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Chapter (2) 
Forms  and Vector Calculus 

 

Section (2.1) : Forms over oriented domains and n
IR   

 

 What really makes calculus work is the fundamental theorem of calculus: 

that differentiation, having to do with speeds, and integration, having to do 

with areas, are somehow inverse operations. 

Obviously, we will want to generalize the fundamental theorem of calculus 

to higher dimensions. Unfortunately, we cannot do so using the techniques 

of Chapter (1) , where we integrated using       . The  reason is that       
always returns a positive number; it does not concern itself with the 

orientation of the subset over which it is integrating, unlike the dx of one 

dimensional calculus, which does: 

 

                        1 . 1
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 
                 (2 - 1) 

 

To get a fundamental theorem of calculus in higher dimensions, we need to 

introduce new tools. If we were willing to restrict ourselves to 2IR  and 3IR

we could use the techniques of vector calculus. We will use a different 

approach, forms, which work in any nIR . Forms are integrands over oriented 

domains; they provide the theory of expressions containing dx or dx dy ... . 

Because forms work in any dimension, they are the natural way to approach 

two towering subjects that are inherently four-dimensional: 

electromagnetism and the theory of relativity. They also provide a unified 

treatment of differentiation and of the fundamental theorem of calculus: one 

operator (the exterior derivative) works in all dimensions, and one short, 

elegant statement (the generalized Stokes's theorem) generalizes the 

fundamental theorem of calculus to all dimensions. In contrast, vector 

calculus requires special formulas, operators, and theorems for each 

dimension where it works. 

On the other hand, the language of vector calculus is used in many science 

courses, particularly at the undergraduate level. So while in theory we could 

provide a unified treatment of higher dimensional calculus using only forms, 

this would probably not mesh well with other courses. If you are studying 

physics, for example, you definitely need to know vector calculus. In 

addition, the functions and vector fields of vector calculus are more intuitive 
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than forms. A vector field is an object that one can picture,                            

as in Figure (2-1). 

 

 

 

 

 

 

Figure (2-1). 

 Coming to terms with forms requires more effort . We can't draw you a 

picture of a form. A k-form is, as we shall see, something like the 

determinant: it takes k vectors, fiddles with them until it has a square matrix, 

and then takes its determinant. We said at the beginning of this chapter that 

the object of linear algebra "is at least in part to extend to higher dimensions 

the geometric language and intuition we have concerning the plane and 

space, familiar to us all from everyday experience." Here too we want to 

extend to higher dimensions the geometric language and intuition we have 

concerning the plane and space. We hope that translating forms into the 

language of vector calculus will help you do that  Section (2.1) we introduce 

k-forms: integrands that take a little piece of oriented  domain and return a 

number. In Section (2.1) we define oriented k-parallelograms The radial 

vector field and show how to integrate form fields-functions that assign a 

form at each point-over parametrized domains. Section (2.2) translates the 

language of forms on IR
3
 into the language of vector calculus. Section (2.2) 

gives the definitions of orientation  necessary to integrate form fields over 

oriented domains, while. 

      Now we will disucss forms as intergrands over oriented domains. 

 In Chapter (1) we showed how to integrate the integrand        (the element 

of arc length) over a curve, to determine its length, and how to integrate the 

integrand        over a surface, to determine its area. More generally, we 

saw how to integrate        over a k-dimensional manifold in nIR , to 

determine its k-dimensional volume. Such integrands take a little piece (of 

curve, surface, or higher-dimensional manifold) and return a number. They 

require no mention of the orientation of the piece; non-orientable surfaces 

like the Moebius strip shown in Figure (2-2) 
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figure(2-2) 

 

have a perfectly well-defined area, obtained by integrating       over them. 

The integrands above are thus fundamentally different from the integrand 

   of one variable calculus, which requires oriented intervals. In one 

variable calculus, the standard integrand f (x) dx takes a piece [xi, xj+1 ] of 

the domain, and returns the number f(xi) (xi+1 – xi) : the area of a rectangle 

with height f(xi) and width  xi+1 - xi. Note that dx  returns  xi+1 – xi  , not      

xi+1 – xi ; that is why 

 

                            
1 1

1 1

( )f x dx f x dx





                                    (2-2) 

 

In order to generalize the fundamental theorem of calculus to higher 

dimensions, We  need  integrands over oriented objects. Forms are such  

integrands. 

Example (2-1-1):[Flux form of a vector field: F  ] 

 Suppose we are given a vector field F  on some open subset U of IR
3
. It may 

help to imagine this vector field as the velocity vector field of some fluid 

with a steady flow (not changing with time). Then the integran   F    

associates to a little piece of surface the flux of      through that piece; if you 

imagine the vector field as the flow of a fluid, then F   associates to a little 

piece of surface the amount of fluid that flows through it in unit time. But  

there's a catch: to define the flux of a vector field through a surface, you 

must orient  the  surface, for instance by coloring the sides yellow and blue, 

and counting how much flows from the blue side to the yellow side 

(counting the flow negative if the fluid flows in the opposite direction). It 

obviously does not make sense to calculate the flow of a vector field through 

a Moeblus strip.  

Now we will study  forms on nIR .You should think of this section as a 

continuation . There  we saw that there is a unique antisymmetric and 

multilinear function of n vectors in nIR  that gives 1 if evaluated on the 

standard basis vectors: the determinant. 
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Because of the connection between the determinants and volumes described  

the determinant is fundamental to multiple integrals,  Here we will study the 

multilinear antisymmetric functions of k vectors in nIR , where k  0 may be 

any integer, though we will soon see that the only interesting case is when 

k  n . Again there is a close relation to volumes, and in fact these objects, 

called forms, are the right integrands for integrating over oriented  domains. 

Definition (2-1-2): 

 A k-form on IR
n
 is a function       that takes k vectors in nIR and returns a 

number, such that  1 ( , ., )KV V   is multilinear and  antisymmetric. That is, a 

k-form   is linear with respect to each of its arguments, and changes sign if 

two of the arguments are exchanged. It is rather hard to imagine forms, so 

we start with an example, which will turn out to be the fundamental 

example. 

Example (2-1-3): 

   Let  1 ki , ., i  be any k integers between 1 and n. 

Then i ikdx ,   dx      is that  function  of  k  vectors          .....       .  in IR
n 

 that  

puts these  vectors  side  by side, making  the  n  x  k  matrix 

 

                                                  
1,1 1,

,1 ,

k

n n k

v v

v v

 
 
 
 
 

                                 (2 - 3) 

 

and selects first the il the row, then the i2 row, etc, and finally the  ikth  row, 

making the square k x k matrix 

 

                                                  
1 1,1 ,

,1 ,K K

i i K

i i K
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v v

 
 
 
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                                   (2-4) 

 

 

and finally takes its determinant. For instance,  
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                       (2-5) 
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        1 2 4
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             
       
         

            

           (2-6) 

Remark(2-1-4): 

 The integrand k d x of Chapter (1) also takes k vectors in nIR and gives a 

number: 

                                        (   ) =       =             , 
 

                       2
1 2 1 2 1 2| | (( ), ( )) det( ( , ( , )

T

d x V V V V V V
   

       
              ( 2-7) 

 

1 1 1| | (( ),......., ( )) det det( ,......., ,.......,

T

k
K K Kd x V V V V V V

   
       

 

 

Unlike forms, these are not multilinear and not antisymmetric.  

Now we will express geometric meaning of k-forms that number. Evaluating 

the 2-form dxl ᴧ dx2 on the vectors    and    , we have: 
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2 2 1 2 2 1
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    
     

       
         

            (2-8) 

 

which can be understood  geometrically. If we project a   and b  onto the  

(      - plane, we get the  vectors 

 

                                          
1 1

2 2

    and 
a b

a b

   
   
   

                                     (2-9) 

 

the determinant in Equation (2- 7) gives the signed area of the parallelogram 

that they span,  Thus dx1   dx2 deserves to be called the (x1 , x2) component 

of signed area. Similarly, dx2 ᴧ dx3 and dx1 ᴧ dx3  deserve  to  be called the 

(x2, x3) and the (x1,x3) components of signed area. 

We can now interpret Equations (2 - 4) and (2 - 5) geometrically. The 2 form 
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form dx1 ᴧ dx2 tells us that the (x1, x2) component of  signed  area  of  the 

parallelogram spanned by the two vectors in Equation (2-4) is -8. The        3-

form dx1 ᴧ dx2 ᴧ dx4 tells us that the (dx1, dx2, dx4)  component  of  signed 

volume of the  parallelepiped  spanned  by  the three  vectors in Equation    

(2-5) is-7. Similarly, the 1-form dx gives the x component of signed length 

of a vector, while dy gives its y component: 

 

                        dx  
 
  
 
   = det 2 =2 and  dy   

 
  
 
   = det(-3) = 3 

    

More generally (and an advantage of k-forms is that they generalize so 

easily to higher dimensions), we see that 

                                                      
1

   det i

n

i vd

v

v

x

  
  
  
  



  

                         (2-10) 

is the  ith  component  of  the  signed length of     , and that dxi ᴧ…ᴧ  dxik ,,, 

evaluated on 1( , ., )KV V  gives the  1, ,  ... i ikx x  component of signed             

k-dimensional volume of the k-parallelogram spanned by 1, ., KV V  . 

Now we will illustrate elementary forms. There is a great deal of redundancy 

in the expressions , ,i ikdx dx . Consider  for instance dx1 ᴧ  dx3 ᴧ dx1 This 

3-form takes three vectors in  nIR
 
 stacks them side by side to make an  

n  3  matrix , selects the first row, then the third, then the first again, to 

make a 3  3  and takes its determinant. So far, so good; but observe that the 

determinant in question is always 0, independent of what the vectors were; 

we have taken the determinant of a  3  3   matrix for which the third row is 

the same as the first; such a determinant is always . (Do you see why?') So 

 

                                              1 3 1 0    dx dx dx                                  (2-11) 

 

it takes three vectors and returns 0. 

But that is of course not the only way to write the form that takes three 

vectors and returns the number 0; both dx1 ᴧ  dx1 ᴧ dx3 and dx2 ᴧ dx 3 ᴧ  dx3 

do so as well, and there are others. More generally, if any two of the indices 

i1, ... , ik  are  equal, we have dx1, ᴧ … ᴧ dxik , = 0: the k-form dxi1    .. ᴧ dxik, 

where two indices are equal, is the k-form which takes k vectors and returns 

0. 

Next, consider dx1 ᴧ dx3 and dx3 ᴧ dx1. Evaluated on 
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n

a

a

a
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 
 
  

    and   
1

          

n

b

b

b

 
 
 
  

    we find  

 

3 3

3 1 1 3

1 1

l 3(  ,  )    det        
a b

a b a b a b
a b

dx dx
 

   
 

 

                            (2-12) 

3 3

3 1 1 3

1

3 1

1

(  ,  )    det
a b

a b a b a b
a b

dx dx
 

   
 

 

. 

Clearly 3 3 l ldx dx dx dx    ; these two 2-forms, evaluated on the same two 

vectors, always return opposite numbers. 

More generally, if the integers ,... ,  l ki i and  1,.... ,  kj j are the same integers, 

just taken in a different order, so that j1, =       , j2 =       …,  jk =      for 

some permutation   of  1,  ... ,  k  , then 

 

                                1 1 ik.    sgn( )  ,   . .  dxj jk idx dx dx                 (2-13) 

 

Indeed
1 ,,j jkdx dx   , computes the determinant of the same matrix as  

1 , ,i ikdx dx , only with the rows permuted by  . For instance,  

 

                                   dx1 ᴧ dx2 = - dx2 ᴧ dx1 , and 

                      1 2 3 2 3 1 3 1 2      dx dx dx dx dx dx dx dx dx              (2-14) 

 

To eliminate this redundancy, we make the following definition: an 

elementary k-form is of the form 

  

                                   1 1 2 k ...  with  1  i  i  i  n;      i ikdx dx                (2-15 ) 

 

putting the indices in increasing order selects one particular permutation for 

any set of distinct integers j1,....,jk. 
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Definition (2-1-5) : (Elementary k-forms on n
IR ) 

    A elementary k-form on nIR is an expression of the form 

 

                                             1 ...i ikdx dx                                        (2-16) 

 

where 1 k1  i  ...  i  n    (and 0  k  n  ). Evaluated on the vectors 1, ., KV V , it 

gives the determinant of the k  k  matrix obtained by selecting the i1..... ik 

rows of the matrix whose columns are the vector 1, ., KV V . 

The only elementary 0-form is the form, denoted 1, which evaluated on zero 

vectors returns 1. 

Note that there are no elementary k  forms on nIR  when k > n; indeed, there 

are no nonzero forms at all when k  n : there is no function   that takes 

k  n vectors in nIR  and returns a number, such that 1 ( , ., )KV V   is 

multilinear and antisymmetric. If  1, ., KV V  are vectors in R
n
 and k > n , then 

the vectors are not linearly independent, and at least one of them is a linear 

combination of the others, say 
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1

k
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i

V a V




                           (2-17) 

 

Then if ,   is a k-form on nIR  , evaluation on the vectors 1, ., KV V  gives 
1

1 1

1

( , ., , ) ( , ., )
k

K i i

i

V V V a V 




     

                                                                                                       (2-18) 
1

1

1

( , ., )
k

i i i

i

a V V V




    

Each term in this last sum will compute the determinant of a matrix, two 

columns of which coincide, and will give 0. 

In terms of the geometric description, this should come as no surprise: you 

would expect any kind of three-dimensional volume in IR
2
  to be zero, and 

more generally any k-dimensional volume in nIR to be 0 when k > n. What 

elementary k-forms exist on 4IR  

Now we will study all forms are liner combinations of elementary forms.k 

We said above that 1  ... i ikdx dx  is the fundamental example of a k-form. 

Now we will justify this statement, by showing that any k-form is a linear 
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combination of elementary k-forms. 

The following definitions say that speaking of such linear combinations 

makes sense: we can add k-forms and multiply them by scalars in the 

obvious way. 

Definition (2-1-6 ):  (Addition of k-forms) 

 Let   and   be two k-forms.Then 

1 1 1( , ., , ) ( , ., , ) ( )( , ., , )K K KV V V V V V        

DefinItion (2-1-7):  (Multiplication of k-forms by scalars) 

 If   is a k-form and a is a scalar, then 

                               1 1( )( , ., , ) (φ , ., , )K Ka V V a V V
 

   
 

 

Using these definitions of addition and multiplication by scalars, the space 

of k-forms in nIR is a vector space. We will now show that the elementary   

k-forms form a basis of this space . 

 

Definition (2-1-8):(A
k
(IR

n
)) 

 The space of k-forms in nIR is denoted  k nA IR  

Theorem (2-1-9): 

 The elementary k-forms form a basis for  k nA IR . 

In other words, every multilinear and antisymmetric function W of k vectors 

In nIR  can be uniquely written 

                      1 1

1

..

1

 
k k

k

i i i i

i i n

a dx dx 

  

                     (2-19) 

    

and in fact the coefficients are given by 

                                                      1
1 .. , ,

k
k

i ii ia e e

 
  

 
                     (2-20) 

 

Proof: Most of the work is already done, in the proof of Theorem (2-1-7), 

showing that the determinant exists and is uniquely characterized by its 

properties of multilinearity, antisymmetry, and normalization. (In fact, 

Theorem (2-1-9) is Theorem (2-1-7) when k = n.) We will illustrate it for the 

particular case of 2-forms on IR
3
; this contains the idea of the proof while 

avoiding hopelessly complicated notation. Let φ be such a 2-form. Then, 

using multilinearity, we get the following computation. Forget about the 

coefficients, and notice 
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that this equation says that   is completely determined by what it does to the 

standard  basis  vectors  

1 1

1 2 3 1 2 32 2 1 2 3 1 2 3

3 3

.,

v w

v w

v w

v w v e v e v e w e w e w e

v w

 

 
      
      

          
           

 

 

1 1 2 3 2 1 2 3 3 1 2 31 1 2 3 2 1 2 3 3 1 2 3( , ) ( . ) ( . )

w w w

v e w e w e w e v e w e w e w e v e w e w e w e         

( 2-21) 

 

1 1 1 2 1 31 1 1 2 1 3( , ) ( , ) ( , ) ....v e w e v e w e v e w e      

 
= (     -     )  (    ,     ) + (     -     )  (    ,     ) + (     -     )  (    ,     )        

 

An analogous but messier computation will show the same for any k and in 

  is determined by its values on sequences , .,i ike e  , with ascending 

indices. (The coefficients will be complicated expressions that give 

determinants, as in the case above, but you don't need to know that.) So any 

k-form that gives the same result when evaluated on every sequence 

, .,i ike e  , with ascending indices coincides with  . Thus it is enough to 

check that 

  

                              1 . 1

1 1

 , .,j jki ik i ik

i ik n

a dx dx e e

  

 
  

 
                (2-22) 

 

This is fairly easy to see. If 1 k 1, ., i   , ki j j   , then there is at least one I that 

dose not  appear among  the j's, so the corresponding dxj, acting on the. 

Matrix    , ... ,     , selects a row of zeroes. Thus 

 

                                        

   

 
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(2-23 ) 
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is the determinant of a matrix with a row of zeroes, so it vanishes. But 

 

                                            11...., ( ,..., ) 1j jkj jkdx e e                               (2-24) 

  

since it is the determinant of the identity matrix. 

Theorem (2-1-10):(Dimension of   k n
A IR ) 

 The space  k nA   IR  has diuleusion equal to the binomial coefficient 

 

                                                        
 

!

! !

n n

k k n k

 
 

 
                           (2-25) 

 
Proof: 

 This is just a matter of counting the elements of the basis: i.e.. the number 

of elementary k-forms on nIR  . Not for nothing is the binomial coefficient 

called "n choose k". 

Example (2-1-11): (Dimension of   k n
A IR )  

The dimension of  3A IR  and of  3 3A IR  is 1, and the dimension of A
1
(IR

3
) 

and of  2 3A R  is 3, because on 3R  we have 

 

 

3 3!
1

0 0! 3 !

 
  

 
   elementary 0-form; 

3 3!
3

1 1!(3)!

 
  

 
   elementary 1-form; 

3 3!
3

2 2!(3)!

 
  

 
    elementary 0-form; 

 

3 3!
1

3 3! 0 !

 
  

 
  elementary 1-form; 

 

Now we will discuss forms on vector spaces.So far we have been studying   

k forms on nIR . When defining orientation, we will make vital use of k-forms 

on a subspace n  IRE  . It is no harder to write the definition when E is an 

abstract vector space. 
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Definition (2-1-12) : (The space  Ek
A )  

Let E be a vector space. Then  Ek
A is the set of functions that take k 

vectors in E and return a number, and which are multilinear and anti-

symmetric.The main result we will need is the following: 

Proposition (2-1-13): 

 If E has dimension m, then  Ek
A  has dimension   

 
 . 

Proof: 

 We already know the result when m IRE  , and we will use a basis to 

translate from the concrete world of mIR  to the abstract world of  E. Let 

  ,…..  Then the transformation  
 

m:  IR  
b

E   given by 

 

                                             1 11. . m

a

a b a b

a

 
 

 
 
  

                                 (2-26) 

 

is an invertible linear transformation, which performs the translation 

"concrete   abstract." We will use the inverse dictionary     
   We claim that 

the forms           , 11 ,  ..  ki i m    , defined by, 

 

                 
        1

1 1
11, . 1 ... ( . , ,... ) ki ik i i b bk kv dx dx v vv  

                        (2-

27) 

  

form a basis of  kA E . There is not much to prove: all the properties follow 

immediately from the corresponding properties in IR
m
. One needs to check 

that the 1, .i ik    are multilinear and antisymmetric, that they are linearly 

independent, and  that they span  kA .E  

let us see for instance that  the  1, .i ik   are linearly independent suppose   

that  

 

                                       1 . 1, .

1 1

0i ik i ik

i ik M

a  

  

                                  (2-28) 

 

Then applied to the particular  vectors  

                                     11, ., j jkj jk b b
b b e e

   
      

   
                      (2-29) 
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We will still get 0 .But 

   
11 . 1, . 1 . 1

1 1 1 1

( )  , .,j jk j jki ik i ik i ik i ikb b
i ik M i ik n

a e e a dx dx e e  

     

     
         

     
 

   (2-30) 

 

 So all the coefficients are 0, and the forms are linearly independent. The 

case of greatest interest to us is the case when m = k 

Corollary (2-1-14): 

If E is a k-dimensional vector space, then  kA E is a vector space of 

dimension 1. 

Now  we will illustrate  the wedge product.We have used the wedge ᴧ to 

write down forms; now we will see what it means: 

it denotes the wedge  product, also known as the exterior product. 

 

Definition (2-1-15):(Wedge product) 

 Let   be a k-form and   be a l-form, both on IR
n
. Then their wedge product 

    is a (k + 1)-form that acts on k + l vectors. It is defined by the 

following sum, where the summation is over all permutations   of the 

numbers 1, 2, 3, ... , k + 1 such 

that        1 2 1 ( 1)k and k k           :_ 

       

  

 1

1 2 1 1 1 1

  
( ,1)

( , , , ) sgn( ) ( , . ( , .

wedg product evaluted

on k vectors

k k k k

shuffles
k vector i vector

perm k

v v v v v v v   



   



  



      

 

We start on the left with a (k + l)-form evaluated on k + l vectors. Oil the 

right we have a somewhat complicated expression involving a k-form   

acting on k vectors, and a l-form ip acting on l vectors. To understand the 

right-hand side, first consider all possible permutations of the k+l vectors 

1 2 1, , , kv v v    dividing each permutation with a bar line │so that there are  

k vectors to the left and l vectors to the right, since    acts on k vectors and ψ 

acts on l vectors. (For example, if  k = 2 and l = 1, one permutation would be 

written  1 2 3, |v v v  , another would be written 2 3 1, |v v v , and a third 3 2 1, |v v v .) 

 

Next, chose only those permutations where the indices for the k-form (to the 

left of the dividing bar) and the indices for the l-form (to the right of the bar) 

are each, separately and independently, in ascending order, as illustrated by 

Figure ( 2-3 ) 
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Figure(2-3) 

 

                                                                                                                                                                                                                                                                           

(For k = 2 and l = 1, the only allowable choice is 1 2 3, |v v v  We assign each 

chosen permutation its sign. 

Example (2-1-16):(The wedge product of two 1-forms) 

 If   and ψ are both 1-forms, we have two permutations, 1 2|v v  and 2 1|v v  , 

both allowable under our "ascending order" rule. The sign for the first is 

positive, since 

 

1 1

2 2

v v

v v

   
   
   
   

 gives the permutation matrix  
1 0

0 1

 
 
 

 , with determinant + 1. 

The  sign for the second is negative, since 
1 2

2 1

v v

v v

   
   
   
   

  gives the 

permutation  matrix 
0 1

1 0

 
 
 

 , with determinat -1.So in this case the 

equation of Definition( 2-1-14)becomes 

 

                         1 2 1 2 2 1( )( , ) ( )v v v v v v     
     

       
     

                   (2-31) 

 

We see that the 2-form dx1 ᴧ dx2 

 

                                       1 1

1 2 1 2 2 1

2 2

( , ) det –
a b

dx dx a b a b a b
a b

 
   

 
             (2-32) 

 

is indeed equal to the wedge product of the 1-forms dx1 and dx2, which, 

evaluated on the same two vectors, gives 
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           1 2 1 2 1 2 1 2 2 1( , ) ( ) ( ) – ( ) ( ) –dx dx a b dx a dx b dx b dx a a b a b                  (2-33) 

 

So our use of the wedge in naming the elementary forms is coherent with its 

use to denote this special kind of multiplication . 

Example (2-1-17) : (The wedge product of a 2-form and a 1-form)  

If   is a 2-form and    is a 1-form, then we have the six permutations 

1 2 3|v v v  , 1 3 2|v v v  , 2 3 1|v v v , 3 1 2|v v v , 2 1 3|v v v and 3 2 1|v v v                (2-34) 

 

The first three are in ascending order, so we have three permutations to sum 

 

                            1 2 3 1 3 2 2 3 1( , | ) - ( , | ) ( , | )v v v v v v v v v                          (2-35) 

 

giving the wedge  product 

 

1 2 3 1 2 3 1 3 2 2 3 1, , ( , ( )   ( ( , ) ( ) ( , ) ( )) )v v v v v v v v v v v v               (2-36) 

 
Again  let’s compare this result with what we using Definition  -1-5) 
setting   = dx1 ᴧ  dx2  and   =dx3 ; and  = dx3 ; to avoid double indices we 

will rename the vectors 1 2 3, ,v v v  calling them     ,   , and     . Using Definition 

(2-1-5 ) we get 

 

                     

1 1 1

1 2 3 2 2 2

3 3 3

 det ( , ,  )

u v w

dx dx dx u v w u v w

u v w

 
 

  
 
  

                     (2-37) 

 

= u1 v2 w3 – u1 v3 w2 – u2  v3 w1 – u3 v1 w2 – u3 v2 w1 

 

If instead we use Equation (2-35 ) for the wedge product, we get 

   1 2 3 1 2 3 ( , , )  ,dx dx dx u v w dx dx u v dx w
   

       
   

 

   1 2 3 1 2 3 ,  ,dx dx u w dx v dx dx v w dx u
       

          
       

 

1 1 1 1 1 1

3 3 3

2 2 2 2 2 2

det det det
u v u w v w

w v u
u v u w v w

     
       

     
                                 (2-38) 
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      = u1 v2 w3 – u1 v3 w2 – u2  v1 w3 + u2 v3w1 + u3 v1 w2 – u3 v2 w1 . 

 

In the following we study properties of the wedge product. 

The wedge product behaves much like ordinary multiplication, except that 

one needs to be careful about the sign, because of skew commutativity: 

Proposition (2-1-18 ):(Properties of the wedge product) 

 The wedge product has the following properties: 

 

(1) distributivity :          1 2 1 2                                         (2-39)  

 

( 2) associativity. :            1 2 3 1 2 3                                           (2-40) 

 

(3) skew commutativity : If   is a k-Form and   is an L-Form , Then  

 

                                
1

  1   
k

                                                   (2-41) 

 

 

Note that in Equation (2-40) the   and   change positions. For example, if 

  = dxl ᴧ dx2 and   = dx3, skew commutativity says that 

 

                                 2

1 2 3 3 1 2 ( 1)  dx dx dx dx dx dx      , i.e  

                                

1 1 1 3 3 3

2 2 2 1 1 1

3 3 3 2 2 2

det det

u v w u v w

u v w u v w

u v w u v w

   
   


   
      

,          (2-42) 

 

 

which you can confirm either by observing that the two matrices differ by 

two exchanges of rows (changing the sign twice) or by carrying out the 

computation. 

Now we will study integrating form field over parametrized domains. 

The objective of this chapter is to define integration and differentiation over 

oriented domains. We now make our first stab at defining integration of 

forms; we will translate these results into the language of vector calculus in 

Section (2.1) and will return to orientation and integration of form fields in 

Section(2.1) We say that k linearly independent vectors 1,...., kv v in IR
k
 form 

a direct basis of kIR  if 1,....det[ ] ,  0kv v   , otherwise an indirect basis. Of 
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course, this depends on the order in which the vectors 1,...., kv v are taken. We 

want to think of things like the k-parallelogram 1,....,( )x kP v v  in IR
k
 (which is 

simply a subset of kIR ) plus the information that the spanning vectors form a 

direct or  an indirect basis. 

The situation when there are k vectors in nIR and k   n is a little different. 

Consider a parallelogram in IR
3
 spanned by two vectors, for instance 

 

                                1

1

1

1

v

 
 


 
  

                  and           2

1

1

1

v

 
 

 
 
  

               ( 2-43) 

  

This parallelogram has two orientations, but neither is more "direct" than the 

other. Below we define orientation for such objects. 

An oriented k-parallelogram in nIR  denoted 10 ,....( , )x
kp v v  a k-parallelogram 

as defined in Definition (1.1.1), except that this time all the symbols written 

are part of the data: the anchor point, the vectors       , and the sign. As usual, 

the sign is usually omitted when it is positive. 

Definition(2-1-19): 

 An oriented k-parallelogram 10 ,....( , )x
kp v v  is a k-parallelogram in which the 

sign and the order of the vectors are part of the data. The oriented           k-

parallelograms 

                            10 ,....,( )x
kp v v  and   10 ,....( , )x

kp v v  

have opposite orientations, as do two oriented k-parallelogram 10 ,....,( )x
kp v v if 

two of the vectors are exchanged. 

Two oriented k-parallelograms are opposite if the data for the two is the 

same, except that either (1) the sign is changed, or (2) two of the vectors are 

exchanged (or, more generally, there is an odd number of transpositions of 

vectors). They are equal if the data is the same except that (1) the order of 

the vectors differs by an even number of transpositions, or (2) the order 

differs by an odd number of transpositions, and the sign is changed. For 

example 

  

                  1 20 ,( )xp v v                      and          2 10 ,( )xp v v    are opposite ; 

                  1 20 ,( )xp v v                      and         2 10 ,( )xp v v     are equal ; 
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                 1 2 30 ( , ),xp v v v                   and         2 1 30 ( , ),xp v v v   are opposite ; 

                  1 2 30 ( , ),xp v v v                  and         2 3 10 ,( , )xp v v v are opposite ; 

                  1 2 30 ( , ),xp v v v                  and          2 3 10 ( , ),xp v v v   are equal . 

 

Are 1 2 30 ( , ),xp v v v  , 30 2 1( , ),xp v v v  , 2 3 10 ,( , )xp v v v   equal or opposite  

 

Now we will express form fields. 

Most often, rather than integrate a. k-form, we will integrate a k-form field. 

A k-form field   on an open subset   of nIR  assigns a k-form      to every 

point x in U. While the number returned by a k-form depends only on k 

vectors. 

the number returned by a k-form field depends also on the point at which is 

evaluated: a k-form is a function of k vectors, but a k-form field is a function 

of an oriented k-parallelogram 1,....,( )x kP v v  , which is anchored at x. 

Definition (2-1-20): 

 A k-form field on an open subset nIRU  is a function that takes k vectors 

1,...., kv v  anchored at a point x   IR
n
, and which returns a number. It is 

multilinear and antisymmetric as a function of the    s. 

We already know how to write k-form fields: it is any expression of the form 

 
                         1 .

1 1

 i ik i ik

i ik M

a x dx dx 

  

                           (2– 44) 

where the ai1,..,ik are real-valued functions of x   U. 

 

Example (2-1-21):(A 2-form field on IR
3
) 

  The form field    cos xz dx dy is a 2-form field on IR
3
. Below it is 

evaluated twice, each time on the same vectors, but at different points 

    0

1

2

1 2
1 2

cos   0 , 2 cos 1. det 2.
0 2

1 3

xz dx dy P




 
 
 
 
 

                                  
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  0

1

2

2

1 2
1 21

cos   0 , 2 cos . det 0
0 22

1 3

xz dx dy P




 
 
 
 
 
  
 

 
 

     
                                  

 
 
 

 

 

Section (2.2): Integrating form fields and vector calculus 
Now we will discuss integrrating form filds over parametrized domains. 

Before we can integrate form fields over oriented domains, we must define 

the orientation of domains;. Here, as an introduction, we will show how to 

integrate form fields over domains that come naturally equipped with 

orientation-preserving parametrizations: parametrized domains. 

A parametrized k-dimensional domain in nIR is the image  A  of a C
1
 

mapping   that goes from a payable subset A of  KIR to IR
n
 . Such a domain 

 A may well not be a smooth manifold ; a mapping   always parametrizes 

some thing or other in IR
n
, but  A  may have horrible singularities 

(although it is more likely to be mainly a k-dimensional manifold with some 

bad points). If we had to assign orientation to  A  this would be a problem; 

we will see in Section (2.2) how to assign orientation to a manifold, but we 

don't know how to assign orientation to something that is "mainly a                  

k-dimensional manifold with some bad points." 

Fortunately, for our purposes here it doesn't matter how nasty the image is. 

We don't need to know what  A  looks like, and we don't have to 

determineits orientation. We are not thinking of  A  in its own right, but as 

"the result of   acting on A." A parametrization by a mapping ry 

automatically carries an orientation:   maps an oriented k-parallelogram 

10 ,....,( )x
kp v v  to a curvilinear  parallelogram that can be approximated by

     0
1 , , kx

P D x D x


 
 

 
 

 ; the order of the vectors in this k-parallelogram 

depends on the order of the variables in IR
k
. To the extent that  (A) has an 

orientation, it is oriented by this order of vectors. 

The image  A  comes with a natural decomposition into little pieces: take 

some N, and decompose  A  into the little pieces  C A ,  where 

 n

NC D IR  Such a piece  C A ,  is naturally well approximated by a         
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k-parallelogram: if u   R
K
 is the lower left-hand corner of C, the 

parallelogram 

 

                        
     0

1

1 1
, ,

2 2
ku

P D u D u
N N


 

 
 

 
                                   (2- 45) 

is the image of C by the linear approximation 

  

                                     w u D u w u to at u                                    (2- 46) 

 

So if   is a k-form field on ' (or at least on a neighborhood of  A  an 

approximation to  

                                                                     
 A

                                (2-47) 

should be 

 

 

     0
1

1 1
( , , )

2 2
nN R

A c

ku

c D

P D u D u
N N


  





 
 

 
  

 

                  
 

     0
1( , , )

nN R

A c

kK u

c D

vol c P D u D u


  





 
 

 
                         (2-48) 

But this last sum is a Riemann sum for the integral 

                                0
1( , , K

ku

A

P D u D u d u


  
 

 
 

                        (2-49) 

 

To be rigorous, we define   
 

    
 to be the above integral 

Definition (2-2-1 ): (Integrating a k-form field over a parametrized 

domain) 

 Let kA  IR  be a payable set and  nR: IA   be a C
1
 mapping. Then the 

integral of the       k-form field   over   A  is 

 

               
 

     0
1

    

( , , K
ku

AA

This is function of u

P D u D u d u




   
 

  
 

                       (2-50) 
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Example (2-2-2): (Integrating a 1-form field over a parametrized curve) 

Consider a case where k = 1, n = 2. We will use  (u) =  
 cos  
 sin   

  and will R 

sin   take A to be the interval [0, a], for some a > 0. If we integrate the        

1-form field     x dy y dx over   A  using the above definition, we find 

 

 
 

 
 

0

coscos

0, sinsin

sin sin
    

coscos
R u

A a R u

R u
x dy y dx x dy y dx P du

R u


 
 
 

  
        

   

   
   

3

0, 0,

cos cos sin sin
a a

R uR u R u R u du R du     

 

                                                   
2 2

0

a

R du R                                         (2-51) 

 

What would we have gotten if  a < 0? Until the bottom line, everything is the 

same. But then we have to decide how to interpret [0, a]. Should we write 

 

                                                    2

0

a

R du    or 
0

2

a

R du                                  (2-52) 

 

We have to choose the second, because we are now integrating over an 

oriented interval, and we must choose the positive orientation. So the answer 

is still R
2
 a, which is now negative. 

Example (2-2- 3 ):(Another parametrized curve)  
In Example (2.2.2) , you probably saw that y was parametrizing an arc of 

circle. To carry out the sort of computation we are discussing, the image 

need not be a smooth curve. For that matter, we don't need to have any idea 

what  A looks like. 

Take for instance           

arctan  
    set A = [0,a] for some a > 0 and 

       . then  

 

                       
 

21
( ) 0, 2arctan arctan

2

 1

1

t
A a t

t

x dy P

t



 
  
 

  
  
   

  

                                   (2-53) 
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2

2

0

1

1

a
t

dt a
t


 

  

Example (2-2-4): (Integrating a 2-form field over a parametrized 

surface in IR
3
)  

Let us compute 

 

                             
 

    
C

dx dy ydx dz


                                  (2-54) 

  Over the parametrized domain      where  

 

                      2

2

, 0 , 1

s t
s s

s C s t
t t

t



 
     

        
     

 

│                  (2-55) 

 

Applying Definition (2-2-1) , we find 

 
 

    
C

dx dy ydx dz


    

 
2

2

1 1

0 0

1 1

    2 , 0

0 2

s t

s

t

dx dy ydx dz P s

t

 
 
 
  
 

 
     
              
         

 

  

  
1 1

2

0 0

2 2  s s t ds dt   

                       

11 13
2

0 00

2
2 1

3 3

s

s

s t
s t dt dt





   
      

  
                        (2-56) 

 
1

2

0

2
.

3 3

t
t

 
     
 

 

 

In the following we discuss forms and vector calculus . 

The real difficulty with forms is imagining what they are. What "is"            

2 3 4 ldx dx dx dx   ? We have seen that it is the function that takes two 

vectors in IR
4
, projects them first onto the (xl,x2)-plane and takes the signed 

area of the resulting parallelogram, then projects them onto the (x3, x4)-plane, 
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takes the signed area of that parallelogram, and finally adds the two signed 

volumes. 

But that description is extremely convoluted, and although it isn't too hard to 

use it in computations, it hardly expresses understanding. 

 However, in IR
3
, it really is possible to visualize all forms and form fields, 

because they can be described in terms of functions and vector fields. There 

are four kinds of forms on IR
3
: 0-forms, 1-forms, 2-forms, and 3-forms. 

Each has its own personality. 

0-form fields. In 3IR and in any nIR , a 0-form is simply a number, and a 0 

form field is simply a function. If   is a function on an open subset nU  R

and        IR is a function, then the rule    0

xf P f x makes f into            

a 0-form field. The requirement of antisymmetry then says that            

                                                       
        . 

1-form fields. Let    be a vector field on an open subset U   IR
n
. We can 

then associate to    a 1-form field    , which we call the work form field: 

Definition(2-2-5):(Work form field)  

    The work form field     of a vector Field                 
  
 
  

     is the 1-form 

field defined by  

 

                          0 .x
F

W P v F x v
  

  
  

                                            (2-57) 

 

 

This can also be written in coordinates: the work form field     of a vector 

Field                  
  
 
  

                                                 

indeed 

 

      
1

0

1 1 1 1

2

n n x n n

v

Fdx F dx P v F x dx F x dx

v

 
    

        
  

 

     1 1 .n nF x dx F x dx F x v    

 

In this form, it is clear from Theorem (2-1-8 ) that every 1-form on U is the 

work of some vector field. What have we gained by saying that that a 1-form 
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-field is the work form field of a vector field? Mainly that it is quite easy to 

visualize     and to understand what it measures: if    is a force field, its 

work form field associates to a little line segment the work that the force 

field does along the line segment. To really understand this you need a little 

bit of physics, but even without it you can see what it means. Suppose for 

instance that    is the force field of gravity. In the absence of friction, it 

requires no work to push a wagon of mass m horizontally from a to b; the 

vector                 and the constant vector field representing gravity are 

orthogonal to each other, with dot product zero: 

 

                                            
1 1

2 2

0

0 . 0

0

b a

b a

gm

   
   

 
   
      

                             (2-58) 

 

But if the wagon rolls down an inclined plane, the force field of gravity does 

"work" on the wagon equal to the dot product of gravity and the 

displacement vector of the wagon : 

 

                                          
1 1

2 2 3 3

3 3

0

0 .

b a

b a gm b a

gm b a

   
   

   
   
       

                  (2-59) 

 

which is positive, since b3 - a3 is negative. If you want to push the wagon 

back up the inclined plane, you will need to furnish the work, and the force 

field of gravity will do negative work. 

For what vector field    can the 1-form field 2

2 1 2 4 2 1 4x dx x x dx x dx  be 

written as    ?" 

2-forms. If    is a vector field on an open subset U   IR
3
, then we can 

associate to it a 2-form field on U called its flux form field    , which we 

first saw in Example (2-1-1)  

Definition(2-2-6): 

 The flux form field    is the 2-form field defined by 

 

                               0 , det , , .x
F

P v w F x v w
    

         
                     (2-60) 
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In coordinates, this becomes 
1 2 3      :

F

Fdy dx F dx dz F dx dy        

 

                      

 
1 1

0

1 2 3 2 2

3 3

      x

v w

Fdy dx F dx dz F dx dy P v w

v w

    
    

         
        

            (2 -61) 

 

          1 2 3 3 2 2 1 3 3 1 3 1 2 2 1 det , ,F x v w v w F x v w v w F x v w v w F x v w
 

        
 

 

In this form, it is clear, again from Theorem (2-1-8) , that all 2-form fields 

on IR
3
 are flux form fields of a vector field : the flux form field is a linear 

combination of all the elementary 2-forms on IR
3
, so it is just a question of 

using the coefficients of the elementary forms to make a vector field. 

Once more, what we have gained is an ability to visualize, as suggested by 

Figure (2-4) : the flux form field of a vector field associates to a 

parallelogram the flow of the vector field through the parallelogram 

 

 
Figure (2- 4) 

 

Figure (2-4) . The flow of    through a surface depends on the angle between 

   and the surface. Left:    is orthogonal to the surface, providing maximum 

flow. This corresponds to       being perpendicular to the parallelogram 

spanned by, ,v w . (The volume of the parallelepiped is det[ , , ]F v w  = ( )F v w  

which is greatest when the angle   between    and v w   is 0, since         

=              .) Middle :    is not orthogonal to the surface, allowing less 

flow. Right:     is parallel  to the surface; the flow is 0. In this case        

  
     (x) ,           ) is flat. This corresponds to ( ) 0F v w  i.e.,    is 

perpendicular to v w  and therefore parallel to the parallelogram spanned by 

   and     . 
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If ? is the velocity vector field of a fluid, the integral of its flux form field 

over a surface measures the amount of fluid flowing through the surface. 

Indeed, the fluid which flows through the parallelogram 0 )( ,xP v w   in unit 

time will fill the parallelepiped   
     (x) ,          ): the particle which at time 0 

was at the corner   is now at          . The sign is positive if    is on the 

same side of the parallelogram as v w  , otherwise negative (and 0 if    is 

parallel to the parallelogram; indeed, nothing flows through it then). 

3-forms. Any 3-forms on an open subset of IR
3
 is the 3-forms dx dy dz 

(alias the determinant) multiplied by a function: we will denote by pf the     

3-forms  dx dy dz  , and call it the density of  . 

Definition(2-2-7):(Density form of a function) 

 Let U   IR
3
 be open. The density form    of a function f : U   R is the     

3-forms defined by:  

              0 0
1 2 3 1 2 3

 

    

( x , , ) ( d, , ) et , ,f x x

density form

signed volume of Pof f

P F v w P v v v f x v v v 
 
 
 

              (2-62) 

 

Summary: work, flux, and density forms on IR
3
 

Let    be a function on IR
3
 and 

3

2

1

F

F F

F

 
 


 
  

 be a vector field. Then 

 

                                                  
1 2 3

F

W Fdx F dy F dz                             (2-63) 

 

                               
1 2 3      

F

Fdx dz F dx dz F dx dy                              (2-64)  

 

                                                       f f dx dy dz                                 (2-65) 

 

Now we will discuss integrating work, flux and density form fields over 

parametrized domains . 

Now let us translate Definition (2-2-1) (integrating a k-form field over a 

parametrized domain) into the language of vector calculus. 

 

 

 



58 
 

Example(2-2-8): 

(Integrating a work form field over a parametrized curve) When 

integrating the work form field over a parametrized curve           the 

equation of Definition (2-2-1 )  : 

 

                        
     0

1

( )

( , , K
ku

AA

P D u D u d u




   
 

  
 

                    (2-66) 

 

Becomes  

     

   

 

   0
1

( )

'

( . '
u

F
AA A

u

W P D u du F u u du






   

 
   

    
  

 

                        (2-67) 

 

This integral measures the work of the force field    along the curve.  

Example (2-2-9):  

(Integrating a work form field over a helix) What is the work of the vector 

field 

 

                       0 0
1 2 3 1 2 3

 

    

( x , , ) ( d, , ) et , ,f x x

density form

signed volume of Pof f

P F v w P v v v f x v v v 
 
 
 

  

over the helix parametrized by (2- 67) 

 

                                                      

cos cos

sin sin ,0 t 4 ?

t

t t

t

 

 
 

  
 
  

               (2-68)  

By Equation (2-67) this is 

 

           
4 4

2 2

0 0

sin sin sin sin

coscos . coscos sin cos 4

0 1

t t

t t dt t t dt

 



    
   
     
   
      

              (2-69) 

Example (2-2-10):(Integrating a flux form field over a parametrized 

surface) 

 Let U be a subset of IR
2
 , 3 :  U IR  be a parametrized domain, and    a 

vector field defined on a neighborhood of S. Then 
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 

     0 2
1 2,

u
F

U

P D u D u d u




 
  

   
  

                    (2-70) 

 

      2
1 2det[ , , ]

U

F u D u D u d u     

 

If    is the velocity vector field of a fluid, this integral measures the amount 

of fluid flowing through the surface S . 

Example (2-2-11): 

 The flux of the vector field   2

x x

F y y

x z

   
   

   
      

 through the parametrized domain 

 
2

2

,0 , 1

u
u

uv u v
v

v

 
   

     
   

 

 

 

 

2

1 1 1 1

2 2 2 2 3 3 2 2

20 0 0 0

2 0

det  2 4 2

0 2

u u

u v v u du dv u v u v u v dudv

v v

 
 

   
 
 

   

 

                 
11 1

3 2 4 3 2 3

00 0

4 4 1

3 3 4u

u v u v dv v v


   
      

   
                     (2-71) 

 

Example (2-2-12):(Integrating a density form field over a parametrized 

piece of IR
3
)        

 Let U, 3V IR be open sets, and   : U  V  be a C
1
 mapping. If   : V   IR    

is a function then 

 

 

 

                                                       3det det
U

f u D u d u                (2-72) 

 

There is a particularly important special case of such a mapping y : U - V: 

 
       0 3

1 2 3  , ,
u

U U

f f P D u D u D u d u




    
  

   
  

 
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the case where V U and  x   x  is the identity. In that case, the formula 

for integrating a density form field becomes 

 

                                            
 

  3 ,
U U

f f u d u


                                     (2-73) 

 

i.e., the integral of     is simply what we had called the integral of f in 

section (2.1) If f is the density of some object, then this integral measures its 

mass 

Example (2-2-13):  (Integrating a density form) 

 Let f be the function 

                          2 2

x

f y x y

z

 
 

  
 
 

                                                       (2-74) 

 

and for r < R, let      be the torus obtained by rotating the circle of radius r 

centered at  
 
 
  in the (x, z)-plane around the z-axis, shown in Figure (2 - 5). 

 

 
Figure (2 - 5) 

  

Compute the integral of    over the region bounded by      (i.e., the inside 

of the torus). Here, using the identity parametrization would lead to quite a 

clumsy integral. The following parametrization, with 0  u   r,  0   v,  w  2    , is 

better adapted: 
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( )

( ) .

u R ucosv cosw

v R ucosv sinw

w usinv



   
   

    
   
   

                                                 (2-75) 

 

The integral becomes  

 
0

2

2

00

2

( )

r

R ucosv u R ucosv dudvdw

 

      

             

2

3 2 2 3 3

0

4( 3 3 cos )2 R R u cosv R cosv u v dudv



                         (2-76) 

2 3 2 4 2 5 3
2

0

3 3 cos cos
2

2 4 5

R r Rr v r v
R r cosv dv




 

    
 
  

                                      
4

3 2 3
2

2

Rr
R r

 
   

 
 

 

You might wonder whether this has anything to do with the integral we 

would have obtained if we had used the identity parametrization. A priori, it 

doesn't , but actually if you look carefully, you will see that there is a 

computation of det[  ], and therefore that the change of variables formula 

might well say that the integrals are equal, and this is true. But the absolute 

value that appears in the change of variables formula isn't present here (or 

needed, since the determinant is positive). Really figuring out whether the 

absolute value is needed will be a lengthy story, involving a precise 

definition of orientation. 

Now we will study work, flux and density in IR
n 
. 

In all dimensions, 

(1) 0-form fields are functions. 

(2) Every 1-form field is the work form field of a vector field. 

(3) Every (n - 1)-form field is the flux form field of a vector field 

(4) Every n-form is the density form field of a function. 

We've already seen this for 0-form fields and 1-form fields. In IR
3
, the flux 

form field is of course a 2 = (n - 1)-form field; its definition can be 

generalized: 

Definition (2-2-14):(Flux form field on n
IR )  

If nU R is an open subset and    is a vector field on U, then the flux form 

field     is the (n -1)-form field defined by the formula 
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                    1 1 1 10 . ..., det ,( ) ,x
n n

F

p v v F x v v 
 

    
                     (2-77) 

In coordinates, this becomes 

 
1

1

1    
n

i

i i i n
F

i

F d x dx dx




      

 
1

1 2 2 1 3 1 2 1     1    
n

n n n nFd x dx F d x dx dx F d x dx dx


          

where the term under the hat is omitted 

For instance, the flux of the radial vector field         
1 1

n n

x x

F

x x

   
   

    
      

 

     1 2 2 1 2 1      n n n n
F

x d x dx x d x dx x d x dx         

where the last term is positive if n is odd, and negative if it is even. 

In any dimension n, n-form fields are multiples of the determinant, so all     

n-form fields are densities of functions: 

Definition (2-2-15):(Density form field on IR
n
) 

    Let U   IR
n
 be open. The density form field    of a function   : U   IR 

is given by 1  ...  nf f dx dx    . 

The correspondences between form fields, functions and vectors, 

summarized in Table (2-1) , explain why vector calculus works in IR
3
-and 

why it doesn't work in higher dimensions than 3. For k-forms on IR
n
 , when 

k is anything other than          , or n, there is no interpretation of form 

fields in terms of functions or vector fields. 

A particularly important example is the electromagnetic field, which is          

a 6-component object, and thus cannot be represented either as a function         

(a 1-component object) or a vector field (in IR
4
, a 4-component object). 

The standard way of dealing with the problem is to choose coordinates      

   ,    , in particular choosing a specific space-like subspace and a specific 

time like subspace, quite likely those of your laboratory. Experiment 

indicates the following force law: there are two vector fields,     (the electric 

field) and     (the magnetic field), with the property that a charge q at       
and with velocity v (in the laboratory coordinates) is subject to the force 

 

                                            
V

q E x B x
C

 
  
 
 

                                 (2-78) 

.  
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But     and     are not really vector fields. A true vector field keeps its 

individuality when you change coordinates. In particular, if a vector field is 

    in one coordinate system, it will be     in every coordinate system. This is 

not true of the electric and magnetic fields. If in one coordinate system the 

charge is at rest and the electric field is      , then the particle will not be 

accelerated in those coordinates. In another system moving at constant 

velocity with respect to the first (on a train rolling through the laboratory, for 

instance) it will still not be accelerated. But it now feels a force from the 

magnetic field, which must be compensated for by an electric field, which 

cannot now be zero. 

Is there something natural that the electric field and the magnetic field 

together  represent? The answer is yes: there is a 2-form field on IR
4
, namely 

 

 

3            x y x y zE dx cdt E dy cdt E dz cdt B dy dz B dz dx B dx dy                                                                                   

 
E B

W cdt                                                                                       (2-79) 

 

This 2-form field, which the distinguished physicists Charles Misner, Kip 

Thorne, and J. Archibald Wheeler call the Faraday (in their book 

Gravitation, the bible of general relativity), is really a natural object, the 

same in every inertial frame. Thus form fields are really the natural language 

in which to write Maxwell's equations 

 

Form fields  Vector Calculus 

  IR
3
 IR

2
 

0-form field 

1-form field 

(n-2)-form field 

(n-1)-form field 

n-form field 

Function 

Vector field(via work form field) 

Same as 1-form 

Vector field (via flux form field) 

Function (via density form field) 

Function 

Vector field 

No Equivalent 

Vector field 

Function 

 

Table (1)Correspondence between forms and vector calculus.  

In all dimensions, 0-form fields, 1-form fields, (n-1)-form fields, and n-form 

fields can be identified to a vector field or a function. Other form fields 

haveno equivalence in vector calculus. 
 

 


