Effective dose estimation during pediatric chest X ray radiography

A thesis submitted in partial fulfillment for the requirements of Master degree in Medical Physics

By:

Omer Osman Omer Mohammed

Supervisor

Dr. Abdelmoneim Adam Mohamed Sulieman

Associate Professor

February 2011
Dedication

To:

My parent for their patience and encouragement

My brothers, sisters and teachers for their help and support

My friends for their valuable supports

I dedicate this work
Acknowledgment

I wish to express my sincere appreciation to Dr. Abdelmoneim Adam Mohamed Sulieman, Sudan University of science and technology for his valuable guidance fruitful discussion, comment and supervision through this work.
My appreciation to SAEA in and the Institute of Radiation Protection (IRD) and to the medical physics head department for their keen interest and necessary assistance during the practical work
Many thanks for the staff of the Diagnostic Radiology Departments at G.IB.Noeaf and Mohammed alamen hospitals.

My thanks extended to everyone who helped me in different ways to make this work possible. Finally I would like sincerely thanks to my brother Dr Mohammed Osman for his help and encouraged and my lovely
Table of contents

Dedication I
Acknowledgements II
Contents III
List of tables VII
List of figures VIII
Abstract [English] X
Abstract [Arabic] XI

Chapter One: Introduction

1.1 General Introduction 1
1.2 Ionizing Radiation 2
1.3 Biological effects of ionizing radiation 3
1.3.1 Stochastic effects 3
1.3.2 Deterministic effects 4
1.4 Problems of the study 5
1.5 Objective of the study 5
1.6 Thesis outline 6

Chapter Two: Theoretical Background

2.1 Introduction and over views 7
2.2 Production of X ray
2.3 Interactions of X ray
2.4 X ray detectors
2.5 Medical imaging
2.5.1 X ray imaging
2.5.2 Projection radiography
2.5.3 Chest X ray
2.5.3.1 Pediatric chest patient preparations and image technique
2.5.3.2 Neonates intensive care units
2.6 Radiation and dosimetry
2.6.1 Radiation units and quantities
2.6.1.1 Radiation units
2.6.1.1.1 Gray
2.6.1.1.2 Rad
2.6.1.1.3 The coulomb per kilogram
2.6.1.1.4 Rontgen
2.6.1.1.5 Sievert (Sv)
2.6.2 Radiation source quantities
2.6.2.1 Methods of estimating radiation dose due to X ray examinations to a patient
2.6.2.2 Mean absorbed dose to organs or tissue
2.6.2.3 Effective dose 19
2.6.3 Application of specific dosimetric quantities 19
2.6.3.1 Exposure 19
2.6.3.2 Absorbed dose 20
2.6.3.3 Incident air kerma 20
2.6.3.4 Entrance surface air kerma 20
2.6.3.5 X ray tube output 20
2.6.3.6 Air kerma – aera product 21
2.7 Radiation measurements 21
2.7.1 Introduction 21
2.7.2 Dose measurement 21
2.7.2.1 Ionization chamber 22
2.7.2.2 Dose area product 22
2.7.2.3 Thermo Luminescent dosimeter 23
2.7.3 Direct measurement of entrance surface dose 23
2.8 Literature review 24

Chapter Three Materials and Methods

3.1 Brief overview 29
3.2 Patient preparation 30
3.3 Dose measurement method used 31
3.3.1 Absorbed dose calculation 31
3.3.2 Effective dose 32
3.3.3 Risk estimation 32
3.4 Optimization and dose reduction 33

Chapter Four Results

4.1 Results 34
4.1.1 Patients measurements 35
4.1.2 Exposure parameters used 35

Chapter Five discussion, conclusion and recommendations

5.1 Discussion 44
5.2 Conclusions 47
5.3 Recommendations 48
5.4 References 49
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Equipment’s Radiographic information used in this study.</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Patient demographic data in M.Alamen hospital (MO):</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>Patient demographic data in Ibnoef Hospital (IB)</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>Exposure factors data used for pediatric undergoing chest X ray in (MO)</td>
<td>35</td>
</tr>
<tr>
<td>4.4</td>
<td>Exposure factors data used for pediatric undergoing chest x ray in (IB)</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>correlation between kv, mAs, weight and calculated ESD (mGy) for different patient group ages in (MO)</td>
<td>36</td>
</tr>
<tr>
<td>4.6</td>
<td>correlation between kv, mAs, weight and calculated ESD (mGy) for patient aged group in (IB)</td>
<td>36</td>
</tr>
<tr>
<td>4.7</td>
<td>comparison between ESD in mGy values calculated in this study for (MO, IB) with other previous studies and international dose reference levels</td>
<td>37</td>
</tr>
<tr>
<td>4.8</td>
<td>comparison between organ equivalent doses values in mSv calculated in this study (MO,IB) hospitals for different organs and the previous one</td>
<td>37</td>
</tr>
<tr>
<td>4.9</td>
<td>patient organ’s risk estimations for patient undergoing chest X ray in (MO)</td>
<td>38</td>
</tr>
<tr>
<td>4.10</td>
<td>patient organ’s risk estimations for patient undergoing chest X ray in (IB)</td>
<td>38</td>
</tr>
</tbody>
</table>
List of figures

1.1 schematic diagram shows the process of cell damage from the time of irradiation.

2.1 uses digital detector that converts X-ray photons directly into an electrical signal of digital nature.

2.2 Diagram of an x-ray tube.

2.3 Projective radiology: x-rays passing through the patients strike the Detector.

2.4 the Radiation quantities for describing exposures in Diagnostic Radiology.

4.1 correlation between entrance skin dose ESD (mGy) and tube potential kvp in (kv) to patients undergoing chest X-ray in (MO).

4.2 correlation between entrance skin dose ESD (mGy) and tube potential kVp in (kVp) to patients undergoing chest X-ray in (IB).

4.3 correlation between entrance skin dose ESD (mGy) and the product of the tube current (mAs) to patients undergoing X-ray in (MO).

4.4 correlation between entrance skin dose ESD (mGy) and the product of the tube current (mAs) to patients undergoing X-ray in (IB)

4.5 correlation between entrance skin dose ESD (mGy) and body mass index BMI (Kg/m2) of patients undergoing chest X-ray in (MO).

4.6 correlation between entrance skin dose ESD (mGy) and body mass index BMI (Kg/m2) of patients undergoing chest X-ray in (IB).

4.7 correlation between entrance skin dose ESD (mGy) and weight (mass) of the body (Kg) of patients undergoing X-ray in (MO).

4.8 correlation between entrance skin dose ESD (mGy) and weight (mass) of the body (Kg) of patients undergoing X-ray in (IB).

4.9 correlation between entrance skin dose ESD (mGy) and Age (years) of the patients undergoing X-ray in (MO)

4.10 correlation between entrance skin dose ESD (mGy) and Age (days) of the patients undergoing X-ray in (IB)
Abstract:
Radiation doses to patients from chest X ray radiography which is the most common paediatric X-ray examinations were studied in two hospitals (MO) and (IB) in Khartoum state, Sudan. Entrance surface dose (ESD) was determined from exposure settings using DosCal software. Totally, 126 patients were included in this study. Mean ESDs obtained from for pediatric chest radiography in (MO) hospital recorded in this work was 0.049, 0.058, 0.100 and 0.054 mGy for the patients aged between 0-1, 1-3, 3-5 years and total sample respectively, and was 0.031 mGy for aged group in (IB) hospital.

The mean ESDs per chest radiographic image ranged between 0.054 and 0.031 mGy in (Mo) and (IB) respectively per exposure, which is slightly lower than the corresponding values reported in the DRLs reported in European guidelines on quality criteria for diagnostic radiographic images EUR 16260EN As demonstrated in the discussion, patients’ doses were high in departments using single-phase generators compared with those using constant potential. The results presented will serve as a baseline data needed for deriving reference doses for pediatrics X-ray examinations in Sudan. The mean organ equivalent dose assessed from ESDs measured values for (MO) and (IB) using CHILDOSE (NRPB-SR279) to lung, breast, thyroid, liver, kidney, bladder, stomach and testis was 0.021, 0.039, 0.026, 0.013, 0.002, 0.006, 0.0013 and 0.00001 mSv for (MO), 0.0120, 0.0293, 0.0149, 0.0076, 0.012, 0.0034, 0.074 and 0.0000076 mSv for (IB) respectively. The overall effective dose obtained from this study 0.0092 and 0.0053 mSv for (MO) and (IB) respectively.
الملخص

الاستخدام الطبي للأشعة السينية هو من أكبر مصادر تعرض الإنسان للأشعة في الوقت الحاضر. لذلك يجب تجنب استخدام الأشعة بصورة مفرطة أو بجرعات أعلى مما هو مطلوب لعمل الفحص المحدد. مؤخرًا، زاد الاهتمام بمخاطر الأشعة وخاصة السرطان نتيجة للتعرض الطبي للأشعة.

هدفت هذه الدراسة إلى قياس الجرعة الإشعاعية للمرضى أثناء فحوصات الأشعة السينية في مستشفيين بولاية الخرطوم. لتقييم الجرعة الكافية للاعضاء المختلفة وكذلك الجرعة المكافئة وتقييم خطر الإشعاع الناجم عن فحوصات الصدر للأطفال بواسطة الأشعة السينية. قبضت الجرعة الإشعاعية باستخدام جهاز انفوس. (Unfors)

تم قياس جرعة الإشعاع لعدد 126 مريض في كل من المستشفيات الآتية: محمد الأمين – أم درمان ومستشفى جعفر ابنعوف للأطفال.

خلصت هذه الدراسة إلى أن الجرعات الإشعاعية للمرضى متقاربة مع الدراسات السابقة. هذه الدراسة تتوفر معلومات أساسية عن مستوي الجرعات الإشعاعية للمرضى بهذه المستشفيات. لوحظ أن هناك اختلاف كبير بين قيام الجرعات الإشعاعية للفحص الواحد. يعزى ذلك اختلاف الأجهزة وطريقة الفحص بالإضافة إلى كفاءة تقني الإشعة ووزن المريض. هذه الدراسة تؤكد على أهمية برنامج ضبط جودة فعال في هذه المستشفيات ووضع مستويات مرجعية للأشعة.