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Abstract

This study is mainly focusing on the application of the homotopy
perturbation method and Sumudu transform of the linear and nonlinear partial
differential equations.

It has established some theorems, definitions and properties of homotopy
perturbation method and Sumudu transform. The study combines the homotopy
perturbation method and Sumudu transform. Consequently, it gives the solution in
series form and approximates components, and finds the exact solution. Then, it is
applied to solve linear and nonlinear PDEs.

Finally, the solutions of linear and nonlinear PDEs by this method, and the

other methods will be compared.
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Introduction:
In the last several years with the rapid development of nonlinear science, there

appeared ever-increasing interest of scientists and engineers in the analytical
asymptotic techniques for nonlinear problems such as solid state physics, plasma
physics, fluid mechanics and applied sciences. In many different fields of science and
engineering, it Is important to obtain exact or numerical solution of the nonlinear
partial differential equations. Searching of exact and numerical solution of nonlinear
equations in science and engineering is still quite problematic, that’s needed new
methods for finding the exact and approximate solutions. Most of new nonlinear
equations do not have a precise analytic solution; so, numerical methods have largely
been used to handle these equations.

There are also analytic techniques for nonlinear equations. Some of the classic
analytic methods are Lyapunov’s artificial small parameter method [36], J-expansion
method [37], perturbation techniques [38-40] and Hirota bilinear method [41, 42]. In
recent years, many research workers have paid attention to study the solutions of
nonlinear partial differential equations by using various methods. Among these are the
Adomian decomposition methods (ADM) [43], He’s semi-inverse method [44], the
tanh method, the homotopy perturbation method (HPM), the sinh — cosh method, the
differential transform method and the variational iteration method (VIM) [45-52].
Several techniques including the Adomian decomposition method, the variational
iteration method, the weighted finite difference techniques and the Laplace
decomposition method have been used to handle advection equations [53-59]. Most of
these methods have their inbuilt deficiencies like the calculation of Adomian’s
polynomials, the Lagrange multiplier, divergent results and huge computational work.
He [60-68] developed the homotopy perturbation method (HPM) by merging the
standard homotopy and perturbation for solving various physical problems. It is worth
mentioning that the HPM is applied without any discretization, restrictive assumption
or transformation and is free from round off errors. The Laplace transform is totally
incapable of handling nonlinear equations because of the difficulties that are caused
by the nonlinear terms. Various ways have been proposed recently to deal with these
nonlinearities such as the Adomian decomposition method [73] and the Laplace
decomposition algorithm [74-78].

Furthermore, the homotopy perturbation method is also combined with the
well-known Sumudu transform method [69, 79] and the variational iteration method
[80] to produce a highly effective technique for handling many nonlinear problems.
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CHAPTER ONE
Homotopy Perturbation Method and Sumudu
Transform

1.1:  Sumudu Transform

Ever since long time, differential equations have played an important role in all
aspects of mathematics. With the invention of the computer and its programming, the
role of mathematics has reached to its peak. In order to develop new technological
processes, scientific computation is important and it helps in understanding and
controlling our natural environment. Analysis of differential equations helps in a
profound understanding of mathematical problems. Various techniques may be used
to solve differential equations. Watugula [1] introduced a new integral transform and
called it as Sumudu transform which is defined as:

F(u)zs[f(t)]zof% o) f(t) dt; (1)

Watugula [1] applied this transform to the solution of ordinary differential
equations. Because of its useful properties, the Sumudu transform helps in solving
complex problems in applied sciences and engineering mathematics. In spite of the
usefulness of the new operator, only a few investigations were found in the literature.
Henceforth, is the definition of the Sumudu transform and properties depicting the
simplicity of the transform.

Definition (1.1.1): The Sumudu transform of the function f (t), is defined by:

F(u) = S[f(@t)] = T% )t at (2)
Or
F(u) = s[f(t)] = J‘f(ut)e*t dt 3)

For any functionf (t), and -z, <u <z,.
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Theorem (1.1.2) [2]: If S[f(t)] = F(u) and
f(t—r) , t=2r

g(t) =

0 , t<r
Then

T

slo®] - ¢ a()

Theorem (1.1.3) [2]: If ¢,>0, c,>0 andc >0 are any constant, f,(t), f,(t)
and f(t) any functions having the Sumudu transform G,(u), G,(u)andG(u)
respectively then

i Sle, £,(t) + ¢, £,(0)] = ¢ S[f,(t)]+c, S[f,(1)]
- ClGl(u)+C2 Gz(u)
i. S[f(ct)]=G(cu)
iii. lim f(t)= f(0)= lim G(u)
Further are words more, for several functionsf(t)defined for t>0 in the
neighborhood of infinity (i.e. ast — o)

lim f(t)= lim G(u)
1.1.1: The Relation Between Sumudu and Laplace Transform
The Sumudu transform F (u)of a function f(t) defined for all real numbers

t >0. The Sumudu transform is essentially identical with the Laplace transform.
Given an initial f(t) its Laplace transform G(U) can be translated into the Sumudu
transform FS(U) of f by means of the relation;
0,

u

u

3

F(u)=

And it's inverse

G(s) = FS[

S
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Theorem (1.1.4): Let f(t) with Laplace transform G(S) then the Sumudu
transform F(u) of f(t) is given by

F(u)—iij ,

u
Proof:
Form definition (1.1.1) we get:

F(u)=fe‘tf(ut) dt
0
dw
If we set W= Ut and dt = Tthen

F(u)= Te(_m f (w)du—W = %Te[_r‘vj f (w)dw

0

(i)

u

By definition of Laplace transform we get:

F(u)=

Theorem (1.1.5): It deals with the effect of the differentiation of the function f(t),
K times on the Sumudu transform F(u) if S[f (t)] = F(u)then:

L s[t] = S[F) - £©)]
i s[F'@)] = [FI- 5 F0)- = )
i s[f<n>(t)]:uin[p(u)]_uin§uk £0(0) = u‘”[F(u)— Zu f(k)(o)}

Where f©@0)=f(0) , f¥(0), k =1,2,3,---, n—1 are the kth-order derivatives of the

function f(t) evaluated at t = 0.
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Proof:
I.  Using integration by parts;

S[f/(t)] = [exp[__jf(t)r L, (——jf(t)dt

= f(0)+ EF(U)

s[H] = [F(u)- £(©)]

1. Using integration by parts;

S[F7(t)] = Bem f ’(t)T .

Tae[:J f/(t)dt

0

C |
H

From (i) = —% f'(0)+ %S[f ()]

14 1
slf"@] = ZIF]- L 10) - - f ')
iii. By definition the Laplace transform for f™(t) is given by;
n—-1
G,(s)=s"G(s) - D s" 1§ )(0)
k=0

By using the relation between Sumudu and Laplace transform;

a(2)- o) g

n n—(k+1)
n( )
u

k=oU

Since F,(u) = T we get:
uF@u) & f®%(0)
F =t
u n(u) un I(:Ounfkufl
Fu 5 f%(0)
F = ->
n(u) un P un—k

F(u)=u"F(u)- k”z:u—nu < £09(0)
s[f O ()= F(u) = u”[F(u)— Zu f(")(o)}

4
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Theorem (1.1.6): Let f (t) be a function with the Sumudu transform F(u) then;

sl £(t)] = - F( u J

1-au 1-au

Proof:

sle* £ (1) = T fut)e™ et dt = T f(ut)eC-t-au gy

0 0
dw
=1- t dt =
Let w=(@1—-au)t = T
1 % uw
Sle* f(t)|= f “d
[e ()] 1—au-([ [1—auje W
1 u
Sle* f(t)|= F
[e ()] l1-au (1—auj

Theorem (1.1.7) [3]: This theorem deals with multiplication of the function f(t) by a
power series of t | if:

i s[tf@)] :uzdip(u)+up(u)
i. sl f@) =
iii. sl £(0)] =u”k20a£uk F ()

n+1

iv. Szthrl f(t)]Z n+1 Zan+1uk F (U

)+ 4u® d—F(u)+ 2u® F(u)

Theorem (1.1.8): Let f(t)and g(t)having Laplace transforms F(S)and G(S)
respectively, and Sumudu transform M (u) and N(u), respectively.
Then the Sumudu transform of the convolution of f and §.

o0

(f*g)t)=[ ft)glt - )dz

0

S[(f*g)(t)]=uM ()N (u)

5

IS given by:
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Proof:
First, recall that the Laplace transforms of (f = g) is given by:

L[(f +g)(t)]= F(s)G(s)

By using the relation between Sumudu and Laplace transform;
1
s[(f*g)(®)] = = LI(f *g)(0)]
)
U/
u
The Sumudu transform of (f =g) is obtained as follows;

s[(f=g)(®)] = M =u FG) G[ij =u M(u)N(u)

u u u

s[(f*g)®] =u M(U)N(u)

1

And since M(u)#uj , N(u)=

Theorem (1.1.9): Let G(u) denote the Sumudu transform of the function f(t) let
f ("(t) denote the nth derivative of f (t) with respect to t and let F,(u) denote the
nth derivative of F(u) with respect to u, then the Sumudu transform of the function
t" f ™M(t) is given by:
sl £ @)= u" F, (u)
Proof:
Let the Sumudu transform of f (t);

F(u)= T f(ut)e " dt

0

Therefore,for n=0,1, 2, ... we get:
F”(u)z-([du” f(ut)e ' dt = E[t f"(ut)e ' dt
1 ¢ n n —t 1 n n
F.(u) = = [(ut) £ (ut)e t dt = = st" £ ()]
u" < u

= s[t" f ()] =u" F,(u)
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Corollary (1.1.10) [2]:
Let F, (u) denote the nth derivative of F,(u)=S[f(t)], then

Sl ()] dj)—uﬂu)

i, S ()= u?[2F,(u) + uF,(u)]
i, sfe f)=u [ (u) + 6u R, (u) + u? Fy(u)]
iv. S|t f/(t)=u*12F, (u) + BuF,(u) + u? F, (u)]

Example (1.1.11): Consider the following inhomogeneous partial differential

equation:
U, (x,y)+U,(x,y)=x+y;
With the initial conditions;
U(x,00=0 , U(0,y)=0;
Taking the Sumudu transform of Eq. (4), we get:
S[U, (. y)l+s U, (x,y)|=S[x+y]

%U(x,u)+%[U(x,u)—U(x,O)]: X+ U

%U(x,u)+%u(x,u)= X + U

Thus we have the ordinary differential equation:

d 1
&U(X,u)—FEU(X,U)— X+ U

The integrating factor is;

Then

2
U(x,u)= %Uu(x+ u)dx + c]: X? + XU +C

2

Since U(x,0)=0 then ¢ = —X? , then

U(x,u)= xu
Taking the inverse Sumudu transform;
U(x,y)= S*[xu]

U(x,y)=xy

(4)

(5)

(6)

(7)

(8)

(9)

(10)
(11)
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1.2: Homotopy Perturbation Method

The homotopy Perturbation Method (HPM) was a result of some pioneering
ideas beginning in 1999 by He [4]. Since then it has developed into a fully -fledged
theory, which was the contribution from many researchers [5-12]. The HPM method
was found to be a simple and accurate method to solve a large number of nonlinear
problems.

It is well known about the main disadvantage of the Adomian method, that it is
a complex and difficult method to perform calculation so called Adomian
polynomials. There is an alternate approach to reduce the demerits of Adomian
method, which involves a variational iteration method. On the Homotopy Perturbation
Method (HPM) which is simple and straightforward may be employed to calculate
Adomian Polynomials.

The homotopy perturbation method (HPM) may be used to solve the functional
equations of the form:
u— N()=f, (12)
Where N is a nonlinear operator from Hilbert space HtoH , uis an unknown
function, and f is a known functionin H .

The homotopy perturbation method u as a series with componentsu,,, and
N(u) as a series with components H
calculated using the formula:

homotopy polynomials, which can be

n’?

Hn_i d N ooui pi
n! dp” i—o

(13)

p=0

1.2.1: Homotopy Perturbation Method and He polynomials
To illustrate the homotopy perturbation method (HPM), we consider (12) as;
L(v) =v(x)— f(x)—= N(v)=0 (14)
With solution u(x). As a possible remedy, we can define homotopy H(v, p) as

follows:
H(,0)=F(v) , H(v,1) = L(v)
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Where F(v)is an integral operator with known solutions, v,, which can be obtained
easily. Typically, we may choose a convex homotopy in the form;

H(v.p)=(1-p)F(v)+pL(v)=0 (15)
and continuously trace an implicitly defined curve from a starting point H(v,,0) to
a solution function H(u,0). The embedding parameter p monotonically increase from
zero in the unit as the trivial problem F(v)=0is continuously deformed to the original
problem L(v)=0.

V=Vy+ PV, + PV, + piug e (16)
When p —1, Eq. (15) corresponds to Egs. (14) and (16) becomes the approximate

solution of Eq. (14), i.e.

v=limvy+ Vv, +V,+V,+ - (17)
p—o1

Theorem (1.2.12): Suppose N(v) is a nonlinear function, and i p“v, , then we get;
k=0

8n 0 ‘ an n v
-N pv =——N pv
op [Z ) op (Z J

=0

an
a pn N(V)p:O =

=0
Proof: Since

0 n 00
V:Zpkvk:Zpkvk+ zpkvk’
k=0 k=0

k=n+1

We have such result as follows:

an an 0 ‘ an n K 0 ‘ an n K
~N(v),_o=——-N pv =——N PV, + pv =——N pv
op W) op LZB klo op [kzo ‘ k§+l k]po op [26 klo

Therefore, we obtain;
6n ar‘l o0 ‘ an n ‘
~N(v),_.o =—N p‘v = -N pv
TR (Z j op (Z J

Taking, F(v)=v(x)- f(x)— pN(v)=0, and substituting (13) into (14), we get;
H(v, p)=v(x) - f(x)~pN(v)=0, (18)
According to Maclaurin expansion of N(v) with respect to p, we get;

N<v>=N(v>p_o+p(iw<v>p_oj+p{ Lo N<v>p_0]

op 219p?
1 6° S 1 0"
N E R R Ve

9
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Substituting Eqg. (16) into the above equation, we get;

{gon) iz ol )
} +p(§'§pn (ZpVJ}

(19)

p
+p3 la_sN Z?’:pkv + .4+ lan Zn:pv 4+
3'8p3 K=0 “ D=0 nlap k=0 ‘ p=0

Substituting Egs. (16) and (19) into Eqg. (18), and equating the terms with the identical
powers of P, we get;

P® vy (X) = F(X)=0 = vy(x) = f(x
P v (x) = N(Vg) = 0 = v,(x) = N(v)

0 L 0 L
2-v.(x) = =N Ky =0 = v,(x)=—=—N Ky
SUCETH Y 0= Sn ]

p=0 p=0

=0

n nl n n
pn+1:Vn+1(X)— a N[Z pk VkJ =0 = Vn+l(X): d N[Z pk Vk]
p p

apﬂ k=0 -0 apn k=0

Definition (1.2.13): The He polynomials are defined as follows:
1 0" :
H Vo,V -+ -, V)= ol o (Zp vklo,nzo,l,z,-u

Therefore, the approximate solution obtained by the homotopy perturbation method
can be expressed in He polynomials:

=t Sn{gen] ATN(Ee)

K =

Ho p=0
Hl HZ
10° 1 o" L
+———=N Vv + - Vv 4o
3'8 3 (kz:p kJ nlap [kZ::Op kJ
=0 p=0
H3 Hn

10
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The nonlinear term N(u) can be also expressed in He polynomials:

ZH Vor Voo V n) Ho(Vo)"‘Hl(Vo’ ) -+ H (Vo’ 1""’Vn)+""
Where
1 o" 4
an,v,.--,vn p*v ,n=0,1,2,---
(V. v S [z j

Alternatively, the approximate solution can be expressed as following:
F 3 H Mo YY)
n=0

This is very interesting and attractive to note that we can obtain He polynomial and its
solution simultaneously.

Example (1.2.14): Consider the following inhomogeneous partial differential
equation:

(20)

With the initial conditions;
U(x,00=0 , U(0,y)=0;
To solve Eqg. (20) with initial condition, according to the homotopy perturbation
technique, we construct the following homotopy
ov ou ov oV
(1—p)(a—y—a—;]+p( +——y—xJ:O (21)
Or equivalently;

oy oy

Suppose the solution of Eq. (21) has the form;
V=V, + PV, + PV, + pivg+ - (22)
Substituting Eg. (22) into Eg. (21) and comparing coefficients of terms with identical

powers of p, leads to:
0. 0V OUy _

ﬂ_%_}_ p(%+ﬂ_y_x]zo

'8y oy
oV ou ov
Py ey (T Y)=0  ux,0)=0

11
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pzzaai +%:0 V,(x,0)=0
y X
3:% +%=O ,V,(x,0)=0

y X

(23)

. . oV,
':%+ 8'_1:0,v2(x,0):0

y X

For simplicity, we take, vo(x,y)zuo(X,y)=0. So we derive the following

recurrence relation;

1OV, :
vi:_!‘ P dy , 1=1,2,3,--- (24)

Solving the above equations, we obtain;
Uy(x,y)=0

Ul(x1y):Xy+_

_y
UZ(X 1 y)_ T, (25)

And so on.
By setting, p =1 in Equation (20) the solution of Equation (22) can be obtained, thus
we get;

y' oy
U(x,y):0+xy+?—7+0+--- (26)
Equation (26) has the closed form;
U(x, y)=xy (27)

This is also the exact solution of the problem.

12
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Example (1.2.15): Consider the following one-dimensional parabolic-like equation
with variable coefficients,

2
Ut(X,t)—X?UXX(X,t)ZO ) (28)
Subject to the initial condition;
U(x,0) = x*
According to the homotopy perturbation method, we can construct the homotopy
Q x [0,1] — %R which satisfies;

ov oU ouU x? 0%V
ot 8t0+p{ 8t0_?8x2}20 (29)
With the initial approximation
U,=U(x,0)=x%;
Suppose that the solution of Eq. (28) can be represented as;
V=V,+ pV,+p>V,+ piv+ - (30)

Substituting Eqg. (30) into Eqg. (29), and equating the terms of the same power of P, as

following;
0.0V 0U, _

ot ot
1:%+8U0_ﬁ82v0
ot ot 2 ox°

, 0V, x* 0%,

. U,(x,0)= x?

=0, U,(x,00=0

OV, X - . U,(x,0)=0

ot 2 ox? ,(x.0)

s 0V, X% 0%V,

T - = ) U ,O = 0
ot 2 0x? 5(x.0)

LY x2 0%V, _,

S 2 ~ . U, (x,00=0
ot 2  Ox? »(x,0)

13
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By choosingU,(x,t)=U(x,0), and solving the above equations, we obtain the
following approximations;

U,(x,t)= x?
U,(x,t) = tx?
t*
U,(x,t)= ik
(31)
U,(x,t)= L
e n!
Then the exact solution of Eq. (28) is given by;
_ lim o2 t’ ") 2
U(x,t)_nlmx (1+t+§+---+m =x’e (32)

1.3: Homotopy Perturbation and Sumudu Transform Method for

Solving of Partial Differential Equations

The homotopy Perturbation method proves to be powerful, effective and simple
method which can be applied to a varied class of linear or nonlinear ordinary or partial
differential equations, and linear and nonlinear integral equations. The method
possesses several advantages, which is significant from the decomposition method.
This method is a simple and direct way of solving linear or nonlinear ordinary or
partial differential equations, and linear and nonlinear integral equations without the
use of linearization, perturbation or any other bounded assumption.

The HPM was developed by Ariel et. al. [5]. Extensive research has been
carried out by applying this method to a varied class of linear or nonlinear ordinary or
partial differential equations, and linear and nonlinear integral equations.

The homotopy perturbation method involves decomposing the unknown function
U(x, y)of any equation into a sum of an infinite number of components defined by the

decomposition series:
U(x,y)= 2 p"U,(x,y) (33)
n=0
Where U, (x,y), n > Oare to be determined in an iterative manner.

14
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The decomposition method involves finding the components U,,U,,U,,---

individually. The decomposed component can be obtained by recursive relation who
involves simple integrals.
To have a clear overview of the HPM, let us first consider the linear differential
equation written in an operator form by:
LU +RU =g (34)

Where S a lower order derivative which is invertible is, R is other linear differential
operator, and g is a source term. If we apply the inverse operator S™'to both sides of
equation (34), we obtain linear differential equations.

U=f-S*[RU] (35)
Where, the function f represents the terms arising from integrating the source term g.
Using the homotopy perturbation method which defines the solution u by an infinite
series of components given by:

wmw=iwkaw; (36)

where the components U,,U,,U,, ---are usually recurrently determined. Substituting
Eq. (34) into both sides of Eq. (35) leads to;

0

2. p"U,=f-p Sl[R(Z p”UnH (37)
n=0 n=0
For simplicity, Equation (37) can be rewritten as;

Up+pU,+ p2U, +p°Us+---=f — pS[RU,+pU,+ p2 U, +p°U,+---)| (38)
To construct the recursive relation needed for the determination of the components
U, U,,U,,---, it is important to note that the homotopy perturbation method
suggests that the zeros component U, is usually defined by the function f described
above, i.e. by all terms, that are not included under the inverse operator S, which
arise from the initial data and from integrating the inhomogeneous term. Accordingly,
the formal recursive relation is defined by;

U, = f,
U, =- S_l[R(Uo>]!
U, =-s"[rRWU,)] (39)
U, =-S7[RU,)]
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It is evident from relation Eq. (39) that the reduced differential equation in terms of
computable components. Again on substituting these components in equation (36), we
obtain the solution in a series form.

Example (1.3.16): Consider the following inhomogeneous partial differential
equation:

U,(xy)+U,(xy)=x+y; (40)
With the initial conditions;

U(x,00=0 , U(0,y)=0;
The X-solution:

Taking Sumudu transform of both sides of the equation (40) subject to the
initial condition, we get;

sfu(x,y)l = u?+uy —uslu,(x,y)] (41)
The inverse of Sumudu transform implies that;
2
U(x,y)zx?+ xy—Sfl[uS[Uy(x,y)]] (42)

Now, applying the homotopy perturbation method, we get;

ip”Un(x,y)z X—22 + xy—ps{us{[i p”Un(x,y)j H (43)

n=0 n=0

Comparing the coefficients of like power p , we get;

0. _ X2
p° :U,(x, y) = >+ XY

p' :U,(x,y)= S*[u S[(Uo)y]]=—X72 (44)
p? 1U,(xy) =57 [us[,),]]= 0
P> 1U(xy) = s7us[w,),]= o
Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---

w

2

2
U(x,t)zx?+xy—x?:xy (45)

And in closed form given as;
U(x,t)=xy (46)

16



Homotopy Perturbation Method and Sumudu Transform | 1

The y-solution:

Taking Sumudu transform of both sides of the equation (40) subject to the
initial condition, we get;

S[U(x,y)] = u®+ux —us[U,(x,y)] (47)
The inverse of Sumudu transform implies that;
2
U(x,y):y7+ xy =S usu,(x,y)]] (48)

Now, applying the homotopy perturbation method, we get;

ép”Un(x,yF y72 +xy—p81[uSHip”Un(x,y)J ” (49)

Comparing the coefficients of like power p , we get;

p° 1 U,(x y)=y—2+xy
- U, (x, .

P 1Uy(y) = s fusfu,), = - %

p* 1U,(x,y)=S"[us[u,)]Jl= 0 (50)
p* :U,(x,y)=s"us[u,),]]= 0

Therefore the solution U(x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---

2

2
U(x,t)=y7+xy—y7=xy (51)

And in closed form given as;
U(x,t)=xy (52)

Example (1.3.17): Consider the following homogeneous partial differential
equation;
U,(x,t) — xU(x,t)= 0 (53)
Initial condition as;
U(x,0)=1

17
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Taking Sumudu transform of both sides of the equation (53) subject to the initial

condition, we get;

S[U(x,t)]=1+ us[xU]
The inverse of Sumudu transform implies that;

U(x,t) =1+ S*[usS[xU]|
Now, applying the homotopy perturbation method, we get;

g‘apnun(x,t) —1+p (Sl[us[xﬁgpnun(x,t)ﬂ}

Or equivalently;

Uy + pU, + p?U, +--- =1+ p(SHu S|x (U, + pU, + p?U, +---)])

Comparing the coefficients of like power p , we get;
p® :U,(x,t) =1
p' :U,(x,t) = S[uS[xU,]] = xt

p? :U,(x,t) =S uS[xU,]]= x >

Proceeding in a similar manner, we obtain;
t3
3. _ w3
p%:U,(x,t) = x 3

Therefore the solution U (x,t)in series form is given by;

U (1) = Uy (,0)+U, (6,040, (x,) -

2 3 t3 t4

U(x,t) =1+ xt+ x2%+ X X - -

3! 41
And in closed form given as:
U(x,t)=e™

18
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1.4: Homotopy Perturbation and Sumudu Transform Method for
Solving System of Differential Equations

In the study of wave propagation, many researchers have been attracted by
systems of linear or nonlinear partial differential equations, in order to study the
chemical reaction diffusion model of Brusselator and shallow water waves. The
commonly used methods are Riemann invariants and method of characteristics. The
existing methods possess some difficulties in terms of computation and with the
system of several partial differential equations.

In order to overcome the difficulties that arise from traditional methods, the
homotopy perturbation method forms a basis for studying systems of partial
differential equations. The homotopy perturbation method is more attractive as it
generates quick convergent power series with each term computable. And, the method
transforms the system of partial differential equations into a set of recursive relation,
where each recursive relation can be easily computed and examine. Because of this
simplicity of the homotopy perturbation method, we use this method.

1.4.1: Solving System of Differential Equations:
We first consider the system of partial differential equations written in an
operator form;
U +V, =0, (62)
V., +U, =90,
With the initial conditions;
U(x,0) = f,(x)
V(x,0) = f,(x)
Using the differential operator property of the Sumudu transform and above initial
conditions, we get;

s[u(x,t)] = f,(x)+ us[g, -V,]

63
S (x,0] = £,(x)+ us[g, ~U,] 9

Now, applying the inverse Sumudu transform on both sides of Eq. (63), we get;
U(x,t) = f(x)+ s™Huslg, -V, 60

V(x,t) = f,(x)+ s{us[g, - U, [}
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Where g,(x,t), g,(x,t) represents the term arising from the source term and the
prescribed initial conditions. We apply the homotopy perturbation method;

U(x,t) = zp U, (x,t)

) (65)
V(x,t)=>p" V,(x,t)
n=0
Now, applying the homotopy perturbation method, we get;
50,0 66+ 0 5° o8] £ (o, + w0
n=0 n=0
(66)

o0

> PV (x,t) = f(x) + p (Sl {uS{fjo p"(9,, + Un(x,t))m
This is the coupling of the Sumudu transform and the homotopy perturbation method
using He’s polynomials.
Comparing the coefficient of like power of p, the following approximation are
obtained
p°: UO(X,t) = fl(x) ’ VO(X,t) = fz(x)
p':U(xt) = S7us[H,U)]]
p':Vi(x,t) = S us[H,(V)]]
p? :U,(x,t)= SHus[H,(U)]]
p*:V,(x,t) = s us[H, V)]

(67)

To have a clear overview, forthwith are several examples to demonstrate the
efficiency of the method.

Example (1.4.18): Consider the following system of partial differential equations,

U, +V, =0 (68)
V,+U, =0
With the initial conditions;
U(x,0) = e*
V(x,0)=e*
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Taking Sumudu transform of equations (68) subject to the initial conditions, we get;
S[U(x,t)] =e* —uslv,]
siv(x,t)] = e™ —usu,]

The inverse Sumudu transform implies that:

U(x,t)=¢e* —S*usv,]]
V(x,t)=e* -S*[usu,]]
Now applying the homotopy perturbation method, we get;

(69)

(70)

o0

nZ_;)pnun(x,t)z e* — p{slu S_i p”Vn} }}

(71)

n=0

i p"V, (x,t)=e™ — p{Sl_u S_i p”Un} }}

Comparing the coefficients of like power p , we get;
p° Uy(x,t)=e* ,  Vy(x,t)=e"
pt U, (x,t)=te™™ ,  V/(x,t)=—te”

2 . t2 X tz — X
p .UZ(X,t): Ze y VZ(X,t):ze (72)

t3 3

—X t X
p® :U,(x,t)= TR V,(x,t)= T

And so on, using Eq. (72) we obtain;

2 4 3 5
U(x,t)=¢" (1+t—+% +] +e* (t+t—+t— +J

2!

t2 t4 t3 t5 (73)
V(X,t) =e* [1+—+— +J —e* [t+_+_ +J

2! 41
This has an exact analytical solution of the form
(U,V)=(e* cosht +e *sinht , e * cosht — e*sinht) (74)

Example (1.4.19): Consider the following system of partial differential equations,
U, + V,=23X

2U, -3V, =t (79)
With the initial conditions;
U(x,0) = x°
V(x,0)=0
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Taking Sumudu transform of equations (75) subject to the initial conditions, we get;
SV(x,t)] = 3xu —us|u,]
u? 76
s[u(x,t)] = Y x +§u8[ V. ] (76)
2 2
The inverse Sumudu transform implies that:
V(x,t)=3xt — S*us[u,]
2 77
UG = Se 35 usiy,] (77)

Now applying the homotopy perturbation method, we get;

> "V, (x,t) = 3xt - p{ {us Zp”U } }}

Zp U, (x, t)_—+x +—p{ {USL Op”V}}}

Comparing the coefficients of like power p , we get;

(78)

p°:V,(x,t) =3xt U, (x, t)_

p:V,(x,t) = —2xt U,(x,t) =

(79)
p2:V,(x,t)=0 : Uz(x,t):—gt2

p:V,(x,t)=0 : U,(x,t)=0

And so on, using Eqg. (79) we obtain;
V(x,t) = 3xt — 2xt = xt,

2 80
U(x,t):%+x2+%t2—gt2:t2+x2 (80)

This has an exact analytical solution of the form;
UV)=(2+x*, xt) (81)

Example (1.4.20): Consider the following system of partial differential equations,
U,—- V, =2x*—¢'
) . (82)

V, + U, =2t° + xe

With the initial conditions;
U(x,00=0 , U,(x,0)=0
V(x,0) = x
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Taking Sumudu transform of equations (182) subject to the initial conditions, we get;

2
s[u(x,t)] = 2x2u? — 1 — uzspv,]

(83)
SV (x, )] = 4u® + =+ x —us[u, ]
The inverse Sumudu transform implies that:
U(x,t)=xt2+t+1—e' +S*uzsv,]|
84
V) = 204 xe s uslU,.] (84)
Now applying the homotopy perturbation method, we get;
i p"U, (x,t) = x>+t +1—¢e" + p{S{u2 S[i p”Vn} }}
n=0 n=0 X
(85)
> p"V,(x,t) = %t3+ xe' — p{s{u S{z p”Un} }}
n=0 n=0 XX
Comparing the coefficients of like power p , we get;
p®:U,(x,t) = x>+t +1—-¢" Vo(x,t)=§t3+ xe'

: _ _ 4.5
p':U,(x,t)= -t —1+ € : Vl(x,t)——gt (86)
p?:U,(x,t)=0 , V,(x,t)=0
p®:U,(x,t)=0 , V,(x,t) =0

And so on, using Eqg. (86) we obtain;
U(x,t)= xX’t?+t+1-e'— t—1+e' = x*t?,
7
V(x,t)= 2154 xet— 2 xet (87)
3 3
This has an exact analytical solution of the form;
U.V)=(xt?, xe') (88)

23



Heat and Wave Equations | 2

CHAPTER TWO
Applcation of Homotopy Perturbation Method and
Sumudu Transform for Solving Heat and Wave
Equations

The integral part of applied sciences and engineering mathematics are heat and
wave like models that arises from different physical phenomena. Various methods and
techniques are available to solve these problems, but every method have inbuilt
deficiencies. Some of the methods are spectral, characteristics, modified variational
iteration, Adomian's decomposition method and He's polynomial [13]. He (1999, 2003
and 2004) developed the homotopy perturbation method (HPM) by combining the
concepts of standard homotopy and perturbation for solving different physical
phenomena.

It is important to note that the HPM is applied without any restrictive
assumption or transformation, results in eliminating round off errors. The use of He's
polynomial in the nonlinear system was first introduced by Ghorbani and Saberi-
Nadjafi (2007) and Ghornabi (2009). They developed an elegant combination of the
Sumudu transform method, the homotopy perturbation method and He's polynomial.
Madani and Fathizadeh (2010) and Khan and Wu (2011) combined the homotopy
perturbation method with Lapalace transformation method. In 2011, Singh, Kumar
and Sushila introduced a new technique called homotopy perturbation Sumudu
transform method (HPSTM) for solving nonlinear equations.

HPSTM qgives the solution for nonlinear equations in the form of convergent
series. The main advantage of this method is its potentiality of combining two
powerful methods for deriving exact and approximate solution for nonlinear
equations. This forms the motivation for us to apply HPSTM for solving nonlinear
equations in understanding different physical phenomena. Numbers of examples are
presented to assert the efficiency and reliability of the technique.
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2.1: Homotopy Perturbation and Sumudu Transform Method
(HPSTM)

To illustrate the basic idea of this method, we consider a general nonlinear non-
homogenous partial differential equation with the initial conditions of form,
DU(x,t) + RU(x,t) + NU(x,t) = g(x,t) (1)
U(x,0)=h(x), U,(x,0)= f(x)
2

. . . . 0 . .
Where D is the second order linear differential operator(D = WJ , R is the linear

differential operator of order less than D, N represents the general nonlinear
differential operator and g(x,t)is the source term.
Taking the Sumudu transform on both sides of Eq. (1), we get,
S[DU(x,t)] + S[RU(x,t)] + S[NU(x,t)] = S[g(x,t)] (2)
Using the differential operator property of the Sumudu transforms and above initial
conditions, we get,
S[DU (x,t)] =u?S[g(x,t)]+ h(x) + u f(x)
—u?S[RU(x,t)] + S[NU(x,t)]
Now, applying the inverse Sumudu transform of both sides of Eq. (3), we get,
U(x,t) = G(x,t) — S*u? S[RU(x,t) + NU(x,1t)]] (4)
Where G(x,t) represents the term arising from the source term and the prescribed
initial conditions. We apply the homotopy perturbation method;

= 3P U, () )

And the nonlinear term can be decomposed as;

3)

NU(x,t)= Zpth (6)

For some He’s polynomials H, (U) that are given by;

H,Uo,U, U, - U,) = L0 { (ip U, xtﬂ , n=0,1,2,3,--- (7)
i =0

n! op" i=0
Substituting Egs. (5) and (6) in Eq. (4) we get;

ép”un(x,t)z G(x,t) - p{81|:u2 S{Ripnun(x,t)+ ni)p”Hn(x,t)ﬂj (8)

25



Heat and Wave Equations 2

This is the coupling of the Sumudu transform and the homotopy perturbation method
using He’s polynomials.
Comparing the coefficient of like power of p, the following approximation is
obtained,;
p° :U,(x,t) = G(x,t)
p' U, (x,t) = — SHu? S[RU,(x,t) + H, U]
p? :U,(x,1) = - 7 u? S[RU,(x,1) + H,(L)] 9)
p? U, (x,t)= — Sfl[u2 S[RU,(x,t) + H,(U )]]

2.2: Heat Equation
The homotopy Perturbation and Sumudu transform Method can be used to solving
the heat equation;
U =kU,, O<x<xz,t>0, (10)
Where U = U(x,t) represents the temperature of the rod at the position x at timet

and k is the thermal diffusivity of the material that measures the rod ability to heat
conduction.

Boundary Conditions

Boundary conditions (BC) are mainly of three types namely, Dirichlet
boundary conditions, Neumann boundary conditions, and mixed boundary conditions.
In addition, the boundary conditions may be homogeneous or inhomogeneous type.

Boundary condition (BC) that describe the temperature U at both ends of the
rod. One form of the BC is given by the Dirichlet boundary conditions;
u(,t)=0,t>0,
u(l,t)=0,t>0. (11)
It clearly indicates the ends of the rod are at 0° F temperatures.

Initial Condition (IC) describes the initial temperature u at time t = 0. The IC is

usually defined by;
U(x,0)= f(x), O<x<I . (12)
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Based on these definitions, the initial-boundary value problem that controls the heat
conduction in a rod is given by;

PDE U =kU,, O<x<l,t>0,
BC u(,t)=0,t>0

u(,t)=0,t>0 (13)
IC U(x,0)= f(x), O<x<lI

As stated before let us focus our discussions on determining a particular solution of
the heat equation (13).

2.2.1: One Dimensional Heat Flow
The distribution of heat flow in one dimensional space is governed by the
following initial boundary value.

Example (2.2.1): Consider the following one-dimensional initial boundary value
problem as heat-like models;

u=U,, O<x<xz,t>0 (14)
With boundary condition as;
u@,t)=0, U(z,t)=0 (15)
And initial condition as;
U(x,0) = sin x (16)

Taking Sumudu transform on both sides of equation (14) subject to the initial
condition, we get;

S[U(x,t)] = sinx + us[u_, | (17)
The inverse of Sumudu transform implies that;
U(x,t)=sinx + S™[us[u,,]] (18)

Now, applying the homotopy perturbation method, we get;

ép” U,(x,t)=sinx + p [sl {us{[rﬁ% p”Un(x,t)J HJ (19)

Or equivalently;
U, +pU,+p°U, + p*U,+--
: L ) (20)
= sin x+ p(S‘ [u S(UO+ pU, + p2U, + p3U3+"')xx])
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Comparing the coefficients of like power p , we get;
p° : U, (x,t) = sinx
p' :U,(x,t) = — SusS[U,) ]| = —tsinx (21)

2
p? U, (x,t) = = $us[U,), ] = 7 sinx
Proceeding in a similar manner, we obtain;

t3 .
3. _
p .U3(x,t) = —3!sm X

) o (22)
p*:U,(x,t) = VT
Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---
2 t* t! :
U(x,t)z(1—t+z—a+m—-~jsmx (23)
And in closed form given as;
U(x,t) = e 'sinx (24)

Example (2.2.2): Consider the following one-dimensional initial boundary value
problem as heat-like methods;

U =U,, O<x<xz,t>0 (25)
With boundary condition as;

U@ ,t)=e", U(r,t)=7z—e" (26)
And the initial condition as;

U(x,0) = x+cos x (27)

Taking Sumudu transform of both sides of the equation (25) subject to the initial
condition, we get;

S[U(x,t)] = x+cosx + us[U,_ ] (28)
The inverse of Sumudu transform implies that;
U(x,t) = x + cosx + S*[us[u, ] (29)

Now, applying the homotopy perturbation method, we get;

rﬁ;)pnun(x,t) =X+ COSX + p LS‘l [us[[i p”Un(x,t)J HJ (30)
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Or equivalently;
U,+pU,+p°U, +p°U, +---
= X + COS X + p(Sfl[u S(U0+ pU, +p°U, + p3U3+---) ])

XX

(31)

Comparing the coefficients of like power p , we get;
p® :Uy(x,t) = X + cos x
pl : Ul(x’t): Sil[us[(uo)xx]]: —tcos x (32)
2
p2 . UZ(X’t) = Sil[u S[(Ul)xx]] = %COS X
Proceeding in similar manner, we obtain;

t3
3. _
p?: U (x,t) = 31 €08 X

o (33)
p*:U,(x,t) = 21 COS X
Therefore the solution U (x,t)in series form is given by;
S S
U(X,t):X+ (1—t+§—§+m—jcosx (34)
And in closed form given as;
U(x,t)= x +e ' cosx (35)

Example (2.2.3): Consider the following one-dimensional initial boundary value
problem as heat-like methods;

Utzéxzuxx, O<x<1,t>0 (36)

With boundary condition as;
U@ ,t)=0, U@t)=e" (37)

And the initial condition as;
U(x,0) = x? (38)

Taking Sumudu transform of both sides of the equation (36) subject to the initial
condition, we get;

S[u(x,t)] = x* + %xzu s[u,.] (39)
The inverse of Sumudu transform implies that;
U(x,t) = x2+%x28‘1[u8[uxx]] (40)
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Now, applying the homotopy perturbation method, we get;

nZ.j;)IO”Un(x,t) =x*+p [%xz Sl{uSKrﬁ;p”Un(X’t Lﬂ]

Or equivalently;

U,+pU,+p°U, + p°U, +---

= X% + p[%xz S‘l[u S(U0+ pU, +p*U, + p3U3+"')XXD

Comparing the coefficients of like power p , we get;
p° U, (x,t) = x?

P UL (x,t) = 2 8 [us[(U,) L]l =x°t

P 1 UL t) = 5 S usU,), ]| = x

Proceeding in a similar manner, we obtain;

t3
p:U,(x,t) = xza
t4
p*:U,(x,t) = sz

Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy (x,t)+U,(x,t)+U,(x,t) +--

2 3
U(x,t)= x> (1+t+%+t—+

And in closed form given as;

3!

U(x,t) = x*¢€'

30

t4

41

t2

21

(41)

(42)

(43)

(44)

(45)

(46)
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2.2.2: Two Dimensional Heat Flow
The distribution of heat flow in a two dimensional space is governed by the
following initial boundary value.

Example (2.2.4): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models;

U=uU,+U,, O0<x,y<xz,t>0 (47)
With boundary conditions as;

u(@,y,t)=U(z,y,t)=0
U(x,0,t)=U(x,7,t)=0 (48)
And the initial condition as;
U(x,y,0) = (sin x)(sin y) (49)

Taking Sumudu transform of both sides of the equation (47) subject to the initial
condition, we get;

s[u(x,y,t)] = (sinx)(siny) + us|u,, +U,, | (50)
The inverse of Sumudu transform implies that;
U(x,y, t) = (sinx)(siny)+ s*[us|u,. +U,, ]| (51)

The decomposition method defined the solution U(x, y,t) as a series given by;
U(x,y.t)= > U,(x,y,t)
n=0

Now, applying the homotopy perturbation method, we get;

anun(x, y,t)=sinxsiny+ p [Sl {uSKiop”Un(x, Y, t)} ﬂ

_ . {u{(z pU, (x. . ‘)me

Comparing the coefficients of like power p , we get;

(52)

p° :U,(x,y,t) = sinxsiny
p' U, (x,y,t) = S7[us[Us,) o JJ+57[us[U,) , [ = ~2tsinxsiny (55

p? (U,(x y,t)= S*us[u,), ] +s*u S[(Ul)yy]] = %sin xsiny
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Proceeding in a similar manner, we obtain;

2
p®:U,(x,y, t) = —%sin xsiny

56
. @tf (36)
p*:U,(x,y, t)= - sinxsiny
Therefore the solution U(x, y,t)in series form is given by;
_ (2t)° (2t  (2t)° N
U(x,y,t)_[1—2t+ o T3 T4 [sinxsiny (57)
And in closed form given as;

U(x,y,t)=e *sinxsiny (58)

Example (2.2.5): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models;
Uu=U,+U,-U, O0<x,y<z,t>0 (59)
With boundary conditions as;
u(@,y,t)=U(zy,t)=0
U(x,0,t)=U(x,7,t) = e *sinx
And the initial condition as;

(60)

U(x,y,0) = sinxcosy (61)
Taking Sumudu transform of both sides of the equation (59) subject to the initial
condition, we get;

s[u(x,y,t)] = sinxcosy + us|U,, +U,, —U| (62)
The inverse of Sumudu transform implies that;
U(x,y, t)=sinxcosy+ S’l[uS[UXX+UW—U]] (63)

The decomposition method defined the solution U(x, y,t) as a series given by;
Ux,y.t)= D U, (x,y,t)
n=0

Now, applying the homotopy perturbation method, we get;

i:op"un(x, y,t)=sinxcosy+ p {Sl {us[rﬁ% p"U,(x,y, t)j ﬂ

. {us{(i&p”un(x' y, t)lyﬂ+sl :us{é PU, (X, Y, t)ﬂ}
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Comparing the coefficients of like power p , we get;
p® :U,(x,y,t)= sinxcosy

p' 1 U, (x,y,t) = §7us[Uo) o[+ 5 us[Uo) , 1+ s usu,]]
= —3tsinxcosy (65)

p? :U,(x,y,t)= s[us[u,),J+s*{us[u,), s *usfu.]]
= @sin XCOoS 'y
2!

Proceeding in a manner, we obtain;

2
p®:U,(x,y, t)= —(S%I)Sin X COS Y
- 66
. G 0
p*:U,(x,y, t) = “sinxcosy
Therefore the solution U(x, y,t)in series form is given by;
B (3t)> (3t (3t) :
U(x,y,t)—[1—3t+ o " ar t g [sinxcosy (67)
And in closed form given as;
U(x,y,t)=e *sinxcosy (68)

Example (2.2.6): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models;

ut:%(xzuxx+y2uyy), 0<x,y<1,t>0 (69)

With boundary conditions as;
u(@,y,t)=0, U(@,y,t)=2sinht
U(x,0,t)=0 , U(x,1,t)= 2cosht
And the initial condition as;

(70)

U(x,y,0)=y? (71)
Taking Sumudu transform of both sides of the equation (69) subject to the initial
condition, we get;

slu(x,y,t)] = y2+%y2uS[UXX]+%x2uS[UW] (72)
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The inverse of Sumudu transform implies that;
U(x,y,t)=y? +% y?S*[us[u,, ]]+% XZS*l[uS[U yy]] (73)
The decomposition method defined the solution U(x, y,t) as a series given by;

U(x,y,t)= 2Un(x,y,t)

Now, applying the homotopy perturbation method, we get;

ZDU(th)—y+p[ { KZD”U(th)j

I—I

(74)
+lx28{u8{(2pnun(x,y,t)j ﬂ
2 n=0
yy
Comparing the coefficients of like power p , we get;
Uo(x’y’t): y?
_ 1 esysiu 1 2sus|u,),, ]| = x?
Uy(x,y,8) = 2y usU,) T2 s fus[u,) , J= v (75
1 t2
p* U, (xy,t)= y*S [uS[(Ul)XX]]+ xs2luslu,), [=v75;
Proceeding in a similar manner, we obtain;
3
p:U,(x,y t)=x2%
t; (76)
4 _ g2t
P UL (X, y, 1) = v*
Therefore the solution U (x, y,t)in series form is given by;
U ( t) =x?|t v,r 211 LS S 77
X,y ,t)=x +a+a+--- +Yy +Z+E+ (77)
And in closed form given as;
U(x,y,t) = x®sinht+y? cosht (78)
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2.2.3: Three Dimensional Heat Flow
The distribution of heat flow in a two dimensional space is governed by the
following initial boundary value problem.

Example (2.2.7): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models as;
U=uU,+U,+U,, 0<x,y,z<7z,t>0 (79)
With boundary conditions as;
u@,y,z,t)=U(z,y,z,t)=0
U(x,0,z,t) =U(x,7,z,t)=0 (80)
U(x,y,0,t)=U(x,y,z,t)=0
And the initial condition as;
U(x,y,z, 0) =2sin xsin ysin z
Taking Sumudu transform of both sides of the equation (79) subject to the initial
condition, we get;

s[u(x,y,z,t)] = 2sinxsin ysinz+ us|U, +U,, +U,, (81)
The inverse of Sumudu transform implies that;
U(x,y,z,t)=2sinxsinysinz+ S™ [uS.[UXX +U,, +U,, (82)

The decomposition method defined the solution U(x, y, z,t) as a series given by;
U(x,y,z,t)= iun(x, y,z,t)
n=0

Now, applying the homotopy perturbation method, we get;

p"U, (x,y,z,t)=2sinxsinysinz+ p [Sllusﬂi p'U, (x,y,z, t)j ﬂ
n=0 XX

[Ms

n=0 =

- {usﬁip“n(x’ vz, t)ly”+31 {us{[ﬁ‘gp"un(x, y.z, t)Jm

Comparing the coefficients of like power p , we get;

(83)

P’ :U,(x,y,z,t) = 2sinxsinysinz

p Uy (x,y,2,) = 87us[U,) I+ s fusU,) , +5us[U,) ]
= —2(3t)sin xsin ysin z
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p* :U,(xy,z,) = $us[Uy), J]+slus|v,), [+sus[,)..]
=— Msin Xsin ysin z (84)
2!

Proceeding in similar manner, we obtain;

3
p®:U,(x,y,z,t)= —z(i)—f)sin X sin y sin z
- (85)
4
p*:U,(x,y,z,t)= ZE—T)sin X sin ysin z

Therefore the solution U(x, y, z,t)in series form is given by;

L 3t (3t (3t)
U(x,y,z,t)=25|nxsmy5|nz(1—3t+(2!) —(3!) +(4!) —j (86)

And in closed form given as;
U(x,y,z,t)=2e * sinxsin ysin z (87)

Example (2.2.8): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models as;
u=u,+U,_ +U,-2U, O0<x,y,z<xz,t>0 (88)

With boundary conditions as;

u(@©,y,z,t)=U(z,y,z,t)=0

U(x,0,z,t) =U(x,7,z,t)=0 (89)

U(x,y,0,t)=U(x,y,7,t)=0
And the initial condition as;

U(x,y,z, 0)=sinxsinysinz

Taking Sumudu transform of both sides of the equation (88) subject to the initial
condition, we get;

slu(x,y,z,t)] = sinxsinysinz+ uS|u, +U,, +U,, —2U| (90)
The inverse of Sumudu transform implies that:
U(x,y,z,t) = sinxsinysinz+ S*[uslu, +U  +U, —2U]| (91)

The decomposition method defined the solution U(x, y, z,t) as a series given by;

U(x,y,z,t)= iun(x,y,z,t)
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Now, applying the homotopy perturbation method, we get;

ipnun(x,y,z, t)=sinxsinysinz+ p [S{usl:(i p"U, (x,y,z, t)j :H
n=0 n=0 XX

+S1[u8{[§:opnun(x,y,z,t)}wﬂ+8{USK;@;)D”U,KX’Y,Z’t)lzﬂ (92)

- ZSll:uS{ép”Un(x,y,z, t)m

Comparing the coefficients of like power p , we get;
p° :U,(x,y,z,t)=sinxsin ysinz
p': Ul(X’ y,Z 1t) = Sil[u S[(Uo)xx]]"'sfl[u S[(Uo) yy]]
+S'us[U,) ]l —2S*[us[u,]]
= —5tsin xsin ysin z

p? 1U,(xy.z,t)= S*[us[U,),]+sus[u,), ]
+s7[us[U,) ] —2 s usfu,]

5ty . o
= ——=SIN XSIN ySIn zZ
2!
Proceeding in a similar manner, we obtain;

(5t)

p®:U,(x,y,z,t)= —Tsin Xsin ysin z

4
p*:U,(x,y,z,t)= (54—2)sin Xsin ysin z

Therefore the solution U(x, y, z,t)in series form is given by;

U(x,y,z,t):slnxsmysmz( >, 3 T

And in closed form given as;
U(x,y,z,t) = e * sinxsin ysinz

37

1 5t (6t (5t) N G

-J

(93)

(94)

(95)

(96)



Heat and Wave Equations | 2

Example (2.2.9): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models as;

U, =x4y4z4+3—16(x2UXX+y2Uyy+22UZZ), O<x,y,z<1,t>0 (97)

With boundary conditions as;

U@©,y,z,t)=0, U(ry,z,t)=y*z*(e' —1)

U(x,0,z,t) =0, U(x,7,z,t) = x“z“(et —1) (98)

U(x,y,0,t)=0, U(x,y,z,t) = x*y*(et -1)
And the initial condition as;

U(x,y,z,0)=0 (99)

Taking Sumudu transform of both sides of the equation (97) subject to the initial
condition, we get;

Slu(x,y,z,t)] = x4y4z4t+3—l6u8[x2Uxx +y?U,, +z2U | (100)
The inverse of Sumudu transform implies that:
U(x,y,z,t)= x4y4z4t+%8‘1[u8[xzu wt YU, + 22U, | (101)

The decomposition method defined the solution U(x, y, z,t) as a series given by;

U(x,y,z,t)= ni‘aun(x,y,z,t)

Now, applying the homotopy perturbation method, we get;

Zw: p"U,(x,y,z,t)=x*y*z*t+ p {%xzslluslii p"U,(x,y,z, t)] H
n=0 XX

n=0

vl o e

Comparing the coefficients of like power p , we get;

(102)

p®:U,(x,y,z,t) = x*y*z%
1. 1 oea 1 ...
p 'Ul(x7y7z’t): %X S [US[(Uo)xx]]"‘ %y S [US[(UO)yy]]

1, ¢
+ 55787 uslU) ]l = Xy
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P U (0, 2.0) = 5ox s usU), T ys ths[uy), ]

228 uslU) L= Xyt

Proceeding in a similar manner, we obtain;
4

p®:U,(x,y,z,t)= x“y“z“t—

3

3!

t4

41
t5
p4:U4(X’y,Z, t)= X4y4z4a
Therefore the solution U(x, y, z,t)in series form is given by;
4. ,4_4 t? t3
U(x,y,z, t)=x"y'z (t +Z + 3

And in closed form given as;
U(x,y,z,t) =x*y*z* (e — 1)
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2.3: Wave Equations
In this section, we will apply the newly developed homotopy perturbation
method and Sumudu transform to handle the wave equation.

6.2.3: One Dimensional Wave Equations
The homotopy perturbation method will be illustrated by discussing the
following typical wave model.
Without loss of generality, as a simple wave equation, consider the following
initial-boundary value problem:

U, =c*’U,, O0<x<lIl,t>0
Subject to boundary conditions as;
u@,t)=0, U(,t)=0, (107)

And the initial condition as;
U(x,0)= f(x), U,(x,0)=g(x)

It is obvious the Eq. (107), that governs the wave displacement, contains the
term U, . Consequently, two initial conditions should be given. The initial conditions
describe the initial displacement and the initial velocity of any point at the starting
timet = 0.

Example (2.3.10): Consider the following one-dimensional initial boundary value
problem which describes the wave-like models as;

U,=U,, O<x<z,t>0 (108)
Subject to boundary conditions as;
U@ ,t)=0, U(r,t)=0 (109)
And the initial condition as;
U(x,0)=0, U,(x,0)=sinx (110)

Taking Sumudu transform of both sides of the equation (108) subject to the initial
condition, we get;

S[U(x,t)] = usinx + u?s[u ] (111)
The inverse of Sumudu transform implies that:
U(x,t) =tsinx + s*[uzs[u ]| (112)
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Now, applying the homotopy perturbation method, we get;

Z’lpnun(x,t) =tsinx + p (sl {uzs{[rﬁ‘a p"U, (x,t j HJ (113)

Or equivalently;
U,+pU,+p*U, + p°U,+--

= tsin x+ p(Sfl[u2 S(U0 +pU, +p*U, +p° U, +)XX]) -
Comparing the coefficients of like power p , we get;
p° :U,(x,t) = tsinx
P U (x,0) = 8t S[Ug) o] = - & sin (115
3
p? U, (xt) = s*us[u,).]]= %sin X
Proceeding in a similar manner, we obtain;
p3:U,(x,t) = —t7—7'sin X
4 o '_ (116)
p*:U,(x,t) = 5;Sinx
Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---
ottt :
U(x,t)z[t—a+a—ﬂ—---)smx (117)
And in closed form given as;
U(x,t) = sintsin x (118)

Example (2.3.11): Consider the following one-dimensional initial boundary value
problem which describes the wave-like models as;

U,=U,, O<x<z,t>0 (119)
Subject to boundary conditions as;
U, t)=1+sint, U(z,t)=1-sint (120)
And the initial condition as;
U(x,0)=1, U,(x,0)= cosx (121)
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Taking Sumudu transform on both sides of equation (119) subject to the initial
condition, we get;

S[U(x,t)]=1 +ucosx + u?s[uU_,] (122)
The inverse of Sumudu transform implies that:
U(x,t) =1+ tcosx + S*|u?s[u, ]| (123)

Now, applying the homotopy perturbation method, we get;

ip”un(x,t) =1+1tcosx + p [Sl{uzs{[ip”un(x,tg m (124)

Comparing the coefficients of like power p , we get;

p® : U,(x,t) = 1+ tcos x
3

P U (x,) = S7[u? S[(U,) ] = - Zcos x (125)

P U, (xt) = 577 s[(0,), ] = & cosx

Proceeding in a similar manner, we get;
7
p?:U,(x,t) = —%cosx

4 g (126)
p*:U,(x,t) = 51008 X
Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U, (x,t)+U,(x,t) +---
t° ottt
U(x,t):1+[t——+————---Jcosx (127)
31 51 71
And in closed form given as;
U(x,t) =1 + sintcos x (128)

Example (2.3.12): Consider the following one-dimensional initial boundary value
problem which describes the wave-like models as;
Un=%X2UXX1 O<x<1l,t>0 (129)
Subject to boundary conditions as;
U@©,t)=0, U(@,t)=1+sinht (130)
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And the initial condition as;

U(x,0)=x, U,(x,0)= x> (131)
Taking Sumudu transform of both sides of the equation (129) subject to the initial
condition, we get;

S[U(x,t)] = x +ux? +%X2UZS[UXX] (132)
The inverse of Sumudu transform implies that:
U(x,t) = x+ tx? +%x281[u28[uxx]] (133)

Now, applying the homotopy perturbation method, we get;

ipnun(x,t) =X+ tx® +%x2 P (31 {uzsﬁipnun(x,t)j HJ (134)

Comparing the coefficients of like power p , we get;
p® :U,(x,t) = x + tx?

p' U, (x,t)= s—l[u’-’s[(uo)xx]]z X% — (135)

p? :U,(x,t)= s *us[(u,), ]| = X2t5_5!

Proceeding in a similar manner, we obtain;

5 t’
p:U,(x,t) = x2$
4 tg' (136)
p*:U,(x,t) = xza
Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---
2ttt
U(X,t)=x+x2[t+a+a+ﬂ—--} (137)
And in closed form given as;
U(x,t) = x + x?sinht (138)

43



Heat and Wave Equations 2

2.3.2: Two Dimensional Wave Equation
The propagation of waves in a two dimensional vibrating membrane of length
a and width b is governed by the following initial-boundary value problem;
U,=c’U,+U,) O<x<a,O0O<x<b,t>0 (139)
Subject to boundary conditions;
u(,y,t)=U(a,y,t)=0
U(x,0,t) =U(x,b,t)=0
And the initial condition;
U(x,y,0)= f(x,y) , Uix,y,0) = g(x,y) (141)
As discussed before, the solution in the t direction, in the x—space, or in the
y—space will lead to identical results. However, the solution in the t—direction
reduces the size of calculations compared with the other space solutions because it
uses the initial conditions only. For this reason the solution in the t direction will be
discussed in this chapter.

(140)

Example (2.3.13): Consider the following two-dimensional initial boundary value
problem which describes the heat-like models as;
U, = 2U,+U,), O<x,y<z,t>0 (142)
With boundary conditions as;
u(@,y,t)=U(z,y,t)=0
U(x,0,t)=U(x,7,t)=0
And the initial condition as;
U(x,y,0)=sinxsiny, U,/(x,y,0)=0 (144)
Taking Sumudu transform of both sides of the equation (142) subject to the initial
condition, we get;

(143)

s[U(x,y,t)] = sinxsiny + 2u?slu,_ +U_ | (145)
The inverse of Sumudu transform implies that:
U(x,y, t)=sinxsiny+ 2s*u?sju,_+u, || (146)

The decomposition method defined the solution U(x, y,t) as a series given by;

U(x,y,t)= > p"U,(x,y,t)
n=0
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Now, applying the homotopy perturbation method, we get;

i p"U,(x,y, t)=sinxsiny+2p [Slluzsﬂﬁapmn(x’ Y t)J H

n=0

(147)
+S7 [uzsl(i p"U,(x,y, t)} ]ﬂ
n=0 vy
Comparing the coefficients of like power p , we get;
p° :U,(x,y,t) = (sinx)(siny)
p! :U,(x,y,t)= 25 u?S[U,) . 25 *u? s[(u, ]]_ - (sinx)(siny)  (148)
2 iU, y,t)= 28U s|(U,),, [[+25 M u® s|u,),, |[= (Zt)4 sin x)(sin y
P 41
Proceeding in a similar manner, we obtain:
6
p*:U,(x,y,t) = _@y ) (sin x)(sin y)
(149)
0 U, (x,y, t) = %(sin X)(sin y)
Therefore the solution U(x, y, t) in series form is given by;
[y @y @) e
U(x,y,t)_(l— o T T e [sinxsiny (150)
And in closed form given as;
U(x,y,t) = sin xsiny cos(2t) (151)

Example (2.3.14): Consider the following two-dimensional initial boundary value
problem which describes the wave-like models;

ut=%(uxx+uyy), O<Xx,y<z,t>0 (152)

With boundary condition as;
U@,y,t)=U(z,vy,t)=1

1
U(x,0,t) = 1+sinxsint , U(x,z,t) = 1—sin xsint (153)
And the initial condition as;
U(x,y,0)=1, U,(x,y,0)=sinxcosy (154)
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Taking Sumudu transform on both sides of equation (152) subject to the initial
condition, we get;

S[u(x,y,t)]=1 + usin xcos y +% uslu,, +u,, | (155)
The inverse of Sumudu transform implies that:

U(x,y,t)=1+tsinxcosy+%S‘l[uzs[uxx+uw]] (156)
The decomposition method defined the solution U(x, y,t) as a series given by;

U(X,y,t)=§p”un(x,y,t)

Now, applying the homotopy perturbation method, we get;

i p"U, (x,y,t)=1+tsinxcosy + % p [S{uzsﬁi p"U,(x,y, t)J H
n=0 n=0 XX

+S{uz{@pmn<x-y’ t)]yy” J

Comparing the coefficients of like power p , we get;
p® :U,(x,y,t)=1+t (sinx)(cosy)

P iU,y ) = 257 s[U,) T 25 2 s[u),, ]

(157)

= —%t?’ (sin x)(cos y) (158)
P U,k y )= 3 5t s[u,), [+ 25 sfuy), -

t°, .
= a(sm x)(cos y)
Proceeding in a similar manner, we obtain;
7
p®:U,(x,y, t)= —%(sin x)(cos y)

. (159)
p*:U,(x,y, t)= a(sin x)(cos y)

Therefore, the solution U(x, y, t) in series form is given by;
t° ot t’

U(x,y,t)=1+ (t ~ 5t E ﬂ—---j(sin x)(cos y) (160)
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And in closed form given as;
U(x,y,t) =1+ (sin x)(cos y)(sint) (161)

Example (2.3.15): Use the homotopy perturbation method to solve the initial
boundary value problem;
Uttzé(xzuxx+yzuyy), 0O<x,y<1,t>0 (162)

Subjected the Neumann boundary conditions as;

U,(0,y,t)=0, U,Q@y,t)=4cosht

U,(x,0,t)=0, U, (x,7,t)=4sinht
And the initial condition as;

U(x,y,0)=x", U/x,y,0)=y"*
Taking Sumudu transform of both sides of the equation (162) subject to the initial
condition, we get;

(163)

Slu(x,y,t)] = x*+uy’ +$ XZUZS[UXX]+$ yZUZS[Uyy] (164)
The inverse of Sumudu transform implies that;
U(x,y,t)=x*+ty* +$ XZS‘l[UZS[UXX]]+$ yZS‘l[uzs[Uyy]] (165)
The decomposition method defined the solution U(x, y,t) as a series given by;
U(x,y,t)= :Zop” U,(x,y.t)

Now, applying the homotopy perturbation method, we get;

i p"U (X,y,t)=x*+ty*+ p (éxzs{uzsl:(i p"U,(x,y, t)} ﬂ
n=0 n=20 XX

srelefmens]

Comparing the coefficients of like power p , we get;

(166)

p® iU, (x,y,t)= x*+ty*

P U0y ) = xSt s[U) ol o yeslut o), 1 aen)

t? t3
4 4
27 Y 3

= X
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p* 1U,(x,y,t)= %XZS‘l[uzS[(Ul)xx]]+$y25’l[uzS[(Ul)yy]]

t* t°
_ i 4+
ROV
Proceeding in a similar manner, we obtain;
t° t’
P> Ua(x,y, 1) = X o+ yE o
e e (168)
4, _ w4 Y a4t
Pt ULy, ) =Xt + Y o
Therefore the solution U(x, y, t)in series form is given by;
4 t> t* 4 2 t°
U(x,y ,t)=x (1+Z+Z+---J+y (t+a+a+---j (169)
And in closed form given as;
U(x,y,t) = x* cosht + y*sinht (170)

2.3.3: Three Dimensional Wave Equation
The propagation of waves in a three dimensional volume of length a, width b, and
height d is governed by the following initial boundary value problem;
U, =c2U,+U, +U,,), t>0 (171)
With the following boundary conditions;
u(@,y,z,t)=U(a,y,z,t)=0
U(x,0,z,t) =U(x,b,z,t)=0 (172)
U(x,y,0,t)=U(x,y,d,t)=0
And the initial condition as;
U(x,y,z,0)=f(x,y,z) , Ulx,y,z,0)=g(x,y,z)  (174)

Whereo <x <a,0<y<b,0<z<d, and U =U(x,y,z,t) is the displacement

of any point located at the position (x,y,z) of a rectangular volume at any timet, and
¢ is the velocity of a propagating wave.
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Example (2.3.16): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the wave-like models;
U, =3U,+U,+U,), 0<x,y,z<z,t>0 (175)

Subject to the following boundary conditions;

u@,y,z,t)=U(z,y,z,t)=0

U(x,0,z,t) =U(x,7z,z,t)=0 (176)

U(x,y,0,t)=U(x,y,z,t)=0
And the initial condition as;

U(x,y,z,0)=0 , U,(x,y,z, 0)=3sinxsin ysinz

Taking Sumudu transform of both sides of the equation (175) subject to the initial
condition, we get;

s[U(x,y,z,t)] = 3u sin xsin ysin z+3u?s|U,, +U,, +U,, | (177)
The inverse of Sumudu transform implies that:
U(x,y,z,t) = 3t sinxsin ysinz+3S*|usju, +U,, +U_|| (178)

The decomposition method defined the solution U(x, y, z,t) as a series given by;
U(x,y,z,t)= > p"U,(x,y,z,t)
n=0

Now, applying the homotopy perturbation method, we get;

00

> p"U,(x,y,z,t)=3tsinxsinysinz+3p [S{uzsﬂi p"U, (x,y,z,1)
n=0

n=0 X

J (179)

+51[u25[£2p”Un(X, y.2, t)]yy“Jrslluzs[(ip”un(x, Y.z, t)lz_

Comparing the coefficients of like power p , we have;

| I
| I |
I

p® :U,(x,y,z,t) =3t sinxsin ysin z
p U, (x,y,2,t)= 35 Hu? S[U,) . ]+35 Hu? s[U,),, ]

+35'u?s[U,) ]| = —%L!Ysin xsinysinz  (180)
p* U (x.y,2.0)= 35 s[U,), [ +ss [ s[0,), ]

+35[u”s[(U,).. ]

GOF .
?sm Xsmysin z
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Proceeding in a similar manner, we obtain;

(3t)'

p3:U3(x,y,z,t)=—Tsinxsin ysin z
' 181
. GO (181)
p .U4(x,y,z,t):Tsmxsmysmz

Therefore, the solution U(x, y, z, t)in series form is given by;
3 5 7
x- G, G @) _j 182)

U(x,y ,z, t)=3sin xsin ysin z[ 3 =i

And in closed form given as;
U(x,y,z,t) = sin xsin ysin zsin(3t) (183)

Example (2.3.17): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models;
U, =U,+U_ +U,-U, 0<Xx,y,z<z,t>0 (184)

Subject to the following boundary conditions;

Uu@,y,z,t)=U(z,y,z,t)=0

U(x,0,z,t) =U(x,7,z,t)=0 (185)

U(x,y,0,t)=U(x,y,z,t)=0
And the initial condition as;

U(x,y,z,0)=0, U,/x,y,z, 0)= 2sinxsinysinz

Taking Sumudu transform of both sides of the equation (184) subject to the initial
condition, we get;

s[U(x,y,z,t)] = 2u sinxsin ysinz+ u?s[U,, +U,, +U,, —U] (186)
The inverse of Sumudu transform implies that;
U(x,y,z,t) = 2t sinxsinysinz+ S*|u?sju, +U,, +U,, —U] (187)

The decomposition method defined the solution U(x, y, z,t) as a series given by;

[ee]

U(x,y,z,t)= > p"U,(x,y,z,t)

n=0
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Now, applying the homotopy perturbation method, we get;

iopnun(x,y,z,t):tsinxsinysinz+ p[ {u sHZﬁ“Opnun(x,y,z,t)J ﬂ

+3{Uzsﬁﬁapwn(x,y,z,t)jyyﬂ%1{ Hi ”Un(x,y,z,t)lzﬂ (188)
—S‘{uzs{ipnun(x,y,z,t)ﬂ}

Comparing the coefficients of like power p , we get;
p° :U,(x,y,z,t) = 2t sin xsin ysin z
U,(x,y,2,)= $7[us[U,) o Jl+s[us|U,),, ]
+57us[U,) .. ]| —257us[u,]]
= ( )3 sin xsin ysin z (189)
Uy(x,y.2.t)= S [u s[L,), ]l +s~uslw,), ]

+57us|u,),. ] -2 s7usfu,]

( f

sin xsin ysm z

Proceeding in a similar manner, we obtain;

7
p®:U,(x,y,z,t)= —%sin X sin ysin z
' (190)

9
p*:U,(x,y,z, t)=(29—tl)sinxsin ysinz

Therefore the solution U(x, y, z, t)in series form is given by;

o 2t)’ 2t) 2t)’
U(x,y,z,t)=smxsmysmz[2t— (3!) + (SI) — (7|) —J (191)

And in closed form given as;
U(x,y,z,t) = sinxsin ysin zsin(2t) (192)
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Example (2.3.18): Consider the following three-dimensional inhomogeneous initial
boundary value problem which describes the heat-like models;

Utt:(x2+y2+zz)+%(xzuxx+y2uyy+22uzz), 0<X,y,z<1,t>0 (193)

Subject to the following boundary conditions;
U0,y,2,t) = y2(e' -1)+22(e* -1), U@L y,z,t) = [L+y?)(e" -1)+ 22(e* -1)
U(x,0,2,t) =x?(e' ~1)+ 2% -1), U(x,7,2,t) = [+ x?)let 1)+ 22" -1)  (100)
U(x,y,O,t):(x2+zz)( t—1) ,U(xy,7,t) (x +y2)( 1)+(e’t —1)
And the initial condition as;
U(x,y,z,0)=0 , U(x,y,z,0), = x*+y>— z? (195)
Taking Sumudu transform of both sides of the equation (193) subject to the initial
condition, we get;

sU(x,y,z,t)] = (x* + y? + 2% )u +(x? + y> — 22)u

196
+%u28[xzuxx+yzuyy+zzuzz] (196)
The inverse of Sumudu transform implies that:
2
U(x,y,z,t)=(x+y*+ zz)t—+(x2 +y?— 22N
2 (197)

+ % S‘l[uzs[xzuXX +yU,, +z°U ZZ]]
The decomposition method defined the solution U(x, y, z,t) as a series given by;
U(x,y,z,t) = > p"U,(x,y,2,t)
n=0
Now, applying the homotopy perturbation method, we get;

© ann(X,y,Z,t) _ x2+y2+22 ﬁ+ X2+y2—22t
Zo 2

+p [%xzs1 [u%[(niop”un(x, Y.z, t)lxﬂ (198)
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Comparing the coefficients of like power p , we get;
2
p° :U,(x,y,z,t)= (x2 +y2+ 22)% + (x2 +y? —ZZ)t
4 t3
p* :U,(x,y,z,t)= (x2 +y?+ ZZ)E + (x2 +y? —zz)—

3!
6 5
s tiran oy ey
t® 7
p* :U,(xy 2t = (¢ +y? +22)5 +(x?+y? —Zz)ﬂ (199)

Therefore the solution U(x, y, z, t)in series form is given by;

2 3 4
U(x,y ,Z,t):(x2+y2)(t LS S t__...j

_|_22 _t+£ — E + ﬁ_
2! 3! 41

And in closed form given as;
Ux,y,z,t) =(x®+y?)e' + z2e" —(x* +y?+2?) (201)

(200)
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CHAPTER THREE
Nonlinear Partial Differential Equations

3.1: Homotopy Perturbation Method

In the previous chapters, the homotopy perturbation method has been applied to
a broad class of linear partial differential equations. It is evident that this method can
be applied to homogeneous and inhomogeneous problems without any restriction or
linearization. The method emphasizes on decomposing the unknown function, u into
an infinite series of recursive components through iterations.

In this chapter, the homotopy perturbation method will be applied to nonlinear
partial differential equations. This method involves a special representation for
nonlinear terms such as u?,u®,u*,sinu,e',uu, ,u.. . The method introduces a

formal algorithm in representing nonlinear terms, and it is necessary to represent
nonlinear terms in proper form [14].

In the following sections, representations of nonlinear terms are illustrated with
examples, and an alternate algorithm for calculating homotopy polynomials will be
outlined with examples.

3.1.1: Calculation of Homotopy Polynomials
It is well known now that homotopy perturbation method suggests that the
unknown linear function u may be represented by the decomposition series

U=nZ::0p”un : 1)

The nonlinear term N(u), such asu? , u® , u* , sinu, e* , uu, ,u? , etc. can be expressed
by an infinite series of the so-called homotopy polynomials H, (u) given in the form

N(U) = 3T H,(Ug Uy Uy o Uy ), o)

where H , (u) the homotopy polynomials.

In literature, several strategies have been introduced to calculate homotopy
polynomials. An alternate reliable method which employs only elementary operations
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and does not require specific formulas has been reported. This alternate method that is
based on algebraic & trigonometric identities and on Taylor series.
The homotopy polynomials H, (u) can be found by the following expression

Hn(u)=i d"In p'u, ,n=0,1,2,--- (3)
n! dpn i=0 p=0
The general formula Eq. (3) can be formulated as following;
H, = N(uo)’
H, = U1N’(Uo)’
! 1 14
H, = UN) + 0 NG, @

H, = usN’(uo)"‘ U, Uy N’(uo) + %uf Nm(uo)’

H, = u,N'(u,) + [%ujwlung”(uo) + %Uf u, N"(u,) + %uf N@(u,).

Other polynomials can be generated in a similar manner.
Two important observations can be made here. First, H, depends only onu,,

H, depends only on u, and u,, H, depends only on wu,,u,and u,, and so on.

Second, substituting Eqg. (4) into Eq. (2) gives;
N(u): Ho+H,+H,+H,;+---
:N(uo)+(u1+u2+u3+"')N,(uo)

1 "
+Z(uf+2ulu2+2ulu3+u§+---)N (uy)

1 ( 3 3 2 "m
+ gl +3uSU, +3U2Ug +6UUU, +--- )N"(Ug )+

=N 1)+ (U= )N (Up 5 =y ) Nty ) -

The homotopy polynomials given above in Eg. (4) clearly show that the sum of
the subscripts of the components of u of each term of H, (u) is equal to n. As stated

before, it is clear that H, depends only on u, , H,depends only u, andu,, H,
depends only on u,,u, and u,. The same conclusion holds for other polynomials.

In the following section, an attempt is made to calculate homotopy polynomials for
different forms of nonlinearity that may arise in nonlinear ordinary or partial
differential equations.
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3.1.2: Calculation of Homotopy Polynomials H

I: Nonlinear Polynomials

Case 1:

N(u) = u?

The polynomials can be obtained as follows:

Case 2:

Ho = N(uo): ug’
H, = uN'(u,) = 2u,u,,

H, = u,N'(u,) +%qu”(u0) = 2Uu, +UZ,
H, = u;N'(u,) +uu, N"(uo)+%ufF”’”’(uo) = 2u,U, +2U, U,.

N(u) = u?®

The polynomials are given by;

Case 3:

Ho: N(uo):ug’
H, = UlN'(uo) = 3u§ Uy,

H,=u,N"(u,) +%qu”(uo) = 3uZu, +3u,u?,

H, = u;N'(u,) +u,u, N"(uo)+%qu"’(uo) = 3u2u, +6UU, U, +U7.

N(u) = u*

Proceeding as before we find

Ho = N(uo): Ug,
H, =u,N(u,) = 4ulu,

H, :uzN’(uo)+%qu”(u0): 4udu, +6u2u?, :

H, = u,;N"(u,) +uu, N "(u0)+%qu”’(uo) = 4ulu, +4udu, +12u2 U, u,.

In a parallel manner, homotopy polynomials can be calculated for nonlinear
polynomials of higher degrees.
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I1: Nonlinear Derivatives

Case 1: N(u)=(u, f
The homotopy polynomials are given by;

H, = ug

H, = 2u0xulx,

H, = 2u, u, +u;,
H; =2u, u, +2u, U, .
Case 2: N(u)=u?
The homotopy polynomials are given by;
H, = ugx,
H, = 3ug u, +3u, Uy,
H,= 3u; u, +3u, U/,
H, = 3u; u, +6U, U, U, +U; .
Case 3: N(u)=qu=%Lx(u2)
The homotopy polynomials for this nonlinearity are given by;

Ho, = N(uo): Uo Up, »

H, = %LX(ZUO ul) =Uy U +Ug Uy ,

1
H, = ELX(Zuouz+uf):uoxu2+ulxu1+uzxuo,

1
H; = E Lx(2u0 U +2U, uz) =Uo, Us Uy Uy Uz Uy +Us, Uy

I11:  Trigonometric Nonlinearity

Case 1: N(u)=sinu

The homotopy polynomials of this form of nonlinearity are given by;
H, =sinu,,
H, = u,cosu,,

1 .
H,=u,cosu, — 5ufsmuo,

: 1 5
H, = u,cosu,—u, u,sinu, —gul CoSU,.
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Case 2: N(u) = cosu

Proceeding as before giving;
H, = cosu,,

H, = —u,sinu,,

H,=-u,sinu, — Euf cos Uy,

H, = —u,sinu, — u, u, cosu, + aufsinuo.

IV:  Hyperbolic Nonlinearity
Case 1: N(u) = sinhu

The H, polynomials of this form of nonlinearity are given by;

H, = sinhu,,
H, = u, coshu,,

1 .
H, = u, coshu, + —u/sinhu,,
2!

: 1,
H, = u,coshu, + u, u, sinh uo—gu1 coshu,.

Case 2: N(u) = coshu
The homotopy polynomials are given by;

H, = coshu,,

H, = u,sinhu,,

i 1
H,= u,sinhu, + —u’coshu,,
2!

. 1 5.
H, = u,sinhu,+ u, u, coshu, + Qul sinhu,.

V: Exponential Nonlinearity

Case 1: N(u)= e"

The homotopy polynomials of this form of nonlinearity are given by;
H, = e,
H, =ue",

1 u
H2 :(UZ'FEUleeO,

1
H, = [u3+u1u2 +§U13 e®.
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Case 2: N(u)=e™
Proceeding as before gives;

Hy=¢e",

H =-ue™,

1 —u
H, = (—u2+§uf] e,

1
H, = (—u3+ulu2 - Eufj e,

VI:  Logarithmic Nonlinearity
Case 1: N(u)= Inu, u>0
The H, polynomials for logarithmic nonlinearity are given by;

H, = Inu,,
u
H, = -,
u0
2
u u
H,= 2% -—,
Uy 2U
3
H, = U_3_U1L212 ué'
U Uy 3u,
Case 2: N(u)= InQ+u), -1<u <1

The H, polynomials are given by;

H, = In(L+u,),
H =

ul
Yol
2
H, o= %2 _ W
2 = 21
U, 2Ug
3
u u,u u
H3 3 1 Y2 n 1

T 1vu, @Qruf  3@+u)
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3.1.3: Alternative Algorithm for Calculating Homotopy Polynomials

It is important to note that various practical techniques that may calculate
homotopy polynomials in a practical way without the use of special formulae were
attempted by many researchers. However, the methods developed so far in doing so
are same as that of homotopy. Therefore, there is a need of simple and reliable
technique for calculation.

In this section, alternate algorithms that may be used to calculate homotopy
polynomials for nonlinear terms are presented in an easier way [14, 15]. The methods
depend mainly on algebraic and trigonometric identities and on Taylor expansion.

Moreover, we should use the fact that the sum of subscripts of the components
of u in each term of the polynomial H_is equal ton. The alternative algorithm

suggests that we substitute u as a sum of components u, ,n>0as defined by the
decomposition method. It is clear that H, is always determined independent of the
other polynomialsH_ , n>1, where H, is defined by;

Ho= N(uo)- (5)
The alternative method assumes that we first separate H,= N(u,) for every

nonlinear term N(u).With this separation done, the remaining components of N(u)
can be expanded by using algebraic operations, trigonometric identities, and Taylor
series as well. We next collect all terms of the expansion obtained such that the sum
of the subscripts of the components of u in each term is the same. Having collected
these terms, the calculation of the homotopy polynomials is thus completed. Several
examples have been tested, and the obtained results have shown that homotopy
polynomials can be elegantly computed without any need to the formulas established
by homotopy. The technique will be explained by discussing the following illustrative
examples.
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3.1.4: Homotopy Polynomials by Using the Alternative Method

I: Nonlinear Polynomials

Case 1: N(u)=u?
We first set
u=>pu,. (6)
n=0
Substituting Eq. (6) into N(u) = u?gives;
N(U) = (Ug + U, + U, + Uy + - ). (7)
Expanding the expression at the right hand side gives;
N(U) = U2 +2Uy U, +2Ug Uy +UZ + 2Ug Uy +2U, U, + - (8)

The expansion in Eg. (8) can be rearranged by grouping all terms with the sum of the
Subscripts are the same. This means that we can rewrite Eg. (8) as;
N(U) = U2 +2Uy U, + 2UyU, +UZ+ 2U, Uy +2U, Uy +2Ug U, +2U, Uy + UZ + - (9)
(S —
Ho Hy Hy Hs Hy
This completes the determination of homotopy polynomials given by
H, = uZ,

H, = 2uyu,,
H, = 2u,u, +u?,
H, = 2uy,u,+2u, u,.
Case 2: N(u)=u’
Proceeding as before, we set;
u= i p"u, - (10)
n=0

Substituting Eq. (10) into N(u) = u® gives;
N(u) = (Up+ Uy + Uy + Uy + ---F. (11)
Expanding the right hand side yields
N(u) = ud+3u2 u, +3uZ u, +3u, u? +3uZ u, +6U, U, U, +U; (12)
+3u2u, +3u7 U, +3UZ Uy +6U U Uy + -
We can rewrite Eq. (12) as;
N(u) = ud+3u2 u, +3uZu, +3u, u? +3uZ u, +6u, u, u, +u’
O o i
+3uu, +3u’u, +3ui Uy +6U U, Uy + - ' (13)

Hy
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Consequently, homotopy polynomials can be written by;
H,= ug,
H, = 3ulu,
H,= 3uZu,+3u,u’, ’
H, = 3ulu,+6u,u,u, +u’.
I1: Nonlinear Derivatives
Case 1: N(u)=u?
We first set
u, = ip”unx . (14)
n=0
Substituting Eq. (14) into N(u)=u? gives;
N(u):(uox+ Uy + sz+U3x+'“)2- (15)
Squaring the right side gives;
N(u)=uZ, +2uy U, +2uy U, +U7 + 2Ug Ug +2U, Uy + -+ (16)
Grouping the terms as discussed above we find
N(U) = U3 +2up Uy + 22U U, +U7 + 2y Uy +2U, U, +2Up U, +2U; Uy + U5 + -+ (17)
Homotopy polynomials are given by;
0~ ugx’
H, = 2u, u;,
H, = 2u,u, +u;,
H, = 2u, U, +2u, U, ,
H, = 2u,u, +2u, u; +u;.
Case 2: N(u)=uu,
We first set
u=3py,
e (18)
u =y p'u,
h=0
Substituting Eq. (18) into N(u) = u u, yields;
N(U) = (U + U, + U, + Uy + ---) (uox+ Uy + Uy, + Uy + ). (19)
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Multiplying the two factors gives;
N(U) = Uy Uy U Uy +UgUy +Ug U, +U; Uy +U, Uy +Ug U,
+U; U, +U, Uy +Ug Uy + Uy Uy +UgU, +U; Uy : (20)
+UUy +UU, + -
Proceeding with grouping the terms we obtain;
N(u)=u, Ug, +Ug Uy +UgU; +Ug U, +U; Uy +U, U

Hr_/
Ho H, H,
+ Ug Ug +U, U, +U, Uy +Us Uy (21)

Hs

+ Ug Uy +Ugll, +U, Uy +UjUs +UyU, + -+

H,

It then follows that homotopy polynomials are given by;

Ho = U Ug,»

H, = Uy Uy +Ug Uy

H, = u, u,+u, u,+u, U,

H; = U, U +u; U, +U, U;+U; Uy
I11:  Trigonometric Nonlinearity
Case 1: N(u) = sinu
Note that algebraic operations cannot be applied here. Therefore, our main aim is to
separate H, = N(u,) from other terms. To achieve this goal, we first substitute

u= i p"u, , (22)
s
Into N(u) = sinuto obtain;
N(u) =sin[u, +(u, + u, + u,+u, + ---)] . (23)
To calculate H,, recall the trigonometric identity;
sin(6 + ¢) = sin@cos ¢+ cos Hsin ¢ . (24)
Accordingly, Equation (23) becomes;
N(u) = sinu, cos(u, + U, + Uy +u, + ---) . (25)

+ cosU, sin(u, + U, + Uy +U, + --)
Separating N(u,) = sinu, from other factors and using Taylor expansions for
cos(u, +u, ---)andsin(u, +u, ---)give;

N(U) = sinu, (1—%(u1+u2+'“)2 +%(ul+u2+...)4_ j (26)

+ cosuo[(u1+u2+---)—%(ul+u2+...)3+ j
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So that

N(u) = sin uo(l—%(uf+ 2u1u2+---)+ J

1.3
+ cosu, (U1+Uz+-~)—§ul+---

(27)

On expanding the terms algebraically, few terms of each expansion are below. The
last expansion can be rearranged by grouping all terms with the same subscripts.

Equation (27) can be rewritten as:

H 1 2 .-
N(u) = sinu, + ulcosu0+(u2cosuo—§u1 sinug)

Ho Hy

Hy

. 1 .
+ (uzcosu, —u, uzsmuo—gufsm Ug) +--

H4
Case 2: N(u)=sinu
Proceeding as before we obtain;

: _ 1
N(u) = cosu, — u, sinu, +(— u, sinu, —Euf cosu,)

Ho H,

Ha

: 1 5.
+ (—u,sinu, —u, u, cosu, + gufsmuo) +oe

Hy
IV:  Hyperbolic Nonlinearity
Case 1: N(u) = sinhu
To calculate the H, polynomials for N(u) = sinhu, we first substitute;
u= i p"u, :
n=0
Into N(u) =sinhu to obtain;
N(u) = sinh[u, +(u, + u, + Uy +u, + --)]
To calculate H,,, recall the hyperbolic identity;
sinh(6 + ¢) = sinh @cos ¢+ cosh Asinh ¢

Accordingly, Eqg. (31) becomes;
N(u) = sinhu, cosh (u, + u, + u; +u, + ---)
+ coshu, sinh(u, + u, + Us +u, + )
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Separating N(u, )= sinhu, from other factors and using Taylor expansions for
cosh(u, +u, ---)and sinh(u, +u, ---) give;
N(u) = sinhu, (1—%(u1+u2+~-)2 +%(u1+u2+~-)4— ]
+coshu0( Uy +U, +---) (u +U, +- )3+---j
=sinhu0(1—l u; + 2u,U, +- )+ j
21
15
+ cohsu ( Uy +U, +- +§ul+ J
By grouping all terms with the same sum of subscripts we find
N(u) = sinhu, + u, coshu, +(u, coshu, + luf sinhu, )
L (34)
+ (ugcoshu, + u, u,sinhu, + Eufsinh Uy) +---
H4
Case 2: N(u) = coshu
Proceeding as in sinh x we find
N(u) = coshu, + u, sinhu, +( u,sinhu, +iu12 coshu,)
H H 2|
L (35)
+ (uzsinhu,+ u,u, coshu, + Qufsinhuo) e
Hy
V: Exponential Nonlinearity
Case 1: N(u)=e"
u=>rp"u, , (36)
n=0
Into N(u) = e"gives;
N (U) _ e(u0 + Uy Uy + Ug Uy + =) ’ (37)
Or equivalently;
N (U) — gl e(u1+ Up+ Ug+Uy + =) (38)
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Keeping the term e* and using the Taylor expansion for the other factor we obtain;

N(u)=e® x [1+ (U, + Uy + Uy +U, + =) + % (U, + U, + Uy +u, + )Zj
By grouping all terms with identical sum of subscripts we find;

1 1
N(u):g”‘;+ u, e® +(u2 +Eu12 g% + u3+u1u2+§u13 et
T ! !

Ho

Hy

4

Hs

1., 15 1 "
Ut U+ oty + Uy ol | e

2! 2!

Case 2: N(u)=e"
Proceeding as before we find

—u “u 1 Ly 1
N(u)=g "+ (- u)e™ +(— U, +5U5Je ° +(—u3+u1u2—au

Ho M

VI: Logarithmic Nonlinearity
Case 1: NUu)= Inu, u>0
Substituting

Into N(u)= Inu gives;

N(u) = In(u, +U, + U, + Uy +u, +

Equation (43) can be written as;

N(U) = In(uo. (HLu_z& ..

Uy Uy U

u u
N(u)=Inu, + In| 1+ +=2+
uO uO uO

66
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J

Using the fact thatIn(e 8) = Ina + In g, Equation (44) becomes;

+J

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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Separating N(u,)= Inu, and using the Taylor expansion of the remaining term we
obtain;

uO 0 uO 2 l"IO u0 l"IO 6
) - \ (46)
+_ h.i_u_z_'_ﬁ_'_. —_— i+u_2+£+.. +...
3lU, U, u, 4{u, U, U
Proceeding as before, Equation (46) can be written as;
2 3
N(u)zlnqurﬁ+ﬁ—1u—12 +$—@ lu_13+ : (47)
= U Yo 2U; U, Uy 3
Hy H, Hj
Case 2: N(u)= Inl+u) , -1<u <1
In a like manner we obtain;
2
N(u) = In(L + u, )+ —2— 4 N .
—— 1+u, 14U, 2 (1+u,)
Ho —
" " . (48)
u, u, u, 1w
+ - + = + -
1+u, (@+u) 3@+u,)

H3
As mentioned before, there are other methods to evaluate homotopy polynomials, but
disadvantage of methods is prolonged calculations. For this reason, the most
commonly used methods are presented.
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3.2: Homotopy perturbation and Sumudu Transform Method

(HPSTM)
To illustrate the basic idea of this method, we consider a general nonlinear non-
homogenous partial differential equation with the initial conditions of form
DU(x,t) + RU(x,t) + NU(x,t) = g(x,t) (49)
U(x,0)=h(x), U,(x,0)= f(x)
2
Where D is the second order linear differential operator, D = % , Ris the linear

differential operator of less order than D, N represents the general nonlinear
differential operator and g(x,t)is the source term [15].
Taking Sumudu transform of both sides of Eq. (49), we get;
S[DU(x,t)] + S[RU(x,t)] + S[NU(x,t)] = S[g(x,1)] (50)
Using the differential operator property of the Sumudu transform and above initial
conditions, we get;
S[DU(x,t)] = u®sS[g(x,t)] + h(x) + u f(x)
— u®S[RU(x,t)] + S[NU(x,1)]
Now, applying the inverse Sumudu transform of both sides of Esqg. (51), we get;
U(x,t) = G(x,t) — S*u? S[RU(x,t) + NU(x,1)]| (52)
Where G(x,t) represents the term arising from the source term and the prescribed
initial conditions. We apply the homotopy perturbation method;

(51)

U.t)= 3 p" U, (x.t) (53)
n=0
And the nonlinear term can be decomposed as;
NU(x,t)= 3 p" H,(x.1) (54)

For some He’s polynomials H, (U) that are given by;

H (U,,U,U, U )=22 {N[ipiui(x,t)ﬂ , n=0,1,2,3,--- (55)

n!op o

Substituting Egs. (53) and (54) in Eqg. (52) we get;
S pU, (x,t) = G(x,t)
n=0

. . (56)
— p{S‘l[uz S{R Z::Op”Un(x,t)+ Z_:Op”Hn(x,t)ﬂJ
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This is the coupling of the Sumudu transform and the homotopy perturbation method
using He’s polynomials.

Comparing the coefficient of like power of p, the following approximation is
obtained,;

° U, (x,t) = G(x,t)

1U,(x,t) = — S u? S[RU,(x,t) + HyU)]]
21U, (x,t) = — S Hu? S[RU,(x,t) + H,U)]]
3:U,(xt) = — SHu? S[RU,(x,t) + H,(U)]

=

(57)

T T T T

Example (3.2.1): Consider the following nonlinear advection problem
U +uu, =0 (58)
U(x,0) =— x.

Taking Sumudu transform of both sides of Eq. (58) subject to the initial
Condition, we get;

S[U(x,t)] = —x —uS[u U, ] (59)
The inverse of Sumudu transform implies that;

U(x,t)=—x — S*us[uu,] (60)
Now, applying the homotopy perturbation method, we get;

épnun(x,t)}x— D(Sl[u 8{2 p”Hn(U)m (61)

Where H, (U )are He’s polynomials that represents the nonlinear terms.
The first few components of He’s polynomials, are given by;

Ho,(U) =U,U,,

HU)=U,U,+U U,

H,U) =U,U,,+U, U, +U, U,

H3(U)=U0U3X+U1U2X+U2U1X+U3 U0x (62)
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Comparing the coefficients of like powers of p , we get;
p® 1 U,(x,t) = —x
pt :U,(x,t)=—-S*uS|H,(U)|[= — xt
(6.0) = = 7 uS[H,U)] )

p* :U,(xt) = — $7[uS[H,(U)]] = —xt?
p* :Us(x,t) = — 87 [us[H,(U)]]= — xt*

And so on. Combining the results obtained for the components, the solution in a series

form is given by;
UGt =—xL+t+ t? + t3+--.)
And in a closed form by;
X
t-1

U(x,t) =

Example (3.2.2): Consider a nonlinear partial differential equation
U, = x° +1UX2
4

U(x,0)=0.
Taking Sumudu transform of both sides of Eq. (66) subject to the initial
Condition, we get;

S[U(x,t)] = x?u +%u S[Uf]
The inverse of Sumudu transform implies that;
U(x,t)=x2t+%81[u sjuz]

Now, applying the homotopy perturbation method, we get;

i p”Un(x,t)=x2t+% p[s{u S[i p"H, (U )}D

Where H (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by

H,(U) = Uq,

Hl(U ) =2U,, U,

Hz(U) =2U,,U,, +U12x

H3(U ) =2U,, U, + 2U, U,
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(66)

(67)

(68)

(69)
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Comparing the coefficients of like powers of p , we get;
p° 1 Uy(x,t) = Xt

P U (x, 1) =5 S us[HU)]] = S
p? 1 U, (x,t) = S fus[H, )] = 2 (71)
P 1 Us(xt) = 5 S HuS[HLU)]l= okt

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

U(x,t) = x? (t cle s 2ty +j (72)
3 15 315
And in a closed form of;
U(x,t) = x* tant (73)

Example (3.2.3): Consider a nonlinear partial differential equation,

u,-uu, =-t+U (74)
U(x,0) = sinx
U,(x,0)=1

Taking Sumudu transform of both sides of Eq. (74) subject to the initial
Condition, we get;

s[U(x,t)] = u+ sinx —u®+u?slu+uU,, (75)
The inverse of Sumudu transform implies that;

t3
U(x t)=t+sinx — =+ stuzslu+uu,,] (76)

Now, applying the homotopy perturbation method, we get;

s 3

> p U, (x,t)=t+sinx — %+p(s{u2 S[i p"(U, +B, (U ))}D (77)

Where B, (U )the homotopy polynomials are represents the nonlinear termu,U. .
To use the modified decomposition method, we identify the component U, by

3 3
UO:t+sinx+—%, and remaining term % will be assigned U,(x,t) among other

terms. Consequently, we obtain the recursive relation;
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t3
U,(x,t) =t +sinx — i
U, (x,t) =87 [u? S[U, + By(U)]
U, ..(x.t)=s*u>s[u,+8B,U)]. n>1
Consequently, we obtain;

t3
U,(x,t)=t +sinx — 5

U, (xt) =5 [u?s[u,+B,U )] = =

The exact solution is;
U(x,t) =t +sinx

Example (3.2.4): Consider a nonlinear partial differential equation,

U,+Iuz-u
4

U(x,0)=1+x?
U,(x,0)=1
Taking Sumudu transform of both sides of Eq. (79) subject to the initial

Condition, we get;
1

S[U(x,u)] = x*+ 1 +u+u? S[U - ZUXZ}
The inverse of Sumudu transform implies that;
U(x,t)=x*+1 +u+S‘1[u2 S[U — %Ufﬂ

Now, applying the homotopy perturbation method, we get;

o0

n=0

Where H, (U)the homotopy polynomials are represented the nonlinear term U 2.

The decomposition method admits the use recursive relation;
Uy(x,t) = x*+1+ t

U,.,(x,t)= s—l[uzs[uk—%Hk(u)ﬂ, k >1
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(79)

(80)

(81)

> p"U (x,)=x*+1+u +p(8{u2 S[i p”(u — %Hn(U)ﬂD (82)
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The homotopy polynomials are given by;

H, = ug

H, = 2u0xufx,

H, = 2u,u, +u;,

H, = 2u0xu3X +2u1x u, ,

H, = 2u,u, +2u, u; +u;.
Comparing the coefficients of like powers of p , we get;

P tUy(x,t)=x*+1+t

b U, (x.) = sl[uzs[uo_%Ho(U )ﬂ e

21 31

2 1U,(x,t)=5" uzsu_lH(U) :ﬁ+£
AR tgt 41 5l
- 1 t6 t7

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

2ttt tt
U(x,t) = x* + (1+t + —+—+—+---]
21! 31 4!
And in closed form given as;

U(x,t) = x* +¢' (83)

Example (3.2.5): Consider a nonlinear partial differential equation,

U,+U?*’-U?>=0 (84)
U(x,0)=0
U,(x,0) = e*

Taking Sumudu transform of both sides of Eq. (84) subject to the initial
Condition, we get;

S[U(x,u)] =u e*+u?slu? - u?| (85)
The inverse of Sumudu transform implies that;
U(xt)=te* +sHu?sjuz— u?|| (86)
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Now, applying the homotopy perturbation method, we get;

o0

ZMMAM%4€+%STE{§N®NU—A@ﬂj @)

n=0

Where B,(U), A,(U) are the homotopy polynomials that represents the nonlinear term
U?Z and U? respectively. We next set the recursive relation

U,(x,t) = te*
Ut =s2lus[B,0)- AW, k=1
The homotopy polynomials are given by;
B, = Ug . A = U,
B, = 2u, u; , A = 2u.u?,
B, = 2u, U, +ufx , A, = 2u,u,+u/,

By = 2u,U; +2u, U, , Ay = 2UgU,+2u,U,
The first few components of the solution U(x,t) are given by;
p° 1U,(x,t) =t e
U, (x,t) = s7[u” s[B,(U)- AL)]|= 0
And therefore other components vanish. Consequently, the exact solution is given
U(x,t) =t & (88)

Example (3.2.6): consider the following non homogenous advection problem,

U, + 3_16XU3X = x° (89)

U(x,0)=0
Taking Sumudu transform of both sides of Eq. (89) subject to the initial condition, we
get;

S[U(x,t)] = x3u ——u s[xuz] (90)
The inverse of Sumudu transform implies that;
U(x,t)=xt — 3—1651[u S[XUXZX (91)

Now, applying the homotopy perturbation method, we get;

o0

> p UL (X t) =Xt — 3_16 p(s{u S{xi p"H, (U )ﬂj (92)

n=0

74



Nonlinear Partial Differential Equations 3
Where H, (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by
H 0 (U ) = U gxx
Hl(U) = 2LJOxx lex
HZ(U) :ZUOxxU2xx+U12xx (93)
Comparing the coefficients of like powers of p, we get;
p® 1 Uy(x,t) = x%
pt 1 U (x,t) = —iS‘l[u S[xH,U)] = - Ly
36 3
(94)

1 __ 2
p? :Uz(x,t)=—£8 u S[le(U)]]:Ex?’t5

p* U (xt) = = 5o S u Sl U )= — 25

A7 sy

And so on. Combining the results obtained for the components, the solution in a series

form is given by;

U(x,t) =x3t — lt3 + £t5 — ﬂﬂ +j
3 15 315

And in a closed form of,
U(x,t) = x* tanht

Example (3.2.7): Consider the following homogenous advection problem,

u +U 2UX =0
U(x,0) = 2x.

Taking Sumudu transform of both sides of Eq. (97) subject to the initial
Condition, we get;

s[U(x,t)] = 2x—us|u?u, |
The inverse of Sumudu transform implies that;

U(x,t)=2x — s *us|u, |
Now, applying the homotopy perturbation method, we get;

g p"U_(x,1)= 2x — p(S{u s[io o" Hn(u)m
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Where H, (U )the homotopy polynomials are represented the nonlinear term, U?U, .
This gives the recursive relation,

U,(x,t) = 2x
1 (101)
U, (xt)==5"us[HU)]. k =1
This gives the first few components of U(xt) as,
p® 1 U,y(x,t) = 2x
p* :U,(x,t)=— S uS[H,U)]]= —8x%t
2 4 3.2 (102)
p? :U,(x,t)= =S uS[H,U)]]= 64x3t
p® :U,(x,t)= =S usS[H,(U)]]= —640x*t°
And so on. It follows that the solution in a series form is given by,
U(x,t)=2x —8x’t + 64x°t* — 640x*t° + --- (103)
Two observations can be made here. First, we can easily observe that
U(x,t)=2x , t=0 (104)

That satisfies the initial condition. We next observe that for t > 0O, the series
solution in Eq. (103) can be formally expressed in a closed form by:

u(x,t)=4it (JIr16xt —1) (105)

Combining Eq. (104) and Eqg. (19) gives the solution in the form;

2 X t=20
V1) = % (Ji+16xt -1), t>0 (106)

Example (3.2.8): Consider the following homogenous advection problem,
U,+UU, =0 (107)
U(x,0) = sinx.
Taking Sumudu transform of both sides of Eq. (107) subject to the initial
Condition, we get;

s[U(x,t)] = sinx —uS[U U, | (108)
The inverse of Sumudu transform implies that;
U(x,t)=sinx — S*usuu ]| (109)
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Now, applying the homotopy perturbation method, we get;

i p"U_ (x,t)= sin x— p(s{u S[i p"H, (U )}D (110)

Where H, (U )are He’s polynomials that represented the nonlinear terms.

The first few components of He’s polynomials, are given by
H, U)=u oUox
Hl(U) =U, U, +U, U,

111
Hz(U):UoU2x+U1U1x+U2U0x ( )
Comparing the coefficients of like powers of p , we get;
p® :U,(x,t) = sinx
p* : U, (x,t)= - SHuS[H,(U)]] = — tsin xcos x (112)

p? :U,(x,t)=— S *us[H,U)]] = (sin X C0s® X — %sin3 xj t2

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

U(x,t) = sin x— tsin xcos x + (sin XCos? X — %sin3 xj t?+ .- (113)

However, by using the traditional method of characteristics, we can show that the
solution can be expressed in the parametric form:
U(x,t)=sin¢,
¢ =x—tsing
For numerical approximations, the series solution obtained above is more effective
and practical compared to the parametric form solution given in Eq. (114).

(114)
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3.3: Solving System of Nonlinear Partial Differential Equations

Example (3.3.9): Consider the following system of partial differential equations;
Uu+U+2v =0 115
V,+V,-2U =0 (115)

With the initial conditions;
U(x,0) = cos x
V(x,0) = sin x
Taking Sumudu transform of Eq. (115) subject to the initial conditions, we get;
S[u(x,t)] = cosx —uS[2V +U,]
SV (x,t)]=sinx + us[2u —V,]
The inverse Sumudu transform implies that:
U(x,t)=cosx — S*[us[zv + U, ]|
V(x,t)=sinx + S*usS[2u +V,]|
Now applying the homotopy perturbation method, we get;

ip"un(x,t)z COS X — p{s1 us ip“(zvn +[u,]) }
n=0 | n=0

(116)

(117)

(118)

i}pnvn(x,t): sin x + p{Sl_u s_ip“(zun— [Vn]x)_ }

Comparing the coefficients of like power p , we get;
p°: U,(x,t) = cos x . V,(x,t)=sinx

p':U,(x ,t)=—tsinx ,  V,(x,t)= tcosx
2 2

:Uz(x,t)z—%cosx : Vz(x,t):—%sinx (119)

2

p

3 t® . t3
p :U3(x,t):asmx : V3(x,t):—acosx
And so on, using (119) we obtain;
t? ot : t*
U(x,t) = cos x 1—§+m+--- = sinx |t e,
o T (120)

t? ot t° t°
V(x,t) = sinx (1— — 4+ ] + COS X (t -+ j
21 41 3! 5!

This has an exact analytical solution of the form
(U,V)=(cos(x +t), sin(x +1)) (121)
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Example (3.3. 10): Consider the following system of nonlinear partial differential
equations,
U, +VU, +U =1

V, +UV, -V =1 (122)
With the initial conditions;
U(x,0) =e*
V(x,0)=e*
Taking Sumudu transform of Eq. (122) subject to the initial conditions, we get;
S[U(x,t)]=e* —uSjVU,+U -1
UGt = e —ush ] 23)
sM(x,t)]=e™ —usS[uv, -V —1]
The inverse Sumudu transform implies that:
U(x,t)=e* —S*fuslvu, +U -1
(x.1) usivu,+U -] o4
V(x,t)=e* =S *usuv, —v —1]]
Now applying the homotopy perturbation method, we get;
> U, (x,t)=e" — D{S{U S[i p"H,U )ﬂ}
n=20 n=20 (125)

ni::opnvn(x,t) —e X — p{Sl[u SLZ.::Op” Hn(V)ﬂ}

Where, H,(U), H, (V )are He’s polynomials that represented the nonlinear terms.
H,U)=p[VU, +U 1]
H.(V)=pluv, -V -1]
Where,
U=U,+ pU,+ p°U,+- -
V =V, + pV,+ p>V, +- -
The first few components of He’s polynomials, are given by,
H,(U)=V,U, ,+U, -1 . H,(V)=U,V,, -V, -1
Hl(U) =Vo U+ V. Uy, +U,; ) Hl(\/) =U, Vi, +U, Vo, -V, (126)
H,U)=V,U,,+V,U,, +V, U, +U, , H,(V)=U,V,,+U, V,,+U, V,, -V,
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Comparing the coefficients of the same powers of p, we get;
p°:U,(x,t)=¢" V(x,t)=e"
p':U(x,t) = =57 [us[H,(U)]] = ~te* , vi(x,t) = =S uS[H,(v )] = te ™"

p*: U, (x,t) = =8 {us[H, V)]

2 t2

€ Valxt) = -S us[H, W) = e

p*:Us(x,t) =—Sus[H, (U )] = —ge* Volx,t) = =8 [us[Ha(v)]}= e

And so on, using (127) we obtain;

t2 3
U(x,t)=e" (1—t +———+---] =e ",
21 31

t?
V(x,t) = e"(1+t +—+—= +j =e' ¥
21 3!

This has an exact analytical solution of the form:

u ,V):(ex’t , et’x)

(127)

(128)

(129)

Example (3.3.11): Consider the following system of nonlinear partial differential

equations,
U, +V,W, —V,W, =-U
V. + W U, +W,V, =V
W, +U,V, +U,V, =W
With the initial conditions;
U(x,y,0)=e*""
V(x,y,0)=e*"
W(x,y ,0)=e **Y
Taking Sumudu transform of Eq. (130) subject to the initial conditions, we get;
slU(x,y, t)] = e —usjv,w,-v,w, —U]
si(x,y,t)] = e —us[v-w, U, -w,U,]
sw(x,y,t)]=e**¥ —us[w —u,v, —U,V,]
The inverse Sumudu transform implies that:
U(x,y,t)= e —s*uslv,w,—v,w, —U]
V(x,y,t) = ¥ —sus[v-w,u, -w,u,]|
W(x, y,t)=e>Y —sus[w —u,v, -U,V,]
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Now applying the homotopy perturbation method, we get;

ip”un(x, y.t)= ey — D{S‘l[u S{i::op“ Hn(u)ﬂ}
Zj)op”vn(x, y,t) = eV — p{S‘{u S[Zj:op” Hn(v)ﬂ} (133)

S pTW,(x, y )= et - p{s—l[u S[épn Hn(W)ﬂ}

Where H (U), H,(vV), H,(W)are He’s polynomials that represents the nonlinear
terms,

H,U)= plV,W, -V W, -U]
H. (V)= pb/—wxuy—wyux]
HW) = pw -uU,v, -U V,]

Where,
U =U,+ pU,+ p?U,+- -
V =V, + pV,+ p°V,+---
W =W, + pW, + p°W, +- -
Comparing the coefficients of the same powers of p, we get;
p%:U (X, y, )=V V,(x, ¥y, t)=¢e"Y  W,(x,y,t)=e"""
HO(U):eHy’ Ho(\/):e#y ' Ho(W):ei)Hy

p':U,(x, v, t) =S [uS[H, U )] = ~te*”;
P V(x, y,t) = =S HuS[H,U)]= te* ¥;
p:W(x, y,t) =—-S*uS[H (U)]]:tex+y
p?:U,(x, v, t)==S[us[H,(U)]] = Z-e**; (134)

p*:V,(x, y,t)= =S us[H,U)]]= _ex—y

P2 W,(x, y,t)=-S*us[H, U )]]_ Ugxey.
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And so on, using (134) we obtain;

t? 3
U(x,y,t)=e"" (1—t +—__+...j —etyt

21 3!
>t
Vi y.1) =9H(1+t +§+§+-“j ey (135)

t? t .
A X+Y s s — —X+Yy+
W(x,y,t)=¢e (1+t+2!+3!+ J e

This has an exact analytical solution of the form;
(U ,V , W) — (ex+y—t , ex—y+t , e—x+ y+t) (136)

Example (3.3.12): Consider the following system of nonlinear partial differential
equations,
U, - U, 20U +UV), =0

V, -V, - 2VV +(UV) =0 (137)
With the initial conditions;
U (x,0) = sin x
V(x,0) = sinx
Taking Sumudu transform of Eq. (137) subject to the initial conditions, we get;
SU(x,t)]=sinx +uS[U_+ 20U -UV, -V U]
SV(x,t)] =sinx +us[V, +2VV, —UV, -V U] (138)
The inverse Sumudu transform implies that:
U(x,t)=sinx + S*us[u,+ 20U, -UV VU, ] 139)
V(x,t)=sinx + S*{us[v,, +2vV, —UV, -V U, [
Now applying the homotopy perturbation method, we get;
i p"U, (x,t) =sinx + p{S{u S{i p" Hn(U)ﬂ}
n=0 n=0 (140)

ép”Vn(x,t) = sin x + p{S{u s{f‘a p" Hn(V)ﬂ}

Where H, (U ), H,(V )are He’s polynomials that represents the nonlinear terms.
H,U)=pU,+20U,-UV VU, ]
H,(V)=plV, +2vV, -UV,-VU,]
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Where
U=U,+ pU,+ p°U,+---
V =V,+ pV,+ p*V, +- -
The first few components of He’s polynomials, are given by,
Ho(U) =U, +2U,U,, -U,V,, -V,U,,
Hy(V) =V, + 2V,V,, U, V, —V,U,.

Oxx

H,(U) =U, +2U, u +2U, u —Uole—ulv()X ~V,U,, —V,U,,

HU) =V, +2V,V,+2V\V, -U,V, -U,V, -V,U, -V, U,, (141)
Comparing the coefficients of the same powers of p, we get;
p°:U0(x,t)=sinx . V,(x,t)=sinx
p': U, (x,t) = S uS[H,(U)]|= ~tsinx;
pt:V,(x,t) = SHuS[H, (V)] = -tsinx;
2
p:U ()= SuS[HLU)]= Zsinx;
. t? .
p?:U,(x,t)= S7'[us[H,U)]]= SN (142)
3
p°:U,(x,t) =— S u S[H,U)] = - %sinx;
3
p%:V,(x,t) ==S*usS[H, V)] = - %sin X;
And so on, using (142) we obtain;
2 3
U(x,t)= (1—t +%—t3—+ jsinx:e“sinx;
) 3' (143)
V(x,t)= (1—t LU +J sinx =e'sinx;
2! 3!
This has an exact analytical solution of the form:
U.V)=(e"'sinx, esinx) (144)
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CHAPTER FOUR
Linear and Nonlinear Fractional Differential Equations and
Sumudu Transform

4.1: Linear Fractional Differential Equations

Fractional calculus provides an efficient and an excellent way of describing
many dynamical phenomena in scientific and engineering areas such as physics,
chemistry, and economics [19]. This feature of fractional calculus has appealed many
researchers in the past. In this chapter, a new method called homotopy perturbation
Sumudu transform method (HPSTM) is introduced for solving the linear and initial
value problems. This method is a combination of Sumudu transform, homotopy
perturbation method.

The following section offers the effectiveness of the homotopy perturbation
Sumudu transform method (HPSTM) in solving fractional initial boundary value
(FIBVP).

4.1.1: Preliminaries and Notations

In this section, we give some basic definitions and properties of the fractional
calculus theory which are further used in this chapter.

Definition (4.1.1) [16]:

A real function f(x),x >O0is said to be in space C, , zeRif there exists a
real number p > 4 , such that f(t) = t® f,(t), where f,(t) € C(0,), and it is said
to be in the space C;, ifandonlyif f" € C,,neN.

Definition (4.1.2) [16]:
The Riemann-Liouville fractional integral operator of order > 0, of a
function f € C,,, 1z > —1, is defined as;

J* f(t)= (t—u)** f(u)du , a>0 (1)

1 t
)l
J°f(t) = f(tb).
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Some properties of the operator J*, which are needed here, are as following:
Forf" eC,,neN, a,f >0andy > —1:

i JUYPE(t)=J P 1 (t)

.. F(}/ +l) N
N R e L S
' F(}/ +a+ 1) 2)
Definition (4.1.3) [18]:
The Sumudu transform of the Caputo fractional derivative is defined as
follows:

s[D7 f (t)] = u=s[f ()] - mZ“_lu‘”"f(k)( *), m-l<a<m

Definition (4.1.4) [16]:
The fractional derivative of f(t) in the Caputo sense is defined as;
D*f(t)=J" “D™f(t) (3)
Form—-1l<a<mmeN,t>0and feC
Caputo fractional derivative initially calculates an ordinary derivative and then
followed by fractional integration to a desired order of fractional derivative.

Similar to the integer-order integration, the Riemann-Liouville fractional integral
operator is a linear operation:

J(Zc fi(t)J _ zc 374, (1) 4)

Where {c; }"_, are constants.

In the present work, the fractional derivatives are considered in the Caputo sense.
The reason for adopting the Caputo definition, as pointed by [35], is as follows: to
therefore familiar to us. In contrast, for the Riemann-Liouville fractional differential
equations, these additional conditions constitute certain fractional derivatives solve
differential equations (both classical and fractional); we need to specify additional
conditions in order to produce a unique solution. For the case of the Caputo fractional
differential equations, these additional conditions are just the traditional conditions,
which are akin to those of classical differential equations, and are (and/or integrals) of
the unknown solution at the initial point X = O, which are functions of x. These

initial conditions are not physical; furthermore, it is not clear how such quantities are
to be measured from experiment, say, so that they can be appropriately assigned in an
analysis. For more details see [35].
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4.1.2: Sumudu Transform

The Sumudu transform is a powerful tool in applied mathematics and engineering.
Virtually every beginning course in differential equations at the undergraduate level
introduces this technique for solving linear differential equations. The Sumudu
transform is indispensable in certain areas of control theory.

Given a function f(x) defined for 0 < x < oo, the Sumudu transform F(u) is
defined as;

[e o]

F(u) = j f(ux) e™™ dx (5)

0
At least for those s for which the integral converges.
Let f(x) be a continuous function on the interval [0 , o) which is of exponential
order, that is, forsome c € R and x > 0O

sup[@<oo_

. . 1
In this case the Sumudu transform Eq. (5), exists for all m > C.

Some of the useful Sumudu transforms which are applied in this section are as
follows:

For S[f(x)] = F(u) and S[g(x)] = G(u)
s[f(x) + g(x)] = F(u) + G(u),

slx’|=uwT(B+1) , B>-1,
s[f™(x)] = Fu(:l) _ fu(r?) N L'n(g) _ ... _ "0 :)(O) (6)

SD f(t)dt} ~ uF()
SD f(x - 1) glt) dt} — UF(U)G(). -
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Lemma (4.1.5):
The Sumudu transform of Riemann-Liouville fractional integral operator of
order o > 0O can be obtained in the form of:
sla« £(x)| = u” F(u).
Proof:
The Sumudu transform of Riemann-Liouville fractional integral operator of
order ¢ > O is:

sfae £(x) = s{i)

F(a

O ey <

(x — £ (t) dt} _ %a)u F(u)G(u),

Where
G(u) = s[x**| = u“ r(a)

Lemma (4.1.6):
The Sumudu transform of Caputo fractional derivative  for
m—-1<a<m, me N,canbe obtained in the form of:

S[D“f(x)]zum{':(mu)_ f0) _ f’(Ol)_m_ f(m”(o)}

u u™ um- u
Proof:
The Sumudu transform of the Caputo fractional derivative of order « > Ois:

s[D“ f(x)] = s[a™« £ ™(x)] = um=s|f™(x)]
Using equation (64). Now, we can transform fractional differential equations into
algebraic equations and then by solving this algebraic equation, we can obtain the
unknown Sumudu function F(u).

4.1.3: Inverse Sumudu Transform

The function f(x) in Eq. (5), is called the inverse Sumudu transform of F(u)and
will be denoted by f(x)= S™*[F(u)]in the section. In practice, when one uses the
Sumudu transform to, for example, solve a differential equation, one has to at some
Point invert the Sumudu transform by finding the function f(x)which corresponds to

some specified F(u)[17].
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The Inverse Sumudu transform of F(u) is defined as:

o+iT

f(x) = S'[F(u)] = % j u F(u)eu du,

o—iT

1
Where, o large enough that is F(u) is defined for the real part of 0 >0

surprisingly, this formula isn’t really useful. Therefore, in this section some useful
function f(x) is obtained from their Sumudu transform. In the first we define the
most important special functions used in fractional calculus the Mittag-Leffler
functions and the generalized Mittag-Leffler functions.

Fora, f>0and zeC

n

5.0 =X et

0
e )
n=0
Now, we prove some Lemmas which are useful for finding the function f(x) from
its Sumudu transform.

n

Lemma (4.1.7):

1 N
For aeCand = > |a] we have the following inverse Sumudu transform

formula,
p—1
_ u _ o
S —— =xﬁ1Eaﬁ(—ax)_
1+ au” ’
Proof:
. _ _ _ u”
By using the series expansion can be rewritten ——— as;
1+ au
u” B 1 5 Py - N na+p-1
T U/ =u Z(—au )ZZ(—a) u :
1+ au 1+ au =3 =5

The inverse Sumudu transform of the above function is;
na+p3-1 o _ a N
Z( a)’ u = x#1 —( ax ) :xﬁ‘lEa‘ﬂ(—ax“)_

=0 F(na+ﬂ) n:OF(na+ﬂ)
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Lemma (4.1.8):
Fora> fp >0,aeRand o, S > Owe get;

8

n+k
a(n+1)-1 (_ a)k
Sl|: u (n+1) :| _ Xa(n+1)7l Z k Xk(a -5)

@A+au“ /)"

kzol“(k(a—ﬂ)jL(n +1)a)

Proof:
Using the series expansion of @+ x)""* of the form:

e el e

a(n+l)-1 n+k
i u a_ﬂ)Ml _ g1 i i—ﬂ)nu _ (-1 Z( j (_ a ua—ﬁ’)k
+au +au

We get;

Giving the inverse Sumudu transform of above function can prove the Lemma.

Lemma (4.1.9):

a-1

u
1+au*”

(-by(-a [””‘j

> |b|we get;

Fora > f, « >y,aeSRand‘

ua+ﬂ—}/—l 0 s ( )
871 _ a y -1 Xk a—-fB)+na
u? +au” +bu**’ Z ZF (k(e—pB)+(n+D)a—-y)
Proof:
ua+ﬂ—y—l B . R .
5 ~ -7 By using the series expansion can be rewritten as;
u”+au”+bu
ua+/3—y—l ua+ﬂ—y—l 1 o (_b)n ua+ﬂ—7—l
u’ +au” +bu*?  u” +au” L+ bu“?  “~u’+au” +bu*’
u’ +au”

Now by using Lemma (4.1.8) the Lemma can be proved.
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4.1.4: The Homotopy Perturbation Sumudu Transform Method

In order to elucidate the solution procedure of this method, we consider a
general fractional nonlinear partial differential equation of the form:

DU (x,t) = LU(x,t) + NU(x,t) +q(x,t) (8)
With n—1 < ¢ < n, and subject to the initial condition;
(r)
Ty 0(x,0) = 1, ©
r=0,1,...,n-1

Where D?U(x,t)is the Caputo fractional derivative, g(x,t)is the source term, L
Is the linear operator and N is the general nonlinear operator.
Taking the Sumudu transform (denoted throughout this section by S) on both sides of
Eq. (8), we get;
s[DrU(x,t)] = S[LU(x,t) + NU(x,t) +q(x,1)] (10)
Using the property of the Sumudu transform and the initial conditions in Eq. (9), we
get;

u“s[u(x,t)]- niu—w—k)u ®(x,0) = S[LU(x,t) + NU(x,t) +q(x,t)] (11)

k-0
And
SfU(x,1)] = S uf,(x) + u“S[LU(K.0) + NU(x.t) +a(x.t)]  (12)
k=0
Operating with the Sumudu inverse on both sides of Eq. (12) we get;
UGE) =SS Uk, (0) + SHu“S[LU( 1) + NUGGE) +q(a ]l (19)
k=0

Now, applying the classical perturbation technique. And assuming that the solution of
Eq. (13) is in the form;

U(x,t) :ip"un(x,t) (14)

Where pe[O,l] Is the homotopy parameter.
The nonlinear term of Eq. (13) can be decomposed

o]

NU(x,t) => p"H,U) (15)

n=0
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Where H, are He’s polynomials, which can be calculated with the formula:

H,U,.U, U,,....U)= 1o { (ip U, H ,n=01,2,.. (16)

n'&p iz I

Substituting Egs. (14) and (15) in Eq. (13), we get;

Zp U, (x,t)= {Zu f,( }pS{u“S[L(niop"Un(xtJ Zp H( +qxt)ﬂ (17)

Equating the terms with identical powers of p ; we can obtain a series of equations as
the follows:

p%: U,(x,t)= Sl{nz_luk fk(x)}
(18)

;;” u.(xt) [ [(ZDU th ZP H, *q“)ﬂ

By utilizing the results in Eqg. (18), and substituting them into Eq. (13) then the
solution of Eq. (8), can be expressed as a power series in p. The best approximation
for the solution of Eq. (9), is:

U(x,t) :!ig’llip”un(x,t) = U, +U, +U, +--- (19)

The solutions of Eq. (19) generally converge very rapidly.
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4.1.5: Hlustrative Examples

In this section is applied the method presented and give an exact solution of some
linear fractional differential equations.

Example (4.1.10):
As the first example, we consider the following initial value problem in the

case of the inhomogeneous Bagley-Torvik equation,
3

D2y(x)+D2y(x) + y(x) =1+ x, (20)
y(0)=y'(0)=1.
This equation by using Sumudu transform is converted to,

L [F@)=y(0) - uy O]+ UZ{F(”) YO _ y'(o)} FF)=1+u

2 2 2
u

u u u

i[F(u)—l—u]+u2{F(u) —i—l} +Fu)=1+u

u? u>  u®

F(u)=1+u.
Using the inverse Sumudu transform the exact solution of this problem y(x)=1+ x
can be obtained.

Example (4.1.11):
Our second example covers the inhomogeneous linear equation,

2-a l-«a
D*y(x) + y(x) = 2 X X +x2— X (21)

MG-a) T2-a)
y(0)=0, 0<a< 1.
Using the Sumudu transform F(u) is obtained as follows:

ul‘{—Fﬁu) — @} +F(u)=2u"*-u"“+2u’-u

Fu)u ™ +1)=2u?(u +1) - u(u+1)
F(u)=2u® —u.
Then y(x) = x* — x is obtained by using the inverse Sumudu transform.
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Example (4.1.12):
Consider the following linear initial value problem,
(22)

D“y(x) + y(x)=0
y0)=1, y()=o0.

The second initial condition is for & > Oonly.
In two cases of « , S|D“y(x)| is obtained as;

RO
@ For ao1 sloryio)ou [ EY L] Fe)-

Which are the same. Now the Sumudu transform F(u)is obtained as;
Fu-1, F(u)=0

o

u

Fu)=—

1+u”

Using the lemma (4.1.7), the exact solution of this problem can be obtained as:
y(x) = E,(-x)

Example (4.1.13):
Consider the following linear initial value problem;

Dy(x)=y(x)+1 , O<a<1l
y(0) = 0.
Using the Sumudu transform F(u) is obtained as follows;
iﬂ‘f) = F(u)+1
u

(23)

Using the Lemma (4.1.7) the exact solution of this problem can be obtained as:
y(X) = Xa Ea,a +1(Xa)

Example (4.1.14):
Consider the composite fractional oscillation equation;

y"(x) —aD*y(x) —by(x)=8 L l<a<?2
y(0)=y'(0)=0.

(24)
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Using the Sumudu transform, F(u) is obtained as follows;
Fu(g) _au?“ —Fu(g) —~bF(u)=8

8 ua+2
. auz—bua+2 )

F) -

Using the lemma (4.1.9) the exact solution of this problem can be obtained as:

ok [n+kj
N B b" a K
y(x) — 8 x2 Z z k(2—a)+2n

2 T2 —a)r2(n+D)+ 1)

Example (4.1.15):
Consider the following system of fractional algebraic-differential equations,
Dx(t) -t y'(t) + x(t) — @+t)y(x)=0 , O<a<1 (25)
y(t) - sint =0,
Subject to the initial conditions;
x(0)=1 : y(0)=0.
Using the Sumudu transform F(u) = S*[y(t)] and G(u) = S*[x(t)] is obtained as follows

ula[% - 1}_ oL W)+ Flu) - 6) - F)~u* L FU) - uF ()= 0

u u
u 1-u?
Fu)=—2 , Flu)=—""_
W=l - PO
G(u)[1+au“)= 2u (1+ L;) yte
u (1+u2)

2u* 1+4u u
= —. =+ —.
1+u (1+u2) 1+u

G(u)

The exact solution for & =1 isx(t) =t sint + e"*. Using the Lemma (4.1.7) and (4.1.8)
the exact solution for 0 < « <1 can be obtained as:

x(t) = 2x7 1S S (1) (k + 1) e

n=0 k=0

tna+1 tna .
[F((n +1)a+2k+3) M r((n +1)a+2k+2)J + E. (1)

_ thlki)(_l)m (E}Lljtk E, ,ovot)+E, (-1t%)

y(t) = sint
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Example (4.1.16): Consider the two-dimensional fractional wave equation of the
form:

. _ (8U(x,y,t) d%U(x,y,t)
Dru(c,y 1) - o Tt SV 0) g

Where 1< a <2, —o0 < X, Y < oo, subject to the initial condition;
oU(x,y,0) 0
ot
Taking the Sumudu transform of both sides of Eq. (26), thus we get;
s|pru(x,y,t)|=s[2(D2+D2)u(x,y 1) | 27)
Using the property of the Sumudu transform and the initial condition in Eq. (27), we
get;

U(x,y,0)=sinxsiny,

us[U(x,y,t)]-uU(x,y,0)
e dU(x,y,0)
ot

= s[2(D?+D2)u(x,y.1) | (28)

And
sfu(x,y,t)] = sinxsiny +u“s|2(D?+D?)U |
Operating with the Sumudu inverse on both sides of Eq. (28) we get;
U(x,y,t) =sinxsiny +S*|u“s|2(DZ+D2)U || (29)
By applying the homotopy perturbation method in Eq. (29) we get;

i p"U. (x,y,t)=sinxsiny+ psl{u"‘S{Z(Dx2 +Df)(i p"U, (X, y,t)}} (30)

Equating the terms with identical powers of p, we get;
p°: U,y(x,t)=sinxsiny

o' U,(x,t)= sH{us[2(D2+D2)u,} = r_(a—ial)sinxsiny
2 1 2 2 42t205 H H
p?: U,(x,t)= S~ {u“S[Z(DX+Dy)U2} = T sinx siny (31)

n . _ -1),,a 2 2 _ (_1)n nghe . .
p" 1 U, (x,t)= $u S[Z(DX+DY)UH} = Thal) sinx sin y
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Thus the solution of Eq. (26) is given by

U(x,t)= ‘!iinli p"U, (x,y,t)
n=0

= (sinxsiny)|1- S SN
MNa+l) T(Qa+l) (32)
B ( 4 tnac
=sinxsiny Z F(na+1)

= sinxsiny Ea(— 4t )
If we put & — 21in Eq. (32) or solve Eq. (26) witha = 2, we obtain the exact
solution

U(x,t)=sinxsiny Z(_ 1) (2t)

F(n a+1)
= sinx siny cos(2t)
Example (4.1.17): Consider the following three-dimensional fractional heat-like
equation:

DAU(x,y,z,t) = x*y*z* + ?,—:ES[XZUXX +y?U,, +22UZZ] (33)

WhereO<Xx,y,z<1,0< a <1;

Subject to the initial condition;
U(x,y,z,0)=0
Taking the Sumudu transform of both sides of Eqg. (33), thus we get;

s[bru(x,y,z.t)] = S[x“y“z4 3—16[x2UXX +y2U,, +z%U ZZ]] (34)

Using the property of the Sumudu transform and the initial condition in Eq. (34), we
get;

SlU(x,y,z,t)] = x*y*z* + u“8[3—16 [XZU YU, +2°U ZZ]} (35)
Operating with the Sumudu inverse on both sides of Eq. (35) we get;
U(x,y,z,t) = x*y*z* + 3—1651{u“8 [XZUXX +y?U,, +z°U zz]} (36)

By applying the homotopy perturbation method in Eq. (36) we get;
30U Gy 2 = xy'zt o L pse { |30 0,),

36 (37)

IO ITRIES TN |
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Equating the terms with identical powers of p, we get;
p%: Uy(x,t) = x*y*z*

p': U,(x,t)= Sl[u"‘ S(i

w
(2]

(x2 Uo)o+ y2Uy),, + 2° (UO)ZZ)ﬂ

= x'y*z*

( +1)
p?: U,(x,t)= S~ { BL( (Ul)yy+22(U1)zz)ﬂ

= x'y*z* (38)

F(na+1)
Thus the solution of Eq. (33) is given by:
T SR 4,,4,4 t* t*
U(x,t)= !)lTan:;p U, (x,t) = x*y*z ( M +1)+ F(2a+l)+ ]
= x'y*2°E, [t ( )
If we put @ — 1in Eq. (39) or solve Eq. (33) witha =1, we obtain the exact
solution;

(39)

U(x,t) = x*y*z*¢'

Example (4.1.18): Consider the linear inhomogeneous fractional KdV equation,
DU(x,t) + U, (x,t) + U, (x,t) = 2tcosx , t >0, O<a <1 (40)
Subject to the initial condition;
U(x,0)=0
We can solve Eq. (40) by HPSTM by applying the Sumudu transform of both sides of
Eq. (40), we obtain:
s|pru(x,t)] + S[U,(x,t) + U, (x,t)] = S[2tcos x] (41)
Using the property of the Sumudu transform, we get;
S[u(x,t)]=U(x,0) —u* s[uU,(x,t) + U (x,t) — 2tcosx]  (42)
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Now applying the Sumudu inverse on both sides of Eq. (42) we obtain:

U(x,t) = 2cos x — s tursfu, (x.t) + U (x.0)]]  (43)

ta 1
F(a + 2)
Now, applying the classical homotopy perturbation technique, the solution can be
expressed as a power series in P as given below:

U(x,t) = ipnun(x,t) (44)

Where the homotopy parameter p is considered as a small parameter p € [O , 1]. By
substituting from Eq. (44) into Eq. (43) and using HPM we get:

a+1

IMNa + 2)

s oS g

By equating the coefficient of corresponding power of p on both sides, the following
approximations are obtained as:

U(x,t) = 2cos x
(45)

0
)=0 (46)
0

The HPSTM series solution is;

a+1

Uix,t)=2 e
(x,t) COSXF(a+2)

(47)

For the special case« =1, we obtain;
U(x,t) =t? cos x (48)

Example (4.1.19): Consider the following system of linear FPDEs;
DU -V, +V +U =0
{Df‘v -U, +V+U =0
Where 0 < ¢ , £ <1 ;subject to the initial condition;
U(x,0) =sinhx , V(x,0) = cosh x

(49)
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Taking the Sumudu transform of both sides of Eq. (49), thus we get;
s[pbru(x,t)]=sv, —-v —u]
{S[Df‘v(x,t)]: sfu, —-v -U]
Using the property of the Sumudu transform and the initial condition in Eq. (50), we
get;

(50)

(51)

u“S[U(x,t)]+uU(x,0) =SV, -V —U]
{uas[\/(x,t)]+ u“V(x,0) =S[U, -V —U]

And

SV(x,t)] = coshx +u“sS[U, -V —U]
Operating with the Sumudu inverse on both sides of Eq. (51) we get;
U(x,t) =sinhx+S*u” sy, -v —uU]]
{V(x,t) = coshx + S *u“s[u, -v - U]
By applying the homotopy perturbation method in Eq. (52) we get;

3 p"U, (x,t)=sinhx + pS™*{u“s a1y qQ"V, (x,t
OX
n=0 n=0

| [ Zaviten)-[ Spui tﬂ}

And (53)

{S[U(x,t)] = sinhx+u“ SV, -V —U]

(52)

Zw:q"vn(x,t)z cosh x + pS‘l{u“S{i( > p"U, (x, t)j
n=0 6x n=0

_ (ni)q“vn(x, t)} - (ﬁspnu”(x’ t)ﬂ}

Equating the terms with identical powers of p, we get;
p’: {U,(x,t)= sinhx . V,(x,t) = coshx

. -t S G
p: {Ul(x,t)— TasD) coshx , V,(x,t)= (5T sinh x (54)

a+f a+p 2a

U,(x,t)= ————— coshXx + —— sinh
) (.1 Mo +4+1) oS o +4+1) S r2e+1)
V( ) _ta+ﬂ ) h a+pf h 2p
)=z ——— S —
2\X (o +p+1) SInxe (o +p+1) coshx=+ r(24+1)
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Thus the solution of Eg. (49) is given by;

. a+p te ta+ﬂ tZa
“(X’t)‘s'”“x(“m“] ) COShX(F(a+1)+F(a+ﬂ+1) ) r(w)*"'l 55
V(x,t)=coshx |1+ L i | <t t =

SR X( +r(a+ﬁ+1)+”'J_ o X[F(,B+1)+F(a+,8+1) B r(2ﬂ+1)+"'J
Setting o = Ain Eq. (55) we reproduce the solution
. 2a a tZa
U(X't)‘s'”hx(“m*"}‘C°S“X(r(a+1)+r(3a+1) : j 56

2a a 2a
t—+--- — sinh x + L + .-
[(2a +1) [(e+1) T(3a+1)

If we put & — 1in Eq. (56) or solve Eq. (49) witha = £ =1, we obtain the exact
solution

V(x,t) = cosh x (1+

t? ot ot
U(x,t)=sinhx[1+—+— +- J - coshx(t+— TR j = sinh(x —t)
21 41 31 5!

t? ot t
V(x,t)=coshx[1+—+— +- J - sinhx(t+—+— +oe jz cosh(x — t)
2! 41 31 5!
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4.2: Nonlinear Fractional Differential Equations

In this section, the homotopy perturbation Sumudu transform method (HPSTM)
IS used to evaluate the exact analytical solution of nonlinear fractional partial
differential equations [20].

Example (4.2.20): Consider the nonlinear time fractional FPE:
o) = - 2 2003 Toutolue 6
Wheret > 0; x eR, 0 < < 1; subject to the initial condition;
U(x,0) = x?
Taking the Sumudu transform of both sides of Eq. (57), thus we get'

s[D;’u(x,t)]=s__ [ U(x t)__j

U(x,t) (58)
Using the property of the Sumudu transform and the initial condltlon in (58), we get;

S[U(x,t)]=x2+u“8: a[ U (x t)__j

O X
Operating with the Sumudu inverse on both sides of Eq. (59) we get;

U(x,t)= x>+ sl{u“sH ( U (x t)——j }U(x t)}} (60)

By applying the homotopy perturbation method in Eq. (60) we get;

i p U, (x,t) = x*+ pS‘l{u“S{—4i p"H, (x,t)
n=0

vt luen| e

n=0

(61)

A3 0 Sere |

Where
o (1
H =—|-U t) U t
= 2 (bu) o
82
Bn = aXZUnZ(X’t)
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Equating the terms with identical powers of p, we get;
p%: Uy(x,t)= x?

1. _c-1)a __ 1 _ 2 t*
p': U (x,t)=S {u S_ 4 H0+3U0+BO}} X arD
Al el 1 t2
p?: U,(x,t)=5S 1{u s_-4 Hl+§Ul+Bl}} = X’ 2aiD) (62)
p': U, (x,t)=S" u“S_—4 H . +U  +B } _ e
" A R (ne+1)
Thus the solution of Eq. (26) is given by:
U(x,t)= lim Zp U,(x,t)
:x2+x2L+x2t2—a+ (63)
M(a+1) r2a+1)
= x? Ea(t”‘)
If we put & — 1in Eq. (63) or solve Eq. (57) with & =1, we obtain the exact
solution;
U(x,t) = x%¢'
Example (4.2.21): Consider the following generalized nonlinear time fractional-
order biological population model:
o?U?%(x,y, t) o?U?(x,y,t)
DfU(X,y,t) =
Uy, ( O x? oy? (64)

+U(x,y,t)@ —ruU(x,y,t))
Where O < o < 1; subject to the initial condition;

U(xyO—e(\r( ]

Taking the Sumudu transform of both sides of Eq. (64), thus we get;
s|pFu(x, y.t)| =S [2(DZ + D2 )U?(x, y,t) +U(x,y,t)@ —rU(x,y,t))| (65)

Using the property of the Sumudu transform and the initial condition in Eq. (65), we
get;

u“sfU(x,y,t)] —uU(x,y,0)=

s[2(D?+D2)U?(x,y,t) +U(x,y,t)L—rU(x,y.t)] (66)

And
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] _ e[;\/z(xw)j

+u”s [2(Df+D§)U2(x, y,t) +U(x,y,t)A -ru(x,y,t))]
Operating with the Sumudu inverse on both sides of Eq. (66) we get;

(%\E(XW)J

U(x,y,t)=e (67)
+ S ues[2(D2+ D2)JU2(x,y,t)+U(x,y,t)L—ru(x, y. )]
By applying the homotopy perturbation method in (67) we get;

0 [1\/?()(4’)/)} ©
p"U, (x,y,t)=e""’ + pS~u“s| 2(D? +D? p"U, (x,y,t)
n=0 g n=0

S[u(x,y,t)

2

(68)

1{1 —r > p"U,(x, y,t)) > p'U,(x, y,t)}}
n=0 n=0

Equating the terms with identical powers of p, we get;

3t

p°: Uy(x,t)= e[2

p' U, (x,t) = s Hu“s[2(DZ+D2uZ +U, 1 -rU,) = ——

p?: U,(x,t)= sH{us[2(D? +D2JuZ+U, (L -ru,)]}= t e[Zﬁ(m)J (69)

p": U, (x,t)= s*{u"s[2(D?+D2)uZ+U, (L -rU,)]}=

Thus the solution of Eq. (64) is given by

U(x,t) = g@jpnun(x,y,t)
n=0

:e@@(“”}(H e, J (70)

Ma+l) T(Q2a+l) ’

2

=e J Ea(t“)
If we put & — 1in Eq. (70) or solve Eq. (64) witha = 1, we obtain the exact
solution

[% 2 (x+y)
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Example (4.2.22): Consider the nonlinear no homogenous time-fractional invicid
Burgers equation

DU(X,t) + U(x,t) U (x,t) =1+ x + t (71)
Where 0 < o <1 ; subject to the initial condition;
U(x,0) = x
Taking the Sumudu transform of both sides of Eq. (71), thus we get;
s|Dru(x,t)) = S[L + x +t —U(x,t) U, (x,1)] (72)

Using the property of the Sumudu transform and the initial condition in Eq. (72), we
get;

U(x,t)=x+ S HuesL+ x +t —U(x,t) U, (x,1)]| (73)
By applying the homotopy perturbation method in Eq. (73) we get;

:zopnun(x,t): X + ps{u{s(u X +t)_s[§opn Hn(u(x,t))m

o a+1

= X+ p{m(l+x)+r(a—+2)

—s-{u“ S (i) p" H, (U (x,t))m

Where H, (U )are He’s polynomials that represent the nonlinear terms.

(74)

The first few components of He’s polynomials, are given by:

Ho(U) :UOUOX
Hl(U) :Uo U1x+ U1U0><

75
Hz(U):UoU2x+U1U1x+U2U0x ( )

The coefficients of like powers of p , we get;

p%: U,y(x,t)= x
a a+1

p U (x,1) F(OtHl) L+x)+

) -5 [ua S(Ho(u ))]

F(a+2

tO{ ta+l

e +1)  Ta+2)
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p2: U, (x,1) = — s u S(H,(U))] = — s uz + v 1]

t2a t2a+l
- {F(Za 1) TRa+ 2)}

76
p%: Uy(x,t)= — s u“ S(H,U))]= = s*[- u¥ — u**] (76)
t3a t3a+l
" TGa+1) [Bat2)
Thus the solution of Eq. (71) is given by;
t ta+1 tZa t2a+1
U(x,t)=x+ + — _
IMa+1) T(@+2) TRa+1l) TRa+2)
t3« TECR!
N IF(Ba +1) N rBa + 2)
= X + S N 3
Ma+1) TRa+1) TI'(Ba+1) -

ta+1 t2a+l t3a+1
+(r(a+2)_ r2a+2) F(3a+2)J

(-2t & (1)t

=X — t -~ = -

- Zr(na+1) 2 e 1 2)

=x+t+1—Ea’1(— )—tEa’(—t“)

1. _ 1 : .
If we put @ — 2 in Eq. (77) or solve (71) with o = > we obtain the exact solution,

1 1
U(x,t)= x+t+1-E, 1[ 2J—tE ( tZJ
2’ 2’

= x+t+2—2e‘erfc(\/f)—2 %

If a =1 then, U(X,t): X+t +1_E1,1(_t)_tE1,2(_t): X+t

Example (4.2.23): Consider the following nonlinear time-fractional equation,

DU (x,t) + U(x,t)U (x,t) = 2U — x (78)
Where 1 < o < 2; subject to the initial condition;
U(x,00)=x+1 , U/(x,0)=1
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Taking the Sumudu transform of both sides of Eq. (78), thus we get;
s[DAU(x,t)] = S[2U + x — U(x,t) U (x,1)] (79)

Using the property of the Sumudu transform and the initial condition in Eq. (79), we
get;

U(x,t) = x + S Hu“s[-x+ 2U —U(x,t) U, (x,1)]| (80)
By applying the homotopy perturbation method in Eg. (80) we get;

i p"U (x,t)= 1+x +pt

" (81)

+ pS‘{u “l:— X +S(Zi p"U, (x,t) — i p" Hn(U(x,t))Jﬂ
n=0 n=0
Where H, (U )are He’s polynomials that represent the nonlinear terms.

The first few components of He’s polynomials, are given by

HO(U) =U0U0x
Hl(U) =Uo U1x+U1 Uo>< (82)
Hz(U) =Uo U2x+U1 U1X+U2U0x

Comparing the coefficients of like powers of p , we get;

p°: U (x,t)=1+x

p'r U (x,t) = t+ s u*(= x +S(2U, — Hy(L)))]

F(ot +1)

p2: U,(x,t) = s [u*(- x +S(2U, — H,(L)))] (83)

231@W1+“M]+Lfa+z)+réa+n}
p*: U,(x,t)= s [u"‘(— x +S(2U, —H, (U )))]

_ S—l[u2a+1+u3a ] + 2ot 4 t3
IN2a+2) T(@Ba+1)

=t+

Thus the solution Eq. (78) is given by;

ta ta+1 t2a t2a+l

U(x,t)=1 t
() =dax s+t S e v 2) T TRa D) | TRa 1 2)

(84)

tSa
T T@a+y
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a 2a 3a
=X + |1+ t + t + t 4+
F(a + 1) F(Za + 1) F(Ba + 1)
ta+1 t20{+1 t3(Z+l
t
*( "Ta+2) TRa+2)  T@Ra+2) ]
0 na 0 tna+l

T nz_:of(na oD nz_:ol“(na +2)
= X+ Ea’l(t“)+tEa‘2(t“)
As a special case if we takea = 2, we get;
U(x,t)= x +E, ,(t?}+ tE, ,(t?)
= X + cosht + sinht

=X+ €'

Example (4.2.24): Consider the time-fractional fifth order KdV equation,

DU(x,t)+UU,-UU,, +U, =0 (85)
Where 0 < o <1 ; subject to the initial condition;
U(x,0) = e*
Taking the Sumudu transform of both sides of Eq. (85), thus we get;
slprux,)=s[uu,,-u U, -U,,,] (86)

Using the property of the Sumudu transform and the initial condition in Eq. (86), we
get;
U(x,t)=e* + S*u“sluu,,,-uu, -U_ ..l (87)
By applying the homotopy perturbation method in Eq. (87) we get;
> PV, (1) = x + pS{U“[—S(Z p"(Un)xxxxxj+S[Z p’ Hn(U(X,t))m (88)
n=0 n=0 n=0

Where H (U )are He’s polynomials that represent the nonlinear terms.

The first few components of He’s polynomials, are given by;

HO(U) :UO |_U0x _UOXXXJ
Hl(U) :UO [le _lexx]+U1 [UOX _UOXXX]

(89)
HZ(U) :UO [UZX _U2xxx]+U1 [le _lexx]+U2 [UOX _UOxxx]
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Comparing the coefficients of like powers of p , we get;

p°: U,(x,t)= &
pt Uy(x,t)= —s [ua S((UO)xxxxx + H, (U ))]
“1|,,a (X X [aX X —et”
= —s'ue (e +e*(e* —e ))]:m

p*: UZ(X,t) =-s [ua S((Ul)xxxxx + Hl(U ))]

eXt2 @
F(Za +1)
P°: Us(x,t) == 57 [u" (U, ) oo + Ho(L)]

_eX3a
rGa +1)

Thus the solution of Eg. (85) is given by;

U(X t) _ ex B eXta + eXtZO{ B eXt3a + .
’ MNa+1) TRRa+1) TIBa+1)
= ¢ anl(—t“)

1
As a special case if we take @ = 5 we get;

U(x,t)= e"E, [—t

N

-1
2

]: e”xerfc(\/f)
If =1 then, we get the solution of the classical equation as;

U(x,t)=e*"
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CHAPTER FIVE
Linear and Nonlinear Physical Models

This chapter presents linear and nonlinear application in applied sciences [15].
In the last few decades, extensive studies were carried out in modeling linear and
nonlinear partial differential equations. Several approaches such as characteristic
methods, spectral methods and perturbation techniques have been used in studying
these problems.

The following section offers the effectiveness of the homotopy perturbation
Sumudu transform method (HPSTM) in solving linear and nonlinear physical models.

5.1: The Nonlinear Advection Problems

The nonlinear partial differential equation of the advection problem is of the
form

U, (x,t) +U(x,t)U, (x,t) = f(x,t) , U(x,0) = g(x) 1)

The problem is solved by using the characteristic method, and by applying
numerical methods such as Fourier series and Runge-Kutta method. In this section,
the advection problem [16] is studied by utilizing homotopy perturbation method and
Sumudu transform method.

On applying the Sumudu transform of both sides of Eq. (1),

s ]+ 58[07).]= s[r(x.0) @

Using the differential operator property of the Sumudu transform and above initial
conditions, we get;

S[U(x.0] = 90 + us| 1(x.0) - 2(07). ] @)
Now, applying the inverse Sumudu transform of both sides of Eq. (3), we get
U(x,t) = g(x)+81[u8[f(x,t) —%(Uz)xﬂ (4)

Where G(x,t) represents the term arising from the source term and the prescribed
initial conditions. We apply the homotopy perturbation method;

U(t)= 30" Uy(c.t) ©)
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And the nonlinear term can be decomposed as;
= > p"H,U) (6)
n=0

For some He’s polynomials H, (U) that are given by;

Hn(Uo,Ul,Uz,...,Un 10 ip U xt , n=0,1,2,3,--- (7)
niep”| \& o

Substituting Egs. (5), and (6) in Eq. (4), we get;

ﬁ)pnun<x,t)g(x>+sl[us[f(x,t>]]gp[s{us{[ﬁ)pmxu)} m ®

This is the coupling of the Sumudu transform and the homotopy perturbation
method using He’s polynomials.
Comparing the coefficient of like power of p, the following approximation is

obtained;
P®:U,(x,t) = g(x) +S*us[f(x,t)]]

p1U,(x,t) = = 55 uS[ (HoW)),]

p* U, (0t) = = 58 us[ (H,)),] ©)

p*:U,(xt) = — 28 us[ (H,)),]

Thus, the exact solution is given by;

U(x.t) = > p"U,(x,t)
n=0
Example (5.1.1): Consider the inhomogeneous advection problem;
Uth%(UZ)X = e +t%e** (10)
And the initial condition;
U(x,0)=0.

Taking the Sumudu transform of both sides of Eq. (10), subject to the initial
Condition, we get;

S[U(x,t)] = ue* +2u’e* —%u s[u?),] (11)
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The inverse of Sumudu transform implies that;
U(x,t):tex+%t3e2X —%sl[us[(uz)x]] (12)
Now, applying the homotopy perturbation method, we get;
i p"U, (x,t)=te* + %t?’e2X — % p(s{u S{i p"H, U )}D (13)
n=0 n=0

Where H, (U )are He’s polynomials that represent the nonlinear terms.

The first few components of He’s polynomials, are given by:

H,(U) = Ug,
Hl(U) =2UOxU1x
H,U) :2UOXU2x+U12x (14)

HS(U): 2U0XU3X + 2LJleJZX

Comparing the coefficients of like powers of p, we get;

p® :U,(x,t)=te*+ %t%zx

P U (xt) = = 2 Hus[H(U)]

3 5 63 (15)
p* 1U,(xt) == 35 {us[H,(U)]

:1t563x+ 56 t7e4x+ 31 t9e5x+ 4 tlZeGX
5 315 567 756

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

U(x,t) =te* + L _Lisern_ Lsean - 2470
3 3 5 63 (16)
+1t5 e3X _|_ EtY e4X + ﬂtg e5X + itlZ eGX
5 315 567 756
And in a closed form by;
U(x,t) =te* (17)
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Example (5.1.2): Consider the inhomogeneous advection problem,
U, +%(U2)X = —sin(x+t)—%sin 2(x+t) (18)

And the initial condition as;

U(x,0) = cos x.
Taking the Sumudu transform of both sides of Eq. (18) subject to the initial
Condition, we get;

S[U(x,t)]=cosx +u S[—sin(x+t) - %sin 2(x+t)} - %u s[u?®)] @9
The inverse of Sumudu transform implies that;
U (x,t)= cos(x+t)+ %cos 2(x+t) — %cos 2X—% s*us[(U?)] (20)
Now, applying the homotopy perturbation method, we get;
ﬁ% p"U, (x,t)= cos(x+t)+ %cos 2(x+t)

- (21)
_ %cos 2x — % p(sll:u S[Z p"H, (U )}D

n=0

Where H, (U )are He’s polynomials that represent the nonlinear terms.

The first few components of He’s polynomials, are given by:

H,(U) = Ug,
Hl(U) :2UOXU1X
H2(U) =2UOXU2X+U12X (22)

Hs(U ) =2U,, U, + 2U,U,,
Comparing the coefficients of like powers of p , we get;
p® :U,(x,t) = cos(x+t)+ %cos 2(x+t) — %cos 2X

p' 1U,(x,t)=— %Sl[u S[H, L) (23)
=— lcosZ(x+t) + Leosox -
4 4

It is noted that two noise terms appears in the components U,(x,t) andU, (x,t)
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By removing these noise terms fromu ,, the remaining terms of U, provides the exact

solution. The exact solution is given by:
U(x,t) = cos(x+t)

Example (5.1.3): Consider the homogeneous nonlinear problem,
U,+U?U, =0
And the initial condition as;
U(x,0) = 3x.
Taking the Sumudu transform of both sides of Eq. (25) subject to the initial
Condition, we get;
S[U(x,t)] =3x — uslu?u,]
The inverse of Sumudu transform implies that;
U(x,t)=3x — S*usju?u, ||
Now, applying the homotopy perturbation method, we get;

Z P"U._ (x,1) = 3x— p[S{u 5[2 p”Hn(U)ﬂ}

Where H, (U )are He’s polynomials that represent the nonlinear terms.

The first few components of He’s polynomials, are given by:
U, (x,t)=3x

Uy o (x,t)==S7u[H,U)]], k=0
This gives;
p° (U, (x,t) =te*+ %t%zx
p' :U,(x,t) = — SHuS[H,(U)]]= —27 x*t
p? :U,(x,t) =— S *us[H,(U)]] = 486 x*t?
p* :U,(x,t) =— S *us[H,(U)]] = —10935 x*t*

(24)

(25)

(26)

(27)

(28)

(29)

(30)

And so on. Combining the results obtained for the components, the solution in a series

form is given by;
U(x,t) = 3x— 27x’t + 486x°t? — 10935 x*t* + - - -
Based on this, the solution can be expressed in the form;
3X , t =0

Ut) = é(,/1+36xt—1) L t>0
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5.2: The Klein-Gordon Equation

In this section, the homotopy perturbation Sumudu transform method (HPSTM)
has been applied to obtain the solution of the linear and nonlinear Klein-Gordon
equations. The homotopy perturbation Sumudu transform method is a combined form
of the Sumudu transform method with the homotopy perturbation method. This
scheme finds the solution without any discretization or restrictive assumptions and
avoids the round-off errors. The fact that this technique solves nonlinear problems
without using Adomian’s polynomials can be considered as a clear advantage of this
technique over the decomposition method. The results reveal that the proposed
algorithm is very efficient, simple and can be applied to other nonlinear problems.

5.2.1: Linear Klein-Gordon Equation
The linear Klein-Gordon equation in its standard form is given by;

U, (x,t)-U_(xt)+aU(xt)= h(xt) (33)
Subject to the initial conditions,
U(x,0)=f(x) , U,(x,00=g(x)
Where a is a constant and h(x,t) is the source term. It is interesting to note that if
a = 0; equation (33) becomes inhomogeneous wave equation.

Applying the Sumudu transform of both sides the equation (33) subject to the initial
condition, we get,

S[U(x,t)] = f(x) +ug(x) + u®S[h(x,t) + U, (x,t) —aU(x,t)] (34
The inverse of Sumudu transform implies that;

U(x,t) = f(x) +tg(x) +S*uss[h(x,t)+ U, (x,t) — aU(x,t)]| (35)
Now, applying the homotopy perturbation method, we get;

ipnun(x,t): F(x) +tg(x) +u?s[h(x,1)]
+ ps{uzsl:(rﬁ% p”Un(x,t)j —ag p”Un(x,t)H

Comparing the coefficients of like power p , we get;
p® :U,(x,t)= f(x)+tg(x)+u®s[h(x,t)]
Pt iUy (x,t)= S_l[uzs[(uo)xx_ an]] (37)
p? 1U,(x,t) = S_l[u2 S[(U,) aUl]]

(36)

XX
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Thus, the exact solution is given by;

U(x,t) = > P U, (x,1) (38)

Example (5.2.4): Consider the following linear Klein-Gordon equation,

U, (x,t)-U_ (xt)+U(x,t)=0; (39)
With the initial conditions;

U(x,00=0 , U,(x,0)=x;
Taking the Sumudu transform on both sides of equation (39) subject to the initial
condition, we get;

S[U(x,t)] = ux + u?sU,, (x,t) — U(x,t)] (40)
The inverse of Sumudu transform implies that;
U(x,t) = xt + SHuS[U,, (x,t) - U(x,t)] (41)

Now, applying the homotopy perturbation method, we get;

gpnun(x,tF Xt+PS{U25[(2p”Un(x,t)j —Zp”Un(x,t)” (42)

8

%X n=0

Comparing the coefficients of like power p , we get;
p® 1U,(x,t)= xt

1. -1f;,2 xt®
p 'Ul(x’t): S [U S[(UO)XX_UO]]:_? (43)
. t°
p2 :Uz(x’t): S 1[u28[(ul)xx_ul]] = X5_|
Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---
2 t° ot
And in closed form given as;
U(x,t) = xsint (45)
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Example (5.2.5): Consider the following linear Klein-Gordon equation:
U, (xt)-U_(x,t)+U(x,t)= 2sinx; (46)
With the initial conditions;
U(x,0)=sinx , U,(x,0)=1;
Taking the Sumudu transform of both sides of the equation (46) subject to the initial
condition, we get;
S[U(x,t)] = sinx +u +2u?sinx + u?s[U, (x,t) — U(x,t)] (47)
The inverse of Sumudu transform implies that;
U(x,t)=sinx +t + t?sinx + S usS[u (x,t) —U(x,t)]]  (8)
Now, applying the homotopy perturbation method, we get;
i p"U, (x,t)=sinx +t + t’sinx

n=0

- - (49)
+ ps{uzs{(;“opnun(x,t)j —nzop”Un(x,t)ﬂ

Comparing the coefficients of like power p, we get;

° .U X, t)= sinx + t + t?sin x
p 0
3 4

pt U, (x,t) = S u?S[(U,) .U, ]| = —t*sin x—a—asinx
i 6 5 4
p® :U,(xt)= s u?s[U,) .~U,]|= %sin x+%+%sinx (50)
1 t° t" 2t° .
: _ -1 —ulle - Yginx L _ 2
p3 :U,(x,t) = s Hu? s[U,) .~U,]|= 55 SN X —=; — Zysinx

Therefore the solution U (x,t)in series form is given by;
U(x,t) = Uy(x,t)+U,(x,t)+U,(x,t) +---

: t° ot ot
U(x,t) =S|nx+(t—a+a—ﬂ—---j (51)

And in closed form given as;
U(x,t) = sinx + sint (52)
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5.2.2: Nonlinear Klein-Gordon Equation
The nonlinear Klien-Gordon equation [15] describes nonlinear wave
interaction, which is given by:
DU(x,t) + RU(x,t) + NU(x,t) = g(x,t) (53)
Subject to the initial conditions;
U(x,0)=f(x) , U,(x.0)=g(x);

i i . i 0° i
Where D is the second order linear differential operator D = el R is the

linear differential operator of less order than D, N represents the general nonlinear
differential operator and g(x,t)is the source term.

Applying the Sumudu transform of both sides of the equation (53) subject to
the initial condition, we get:

SJux.t)] = f(x)+ug(x)
+us[h(x,t) +U (x,t) — aU(x,t) - F (U(x,1))]
The inverse of Sumudu transform implies that;
U(x,t)= f(x)+tg(x)
+5Huslh(x,t) + U, (x,1) - au(x,t) - FO(c, )] ©
Now, applying the homotopy perturbation method, we get;

z p"U, (x,t) = f(x)+tg(x)+Su2S[h(x,t)]

(54)

. - - (56)
+ p31[u2sl[;{)pnun(x,t)} - anzop“un(x,t) ->p"H, U )H

XX n=0
Comparing the coefficients of like power p , we get;
p° 1Uy(x,t)= f(x)+tg(x)+S*|us[h(x,1)]|
pl : Ul(X’t) = Sil[uz S[(Uo)xx_auo - HO(U )]]

p? 1U,(x,t) =8 *u?s[(U,) ,—aU, — —H,(U)] (57)
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Example (5.2.6): Consider the following nonlinear Klein-Gordon equation,

U,(x,t)—U_(x,t) + U?(x,t)= x*t> (58)
With the initial conditions;

U(x,00=0 , U,(x,0)=x.
Taking the Sumudu transform of both sides of Eq. (58) subject to the initial
Condition, we get:

S[U(x,t)] = xu+ 2x2u* +u? S|u,, (x,t)-U?(x,t)| (59)

The inverse of Sumudu transform implies that:

U(x,t) = xt+ %—'— su? slu,, (x,t)-U?(x,t)] (60)

Now, applying the homotopy perturbation method, we get:

244

> U, (=t + X +§p[s{us[ip"un<x,t>j ip"w)m )

Where H, (U )are He’s polynomials that represent the nonlinear terms.

The first few components of He’s polynomials, are given by:
H,(U) =Ug
Hl(U) =2U, U,
H,(U) =2U, U, +U?
H,(U)=2U,U, + 2U,U,
Comparing the coefficients of like powers of p , we get:
0 x*t?
tU,(xt) = xt +
P o( ) 12
pl : Ul(x’t) = Sil[uz S[(Uo)xx - HO(U )]]
t2 X4t10 X3t7 X2t4
T 180 12960 252 12
p? :U,(x,t)= 7 [u” s[(U,),, — H, ()]
X2t12 th t6 X6t16
= — — +
71280 22680 180 18662400
C 1t 383x°t* N x°t’
45360 15921360 252
And so on. Combining the results obtained for the components, the solution in a form:

U(x,t):ipnun(x,t) = xt (64)

(62)

(63)
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Example (5.2.7): Consider the following nonlinear Klein-Gordon equation,
U,(x,t)— U, (x,t) + U%(x,t)= 2x* —2t% + x*t* (65)
With the initial conditions;
U(x,00=0 , U,(x,0)=0.

Taking the Sumudu transform of both sides of Eq. (65) subject to the initial
Condition, we get:

S[U(x,t)] = 2x2u? — 4u* + 24x* u® +u? SjU, (x,t)-U?(x,t)]  (66)
The inverse of Sumudu transform implies that:

U(x,t) = x*? — §t4+ S—lox“t6+ su?slu,(x.t)-u?(x,0)]] (67

Now, applying the homotopy perturbation method, we get:

> p U, (1) =x*t? — Zpoy Ly
n=0 6 30

- . (68)
+ p[s{u Sanop“Un(x,t)J —nz_;)p”Hn(U ):m

Where H (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by:

H, u)=uU g

H,WU)=2U,U,

2 (69)
H,U)=2U,U, +U;
H,U)=2U,U, + 2U,U,
Comparing the coefficients of like powers of p , we get:
p® 1 U, (x,t) = x’t? — §t4+ 3—10x“t6
p* U, (x,t) = $7{u? s [(U,),, — Ho(U)]
NG N X610 x 6116 (70)

J— + —_ —
163800 11880 1350 18662400
t1o 11x*t® B x*t® ﬁ

— + +
3240 840 30 6
And so on. Combining the results obtained for the components, the solution in a form:

U(x,t)=ipnun(x,t) = x?t? (71)
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5.3: The Burgers Equation

The Burger's equation [23] is one of the fundamental equations in fluid
mechanics. Burger's equation describes the coupling between diffusion and
convection processes.

The standard form of Burgers’ equation is given by:
u+uu,=vuy, , t>0 (72)

Where V is a constant that defines the kinematic viscosity. If the viscosity,
V = Othe equation is called in viscid Burgers equation. The in viscid Burgers
equation governing gas dynamics. In the viscid Burgers equation has been discussed
before as a homogeneous case of the advection problem.

Nonlinear Burger's equation is considered as a simple nonlinear partial
differential equations [15] involving both convection and diffusion in fluid dynamics.
Burger introduced this equation [23] in order to study the interaction of the opposite
effects of convection and diffusion in turbulent fluid in a channel. This equation also
describes the structure of shock waves, traffic flow and acoustic transmission. A lot of
research has been carried out on Burger's equation.

The Cole-Hopf transformation is the commonly used approach. The solution
U (x,t) was replaced by y, in Eq. 72) to obtain;

Wi+ Wi W =V Wiy (73)
Where by integrating this equation with respect to x we find:
1
Y+ EWf =V Wi (74)
Using the Cole-Hopf transformation:
v =-2VIng (75)
So that:
U(x,t)= wxz—W% (76)
Transforms the nonlinear equation into the heat flow equation:
¢ =V &, (77)

It is clear that nonlinear Burger's equation (72) has been converted to an easily
solvable linear equation.
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Let us consider the Burgers equation:
U,+UU, = U, (78)
And the initial condition as;
U(x,0) = f(x).
Taking the Sumudu transform of both sides of Eq. (78) subject to the initial
Condition, we get;

s[u(x,t)] = f(x) +us[u, -UuU_] (79)
The inverse of Sumudu transform implies that;
Uxt)= f(x)+s™[us[u, -uu,]] (80)

Now, applying the homotopy perturbation method, we get;

ip“Un(x,t): f(x)+ p[sl{u S{Lﬁ’apnun(x,t)J + ni:‘)p”Hn(U)ﬂJ (81)

n=0 XX

Where H (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by:
H,(U) =U,U,,
HU)=U,U,+U, U,
H,U)=U,U, +U,U,, +U, U, (82)
H,U)= U,U, +U, U, +U, U, +U, U,

Comparing the coefficients of like powers of p , we get;
p® U, (x,t)= f(x)
p' :Ul(x’t): S_l[uS[(UO)XX + HO(U )]]
p? 1U,(x,t)=sus|U,), + H,U)]] (83)
p® 1U4(x.t) :S_l[u S[(Uz)xx +H,U )]]

Additional components may be computed to increase the accuracy level.

The solution in a series form is as follows. However, the n—term approximant
@, can be determined by:

4 = Zp U, (x.) (84)
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In the following we list some of the derived exact solutions of Burgers equation
derived by many researchers:
U(x,t) = 2tanx , —2cotx , —2tanhx
X X 2 X+t
): T + y 2
t ot x+t 2t°-t
9t . -t o
U(x,t)z 2e_t0(_)sx | 2e_tsmx
l+e sinx 1+4+e cosx

U (x,t (85)

The following examples will illustrate the discussion carried out above by
using homotopy perturbation method.

Example (5.3.8): Consider the following Burgers equation,
U +Uu, = U, (86)
And the initial condition as;
U(x,0) = x.
Taking the Sumudu transform of both sides of Eq. (86) subject to the initial
Condition, we get;

slu(x,t)] = x +us[u, -UU_] (87)
The inverse of Sumudu transform implies that;
U(xt)=x+S*us[u, -uuU ] (88)

Now, applying the homotopy perturbation method, we get;

nZ.:‘)pnun(x,t)z X+ p[sl[u SKﬁ‘Bp”Un(x,t)J - rZ.:;)p”Hn(U )ﬂ} (89)

Where H (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by:
H,(U) =U,U,,
H,U)=U,U,,+U, U,
H,(U)=U,U,, +U, U, +U, U, (90)
H3(U) = UyU,;, +U, U, +U, U, , +U; U,
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Comparing the coefficients of like powers of p , we get;

p° :U,(x,t)=x

Pt iU (x,t)= Sil[us[(uo)xx — H,(U )]]: —Xt

p? 1U,(xt)=5[us|U,), — H,(U)]] = xt’ (91)
P’ 1U,(x,t) = S‘l[uS[(UZ)XX - H,U )]]: —xt’

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

U, t)=xl—t+t2 —t3 +-..) (92)
Consequently, the exact solution is given by;
X
Ux,t)=—— , t 1
(1) = =~ [t] < (93)

Example (5.3.9): Consider the following Burgers equation,

U,+UU, = U, (94)
And the initial condition as;
U(x,0)=1—§ , x>0.

Taking the Sumudu transform of both sides of Eq. (94) subject to the initial
Condition, we get;

slu(x,t)]=1 —§+us[uxx ~-Uu, ] (95)
The inverse of Sumudu transform implies that;
U(xt)=1- 3+s-1[us[uxx ~uu, | (96)
X

Now, applying the homotopy perturbation method, we get;

gp”un(x,t)ﬂ —~ §+ p[sl{usﬂrﬁ’ap”un(x,t)) - ni:‘)p”Hn(U)ﬂJ (97)

XX

Where H, (U )are He’s polynomials that represents the nonlinear terms.

123



Linear and Nonlinear Physical Models 5

The first few components of He’s polynomials, are given by:
Ho(U) =U,U,,
H,(U) =U, U, +U, U,
H,U)=U,U,,+U, U, +U, U, (98)
Hs(U) = UyU,;, +U, U, +U, U, , +U; U,

Comparing the coefficients of like powers of p , we get;
p® U (x,t)=1 — %

Pt U, (x,t) = S us[U, ), ~ HoW)I == St
_ 2
p? U, (x.) = 5 *us[(Uy), - HU)] = - 3¢ (99)
_ 2
p3 :U3(X,t) =3 l[u S[(Uz)xx - Hz(U )]]: - Fts
And so on. Combining the results obtained for the components, the solution in a series

form is given by;

2 2 2 2

2 3
U(x,t)—l—;—Ft—Ft—Ft—--- (100)
is readily obtained. To determine the exact solution, Eq. (100) can be rewritten as;
U(xt)=l—g[1+£+i+i+--)=1— 2 (101)
’ X x x* X X —t

Example (5.3.10): Consider the following Burgers equation,

U,+UU, = U, (102)
And the initial condition as;

U(x,0) = 2tanx.
Taking the Sumudu transform of both sides of Eq. (102) subject to the initial
Condition, we get;

s[u(x,t)] = 2tanx + us[u, —U U] (103)
The inverse of Sumudu transform implies that;
U(xt)=2tanx + S*[us[u, -UU,] (104)
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Now, applying the homotopy perturbation method, we get;

i p"U, (x,t)=2tanx + p(s{u Sl:(rﬁ‘ap”un(x,t)j — Z,an”(U )ﬂ] (105)

n=0

Where H, (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by,
Ho(U) =U,U,,
Hl(U) =U, U, +U U,
H,U)=U,U,, +U; U, +U, Ug, (106)
Hs(U) = U Uy +U U, +U, U, +U; U,

Comparing the coefficients of like powers of p , we get;
p® U (x,t) = 2tanx
p' 1U,(x,t) = S_l[us[(UO)xx — Ho(U )]]: 0
p? :U,(x,t) = s*us[U,), - H,L)]]=0 (107)
p* :U,(x,t)=S*us|U,), - H,U)]]=0

Thus, the exact solution is given by;
U(x,t) = 2tanx (108)

Example (5.3.11): Consider the following Burgers equation,

U,+UU, = U, (109)
And the initial condition as;
u(,t) = —% , U (0,t)= % + t% :

Applying the Sumudu transform of both sides of Eq. (109) subject to the initial
Condition, we get:
2 1 2 )
slu(x,t)] = _T+U(E+t_2j+u s[u, +UU_] (110)
The inverse of Sumudu transform implies that;

U(x,t)=—%+XG+§J+S_1[U23[Ut+UUX]] (111)
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Now, applying the homotopy perturbation method, we get;
Y p"U, (xt)=- % +X G + t%j +p S{u2 SK p"Un(x,t)J + Y p"H,U )ﬂ (112)
n=0 n=0 t n=0

Where H, (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by,
Ho(U) =U,U,,
HU)=U,U, +U, U,
H,U)=U,U,, +U, U, +U, U,
Hs(U): UyUs, + U U, +U, U +U U, (113)

Comparing the coefficients of like powers of p, we get;

p® :U,(x,t) = — % +X [1 + %)

T t
p U, (1) = 8 u” S[(U, ), — HoL)]] = -2 f— ’ i,tx (114)
p? :U,(x.t)= s *uzs[u,), — H,L)] = 2:4 I

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

X 2 x x> X3
Ux,t)==-=-|1—-=-+ "> — — 4+ ...
(x.1) t ot [ t  t* td j (115)
Consequently, the exact solution is given by;
X 2
U(x,t)=— — , 11
(x.1) t  x+t (116)
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5.4: The Telegraph Equation
The standard form of the telegraph equation [15] is given by:
u,—au, +bU,+cU (117)
Where U = U(x,t)is the resistance, and a , band ¢ are constants related to
the inductance, capacitance and conductance of the cable respectively.

Note that the telegraph equation is a linear partial differential equation. The
telegraph equation arises in the propagation of electrical signals along a telegraph line.
Assuming a = Oand c = 0O, because of electrical properties of the cable, then we
obtain:

U, =DbU, (118)
Which is the standard linear heat equation mentioned before in Chapter 2.
On the other hand, the electrical properties may lead to b = 0 and ¢ = 0 Hence we

obtain:
u,=auU, (119)
Which is the standard linear wave equation presented in Chapter 2.
u,=U,+U,+U , O<x<L (120)

With the boundary and initial conditions;

BC U(,t)= f(t), U, (0,t)=glt)

IC U(x,0)=h(x), U/(x,0)=v(x)
Taking the Sumudu transform of both sides of Eq. (120) subject to the initial
Condition, we get;

SjU(x,t)] = f(t)+ug(t) + u?s[u, + U, +U] (121)
The inverse of Sumudu transform implies that;
U(xt)= f(t)+xg(t)+S*[u?S[U, +U,+U]] (122)

Now, applying the homotopy perturbation method, we get;

i p"U, (x,t)=2tanx + p {S{uz S{[i p”Un(x,t)J ﬂ

(123)

+ [ﬁ‘ap”un(x,t)Jt +§%D”Un(x,t)}
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Comparing the coefficients of like powers of p , we get;
p® 1 U,(x,t) = f(t) + xg(t)
pt U, (xt) = SHu? s[U,), + (U,), +U, ]
p* : UZ(X,’[) = S_l[uz S[(Ul)tt + (Ul)t +U, ]] (124)
p° 1U,(x.t) = s u? s[U,), + U,) +U, ]

Thus, the exact solution is given by;

U(x.t) = > p"U,(x,t) (125)
n=0
Example (5.4.12): Consider the following homogeneous telegraph equation:
U,=U,+U,-U (126)

With the boundary and initial conditions;

BC U((O,t)=e* , U,(0,t)=¢*

IC U(x,0)=e* , U,(x,0)=—-2e*
Taking the Sumudu transform of both sides of Eq. (126) subject to the initial
Condition, we get;

SU(x,t)]=e* +ue® +u?sS[U,+ U, —U] (127)
The inverse of Sumudu transform implies that;
U(xt)=e?+xe? +5*u?s[u, +U,-U]| (128)

Now, applying the homotopy perturbation method, we get;

ipnun(x,t): e ?yxe 4+ p {Sl uSKi p”Un(x,t)j ﬂ

(129)
[ Zpruneo] - B
e .o
Comparing the coefficients of like powers of p , we get;
p° tU,y(x,t)=e " +xe *
p' U, (x,t)= s u?s[U,), + U,),—-U, ]| %xze2t + %X%Z‘
(130)

p? U (x8) = S S[(U,), + U, — U, [l= Txte e Sxe

P 1U,(x,) = 5[ S[U,), + U]~ U, - Sxe 2+ Zxe
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And so on. Combining the results obtained for the components, the solution in a series
form is given by;

U(x,t)=e™ [1+x+ix2+ix3+ix4+ix5+ j (131)

21 3! 41 5!
Consequently, the exact solution is given by;
U(x,t) =e* 2 (132)

Example (5.4.13): Consider the following homogeneous telegraph equation:
Uu,=U,+4U, + 4U (133)
With the boundary and initial conditions;
BC U@O,t)=1+e* , U/ (0,t)=2
IC U(x,0)=1+¢** , U/(x,0)=-2"
Taking the Sumudu transform of both sides of Eq. (133) subject to the initial
Condition, we get;

S[U(x,t)]=1+e* +2u+ u?S[U, + 4U, + 4U] (134)
The inverse of Sumudu transform implies that;
U(xt)=1+e2+2x+S*[u?S[U, +4U,+4U]] (135)

Now, applying the homotopy perturbation method, we get;

i p"U, (x,)=1+e 2 +2x+p {S{u S{(i p”Un(x,t)J H

(136)
+ 4(2 p”Un(x,t)J +4> p”Un(x,t)}
n=0 t n=0
Comparing the coefficients of like powers of p , we get;
P’ tU,(x,t)=1+e "+ 2x
p' U, (x,t)= S‘l[u2 s[u,), + 4U,),+4U, ]]z 2x% + §x3 (137)

p* U, (x,t) = S [urs[(U,), + 4L, +aU, = Zxt S -

129



Linear and Nonlinear Physical Models | 5

And so on. Combining the results obtained for the components, the solution in a series
form is given by;

U(x,t)=e?+ (1+ 2x+%(2x)2+%(2x)3+ j (138)

Consequently, the exact solution is given by;
U(x,t)=e* +e? (139)

5.5: Schrodinger Equation

In this section, linear and nonlinear Schrodinger equations [24, 25] will be
discussed and investigated. It is well known that Schrodinger equations arise in the
study of the time evolution of the wave function.

5.5.1: The Linear Schrodinger Equation

The initial value problem for the linear Schrodinger equation for a free particle
with mass m is given by the following standard form;

U =iU_ , i=-1,t>0 (140)
And the initial condition as;
U(x,0) = f(x).

Where f(x)is continuous & square integrable. It is to be noted that the
Schrodinger equation (140) discusses the time evolution of a free particle. Moreover,
the function U (x,t)is complex, and Eq. (140) is a first order Schrodinger differential
equationin t.

The homotopy perturbation method will be applied to handle the linear and the
nonlinear Schrodinger equations. In order to achieve this, applying the Sumudu
transform of both sides of Eq. (140) subject to the initial condition, we get:

slu(x,t)] = f(x) +ius[u, ] (141)
The inverse of Sumudu transform implies that;
U(xt)=f(x) +iS*us[u, ] (142)

Now, applying the homotopy perturbation method, we get;

nZ.:;)pr‘un(x,t): f(x)+ip [sl{u S{(ﬁ‘apnun(x,tﬂ H} (143)
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Comparing the coefficients of like powers of p , we get;
p® U, (x,t)= f(x)
p' 1U,(x,t)=is*[us|U,),]
p? 1U,(x.t) =157 us[U,),]l
p* :1U,(x,t) =15 [us[U,),]]

Thus, the exact solution is given by;

o0

U(x,t)= > p"U,(x,t)

n=0

Example (5.5.14): Consider the linear Schrodinger equation,
U =iuU,
And the initial condition as;
U(x,0)=e'"

Taking the Sumudu transform of both sides of Eq. (146) subject to the initial

Condition, we get;
Sju(x,t)] =e™ +ius[u, ]
The inverse of Sumudu transform implies that;
U(x,t)=e™ +iSus[u, ]
Now, applying the homotopy perturbation method, we get;

2 p"U,(x,t)=e" +ip [S{u SK%D”UJXJ)L HJ

Comparing the coefficients of like powers of p , we get;
p° (U, (x,t)=¢'*
pl : Ul(x’t) = I S_l[u S[(Uo)xx]] = iteix

P U, (xt) = i us[Uy), J= —St7e”

p° :U3(x,t)=is1[us[(uz)xx]]:%itseix
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Summing these iterations yields the series solution;
i X H 1 - 1 -
U(x,t) = e [1_ it 2oy - 2oy e j

That leads to the exact solution;
U(x,t)=e *

Example (5.5.15): Consider the linear Schrodinger equation,
U, =iU,
And the initial condition as;
U(x,0) = sinh x

Taking the Sumudu transform of both sides of Eq. (153) subject to the initial
Condition, we get;

S[U(x,t)] = sinhx +ius[u, ]
The inverse of Sumudu transform implies that;

U(x,t)=sinhx +iS?*us[u, ]|

Now, applying the homotopy perturbation method, we get;

ni:)IO”Un(x,t)z sinhx +1ip [S{U SKiP"Un(X’t)L :m

Comparing the coefficients of like powers of p , we get;
p° :U,(x,t)=sinh x
pt :U,(x,t)=iSYus[U,), ]]= itsinhx

p? :U,(x,t)=iS*us|U,), ] = —%tzsinh X

p* :U,(x,t)=is*[us[U,), J]=- %its‘sinh X

Summing these iterations yields the series solution;
U(x,t) = sinh x [1 + (it )+ %(it)2+ %(it)3 4. j

That leads to the exact solution;
U(x,t) = e''sinh x
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5.5.2: The Nonlinear Schrodinger Equation
The nonlinear Schrodinger equation (NLS) in standard form is defined as

iU +U,+y7/U['U =0 (160)
Where y is a constant and U(x,t) is complex. Equation (160) represents solitary type

solutions. A solitary wave is a wave where the speed of propagation is independent of
the amplitude of the wave.

The nonlinear Schrodinger equations are given by;

iU +U,+2/UffU=0 (161)
And
iU +U,-2/UffU=0 (162)
Let us begin our analysis by considering the initial value problem;
iU +U_+y7[U’U=0 , U(x,0)= f(x) (163)

Taking the Sumudu transform of both sides of Eq. (163) subject to the initial
Condition, we get;

su(xt)] = f (x) +ius|u, + »|u U | (164)
The inverse of Sumudu transform implies that;
U(xt)=f (x) +isus|u, + U U | (165)

Recall from complex analysis that:
Ul =uu (166)
Where U is the conjugate of U . Where the nonlinear term N(U(x,t))is given by:
NU)=U?U (167)
In view of (167), and following the formal techniques used before to derive the
homotopy polynomials, we can easily derive that N(U) has the following polynomials

representation.
Ho(U) :USUO
H,(U)=2U,U,U, +UZU,
H,(U)=2U,U,U, +U2U,+2U,U,U,+U’U, (168)
H,(U)=2U,U,U, +2U,U,U, + 2U,U, U, +UZU, + 2U,U,U, +UZU,
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Now, applying the homotopy perturbation method, we get;

nZ.:‘)p”Un(x,t)= f(x)+ip [Sl[u SKnin”Un(x,t)J + ;/ni)p”Hn(U)ﬂ] (169)

Comparing the coefficients of like powers of p , we get;
p® U, (x,t)= f(x)
p' 1U,(x,) =S [us|U,),, +7 HoU)]]
p? :U,(x,t)=iS*[us[u,),, +»H,U)] (170)
p* :U,(x,t)=is*[us|u,), +»H,U)]

X

Thus, the exact solution is given by;
U(x,t)= > p"U,(x,t) (171)
n=0

The analysis introduced above will be illustrated by discussing the following
examples.

Example (5.5.16): Consider the following nonlinear Schrodinger equation,
iU +U,+2/UffU=0 (172)
And the initial condition as;
U(x,0) = e'*
Taking the Sumudu transform of both sides of Eq. (172) subject to the initial
Condition, we get;

su(xt)] =e* +ius|u, +2[U[fU | (173)
The inverse of Sumudu transform implies that;
U(xt)=e™ +isus|u, +2ul*u | (174)

Now, applying the homotopy perturbation method, we get;

2ann(X,t)=eix+ip{S1l:u8{£2)pnun(x,t)j +2§0p”Hn(U)ﬂ] (175)
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Comparing the coefficients of like powers of p , we get;
p® U, (x,t)=¢'~
P 1U,(x,) = 1S [us[U,),, +2H,U)]|=ite™
p? :U,(x,t)=iS*[us|U,), +2H,U)]=- %tz e’ (176)
P U, (x,t) =15 [us[U,),, +2H, )] = - Jitte”
Summing these iterations yields the series solution;
_ X . 1..v . 1.3
U(x,t)=e (1+|t+z(|t) +a(lt) +j (177)
That leads to the exact solution;
U(x,t)=e v (178)
Example (5.5.17): Consider the following nonlinear Schrodinger equation,
iU +U,—-2/U[U =0 (179)
And the initial condition as;
U(x,0) = e”
Taking the Sumudu transform of both sides of Eq. (179) subject to the initial
Condition, we get;
s[U(x,t)] = e* +ius|u, —2|U|*U | (180)
The inverse of Sumudu transform implies that;
U(xt)=e™ +is2us|u, - 2ufu | (181)
Now, applying the homotopy perturbation method, we get;
3 p U, (xt)=e" +ip [Sllu SHZ p”Un(X,t)j -2> p"H, U )m (182)
n=0 n=0 XX n=0
Comparing the coefficients of like powers of p , we get;
p® :U,(x,t)=¢""
p! U, (x,t)=iS*us|U,), —2H,U)]]= -3ite'
p? :U,(xt)=isHus[U,), —2H,U)] = %(Bit)z e (183)

p* Us(x) =18 [us[(U,), ~2H, )] = - 2 @ity e”
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Summing these iterations yields the series solution;
U(x.t) = e‘x[l ~ @i+ L@ - L@ . j (184)
That leads to the exact solution;

U(x,t)=e 3V (185)

5.6: Korteweg-deVaries Equation
The Korteweg-deVaries (KdV) equation in simplest form [26- 28] is given by:

u+auu, +U, =0 (186)
Let us first consider the initial value problem
U +aUU_+bU_ =0 , U(x,0)= f(x) (187)

Where a and b are constants.

Taking the Sumudu transform of both sides of Eq. (187) subject to the initial
Condition, we get;

slu(x,t)]= f(x) —usS[lauu, +bU__] (188)
The inverse of Sumudu transform implies that;
U(x,t)= f(x) = S?*uslauu, +bu__]| (189)

Now, applying the homotopy perturbation method, we get;

iop”un(x,t)zf(x)— p[s{us{b(f‘ap”un(x,t)} +aiop”Hn(u)m (190)

Where H, (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by;
Ho(U) =U,U,,
Hl(U) =U, U, +U, U,
H,U)=U,U,,+U, U, +U, U, (191)
H3(U) = U U;, +U U, +U, U, +U; U,
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Comparing the coefficients of like powers of p , we get;
p° : UO(X,t) = f (X)

o U,00.0) = - 5 [uSPU, ) + & Ho(U)]
p® :Uz(xit): - Sil[us[b(ul)xxx +a Hl(U )]]
p* 1Us(xt)= — s *[uspU, ), +aH,U)]

Thus, the exact solution is given by;

U(x,t)zipnun(x,t)

Example (5.6.18): Consider the following homogeneous KdV equation;
U -6UU,+U_ =0
And the initial condition as;
U(x,0) = 6x

Taking the Sumudu transform of both sides of Eq. (194) subject to the initial
Condition, we get;

slu(x,t)]=6x —usS[euuU, —U__ ]
The inverse of Sumudu transform implies that;

U(x,t)=6x — S*usfeuu, -U__]]
Now, applying the homotopy perturbation method, we get;

2p”Un(x,t)= 6X— p{sllus{ (ni)p”un(x,t)J —6§)p”Hn(U)ﬂ]

Where H, (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by;
Ho(U) =UyU,,
H,U) =U U, +U, U,
H,U)=U,U,,+U U, +U, U,
Hs(U) = UU;, +U U, +U, U, +U, U,
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Comparing the coefficients of like powers of p , we get;
p® U, (x,t)=6x
pl . Ul(X’t) == Sil[u S[(UO)XXX - 6 HO(U )]]: 63 Xt
p? 1U,(xt) == S us[(U,), — 6 H,(U)]] = 6" xt* (199)
p° 1U,(xt) =~ 5 us[(U,),,— 6 H,(LU)]]=6"xt*
Summing these iterations yields the series solution;
U(x,t)=6x (1 + 36t+ (36t)°+ (36t) +-- ) (200)
That leads to the exact solution;
6 X
U(x,t)= ———— , |[36t|<1 201
()= 2, |36t| < (201)
Example (5.6.19): Consider the following homogeneous KdV equation:
U -6UU,+U_ =0 (202)
And the initial condition as;
U(x,0) = % (x — 1)
Taking the Sumudu transform on both sides of Eq. (202) subject to the initial
Condition, we get;
1
s[u(x,t)]=E (x —1) —uS[eUU, —U,_] (203)
The inverse of Sumudu transform implies that;
U(x,t)=%(x ~1)-S*us[euu, —uU_ ]l (204)
Now, applying the homotopy perturbation method, we get;
o0 1 o0 N o0 n
> p"U,(xt)= c (x-1)- p[sllu s{ [Z p Un(x,t)J -6> p"H, (U )m (205)
n=0 n=0 XXX n=0
Where H (U )are He’s polynomials that represent the nonlinear terms.
The first few components of He’s polynomials, are given by;
H,U) =U,U,,
Hl(U) = Uo le + Ul U0x
(206)

HZ(U) = Uo U2x+Ul U1x+U2 UOx
Hs(U) = UOU3x + U1 U2x+U2 le +U3 UOx
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Comparing the coefficients of like powers of p , we get;
P Uo(xt) = 2 (x 1)
P U, (x,0) = = 5 [uS U)o — 6 HoU)]= < (x — 1)
2 -1 1 >
p :UZ(X’t)z_ S [US[(Ul)xxx _6 Hl(U )]]:g(x—l)t

p* :Us(x,t) =~ s*[us[(U,)

XXX

-6 H, )= ¢ (x -
Summing these iterations yields the series solution;
U(X,t)=%(X—l)(1+t+t2+ o+ -

That leads to the exact solution;

U(x,t) = l[x_lj ,ot]<1

61—t

Example (5.6.21):
Consider an equation with initial condition is given by

U +UU,-UU_+U, =0, U(x,0)=e¢"
Taking Sumudu Transform on both sides of Eq. (210) subject to the initial
Condition, we get;

S[U(x,t)]=e* —usSluu, —uUU,, +U

The inverse of Sumudu transform implies that;

U(x,t)=e* - S*usluu, —uu_ +U__|l
Now, applying the homotopy perturbation method, we get;

-y

(207)

(208)

(209)

(210)

(211)

(212)

0, c0)= 05| 311,81+ | S0, (xt) m 213

Where H (U )and B, (U )are He’s polynomials that represents the nonlinear terms.

The first few components of He’s polynomials, are given by;
Ho(U) =U,Uy, » H,U)=U, U, +U, U,
H,U)=U,U, +U U, +U,U,,

BO(U) =UoUgue B.(U) =U; U + U U
B,U)=U,U,, +UU, +U,U

1xxx

0 XXX 1XXX 2 XXX
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Comparing the coefficients of like powers of p , we get;
p° U (x,t)=¢"
pl : Ul(X’t) = Sfl[u 8[20 HO - BO _(UO)xxxxx]]= —te”

p2 :UZ(X’t):_Sil[US[ZOHl_ Bl_(Ul)xxxxx]] = E eX (215)
3
p3 . U3(X’t) = _S_l[u 8[20 H2 - BZ _(UZ)xxxxx]] = _% ex
Summing these iterations yields the series solution;
y >t
That leads to the exact solution;
U(x,t)=e* e (217)
Example (5.6.22):
Consider the following FKdV Equation
U +uU +Uyu_+Uuy, -200°U, +U_ =0 (218)

With the initial condition,
1
U(x,0)==
(x,0) = =
Taking Sumudu transform of both sides of Eq. (218) subject to the initial
Condition, we get;

s[u(x,t)] = % +usfou?u,, U, -U, -V, -UU. ]| (219
The inverse of Sumudu transform implies that;

U(x,t) = % +s*|us[2o0u?u,, -U, -U,-UU,-UU,. ] (220
Now, applying the homotopy perturbation method, we get;

ip“un(x,t): 1. p {us{i p"[20H, - B, - R, ]
n =0 X n=0 221

(B (Eovaes) ]|

Where H,(U), B,(U)and R, (U )are He’s polynomials that represent the nonlinear
terms.
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The first few components of He’s polynomials, are given by;

B,U)=UZ2U,, , B(U)=2U,U,U, +UZU,,
B,(U)=2U,U,U,, +UU,  +2U,UU, +UZU,
B,(U) = 2U,U,U,, +2UU,U,  +U2U,
+2U,U,U,, +2U,U,U, +UZU,
R,(U) =U, U,, , RU)=U, U, +U, U,
R,U) =U, U, +U, U, +U, U,
R:(U) = U:XXUZX + ullxxulzx +UfXU22XX +U, U, (222)
H,U)=UU,,, ., H,U)=2U,UU, +UlU,
H,U)=2U,U,U,,  +UU,  +2UUU, +UZU,
H,(U)= 2u,U,U,,,+2UU,U, +UZU,
+2U,U,U,  +2U,U,U, +UlU,
Comparing the coefficients of like powers of p , we get;
P’ 1 U,(x,t) = %
P! U, (x, 1) = S [uS[20Hy — By = Ry —(Uo ) —Uo) Il = -
p? :U,(x,t)=S*[us[20H, - B, - R, —(U,),. —U,),] = f(—zs (223)

3
p3 :U3(X’t): Sil[US[ZOHZ - BZ - RZ _(Uz)xxxxx _(UZ)X]]: :(_4

Summing these iterations yields the series solution;

U(x,t)—%(l+§+ [§j2+(£j3 +j (224)

That leads to the exact solution;
1

U(x,t)= —

(225)
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CHAPTER SIX
Comparison of Homotopy Perturbation Method and
Sumudu Transform and Another Method

The homotopy perturbation Sumudu transform method (HPSTM) is the
combination of Sumudu transform and the homotopy perturbation method. This
method does not require any additional polynomial such as Adomian polynomial. One
may visualize that all these three methods HPSTM, ADM and STM are powerful and
accurate for solving different kinds of linear and nonlinear fractional differential
equations. The features of HPSTM are: it is very simple, straightforward and user
friendly, it can be used for solving nonlinear problems, which is not possible using
ADM and STM, and it does not require polynomial such as Adomian polynomial.

6.1: Comparison of Homotopy Perturbation Sumudu Transform
Method and Sumudu Transform for Solving Linear Partial
Differential Equations

6.1.1: Basic ldea of HPSTM
To illustrate the basic idea of this method, we consider a general nonlinear non-
homogenous partial differential equation with the initial conditions of form
DU(x,t) + RU(x,t) + NU(x,t) = g(x,t) (1)
U(x,0)=h(x), U,(x,0)= f(x)

Where D is the second order linear differential operator p — ;_22 , Ris the

linear differential operator of less order than D, N represents the general nonlinear
differential operator and g(x,t)is the source term.
Taking the Sumudu Transform on both sides of Eg. (1), we get
S[DU(x,t)] + S[RU(x,t)] + S[NU(x,t)] = S[g(x,1)] 2)
Using the differential operator property of the Sumudu Transform and above initial
conditions, we get;
S[DU(x,t)] = u?s[g(x,t)] + h(x) + u f(x)

— u?S[RU(x,t)] + S[NU(x,t)] )
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Now, applying the inverse Sumudu Transform on both sides of Eq(3), we get

U(x,t) = G(x,t) — S*u® S[RU(x,t) + NU(x,1)]| (4)
Where G(x,t) represents the term arising from the source term and the prescribed
initial conditions. We apply the Homotopy perturbation method,

= > p" U, (x.t) (5)
n=0
And the nonlinear term can be decomposed as;
NU(x,t) Zp H,(x,t) (6)

For some He’s polynomials H_ (U) that are given by;

HoUo U0, - U) = =2 NS uxt)|| L n=0.1,2.3,-+ (7)
n'ap i=0 )0

Substituting Egs. (5) and (6) in Eq. (4), we get;

ép”un(x,t): G(x,t)
_ p(sl{uz S{Répnun(x,t)jL ni)an”(X’t)ﬂJ

This is the coupling of the Sumudu Transform and the Homotopy perturbation method
using He’s polynomials.

Comparing the coefficient of like power of p, the following approximation is
obtained,

(8)

p° :U,(x,t)= G(x,t)

p' 1U,(x,t)=— S *uzs[RU,(x,t) + H, U )]]

p? 1U,(x,t)=— S u? S[RU,(x,t) + H,(U)]] 9)
p® 1U,(x,t) = — S*[u S[RU,(x,t) + H,(U)]]

6.1.2: Method of Solution of the Problem
Consider the following linear Klein-Gordon equation,
U, (x,t)-U(x,t)- 2U(x,t) = —2sin x sint ; (10)
With the initial conditions;
U(x,00=0 , U,(x,0)=sinx;
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Taking the Sumudu transform of both sides of Eq. (10), subject to the initial

condition, we get;

S[U(x,t)] = usinx + u?s[U ,(x,t) + 2U(x,t)—2sin xsint ]

The inverse of Sumudu transform implies that;
U(x,t)= tsinx + Su?S[U,, (x,t) = U(x,t)]
Now, applying the homotopy perturbation method, we get;

ipnun(x,t)z tsinx+ pS™ UZSHi p”Un(x,t)]
n=0 n=0 "

X

+ Zi p"U, (x,t) - Zsinxsintﬂ
n=0

Comparing the coefficients of like power p , we get;
p° U, (x,t)= tsinx
p' U, (x,t) = s*u?s[U,) ,+2U, — 2sin xsint]]
3
= [t— —2t+25intj sin x
3!

p2 : UZ(X’t): Sil[uz S[(Ul)xx+2U1]]
(tS . 1., J .
=| — —6sint —=t°+ 2t |sinXx
51 3
p3 . UB(X1t) = S_l[uz S[(UZ)XX+2U2]]
7 3
— [t— + 2sint —it5+ v_ 2t Jsin X
7! 60 3
Therefore the solution U (x, t)in series form is given by;

3 5 7
U(x,t)z(t—t—+t——t——~)sinx
3! 51 71
And in closed form given as;
U(x,t) = sint sin x
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6.1.3: Basic Idea of STM (Definitions and Theorems)

The Sumudu transform is an integral transform similar to the Laplace transform,
introduced in the early 1990s by Watugala [29] to solve linear differential equations
and control engineering problems.

Note that these the theorems and definitions will use in this section.

Definition (6.1.1): The Sumudu transform of a function f(t), defined for all real
numbers t > O , is the function F,(u) , defined by:

S[f 0] = F(0) = [T op| - L] 1) (17)

Definition (6.1.2): The double Sumudu transform of a function f(x,t) , defined for
all real numbers(t >0, x> O) , Is defined by:

S[f(x,t)] = uiT exp[— ﬂ £(x,t) dt (18)

In the same line of ideas, the Sumudu transform of the second partial derivative with
respect tot is of the form [30],

s{%{t)_ - Lrou)-Lr(c0)

T _ L ey y)- L F(x,0)- L OF(.0)
s[ ) L Rpu)- L R(x,0)- LFO)

Similarly, the Sumudu transform of the second partial derivative with respect to x is

of form [30],
S[—af (X’t)} _4d F(x,u)

O X dx
S 82f(X,t) _ d2 F(X U) (20)
O X2 dx? ’
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Theorem (6.1.3) [29]: LetG(u) be the Sumudu transform of f (t)such that
I. G(:I/s)/s Is a meromorphic function, with singularities having Re[s] < yand
ii.  there exist a circular region I with radius R and positive constants M and K
with |G(1/s)/s| < M R™¥, then the function f (t)is given by;

y +ioo

s [G(s)] = —— | exp[st]G@) % = > residual [exp[st] %‘Q’)} (21)

271 ¢
V4

ico

6.1.4: Method of Solution of the Problem
Applying the Sumudu transform of Eq. (10), we get:

Sju,]-s[u,]-2S[U]=-2S[sinxsint] (22)
2
uiz[u(x,u)—u(x,o)— uU,(x,0)] —%U(x,u)—ZU(x,u): _1+ 52 sin x
Then
d°U ~Lusou = Lsinx+ =2Y sinx
dx* u? u 1+ u?

Thus we have the ordinary differential equation:

d’U  [1-2u° U - u?-1 sinx 23
d x® u’ u {1+ u?) (23)
_ 2 _ 2
U;Aexp{ L Eu x]+Bexp[— ! Eu x] (24)
u u
The initial conditions gives;
A=B=0
Then
U.,=0 (25)
And
u .
U (x,u)= sin X 26
()= (26)

The solution is;
U (x,u)= U, (x,u)+ U, (x,u)

(27)

U (x,u)= sin x

1+ u?
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Taking the inverse of Sumudu transform:

aou
U(x,t)=S LJruz}smx (28)
U (x,t)= sint sinx (29)

6.2: Comparison of Homotopy Perturbation Sumudu Transform
Method and Homotopy-Perturbation Method for Solving
Nonlinear Partial Differential Equations

6.2.1: Basic Idea of HPM
We consider the following general nonlinear differential equation,
Lu + Nu = f(x,t) (30)
With the initial conditions,
u(x,0)=c, , u,(x,0)=c,
Where u is a function of x andtand c,; c, , are constants or functions of x,
and L and N are respectively, the linear and nonlinear operators.
According to HPM, we construct a homotopy which satisfies the following relation,
H(u,p)=Lu—Lvy+pLv,+p[Nu—f(x,t)] =0 (31)
Where pe[0,1]is an embedding parameter and v, is an arbitrary initial
approximation satisfying the given initial conditions. When we put p°and p~* in
Eq. (32), we obtain:
H(u,0)=Lu-Lv,=0 ,and H(u,1)=Lu+Nu—f(x,t)=0 (32
Which are the linear and nonlinear original equations, respectively. In
topology, this is called deformation and Lu—Lv,,and Lu+Nu— f(x,t)are called
hemitropic. Here the embedding parameter is introduced much more naturally,

unaffected by artificial factors; further it can be considered as a small parameter for
O0< p<1l

We introduce in this work an alternative way of choosing the initial

approximations, that is,
Vo= u(x,0) + tu,(x,0)+L* f(x,t) =c, +tc, +L* f(x,t) (33)
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t t

t
Where L*(-) = [ [ ...J (-)dt... dtdt depends on the order of the linear
0

0O O
operator. We assume that the initial approximation v, given in Eq. (33) can be
decomposed into two parts, namely v, ,and v, ,such that:
Vo= Vo1t Vo2 (34)
In HPM, the solution of Eq. (31) is expressed as:
u(x,t)=u,(x,t)+ pu,(x,t)+ p?u,(x,t) +- - - (35)
Hence, the approximate solution of Eq. (30) can be expressed as a series of the powers
of p,i.e.
u=Ilimu=u,+u+u,+--- (36)

p—1

6.2.2: Methods of Solution Problems

I. Homotopy Perturbation Sumudu Transforms Method
Consider the following homogenous advection problem,
U +UU,=0 (37)
U(x,0) = — x.
Taking the Sumudu Transform on both sides of Eq. (37) subject to the initial
Condition, we get;

S[U(x,t)]= —x —usS[uu,] (38)
The inverse of Sumudu Transform implies that;
U(x,t)=—x — S?*us[uu, ] (39)

Now, applying the homotopy perturbation method, we get;

2p”Un(x,t)=—X— p[S{u S{io p”Hn(U)m (40)

Where H, (U )are He’s polynomials that represent the nonlinear terms.
Comparing the coefficients of like powers of p , we get;
p° U, (x,t)= —x

b UL (1) = — S 2[uS[H,(U)]]= - xt
p? (U, (x.t)= — S uS[H,U)] = — xt? 4
p° 1U,(xt) = S uS[H,(U)] = — xt’
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And so on. Combining the results obtained for the components, the solution in a series
form is given by;
U t)=—-xL+t+ t?+ t5 +--) (42)
And in a closed form by;
X
t—1

U(x,t) = (43)

Il. Homotopy perturbation Method
To solve Eqg. (37) with initial condition, according to the homotopy perturbation
technique, we construct the following homotopy;

ov ou oV oV
1-p)|—-—"2|+pl—+v— |[=0 44
( p)[at ot J p[at oX j (44)

or equivalently;

ov  aU, ou, v
— - + + Vv
ot ot ot 0 X
Suppose that the solution of Eq. (44) can be represented as;

V=V,+ pV,+pV,+ pvy+ -, (45)
Substituting Eqg. (45) into Eq. (44), and equating the terms of the same power, of P, it
follows that;

0. 0V, 0Uy _
- ot ot
plzavl N oy, v, oV, _0
ot ot O X (46)
2. OV, +V, oV, +V, N _
ot 0 X 0 X
By choosing U,(x,t) = U(x,0) = — x, and solving the above equations, we obtain
the following approximations;
Uy(x,t)= —x
U,(x,t)= —xt
Up(x, t)= —xt? . (47)
U,(x,t)= —xt°
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Then the exact solution of Eq. (37) is given by:
U(X,t)=—x(1+t+ t* + t° +) (48)
Or in a closed form by:
X
t-—1

U(x,t) = (49)

6.3: Comparison of Homotopy Perturbation Sumudu Transform
Method and Adomian Decomposition Method for Solving
Nonlinear Partial Differential Equations

6.3.1: Basic Idea of ADM
The principle of the Adomian decomposition method (ADM) when applied to a
general nonlinear equation is in the following form:
LU(x,t) + RU(x,t) + NU(x,t) = g(x,t) (50)
U(x,0)=h(x), U,/(x,0)= f(x)

inverse operator, L ,with L™*(-) = j( )dt Equation (50) can be hence as;
U(x,t)= Lg(x,t)] - L*RU(x,t)]- L*[NU(x,t)] (51)

The decomposition method represents the solution of equation (50) as the following
infinite series:

=3 U, (x.1) (52)
n=0
The nonlinear operator NU = y(U) is decomposed as:
NU(x,t) Z A, (53)
Where, A, are Adomian's polynomials, which are defined as [33]:
== AU , n=0,1,2,3,- 4
iz

Substituting equations Egs. (52) and (53) into equation (50), we have

U= nj'_o‘auﬁ U, Ll[R(ni)unH— L*(EAHJ (55)
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Consequently, it can be written as:
U,(x,t)= @— L 'g(x,t)
U,(x,t) == L' [RU, )] - L*(A)
U,(x,t)= - L[RWU,)]- L*(A)

Un(x’t): - L_l[R(Un—l)]_ L_l(A'I —l)
where ¢ is the initial condition,
Hence all the terms of U are calculated and the general solution obtained according to

ADMas U = i U, . The convergence of this series has been proven in [33].
n=0

However, for some problems [32] this series can’t be determined, so we use an
approximation of the solution from truncated series

M
U, = > U, ,with, limu, =uU (57)
n=0

5.4.2: Method of Solution of the Problem
I. Homotopy Perturbation Sumudu Transforms Method
Consider the following homogenous advection problem [31],
U, +UU, = 2t + x + t® + xt? (58)
U(x,0)=0.

Taking the Sumudu Transform on both sides of Eg. (58) subject to the initial
Condition, we get;

S[U(x,t)] = 2u® + xu +3u* + 2xu® —usSUU ] (59)
The inverse of Sumudu Transform implies that;

U(x,t)=t? + xt +%t4 + %xt3 —S*usuu,] (60)

Now, applying the Homotopy perturbation method, we get;

i p U, (x,t)=t% + xt +%t4 + %xt3— p{sl[u S{i p”Hn(U)ﬂJ (61)

Where H, (U )are He’s polynomials that represent the nonlinear terms.
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Comparing the coefficients of like powers of p, we get;

p° :U,(x,t) =t + xt +%t4 + %xt3

p' : Ul(x’t) == S_l[u S[HO(U )]] (62)
Lt Ly 2y Ly
4 3 15 63 96

And so on. Combining the results obtained for the components, the solution in a series
form is given by;
U(x,t) =t? + xt (63)

1. Adomian decomposition method
We first rewrite Eq. (58) in an operational form;

LU =2t + x +t° + xt* —UU,

64
U(x,0)=0 (64)
Where the differential operator L is;
0
=3t (65)
The inverse L *is assumed as an integral operator given by:
t
()= [(-)at (66)
0

Applying the inverse operator L 'on both sides of Eq. (64) and using the initial
condition we find:

U(x,t) = t? + xt+%t4 +%xt3 - L(uu)) (67)

Substituting Egs. (52) and (53) into the functional equation (64) gives:
U (x,t) =t* + xt+%t4 +%xt3 — L‘l(z AnJ (68)
n=0 n=0

Where A, are the so-called Adomian polynomials, identifying the zeroth component
U,(x,t) byt? + xtJr%t4 +%xt3, the remaining componentsU (x,t), n > 1, can be

determined by using the recurrence relation:
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U,(x,t) =t + Xt+%t4 +%xt3

Uk+1(xvt):_Lil(Ak) , k=0
Where A, are Adomian polynomials that were evaluated before in the homogeneous

(69)

case. This in turn gives the components:
1
U,(x,t) =1t + xt+%t4 +§xt3

1 1 2 1 1
U.(x,t) = —=t* —=xt>——=xt®> ——xt’' ——t8
1(x.1) 4 3 15 63 96 (70)

It is important to recall here that the noise terms appear between the two components
U, andU,. The noise terms are identified as the identical terms with opposite signs.

We then cancel the noise terms + %t“ + %xﬁbetween the components U, andU,, and

justify that the remaining terms of u0 satisfy the equation. Consequently, the exact
solution is:

U(x,t) = t*+ xt (71)

6.4: Comparison of Homotopy Perturbation Sumudu Transform
Method and Adomian Decomposition Method for Solving
Nonlinear Fractional Partial Differential Equations

6.4.1: Basic ldea of HPSTM
To illustrate the basic idea of this method, we consider a general fractional
nonlinear no homogeneous partial differential equation with the initial condition of
the form,
DU (x,t)+ RU(x,t) + NU(x,t) = g(x,t) (72)
U(x,0) = f(x)
Where DfU(x,t) is the Caputo fractional derivative of the function U(x,t) , Ris the

linear differential operator, N represents the general nonlinear differential operator
and g(x,t) is the source term.
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Applying the Sumudu Transform (denoted in this section by S ) on both sides of
Eq. (72), we get:

s|DrU(x,t)] + S[LU(x,t) + NU(x,t)] = S[g(x,1)] (73)
Using the property of the Sumudu transform, we get;

s[u(x,t)] = f(x) +u*s[g(x,t)]
—u*S[RU(x,t)+ NU(x,t)]

Operating with the Sumudu inverse on both sides of Eq. (73) gives;

U(x,t) = G(x,t) — SHu*S[RU(x,t) + NU(x,t)]] (75)
WhereG(x,t) represents the term arising from the source term and the prescribed
initial conditions. We apply the Homotopy perturbation method,;

(74)

U(x,t) :iopnun(x,t) (76)
And the nonlinear term can be decomposed as;
NU(x,t) =iop”Hn(U) (77)
For some He's polynomials H, (U) [26, 45] t_hat are given by;
H (U,,U,,U,,.. .U )= rT' a‘i’n { (in U, Hpo ,n=0,1,2,... (78)

Substituting Egs. (76) and (77) in Eq. (75), we get;

ip”un(x,t): G(x,t)- psllu“ S[R i p"U, (x,t)+ i p’ Hn(U)ﬂ (79)

This is the coupling of the Sumudu Transform and the HPM using He’s polynomials.
Comparing the coefficients of like powers of p, the following approximations are

obtained:
0.

1
(Xt

(x,t)=
(x.1)
(x.t)
(x.1)

G(x,t)
— s u* S[RU,+ H, (U )]

~ s {us[RU, + H,U)] (80)
s [u”s[RU,+ H,(U)]

0
1

2

cC C cCc C

3

p
p
p
P Us
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By utilizing the results in Eqg. (80), and substituting them into Eqg. (75) then the
solution of Eq. (72) can be expressed as a power series in p. The best approximation
for the solution of initial condition is:

U(x,t) =LiTlip”Un(x,t) = U, +U,+U, +- - - (81)
n=0

The solutions of Eq. (81) generally converge very rapidly

6.4.2: Methods of Solution of the Problems
Consider the following nonlinear time-fractional Harry Dym equation,
DU (x,t)= U3(x,t)U3(x,t) : O<ac<1 (82)

With the initial condition;
%
U(x,0) = [a — %xj

Applying the Sumudu Transform on both sides of Eq. (82), subject to initial
conditions, we get;

s[u(x,t)] = (a —

The inverse Sumudu Transform implies that;

%
3\2/5 XJ +usjud(x,t)ud(x,t)] (83)

%
U(x,t) = (a _34b XJ + s ues[us(x, t)u(x,1)]] (84)

2
Now applying the HPM, we get;

- % -
> p"U,(x,t)= (a—#xj +p S‘{U“S{Z p" Hn(U)H (85)

Where are He’s polynomials that represent the nonlinear terms. So, then He’s
polynomials are given by;

i p"H, (U)= U®D3U (86)
n=0

The first few components of He’s polynomials are given by;
H,(U) = U, DU,
H,(U)=U;DU, +3U2U, DU,

87
H,(U) =U2D¥, +3U2U, DU, +(3U,U2+3U2U, DU, ®7)
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Comparing the coefficients of like powers of p, we get;

%
p%: Uy(x,t)= [a—%xj

)= s sl v{a- 28]t

e R EE T B v PR
ww%QJ%:V%WSUth=—%{a-%?X ;é%%g (88)

p': Usot) = §7{u”S[H, ()]
_ b%(a_ﬂxJ%{ls M2 +1) _16j 0

2 2 2(T(a +1)p rBa +1)

In this manner the rest of components of the HPSTM solution can be obtained. Thus,
the solution U(x,t)of the Eq. (82) is given as;

U(X t)_(a_ﬂxj_b%[a_3\/ng% te _b_3[a_3\/ij% t2@
| 2 I I

2 a+l) 2 2 20 +1)

A
b 34 15 T2 +1) S
b & zxj [22@@+nf mLma+n

(89)

6.4.3: Basic Idea of ADM
To illustrate the basic idea of Adomian decomposition method, we consider a
general fractional nonlinear no homogeneous partial differential equation with the
initial condition of the form,
DU (x,t)+ RU(x,t) + NU(x,t) = g(x,t) (90)
Where DU(x,t)is the Caputo fractional derivative of the functionu(x,t) , Ris
the linear differential operator, N represents the general nonlinear differential
operator, and g(x,t)is the source term.

Applying the operator J; on both sides of Eq. (90), we get;

wﬁg:E{%gj gl - RUGD UG

=0
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Next, we decompose the unknown function into sum of an infinite number of
components given by the decomposition series;

u=>U, (92)
n=0
And the nonlinear term can be decomposed as;
NU => A (93)
n=0
Where A are Adomian polynomials that are given by;
Anzidn N i;ﬂu. ,n=0,12,.. (94)
nlda" = ' o

The components U,,U,,U,,...are determined recursively by substituting Eqgs. (92)
and (93) into Eq. (91) leading to;

0 m-1 akU tk
ZUH:Z — +J%g(x,t) - ZU JFZAn (95)
n=0 k=0 at kl

This can be written as;

m-1 akU tk
U, +U,+U, +...= Z(—k] TR g(x,t)
k=0 5t k (96)

~JRU+U, +U, +.. )+ (A +A+A +.. )]

Adomian method uses the formal recursive relations as;
m-1 akU tk
UO = kgo[ﬁj m + \] g(X t)
Un+1: - Jta[R( n)+ (A])] , N2 0

97)

6.4.4: Methods of Solution of The Problems
To solve the nonlinear time-fractional Harry Dym equation (82), we apply the
operator on both sides of Eq. (82) we get;

U= EL: (Dru)_, + 3¢[uipiu] (98)

0
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This gives the following recursive relations using Eq. (97):

0 tk
UO - zm (Dtku)‘:()
. (99)
Un+1: Jta[A1] , n:O,l’z’...
Where
> A =U°DU (100)
n=0
The first few components of Adomian polynomials are given by
A,(U) =U; DU,
U) =Ug DU, +3UZU, DU
AU) =U, DU, 2u, DU, o

A,(U) = U2 D%, +3U2U, DU, +(3U,U2+3U2U, DU,

The components of the solution can be easily found by using the previous recursive
relations as;

%4
U,(x,t)= [a - %x]

U,(x,t)= Sfl[ua S[HO(U )] =-b” [a a 32b XJ F(Ott +1)

(102)

tZa

T2a+1)

; K
Uz(x’t): Sil[ua S [ Hl(U )] - %[a - ﬂxj

0,0 5o s[H, )

—_

B4
1= b _ﬂ 15 F(2a+1) ~ t3a
= & ZX] [22¢@+m21ﬂr@a+g

And so on. In this manner the rest of the components of the decomposition solution
can be obtained. Thus, the ADM solution U(x,t)of Eq. (82) is given as;

U(X t):(a_ﬁxj_b%(a_:%\/ng% t« E{aﬂxjétz—a
: 2 2 INa+1) 2 T2 a+1)

-7
p%[a b, E 15 TRa+1) ) 7
2 2 2(T(e +2)) rBe+1)
This is the same solution as obtained by using HPSTM.

(103)
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Table: Laplace and Sumudu transform of some function

f(t) F(s)=L[f () F(u)=s[f(t)]
1 1 1
S
t 1 u
52
t" 1 gt
o "R s
1 1 1
Jrt Js Ju
2[4 : Y
T s2
ta—l 1 a-1
@,a>0 s_a u
e® 1 1
s—a 1-au
te® 1 u
(s—a)’ (1-au)’
1 n-1 ,at _ 1 Un_l
—(n—l)!t e’ ,n=12,. 5-ay -au)
Lk—l at s 1 Thae
1“(k)t e k>0 (s—a) (1—au)
1 at bt 1 u
(a—b)(e —e") axb (s—a)(s—b) (L—au)i—bu)
1 at bt S 1
apjee” —be) ax (5-a)(5_b) i-au)i-bu)
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1 . 1 y
—sinwt
" s®+w’ e
cos wt S .
s? +w? LT wie?
1. 1 :
Zsinhat
a SZ _ag 1_a2u2
cosh at S .
s?-a’ o’
1 atginwt 12 2 i -
e cos wt — —
(s—a)2 +w? (1—au)2 Wil
2
1 (1-coswt) 1 -
" &7+ w?) e
1 ] . .
_3(Wt—smwt) ﬁ -
W SIS +W i wiu
3
13(Sin\/\'t—wt coswt) 1 - |
2w <32 +W2) (1+W2u2)
2
Lsinvvt : S - ' |
2w (S +W ) (1+W2U2)
2
i(sinthrWtCOSWt) s '
2w <52 +W2) (1+W2u2)
2
1zsin ktsinh kt . S : ’
2 s* +4k LAy’
3
L _(sinhkt-sinkt) N :
2k Tk v
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1 S u
W(cosh kt - cos kt) T e
Jo(at) ! N
Vs? +a’ V1+a®u?
H(t— 1. B
(t—a) 1. o
S
olt— -as _a
( a) € —e U
g(1—coswt) |n(52 +W2j 1In(1+w2u2)
t g2 u
g(1—cosh at) S =@’ 1In(l—azuz)
t g2 u
Lginwt tan ¥ L tantwu
t s u

161




References:

[1] G. K.Watugala, Sumudu transform—a new integral transform to solve
differential equations and control engineering problems, Math. Engrg. Indust. 6
(1998), no. 4, 319-329.

[2] Fethi Muhammed Belgacem, Ahamed Abdullatif and Shyam L. Kalla, Analytical
investigations of the Sumudu Transform and applications to integral production
equations

[3] Eda Nur PEKTEZEL-Sila CETINKAYA, Sumudu transform: a new integral
transform to solve di_erential equations and control engineering problems, (2011)

[4] He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng
1999; 178:257-62.

[5] Ariel PD, Hayat T, Asghar S. Homotopy perturbation method and axisymmetric
flow over a stretching sheet. Int J Non-linear SciNumer Simul 2006; 7:399-406.

[6] Bele'ndez A, Herna'ndez T, Bele'ndez, et al. Application of He’s homotopy
perturbation method to the duffing-harmonic oscillator. Int J Non-linear Sci
Numer Simul 2007; 8:79-88.

[7] Cveticanin L. Homotopy-perturbation method for pure nonlinear differential
equation. Chaos, Solitons & Fractals 2006; 30:1221-30.

[8] Ganji DD, Sadighi A. Application of He’s homotopy-perturbation method to
nonlinear coupled systems of reaction—diffusion equations. Int J Non-linear Sci
Numer Simul 2006;7:411-8.

[9] Rafei M, Ganji DD. Explicit solutions of Helmholtz equation and fifth-order KdV
equation using homotopy perturbation method. Int J Non-linear Sci Numer Simul
2006; 7:321-8.

[10] Siddiqui AM, Mahmood R, Ghori QK. Thin film flow of a third grade fluid on
a moving belt by He’s homotopy perturbation method. Int J Non-linear Sci Numer
Simul 2006; 7:7-14.

[11] Siddiqui AM, Ahmed M, Ghori QK. Couette and Poiseuille flows for non-
Newtonian fluids. Int J Non-linear Sci Numer Simul 2006;7:15-26.

[12] Ozis T, Yidirim A. Determination of limit cycles by a modified straightforward

162



expansion for nonlinear oscillators. Chaos, Solitons & Fractals 2007; 32:445-8.

[13] Wazwaz, A. M. and Gorguis, A. 2004, exact solutions for heat-like and wave-
like equations with variable coefficients. Applied Mathematics and Computation.
149 (1) 15-29.

[14] A.M. Wazwaz, A new technique for calculating Adomian polynomials for
nonlinear polynomials, Appl. Math. Compt., 111 (2000), 33-51.

[15] A.M. Wazwaz, Partial Differential Equations: Methods and Applications,
Balkema, Leiden, (2002).

[16] Saeed Kazem, Exact Solution of Some Linear Fractional Differential Equations
by Laplace Transform, International Journal of Nonlinear Science Vol.16 (2013)
No.1, pp. 3-11

[17] R. Churchill, Operational Mathematics (3rd edition), McGraw-Hill,New York,
1972

[18] V. B. L. Chaurasia and J. Singh, “Application of Sumudu transform in
Sch”odinger equation occurring in quantum mechanics,” Applied Mathematical
Sciences, vol. 4, no. 57-60, pp. 2843— 2850, 2010.

[19] Jagdev Singh!, Devendra Kumar® and A. Kiligman®, Homotopy Perturbation
Method for Fractional Gas Dynamics Equation Using Sumudu Transform,
Hindawi Publishing Corporation Abstract and Applied Analysis, Volume 2013,
Acrticle ID 934060, 8 pages.

[20] Eltayeb A. Yousif, Solution of Nonlinear Fractional Differential Equations
Using the Homotopy Perturbation Sumudu Transform Method, Applied
Mathematical Sciences, Vol. 8, 2014, no. 44, 2195 — 2210.

[21] A. M. Wazwaz, A new approach to the nonlinear advection problem, an
application of the decomposition method, Appl. Math. Comput., 72, 175-181,
(1995).

[22] G.B. Whitham, Linear and Nonlinear Waves, John Wiley, New York, (1976).

[23] J.M. Burgers, A mathematical model illustrating the theory of turbulence,
Adv. Appl. Mech. 1,171 — 199, (1948).

163



[24] M. J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering, Cambridge University Press, Cambridge, (1991).

[25] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,
SIAM, Philadelphia (1981).

[26] W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of
nonlinear partial differential equations, Math. Comput. Simulation, 43, 13-27,
(1997).

[27] R. Hirota, the Direct Method in Soliton Theory, Cambridge University Press,
Cambridge, (2004).

[28] R. M. Miura, The Korteweg de-Vries equation: a survey of results, SIAM Rev.,
18, 412-459, (1976).

[29] G. K. Watugala, “Sumudu transform: a new integral transform to solve
differential equations and control engineering problems,”International Journal of
Mathematical Education in Science and Technology, vol. 24, no. 1, pp. 35-43,
1993.

[30] H. Eltayeb and A. Kiligman, “A note on the Sumudu transforms and differential
equations,” Applied Mathematical Sciences, vol. 4, no. 22, pp. 1089-1098, 2010.

[31] K. Abbaoui and Y. Cherruault, “New ideas for proving convergence of
decomposition methods,” Computers and Mathematics with Applications, vol. 29,
no. 7, pp. 103-108, 1995.

[32] Seng V. Abbaoui K. Cherruault Y., (1996), “Adomian’s polynomial for
nonlinear operators”, J. Math. Comput. Modeling, Vol. 24, No. 1, p. 59-65.

[33] Bellman R., Kashef B.G. and Casti J., (1972), “Differential quadrature: A
technique for the rapid solution of nonlinear partial differential equations”,
J.comput. Phys., Vol.10, No.1, p.

[34] 1. Podlubny, Geometric and physical interpretation of fractional integration and
fractional differentiation, Fract. Calculus. Appl. Anal, 5 (2002): 367-386.

[35] S. Momani, M. A. Noor, Numerical methods for fourth-order fractional
integrodifferential equations, Appl. Math. Comput, 182 (2006): 754-760.

164



[36] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor &
Francis, London, UK, 1992, English translation.

[37] A.V. Karmishin, A.l. Zhukov and V.G. Kolosov, Methods of Dynamics
Calculation and Testing for Thin-Walled Structures, Mashinostroyenie, Moscow,
Russia, 1990.

[38] J.H. He, Homotopy perturbation technique, Computer Methods in Applied
Mechanics and Engineering, 178 (1999), 257-262.

[39] J. Saberi-Nadjafi and A. Ghorbani, He’s homotopy perturbation method: an
effective tool for solving nonlinear integral and integro-differential equations,
Computers & Mathematics with Applications, 58 (2009), 1345- 1351. 172 J.
Singh, D. Kumar and Sushila

[40] N.H. Sweilam and M.M. Khader, Exact solutions of some coupled nonlinear
partial differential equations using the homotopy perturbation method, Computers
& Mathematics with Applications, 58 (2009), 2134— 2141.

[41] R. Hirota, Exact solutions of the Korteweg—de Vries equation for multiple
collisions of solitons, Physical Review Letters, 27 (1971), 1192-1194.

[42] A. M. Wazwaz, on multiple soliton solutions for coupled KdV-mkdV equation,
Nonlinear Science Letters A, 1 (2010), 289-296.

[43] G. Adomian, Solving Frontier Problems of Physics: The Decomposition
Method, Kluwer Acad. Publ., Boston, 1994.

[44] G. C. Wu and J.H. He, Fractional calculus of variations in fractal space-time,
Nonlinear Science Letters A, 1 (2010), 281-287.

[45] J. H. He, Variational iteration method—a kind of nonlinear analytical
technique: some examples, International Journal of Nonlinear Mechanics, 34
(1999), 699-708.

[46] J. H. He and X.H. Wu, Variational iteration method: new development and
applications, Computers & Mathematics with Applications, 54 (2007), 881-894.

[47] J.H.He, G.C. Wu and F. Austin, The variational iteration method which should
be followed, Nonlinear Science Letters A, 1 (2009), 1-30.

165



[48] L. A. Soltani and A. Shirzadi, A new modification of the variational iteration
method, Computers & Mathematics with Applications, 59 (2010), 2528-2535.

[49] N. Faraz, Y. Khan and A. Yildirim, Analytical approach to two-dimensional
viscous flow with a shrinking sheet via variational iteration algorithm-I1, Journal
of King Saud University, (2010) doi: 10.1016/j. jksus.2010.06.010.

[50] G. C. Wu and E.W.M. Lee, Fractional variational iteration method and its
application, Physics Letters A, (2010) doi: 10.1016/j.physleta.2010.04.034.

[51] E. Hesameddini and H. Latifizadeh, Reconstruction of variational iteration
algorithms using the Laplace transform, International Journal of Nonlinear
Sciences and Numerical Simulation, 10 (2009), 1377-1382. Homotopy
perturbation Sumudu transform method 173

[52] C. Chun, Fourier-series-based variational iteration method for a reliable
treatment of heat equations with variable coefficients, International Journal of
Nonlinear Sciences and Numerical Simulation, 10 (2009), 1383— 1388.

[53] G. Adomian, Solution of physical problems by decomposition, Computers &
Mathematics with Applications, 2 (1994), 145-154.

[54] A. M. Wazwaz, A comparison between the variational iteration method and
adomian decomposition method, Journal of Computational and Applied
Mathematics, 207 (2007), 129-136.

[55] M .A. Abdou and A.A. Soliman, New applications of variational iteration
method, Physica D: Nonlinear Phenomena, 211 (2005), 1-8.

[56] M. Dehghan,Weighted finite difference techniques for the one-dimensional
advection—diffusion equation, Applied Mathematics and Computation, 147 (2004),
307-319.

[57] D.D. Ganji and A. Sadighi, Application of He’s homotopy perturbation method
to nonlinear coupled systems of reaction diffusion equations, International Journal
of Nonlinear Sciences and Numerical Simulation, 7 (2006), 411 418.

[58] Y. Khan and F. Austin, Application of the Laplace decomposition method to
nonlinear homogeneous and non-homogenous advection equations, Zeitschrift
fuer Naturforschung, 65a (2010), 1-5.

166



[59] S. T. Mohyud-Din and A. Yildirim, Homotopy perturbation method for
advection problems, Nonlinear Science Letters A, 1 (2010), 307-312.

[60] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique,
Applied Mathematics and Computation, 135 (2003), 73-79.

[61] J. H. He, Comparison of homotopy perturbation method and homotopy analysis
method, Applied Mathematics and Computation, 156 (2004), 527-539.

[62] J. H. He, The homotopy perturbation method for nonlinear oscillators with
discontinuities, Applied Mathematics and Computation, 151 (2004), 287— 292.

[63] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems,
International Journal of Nonlinear Sciences and Numerical Simulation, 6 (2005),
207-208. 174 J. Singh, D. Kumar and Sushila

[64] J. H. He, some asymptotic methods for strongly nonlinear equation,
International Journal of Modern Physics, 20 (2006), 1144-1199.

[65] J. H. He, Homotopy perturbation method for solving boundary value problems,
Physics Letters A, 350 (2006), 87-88.

[66] M. Rafei and D.D. Ganji, Explicit solutions of helmhotz equation and fifth-
order KdV equation using homotopy perturbation method, International Journal of
Nonlinear Sciences and Numerical Simulation, 7 (2006), 321-328.

[67] A. M. Siddiqui, R. Mahmood and Q.K. Ghori, Thin film flow of a third grade

fluid on a moving belt by He’s homotopy perturbation method, International
Journal of Nonlinear Sciences and Numerical Simulation, 7 (2006), 7-14.

[68] D. D. Ganji, The applications of He’s homotopy perturbation method to
nonlinear equation arising in heat transfer, Physics Letters A, 335 (2006), 337—
341.

[69] Y. Khan and Q. Wu, Homotopy perturbation transform method for nonlinear

equations using He’s polynomials, Computer and Mathematics with Applications,
(2010), doi: 10.1016/j.camwa.2010.08.022.

[70] A. Ghorbani and J. Saberi-Nadjafi, He’s homotopy perturbation method for
calculating adomian polynomials, International Journal of Nonlinear Sciences and
Numerical Simulation, 8 (2007), 229-232.

167



[71] A. Ghorbani, Beyond adomian’s polynomials: He polynomials, Chaos Solitons
Fractals, 39 (2009), 1486-1492.

[72] S..Mohyud-Din, M.A. Noor and K.I. Noor, Traveling wave solutions of sevent
h-order generalized KdV equation using He’s polynomials, International Journal
of Nonlinear Sciences and Numerical Simulation, 10 (2009), 227-233.

[73] J. Biazar, M. Gholami Porshokuhi and B. Ghanbari, Extracting a general
iterative method from an adomian decomposition method and comparing it to the
variational iteration method, Computers & Mathematics with Applications, 59
(2010), 622—-628. Homotopy perturbation Sumudu transform method 175

[74] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear
differential equations, Journal of Applied Mathematics, 1 (2001), 141-155.

[75] E. Yusufoglu, Numerical solution of Duffing equation by the Laplace
decomposition algorithm, Applied Mathematics and Computation, 177 (2006),
572-580.

[76] Yasir Khan, An effective modification of the Laplace decomposition method
for nonlinear equations, International Journal of Nonlinear Sciences and
Numerical Simulation, 10 (2009), 1373-1376.

[77] Yasir Khan and Naeem Faraz, A new approach to differential difference
equations, Journal of Advanced Research in Differential Equations, 2 (2010), 1—
12.

[78] S. Islam, Y. Khan, N. Faraz and F. Austin, Numerical solution of logistic
differential equations by using the Laplace decomposition method, World Applied
Sciences Journal, 8 (2010), 1100-1105.

[79] M. Madani and M. Fathizadeh, Homotopy perturbation algorithm using
Laplace transformation, Nonlinear Science Letters A, 1 (2010), 263—-267.

[80] M.A. Noor and S.T. Mohyud-Din, Variational homotopy perturbation method
for solving higher dimensional initial boundary value problems, Mathematical
Problems in Engineering, 2008 (2008) 11. Article ID 696734, doi:
10.1155/2008/696734.

168



[81] M. A. Asiru, Sumudu transform and the solution of integral equation of
convolution type, International Journal of Mathematical Education in Science and
Technology, 32 (2001), 906-910.

[82] F. B. M. Belgacem, A.A. Karaballi and S.L Kalla, Analytical investigations of
the Sumudu transform and applications to integral production equations,
Mathematical problems in Engineering, 3 (2003), 103-118.

[83] F. B. M. Belgacem and A.A. Karaballi, Sumudu transform fundamental
properties investigations and applications, International J. Appl. Math. Stoch.
Anal., (2005), 1-23.

[84] Amjad. Ezoo. Hamza and Tarig. M. Elzaki, Linear Fractional Differential
Equations and Sumudu Transform, International Journal of Applied Engineering
Research, ISSN 0973-4562 Volume 10, Number 4 (2015) pp. 9923-9934.

[85] Amjad. Ezoo. Hamza and Tarig. M. Elzaki, Application of Homotopy
Perturbation and Sumudu Transform Method for Solving Burgers Equations,
American Journal of Theoretical and Applied Statistics, 2015; 4(6): 480-483,
Publised online October 13,2015(http://www.sciencepublishinggroup.com/j/ajtas),
doi: 10.11648/j. ajtas.20150406.18.

169


http://www.sciencepublishinggroup.com/j/ajtas

	1
	2
	3
	4
	5
	6
	7
	8
	9

