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Chapter (3) 

Orientation , Integration and Exterior Derivative 

Section (3.1) : Orientation and Integration of Form Fields 

Now we will discuss compatible orientations of parametrized manifolds 

We have discussed how to integrate k-form fields over k-dimensional 

parametrized domains. We have seen that where integrands like       are 

concerned, the integral does not depend on the parametrization. Is this still 

true for form fields? The answer is "not quite": for two parametrizations to 

give the same result, they have to induce the same orientation on the image. 

Let us see this by trying to prove the (false) statement that the integral does 

not depend on the parametrization, and discovering where we go wrong. Let 
nM IR be a k-dimensional manifold     be subsets of IR

K
 , and                 

1 :  V  M    , 2 :  V  M   be two parametrizations, each inducing its own 

orientation. 

Let W be a k-form on a neighborhood of M. 

 

Define as in Theorem (1-1-12) the "change of parameters" map 

.                                                                                                                                                                                                                                                                             
( 1)

2 1 : ok oko U V   . 

 

Then Definition (2-2-1) (integrating a k-form field over a parametrized 

domain) 

and the change of variables formula, give 

                             
2

1

1 1 2

( )

, , K
kV

V V

P D V D V d V




   
  

   
  

                     (3-1) 

( ( ) ( )i ik i ikd fdx dx d df dx dx      

We want to express everything in terms of    . There is no trouble with the 

point (        )    =       where the parallelogram is anchored, but the 

vectors which span it are more troublesome, and will require the following 

lemma. 
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Lemma (3-1-1): 

        l, ... ,     k are any k vectors in KIR , then 

     
2

1 11 2, , detk kV
P D V D V w w


  
    

         
 

                                           
2

11 2, , kV
P D V w D V w


  
  

   
  

                 (3-2) 

Proof: 

 Since the vectors    11 2[ , , ]kD V w D V w         in the second line of 

Equation (3-2) depend on 1 kw w , we can consider the entire right-hand 

side of that line as a function of v and 1 kw w , multilinear and 

antisymmetric with respect to the     . The latter are k vectors in IR
k
, so the 

right-hand side can be written as a multiple of the determinant:                       

a(v) 1det kw w
 

  
 for some function a(v). 

To find a(v) , we set 1 1k Kw w e e    .Since    112 2D V e D V     , 

Substituting         for            in second line of Equation (3-2) gives  

 

           
2 2

112 2 2 2, , , , kkV V
P D V e D V e P D V D V
 

     
      

        
      

 

                                                1det det ka v w w a v
 

    
                 (3-3) 

So 

 

       

     

2

2

1 12 2

1 12 2

, , det

, , det

k kV

k kV

P D V w D V w a v w w

P D V D V w w





  

  

    
           

    
         

  (3-4) 

Now we write down the function being integrated on the second line of 

Equation (3-1) , except that we take det[ ( )]D u  out of absolute value signs, 
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so that we will be able to apply Lemma (3-1-1)  to go from the second to the 

third line : 

 

         
2

1 1 2oΦ
Φ , , Φ det Φku

P D u D u D u


  
  

      
  

 

 

             
2

1

1 11 2oΦ
Φ , , Φ det det Φ , , Φ

k

k ku

w w

P D u D u D u D u


  



 
   

     
    

 

 

         
2

12 2oΦ
Φ Φ , , Φ Φ

kw
v

Ku
P D u D u D u D u


  

  
   

       
    
  

 

                                           
1

1 1 1, , ku
P D u D u


  
  

   
  

                         (3-5) 

To pass from the second to the third line of Equation (3-5) we use Lemma    

( 3-1-1), setting ( )j jw D u   and ( ).v u   (We have marked some of these 

correspondences with underbraces.) We use the chain rule to go from the 

third to the fourth line. 

Now we come to the key point. The second line of Equation (3-1) has

det[ ( )]D u , while the first line of Equation (3-5) has det[ ( )]D u . Therefore 

the integral  

 

                                   
     

1
1 1 1, , K

ku

U

P D u D u d u


  
  

  
  

                        (3-6) 

obtained using    and the integral 

                                         
2

1 1 2, , K
kV

V

P D V D V d V


  
  

  
  

                 (3-7) 

obtained using    will be the same only if  det ΦD u    =det[ ( )]D u . That is, 

they will be identical if det[ ] 0D   for all      , and otherwise probably 

not.             < 0 for all       then 
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   1 2U V 

                                               (3-8) 

 

If           is positive in some regions of U and negative in others, then 

the integrals are probably unrelated. 

If   det Φ 0D u     , we say that the two parametrizations of M induce 

compatible orientations of M. 

Definition (3-1-2):(Compatible orientation) 

    Let    and    be two parametrizations, with the "change of parameters" 

map ( 1)

2 1o   . The two parametrizations    and    are compatible if 

det[ ]D   > 0.This leads to the following theorem. 

Theorem (3-1-3):(Integral independent of compatible parametrizations)    

Let nIRM  be a k-dimensional oriented manifold, U, V open subsets of IR
k
, 

and n

1 :  U  RI  and n

2  :  U  RI   be two parametrizations of M that induce 

compatible orientations of M. Then for any k-form  defined on a 

neighborhood of M, 

                                                             
   1 2U V 

                                     (3-9) 

Now we will study orientation of manifolds. 

When using a parametrization to integrate a k-form field over an oriented 

domain, clearly we must take into account the orientation induced by the 

parametrization. We would like to be able to relate this to some 

characteristic of the domain of integration itself. What kind of structure can 

we bestow on an oriented curve, surface, or higher-dimensional manifold 

that would enable us to decide how to check whether a parametrization is 

appropriate? 

There are two ways to approach the somewhat challenging topic of 

orientation. One is the ad hoc approach: to limit the discussion to points, 

curves, surfaces, and three-dimensional objects. This has the advantage of 

being more concrete, and the disadvantage that the various definitions 

appear to have nothing to do with each other. The other is the unified 

approach: to discuss orientation of k-dimensional manifolds, showing how 

orientation of points, curves, surfaces, etc., are embodiments of a general 

definition. This has the disadvantage of being abstract. We will present the 

ad hoc approach first, followed by the unified theory.  

Now we will study the ad hoc world, orienting the objects.  
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 We will treat orientations of the objects first, followed by orientation-

preserving parametrizations. 

Definition (3-1-4):(Orientation of a point) 

   An orientation of a point is a choice of ±: an oriented point is "plus the 

point" or "minus the point." It is easy to understand orientations of curves (in 

any nIR ): give a direction to go along the curve. The following definition is 

a more formal way of saying the same thing; it is illustrated in Figure (3-1) . 

By "unit tangent vector field" we mean a field of vectors tangent to the curve 

and of length 1. 

 

  
Figure (3-1)Unit Tangent vector field 

Definition (3-1-5):(Orientation of a curve in n
IR ) 

   An orientation of acurve 3C IR is the choice of a unit tangent vector field 

f that depends continuously on x. 

We orient a surface 3C IR  by choosing a normal vector at every point, as 

shown in Figure (3-2) and defined more formally below. 

 
Figure (3-2) 

Definition (3-1-6):(Orientation of a surface in 3
IR )  

   To orient a surface in 3IR , choose a unit vector field N  orthogonal to the 

surface. At each point   there are two vectors N (x); choose one at each 

point, so that the vector field N  depends continuously on the point. 
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This is possible for an orientable surface like a sphere or a torus: choose 

either the outer-pointing normal or the inward-pointing normal. But it is 

impossible on a Moebius strip. This definition does not extend at all easily to 

a surface in 4IR : at every point there is a whole normal plane, and choosing a 

normal vector field does not provide an orientation. 

 

Definition(3-1-7):(Orientation of open subsets of 3
IR ) 

   One orientation of an open subset X of IR
3
 is given by det; the opposite 

orientation is given by - det. The standard orientation is by det. 

We will use orientations to say whether three vectors 1 2 3, ,v v v form a direct 

basis of IR
3
; with the standard orientation, 1 2 3, ,v v v  being direct means that 

1 2 3det , ,v v v
 
  

 > 0. If we have drawn 2 2 3, ,e e e  in the standard way, so that they 

fit the right hand, then 1 2 3, ,v v v will be direct precisely if those vectors 

also satisfy the right-hand rule. 

Now we will discuss  the unified approach, orienting the objects 

All three notions of orientation are reasonably intuitive, but they do not 

appear to have anything in common. Signs of points, directions on curves, 

normals to surfaces, right hands: how can we make all four be examples of a 

single construction? 

We will see that orienting manifolds means orienting their tangent spaces, so 

before orienting manifolds we need to see how to orient vector spaces. We 

saw in (Corollary (2-1-13)) that for any k-dimensional vector space E, the 

space  kA E  of k-forms in h' has dimension one. Now we will use this space 

to show that the different definitions of orientation we gave at the beginning 

of this section are all special cases of a general definition. 

Definition(3-1-8):(Orienting the space A
k
(E)) 

   The one-dimensional space  kA E  is oriented by choosing a nonzero 

element w of  kA E . An element aw, with      , gives the same orientation 

as w, while bw, with      , gives the opposite orientation. 

Definition(3-1-9):(Orienting a finite-dimensional vector ) 

   An orientation of a k-dimensional vector space E is specified by a nonzero 

element of  kA E . Two nonzero elements specify the same orientation if one 

is a multiple of the other by a positive number. 

Definition(3-1-9) :makes it clear that every finite-dimensional vector space 

(in particular every subspace of nIR ) has two orientations. 
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Now we will express Equivalence of the ad hoc and the unified approaches 

for subspaces of
  3IR . 

Let nE IR  be a line, oriented in the ad hoc sense by a nonzero vector   

     E, and oriented in the unified sense by a nonzero element  1 A .w E Then 

these two orientations coincide precisely     (  ) > 0. 

For instance, if E ⊂ IR
2
 is the line of equation            , then the vector 

1

1

 
 
 

defines an ad hoc orientation, whereas dx provides a unified orientation. 

They do coincide: 
1

1
dx

 
 
 

 = 1 > 0. The element of A
n
(E) corresponding to 

   also defines an orientation of E, in fact the opposite orientation. Why 

does dx dy  not define an orientation of this line? 

Now suppose that 3E IR is a plane, oriented "ad hoc" by a normal     and 

oriented "unified" by  2A E .w   Then the orientations coincide if for any 

two vectors 1 2 E,v v  , the number 1 2,w( )v v  is a positive multiple of 

1 2det , ,n v v
 
  

 For instance, suppose E is the plane of equation 0x y z   , 

oriented "ad hoc" by

1

1

1

 
 
 
  

, and oriented "unified" by        . Any two vectors 

in E can be written  

                                             ,

a c

b d

a b c d

   
   
   
         

                                 (3-10) 

 

So we have  

Unified approach :                ,

a c

dx dy b d ad bc

a b c d

    
    

      
           

         (3-11) 

 

Ad hoc approch :               

1

det 1 3

1

a c

b d ad bc

a b c d

 
 

 
 
     

                (3-12) 

 

 

These orientations coincide, since 3 > 0. What if we had chosen         or 
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        as our nonzero element of  2A E ? 

We see that in most cases the choice of orientation is arbitrary: the choice of 

one nonzero element of  kA E will give one orientation, while the choice of 

another may well give the opposite orientation. But nIR itself and {0} (the 

zero subspace of nIR ), are exceptions; these two trivial subspaces of P." do 

have a standard orientation. For {    }, we have A ({ })  R0 I  , so one 

orientation is specified by +1, the other by -1; the positive orientation is 

standard. The trivial subspace nIR is oriented by   = det; and det > 0 is 

standard. 

Now we will illustrate Orienting manifolds. Most often we will be 

integrating a form over a curve, surface, or higher dimensional manifold, not 

simply over a line, plane, or 3IR . A k-manifold is oriented by orienting TxM, 

the tangent space to the manifold       at x, for each x  M : we orient the 

manifold M by choosing a nonzero element of  k

xA T M .  

Definition(3-1-10):(Orientation of a k-dimensional manifold) 
 Art orientation of a k-dimensional manifold M IR ' is an orientation of the 

tangent space xT M  at every point x  M , so that the orientation varies 

continuously with x. To orient the tangent space, we choose a nonzero 

element of  k

XA T M . 

Once again, we use a linearization (the tangent space) in order to deal with 

nonlinear objects (curves, surfaces, and higher-dimensional manifolds). 

What does it mean to say that the "orientation varies continuously with x"? 

This is best understood by considering a case where you cannot choose such 

an orientation, a Moebius strip. If you imagine yourself walking along the 

surface of a Moebius strip, planting a forest of normal vectors, one at each 

point, all pointing "up" (in the direction of your head), then when you get 

back to where you started there will be vectors arbitrarily close to each 

other, pointing in opposite directions. 

Now we will discuss The ad hoc world: when does a parametrization 

preserve orientation? 

We can now define what it means for a parametrization to preserve 

orientation. For a curve, this means that the parameter increases in the 

specified direction: a parametrization :[ , ]a b C   preserves orientation if C 

is oriented from      to     . The following definition spells this out; it is 

illustrated by Figure (3-3) . 
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Figure(3-3) 

Definition(3-1-11):(Orientation-preserving parametrization of a curve)  

Let C IR be a curve oriented by the choice of unit tangent vector field T. 

Then the parametrization :[ , ]a b C   is orientation preserving if at every     

     , we have 

 

                                              . 0' t T t                              (3-13) 

 

Equation (3-13) says that the velocity vector of the parametrization points 

in the same direction as the vector orienting the curve. Remember that 

  

                                     1 2 1 2. (cos )v v v v                        (3-14) 

 

where   is the angle between the two vectors. So the angle between    (t) 

and           is less than 90°. Since the angle must be either 0 or 180°, it is 0. 

It is harder to understand what it means for a parametrization of an oriented 

surface to preserve orientation. In Definition (2-1-12) ,  1D u and  2D u  

are two vectors tangent to the surface at  .u  

Definition(3-1-12):(Orientation-preserving parametrization of a 

surface) 

    Let 3S IR be a surface oriented by a choice of normal vector field     . Let 
2U IR be open and    : U  S  be a parametrization. Then   is orientation 

preserving If at every u   U, 

 

                             1 2det , , 0N u D u D u  
 

  
                   (3-15) 
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Definition(3-1-13):  

 An open subset U of IR
3
 carries a standard orientation, defined by the 

determinant. If V is another open subset of IR
3
, and :V U   is a 

parametrization (i.e., a change of variables), then y is orientation preserving 

if det[ ( )] 0D v   for all v  V . 

 

Now we will illusterate the unified approach: when does a parametrization 

preserve orientation? 

First let us define what it means for a linear transformation to be orientation 

preserving. 

Definition(3-1-14):(Orientation-preserving linear transformation) 

  If nIRV  is a k-dimensional subspace oriented by  k   Aw V and                           
kT :  IR   V  is a linear transformation, T is orientation-preserving if 

 

                                           1 , , 0kT e T e
    

     
    

                           (3-16) 

 

It is orientation reversing if  

                                        1 , , 0kT e T e
    

     
    

                           (3-17) 

 

Note that for a linear transformation to preserve orientation, the domain and 

the range must have the same dimension, and they must be oriented. As 

usual, faced with a nonlinear problem, we linearize it: a (nonlinear) 

parametrization of a manifold is orientation preserving if the derivative of 

the parametrization is orientation preserving . 

Definition(3-1-15):(Orientation-preserving parametrization of a 

manifold)  
     Let M be an oriented k-dimensional manifold, nIRU  be an open set, and    

 :  MU  be a parametrization. Then   is orientation preserving if  
k

( )[ IR    M( )]: uD u T  is orientation preserving for every u U , i.e., if 

 

       11 , , , , 0KKD u e D u e D u D u     
      

               
      

 

Example(3-1-16): (Orientation-preserving parametrization) 

   Consider the surface S in C
3
 parametrized by 
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                                              2

3

, 1

z

z z z

z

 
 

  
 
 

                                    (3-18) 

 

We will denote points in C
3
 by 

1 1

2

2 2

3

3 3

z x iy

z x iy

z x iy

   
   

    
      

 

Orient S, using 1 1w dx dy   

If we parametrize the surface by 

                           
1

1

2

2

2

2

3

3

3

3

cos

: sin

cos 2

sin 2

cos3

sin 3

x r
r

y r

x r

y r

x r

y r



 










 
 
 
 
 

 
   

    
 

 
 

 
 
 
  

                                    (3-19) 

 

does that parametrization  preserve orientation? It does, since 

 

           1 1 1 2 1 1

cos sin

, sin cos

r

dx dy D u D u dx dy r

 

   

 
 
 
   
 
 
  

           (3-20) 

 

2 2
cos sin

det cos sin 0.
sin cos

r
r r r

r

 
 

 

 
     

 
 

 

Now we will study Compatibility of orientation-preserving parametrizations 

Theorem (3-1-3) said the result of integrating a k-form over an oriented 

manifold does not depend on the choice of parametrization, as long as the 

parametrizations induce compatible orientations. Now we show that the 

integral is independent of parametrization if the parametrization is 

orientation preserving. Most of the work was done in proving Theorem      
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(3-1-3). The only thing we need to show is that two orientation-preserving 

parametrizations define compatible orientations. 

Theorem(3-1-17):(Orientation-preserving parametrizations define 

compatible orientations) 

     If M is an oriented k-manifold, U1 and U2 are open subsets of iR
n
, and 

1 1:U M  , 2 2:U M  are orientation preserving parametrizations, then 

they define compatible orientations. 

Proof: 

 Consider two points        ,         such that     1 1 2 2u u x M    The 

derivatives then give us maps 

 

                                             1 1 2 2k kIR IR
D u D u

xT M
 

                        (3-21) 

 

where both derivatives are one to one linear transformations. Moreover, we 

have ( ) 0x   in the one-dimensional vector space  k

XA T M . What we must 

show is that if 

 

     1 1 1 1 1, , 0kx D u D u  
 

  
 

      1 2 2 2 2 , , 0kand x D u D u  
 

  
 

 

    
1

2 2 1 1det 0then D u D u 


        

 

Note that 

  

     1 11 1 1 1, , det , ,k kx D u v D u v v v   
      

                    
 

              1 12 2 2 2, , det , ,k kx D u w D u w w w   
      

                    
        (3-22) 

 

for some positive numbers a and P. Indeed, both left-hand sides are nonzero 

elements of the one-dimensional vector space  k kA IR , hence nonzero 

multiples of the determinant, and they return positive values if evaluated on 

the standard basis vectors. Now write 

     1 11 1 1 1, , K kx D u v D u v   
    

     
    

 

     11 1 1 1,.., kx D u e D u e  
 

        
 
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               
1 1

12 2 2 2 1 1 2 2 2 2 1 1, , kx D u D u D u e D u D u D u e      
  

                        
 

 

 

         
1 1

12 2 1 1 2 2 1 1det , , kD u D u e D u D u e    
  

                
 

 

                          
    

1

12 2 1 1det det , , kD u D u e e  
                

                 (3-23) 

 

     
1

2 2 1 1det D u D u  


         

 

Corollary(3-1-18):(Integral independent of orientation-preserving 

parametrizations) 

    Let M be an oriented k-manifold, U and V be open subsets of IR
k
, and 

1 :V M  , 2 :V M  be orientation-preserving parametrizations of M. Then 

for any k-form  defined on a neighborhood of M, we have  

 

                                                    
   1 2U V 

                                     (3-24) 

 

Now we will discuss Integrating form fields over oriented manifolds. 

Now we know everything we need to know in order to integrate form fields 

over oriented manifolds. We saw in Section (1-2) how to integrate form 

fields over parametrized domains. Corollary (2-1-18) says that we can use 

the same formula to integrate over oriented manifolds, as long as we use an 

orientation-preserving parametrizations. This gives the following: 

Definition(3-1-19):(Integral of a form field over an oriented manifold) 

Let   be a  

k-dimensional oriented manifold,   be a k-form field on a neighborhood of 

M, and :U M   be any orientation-preserving parametrization of  . 

 

 
     0

1 , , k
ku

M U U

P D u D u d u




   
 

   
 

    
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Example(3-1-20):(Integrating a flux form over an oriented surface) 

  What is the flux of the vector field 

x y

F y x

z z

   
   

    
      

 through the piece of the 

plane P defined by 1x y z   where , , 0x y z  , and which is oriented by the 

normal 

1

1

1

 
 
 
  

 ? 

This surface is the graph of 1z x y   , so that 

 

                                                

1

z
x

y
y

z y



 
   

   
     

                                  (3-25) 

 

is a parametrization, if x and y are in the triangle T ⊂ IR
2
 given by , 0x y  ,

1x y  . Moreover, this parametrization preserves orientation (see 

Definition( 3-1-12), since      1 2det N u D u D u  
  

  
  

 is  

 

                            

1 1 0

det 1 , 0 , 1 1 0

1 1 1

      
      

       
             

                                      (3-26) 

 

By Definition (2-2-11) , the flux is 

 

1 2

1 0

det , 0 , 1  

1 1 1

F u
D D

y

Tx

z

y

Ф x dx dy

x y


 



 
 
 

 
 
 
  

 
 
 
 
     
 
     

   
     
 
              
 
 
  

   

 

                         

   
1

0 0

1 2  1 2

y

T

x dx dy x dx dy
 

     
 

                        (3-27) 
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 
11 1 2 3

2 2

0
0 0 0

1

2 3 6

y y y
x x dy y y dy

 
         

 
   

 

Example (3-1-21) : 
 Consider again the surface S in C

3
 of Example (3-1-16) what is 

  

                                     1 1 2 2 3 3

S

dx dy dx dy dx dy                           (3-28) 

 

As in Example (3-1-16) , parametrize the surface by 

 

                          
1

1

2

2

2

2

3

3

3

3

cos

: sin

cos 2

sin 2

cos3

sin 3

x r
r

y r

x r

y r

x r

y r



 










 
 
 
 
 

 
   

    
 

 
 

 
 
 
  

                                 (3-29) 

 

which we know from that example preserves orientation. Then 

  0
1 21 1 2 2 3 3dx dy dx dy dx dy , ,

r

r r
P D D



 
  

 
 

     
                 

 

2

2

cos sin 2 cos 2 2 sin 2
det det

sin cos 2 sin 2 2 cos 2

r r r

r r r

   

   

   
   

   
 

2 3

3

3 cos3 3 sin 3
det

2 sin 3 3 cos3

r r

r r

 

 

 
  

 
 

 

                                               
3 54 9r r r                                    (3-30) 

  

Finally . we find for our intergral  
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                                        
1

3 5

0

2 4 9r r r                                        (3-31) 

 

For completeness, we show the case where is a 0-form field: 

 

Example(3-1-22):(Integrating a 0-form over an oriented point) 

   Let x be an oriented point, and f a function (i.e., a 0-form field) defined in 

some neighborhood of x. Then 

 

                 
x

f f x


                  and               
x

f f x


                (3-32) 

 

Example(3-1-23): (Integrating over an oriented point). 

 

                                
 

2

2

4x
 

                and            
 

2

– 2

4x


               (3-33) 

 

Section (3.2) : Boundary orientation and exterior derivative  
In the following we will discuss boundary orientation Stokes's theorem, the 

generalization of the fundamental theorem of calculus, is all about 

comparing integrals over manifolds and integrals over their boundaries. Here 

we will define exactly what a "manifold with boundary" is; we will see 

moreover that if a "manifold with boundary" is oriented, its boundary carries 

a natural orientation, called, naturally enough, the boundary orientation You 

may think of a "piece-with-boundar" of a k-dimensional manifold as a piece 

one can carve out of the manifold, such that the boundary of the piece is part 

of it (the piece is thus closed). However, the boundary can't have any 

arbitrary shape. In many treatments the boundaries are restricted to being 

smooth. In such a treatment, if the manifold is three-dimensional. the 

boundary of a piece of the manifold must be a smooth surface; if it is two-

dimensional. The boundary must be a smooth curve. 

  We will be less restrictive, and will allow our boundaries to have corners. 

There are two reasons for this. First, in many cases, we wish to apply Stokes 

theorem to things like the region in the sphere where in spherical 

coordinates. 0
2


   , and such a region has corners (at the poles). Second. 

we would like k-parallelograms to be manifolds with boundary, and they 

most definitely have corners. Fortunately, allowing our boundaries to have 

corners doesn't make any of the proofs more difficult. 
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   However, we won't allow the boundaries to be just anything: the boundary 

can't be fractal, like the Koch snowflake we saw in Section (1.2); neither can 

it contain cusps. (fractals would really cause problems: cusps would he 

acceptable, but would make our definitions too involved.) You should think 

that a region of the boundary either is smooth or contains a corner. Being 

smooth means being a manifold: locally the graph of a function of some 

variables in terms of others. What do we mean by corner? Roughly (we will 

be painfully rigorous below) if you should think of the kind of curvilinear 

"angles" you can get if you drew the (x, y)-plane on a piece of rubber and 

stretched it, or if your squashed a cube made of foam rubber. 

Definition (3-2-1) is illustrated by Figure (3-4 ) 

 

 
Figure(3-4) 

(illustrates our-defnition of a piece-with boundary of a manifold) 

Definition (3-2-1):(Piece-with-boundary of a manifold) 

   Let nM IR be a k-dimensional manifold. A subset X M will be called 

a piece with boundary if for every,      , there exist 

(1) Open subsets 1 1U E  and nU IR with x U and  : 1 2U   E a C
l
 mapping 

such that m n u is the graph of f. 

(2) A diffeomorphism 
1

1: K

K

G

G U IR

G

 
 

  
 
 

 

such that X  U  is  1f X , where 1 1X U is the subset where 1 kG   0...,G  0  . 
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Example(3-2-2):  

 A k-parallelogram 0
1, , kxP v v

 
 

 
 in nIR  is a piece-with-boundary of an 

oriented k-dimensional submanifold of IR
n
 when the vectors 1, , kv v  are 

linearly independent. Indeed, if nIRM  is the set parametrized by 

 

                                                

1

11 kk

k

t

x t v t v

t

 
 

   
 
 

                          (3-34) 

 

then M is a k-dimensional manifold in nIR . It is the translation by x of the 

subspace spanned by 1, , kv v  (it is not itself a subspace because it doesn't 

contain the origin). For every a   M, the tangent space TaM is the space 

spanned by 1, , kv v . The manifold M is oriented by the choice of a nonzero 

element  kA T,M ,w   and w gives the standard orientation if 

 

                                                    1, , 0kv v
 

  
 

                                 (3-35) 

 

The k-parallelogram 0
1, , kxP v v

 
 

 
 is a piece-with-boundary of M, and thus it 

carries the orientation of M.  

Definition (3-2-3):(Boundary of a piece-with-boundary of a manifold) 

   If X is a piece-with-boundary of a manifold M, its boundary  X is the set 

of points where at least one of the Gi = 0; the smooth boundary is the set 

where exactly one of the G, vanishes. 

Remark(3-2-4): 

 We can think of a piece-with-boundary of a k-dimensional manifold as 

composed of strata of various dimensions: the interior of the piece and the 

various strata of the boundary, just as a cube is stratified into its interior and 

its two-dimensional faces, one-dimensional edges, and 0-dimensional 

vertices. When integrating a k-form over a piece-with-boundary of               

a k-dimensional manifold, we can disregard the boundary; similarly, when 

integrating a       - form over the boundary, we can ignore strata of 

dimension less than    . More precisely, the m-dimensional stratum of the 

boundary is the set where exactly       of the Gi of Definitions (3-2-1)  

and (3-2-3)  vanish, so the inside of the piece is the k-dimensional stratum, 
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the smooth boundary is the (k-1)-dimensional stratum, etc. The m 

dimensional stratum is an m-dimensional manifold in IR
n
, hence has m' 

dimensional volume 0 for any m' > m  it can be ignored when integrating     

m' -forms.  

Now we will study  Boundary orientation, the ad hoc world 

The faces of a cube are oriented by the outward-pointing normal, but the 

other strata of the boundary carry no distinguished orientation at all: there is 

no particularly natural way to draw an arrow on the edges. More generally, 

we will only be able to orient the smooth boundary of a piece-with-

boundary. The oriented boundary of a piece-with-boundary of an oriented 

curve is simply its endpoint minus its beginning point. 

Definition(3-2-5):  

 Let C be a curve oriented by the unit tangent vector    , and let P C be a 

piece-with-boundary of C. Then the oriented boundary of P consists of the 

two endpoints of P, taken with sign +1 if the tangent vector points out of P 

at that point, and with sign -1 if it points in. 

If the piece-with-boundary consists of several such P;, its oriented boundary 

is the sum of all the endpoints, each taken with the appropriate sign. 

Definition(3-2-6):(Oriented boundary of a piece-with-boundary of IR
2
) 

   If 2U IR is a two-dimensional piece-with-boundary, then its boundary is a 

union of smooth curves    . We orient all the    so that if you walk along 

them in that direction, U will be to your left, as shown in Figure (3-5 ). 

 
Figure (3-5)The boundary of the shaded region of IR

2 

When IR
2
 is given its standard orientation det,by   Definition (3-2-6) says 

that when you walk on the curves, your head is pointing in the direction of 

the z-axis. With this definition, the boundary of the unit disk                 

{ 2 2 1}x y   is the unit circle oriented counterclockwise. 

 For a surface in 3IR oriented by a unit normal, the normal vector field tells 

you on which side of the surface to walk. Let 3S IR be a surface oriented by 

a normal vector field     , and let U be a piece-with-boundary of S, bounded 

by some union of curves Ci. An obvious example is the upper hemisphere 

bounded by the equator. If you walk along the boundary so that your head 

points in the direction of     , and U is to your left, you are walking in the 
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direction of the boundary orientation. Translating this into mathematically 

meaningful language gives the following, illustrated by Figure (3-6 ). 

 
Figure (3-6 ) The shaded area is the piece-with-bounndary                  

Definition(3-2-7): 

 Let 3S IR be a surface oriented by a normal vector field     , and let S1 be a 

piece-with-boundary of S, bounded by some union of closedcurves Ci. At a 

point ix  C  , let outv  be a vector tangent to S and pointing out of   . Then the 

boundary orientation is defined by the unit vector    tangent to Ci , chosen so 

that 

                               det , , 0outN x v v
 

  
                              (3-36) 

 

Since the system composed of your head, your right arm, and your left arm 

also satisfies the right-hand rule, this means that to walk in the direction of 

aS1, you should walk with your head in the direction of     , and the surface to 

your left. Finally let's consider the three-dimensional case. 

Definition(3-2-8):(Oriented boundary of a piece-with-boundary of IR
3
) 

Let 3IRU  be piece-with-boundary of 3IR , whose smooth boundary is a 

union of surfaces Si. We will suppose that U is given the standard orientation 

of 3IR   . Then the orientation of the boundary of U (i.e., the orientation of 

the surfaces) is specified by the outward-pointing normal . 

Now we will see that our ad hoc definitions of oriented boundaries of 

curves, surfaces, and open subsets of 3IR are all special cases of a general 

definition.We need first to define outward-pointing vectors. 

Let nIRM  be a manifold , X M a piece-with-boundary, and x    X a 

point of the smooth boundary of X. At x, the tangent space xT ( X) is a 

subspace of TX whose dimension is one less than the dimension of and 

which subdivides the tangent space into the outward-pointing vectors and 

the inward-pointing vectors 
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Definition(3-2-9):(Outward-pointing and inward-pointing vectors) 

 Let  1xv T X   and write 

                            
1

2

v
v

v

 
 
 
 

      with       1 21 2,v E v E                       (3-37) 

 

Outward pointing if   11 0gD x v     and  

                              inward pointing if    11 0gD x v     

 

 

Definition(3-2-10):(Oriented boundary of piece-with-boundary of an 

oriented manifold) 

 Let   be a k-dimensional manifold oriented by  , and P be a piece-with-

boundary of M. Let x be in  P, and  
xTout Mv   be an outward-pointing 

vector tangent to  . Then, at x, the boundary  P of P is oriented by   , 

where 

 

                         

  

1 1 1 1, , , , ,

oriented boundary oriented manifold

k out kv v v v v   

   
    

   
                      (3-38) 

 

Example(3-2-11):(Oriented boundary of a piece-with-boundary of an 

oriented curve) 

    If C is a curve oriented by  , and P is apiece-with-boundary of C, then at 

an endpoint x of P (i.e., a point in  P), with an outward-pointing vector      , 
anchored at x, the boundary point x is oriented by the nonzero number  

   =  (     ). Thus it has the sign +1 if we is positive, and the sign - 1 if    

is negative. (In this case, w takes only one vector.) 

This is consistent with the ad hoc definition (Definition(3-2-5)).                     

If .v t v
 

 
 

 then the condition    > 0 means exactly that ( )t x  points out 

of  P. 

Example (3-2-12):(Oriented boundary of a piece-with-boundary of IR
2
) 

Let the smooth curve C be the smooth boundary of a piece-with-boundary S 

of IR
2
 . If IR

2
 is oriented in the standard way (i.e., by det), then at a point 

x  C  , the boundary C is oriented by 
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                             det( ),outv v v

 
 

 
                                       (3-39)  

Suppose we have drawn the standard basis vectors in the plane in the 

standard way, with     counterclockwise from et. Then 

 

                                   det 0,outv v
 

 
 

                                    (3-40) 

if, when you look in the direction of   , the vector      is on your right. In 

this case S is on your left, as was already shown in Figure (3.5) 

Example (3-2-13):(Oriented boundary of a piece-with-boundary of an  

oriented surface in IR
3
)  

  Let S1 ⊂ S be a piece-with-boundary of an oriented surface S. Suppose that 

at x    Si, S is oriented by   2

xA T , t S  and that  
x   Toutv   S is tangent to 

S at x but points out of S1. Then the curve  S1 is oriented by 

 

                             ,outv v v  

   
   

   
                               (3-41) 

 

This is consistent with the ad hoc definition, illustrated by Figure (3-6). In 

the ad the ad hoc definition, where S is oriented by a normal vector field     , 
the  corresponding   is 

 

                      1 2 1 2, det det , , ,outv v N x v v v

   
      

                    (3-42) 

 

                  det det , ,outv N x v v

   
      

                                 (3-43) 

 

Thus if the vectors 1 2 3, ,e e e  are drawn in the standard way, satisfying the 

right-hand rule, then V defines the orientation of  S1 if   , ,outN x v v  satisfy 

the right-hand rule also. 

 

Example (3-2-14):(Oriented boundary of a piece-with-boundary of IR
3
) 

Suppose U is a piece-with-boundary of 3IR  with boundary U S  , and U is 

oriented in the standard way, by det. Then S is oriented by 

 



 

86 
 

                      1 2 1 2, det , ,outv v v v v

   
      

                               (3-44) 

 

If we wish to think of orientating S in the ad hoc language, i.e., by a field 

of normals     , this means exactly that for any x  S  and any two vectors 

2 X1, T Sv v   , the two numbers 

                  
  1 2det , , ,N x v v

 
  

    and   1 2det , ,outv v v
 
  

                     (3-45) 

 

should have the sable sign, i.e.,         should point out of U. 

Now we will discuss the oriented boundary of an oriented k-parallelogram 

We saw above that an oriented k-parallelogram 0
1, , kxP v v

 
 

 
 is a piece-with 

boundary of an oriented manifold if the vectors 1, , kv v  are linearly 

independent (i.e., the parallelogram is not squished flat). As such its 

boundary carries an orientation. 

Proposition(3-2-15):(Oriented boundary of an oriented                           

k-parallelogram) 

  The oriented boundary of an oriented k-parallelogram 0
1, , kxP v v

 
 

 
 is 

given by 

 

 
10 0 0

1 1 1

1

, , 1 , , , , , , , ,
k

i

k i k i kx x
v ix

i

P v v P v v v P v v v





      
              

      
   (3-46) 

 

where a bat over a term indicates that it is being omitted. 

This business of hats indicating an omitted term may seem complicated. 

Recall that the boundary of an object always has one dimension less than the 

object itself: the boundary of a disk is a curve, the boundary of a box 

consists of the six rectangles making up its sides, and so on. The boundary 

of a k-dimensional parallelogram is made up of (k - 1)-parallelograms, so 

omitting a vector gives the right number of vectors. For the faces of the form 

1, , , ,i kxP v v v
 

  
 

, each of the k vectors has a turn at being omitted. (In 

Figure (3-7) , these faces are the three faces that include the point x.) For the 

faces of the type 0
1, , , ,

i
i k

x v

P v v v


 
  

 
, the omitted vector is the vector added 

to the point x.  
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Before the proof, let us give some examples, which should make the formula 

easier to read. 

 

 
Figure (3-7) 

Example (3-2-16): (The boundary of an oriented 1-parallelogram) 

   The boundary of 0

xP v
 
 
 

 is 

                               
0 0 0

x x
x v

P v P P


 
   

 
                                   (3-47) 

 

So the boundary of an oriented line segment is its end minus its beginning, 

as you probably expect. 

Example (3-2-17):(The boundary of an oriented 2-parallelogram) 
 A look at Figure (3-8) will probably lead you to guess that the boundary of 

an oriented parallelogram is Figure (3.8) 

Figure(3-8) 

 

1 2

0 0 0 0 0
1 2 1 2 1 2

 2  3  4  

,x x x
x v x v

boundary let side nd side nd side tb side

P v v P v P v P v P v
 

         
          

     
 

 


 
                        (3-48) 

which agrees with Proposition (3-2-15) 

Example (3-2-18): (Boundary of a cube)  
    For the faces of a cube shown in Figure (3-7) we have 
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  
1

1 0 0
2 3 2 3

  

1 1 1 ; , ,x
x v

right side left side

i so P v v P v v




   
       

   
 

                  
2

1 0 0
1 3 1 32 1 1 ; , ,x

x v

back front

i so P v v P v v




   
        

   
          (3- 49) 

  
3

1 0 0
1 2 1 23 1 1 ; , ,x

x v

top bottom

i so P v v P v v




   
       

   
 

 

How many "faces" make up the boundary of a 4-parallelogram? What is 

each face? How would you describe the boundary following the format used 

for the cube in Figure  (3-7 )? Check your answer below.? 

Proof of Proposition (3-2-15): 

 As in Example (3-2-1) , denote by M the manifold of which 0
1, , kxP v v

 
 

 
is 

a piece-with-boundary. The boundary 0
1, , kxP v v

 
  

 
is composed of its 2k 

faces (four for a parallelogram, six for a cube ... ), each of the form 

 

                   0 0
1 1, , , , , , , ,i k i kx

x v

P v v v orP v v v


   
      
   
   

                (3-50) 

 

where a hat over a term indicates that it is being omitted. The problem is to 

show that the orientation of this boundary is consistent with Definition       

(3-2-10) of the oriented boundary of a piece-with-boundary 

Let     A
k
(M) defin e the orientation of M, so that 1, , 0kv v

 
  

 
. At a 

point of 0
1, , , ,i k

x v

P v v v


 
  
 
 

, the vector    , is outward pointing, whereas at a 

point of   
           

        , the vector -v; is outward pointing, Thus the 

standard orientation of 0
1, , , ,i k

x v

P v v v


 
  
 
 

 is consistent with the boundary 

orientation of 0
1, , , ,i kxP v v v

 
  
 
 

 precisely if  
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1, , , , , 0i i kv v v v
 
   
 
 

 

 

i.e.. precisely if the permutation    on k symbols which consists of taking the 

ith element and putting it in first position is a positive permutation. But the 

signature of    is         because you can obtain    by switching the ith 

symbol first with the        th, then the (i - 2)th, etc., and finally the first, 

doing i - I transpositions. This explains why 0
1, , , ,i k

x v

P v v v


 
  
 
 

 occurs with 

sign        . 

A similar argument holds for 0
1, , , ,i kxP v v v

 
  
 
 

This oriented parallelogram 

has orientation compatible with the boundary orientation precisely if

1, , , , , 0i i kv v v v
 
    
 
 

, which occurs if the permutation ai is odd. This 

explains why 0
1, , , ,i kxP v v v

 
  
 
 

 occurs in the sum with sign        . 

Now we will discuss the exterior derivative  . In which we differentiate 

forms. 

Now we come to the construction that gives the theory of forms its power, 

making possible a fundamental theorem of calculus in higher dimensions. 

We have already discussed integrals for forms. A derivative for forms also 

exists. This derivative, often called the exterior derivative, generalizes the 

derivative of ordinary functions. We will first discuss the exterior derivative 

in general; later we will see that the three differential operators of vector 

calculus (div, curl, and grad) are embodiments of the exterior derivative. 

Now we will illustrate reinterpreting the derivative . 

What is the ordinary derivative? Of course, you know that 

 

                  '

0

1
lim –
h

f x f x h f x
h

                                   (3-51) 

 

but we will reinterpret this formula as 
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                                    
 0

'

0

1
lim

x

h
P h

f x f
h



                                (3-52) 

 

What does this mean? We are just using different words and different 

notation to describe the same operation. Instead of saying that we are 

evaluating   at the two points       and  , we say that we are integrating 

the 0-form  over the boundary of the oriented segment  0[ , ] xx x h P h  . 

This boundary  consists of the two oriented points + 0

x hP  and -  
 . The first 

point is the endpoint of   
    , and the second its beginning point; the 

beginning point is taken with a minus sign, to indicate the orientation of the 

segment. Integrating the 0-form f over these two oriented points means 

evaluating f on those points (Definition (3-1-22)). So Equations (3-51) and 

(3-52) say exactly the same thing. 

   It may seem absurd to take Equation (3-51) , which everyone understands 

perfectly well, and turn it into Equation (3-52), which is apparently just a 

more complicated way of saying exactly the same thing. But the language 

generalizes nicely to forms. 

Now we will exepress Defining the exterior derivative. The exterior 

derivative d is an operator that takes a k-form and gives a        -form, do. 

Since a        -form takes an oriented         dimensional parallelogram 

and gives a number, to define the exterior derivative of a k-form :p, we must 

say what number it gives when evaluated on an oriented        - 
parallelogram. 

Definition(3-2-19): (Exterior derivative)  

The exterior derivative d of a k-form  , denoted   , takes a k + 1-

parallelogram and returns a number, as follows: 

 

 

 1    

0 0
1 1 1 1

10
1

  1

    0

1
, , lim , ,

k parallelogram integrating over boundary

k kx xkh
k

boundary of k parallelgoramform

smallar and smallar as h

d P v v P hv hv
h





 

 


 

 



    
      

    
                (3-53) 

 

This isn't a formula that you just look at and say-"got it." We will work quite 

hard to see what the exterior derivative gives in particular cases, and to see 

how to compute it. That the limit exists at all isn't obvious. Nor is it. obvious 

that the exterior derivative is a (k + 1)-form: we can see that    is a function 

of k + 1 vectors, but it's not obvious that it is multilinear and alternating. 

Two of Maxwell's equations say that a certain 2-form on IR
4
 has exterior 
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derivative zero; a course in electromagnetism might well spend six months 

trying to really understand what this means. But observe that the definition 

makes sense; 0
1 1, , kxP v v 

 
 

 
 is (k + 1)-dimensional, its boundary is  

k-dimensional, so it is something over which we can integrate the k-form  . 

Notice also that when k = 0, this boils down to Equation (3-50), as restated 

in Equation (3-51). 

Remark (3-2-20): 

Here we see why we had to define the boundary of a piece-with boundary as 

we did in Definition (3-2-10). The faces of the (k + 1)-parallelogram 

0
1 1, , kxP v v 

 
 

 
 are k-dimensional. Multiplying the edges of these faces by h 

should multiply the integral over each face by h
k
. So it may seem that the 

limit above should not exist, because the individual terms behave like 

 h
k
/h

k+l 
= 1/h. But the limit does exist, because the faces come in pairs with 

opposite orientation, according to Equation (3-45), and the terms in h
k
 from 

each pair cancel, leaving something of order h
k+1

. 

   This cancellation is absolutely essential for a derivative to exist-, that is 

why we have put so much emphasis on orientation 

Now we will study computing the exterior derivative 

Theorem (3-2-21): (Computing the exterior derivative of a k-form) 

(a) If the coefficients a of the k-form 

                    
1 1

1

.

1
k k

k

i i i i

i i n

a dx dx 

  

                           (3-54) 

 

are C
2
 functions on nIRU  , then the limit in Equation (3-53) exists, and 

defines a (k + 1)-form. 

(b) The exterior derivative is linear over R: if   and Ψ are k-forms on 

U ⊂ IR
n
, and a and b are numbers (not functions), then 

 

                     d a b ad bd                                              (3-55) 

 

 (c) The exterior derivative of a constant form is 0. 

(d) The exterior derivative of the 0-form (i.e., function) f is given by the 

Formula 

                       
1

k

n

i i

i

df Df D f dx


                               (3-56) 

  (e) If f is a function, then 
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            
1 1

 .
k ki i i id f dx dx df dx dx                       (3-57) 

 

Theorem (3-2-21) is proved in section (3.2). 

These rules allow you to compute the exterior derivative of any k-form, as 

shown below for any k-form and as illustrated in the margin : 

 

1 1

1

   

.

1
k k

k

writing in full

i i i i

i i n

d d a dx dx



 

  

   

                    

                            

1 1

1

.

1

   

(

  

)

  

( ) )
k k

k

i i i i

i i n

exterior derivative of sum equals sum of exterior

derivatti

b

ve

d a dx dx

  

                        (3-58) 

 

1 1

1

.

1

    

)

  

(

( ) )
k k

k

i i i i

i i n

problem reduced computing ext deriv of function

e
f

d a dx dx

  

   

 

Going from the first to the second line reduces the computation to 

computing exterior derivatives of elementary forms; going from the second 

to the third line reduces the computation to computing exterior derivatives of 

functions. In applying (e) we think of the coefficients         as the function 

 . We compute the exterior derivative of the function            from part 

(d): 

                                                   
1 1. .

1
k k k

n

i i j i i i

j

da D a dx 



                           (3-59) 

For example, if f and g are functions in the three variables x, y and z, then 

 

                                        1 2 3df D fdx D fdy D fdz                                (3-60) 

So 

 

1 2 3( )df dx dy D fdx D fdy D fdz dx dy       

1 2 3

0 0

D f dx dx dy D f dy dx dy D fdz dx dy          

                                  3 3D fdz dx dy D fdz dx dy                                 (3-61) 
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Example (3-2-22):  (Computing the exterior derivative of an elementary 

2-form on IR
4
)  

Computing the exterior derivative of  1 3 2 4( )x x dx dx  gives 

 1 3 2 4d x x dx dx   

 

 1 3

0 0

1 2 3 1 2 2 3 2 3 2 3 3 4 2 3 4 2 4( ( ) ( ) ( ) ( ) )

d x x

D x x dx D x x dx D x x dx D x x dx dx dx      

 

     3 2 2 3 2 4 3 2 2 4 2 2 2 4x dx x dx dx dx x dx dx dx x dx dx dx          

 

                       

   
'

2 3 2 4 2 3 2 4

      

 

sign changes as orderdx s out of order

is corrected

x dx dx dx x dx dx dx                                 (3-62) 

 

What is the exterior derivative of the 2-form on IR
3
 xl x3

2
 dxl Ʌ d2? Check 

your answer below. 

Example(3-2-23): (Computing the exterior derivative of a 2-form). 

Compute the exterior derivative of the 2-form on IR
4
, 

  

                                     2

1 3 2 4 2 2 4x x dx dx x dx dx                                (3-63) 

 

which is the sum of two elementary 2-forms. We have 

 

   2

1 3 2 4 2 2 4d d x x dx dx d x dx dx      

 

1 1 2 1 2 1 2 2 3 1 2 3 4 1 2 4 2 4

2 2 2 2

1 2 1 2 2 2 3 2 3 4 2 4 2 4

( ( ) ) ( ) ( ) ( ) )

( ( ) ) ( ) ( ) ( ) )

D x x dx D x x dx D x x dx D x x dx dx dx

D x dx D x dx D x dx D x dx dx dx

     

     
 

 

   2 1 1 2 2 4 2 2 3 42x dx x dx dx dx x dx dx dx       

 

          
2 1 2 4 1 2 2 4 2 2 3 4

0

2x dx dx dx x dx dx dx x dx dx dx



                     (3-64) 

 

2 1 2 4 2 2 3 42x dx dx dx x dx dx dx       
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Example (3-2-23): (Element of angle) 

 The vector fields 

  

          2 3
32 2

2 2 2 2

–1 1

( )

x
y

F and F y
xx y x y z z

 
   

           

              (3-65) 

 

satisfy the property that dw    = 0 and d      = 0. The forms     
 and     

 can 

be called respectively the "element of polar angle" and the "element of solid 

angle"; the latter is depicted in Figure (3-10) . 

 
Figure (3-9) 

 

We will now find the analogs in any dimension. Using again a hat to denote 

a term that is omitted in the product, our candidate is the (n-1)-form on IR
n
: 

 

         1

1
2 2 2 1
1

1
( 1)) . ..

( )

n
i

n i i nn

i
n

x dx dx dx
x x

 



    


         (3 - 66) 

 

which can also be thought of as the flux of the vector field 

1

2 2 2
1

1
,

( )
n

n

n
N

x

F
x x x

 
 


 

   

        which can be written 
  

      
 . 

It is clear from the second description that the integral of the flux of this 

vector field over the unit sphere S
n-1

 is positive; at every point, this vector 

field points outwards,  In fact, the flux is equal to the (n - 1)-dimensional 

volume of      

The computation in Equation (3-66) below shows that    
 = 0: 

 
1

1 1
2 2 2 1
1

1
1 .

( )

n
i

n in

i
n

d x dx dx dx
x x






 
    
  

  

 
1

1
2 2 21
1

1  .
( )

n
i i

i i i nn

i
n

x
D dx dx dx dx

x x





    


  
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 

1

2 2
1 1

....

2

n

i
i i n

i n

x
D dx dx

nx x

 
   
 
 

  

 2 2 2 2 22 2 1
1 1

12 2
1 1

( )

( )

n n
n

n i n

nn
i n

x x nx x x
dx dx

x x





 
    

  
 

  

                
2 2 2

1 1
1

2 2
1

1

0,
( )

2 1

n

n
n

i
n

x x nx
dx dx

nx x

 
    

  
  

                 (3-67) 

  

We get the last equality because the sum of the numerators cancel. For 

instance, when n = 2 we have 2 2 2 2 2 2

1 2 1 1 2 22 2 0x x x x x x       

 Now we will discuss taking the exterior derivative twice The exterior 

derivative of a k-form is a (k + 1)-form; the exterior derivative of that  

(k + 1)-forth is a (k + 2)-form. One remarkable property of the exterior 

derivative is that if you take it twice, you always get 0. (To be precise, we 

must specify that Sp be twice continuously differentiable.) 

Theorem (3-2- 25):  

For any k-form on U ⊂ R
2
of class C

2
, we have d(d ) = 0. 

Proof: 

 This can just be computed out. Let us see it first for 0-forms 

 

1 1

( )
n n

i i i i

i i

ddf D fdx d D fdx
 

 
  
 
   

           
1 1 1

0.
n n n

i i j i j i

i i j

dD f dx D D fdx dx
  

                           (3-68) 

 

If k > 0, it is enough to make the following computation: 

 

( ( ) ( )i ik i ikd fdx dx d df dx dx      

 

                     

1

0

( ) 0i ikddf dx dx



                        (3-69) 

 

   

 


