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Chapter 1 

Introduction  

1.1 Quantum mechanics and matter  

 Atoms and elementary particles are described by quantum 

mechanical laws[1,2]. Quantum laws succeeded in describing the atomic 

spectra and electronic structure of atoms[3], and the behaviour of single 

isolated atom. However, the description of behavior of the bulk matter, 

which consists of a large number of interacting atoms, suffers from 

noticeable setbacks [4].For example the behaviour of high temperature 

super conductors (SC) cannot be described within the framework of 

ordinary quantum mechanics [5]. This may be related to the fact that SC 

are characterized by zero resistance and absence of friction[6].  

 Quantum Laws are also unable to quantize gravitational field 

which is described by general relativity [7].This means that there is a 

need for relativistic quantum theory recognizing the frictional medium, 

thus it can hopefully quantize gravity and describe high temperature SC. 

Einstein special relativity (SR) is one of the biggest achievements 

that make radical modification to the concepts of space and time. It 

states that the space-time interval between two events is no longer 

constant for frames of references moving with constant velocity 

with respect to each other. As far as the conservation of energy and 

momentum results from the invariance of space and time, thus it is 

quite natural to expect SR new concepts to have a direct impact on 

energy momentum expression [8, 9, and 10]. The relativity of time, 

space, mass, and energy were verified and confirmed 
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experimentally, these experiments comes as an ultimate reward 

confirming the key predictions of SR.                                     

Despite these remarkable successes of SR, it suffers from 

noticeable Setbacks. For instance SR does not satisfy the 

correspondence principle in the sense that the expression of energy 

for SR does not reduced to the conventional Newtonian one. This 

is since the SR energy expression has no expression sensitive to the 

potential energy [11, 12, and 13].                        

Lack of SR from a term taking care and feeling the existence of 

potential energy is in direct conflict with experiments and common 

sense. For instance, according to SR two particles moving with 

same velocity, one is in free space, and the other is in gravity field, 

have the same energy. of course experiments and common sense 

shows that their energy are different[14,15,16].  

          This defect encourages some researchers to propose a 

generalized version of SR, called generalized SR (GSR). This new 

GSR has an energy term representing a potential energy and 

satisfies a Newtonian limit [17, 18, and 19]. This success of GSR 

encourages using the conventional expression of kinetic and 

potential energy to see how energy conservation looks like in SR 

and GSR. This task is done in sections. Section 3 and 4 were 

devoted for discussion and conclusion.            

1.2 Research Problem: 

Quantum laws cannot easily describe the behavior of particles exiting in 

bulk matter. The approach used on collision is complex and is incapable 

of describing many physical phenomena associated with matter 

interactions. Quantum Lows are also not sensitive to systems having 

friction, potential and mass at the same time. 
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1.3 literature review: 

A wide variety of materials have mechanical friction.  This friction 

plays an important role in determining the mechanical properties and the 

electrical properties of the matter .The most popular physical theory that 

is used to describe the physical properties of matter is quantum 

mechanics. Recently quantum laws found to be incapable of describing 

the behavior of some new materials like super conductors and Nano 

materials[20,21,22]. This may be attributed to the fact that quantum laws 

have no terms sensitive to friction. Some work was done to derive 

Schrodinger quantum equation having frictional term [23,24,25]. This 

equation is used to solve the problem of particle in a box by some 

researches[26]. The solution shows quantized frictional energy. 

In Mineral Exploration Quantum mechanical technique are used. 

There are many spectral techniques used for identification of elements. 

Unfortunately these techniques are complex and expensive. There is a 

need for simple technique for exploration. Some works utilizes simple 

technique based on electrical conductivity[27,28]. The experimental 

work shows variation of conductivity with frequency, with line shape 

similar to absorption line .There is a minimum frequency for each 

element, which can be used as a finger print characterizing it .Fortunately 

this conductivity –frequency relation can be explained on the basis of 

quantum and statistical Physics. 

The effective mass Quantum laws are also used to find the 

effective mass can be related to the wave vector in parabolic or tensor or 

even in matrix-valued function of wave vector. Some forms are presented 

in more complex details than the band structure of mass itself. In other 

aspect one can look at electron-hole, which is attracted to each other by 
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the well-known Coulomb force, as a (exaction), which is very obvious an 

electrically neutral quasi particle. In this work done by Toum the 

effective mass role is treated in a form of theoretical method based on 

classical mechanics, bearing in mind Maxwell equations. The quantum 

mechanics is utilized also to find the effective mass value. The work also 

handled the effective mass electromagnetic theory, in both the absence 

and presence of the binding Energy. Schrödinger equation took an 

important part in the work where the equation is generalized to present 

the effective mass in another new form .Lastly very noticeable theoretical 

relation between the effective mass and the wave vector is obtained, by 

using generalized special relativity [29] 

In Amal work, the Alum material was grinded for different time's 

to display the spectrum of natural light and laser diode. The dimensions 

of the bodies were measured by scanner (easy scan microscope). A 

relationship was found between the change of particle Nano size and the 

radiation intensity of light. These empirical relations were found to be 

explained according to Schrodinger equation and Quantum Dots on the 

basis of tight binding approximation[30]. 

 Kamil and Dirar[31] also proposed also a new derivation for 

relativity and Klein- Gordon Equation. Maxwell’s equation for electric 

field was used to derive Einstein energy-momentum relation. This was 

done by using Plank photon energy relation beside wave solution in 

insulating no charged matter. Klein-Gordon quantum equation was also 

derived from the same Maxwell’s equation by utilizing resemblance 

between electric field vector and wave function in the intensity 

expression. 
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 A quantum model based on Plasma equation was also suggestion by 

Rasha and Dirac[32]. They apply it in super conductivity.  

 Superconductivity is one of the most important phenomena in solid 

state physics. Its theoretical framework at low critical 

temperature푇  is based on Bardeen, Cooper and Schrieffer theory (BCS). 

But at high 푇  above 135, this theory suffers from some setbacks. It 

cannot explain how the resistivity abruptly drops to zero below푇 , 

besides the explanation of the so called pseudo gap, isotope and pressure 

effect, in addition to the phase transition from insulating to super-

conductivity state. The models proposed to cure this drawback are mainly 

based on Hubbard model which has a mathematical complex framework. 

In this work a model based on quantum mechanics besides generalized 

special relativity and plasma physics. It is utilized to get new modified 

Schrodinger equation sensitive to temperature. An expression for 

quantum resistance is also obtained which shows existence of critical 

temperature beyond which the resistance drops to zero. It gives an 

expression which shows the relation between the energy gap and Tc. 

These expressions are mathematically simple and are in conformity with 

experimental results. 

 A lot of work was done to modify or derive new quantum 

Equations[33,34,35]. These equation aims to describe bulk matter and 

elementary particles behavior [36,37,38] 

  1.4 Aim of the work: 

 The aim of this work is utilize uncertainty principle to find 

friction energy. Then one finds also special relativistic energy relation for 

conserved system to find new a quantum mechanical law.  
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1.5 Thesis Layout: 

 This thesis consists of 4 Chapters. Chapter 1 is the introduction. 

Chapters 2 and 3 are devoted for relativistic quantum equations and 

literature review. The contribution is done in chapter 4. 
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Chapter 2 

Relativistic Quantum Equation 

2.1 Introduction: 

This chapter is concerned with basics of Q.M. Beside SR energy relation. 

The Klein-Gordon and Dirac equations are also presented. 

2.2 Relativistic time and length: 

 From the Lorentz transformation one can derive the correct 

transformation equation between two inertial frames in special relativity, 

which modify the Galilean transformation. We consisted two inertial 

frames S and S which hane a relative velocity V between them along x-

axis: 

 y                           푦        푥̅  

         vt 풔  

             O               풔 표̅ 푥 푥̅ 

 푥 

z                           푧̅ 

Figure (2.2.1): the reference frames sounds. 

Now suppose that there is a single flash at the origin of s and 풔 at time휏, 

when the two inertial frames happen to coincide the outgoing light wave 

will be spherical in shape moving outward with a velocity c in both s and 

푠̅ by Einstein's second postulate [39,40] from this figure 
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푦 = 푦      ,      푧 = 푧̅ 

Consider the outgoing light wave along the x-axis (y=z=0) 

The relation between positions in s and 푠 is giving by: 

푥 = 훾(푥 − 푣푡)                                                   (2.2.1) 

푥 = 훾(푥 + 푣푡 )                                                (2.2.2) 

Consider a light source emitted photons with speed c. in this case: 

푥 = 푐푡           푥 = 푐푡                                        (2.2.3) 

A direct substance of (2.2.3) in (2.2.2) yields: 

푐푡 = 훾(푐푡 − 푣푡) = 훾푐 1 −
푣
푐
푡                  (2.2.4) 

푐푡 = 훾(푐푡 + 푣푡 ) = 훾푐 1 +
푣
푐
푡             (2.2.5) 

Inserting (2.2.4) in (2.2.5) yields: 

푡 = 훾 1 +
푣
푐

1 −
푣
푐
푡   

Thus: 

훾 =
1

1 − 푣
푐

                                             (2.2.6) 

In this R is replaced by  훾 to be consistent with GSR notation the 

mathematical problem here is to find the relationships of  푥̅ and 푡̅ in terms 

of  x  and  t the results are the new well known, Lorentz transformation 퐿  

푥̅ = =  = 훾(푥 − 푣푡)                (2.2.7)  
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푡̅ = =                                     (2.2.8) 

푡̅ = 훾 푡 −
훽
푐
푥                                                   (2.2.9) 

We may also obtain the inverse transformations (from system 푠̅ to s) by 

replacing 푣 by −푣 and simply interchanging primed and unprimed 

coordinates [41,42,43] 

푥 =
푥̅ − 푣푡̅

1 − 푣
푐

=
푥̅ − 푣푡̅

1 − 훽
 = 훾(푥̅ + 푣푡̅)         (2.2.11) 

푡 =
푡̅ + 푣

푐 푥̅

1 − 푣
푐

=
푡̅ + 푣

푐 푥̅

1 − 훽
= 훾 푡̅ +

훽
푐
푥̅ (2.2.12) 

2.3  Relativity of length: 

Consider two observers, one on the fixed coordinate system S and the 

other on the moving system  푆̅ observing the length of a rod. If the two 

systems  are initially at rest and coincided the 60th will measure the same 

length L, or퐿 . The observer on s will express the length as  

퐿 = 푥 − 푥  .And on the 푆̅ will read it as 퐿 = 푥̅ − 푥̅  

From the Lorentz transformation: 

푥̅ = 훾(푥 − 푣푡 )                                                  (2.3.1) 

                    푥̅ = 훾(푥 − 푣푡 )                                               (2.3.2)   

푥̅ − 푥̅ = 훾[(푥 − 푥 ) − 푣(푡 − 푡 )]            (2.3.3) 
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Since the observer on S will measure both ends of rod at the same 

time푡 = 푡 , so equation (2.3.3) gives: 

                      푥 = 푥 = (푥̅ − 푥̅ )                                        (2.3.4) 

Where  

                    퐿 = 푥̅ − 푥̅                                              (2.3.5) 

                    = 1 − 훽                                              (2.3.6) 

And 푥 − 푥 = 퐿 is the Length as measured by the observer on S. thus we 

have: 

                      퐿 = = 퐿 1 − 훽                               (2.3.7) 

Which simply says that length appears to shrink as observed forms, as it 

speeds up along its length[44]. 

2.4  Relativity of mass: 

Assume the two particles A and B moving opposite to each other as 
shown in Fig (2.4.1). and fig (2.4.2) 

푉  •        퐿                                                       •푉   

Figure (2.4.1): particles moving opposite to each other 
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 푦 

 푦 

 

 

  

 s 푥 

  푠̅  

푧 푥̅ 

 푧̅ 

Figure (2.4.2): the frames s and s 

Assume that their velocity are equal in magnifies  

푉 = 푉                                                         (2.4.1) 

For particle A in frame S the time is given by  

푡 =
퐿
푉

                                                        (2.4.2) 

where퐿  is the distance between A and B The time for the particle B is 
given by: 

푡 =
퐿
푉

                                                    (2.4.3) 

From the law of conservation of momentum before collision and after 
collision: 

−푚 푉 + 푚 푉 = 푚 푉 −푚 푉  

푚 푉 = 푚 푉                                                        (2.4.4) 
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The particle velocity B in S frame is given by  

푉 =
퐿
푡

                                                                 (2.4.5) 

But the time in frame s and 푠̅ are related by 

푡 =
푡

1 −
                                                           (2.4.6) 

From equation (2.4.6) one gets: 

푉 =
퐿 1 −

푡
                                                   (2.4.7) 

Let: 

   푉 =                                                                (2.4.8) 

From the equations (2.4.4), (2.4.7) and (2.4.8): 

We get: 

푚 = 푚 1 −
푣
푐

                                           (2.4.9) 

Since the observer is at rest in frame A, thus  

푚 = 푚  

푚  = 푚 

푚 = 푚 1 −
푣
푐

 

푚 =
푚

1 −
                                     (2.4.9) 

This means that Particle mass increase with the increased speed. 
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2.5   Relativistic Energy: 

 According to Newton Second Law the energy gained by a particle 
of mass: 

퐸 = 퐹.푑푟 =
푑(푚푣 )
푑푡

푑푥 = 푑(푚푣)
푑푥
푑푡

= 푣푑(푚푣) 

= 푣푑(푚푣 ) − 푣푚푑 푣 

= 푚푣
퐵
]
퐴
−

푚 푣푑푣

1 −
                                       (2.5.1) 

Let: 

푣 = 푐 cos휃                푑푣 = 푐 sin 휃푑휃        (2.5.2) 

Hence: 

푚 푣푑푣

1 −
= −푐

푚 cos 휃 sin 휃 푑휃
√1 − cos 휃

 

= −푐 푚
cos휃 sin휃 푑휃

sin휃
= −푚 푐 cos휃푑휃 

= −푚 푐 푑 sin 휃 = −푚 푐 sin 휃 

= −푚 푐 1 − cos 휃 = −푚 푐 1 −
푣
푐

         (2.5.3) 

Combining Equations (2.5.1) and (2.5.3) yields: 

퐸 = 푚푣 +
푐 푚 1 −

1 −
 

퐸 = 푚푣 + 푚푐 −푚푣 = 푚푐                    (2.5.4) 
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Which is the SR Expression of Energy. 

2.6  Energy - momentum Relation: 

Any relativistic generalization of Newtonian second Law must 

satisfied two criterias: 

1- Relativistic momentum must be conserved in all frames of 

reference. 

2- Relativistic momentum must reduce to Newtonian momentum at 

law speed. 

The first criterion must be satisfied in order to satisfy Einstein's 

first postulate while second criteria must be satisfied as its knew that 

Newtonian's law are: 

Correct at sufficiently low speeds. A definition for the relativistic 

momentum of particle moving with velocity. 

And form the equation (2.5.12). 

퐸 =
푚 푐

1 −
=

푚 푐
                                                (2.6.1) 

퐸 =
푚 푐

=
푚 푐 퐸

√퐸 − 푃 푐
                                         (2.6.2) 

퐸 − 푃 푐 = 푚 푐 ,         퐸 − 푃 푐 = 푚 푐  

퐸 = 푃 푐 + 푚 푐                                            (2.6.3) 
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2.7   Wave Particle Duality: 

 Classical physics treat light as a wave for a long time the discovery 

of the particle of each nature or light was made by Blank. The energy 

particle is:  

퐸 = ℎ푓 = ℏ푤                                         (2.7.1)  

Where ℏ is called Blank constant and 푓 is the frequency this dual nature 

of light encourages De Broglie to suggest that particles also behaves as 

waves with wave length 휆 related to the momentum 푃  as:     

De Broglie hypotheses        

  푃 = = ℏ푘                                               (2.7.2)  

This dual nature encourages scientists to suggest that particles can 

considered as wave groups with wave function: 

Ψ = 퐴푒 ( )                                      (2.7.3)  

K and 푤 are wave number and angular frequency respectively. Using 

equations (2.2.1, 2) yields: 

Ψ = 퐴푒ℏ( )                                   (2.7.4) 

2.8   Uncertainty Relation: 

 The wave packet representation requires that it is impossible to 

measure position and momentum exactly at the same time the position of 

the particle is uncertain by ∆푥 and the uncertainty of momentum is ∆푝. 
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 The uncertainty relation can be derived from the wave backer 

picture. 

 

 

 

 

 

 

 

 

  ∆푥 

 

                                                                                                                     휆푔 

Fig. (2.8.1): wave length and position uncertainty for a wave basket 

In view of Fig (2.2.1) the wave length 휆푔  of the wave backet is related to 

the uncertainty in position according to the relation: 

휆푔 = 2∆푥                                                            (2.8.1) 

But the wave length is related to the wave number according to the 

relation: 

휆푔 = 2휋
푘푔                                                          (2.8.2) 

Using equations (2.8.1, 2) yields: 

2∆푥 =        ∆푥. 푘푔 = 휋                                  (2.8.3)  
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But 

푘푔 =
∆푘
2

                    푘 =
2휋
휆

                              (2.8.4) 

From De Broglie equation (2.7.2): 

푃 =
ℎ
휆

=     
2휋ℎ
휆2휋

=
푘ℎ
2휋

= ℏ푘 

                        ∆푝 = ∆푘 = ℏ∆푘                                            (2.8.5) 

Hence: 

∆푘 =
2휋
ℎ
∆푝                                                      (2.8.6) 

Thus from (2.8.3), (2.8.4) and (2.8.5) 

∆푥.
2휋
ℎ

.∆푝 = 2휋                                           (2.8.6) 

Thus the position and momentum uncertainty relation is given by: 

∆푥.∆푝 = ℎ                                                 (2.8.7) 

2.9   Relativistic Energy Relation 

 According to SR the energy equation is given by: 

퐸 = 푚푐                                                    (2.9.1) 

Where m is the mass and c is the speed of light in vacuum. For a photon, 

max plank propose that: 

퐸 = ℎ푓                                                       (2.9.2) 

Where h is the Blank constant and f is the frequencies. Comparing 

equations (2.9.1) and(2.9.2) 
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퐸 = 푚푐 = ℎ푓    ⇒     푚 =
ℎ푓
푐

 

Thus the momentum is given by: 

푚푐 =
ℎ푓
푐

= 푝 = 푚푐 =
ℎ푓
푐

                               (2.9.3) 

But from (2.9.2) and the fact that: 

푐 = 푓휆 

퐸 = ℎ푓 =
ℎ푐
푓

                                                      (2.9.4) 

Hence from (2.9.4, 3, 1) 

푃 = 푚푐 =
푚푐
푐

=
퐸
푐

=
ℎ
휆

 

휆 =
ℎ
푝

                                               (2.9.5) 

2.10  Klein-Gordon Equation 

Klein and Gordon equation is based on the dual nature of particles 

as well as SR energy-momentum relation from equation (2.2.4) 

Ψ = 퐴푒ℏ( )                                                         (2.10.1) 

 The energy and momentum in SR are related according to the 

relation: 

퐸 = 푐 푃 + 푚 푐                                             (2.10.2) 

Multiplying both sides by Ψ yieds: 

퐸 Ψ = 푐 푃 Ψ + 푚 푐 Ψ                                  (2.10.3) 
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Using equation (2.10.1) yields: 

푖ℏ
휕Ψ
휕푡

= 퐸Ψ        ,−ℏ
휕 Ψ
휕푡

= 퐸 Ψ 

ℏ
푖
∇Ψ =

ℏ
푖
휕Ψ
휕푥

= PΨ      ,−ℏ ∇ Ψ = 푃 Ψ        (2.10.4) 

Interesting equation (2.10.4) in (2.10.3) yields: 

−ℏ
휕 Ψ
휕푡

 = −푐 ℏ ∇ Ψ + 푚 푐 Ψ                  (2.10.5) 

Which is the Klein-Gordon equation. 

2.11  Dirac Equation: 

 Dirac equation is based mainly on the assumption that E and P in 

SR are related linearly to obey: 

퐸 = 푐훼.푃 + 훽푚 푐                                     (2.11.1) 

Multiplying both sides by Ψ yields: 

퐸Ψ = 푐훼.푃Ψ + 훽푚 푐 Ψ                           (2.11.2) 

Using equation (2.10.4) gives Dirac relativistic equation in the form: 

This equation is the linear quantum relativistic equation. The terms 훼 and 

훽 are matrices.   
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Chapter 3 

Literature Review 

3.1 Introduction:  

Different attempts were made to conduct quantum model accounting for 

the effect of friction and collision on particles moving in a bulk matter. 

This chapter coats some of them. 

3.2 Schrodinger Equation in Presence of Thermal and Resistive 

Energy: 

In the work done by Sawsan, Dirar and others, new energy 

relations was made.  

The energy of ordinary Schrödinger equation includes kinetic and 

potential energy .However, there are other energy types which should be 

considered, for example the energy lost E by friction for oscillating 

system which is given by[46] 

퐹 푑푥                                                  (3.2.1) 

The thermal energy is given in terms of temperature and Boltzman 

constant k as: 

퐸 = 푘푇                                                (3.2.2) 

Where there is no room in ordinary conventional Schrödinger equation 

for feeling the effect of friction and heating does not recognize these 

energy types. 

To incorporate energy considers the plasma equation: 
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푚푛
휕푣
휕푡

+ 푣.∇푣 = 퐹 − ∇푃 − 퐹                  (3.2.3) 

Where P stands for the force, thermal pressure. 

The resistive force is given by 

퐹 =
푛푚푣
휏

                                                   (3.2.4) 

Suggesting the displacement to be 

푥 = 푥 푒  

휕푥
휕푡

= 푥 푒 = −푖휔푥 

푣 = −휔푥                                               (3.2.5) 

If follows that 

퐹 = −푖
푛푚휔푥
휏

                                         (3.2.6) 

Since 푣 is function of t and x, it follows that 

푑푣 =
휕푣
휕푡
푑푡 +

휕푣
휕푥

푑푥 

휕푣
휕푡

=
휕푣
휕푡
푑푡 +

휕푣
휕푥

푑푥 

휕푣
휕푡

=
휕푣
휕푡
푑푡 + 푣.훻푣                               (3.2.7)   

Thus by using equation (3.2.7) and equation (3.2.3) reduces to  

푚푛
푑푣
푑푡

= 퐹 − ∇푃 − 퐹                             (3.2.8) 
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If the field potential per particle is given by v, then the field force F takes 

the form 

퐹 = −
휕(푛푣)
휕푥

                                                          (3.2.9) 

The left hand side of equation (3.2.8) is given by: 

푚푛
푑푣
푑푡

= 푚푛
푑푣
푑푥

푑푥
푑푡

= 푚푛푣
푑푣
푑푥

 

The pressure is given in turn to be: 

∇푃 =
휕푝
휕푥

=
푑푝
푑푥

=
푑(푛푘푇)
푑푥

                              (3.2.10) 

Where the thermal pressure takes the form  

푃 = 푛퐾푇                                                         (3.2.11) 

Then equation (3.2.7) can be re expressed with the aid of equations 

(3.2.1) and (3.2.9) to be 

푑푚푛푣
푑푥

= −
푑(푛푣)
푑푥

−
푑(푛퐾푇)
푑푥

+ 푖
푚휔푥푛
휏

 

Thus 

푑
푑푥

1
2
푚푛푣 + 푛푣 + 푛퐾푇 = 푖

푚휔푛
휏

푥푑푥 

1
2
푚푛푣 + 푛푉 + 푛퐾푇 − 푖

푚휔푛푣
2휏

= 퐶  

(푛퐸 + 푛푣 + 푛퐾푇) − 푖
푚휔푛푥

2휏
= 퐶                  (3.2.12) 

The left hand side is a constant of motion and has a dimension of energy. 

Thus one can define the total energy 퐹  to be 
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퐹 = 푛퐸 = 푛
1
2
푚푉 + 푛푣 + 푛퐾푇 −

푚휔퐴
2휏

   (3.2.13) 

But 

1
2
푚푉 =

푚 푉
2푚

=
푃
2푚

                                                (3.2.14) 

Thus the total energy of one particle can be rewritten in the form: 

퐸 =
푃
2푚

+ 푣 + 푘푇 − 푖
푚휔푥

2휏
                                  (3.2.15) 

This expression stands for the total energy of a single particle, which 

consists beside kinetic energy, additional terms. The third term represents 

the thermal energy, while the forth term stands for the frictional energy. 

To derive Schrödinger equation, for this new energy expression, equation 

(3.2.14) must be multiplied by the wave function 휓to get 

퐸휓 =
푃
2푚

휓 + 푉휓 + 푘푇휓 − 푖
푚휔푥

2휏
휓               (3.2.16) 

The wave function for a free particle is given by 

휓 = 퐴푒 ℏ
( )                                    (3.2.17) 

Differentiating 휓with respect to t and x yields 

휕휓
휕푡

= −
푖
ℏ
퐸휓 

푖ℏ
휕휓
휕푡

= 퐸휓 

휕휓
휕푥

=
푖
ℏ
푝휓 
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휕 푦
휕푥

= −
푝
ℏ
휓                                                (3.2.18) 

Substitute equation (3.2.18) in equation (3.2.16) yields 

푖ℏ
휕휓
휕푡

= −
ℏ 푣
2푚

휓 + 푣휓 + 푘푇휓 − 푖
푚휔푥

2휏
휓                (3.2.19) 

If one rewrite the frictional term in the form 

퐸 = 푖
푚휔퐴

2휏
= 푖

푚휔퐴
2휏휔

= 푖
푚 푉
2휏푚휔

= 푖
푚 푉 ℏ
2휏푚ℏ휔

 

= 푖
푚휔푣

2휏푚ℏ휔
= 푖

ℏ푃
2휏푚 푐

= 푖
ℏ

2휏푚 푐
푃                    (3.2.20) 

Where: 

  휔ℏ = 푚푐  

And equation (4) gives: 

푣 = |푣 | = 푣. 푣∗ = (−푖휔푥)(푖휔푥) = 휔푥  

Substitute equation (3.2.5) in equation (3.2.14) to get 

퐸휓 =
푃
2푚

휓 + 푉휓 − 푖
ℏ

2휏푚 푐
푃 휓                       (3.2.21) 

Substitute equation (3.2.5) in equation (3.2.14) to get 

푖ℏ
휕휓
휕푡

= −
ℏ
2푚

휕 휓
휕푥

+ 푘푇휓 − 푖
ℏ

2휏푚 푐
휕 휓
휕푥

+ 푣휓    

푖ℏ
휕휓
휕푡

= −
ℏ
2푚

∇ 휓 + 푘푇휓 − 푖
ℏ

2휏푚 푐
∇ 휓 + 푣휓     (3.2.22) 

This is the Schrödinger equation for thermal resistive medium. 
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Particle in box: 

The motion of the particle in box can be described by Schrodinger 

Equation. The potential per particle is given by  

푉 =  0                                                            (3.2.23)  

Substituting equation (3.2.23) in equation (3.2.22) yields 

푖ℏ
휕휓
휕푡

= −
ℏ
2푚

∇ 휓 + 푘푇휓 − 푖
ℏ

2휏푚 푐
∇ 휓       (3.2.24) 

Consider a solution of the form 

휓 = 푒 푢                                                  (3.2.25) 

Inserting equation (3.2.25) in (3.2.24) yields: 

ℏ휔푒 푢

= −
ℏ
2푚

∇ 푒 푢 + 푘푇푒 푢

− 푖
ℏ

2휏푚 푐
∇ 휓푒 푢                                                             (3.2.26) 

By considering 

퐸 = ℏ휔 

And eliminating common terms one gets: 

퐸푢 = −
ℏ
2푚

∇ 푢 + 푘푇푒 푢 − −푖
ℏ

2휏푚 푐
∇ 푒 푢       (3.2.27) 

To solve this equation consider the solution  

푢 = 퐴 sin훼푥                                               (3.2.28) 

Differentiating 푢with respect to 푥 yields 
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휕푢
휕푥

= α cos훼푥 

Thus 

휕 푢
휕푥

= −훼 sin 훼푥 = −훼 푢           (3.2.29) 

Substituting equation (3.2.29) in equation (3.2.27) to get 

퐸푢 =
ℏ
2푚

훼 푢 + 푘푇푢 + 푖
ℏ

2휏푚 푐
∇ 훼  

퐸 =
ℏ
2푚

훼 + 푘푇 + 푖
ℏ

2휏푚 푐
∇ 훼  푢                   (3.2.30) 

Rearranging for getting α, yields 

ℏ
2푚

+ 푖
ℏ

2휏푚 푐
훼 = 퐸 − 푘푇                              (3.2.31) 

훼 = 퐸 − 푘푇/
ℏ
2푚

+ 푖
ℏ

2휏푚 푐
                          (3.2.32) 

훼 = 퐸 − 푘푇/
ℏ
2푚

+ 푖
ℏ

2휏푚 푐
                        (3.2.33) 

훼 =
퐸 − 푘푇

ℏ 1 + ℏ                                           (3.2.34) 

For particle in a box 

푢(푥 = 퐿) = 0 

Thus from (28) 

푢 = 퐴 sin훼퐿 = 0 
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훼퐿 = 0, ±휋, ±2휋, … 

             = 2푛 

훼 =
푛휋
퐿

                      푛 = 0, ±1, ±2, …                (3.2.35) 

Thus from (12) 

퐸 − 푘푇 =
푛 휋
퐿

ℏ
2푚

1 +
푖ℏ

휏푚푐
 

퐸 = 푘푇 +
푛 ℏ
8퐿 푚

1 +
푖ℏ

휏푚푐
                           (3.2.36) 

Where 

ℏ =
ℎ

2휋
 

The energy in equation (3.2.36) can be written in the form: 

퐸 = 퐸 + 퐸  

Where 

퐸 = 푘푇 +
푛 ℏ
8퐿 푚

                                (3.2.37) 

퐸 = 푘푇 +
푛 ℎ ℏ

8퐿 푚 푐
                            (3.2.38) 

 푬ퟏStands for the energy gained by the particle, while푬ퟐ is the energy 

lost by the particle.  

Harmonic Oscillator: 

The Harmonic Oscillator is characterized by the potential: 
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푉 = +
1
2
푘푥                                                   (3.2.39) 

 Inserting equation (3.2.39) in equation (3.2.27) yields: 

−
ℏ
2푚

∇ 푢 + 푘푇푢 −
푖ℏ

2휏푚 푐
∇ 푢 −

1
2
푘푥 푢 = 퐸푢     (3.2.40) 

Consider the solution: 

푢 = 퐴푒 ∇푢 = −2훼푥푢 

∇ 푢 = −2훼푢 − 2훼푥∇푢 = −2훼푢 + 4훼 푥 푢       (3.2.41) 

A direct substitution of equation (3.2.41) in equation (3.2.40) yields 

+
ℏ
2푚

[2훼 − 4훼 푥 ]푢 + 푘푇푢 +
ℏ
2푚

2훼 − 4훼 푥
2휏푚푐

ℏ푢 +
1
2
푘푥 = 퐸푢 

Equating the coefficients of u and 푥 푢 on both sides' yields: 

−
4ℏ
2푚

1 +
푖ℏ

2휏푚푐
훼 −

1
2
푘 = 0           2

ℏ
2푚

1 +
푖ℏ

2휏푚푐
훼 + 푘푇 = 퐸  

By ignoring temperature term, one gets: 

퐸 = 훼 1 +
푖ℏ

2휏푚푐
ℏ
푚

                                       (3.2.42) 

The energy quantization can be obtained from equation (3.2.22) by 

separating variables, and assuming ψ to be: 

휓 = 휔(푡)푣(푥)                                                 (3.2.43) 

To get: 

푖ℏ
휔
푑휔
푑푡

=
1
푢
−
ℏ
2푚

1 +
푖ℏ

휏푚푐
∇ 푢 + 푉 = 퐸 
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Thus: 

푖ℏ
휔
푑휔
푑푡

= 퐸 

ln휔 = 푐 − 푖
퐸
ℏ
푡 

푑휔
휔

=
퐸
푖ℏ

푑푡 + 푐  

휔 = 푒 푒 ℏ = 푐 푒 ℏ                                   (3.2.44) 

The periodicity condition requires: 

휔(푡 + 푇) = 휔(푡)

푒 ℏ = 1
 

cos
퐸
ℏ
푇 = 1 

퐸
ℏ
푇 = 2푛휋 

푒 ℏ
( ) = 푒 ℏ

( ) 

csc
퐸
ℏ
푇 − 푖 sin

퐸
ℏ
푇 = 1 

sin
퐸
ℏ
푇 = 0 

퐸 =
푛ℏ
푇

= 푛ℏ푓                                         (3.2.44) 

Therefore energy is quantized according to equation (3.2.42) and 

equation (3.2.43) beside equation (3.2.44), one gets: 
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푛ℏ푓 =
(푚푘)

2ℏ 1 + ℏ
 

퐸 = 푛ℏ푓 =
ℏ
2

푘
푚

푖ℏ
휏푚푐

=
1
2
ℏ휔푐 1 +

푖ℏ
휏푚푐

(3.2.45) 

Discussion: 

Plasma equation in the presence of friction and thermal energy equations 

(3.2.1, 3.2. 3, and 3.2.7) is utilized to derive new Schrödinger Equation 

which is sensitive to temperature and friction as shown by equation 

(3.2.13). The friction term and manifests itself through (τ), where  

훾 =
푚
휏

 

For particle in a box equation (3.2.36) shows the energy is quantized, 

including the energy loss due to friction which appears as an imaginary 

part. This imaginary energy resembles the optical potential which 

describes inelastic collision in a sea herring process. It also resembles the 

role of imaginary wave number in electromagnetic theory which is related 

to the damping term in the expression of light intensity that describes the 

energy loss by light when it enters a certain medium. Equations (3.2.36) 

and (3.2.37) show that the energy for a particle in a box reduces to the 

ordinary one in the absence of friction and thermal energy.  

For a harmonic oscillator the solution equation (3.2.41) and the 

value of (α) is complex. This solution reduces to the ordinary one in the 

ordinary one in the absence of friction. Equation (3.2.44), shows that the 

energy is quantized. Equation (3.2.45) indicates the existence of friction 

term as an imaginary part.  
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Thus the new Schrodinger Equation derived in this work is capable of 

describing a physical system in which temperature and friction plays an 

important role. It shows that friction energy appear as an imaginary part 

and is quantized. 

3.3 Using the tight binding approximation in deriving the quantum 

critical temperature superconductivity equation: 

According to plasma equation, a fluid of particles of mass m, number 

density n, velocity v, force F and pressure P is given by [47] 

푚푛
휕푣
휕푡

+ 푣.∇푣 = 퐹 − ∇푃                                              (3.3.1) 

If F is a field force then  

퐹 = −푛∇푉 

Where Vis the potential of one particle. In one dimension 

푚푛
휕푣
휕푡

+ 푣.∇푣 = −푛∇푉 − ∇푃 = 푛
푑V
푑푥

−
푑P
푑푥

 

푑푣 =
휕푣
휕푡
푑푡 +

휕푣
휕푥

푑푥 

휕푣
휕푡

=
휕푣
휕푡

+
휕푣
휕푥

휕푥
휕푡

=
휕푣
휕푡

+ 푣
휕푣
휕푥

                                   (3.3.2) 

Thus according to Equation (3.3.1), in one dimension 

푚푛
휕푣
휕푡

= −푛
푑v
푑푥

−
푑P
푑푥

                                              (3.3. 3,) 
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3.3.1 Schrödinger Temperature Dependent Equation: 

     Schrodinger equation can be derived by using new exp ression of 

energy obtained from the plasma equation to do this one can use (3.3.2) 

to get  

푚푛
휕푣
휕푥

푑푥
푑푡

= −푛
푑v
푑푥

−
푑P
푑푥

 

Multiplying both sides by 푑푥 and integrating yields 

푚푛 푣푑푣 = −푛 푑푉 − 푑푃 

Considering the pressure to be  푃 = 훾푛푅푇 in general, thus  

푚푛
푣
2

= −푛푉 − 푃 = −푛푉 − 훾푛푘푇 

Hence  

푚
푣
2

+ 푉 + 훾푘푇 = 푐표푛푠푡푎푛푡 

This constant conserved quantity looks like the ordinary energy beside 

the ordinary thermal energy term  

퐸 =
푝
2푚

+ 푉 + 훾푘푇                                         (3.3.3) 

To find Schrodinger equation for it, consider the ordinary wave function  

훹 = 퐴푒 ℏ( ) 

Differentiating both sides by t and x yields  

휕훹
휕푡

= −
푖
ℏ
퐸훹 ⇒ 푖ℏ

휕훹
휕푡

= 퐸훹 
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휕 푦
휕푥

= −
푝
ℏ
훹 ⇒ −ℏ 훻 훹                              (3.3.4) 

Multiplying both sides of Equation(3.3.3)by 훹  yields  

퐸훹 =
푝
2푚

훹 + 푉훹 

Substituting Equation(3.3.4), one gets 

푖ℏ
휕훹
휕푡

= −
ℏ
2푚

∇ 훹 + 푉훹 + 훾푘푇훹 

This equation represents Schrödinger equation when thermal motion is 

considered. The solution for time free potential can be 

훹 = 푒 ℏ( )푢 ⇒
휕훹
휕푡

= −
1
ℏ
퐸훹 

 퐸훹 = −
ℏ
2푚

∇ 훹 + 푉훹 + 훾푘푇훹 

 The time independent Schrödinger equation thus takes the form  

퐸푢 = −
ℏ
2푚

∇ 푢 + 푉푢 + 훾푘푇푢                           (3.3.5) 

For constant potential, the solution can be  

푢 = 푒         ,      푉 = 푉  

Inserting this solution in Equation (3.3.5) yields  

퐸푢 =
ℏ 푘
2푚

푢 + 푉 푢 + 훾푘푇푢   

퐸 =
ℏ 푘
2푚

+ 푉 + 훾푘푇          

If one set the kinetic term to be 퐸 = ℏ , one can thus write the energy 

in the form 
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퐸 = 퐸 + 푉 + 훾푘푇                                         (3.3.6) 

This quantum energy expression involves a thermal term beside kinetic 

and potential term.  

3.3.2 Quantum Resistance: 

The resistance, z, per unit length (L = 1) per unit area (A = 1) can be 

found from the ordinary definition of, z. The resistance z is defined to be 

the ratio of the potential, u, to the current per unit area, J, i.e.  

푧 =
푢
퐼

=
푢
퐽퐴

=
푢
퐽

=
푢

푚푒푣
=
푚푢
푛푒푝

                          (3.3.7) 

With n and e standing for the free hole or electron density and charge 

respectively, while p represents the momentum of electron of mass m, 

where 

푃 = 푚푣 

This resistance (it actually stands for resistivity) can be found by using 

the laws of quantum mechanics for a free charge which are responsible 

for generating the electric current, where the wave function takes the 

form  

훹 = 퐴푒                                              (3.3.8) 

This selection of 훹comes from the fact that the resistance property comes 

from the motion of the free charges. The potential u is related to the 

Hamiltonian H through the relation  

퐻 = 푒푢 

Thus for freely moving charge one gets:  

퐻 = 푒푢 =
1
2
푚푣 =

푝̂
2푚

= −
ℏ
2푚

∇  

In view of Equation (3.4.8) and according to the correspondence principle 

V takes the form  
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푢 =
〈퐻〉
푒

=
∫훹퐻훹푑푥

푒
=
∫훹푝̂ 훹푑푥

2푚푒
                  (3.3.9) 

=
ℏ k
2푚푒

훹훹 푑푥 =
ℏ k
2푚푒

 

While P becomes  

푝 = 〈푝̂〉 = 훹푝̂훹푑푥 = ℏ푘 훹훹푑푟 = ℏ푘                  (3.3.10) 

Thus inserting Equations (3.3.9), (3.3.10) in (3.3.7) one obtains  

푍 =
푚ℏ 푘

2푚푒 ℏ푘푛
=

ℏ푘
2푒 푛

=
ℎ

2휋
2휋
휆

1
2푒 푛

 

푧 =
ℎ

2휆푒 푛
=

ℎ푓
2푓휆푒 푛

=
ℎ푓

2푒 푛푣
=
ℏ푓√휇휀
2푒 푛

=
ℏ휔√휇휀
2푒 푛

(3.3.11) 

Where the expression 푓휆  for velocity is found by assuming charges to be 

waves, then following the electromagnetic theory (EMT), the speed of the 

waves is affected by electric permittivity 휀 and magnetic permeability 

through the relation  

푣 = 푓휆 =
1
√휇휀

                            (3.3.12) 

Where the effect of medium changes the wave length, 휆, while the 

frequency, f, is unchanged. Thus assuming the charge density, n, to be 

constant, the only change of, Z, can be caused by 휇and휀. 

It is also important to note that, in superconductors, the current can flow 

without the aid of deriving potential u. the role of u is confined only in 

enabling electrons to gain kinetic energy through the relations  

푒푢 =
1
2
푚푣 = 푘                       (3.3.13) 
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Where this potential can be applied between any two arbitrary points in 

the superconductors then remove it. The role of resistive force is 

neglected here as done in deriving London equations.  

The expression for Z can also be found by inserting Equation(3.3.13) in 

to get 

푧 =
푢
퐽

=
푢
푛푒푣

=
푚푣2

2푛푒 푣
=

푚푣
2푛푒

=
푝

2푛푒
=

ℎ
2휆푛푒

 

푧 =
ℎ푓

2휆푓푒 푛
=

ℎ푓
2푒 푛푣

=
ℏ푓√휇휀
2푒 푛

=
ℏ휔 휇휀0(1 + 푥)

2푒 푛
(3.3.14) 

It is important to note that this quantum resistance expression resembles 

the ones found by Tsui (3.4.3) where one uses De Broglie hypothesis 

(3.4.4), i.e. 

푝 = ℎ/휆 

3.3.4 Calculation HTSC by Electric Susceptibility: 

Consider holes in a conductor having resistive force 퐹 , magnetic force 

퐹 and pressure force 퐹 , beside the electric force퐹 , the equation motion 

then becomes (3.3.3): 

퐹 =  퐹 +  퐹 +  퐹 −  퐹  

Where: 

 퐹 = −∇푃,  퐹 = −
푚푣
휏

,퐵푒푣 + 푒퐸 = 푒퐸 푒  

P, x, m, v, 휏, B, e and E stands for the pressure, displacement, mass, 

velocity, relaxation time, magnetic flux density, electron charge and 
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electric field intensity respectively. Thus the equation of motion takes the 

form 

푚푥̈ = −
푚푣
휏

+ 퐵푒푣 − ∇푃                                 (3.3.15) 

The solution of this equation can be suggested to be: 

푥 = 푥 푒  

푣 = 푣 푒  

퐸 = 퐸 푒                                         (3.3.16) 

Inserting (3.3.16) in (3.4.15) yields 

−푚휔 푥 =
푚푣
퐸 휏

+
퐵푒푣
퐸

−
푘푇∇푛
퐸

+ 푒 퐸 

푥 =
− + ∇ − 푒 퐸

푚휔
 

This expression of x can be utilized in the formula which relates the 

electric polarization vector P to the susceptibility P on one hand and to 

the number of atoms N via the following relation 

푃 = 휀 푥퐸 = +푒푁푥                                       (3.3.18) 

Motivated by the important role of holes in HTSC, displacement can be 

assumed to result from the motion of holes or positive nuclear charges, 

thus inserting Equation (3.3.17) in (3.4.18) yields 

휀 푥퐸 = 푒푁
− + ∇ − 푒 퐸

푚휔
 

x =
eN

mω ε E
mv
τ

− Bev + kT∇n − eE   (3.3.19) 
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The electric flux density assumes the following relation 

퐷 = 휀퐸 = 휀 퐸 + 푥휀 퐸 = 휀 (1 + 푥)퐸 = 푃 + 휀 퐸 

The electric permittivity is given by 

휀 = 휀 (1 + 푥)                                           (3.3.20) 

The electric permittivity is thus given according to Equation (3.3.20) to 

be 

휀 = 휀 (1 + 푥) 

= 휀 1 +
푒푁

푚휔 퐸
mv
τ

− Bev + kT∇n − eE      (3.3.21) 

푧 =
ℏ휔

2푛푒
휇휀 1 +

푒푁
푚휔 휀 퐸

kT∇n +
mv
τ

− Bev − eE  (3.3.22) 

푧 =
ℏ휔

2푛푒
휇휀

푚휔 휀 퐸 + 푒푁 kT∇n + − Bev − eE
푚휔 휀 퐸

 

The resistance Z can be found by inserting (3.3.21) in (3. 3.14) to get: 

푚휔 휀 퐸 + 푒푁 kT∇n +
mv
τ

− Bev − eE < 0  

kT∇n < 퐵푒v + 푒퐸 −
푚휔 휀 퐸

푒푁
−

mv
τ

 

T <
Bev
k∇n

+
(푒 − 푚휔 휀 )퐸

푒푁k∇n
−

mv
τk∇n

 

Thus the critical temperature is given by 
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T <
(Beτ − 푚)푣

τk∇n
+

(푒 − 푚휔 휀 )퐸
푒푁k∇n

            (3.3.23) 

If the internal field B results from No atoms each having a verge flux 

density 휇퐵 then: (3.4.5). 

퐵 = 휇 푁                                                 (3.3.24) 

Therefore T  can take the form 

T =
(휇 푁 eτ − 푚)푣

τk∇n
+

(푒 − 푚휔 휀 )퐸
푒푁k∇n

           (3.3.25) 

3.3.5 Tight Binding Critical Temperature and Energy Gap: 

In tight binding model (3.4.5) the energy of electrons in the crystal is 

given by  

휀 = 휀 + 훼 + 2훾 cos푘푎                            (3.3.26) 

Where휀  is the energy in the absence of crystal field, while the other 

terms describe the effect of the crystal field. The energy 휀  can split into 

two terms the kinetic part which can describe the thermal motion in the 

form 푘푇 beside the potential term−푉  for attractive force or bounded 

particle.  

Thus one can write 

휀 =
ℏ 푘

2푚
+
푓
2
푘푇 − 푉                            (3.3.27) 

휀 =
ℏ 푘

2푚
+ 훾푅푇 + 푉 

휀 =
푓
2
푘푇 − 푉 − 훼  

훼 =
ℏ 푘
2푚
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푓 represents the degrees of freedom. 

The terms describing the effect of the crystal force are 

훼 = ∅ 퐻 ∅  

훾 = ∅ 퐻 ∅  

훼 = 훼 + 훼  

In view of Equations (3.4.26) and (3.4.27) 

휀 =
푓
2
푘푇 − 푉 + 훼 + 2훾 cos푘푎               (3.3.29) 

Here 퐻 stands for the crystal force Hamiltonian part, while∅  and 

∅ are the states of particles located at the site m and j respectively.  

The superconductor is characterized by the existence of energy gap. This 

gap can be under stood here in two ways. If the electrons or holes are not 

free. This requires E to negative. Thus Equations (3.3.27) and (3.3.26) 

needs 

휀 =
푓
2
푘푇 − 푉 + 훼 + 2훾 cos 푘푎 < 0               (3.3.30) 

Or the max value of 휀 where cos푘푎 = −1 is less than zero, i.e. 

휀 =
푓
2
푘푇 − 푉 + 훼 + 2훾 cos 푘푎 < 0        (3.3.31) 

푓
2
푘푇 ≤ 푉 − 훼 + 2훾 

For constant attractive crystal force 

퐻 = −푉  
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훼 = ∅ 퐻 ∅ = − ∅ 푉 ∅ = −푉 훿  

훾 = ∅ −푉 ∅ = −푉 ∅ 푉 ∅ = −푉 훿    (3.3.32) 

Thus  

푓
2
푘푇 ≤ 푉 − 훼     

Thus the critical temperature is given 

푓
2
푘푇 ≤ 푉 − 훼                                          (3.3.33) 

Substituted Equation (3.3.33) beside Equation (3.3.32) in Equation 

(3.3.30) one gets 

휀 =
푓
2
푘푇 −

푓
2
푘푇                                 (3.3.34)     

The energy gap ∆ is equal to the difference between zero energy in 

conduction band and the negative energy in the valence band. Thus  

∆= 0 − 휀 =
푓
2
푘푇 −

푓
2
푘푇  

Since this relation holds 푇 < 푇  for one can neglectT 

Since it is small to get  

∆=
푓
2
푘푇  

Equation (3.3.30) can also be utilized to get the forbidden energy states 

which characterizes superconductors, where  

cos푘푎 =
휀 − 푘푇 + 푉 − 훼

2훾
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The energy is forbidden when cos푘푎 ≥ 1 

휀 − 푘푇 + 푉 − 훼
2훾

≥ 1 

휀 −
푓
2
푘푇 + 푉 − 훼 ≥ 2훾 

푓
2
푘푇 + 훼 − 휀 − 푉 − 훼 ≤ −2훾 

푓
2
푘푇 ≤ 휀 + 푉 − 2훾 − 훼 

Thus the critical temperature  

푓
2
푘푇 = 휀 + 푉 − 2훾 − 훼                               (3.3.35) 

The forbidden energy is thus related to the critical temperature through 

the relation  

휀 =
푓
2
푘푇 − 푉 + 2훾 + 훼                            (3.3.36) 

3.4 Derivation of Klein – Gordon equation for Maxwell s electric 

wave equation: 

Kamil uas Maxwell’s equation to derive Klein – Gordon equation 

[49] Maxwell’s equation for an electric of field intensity E in a dielectric 

insulating non-charged medium material of electric dipole moment P is 

given by equation (3.3.16) to be: [48] 

−∇ 퐸 + 휀 휇
휕 퐸
휕푡

= −휇
휕 푃
휕푡

                    (3.4.1) 

Where for non-charged insulating material: 
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휌 = 0       ,         휎 = 0 

Where for simplification it is better to consider current density J as a 

constant, that is: 

휕퐽
휕푡

= 0                                                              (3.4.2) 

The electric dipole moment is given by: 

푃 = 푛푞 푥 =
푁푞 푥
퐴푥

 

=
푄
퐴

=
∅
퐴

                                                     (3.4.3) 

= 퐷 = 휀퐸 

Where n is the number density of charge, N is the total number, A is the 

area and x is the distance.  

V= Volume =퐴푥 

Q = Total charge = 푁푞  

푞 = Charge of a single pole according to Gauss law. 

 The charge Q and total flux∅ are related by:  

푄 = ∅                                                         (3.4.4) 

To solve equation (3.4.1), one can assume the electric field intensity in 

free space E to be: 

퐸 = 퐸 푒 ( )                                   . (3.4.5) 

Thus: 



 
44 

 

휕 퐸
휕푡

= −휔 퐸          ∇ 퐸 = −푘 퐸            (3.4.6) 

From equations (3.4.5) and (3.4.3): 

휕 퐸
휕푡

= −휇 휀휔 퐸                                      (3.4.7) 

The speeds in vacuum c and in the medium v are given: 

푐 =
1
휇 휀

                         푣 =
1
휇 휀

                      (3.4.8) 

Thus (3.4.7) reads: 

−휇
휕 푃
휕푡

= −휇 휀휔 퐸 = −
1
푣
휔 퐸                     (3.4.9) 

= −
2휋푓
푓휆

퐸 = −푘 퐸 

Inserting (3.4.6) and (3.4.9) in (3.4.1) yields: 

푘 −
휔
푐

= −푘                                             (3.4.10) 

Multiplying both sides by 푐 andℏ , one gets: 

푐 ℏ 푘 −  ℏ 휔 = −푐 ℏ 푘                     (3.4.11) 

Using De Broglie and Plank hypotheses: 

푃 =
ℎ
휆

= ℏ푘              퐸 = ℎ푓 = ℏ휔            (3.4.12) 

Equation (3.4.11) can thus be given by: 

푐 푝 + 푐 푝 = 퐸                                   (3.4.13) 
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Since the electromagnetic waves can be assumed as a photon moving 

with the speed of light c, the photon momentum rest mass 푚  is given by: 

ℏ푘 = 푝 푚 푐                                        (3.4.14) 

Here the rest mass is assigned to a medium since the medium lower 

photon speed and it can even stop it when it is absorbed. Thus inserting 

(3.4.14) in (3.4.13) yields: 

푐 푝 + 푐 푝 = 퐸                                       (3.4.15) 

This is the Einstein expression that relates momentum to energy .The 

derivation of this relation can be done by using the classical equation of 

energy and Plank hypothesis only .The classical energy for an 

electromagnetic wave photon oscillating particle with maximum velocity 

is given by: 

퐸 =
1
2
푚푣                                                   (3.4.16) 

Since for waves or any harmonic system, the root mean square (r.m.s) 

velocity푉  is given by:  

푉 =
1
2
푉                                                  (3.4.17) 

 By assuming the photon speed c equal to the r. m. s speed, that is: 

푐 =
1
2
푉                                                     (3.4.18) 

It follows that: 

퐸 =
푉
√2

= 푚푐                                 (3.4.19) 

According to Plank theory:  

퐸 = ℎ푓 =
ℎ푐
휆

= 푚푐                             (3.4.20) 
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Therefore, the momentum p is given by:  

푝 = 푚푐 =
푚푐
푐

=
ℎ푐
휆푐

=
ℎ
휆

                  (3.4.21) 

3.4.1 Derivation of Klein-Gordon Equation: 

The Klein-Gordon equation can be obtained by replacing the electric 

dipole moment term in equation (3.4.17) by the term standing for photon 

rest mass in equation (3.4.9) to get: 

−∇ 퐸 + 휇 휀
휕 퐸
휕푡

= −푘 퐸                           (3.4.22) 

Multiplying sides by 푐 ℏ and using equation (8), the following equation 

is obtained: 

−c ℏ ∇ 퐸 + ℏ
휕 퐸
휕푡

= −c ℏ 푘 퐸            (3.4.23) 

According to relation (3.4.14): 

푃 = ℏ 푘 =  푚 푐  

Thus (3.4.23) reads: 

−c ℏ ∇ 퐸 + 푚 푐 퐸 = −ℏ
휕 퐸
휕푡

              (3.4.24) 

The incorporation of mass for photon in Maxwell s equations corresponds 

to adding the term 푚 퐴 Α  to the electromagnetic field largrangian. 

Since in the electromagnetic (e. m) theory theos cillating electric wave E 

is related to its e. m, the energy or intensity is obtained according to the 

relation: 

퐼훼푐휀 퐸                                                           (3.4.25) 
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And since the e. m intensity, when treated as a stream of photons of 

density n is given by: 

퐼훼푛ℎ푓훼|휓| ℎ푓                                         (3.4.26) 

Where the photon density is related to the wave function 휓 according to 

the relation:  

푛 = |휓|                                                   (3.4.27) 

Comparing (3.4.25) and (3.4.26) it follows that:  

퐸 ⇔ |휓|         퐸 ⇔휓                                        (3.4.28) 

 Thus the correspondence between E and 휓 secure the replacement of E 

by휓 in equation (3.4.24) to get: 

−ℏ
휕 휓
휕푡

= −c ℏ ∇ 휓 + 푚 푐 휓               (3.4.29) 

This represents Klein-Gordon equation for free electron. 

3.5 Tight-binding and Energy Relation: 

In this model is proposed by Amal [49] and is based tight binding 

approximation in quantum dot theory. 

Tight-binding approximation is an approximation method to account for 

the effect of the crystal field of the bulk matter on the electron bounded to 

a single isolated atom. In this model the electron wave function is a 

superposition of that of all atoms in the crystal. The electron energy is 

found by averaging the Hamiltonian resulting from atom and crystal 

contribution. The tight-binding method is most practical when only a few 

types of electronic interactions are dominant. 
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In tight binding model the energy of electrons in the crystal is 

given by 

퐸 = 휀 + 훼 + 2훾 cos푘푎                                 (3.5.1) 

Where 휀  is the energy in the absence of crystal field, while the other 

terms,훾describe the effect of the crystal field, whereas 푎 is the atomic 

spacing and k is the wave number. The energy휀  can split into three terms 

the kinetic part which can describe the wave motion beside the thermal 

motion in the form 푘푇, in addition to the potential term−푉  for 

attractive force or bounded particle. 

퐸 =
ℏ 푘

2푚
+
푓
2
푘푇 − 푉                                     (3.5.2) 

The terms describing the effect of the crystal force are 

훼 = 휑 퐻 휑                                           (3.5.3) 

훾 = 휑 퐻 휑                                             (3.5.4) 

The terms휑  ,휑  ,퐻  represent the wave functions of the m, j site 

and the crystal field Hamiltonian respectively. 

3.5.1 Theoretical Relations for Intensity and Nanoparticle Size: 

The relation between the intensity and diameter of the nanoparticle one 

can utilize the relation of the intensity, 

퐼 = 푛퐸푐                                                    (3.5.5) 

Where: I stand for the intensity, E for energy of the photon, n for the 

density of photons and C for the speed of light. 

According to tight binding approximation the energy of the electron in 

crystal in the valance band is given by: 
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퐸 = 퐸 + 훼 + 2훾 cos푘푎 ≈ 2훾 cos 푘푎 

When 퐸 ,훼were ignored, by assuming them as a back ground. 

퐸 = 2훾 cos푘푎                                                           (3.5.6) 

The photon energy results from transfer of an electron from abound state 

to become free. Thus 

퐸 = 퐸 − 0 = 퐸  

by replacing n by|휓| one gets:  

퐼 = 2푐훾|휓| cos 푘푎                                   (3.5.7) 

One can treat an electron confined to small nanoparticle as a particle in 

box. Thus 

One can calculate ψ from the equation of particle in box 

For particle in box: 

푉 = 푉  

Thus Schrödinger equation takes the form 

−
ℏ
2푚

푑 푦
푑푥

+ 푉 휓 = 퐸휓 

−
ℏ
2푚

푑 푦
푑푥

= (퐸 − 푉 )휓 

One can assume a solution in the form: 

휓 = 퐴 sin 푘푥 ;  
푑 휓
푑푥

= −푘 휓 

Thus a direct substitution of this solution in Schrödinger equation yields: 

ℏ 푘
2푚

휓 = (퐸 − 푉 )         푎푛푑  푘 =
2푚(퐸 − 푉 )

ℏ
      (3.5.8) 

휓 = 퐴 sin 푘푥                                                      (3.5.9) 

|휓| =  퐴 sin 푘푥 =
퐴
2

[1 − cos 2푘푥]                (3.5.10) 

Incorporating (3.5.6) in (3.5.3) yields: 

퐼 = 퐶훾퐴 [1 − cos 2푘푥] cos푘푎             (3.5.11) 

Since 퐼 is positive, it follows that: 
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cos2 푘푥 = − ,
휋
2
≤ 2푘푥 ≤

3휋
2

                     (3.5.12) 

That means: 

 1 − cos 2푘푥 = + 

If one assume that the wave length of the electron is equal to the diameter 

of the nanoparticle d, 

휆 = 푑 = 2푟       푘 =
2휋
휆

=
2휋
푑

=
휋
푟

                   (3.5.13) 

Where 푟 is the radius. Thus from (3.5.9) and (3.5.8) 
푟
4
≤ 푥 ≤

3푟
4

                                                        (3.5.14) 

In the range determined by (3.5.10) 

− cos 2푘푥 = |cos 2푘푥| 

Thus one gets (see (3.5.6)) 

퐼 = 퐶훾퐴 [1 + |cos 2푘푥|] cos 푘푎           (3.5.15) 

The frequency was high for the value in bracket: 

푥 > 푎                                                      (3.5.16) 

Where 푎: diameter of the atom 

The relation of intensity can be simplified by assuming the 

Wavelength 휆 of electron to be equal to the nanoparticle diameter 푑 

휆 = 푑 

This is not surprising, since in the Bohr model the electron wave length is 

related to Bohr radius 푟, according to the relation 푛휆 = 2휋푟. If one grinds 

a bulk matter one expects inverse relation between grinding time and the 

formed particle size d, 

i. e. 푑 ≈
푐
휏

 

Thus k can be rewritten as 

푘 =
2휋
푟

=
2휋
푑

=
2휋
푐
휏 =

2휋
푐
휏                       (3.5.17) 
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For simplicity one can choose the scale to make 
퐴 = 퐶 = 퐶 = 훾 = 1                                   (3.5.18) 

That means equation (11) takes the form: 

퐼 = [1 + |cos 4휋휏푥|] cos 2휋휏푎             (3.5.19) 

This theoretical relation (15) is displayed graphically in (Fig (17)). 

3.5.2 Materials and Methods: 

The aim of this work is to explain how the change of the size of Alum can 

affect the spectrum of them on the basis of quantum dot model based on 

tight binding approximation. The spectral change can manifest itself in a 

wave  length shift or intensity change. One has seven materials. The size 

of each material is changed six times. This is achieved by grinding 

different parts of each material for different times ranging from 10 sec to 

60 sec in steps of 10 sec. The size of each sample is determined by easy 

scan electron microscope. The spectrums of these samples are displayed 

by atomic absorption light spectrometer. The spectrum was displayed by 

using three different sources the first one is laser diode source followed 

by laser source beside a light source. These spectra are exhibited in 

figures below. The variation of spectral intensity of the highest 
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Beak versus the grinding time is also displayed for each material type. 

Material Sample: 

The materials used in this work are selected in a special way; because 

they can be easily ground, beside their abundance locally. This material 

is: 

Alum: Alum is both a specific chemical compound and a class of 

chemical compounds. The specific compound is the hydrated Potassium 

aluminum sulfate (potassium alum) with the formula 

퐾퐴푙(푆푂4)2·12H2O. More widely, alums are double sulphate salts, with 

the formula AM (SO4)2·12H2O, where (A) is a monovalent cation such 

as potassium or ammonium and M is a trivalent metal ion such as 

aluminum or chromium (III). Alums are useful for a range of industrial 

processes. They are soluble in water; have a sweetish taste; react acid to 

litmus; and crystallize in regular octahedral. When heated they liquefy; 

and if the heating is continued, the water of crystallization is driven off, 

the salt froths and swells, and at last an amorphous powder remains. 
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3.5.3 Results and Discussion: 

It is well known that the grinding of crystals convert them to powder 

consisting of tiny particles with small diameter and size. The increase of 

grinding time should decrease the particle size as it leads to more 

fragmentation and disintegration. Thus one expects the particle size (d) to 

be inversely proportional to the grinding time(휏); 

푑α
1
휏

 

The empirical relations which are displayed graphically in Figs. (15. 16) 

grinding time versus light intensity shows wavy sine or cosine relation 

with variable amplitude. This means clearly that the change of Nano size 

affects and changes optical absorption as well as transmition. These 

changes are not liner but shows wavy pattern. This means that there 

critical sizes at which absorption or transmition takes place. This relation 

between particle size and light intensity can be used in the design and 
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fabrication of optical sensors and solar cells. These wavy relations 

resemble the theoretical relations in Fig (17), strictly speaking Fig (17). 

This means that by fine tuning the parameters in equation (3.5.15) it is 

possible to find theoretical relations between intensity (I) and time of 

grinding ( resemble to a great extent the empirical relations in Fig (17). 

This means that for first time a theoretical relations which relate (I) to the 

nanosize푑α  is verified empirically and experimentally .The spectrum in 

figs (15. 16), however, doesnot show appreciable change in the wave 

length of the incident light.  

The theoretical relation which related light radiation intensity (I) to 

the grinding time (휏 ) as shown by equation (3.5.15) is based on quantum 

mechanics. The energy of photons is found by assuming photons 

resulting from transfer of electrons from the bound state 퐸 toFree State 

zero. The energy of bound electrons is found by using tight binding 

model which assumes electron energy as resulting from the effect of the 

nucleus on its host atom, beside the neighboring atoms. The use of this 

model is justifiable for nanoparticles since the electrons of each atomis 

affected by neighboring atoms. The wave function and the electron 

intensity is found by using Schrodinger equation and treating the electron 

as particle in a box. This is quite obvious as far as nanoparticles are 

isolated from each other such that they resemble particle in a box in one 

dimension. 
3.6 The Quantum Expression of the Role of Effective Mass 

in the Classical Electromagnetic Theory Form & in Absence 

of Binding Energy 
M. El toom proposed a quantum model to the change of electron mass in 

crystal  



 
63 

 

The conventional expression for the effective mass was introduced to 

account for the effect of the crystal field on the mass. This definition is 

based on the expression of energy (E) for a free particle, which takes the 

form [50] 

퐸 =
ℏ 푘
2푚

                                                        (3.6.1) 

With (k) standing for the wave number. The effective mass is thus given 

by: 

푚∗ = ℏ (∇ 퐸)                                        (3.6.2) 

The external force is satisfied: 

푑푃
푑푡

= ℏ
푑퐸
푑푡

= 퐹                                        (3.6.3) 

The velocity (ν) is related to the energy according to the relation: 

퐸 =
ℏ 푘
2푚∗  

Where  

푑퐸
푑푘

=
ℏ 푘
푚∗ =

ℏ푃
푚∗ = ℏ푣 

Thus: 

           ℏ
푑푣
푑푘

=
푑 퐸
푑푘

= ∇ 퐸                                            (3.6.4) 

Therefore the total effect of external force and lattice crystal force (F ) 

are responsible for acceleration. Therefore: 

푚
푑푣
푑푡

= 푚
푑푣
푑푘

푑푘
푑푡

= 퐹 + 퐹  

푚 (ℏ ∇ 퐸) =
퐹 + 퐹
퐹
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푚
푚∗

=
퐹 + 퐹
퐹

 

푚∗ = 푚
퐹 + 퐹
퐹

                                    (3.6.5) 

In the absence of crystal field the effective mass reduces to the ordinary 

mass, i.e.: 

퐹 = 0        ,     푚∗ = 푚                              (3.6.6) 

However when the external force only disappear the effective mass 

become: 

푚∗ = 0                                                         (3.6.7) 

The zero mass is physically unacceptable, since the absence of external 

force leads to acceleration vanishing mass, not vanishing: 

푚∗푎 = 퐹 = 0 

푎 = 0 

푚∗ ≠ 0 

In the absence of two forces: 

푚∗ = 푚
0
0

                                            (3.6.8) 

Where is an unknown quantity. The natural and logical result should 

lead 

푚∗ = 푚                                                  (3.6.9) 

In the absent of the two forces. 

It is also illogical to assume a crystal field affecting the mass to change it 

from (푚 ) to (푚∗) and prohibiting the external are to affect this mass. 

Thus argument is in direct conflict with Einstein generalized special 

relativity (EGSR), which states that the mass is affected by any field, 

according to the relation [3, 4]: 

푚 = 푔  푟 푚                                    (3.6.10) 
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With 

푟 = 푔 − 푣
푐 푔 = 1 +

2∅
2푐

               (3.6.11) 

Where (∅) being representing the potential per unit mass while (c) is the 

speed of light in vacuum. 

3.6.1 Effective Mass Quantum Expectation Value: 

According to the laws of quantum mechanics the expectation value of the 

Hamiltonian coincide with the classical expression of energy. If one 

assumes the free particle Hamiltonian to be퐻 , its expectation value is 

equal to the classical kinetic energy [5, 6, and 7]. 

〈퐻 〉 = 훹퐻 훹 =               
푃
2푚

=
ℏ 푘
2푚

         (3.6.12) 

When the particle enters the crystal its Hamiltonian 퐻will be the sum of 

free Hamiltonian퐻 beside the crystal potential 푉 . Thus the expectation 

value can be made equal to the kinetic energy by assuming the particle to 

be free where the effect of crystal potential manifests itself only through 

the masses. 

〈퐻〉 = 훹퐻 훹푑푟 =               
푃

2푚∗ =
ℏ 푘
2푚

          (3.6.13) 

Where 

퐻 = 퐻 + 푉                                             (3.6.14) 

Thus equation (3.6.13) takes the form: 

ℏ 푘
2푚∗ = 훹퐻 훹푑푟 = 휓푉 휓푑푣 = 〈퐻 + 푉 〉  (3.6.15) 

In view of equation (3.6.12) and (3.6.15) one gets: 

푚∗

푚
=
〈퐻 + 푉 〉
〈퐻 〉 =

∫훹퐻훹푑푟
∫훹퐻 훹푑푟

=
∫훹퐻 훹푑푟 + ∫훹푉 훹푑푟

∫훹퐻 훹푑푟
 

푚∗

푚
=
〈퐻 + 푉 〉
〈퐻 〉                                   (3.6.16) 
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From the correspondence principle 

〈퐻 〉 = 퐸  

〈푉 〉 = 푉                                           (3.6.17) 

Where 

퐸      퐶푙푎푠푠푖푐푎푙 푣푎푙푢푒 

Hence 

푚∗

푚
=

퐸
퐸 + 푉

                                             (3.6.18) 

If one considers the effect of the potential 푉 , equation (3.6.16) can be 

written in the form: 

푚∗

푚
=

〈퐻 + 푉 〉
〈퐻 + (푉 + 푉 )〉 

=
〈퐻 〉 + 〈푉 〉

〈퐻 〉 + 〈푉 〉 + 〈푉 〉 

=
퐸 + 푉

퐸 + 푉 + 푉
                                    (3.6.19) 

On other hand the potentials are related to the forces, according to the 

identity: 

푉 = 〈푉 〉 = 퐹푒푑푥 

Thus for constant forces [3.6.19,3.6.20]: 

푉 = − 퐹 푑푥 =퐹 푑 

푉 = − 퐹 푑푥 = 퐹 푑 

푉 = 퐹  

푉 = 퐹                                                       (3.6.20) 

With the aid of (8), (9) one gets: 

푚∗

푚
=

퐸  푑 + 푉 푑
퐸 푑 + 푉 푑 + 푉 푑

=  
퐸 + 퐹

퐸 + 퐹 + 퐹
      (3.6.21) 
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If one neglects 퐸  , as far as the zero point energy is equal to zero in 

classical mechanics' or by considering the external and crystal field to be 

large then equation (3.6.21) reduces to[3.6.21, 3.6.22]: 

푚∗

푚
=

퐹
퐹 + 퐹

                                 (3.6.22) 

Thus the quantum effective mass formula reduces to the conventional 

one.  

It is very striking to note that according to equation (3.6.13) the effective 

mass (푚∗) reduces to the ordinary mass or rest mass in the absence of 

crystal field. The same hold for the equation (3.6.21), where the absent of 

external and crystal field reduces (푚∗) to (푚 ) .This result is in 

conformity with (EGSR). 
 

3.6.2 Effective (EGSR) Mass: 

The (EGSR) automatically incorporates the field effect of both external 

and crystal field. This can be checked with the aid of relations (3.6.21, 

3.6.22) by considering the potential (푉) to be due to external and crystal 

field [12, 13]. Thus 

푉 = 푚 ∅ = 푉 + 푉                                  (3.6.23) 

Thus equation (3.6.21) reads 

푚 =
푚 1 + ∅

1 + ∅−
 

 

For: 

∅ ≪ 푐                                                   (3.6.24) 

푚 = 푚 1 +
2∅
푐

1 +
2∅
푐

−
푣
푐
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= 푚 1 +
2∅
푐

1 +
2∅
푐

+
1
2
푣
푐

               (3.6.25) 

 Neglecting higher power: 

푚 = 푚 1 −
2∅
푐

+
1
2
푣
푐

+
2∅
푐

 

푚 = 푚 1 +
∅
푐

+
1
2
푣
푐

 

= 푚 1 +
푚 ∅
푚 푐

+
푚 푣

2푚 푐
 

= 푚 1 +
푚 ∅
푚 푐

+
푚 푣

2푚 푐
 

=
푚
퐸

(퐸 + 푉 + 푇)                                          (3.6.26) 

For external field only: 

ℏ 푘
2푚

=
푃

2푚
= 푚 푐 =

푚
퐸

(퐸 + 푉 + 푇)푐      (3.6.27) 

For external and crystal field: 

ℏ 푘
2푚∗ = 푚∗푐 =

푚
퐸

(퐸 + 푉 + 푇)푐                  (3.6.28) 

Thus 

푚
푚∗ =

퐸 + 푉 + 푉 + 푇
퐸 + 푉 + 푇

                                     (3.6.29) 

With 

퐸 = 퐸 + 푇                                                       (3.6.30) 

It is clear that relations (3.6.18) resemble relations (3.6.30). 
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It is very interesting to note that the two expressions indicate the effect of 

external field on the mass via the terms 푉 as well as the effect of the 

crystal field via the terms푉 . Expression (3.6.18) reduces to [14, 15, and 

16]: 
푚∗

푚
=

퐸 + 푉
퐸 + 푉 + 푉

=  
푉 푑

푉 푑 + 푉 푑
=  

퐹
퐹 + 퐹

   (3.6.31) 

Here the rest mass energy is neglected. Also 

푚∗ = 푚                                                           (3.6.32) 

Where there is no field affects the mass, i.e.  

푉 = 0                  푉 = 0 

3.6.3 Harmonic Oscillator: 

In this approach the particle flux is assumed to be a harmonic oscillator 

having potential [17, 18]: 

푉 =
1
2
푘 푥  

Thus, its Hamiltonian is given by: 

퐻 =
ℏ
2푚

∇ + 푉 =
ℏ
2푚

∇ +
1
2
푘 푥 = 퐻 +

1
2
푘 푥        (3.6.33) 

When the flux enters the material the lattice field potential, affect the 

flux. Thus the new Hamiltonian is given by [19]: 

퐻 = 퐻 +
1
2
푘 푥 + 푉 = 퐻 + 푉 + 푉 = 퐻 + 푉          (3.6.34) 

If one assumes that the wave function inside the material is not affected 

so much as the flux enters the bulk matter. In this case the total energy is 

given by: 

퐸 = 〈퐻〉 = 푢 (퐻 + 푉)푢 푑푟 = 푢 퐻 푢 푑푟 + 푢 푉푢 푑푟 

= 〈퐻 〉 + 푢 퐻 푢 푑푟 + 푢 푉 푢 푑푟 
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Thus the average energy is gives as a sum of kinetic part, Harmonic part, 

and crystal contribution, i.e.: 

퐸 = 〈퐻〉 = 〈퐻 〉 + 〈푉 〉 + 〈푉 〉                                 (3.6.35) 

In the absence of crystal field the average energy for harmonic oscillator 

is given by [19]: 

퐸 = 푛 +
1
2
ℏ휔                                                     (3.6.36) 

The average contribution of the potential part takes the form: 

〈푉 〉 =
1
2
푛 +

1
2
ℏ휔                                             (3.6.37) 

Thus invies of (3.6.36) and (3.6.37) the kinetic part is given by: 

〈퐻 〉 = 퐸 − 푉 =
1
2
푛 +

1
2
ℏ휔                          (3.6.38) 

In the presence of external field  푉  . The energy becomes: 

ℏ 푘
2푚

= 퐸 = 푢 (퐻 + 푉 + 푉 )푢 푑푟 = 〈퐻 〉 + 〈푉 〉 + 〈푉 〉 

ℏ 푘
2푚

= 퐸 = 〈퐻 〉 + 〈푉 〉 + 〈푉 〉                               (3.6.39) 

But according to quantum mechanics: 

〈퐻 〉 + 〈푉 〉+ 〈푉 〉 =
ℏ 푘
2푚

                                         (3.6.40) 

In the presence of additional crystal potential (푉 ), the energy becomes: 

ℏ 푘
2푚∗ 〈퐻 〉 + 〈푉 〉 + 〈푉 〉 + 〈푉 〉                                  (3.6.41) 

Hence 

푚
푚∗ =

〈퐻 〉 + 〈푉 〉 + 〈푉 〉 + 〈푉 〉
〈퐻 〉 + 〈푉 〉 + 〈푉 〉

                              (3.6.42) 

If the contribution of harmonic energy is neglected: 

푚∗

푚
=

〈푉 〉
〈푉 〉 + 〈푉 〉 =

〈푉 〉푑
〈푉 〉푑 + 〈푉 〉푑 

=
퐹

퐹 + 퐹
   (3.6.43) 
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Which is the conventional expression for effective mass? In the absence 

of all fields equation (3.6.43) reads: 

푚∗

푚
=
〈퐻 〉
〈퐻 〉        ,          푚∗ = 푚                             (3.6.44) 

Where when the force vanishes, i.e. 
퐹 = 0 

The acceleration and the mass rate of change vanishes i.e. the 

acceleration and the mass [22]: 

푎 = 0             
푑푚
푑푡

= 0                                     (3.6.45) 

But 
푚 ≠ 0                                         (3.6.46) 

3.6.4 Discussion: 

The main drawback of conventional expression for the effective mass, the 

vanishing of it in the absence of the external force (see equation (3.6.7)) 

which is in direct conflict with Newton’s second law, which states that 

the acceleration, not the mass, vanishes as shown by equations 

(3.6.36,3.6.46,and 3.6.46). The second drawback is the equality of the 

effective mass to the rest mass in the absence of crystal field, according to 

equation (3.6.5). This result is confusing since it shows that the crystal 

field affects the mass, while the external field does not. It is very hard to 

believe that some fields affect the mass, while others cannot. This result 

also disagrees with (EGSR) which states that the mass is affected by any 

field. 

Models are two free froms. The first model in the absence of kinetic term, 

as equation (3.6.22) shows. The effective mass in equation (3.6.19) 

reduces the rest mass, only when all fields vanish (equation (3.6.19)). 

This result conforms to (EGSR) as shown by equations (3.6.10, 3.6.11). 
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The second model is based on (EGSR), beside the quantum expression of 

the energy of the free non relativistic particle. This model also reduces 

the conventional one when the rest mass energy is neglected which is 

shown by equation (3.6.31). The mass (푚∗) reduces in equation (3.6.32), 

to (m) when no field exist. Applying the expressions for (푚∗) to the 

harmonic oscillator in section five confirms the fact that the expressions 

for (푚∗) is equal to (m) for free space field. 

3.7   quantum explanation of conductivity at resonance 

A. M. El hussien proposed a quantum model explain the conductivity at 

resonance with frequency [51] 

In this experiment a transmitter coil emits electromagnetic waves. 

These electromagnetic waves are allowed to incident on certain materials. 

The re emitted electromagnetic waves are receipted by a receiver 

3.7.1Apparatus: 

- 10Resistors (10kΩ, 2.2GΩ, 39kΩ),12 Capacitors (0.1μF, 0.01μF, 

220μF), 6 Transistors (NPN), 2 transmitter and receptor Coils (400,500, 

600, 700, 1000 turns), Wire connection, Speakers, Cathode Ray 

Oscillator, Board connection, Battery (9V),Signal generator. 

3.7.2 Samples: 

A pieces of metal (Cu, Al, Fe, Au,Ag, Sn). 

3.7.3 Method: 

The transmitter coil current is varied by using signal generator. The 

emitted photons are allowed to inciden ton the sample. The sample 

absorbs photons and re emits them.  The metal detector receipt photons 

the signals appearing at oscilloscope were taken before mounting the 

sample, and after photon emission.  The frequency and the corresponding 

conductivity of sample are recorded and determined from signal 

generator, current, voltage, and the length and crosssectional area of 
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samples. The current and voltage gives resistance, which allows 

conductivity determination from the dimensions of the sample. 

 

 
Fig (3.7.1) 

3.7.3.1: Tables and Results: 

Table (3.7.3.1) Relation between frequency (f) and Conductivity (흈) 

without applied magnetic field for Cu, Al, Fe, Au, Ag, Sn 
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Fig (3.7.1.1) Relation between resonance frequency and Conductivity 

for Cu, Al, Fe, Au, Ag, Sn 

Table (3.7.2) Relation between frequency (f) and Conductivity (흈) for 

different magnetic flux densities for gold. 
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Fig (3.7.1.2) Relation between frequency (f) and Conductivity (σ)for 

different magnetic flux densities for gold 

3.7.4 Theoretical Interpretation 
3.7.3.1 Quantum Theoretical Model: 

ℏ
휕 훹
휕푡

= −푐 ℏ ∇ 훹 + 푚 푐 훹                           (3.7.1) 

Sub 

훹 = 푢(푟 )푓(푡) 푖푛 (1)푦푖푒푙푑푠 

−푢ℏ
휕 푓
휕푡

= −푓푐 ℏ ∇ 푢 + 푚 푐 푓푢                   (3.7.2) 

−
1
푓
ℏ
휕 푓
휕푡

= −
1
푢
푐 ℏ ∇ 푢 + 푚 푐 = 퐸         (3.7.3) 

Where: 

−
1
푓
ℏ
휕 푓
휕푡

= 퐸                                                      (3.7.4) 

−ℏ
휕 푓
휕푡

= 퐸 푓                                                      (3.7.5) 

Where: 

ℏ휔 = 푒푙푒푐푡푖표푛 푒푛푒푟푔푦 푖푛 푏표푢푛푑푒푑 푆푡푎푡푒. 

ℏ휔 =  푒푛푒푟푔푦 푔푖푣푒푛 푡표 푡ℎ푒 푒푙푒푐푡푖표푛. 
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퐸 =  ℏ휔 − ℏ휔 = 푒푥푐푖푡푎푡푖표푛 푒푛푒푟푔푦. 

Consider solution 

푓 = sin 훼푡                                                   (3.7.6) 

ℏ 훼 푓 = 퐸 푓                                               (3.7.7) 

∴ ℏ훼 = 퐸 

훼 =
퐸
ℏ

= 휔 − 휔                                          (3.7.8) 

∵  휎 =
푛푒 휏
푚

=
|훹 |푒 휏

푚
=
푒 휏
푚

|sin(휔 −휔 )푡|           (3.7.9) 

 
 

Fig (3.7.3.3) Theoretical relation between frequency (f) and 

Conductivity (흈). 

sin(휔 − 휔 )푡 ≈ (휔 −휔 )푡 

Inserting (3.7.10) in (3.7.9) yields: 

∴ 휎 =
푒 휏
푚

|(휔 − 휔 )푡|                             (3.7.11) 

3.7.3.2 Classical Absorption Conductivity Resonance Curve: 

Consider an electron of mass m oscillate with natural frequency 휔 .If an 

electric field of strength 
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퐸 = 퐸 푒                                                   (3.7.12) 

Was applied, then the equation of motion of the electron, in a frictional 

medium of friction coefficient훾, is given by 

푚푥̈ = 푒퐸 − 푚휔 푥 − 훾푥̇                       (3.7.13) 

Consider the solution  

푥 = 푥 푒                                             (3.7.14) 

Thus  

푣 = 푥̇ = 푖휔푥            푥̈ = −휔 푥                            (3.7.15) 

Interesting (3.7.14) and (3.7.15) and (3.7.12) in (3.7.13) yields 

−mω x = e
E
푥
푥 − 푚휔 푥 − 훾푣 

Thus 

푣 = −푚
(휔 − 휔 )

훾
푥 + 푒

퐸
훾푥

푥                (3.7.16) 

For simplicity consider large displacement amplitude compared to the 

electrical one .Thus the last term in (3.7.14-3.7.15) can be neglected to 

get 

푣 = −푚
(휔 −휔 )

훾
푥                              (3.7.17) 

But the conductivity is given by 

휎 =
푒휏
푚
푛 =

푒휏
푚
푛 푒

푉
√2

                    (3.7.18) 
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Where the effective value 푉 is related to the maximum value through the 

relation 

푉 =
푉
√2

                                                (3.7.19) 

For small value of the power of e, one can expand exponential term to be  

푒 = 1 − 푥                                       (3.7.19) 

Therefore equation (3.7.18) becomes 

휎 =
푒휏
푚
푛 1 +

훽푚푣
4

                             (3.7.21) 

Inserting (3.7.15) in (3.7.17) yields 

휎 =
푒휏
푚
푛 1 +

훽푚 푥 (휔 − 휔 ) (휔 − 휔 )
4훾

 

휎 =
푒휏
푚
푛 1 +

훽푚 휔 푥 (휔 − 휔 )
훾

                 (3.7.21) 

Where near resonance  

휔 ≈ 휔 휔 + 휔 ≈ 2휔                     (3.7.22) 

The relation between conductivity and frequency resembles that of 

(3.2.21) in its dependence on 휔 .This relation is displayed graphically in 

Fig (3.7.3.1) 
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Fig (3.7.3.1) Theoretical relation between frequency (f) and 

Conductivity (흈). 

3.7.5   Discussion 

The experimental work which was done shows variation of 

conductivity for gold according to Figs (3.7.1) and (3.7.2). The 

conductivity decreases then attains a minimum value in the range of (40 -

50 Hz), then increases again. 

 The theoretical expression (3.7.11) which is displayed graphically 

in Fig (3.7.1) is based on the ordinary expression for the conductivity. 

The electrons density n is found by solving Klein-Gordon equation for 

free particle. This is obvious as far as conduction electrons are free. The 

electron density is found from the square of the wave function, which is a 

sin function. Since at resonance  휔 is very near to 휔 , thus one can 

replace푠 푖푛 x by x. The theoretical relation for f and 휎obtained by this 

model resembles the experimental for one in Fig (3.7.11). 

Another classical approach based on Maxwell –Boltzmann 

distribution in section (3) shows a relation between and f in Fig (3.7.3.1) 
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similar to experimental relation.  The relations between 휎 and f resembles 

that of resonance, with minimum conductivity. 

It is very interesting to note that each element has its own resonance 

conductivity at which conductivity is minimum. 

In this model the ordinary expression for 휎in equation (3.7.9) is 

used. But n here is found from Maxwell statistical distribution. 
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Chapter Four 

Introduction: 
4.1 Quantum Relativistic Frictional Model and String 

Theory:  
Special relativity is one of the big an achievement that relates mass, space 

and time. However its energy suffers from the Lack of potential 

expression in energy relation leads to appearance of new version of SR, 

called generalized SR (GSR). This new GSR has an energy term 

representing a potential energy and satisfies a Newtonian limit [61.62.63]. 

This success of GSR encourages using the conventional expression of 

kinetic and potential energy to see how energy conservation looks like in 

SR and GSR. This task is done in this chapter.    

4.2 Energy Conservation: 

The energy conservation in special Relativity on the Basis of Force 

relation with kinetic and potential energy .According to the very 

definition of potential energy 푉 and Kinetic energy 푇, they can be defined 

in one dimension as:                                            
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Since: 

And by defining                                                                                   

cos

Equation (4. 2. 4) reads                                                                              

푚

Utilizing equation (4. 2. 5) again                                                                 

Therefore                                                                                               
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Thus in view of equation (4. 2. 3)                                                              

Thus the kinetic energy within the frame work of SR is given by:         

Clearly the sum of kinetic energy and potential one is a constant of 

motion, i.e. it represents the total energy 퐸 which is conserved according 

to푆푅, thus                                                                                              

퐸 =

By redefining the energy to be: 

Then: 

4.3 Energy Conservation on GSR on the Basis of Ordinary 

Relating which is the Generalized Special Relativistic (GSR). 

Then:  

By defining:  
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푚

In view of equation (4. 2. 4) and redefining (4. 2. 5) to be: 

Equation (4. 2. 4) reads: 
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푚푣 + 푚푐 + 2푚∅ −푚푣 = −푉 + 푐  

According to equation (4. 2. 3)                                                                      

By defining V to be                                                                                 

This equation is inconsistent with equation (4.3.5) even if one define the 

kinetic energy to be                                                                                 

4.4 Energy Conservation in GSR on the Basis of New 

Relation between Force and Kinetic Energy. 

However one can redefine the relation between the force and kinetic 

energy to be                                                                                            

For particles having constant mass: 

퐹 =
1
2

Hence the definition of kinetic energy in terms of the force is consistent 

with the formal definition of force for particles having constant mass.  
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Thus according to this definition (4.4.1) together with definition (4.2.1): 

  Therefor: 

Let:  

However for T based on relation (4.2.10) and (4.4.1) requires: 

퐹 = −
푑

Since: 

Thus for positive 푇  

One can define: 

Where      

Thus: 
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This requires:  

푇

Squiring both sides: 

1
2

To make this consistent with the fact that rest mass energy should exit in 

any relativistic expression, one can suppose that: 

To get: 
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Thus according to relation (4.4.7):  

With the aid of equations (4.4.8), (4.4.9) and (4.4.14) requires:  

Thus the energy conservation requires: 

2퐶 = 푚 푐 퐶 =
1
2
푚 푐                          (4.4.16) 

4.5 Energy Conservation in GSR Based on new Force and 

Potential Energy Relation: 

Another approach can be tackled by assuming the kinetic energy T and 

the potential energy to be defined by: 

푇 =
푑(

= 푑(푚
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Defining: 

One gets:  

푚푣
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Thus the energy conservation requires: 

In the classical limit, when: 

퐸 = 푚

= 푚

Which is the conventional ordinary Newton energy relation with 

additional term standing for rest mass energy 

4.6 Relativistic Quantum Frictional Equation: 

          If a particle move in frictional medium, its velocity and 

energy are lowered. This is since friction force apposes motion. 

Thus energy is dissipated to overcome friction effect. Relaxation 

time 휏 can be found from uncertainty principle by using the 

relation: 

∆퐸∆휏 = ℏ                                                             (4.6.1) 

It is well known in laser physics that when an election is excited from 

ground state 퐸  to an exited state 퐸 . The electron takes time 휏 in an 
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excited state before returning back to the ground state. The relaxation 

time 휏 can be found from equation (4.6.1) to be: 

Where: 

Therefore the energy loss by the electron when it leaves퐸  to 퐸   is given 

by: 

This relation can be used to describe the lowering of the photon or light 

speed inside matter. When a photon is incident on a certain atom, it can 

be absorbed by it to make an electron leave 퐸 to an excited state 퐸 by 

emitting a photon. It return back to 퐸 .This means that the photon, instead 

of taking time t moving with speed c:                                                       

    Matter   

   ⃖

Vacuum   

  ⃖

in vacuum, it take a time 푡 + 휏 inside matter, with delay time휏. This 

means that as if light moves with apparent speed v inside matter where: 
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While it moves the same distance in vacuum with speed c, such that: 

From (4.6.5) and (4.6.6): 

Thus the refractive index 푛 is given by: 

Therefor the relaxation time is given by: 

Where 푎 here stands for the distance between neigbouring atoms. This 

delay time thus is responsible for lowering the light speed from 

푐 푡표 푣.this is equivalent to existence of friction that causes energy loss 

given by equation (4.6.4) to be: 

This means that when a particle of original energy 퐸  enters a frictional 

medium its energy is lowered to become 

Where one uses the complex representation proposed Dirar [64.65.65]. 

According to the special relativistic theory the original energy is given 

by: 
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But if one defines the force to be: 

Where V stands for potential energy: 

Using the relation: 

One can easily find that: 

This constant of motion is assumed to represent the energy 퐸  where: 

For very small rest mass energy, one can write: 

In view of equation (4.6.5) the energy in the pressure of friction:  
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퐸 =

4.7 Special Relativistic Quantum Frictional Equation: 

To find quantum equation for this expression of relativistic energy for 

frictional medium, one multiply (4.6.18) by the wave: 

Using the wave function for quantum system: 

One can obtain: 

Thus inserting equation (4.7.2) in equation (4.7.1) yields: 

Another two new equations can also be obtained from (4.6.16) to get: 

The friction effect can be replacing 퐸 by퐸, where: 

Thus equation (4.7.4) reads:  
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푉 +

푉 + 퐸 +

    Multiplying both sides by Ψ  yields: 

= 푃

Using the wave-particle dual nature relation: 

Yields:  

−ℏ
∂
∂t

Inserting (4.7.8) in (4.7.7) results in the following equation: 

−ℏ
∂ Ψ
∂t
= −

Which is the relativistic equation in the presence of friction. In the 

absence of friction equation (4.7.8) reduces to: 

−ℏ
∂
∂
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4.8 Harmonic Oscillator solution: 

To solve (4.7.9) for to simplify the oscillator, it is suitable to simplify the 

equation by suggesting: 

To get: 

퐸

For harmonic oscillator. 

Therefore x is small thus one can neglect terms like 푉 to get:  

Since: 

Consider now a solution: 

Substituting (4.8.6) in (4.8.5) yields: 

[퐸 − 푚휔

Comparing the free terms and coefficients of 푥  on both sides yields: 
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Dividing (4.8.8) by (4.8.8) after ignoring the rest mass yields: 

To find E, by ignoring 푚  for very small mass: 

But according to Einstein equation: 

Thus: 

Hence: 

Another solution can be proposed by using periodicity condition of 

equation (4.8.1), where  

Which requires: 
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Thus: 

퐸 =
2휋
푇

nℏ = 푛ℏ휔                                             (4.8.15) 

Substituting in (4.8.10) yields: 

Thus the mass is quantized. 

From (4.8.9), (4.8.15) and (4.8.16): 

4.9 Discussion: 

Many relativistic expressions for energy that satisfies energy conservation 

were discussed. In the first one the ordinary SR expression for mass in 

equation (4.2.4), beside the ordinary definition of force in equation 

(4.2.1) were used to find expression E- the kinetic energy T be equal 

to 푚푐 . T is not like Newtonian one, but for small v 

Thus it resembles Newtonian one with additional rest mass energy 

term. The SR energy reduces to Newtonian one in equation (4.2.12) and 

is conserved. It is more is advance than SR one since it is conserved and 

consists of potential term .Another E is based on GSR beside expression 

for (m) in equation (4.3.1). 
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 The energy is conserved according to equation (4.3.7) but V becomes 

with a minus sign. 

Anew definition of force in equation (4.4.1) with ordinary 

expression for T is also used to define conservative E. the potential is 

related to F in a conventional way. Conservation was satisfied in equation 

(4.4.9) but T is defined in different way, i.e. 

The energy lost by friction can be found by using uncertainty 

principle in section (4.6). Equation (4.6.4) shows that it is inversely 

proportional to relaxation time 휏. This expression conforms to the 

classical one in which friction energy is inversely proportional to 휏. This 

friction energy is added to the SR energy found by adding potential terms 

to secure energy conservation as shows in equation (4.6.15). By 

neglecting rest mass the energy is given by (4.6.17). The final SR term is 

given in equation (4.6.18) consisting of kinetic, potential and frictional 

terms. Using the wave equation for particles in equation (4.7.2) a 

relativistic quantum expressions for neglected rest mass and non-

neglected 푚  were found as shown by equations (4.7.3) and (4.7.8).          

  Neglecting friction, one finds equation (4.7.9)   this equation 

is a modified SR equation. This equation (4.7.9) is used to solve for 

harmonic oscillator, within the frame work of string theory. The solution 

shows that the energy and mass are quantized, as shown by equation 

(4.8.15) and (4.8.16). 
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4.10 Conclusion:   

 The concept of force in farms of kinetic and potential energy 

can lead to energy conservation with in framework of GSR and SR. 

The new SR quantum based on energy expression including matter 

energy and potential energy beside friction   is promising. It shows 

that the mass is quantized within the frame work of string theory, 

the E conservation requires.  

4.11 Recommendation: 

This work can be extend for future in many respects  

1. The conservation of 푆푅 energy can be extended to include momentum 
also. 

2. The new 푆푅 energy expressions can used for many applications 
specially that are related to particle physics. 

3. The harmonic oscillator solutions can be used to develop strings 
theory. 

 


