Sudan University of Science and Technology College of Graduate Studies

Some Applications of Forms and Vector Calculus بعض تطبيقات الصيغ و حسبان المتجهات

A Thesis Submitted in partial Fulfillment for the Requirements of the M.Sc Degree in Mathematics

By:

Mountasir Gameilalla Hassaballa Rahamtalla

Supervisor:

Dr. Emad Aldeen Abdalla Abdel Rahim

2016

Dedication

To my father, mother, wife

and all my family member

To someone who has a lot in my Deep down...

Acknowledements

Iwould like to express my special thanks to:Dr:Emad Aldeen Abdallh Abdel Rahim
To my family, To my friend and who help me

Abstract

In this research we study the abstract vector spaces, we apply the language of forms to electromagnetism in a subsequent volume .We Also discuss the generalization of the fundamental theorem of calculus to higher dimension. We present the generalized of Stokes theorem with some applications.

الخلاصة

في هذا البحث درسنا فضاءات المتجه المجردة ، و طبقنا لغة الصيغ للكهرومغنطيسية في الحجم المتتالي . ايضا ناقشنا تعميم المبرهنة الاساسية للحسبان للبعد الأعلى، وقدمنا تعميم لمبرهنة ستوكس مع بعض التطبيقات .

The contents

	Subject	NO
	Dedication	I
	Acknowledgements	II
	Abstract	III
	Abstract(Arabic)	IV
	The contents	\mathbf{V}
	Introduction	VI
	Chapter (1)	1
	Parallelograms, Fractals and Fractional	
	Dimension	
Section (1.1)	Parallelograms, Paramtrization and arc	1
	Length	
Section (1.2)	Surface, Manifolds and Fractional	17
	Dimension	
	Chapter (2)	32
	Forms and Vector Calculus	
Section (2.1)	Forms Over Oriented Domains And IR ⁿ	32
Section (2.2)	Integrating Form Fields and Vector	50
	Calculus	
	Chapter (3)	64
	Orientation, Integration and Exterior	
G (1 (2.4)	Derivative	
Section (3.1)	Orientation and Integration of Form	64
	Fields	5 0
Section (3.2)	Boundary Orientation and Exterior	79
	Derivative (4)	0.0
	Chapter (4)	96
	Vector Calculus, Stoke's Theorem and	
Continu (4.1)	Potential The Lengue of Vector Colorles and	06
Section (4.1)	The Language of Vector Calculus and Stocke's Theorem	96
	Stocke 8 Theorem	
Section (4.2)	The Integral Theorem and Potential	111
References	V	125

Introduction

In this research we consider the importance of surfaces as a language to study the theoretical and applied scince. We discuss the differential forms and vector calculus, and organized our study as follows:-

In chapter (1) we discuss the parallelograms and their volumes. We study the parametriztions, arc length, surface area, and volume of manifold, with some examples and application.

In chapter (2) we study the forms as integrands over oriented domains, and forms on IRⁿ. We also discuss integrating form fields over parametrized domains, and forms and vector calculus, with some examples.

In chapter (3) we present orientation and integration of form fields, and we discuss boundary orientation. We also illustrate the concept of the exterior derivative, and we explain the methods of taking the exterior derivative twice, with some examples.

In chapter (4) we present the exterior derivative in the language of vector calculus. We discuss geometric interpretation of the exterior derivative in IRⁿ, and the generalized Stoke's theorem. We also study the integral theorem of vector calculus, and potentials, with some examples and application