2   so 

 
 

 

 1

.   

 

2 2 2
k k

N N

N KKN N

No of cubes bound forBCC D R C D R

each error

d C L K LK 
     

 ٍ  ٍ

            (4-40) 

 

This can also be made <  /2 by taking N sufficiently large-to be precise, 

by taking 
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log 2 log

log 2

LK
N

 
                                     (4-41) 

 

Putting these inequalities together, we get 

     

   

/2 /2

( ) ( ) ( )k k k
N N N

t t

C D R C D R C D RU BC

d d C d C   

 



     
 ٍ  ٍ  ٍ

                (4-42) 

 

 

so in particular, when N is sufficiently large we have 

                                                     
( )1

k
NC D RU c

d 


  
 ٍ

 ٍ                    (4-43) 

Finally, all the internal boundaries in the sum 

                                  
 k

N cC D R




 
 ٍ

                                             (4- 44) 

cancel, since each appears twice with opposite orientations. The only 

boundaries that count are those in K 1R   . So (using C' to denote cubes of 

the dyadic composition of R
K-1 

) 

                                  
( ) ( ) '

k k
N NC D R C D Rc C E U

   
  

     
 ٍ  ٍ

                                 (4-45) 

 (We get the last equality because W vanishes identically outside U, and 

therefore outside U1.) So 

                                          
U U

d 
  

                                   (4-46) 

Since a is arbitrary, the proposition follows 

 

Section(4 .2): The Integral Theorem and potential  
The four forms of the generalized Stokes's theorem that make sense IR

2
 

and IR
3
 don't say anything that is not contained in that theorem, but each 

is of great importance in many applications; these theorems should all 

become personal friends, or at least acquaintances. They are used 

everywhere in electromagnetism, fluid mechanics, and many other fields. 

Theorem (4-2-1 ) : (Fundamental theorem for line integrals) 

 Let C be an oriented curve in R
2
 or R

3
 (or for that matter any nIR ), with 

oriented boundary (  
 -   

 ), and let f be a function defined on a 

neighborhood of C. Then 

                                           
c

df f b f a                             (4- 47) 
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Now we will express Green's theorem and Stokes's theorem 

Green's theorem is the special case of Stokes's theorem for surface 

integrals when the surface is flat. 

 

Theorem (4-2-2 ): (Green's theorem) 

 Let S be a bounded region of IR
2
, bounded by a curve C (or several 

curves C), carrying the boundary orientation as described in Definition 

(3-2-14). Let P bea vector field defined on a neighborhood of S. Then 

 

                                   
F F F F

is C s C

dW dW OR dW dW                        (4-48) 

This is traditionally written 

                        1 2   
s C

D g D f dxdy f dx g dy                          (4-49) 

To see that the two versions are the same, write                                         

    =  
 
     +   

 
        and use Theorem (3.2.21) to compute its 

exterior derivative: 

1 2 1 2(   ) (   ) (   )
F

dW d f dx g dy df dx dg dy D f dx D f dy dx D g dx D g dy dy           

            2 1 1 2  ( – )D f dy dx D g dx dy D g D f dx dy                      (4-50) 

 

Example (4-2-3 ): (Green's theorem)  

What is the integral 

                                                      
22xy dy x dx

D

                     (4-51) 

 

where U is the part of the disk of radius R centered at the origin where 

y 0, with the standard orientation? 

This corresponds to Green's theorem, with    
 
  =    and     

 
  =    , 

so that D1  = 2y and D2  = 0. Green's theorem say 

 

             
 2

1 22xy dy x dx 2
D s U

D g D f dxdy yxdy


                      (4-52) 

 
3 3

0 0 0

2 4
2 sin   sin

3 3

R
R R

r r dr d d

 

        

 

What happens if we integrate over the boundary of the entire disk? 
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Theorem (4-2-4 ):(Stokes's theorem) 

 Let S be an oriented surface in IR
3
, bounded by a curve C that is given 

the boundary orientation. Let   be a 1-form field defined on a 

neighborhood of S. Then 

                                         
S C

d                                      (4-53) 

Again, let's translate this into classical notation. First, and without loss of 

generality, we can write  =    , so that Theorem (4-2- 4 ) becomes 

 

                                       
1

F curl F F
iS S C

dW Ф W                        (4-54) 

 

This still isn't the classical notation. Let      be the normal unit vector field 

on S defining the orientation, and     be the unit vector field on the Ci 

defining the orientation there. Then  

. 

   

       2 2. .

i
iS C

curl F x N x d x F x T x d x
 

 
 

       (4-55) 

 

The left-hand side of Equation (4-55) is discussed in the margin. Here 

let's compare the right-hand sides of Equations (4-54)  and (4-55) . Let us  

1

2

3

set  

F

F F

F

 
 
 




 

 An the right-hand side of Equation (4-54), the integrand is  =

1 2 3    
F

Fdx F dy F dzW    ; given a vector 9, it returns the number             

F1v1 + F2v2 + F3v3. In Equation (4-55) ,              is a complicated way 

of expressing the identity: given a vector   , it returns        times the 

length of   . Since         is a unit vector, the result is a vector with length 

   , tangent to the curve. When integrating, we are only going to evaluate 

the integrand on vectors tangent to the curve and pointing in the direction 

of    , so this process just takes such a vector and returns precisely the 

same vector. So F(x)               takes a vector    and returns the number 

1 1

1

2 2 1 1 2 2 3 3

3 3

( ( ). ( ) ) .
F

v

F v

F x T x d x v F v Fv F v Fv W v

F v

   
      

             
      

                   

 

                                                                                                         (4-56) 
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Example (4-2-5):(Stokes's theorem) 

 Let C be the intersection of the cylinder of equation 2 2  1x y   with the 

surface of equation  2   z s i n x y . Orient C so that the polar angle 

decreases along C. What is the work over C of the vector field 

                                            

3

?

x y

F y x

z z

  
  

   
      

                               (4-57) 

    It's not so obvious how to visualize C, much less integrate over it. 

Stokes's theorem says there is an easier approach: compute the integral 

over the subsurface S consisting of the cylinder 2 2x  y  1   bounded at 

the top by C and at the bottom by the unit circle C1 in the       plane, 

oriented counterclockwise. 

    By Stokes's theorem, the integral over C plus the integral over C1 

equals the integral over S, so rather than integrate over the irregular curve 

C1, we will integrate over S and then subtract the integral over C1. First 

we integrate over S: 

                                
1

2

0

0

1 3

0
F F curl F

C C S S

y

W W Ф Ф
 
 
 
 
 

                    (4-58) 

This last equality comes from the fact that the vector field is vertical, and 

has no flow through the vertical cylinder. Finally parametrize C1 in the 

obvious way: 

                                                   
cos

sin

t
t

t

 
  

 
                         (4-59) 

 

which is compatible with the counterclockwise orientation of C1, and 

compute 

                         
 

1

3

0

sinsin
.

coscosF
C

tt
W dt

tt

    
    

    
                      (4-60) 

 
4 2

0

3 7
sin cos  

4 4
t t dt



         

So the work over C is 

                                                 
7

4F
C

W                               (4-61) 
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Now we will illustrate the divergence theorem .The divergence theorem 

is also known as Gauss's theorem. 

 

 

Theorem (4-2-6):(The divergence theorem) 

 Let M be a bounded domain in IR
3
 with the standard orientation of 

space, and let its boundary  M be a union of surfaces Si, each oriented by 

the outward normal. Let   be a 2-form field defined on a neighborhood 

of M. Then 

                                           
i

iM S

d                                   (4-62) 

 

Again, let's make this look a bit more classical. Write   =     , so that 

   =       =       , and let      be the unit outward-pointing vector field on 

the Si; then Equation (4 - 63) can be rewritten 

             

2  .

i
iM s

div F dx dy dz F N d x                     (4-63) 

 

When we discussed Stoker's theorem, we saw that    .     , evaluated on a 

parallelogram tangent to the surface, is the same thing as the flux of    
evaluated on the same parallelogram. So indeed Equation (4 - 64) is the 

same as 

                               
i

F div F F
iM M S

dФ Ф                               (4-64) 

 

Remark(4-2-7) : 

We think Equations (4 - 55) and (4 - 63) are a good reason to avoid the 

classical notation. For one thing, they bring in N, which will usually 

involve dividing by the square root of the length; this is messy, and also 

unnecessary, since the       term will cancel with the denominator. More 

seriously, the classical notation hides the resemblance of this special 

Stokes's theorem and the divergence theorem to the general one, Theorem 

(4-1-9). On the other hand, the classical notation has a geometric 

immediacy that really speaks to people who are used to it. 

Example (4-2-8 ) : (Divergence theorem)  

Let   be the unit cube. What is 

the flux of the vector field 

2

3 2

2

x y

yz

x y

 
 
 
 
 

  through the boundary of Q if Q carries 



009 
 

the standard orientation of IR
3
 and the boundary has the boundary 

orientation? 

 

The divergence theorem asserts that 

        

 2 2

3 2 3 2

3

2 2

2 2
x y x y

Q Q Qyz div yz

x y x y

Ф xy z d x
   
        
   
   

                        (4-65) 

 

This can readily be computed by Fubini's theorem: 

              
1 1 1

0 0 0

1 1
2 2   1

2 2
xy z dx dy dz                              (4-66) 

 

 

Example (4-2-9 ): (The principle of Archimedes) 

 Archimedes is said to have been asked by Creon, the tyrant of Syracuse, 

to determine whether hi crown was really made of gold. Archimedes 

discovered that by weighing the crown when suspended in water, he 

could determine whether or not it was counterfeit. According to legend, 

he made the discovery in the bath, and proceeded to run naked through 

the streets, crying "Eureka" ("I have found it"). 

The principle he claimed is the following: A body immersed in a fluid 

receives a buoyant force equal to the weight of the displaced fluid. 

   We do not understand how he came to this conclusion, and the 

derivation 

we will give of the result uses mathematics that was certainly not 

available to Archimedes. 

    The force the fluid exerts on the immersed body is due to pressure. 

Suppose that the body is M, with boundary  M made up of little oriented 

parallelograms   
 . The fluid exerts a force approximately 

 

                                          1 1 ,iP x Area P n                (4-67) 

 

where     is an inner pointing unit vector perpendicular to   
  and xi is a 

point of   
 this becomes a better and better approximation as   

  becomes 

small so that the pressure on it becomes approximately constant. The total 

force exerted by the fluid is the sum of the forces exerted on all the little 

pieces of the boundary. 

Thus the force is naturally a surface integral, and in fact is really an 

integral of a 2-form field, since the orientation of  M matters. But we 

can't think of it as a single 2-form field: the force has three components, 
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and we have to think of each of them as a 2-form field. In fact, the force 

is 

                                                          

1

2

3

e
M

e
M

e
M

PФ

PФ

PФ







 
 
 
 
 
 
 
 
 
 







                       (4-68) 

                    
1

2

3

1 1 2

1 2 2 1 2

3 1 2

det , ,

, det , ,

det , ,

e

x
e

e

e v v
PФ

PФ P v v p x e v v

PФ
e v v

  
     
  

       
               

    
    

                (4-69) 

 

  11 2 2( )( , ) ,x i xv v P x Area P v v np x
  

  
  

  

 

In an incompressible fluid on the surface of the earth, the pressure is of 

the form ( )p x gz   , where s is the density, and g is the gravitational 

constant. Thus the divergence theorem tells us that if  M is oriented in 

the standard way, i.e., by the outward normal, then 

                          

11

22

33

.

.

.

 

e

e

e

gzФ
e

M M

gzФ
e

M M

gzФ
e

MM

gzФ

Total Force gzФ

gzФ







 

 



 
  
 



 
  
 



 
  
 



   
   

   
   
     
   
   
   
   

  

 

 



               (4-70) 

 

The divergences are 

          1 2 3

.( ) .( ) .( )0,
e e e

gzФ gzФ gzФ g                          (4-71)  

 

Thus the total force is 
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0

0

M

g

 
 
 
 
 
 
 
 


                        (4-72) 

and the third component is the weight of the displaced fluid; the force is 

oriented upwards. This proves the Archimedes principle 

Now we will study Potentials . A very important question that constantly 

comes up in physics is: when is a vector field conservative? The 

gravitational vector field is conservative: if you climb from sea level to an 

altitude of 500 meters by bicycle and then return to your starting point, 

the total work against gravity is zero, whatever your actual path. Friction 

is not conservative, which is why you actually get tired during such a trip. 

A very important question that constantly comes up in geometry is: when 

does a space have a "hole" in it? 

We will see in this section that these two questions are closely related 

In the following we will discuss Conservative vector fields and their 

potentials Asking whether a vector field is conservative is equivalent to 

asking whether it is the gradient of a function. 

 

Theorem (4-2-10) : 

 A vector field is the gradient of a function if and only if it is 

conservative: i.e., if and only if the work of the vector field along any 

path depends only on the endpoints, and not on the oriented path joining 

them. 

Proof: 

Suppose    is the gradient of a function f:    =       of. Then by Theorem 

(4-1-9 ), for any parametrized path 

 

                                                           : , na b R                            (4-73) 

 

we have (Theorem (4-2-1)) 

                            

     
.

: ,
f

a b

W f b f a


 


                           (4-74) 

 

Clearly, the work of a vector field that is the gradient of a function 

depends only on the endpoints: the path taken between those points 

doesn't matter. 

It is a bit harder to show that path independence implies that the vector 

field is the gradient of a function. First we need to find a candidate for the 
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function f, and there is an obvious choice: choose any point xo in the 

domain of F, and define 

 

                                                                 
 

F
x

f x W


                   (4-75) 

where       is an arbitrary path from xo to x: our independence of path 

condition guarantees that the choice does not matter. 

Now we have to see that    =      , or alternatively that 
F

.W df  We know 

That 

                        
0

1
limx
h

df P v f x hv f x
h

      
        

      
         (4-76) 

 

and (remembering the definition of f in Equation (4-75) ) 

  (   )   f x h f x  is the work of F first from   back to xo, then from xo 

to x + h  . By independence of path, we may replace this by the work 

from x to x + h   along the straight line. Parametrize the segment in the 

obvious way (by : t x t v   , with ( 0   t   h) to get 

 

             

 

' '

0
0

1
lim . . ,

h

x
h

F t t

df P v F x hv v dt F x v
h

 



 
 

           
     
 
 

                 (4-77) 

i.e ,          

 

Definition (4-2-11) :   

 A function f such that grad f =    is called 

a potential of    . A vector field has more than one potential, but pretty 

clearly, two such  potentials f and g differ by a constant, since 

 

                ( ) – 0grad f g gradf gradg F F                             (4 -78) 

 

the only functions with gradient 0 are the constants. 

So when does a vector field have a potential, and how do we find it? The 

first question turns out to be less straightforward than might appear. 

There is a necessary condition: in order for a vector field f to be the 

gradient of a function, it must satisfy 

 

                                                   0curl F                                  (4-79) 
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This follows immediately from Theorem (3-2-25): ddf = 0. Since             

df =         then 

IF   =       , 

 

                                             
F

   0Φ
curl F

dd dW f                      (4 - 80) 

 

the flux of the curl of    can be 0 only if the curl is 0. 

 Some textbooks declare this condition to be sufficient also, but this is not 

true, as the following example shows. 

Example (4-2-12) : (Necessary but not sufficient)  
Consider the vector field 

 

                                                             2 2

1

0

y

F x
x y

 
 


 
  

                 (4-81) 

 

on IR
3
 with the z-axis removed. Then 

 

                                            

1 12 2 2 2

0

0curl F

X Y
D D

x y x y

 
 
 

  
 


 

   

              (4-82) 

 

 

and the third entry gives 

 

                                     
 

 

 

 

2 2 2 2 2 2

2 2
2 2 2 2

2 2
0

x y x x y y

x y x y

   
 

 
               (4-83) 

 

But f cannot be written       for any function f : (IR
3
 - z-axis)   IR. 

Indeed, 

using the standard parametrization 

 

                                   

cos

sin

0

t

t t

 
 

  
 
 

                                           (4-84) 
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the work of   around the unit circle oriented counterclockwise gives 

 

         

    

1

'

1

2

2 2

0

sin sin
1

cos . cos 2
cos sin

0 0
F

S

t
F t

t t

W t t dt
t t








    
   

 
   
      

                    (4-85) 

 

This cannot occur for work of a conservative vector field: we started at 

one point and returned to the same point, so if the vector field were 

conservative, the work would be zero. 

We will now play devil's advocate. We claim 

 

                               arctan
y

F
x

 
  

 
                                           (4-86) 

 

 Why doesn't this contradict the statement above, that    cannot be written 

      ? The answer is that 

 

                                                              arctan
y

x
                         (4-87) 

 

is not a function, or at least, it cannot be defined as a continuous function 

on IR
3
 minus the z-axis. Indeed, it really is the polar angle 0, and the 

polar angle cannot be defined on IR minus the z-axis; if you take a walk 

counterclockwise on a closed path around the origin, taking your polar 

angle with you, when you get back where you started your angle will 

have increased by   . 

Example (4-2-13) :  

 shows exactly what is going wrong. There isn't any problem with   , the 

problem is with the domain. We can expect trouble any time we have a 

domain with holes in it (the hole in this case being the z-axis, since    is 

not defined there). The function   such that       =    is determined only 

up to an additive constant, and if you go around the hole, there is no 

reason to think that you will not add on a constant in the process. So to 

get a converse to Equation (4-80), we need to restrict our domains to 

domains without holes. This is a bit complicated to define, so instead we 

will restrict them to convex domains. 
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Definition (4-2-14 ) : (Convex domain)  

A domain U ⊂ IR
n
 is convex if for any two points x and y of U, the 

straight line segment       joining x to y lies entirely in U. 

Theorem.(4-2-15) : 

 If U ⊂ IR
3
 is convex, and if is a vector field on U, then    is the gradient 

of a function f defined on U if and only if curl   = 0 

Proof: 

The proof is very similar to the proof of Theorem (4-2-10). First we need 

to find a candidate for a function f, and there is again an "obvious" 

choice. Choose a point     U, and set 

 

                                                              

( )

( )
F

x

f x W


   ,                                          (4 - 88) 

where this time  (x) is specifically the straight line joining xn to x. Note 

that this is because U is convex; if U were a pond with an island, the 

straight line might go through the island (where the vector field is 

undefined). 

Now we need to show that     f =   . Again, 

  

                      
0

1
. lim ,

h
f x v f x hv f x

h

  
     

  
                  (4-89) 

 

 

and f(x+h  ) –f(x) is the work of    along the path that goes straight from 

x to x0 and then straight on to x + h  . We wish to replace this by the path 

that goes straight from x to x+h  . We don't have path independence to 

allow this, but we can do it by Stokes's theorem. Indeed, the three 

oriented segments 

[x, x0], [x0, x +    ], and [x + h  , x] together bound a triangle T, so the 

work of    around the triangle is equal to zero 

 

                              0
F F curl F

T T T

W dW Ф


                       (4-90) 

 

We can now rewrite equation(4-90 ) 
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 
0

0

0 0
[ , ]

[ , ] ,

( )

( )

1 1
. lim lim

h hF F F
x x

x Xhv x x hv

f x

f x hv

f x v W W W
h h 

 
 

 



 
 
 

   
 
 
 



 

              (4-91) 

The proof finishes as above (Equation(4-78) ). 

 

 

Example (4-2-16): (Finding the potential of a vector field) 

 Let us carry out the computation in the proof above in one specific case. 

Consider the vector field  

                                          

2

2

( )

z

y
x y

F y x y z

z xy

 
  
  

   
   
   

 

                               ( 4-92) 

Whose curl is indeed 0: 

 

                

2

1

2

3

02

( ) 0

( ) 0

z

y
D x xy

F D x y z y y

D xy y z y z

 
       
      

             
              
 

               (4-93) 

 Since    is defined on all of IR
3
, which is convex, Theorem (4-2-14) 

asserts that    =     f, where 

 

                                   
,

( )
F

a

f a W


    for   ,0 1,a t ta t                 (4-94) 

i.e.,   , is a parametrization of the segment joining 0 to a. If we set           

a =  
 
 
 
                 

                                      

2

2
1

20

( )
2

( ) .

tb
a at bc

f b tb tc ta b dt

c t ab c

 
    
    

     
        

  

                      (4-95) 

            =     
1 1

' '

1'( ) '( )
i i

i i

b a AAx x

i i i

x x

f x dx f x x x f x f x dx
 





 
    
 
 

   
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This means that  

 

                                       
2

,
2

x
xy

f y xyz

z

 
 

  
 
 

                                    (4-96) 

 

and it is easy to chech that     f =     
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