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Abstract 

 

 This study is mainly focusing on the application of the homotopy 

perturbation method and Sumudu transform of the linear and nonlinear partial 

differential equations.  

 It has established some theorems, definitions and properties of homotopy 

perturbation method and Sumudu transform. The study combines the homotopy 

perturbation method and Sumudu transform. Consequently, it gives the solution in 

series form and approximates components, and finds the exact solution. Then, it is 

applied to solve linear and nonlinear PDEs.  

 Finally, the solutions of  linear and nonlinear PDEs by this method, and the 

other methods will be compared. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



IV 

 

 

  الخلاصة

 
فى حل المعادلات  ووتحويل سمود ياهموتوبالإرتجاج التتمركز هذه الدراسة مجملا فى تطبيق طريقة  

 .التفاضلية الجزئية الخطية وغير الخطية

الإرتجاج التعريفات والخصائص بالنسبة لطريقة , ستقوم الدراسة بتاسيس بعض النظريات  

مما ادى الى ,  ووتحويل سمود ياهموتوبالإرتجاج ال ريقةقامت الدراسة بدمج ط. ووتحويل سمود ياهموتوبال

من ثم طبقت الدراسة لحل المعادلات . ايجاد الحل فى شكل متسلسلة وتقريب المكونات لايجاد الحل التام

 .التفاضلية الجزئية الخطية وغير الخطية

 .المعادلات التفاضلية الجزئية الخطية وغير الخطية بطرق اخرىمقارنة حلول  تمتواخيرا  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

Introduction:  
 In the last several years with the rapid development of nonlinear science, there 

appeared ever-increasing interest of scientists and engineers in the analytical 

asymptotic techniques for nonlinear problems such as solid state physics, plasma 

physics, fluid mechanics and applied sciences. In many different fields of science and 

engineering, it is important to obtain exact or numerical solution of the nonlinear 

partial differential equations. Searching of exact and numerical solution of nonlinear 

equations in science and engineering is still quite problematic, that’s needed new 

methods for finding the exact and approximate solutions. Most of new nonlinear 

equations do not have a precise analytic solution; so, numerical methods have largely 

been used to handle these equations.  

 There are also analytic techniques for nonlinear equations. Some of the classic 

analytic methods are Lyapunov’s artificial small parameter method [36], δ-expansion 

method [37], perturbation techniques [38-40] and Hirota bilinear method [41, 42]. In 

recent years, many research workers have paid attention to study the solutions of 

nonlinear partial differential equations by using various methods. Among these are the 

Adomian decomposition methods (ADM) [43], He’s semi-inverse method [44], the 

tanh method, the homotopy perturbation method (HPM), the sinh – cosh method, the 

differential transform method and the variational iteration method (VIM) [45-52]. 

Several techniques including the Adomian decomposition method, the variational 

iteration method, the weighted finite difference techniques and the Laplace 

decomposition method have been used to handle advection equations [53-59]. Most of 

these methods have their inbuilt deficiencies like the calculation of Adomian’s 

polynomials, the Lagrange multiplier, divergent results and huge computational work. 

He [60-68] developed the homotopy perturbation method (HPM) by merging the 

standard homotopy and perturbation for solving various physical problems. It is worth 

mentioning that the HPM is applied without any discretization, restrictive assumption 

or transformation and is free from round off errors. The Laplace transform is totally 

incapable of handling nonlinear equations because of the difficulties that are caused 

by the nonlinear terms. Various ways have been proposed recently to deal with these 

nonlinearities such as the Adomian decomposition method [73] and the Laplace 

decomposition algorithm [74-78]. 

 Furthermore, the homotopy perturbation method is also combined with the 

well-known Sumudu transform method [69, 79] and the variational iteration method 

[80] to produce a highly effective technique for handling many nonlinear problems. 
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CHAPTER ONE 

Homotopy Perturbation Method and Sumudu 

Transform 

  

1.1:  Sumudu Transform  

Ever since long time, differential equations have played an important role in all 

aspects of mathematics. With the invention of the computer and its programming, the 

role of mathematics has reached to its peak. In order to develop new technological 

processes, scientific computation is important and it helps in understanding and 

controlling our natural environment. Analysis of differential equations helps in a 

profound understanding of mathematical problems. Various techniques may be used 

to solve differential equations. Watugula [1] introduced a new integral transform and 

called it as Sumudu transform which is defined as: 

      













0

1
dttfe

u
tfSuF u

t

;                                  (1) 

 Watugula [1] applied this transform to the solution of ordinary differential 

equations. Because of its useful properties, the Sumudu transform helps in solving 

complex problems in applied sciences and engineering mathematics. In spite of the 

usefulness of the new operator, only a few investigations were found in the literature. 

Henceforth, is the definition of the Sumudu transform and properties depicting the 

simplicity of the transform.  

 

Definition (1.1.1): The Sumudu transform of the function   ( )f t , is defined by: 

      













0

1
dttfe

u
tfSuF u

t

                                   (2) 

Or 

      



0

dtetuftfSuF t                                    (3) 

For any function ( )f t , and 1 2u    . 
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Theorem (1.1.2) [2]: If     uFtfS   and  

 
 



























t

ttf

tg

,0

,

 

Then  

    uGetgS u














 

 

Theorem (1.1.3) [2]: If 0,0 21  cc and 0c  are any constant,    tftf 21 ,  
and  tf  any functions having the Sumudu transform    uGuG 21 , and  uG  

respectively then 

i.           tfSctfSctfctfcS 22112211   

                                               
   uGcuGc 2211 

 
ii.     ucGtcfS   

iii.      uGftf
ut 00
lim0lim


  

Further are words more, for several functions  tf defined for 0t  in the 

neighborhood of infinity (i.e. as t )  

   uGtf
ut 

 limlim  

 

1.1.1: The Relation Between Sumudu and Laplace Transform 

The Sumudu transform  uFs of a function  tf  defined for all real numbers

0t  . The Sumudu transform is essentially identical with the Laplace transform. 

Given an initial  tf  its Laplace transform  uG  can be translated into the Sumudu 

transform  uFs   of f  by means of the relation;  

 
u

u
G

uF












1

 

And it's inverse 
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Theorem (1.1.4): Let  tf  with Laplace transform  sG  then the Sumudu 

transform  uF  of  tf  is given by  

 
u

u
G

uF












1

 . 

Proof: 

Form definition (1.1.1) we get: 

    dttufeuF t





0

 

If we set tuw   and 
u

dw
dt  then 

     dwwfe
uu

dw
wfeuF u

w

u

w

























00

1
 

By definition of Laplace transform we get: 

 
u

u
G

uF












1

 

 

Theorem (1.1.5): It deals with the effect of the differentiation of the function  tf , 

k times on the Sumudu transform  uF  if     uFtfS  then: 

i.        0
1

fuF
u

tfS   

ii.          uf
u

f
u

uF
u

tfS 
1

0
11

22
 

iii. 
         






1

0

0
11 n

k

kk

nn

n fu
u

uF
u
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1

0

0
n

k

kkn fuuFu    

Where         1,,3,2,1,0,000  nkfff k  are the kth-order derivatives of the 

function  tf  evaluated at 0t . 
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Proof: 

i. Using integration by parts; 

      

   

       0
1

1
0

1

exp
11

exp
1

00

fuF
u

tfS

uF
u

f
u

dttf
u

t

uu
tf

u

t

u
tfS






























 



 

ii. Using integration by parts;  
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From (i)                                         tfS
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iii. By definition the Laplace transform for   tf n  is given by;   
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By using the relation between Sumudu and Laplace transform;  
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Theorem (1.1.6): Let  tf  be a function with the Sumudu transform  uF  then; 
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Proof: 
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Theorem (1.1.7) [3]: This theorem deals with multiplication of the function  tf  by a 

power series of t , if: 

i.       uFuuF
du

d
utftS  2

 

ii.         uFuuF
du

d
uuF

du

d
utftS 23
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2
42 24   

iii.     
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iv.     
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Theorem (1.1.8): Let  tf and  tg having Laplace transforms  sF and  sG

respectively, and Sumudu transform  uM  and  uN , respectively. 

Then the Sumudu transform of the convolution of f and  g . 

        dtgtftgf 



0

 

is given by:   

       uNuMutgfS   
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Proof: 

First, recall that the Laplace transforms of  gf   is given by: 

       sGsFtgfL   

By using the relation between Sumudu and Laplace transform; 

       tgfL
u

tgfS 
1

 

And since                        
u

u
G

uN
u

u
F

uM























1

,

1

 

The Sumudu transform of   gf   is obtained as follows; 

       

       uNuMutgfS

uNuMu
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u
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Theorem (1.1.9): Let  ( )G u  denote the Sumudu transform of the function  tf   let 
  tf n  denote the nth derivative of  tf  with respect to t  and let  uFn  denote the 

nth derivative of  uF  with respect to u, then the Sumudu transform of the function  
  tft nn  is given by: 

     uFutftS n

nnn   

Proof: 

Let the Sumudu transform of  tf ; 

   



0

dtetufuF t  

Therefore, for ...,2,1,0n  we get:  
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Corollary (1.1.10) [2]: 

Let   uFn  denote the thn  derivative of     tfSuFn  , then  

i.   
 

 uFu
du

uFd
utftS 1  

ii.        uFuuFutftS 21

22 2   

iii.          uFuuFuuFutftS 3

2

21

33 66   

iv.          uFuuFuuFutftS 4

2

32

44 812   

 

Example (1.1.11): Consider the following inhomogeneous partial differential 

equation:  

    yxyxUyxU yx  ,, ;                                          (4) 

With the initial conditions;  

    0,0,00,  yUxU ; 

Taking the Sumudu transform of Eq. (4), we get: 

       yxSyxUSyxUS yx  ,,                                       (5) 

       uxxUuxU
u

uxU
dx

d
 0,,

1
,  

    uxuxU
u

uxU
dx

d
 ,

1
,  

Thus we have the ordinary differential equation: 

    uxuxU
u

uxU
dx

d
 ,

1
,                                           (6) 

The integrating factor is; 

ueF
du

u 




1

                                                     (7) 

Then 

     cux
x

cdxuxu
u

uxU   2

1
,

2

                              (8) 

Since   00, xU then 
2

2x
c   , then 

  uxuxU ,                                                        (9) 

Taking the inverse Sumudu transform; 

   uxSyxU 1,                                                (10) 

  yxyxU ,                                                        (11) 
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1.2: Homotopy Perturbation Method 

 

    The homotopy Perturbation Method (HPM) was a result of some pioneering 

ideas beginning in 1999 by He [4]. Since then it has developed into a fully -fledged 

theory, which was the contribution from many researchers [5-12]. The HPM method 

was found to be a simple and accurate method to solve a large number of nonlinear 

problems. 

 

It is well known about the main disadvantage of the Adomian method, that it is 

a complex and difficult method to perform calculation so called Adomian 

polynomials. There is an alternate approach to reduce the demerits of Adomian 

method, which involves a variational iteration method. On the Homotopy Perturbation 

Method (HPM) which is simple and straightforward may be employed to calculate 

Adomian Polynomials. 

 

The homotopy perturbation method (HPM) may be used to solve the functional 

equations of the form: 

  fuNu  ,                                            (12) 

Where N is a nonlinear operator from Hilbert space H to uH , is an unknown 

function, and f is a known function in H . 

 

The homotopy perturbation method u  as a series with components nu , and 

 uN  as a series with components nH , homotopy polynomials, which can be 

calculated using the formula: 

0
0!

1



















 

p
i

i

in

n

n puN
dp

d

n
H                               (13)   

                          

1.2.1: Homotopy Perturbation Method and He polynomials 

    To illustrate the homotopy perturbation method (HPM), we consider (12) as; 

        0 vNxfxvvL                                 (14) 

With solution  xu . As a possible remedy, we can define homotopy  pvH ,  as 

follows: 

       vLvHvFvH  1,,0,  
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Where  vF is an integral operator with known solutions, 0v , which can be obtained 

easily. Typically, we may choose a convex homotopy in the form; 

        01,  vLpvFppvH                                 (15) 

and continuously trace an implicitly defined curve from a starting point  0,0vH  to       

a solution function  0,uH . The embedding parameter p  monotonically increase from 

zero in the unit as the trivial problem   0vF is continuously deformed to the original 

problem   0vL .  

 3

3

2

2

10 vpvpvpvv                                   (16) 

When 1p , Eq. (15) corresponds to Eqs. (14) and (16) becomes the approximate 

solution of Eq. (14), i.e. 




3210
1

lim vvvvv
p

                                      (17) 

 

Theorem (1.2.12): Suppose  vN  is a nonlinear function, and 


 0k

k

k vp  , then we get; 
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p
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Proof:  Since 

k
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k

k

k vpvpvpv 









100
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We have such result as follows: 

 
0

0
0

10
0

0

0
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p

Therefore, we obtain; 

 
0

0
0

0

0










 










































p

k

n

k

k

n

n

p

k

k

k

n

n

pn

n

vpN
p

vpN
p

vN
p

 

Taking,         0 vNpxfxvvF , and substituting (13) into (14), we get; 

        0,  vNpxfxvpvH ,                                  (18) 

According to Maclaurin expansion of  vN  with respect to p , we get; 
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Substituting Eq. (16) into the above equation, we get; 
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According to Theorem (1.2.12) 
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        (19) 

Substituting Eqs. (16) and (19) into Eq. (18), and equating the terms with the identical 

powers of p , we get; 
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Definition (1.2.13):   The He polynomials are defined as follows: 
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Therefore, the approximate solution obtained by the homotopy perturbation method 

can be expressed in He polynomials: 
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The nonlinear term  uN  can be also expressed in He polynomials: 

          ,,,,,,,, 10

0

1010010  




nn

n

nn vvvHvvHvHvvvHuN  

Where 

  






















 ,2,1,0,
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1
,,,
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10 nvpN
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k

k

n

n

nn  

Alternatively, the approximate solution can be expressed as following: 

     





0

10 .,,,
n

nn vvvHxfxu  

This is very interesting and attractive to note that we can obtain He polynomial and its 

solution simultaneously. 

 

Example (1.2.14): Consider the following inhomogeneous partial differential 

equation:  

yx
y

U

x

U










;                                             (20) 

With the initial conditions;  

    0,0,00,  yUxU ; 

To solve Eq. (20) with initial condition, according to the homotopy perturbation 

technique, we construct the following homotopy 

  01 0 



































 xy

x

v

y

v
p

y

u

y

v
p                          (21) 

Or equivalently; 

000 



























xy

x

v

y

u
p

y

u

y

v
 

Suppose the solution of Eq. (21) has the form; 

 3

3

2

2

10 vpvpvpvv                                      (22) 

Substituting Eq. (22) into Eq. (21) and comparing coefficients of terms with identical 

powers of p, leads to: 

    00,,0:

0:

1
0011

000


























xvyx
x

v

y

u

y

v
p

y

u

y

v
p
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  00,,0:

00,,0:

00,,0:

2

1

3
233

2
122




































xv

x

v

y

v
p

xv
x

v

y

v
p

xv
x

v

y

v
p

iii

                                          (23) 

For simplicity, we take,     0,, 00  yxuyxv . So we derive the following 

recurrence relation; 

 






y

i

i idy
x

v
v

0

1
,3,2,1,                                         (24) 

Solving the above equations, we obtain; 

 

 

 

 













0,

2
,

2
,

0,

3

2

2

2

1

0

yxU

y
yxU

y
yxyxU

yxU

                                              (25) 

And so on. 

By setting,  p = 1 in Equation (20) the solution of Equation (22) can be obtained, thus 

we get; 

   0
22

0,
22 yy

yxyxU                               (26) 

Equation (26) has the closed form; 

  yxyxU ,                                              (27) 

This is also the exact solution of the problem. 
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Example (1.2.15): Consider the following one-dimensional parabolic-like equation 

with variable coefficients, 

    0,
2

,
2

 txU
x

txU xxt       ,                              (28)  

Subject to the initial condition;   

  20, xxU   

According to the homotopy perturbation method, we can construct the homotopy 

   1,0  which satisfies; 

0
2 2

22

00 



























x

vx

t

U
p

t

U

t

v
                           (29) 

With the initial approximation             

  2

0 0, xxUU  ; 

Suppose that the solution of Eq. (28) can be represented as; 

 3

3

2

2

10 vpvpvpvv  .                                   (30) 

Substituting Eq. (30) into Eq. (29), and equating the terms of the same power of P , as 

following; 

 

 

 

 

  00,,0
2

:

00,,0
2

:

00,,0
2

:

00,,0
2

:

0,,0:

2

1

22

32

2

22

33

22

1

22

22

12

0

22

011

2

0

000





























































xU

x

vx

t

v
p

xU
x

vx

t

v
p

xU
x

vx

t

v
p

xU
x

vx

t

U

t

v
p

xxU
t

U

t

v
p

n

nni

. 
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By choosing    0,,0 xUtxU  , and solving the above equations, we obtain the 

following approximations; 

 

 

 

  2

2
2

2

2

1

2

0

!
,

!2
,

,

,

x
n

t
txU

x
t

txU

xttxU

xtxU

n

n 











                            .                       (31) 

Then the exact solution of Eq. (28) is given by; 

  t
n

n
ex

n

tt
txtxU 2

2
2

!!2
1lim, 











                              (32) 

 

1.3: Homotopy Perturbation and Sumudu Transform Method for 

Solving of Partial Differential Equations 

The homotopy Perturbation method proves to be powerful, effective and simple 

method which can be applied to a varied class of linear or nonlinear ordinary or partial 

differential equations, and linear and nonlinear integral equations. The method 

possesses several advantages, which is significant from the decomposition method.  

This method is a simple and direct way of solving linear or nonlinear ordinary or 

partial differential equations, and linear and nonlinear integral equations without the 

use of linearization, perturbation or any other bounded assumption. 

 

The HPM was developed by Ariel et. al. [5]. Extensive research has been 

carried out by applying this method to a varied class of linear or nonlinear ordinary or 

partial differential equations, and linear and nonlinear integral equations. 

The homotopy perturbation method involves decomposing the unknown function 

 yxU , of any equation into a sum of an infinite number of components defined by the 

decomposition series: 

   yxUpyxU
n

n

n ,,
0






                                               (33)  

Where   0,, nyxUn are to be determined in an iterative manner. 
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The decomposition method involves finding the components ,,, 210 UUU  

individually. The decomposed component can be obtained by recursive relation who 

involves simple integrals. 

To have a clear overview of the HPM, let us first consider the linear differential 

equation written in an operator form by: 

gURUL                                                     (34) 

Where S  a lower order derivative which is invertible is, R  is other linear differential 

operator, and g is a source term. If we apply the inverse operator 1S to both sides of 

equation (34), we obtain linear differential equations. 

 URSfU 1                                                 (35) 

Where, the function f  represents the terms arising from integrating the source term g. 

Using the homotopy perturbation method which defines the solution u by an infinite 

series of components given by: 

   yxUpyxU
n

n

n ,,
0






 ;                                         (36) 

where the components ,,, 210 UUU are usually recurrently determined. Substituting 

Eq. (34) into both sides of Eq. (35) leads to; 


























 











00

1

n

n

n

n

n

n UpRSpfUp                              (37) 

For simplicity, Equation (37) can be rewritten as;  

   

3

3

2

2

10

1

3

3

2

2

10 UpUpUpURSpfUpUpUpU    (38) 

To construct the recursive relation needed for the determination of the components 

,,, 210 UUU , it is important to note that  the homotopy perturbation method 

suggests that the zeros component 0U  is usually defined by the function f  described 

above, i.e. by all terms, that are not included under the inverse operator 1S , which 

arise from the initial data and from integrating the inhomogeneous term. Accordingly, 

the formal recursive relation is defined by; 

  

  

  
















,

,

,

,

2

1

3

1

1

2

0

1

1

0

URSU

URSU

URSU

fU

                                                (39) 
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It is evident from relation Eq. (39) that the reduced differential equation in terms of 

computable components. Again on substituting these components in equation (36), we 

obtain the solution in a series form. 

 

Example (1.3.16): Consider the following inhomogeneous partial differential 

equation:  

    yxyxUyxU yx  ,, ;                                          (40) 

With the initial conditions;  

    0,0,00,  yUxU ; 

The x solution: 

Taking Sumudu transform of both sides of the equation (40) subject to the 

initial condition, we get; 

     yxUSuyuuyxUS y ,, 2                              (41) 

The inverse of Sumudu transform implies that; 

     yxUSuSyx
x

yxU y ,
2

, 1
2

                          (42) 

Now, applying the homotopy perturbation method, we get; 

   









































 









y

n

n

n

n

n

n yxUpuSSpyx
x

yxUp
0

1
2

0

,
2

,              (43) 

Comparing the coefficients of like power p , we get;  

 

     

     
      0,:

0,:

2
,:

2
,:

2

1

3

3

1

1

2

2

2

0

1

1

1

2

0

0















y

y

y

USuSyxUp

USuSyxUp

x
USuSyxUp

yx
x

yxUp

                         (44) 

Therefore the solution  txU , in series form is given by; 

         txUtxUtxUtxU ,,,, 210  

  yx
x

yx
x

txU 
22

,
22

                                    (45) 

And in closed form given as; 

  yxtxU ,                                                       (46) 
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The y solution: 

Taking Sumudu transform of both sides of the equation (40) subject to the 

initial condition, we get; 

     yxUSuxuuyxUS x ,, 2                                (47) 

The inverse of Sumudu transform implies that; 

     yxUSuSyx
y

yxU x ,
2

, 1
2

                             (48) 

Now, applying the homotopy perturbation method, we get; 

   









































 









x

n

n

n

n

n

n yxUpuSSpyx
y

yxUp
0

1
2

0

,
2

,              (49) 

Comparing the coefficients of like power p , we get;  

 

     

     

      0,:

0,:

2
,:

2
,:

2

1

3

3

1

1

2

2

2

0

1

1

1

2

0

0















x

x

x

USuSyxUp

USuSyxUp

y
USuSyxUp

yx
y

yxUp

                          (50) 

Therefore the solution  txU , in series form is given by; 

         txUtxUtxUtxU ,,,, 210  

  yx
y

yx
y

txU 
22

,
22

                                            (51) 

And in closed form given as; 

  yxtxU ,                                                   (52) 

 

Example (1.3.17):  Consider the following homogeneous partial differential 

equation; 

    0,,  txUxtxUt                                        (53) 

 Initial condition as; 

  10, xU  
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Taking Sumudu transform of both sides of the equation (53) subject to the initial 

condition, we get; 

    UxuStxUS  1,                                           (54) 

The inverse of Sumudu transform implies that; 

    UxuSStxU 11,                                         (55) 

Now, applying the homotopy perturbation method, we get; 

   

































 








 0

1

0

,1,
n

n

n

n

n

n txUpxuSSptxUp                (56) 

Or equivalently;  

     

2

2

10

1

2

2

10 1 UpUpUxSuSpUpUpU        (57) 

Comparing the coefficients of like power p , we get;  

 

    

    
!2

,:

,:

1,:

2
2

1

1

2

2

0

1

1

1

0

0

t
xUxSuStxUp

txUxSuStxUp

txUp










                      (58) 

Proceeding in a similar manner, we obtain; 

   

 

 
!4

,:

!3
,:

4
4

4

4

3
3

3

3

t
xtxUp

t
xtxUp





                                            (59) 

Therefore the solution  txU , in series form is given by; 

         txUtxUtxUtxU ,,,, 210  

  
!4!3!2

1,
4

4
3

3
2

2 t
x

t
x

t
xtxtxU                       (60) 

And in closed form given as: 

  txetxU ,                                                (61) 
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1.4: Homotopy Perturbation and Sumudu Transform Method for  

Solving System of Differential Equations 

 

  In the study of wave propagation, many researchers have been attracted by 

systems of linear or nonlinear partial differential equations, in order to study the 

chemical reaction diffusion model of Brusselator and shallow water waves. The 

commonly used methods are Riemann invariants and method of characteristics. The 

existing methods possess some difficulties in terms of computation and with the 

system of several partial differential equations. 

 

In order to overcome the difficulties that arise from traditional methods, the 

homotopy perturbation method forms a basis for studying systems of partial 

differential equations. The homotopy perturbation method is more attractive as it 

generates quick convergent power series with each term computable. And, the method 

transforms the system of partial differential equations into a set of recursive relation, 

where each recursive relation can be easily computed and examine. Because of this 

simplicity of the homotopy perturbation method, we use this method. 

 

1.4.1: Solving System of Differential Equations: 

We first consider the system of partial differential equations written in an 

operator form; 

2

1

gUV

gVU

xt

xt




                                                     (62) 

With the initial conditions; 

   

   xfxV

xfxU

2

1

0,

0,




 

Using the differential operator property of the Sumudu transform and above initial 

conditions, we get; 

      
      x

x

UgSuxftxVS

VgSuxftxUS





22

11

,

,
                                  (63) 

Now, applying the inverse Sumudu transform on both sides of Eq. (63), we get; 

      

      x

x

UgSuSxftxV

VgSuSxftxU









2

1

2

1

1

1

,

,
                               (64) 
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Where    txgtxg ,,, 21  represents the term arising from the source term and the 

prescribed initial conditions. We apply the homotopy perturbation method; 

   

   















0

0

,,

,,

n

n

n

n

n

n

txVptxV

txUptxU

                                             (65) 

Now, applying the homotopy perturbation method, we get; 

      

      




























































































0

1

2

0

0

1

1

0

,,

,,

2

1

n

nn

n

n

n

n

n

nn

n

n

n

n

txUgpuSSpxftxVp

txVgpuSSpxftxUp

      (66) 

This is the coupling of the Sumudu transform and the homotopy perturbation method 

using He’s polynomials. 

Comparing the coefficient of like power of p , the following approximation are 

obtained  

       

     

     

     

     
...

,:

,:

,:

,:

,,,:

1

1

2

2

1

1

2

2

0

1

1

1

0

1

1

1

2010

0

VHSuStxVp

UHSuStxUp

VHSuStxVp

UHSuStxUp

xftxVxftxUp



















                    (67) 

To have a clear overview, forthwith are several examples to demonstrate the 

efficiency of the method. 

 

Example (1.4.18): Consider the following system of partial differential equations, 

0

0





xt

xt

UV

VU
                                                      (68) 

With the initial conditions; 

 

  x

x

exV

exU





0,

0,
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Taking Sumudu transform of equations (68) subject to the initial conditions, we get; 

    

    x

x

x

x

USuetxVS

VSuetxUS





,

,
                                        (69) 

The inverse Sumudu transform implies that: 

    

    x

x

x

x

USuSetxV

VSuSetxU

1

1

,

,








                                      (70) 

Now applying the homotopy perturbation method, we get; 

 

 
































































































x
n

n

nx

n

n

n

x
n

n

nx

n

n

n

UpSuSpetxVp

VpSuSpetxUp

0

1

0

0

1

0

,

,

                    (71) 

Comparing the coefficients of like power p , we get; 

   

   

   

    xx

xx

xx

xx

e
t

txVe
t

txUp

e
t

txVe
t

txUp

ettxVettxUp

etxVetxUp

!3
,,

!3
,:

!2
,,

!2
,:

,,,:

,,,:

3

3

3

3

3

2

2

2

2

2

11

1

00

0

















                          (72) 

And so on, using Eq. (72) we obtain;  

 

  









































!5!3!4!2
1,

,
!5!3!4!2

1,

5342

5342

tt
te

tt
etxV

tt
te

tt
etxU

xx

xx

                        (73) 

This has an exact analytical solution of the form 

   teteteteVU xxxx sinhcosh,sinhcosh,                              (74) 

 

Example (1.4.19): Consider the following system of partial differential equations, 

tVU

xVU

xt

tx





32

3
                                                 (75) 

With the initial conditions; 

 
  00,

0, 2





xV

xxU
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Taking Sumudu transform of equations (75) subject to the initial conditions, we get; 

    

    x

x

VSux
u

txUS

USuxutxVS

2

3

2
,

3,

2
2





                                  (76) 

The inverse Sumudu transform implies that: 

    

    x

x

VSuSx
t

txU

USuSxttxV

12
2

1

2

3

4
,

3,









                                 (77) 

Now applying the homotopy perturbation method, we get; 

  

 

 
































































































x
n

n

n

n

n

n

x
n

n

n

n

n

n

VpSuSpx
t

txUp

UpSuSpxttxVp

0

12
2

0

0

1

0

2

3

4
,

3,

           (78) 

Comparing the coefficients of like power p , we get; 

   

   

   

    0,,0,:

2

3
,,0,:

4

9
,,2,:

4
,,3,:

33

3

2

22

2

2

11

1

2
2

00

0









txUtxVp

ttxUtxVp

ttxUxttxVp

x
t

txUxttxVp

                     (79) 

And so on, using Eq. (79) we obtain; 

 

  22222
2

2

3

4

9

4
,

,23,

xtttx
t

txU

xtxtxttxV





                                 (80) 

This has an exact analytical solution of the form; 

   xtxtVU ,, 22                                                   (81) 

 

Example (1.4.20): Consider the following system of partial differential equations, 

t

xxt

t

xtt

extUV

exVU





2

2

2

2
                                           (82) 

With the initial conditions; 

   

  xxV

xUxU t





0,

00,,00,
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Taking Sumudu transform of equations (182) subject to the initial conditions, we get; 

    

    xx

x

USux
u

ux
utxVS

VSu
u

u
uxtxUS











1
4,

1
2,

3

2
2

22

                            (83) 

The inverse Sumudu transform implies that: 

    

    xx

t

x

t

USuSexttxV

VSuSettxtxU

13

2122

3

4
,

1,









                          (84) 

Now applying the homotopy perturbation method, we get; 

 

 
































































































xx
n

n

nt

n

n

n

x
n

n

nt

n

n

n

UpSuSpexttxVp

VpSuSpettxtxUp

0

13

0

0

2122

0

3

4
,

1,

       (85) 

Comparing the coefficients of like power p , we get; 

   

   

   

    0,,0,:

0,,0,:

3

4
,,1,:

3

4
,,1,:

33

3

22

2

3

11

1

3

0

22

0

0









txVtxUp

txVtxUp

ttxVettxUp

exttxVettxtxUp

t

tt

       (86) 

And so on, using Eq. (86) we obtain; 

 

  tt

tt

extexttxV

txetettxtxU





33

2222

3

4

3

4
,

,11,

                      (87) 

This has an exact analytical solution of the form; 

   textxVU ,, 22                                             (88) 
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CHAPTER TWO 

Applcation of Homotopy Perturbation Method and 

Sumudu Transform for Solving Heat and Wave 

Equations 
 

The integral part of applied sciences and engineering mathematics are heat and 

wave like models that arises from different physical phenomena. Various methods and 

techniques are available to solve these problems, but every method have inbuilt 

deficiencies. Some of the methods are spectral, characteristics, modified variational 

iteration, Adomian's decomposition method and He's polynomial [13]. He (1999, 2003 

and 2004) developed the homotopy perturbation method (HPM) by combining the 

concepts of standard homotopy and perturbation for solving different physical 

phenomena.  

 

It is important to note that the HPM is applied without any restrictive 

assumption or transformation, results in eliminating round off errors. The use of He's 

polynomial in the nonlinear system was first introduced by Ghorbani and Saberi-

Nadjafi (2007) and Ghornabi (2009). They developed an elegant combination of the 

Sumudu transform method, the homotopy perturbation method and He's polynomial. 

Madani and Fathizadeh (2010) and Khan and Wu (2011) combined the homotopy 

perturbation method with Lapalace transformation method. In 2011, Singh, Kumar 

and Sushila introduced a new technique called homotopy perturbation Sumudu 

transform method (HPSTM) for solving nonlinear equations.  

 

HPSTM gives the solution for nonlinear equations in the form of convergent 

series. The main advantage of this method is its potentiality of combining two 

powerful methods for deriving exact and approximate solution for nonlinear 

equations. This forms the motivation for us to apply HPSTM for solving nonlinear 

equations in understanding different physical phenomena. Numbers of examples are 

presented to assert the efficiency and reliability of the technique. 
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2.1: Homotopy Perturbation and Sumudu Transform Method  

(HPSTM) 

 

To illustrate the basic idea of this method, we consider a general nonlinear non-

homogenous partial differential equation with the initial conditions of form, 

                              txgtxUNtxURtxUD ,,,,                        (1) 

       xfxUxhxU t  0,,0,  

Where D  is the second order linear differential operator 













2

2

t
D , R is the linear 

differential operator of order less than ND , represents the general nonlinear 

differential operator and  txg , is the source term. 

Taking the Sumudu transform on both sides of Eq. (1), we get, 

                            txgStxUNStxURStxUDS ,,,,            (2) 

Using the differential operator property of the Sumudu transforms and above initial 

conditions, we get, 

                 
         

     txUNStxURSu

xfuxhtxgSutxUDS

,,

,,

2

2




                     (3) 

Now, applying the inverse Sumudu transform of both sides of Eq. (3), we get, 

                            txUNtxURSuStxGtxU ,,,, 21  
          (4) 

Where  txG ,  represents the term arising from the source term and the prescribed 

initial conditions. We apply the homotopy perturbation method;  

   





0

,,
n

n

n txUptxU                                         (5) 

And the nonlinear term can be decomposed as;  

   





0

,,
n

n

n txHptxUN                                        (6) 

For some He’s polynomials  UH n  that are given by; 

    





































 ,3,2,1,0,,
!

1
,,,,

0
0

210 ntxUpN
pn

UUUUH

p
i

i

i

n

n

nn     (7) 

Substituting Eqs. (5) and (6) in Eq. (4) we get; 

       

































 














txHptxUpRSuSptxGtxUp n

n

n

n

n

n

n

n

n ,,,,
00

21

0

   (8) 
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This is the coupling of the Sumudu transform and the homotopy perturbation method 

using He’s polynomials. 

Comparing the coefficient of like power of p , the following approximation is 

obtained;  

   

       
       
       

















UHtxURSuStxUp

UHtxURSuStxUp

UHtxURSuStxUp

txGtxUp

22

21

3

3

11

21

2

2

00

21

1

1

0

0

,,:

,,:

,,:

,,:

                  (9) 

2.2:  Heat Equation 

The homotopy Perturbation and Sumudu transform Method can be used to solving 

the heat equation; 

0,0,  txUkU xxt  ,                              (10) 

Where   txUU , represents the temperature of the rod at the position x at time t  

and k  is the thermal diffusivity of the material that measures the rod ability to heat 

conduction. 

 

Boundary Conditions  

Boundary conditions (BC) are mainly of three types namely, Dirichlet 

boundary conditions, Neumann boundary conditions, and mixed boundary conditions. 

In addition, the boundary conditions may be homogeneous or inhomogeneous type. 

 

Boundary condition (BC) that describe the temperature U at both ends of the 

rod. One form of the BC is given by the Dirichlet boundary conditions; 

  0,0 tU , 0t , 

   0, tlU , 0t .                                             (11) 

It clearly indicates the ends of the rod are at F00  temperatures. 

  

Initial Condition (IC) describes the initial temperature u at time t = 0. The IC is 

usually defined by; 

    lxxfxU  0,0, .                             (12) 
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Based on these definitions, the initial-boundary value problem that controls the heat 

conduction in a rod is given by; 

                      PDE                 0,0,  tlxUkU xxt ,                         

                      BC              0,0 tU , 0t  

                         0, tlU , 0t                                                              (13)   

                      IC                  lxxfxU  0,0,  

As stated before let us focus our discussions on determining a particular solution of 

the heat equation (13). 

 

2.2.1: One Dimensional Heat Flow 

The distribution of heat flow in one dimensional space is governed by the 

following initial boundary value.  

 

Example (2.2.1):  Consider the following one-dimensional initial boundary value 

problem as heat-like models; 

0,0,  txUU xxt                                   (14) 

With boundary condition as;          

    0,,0,0  tUtU                                 (15) 

And initial condition as; 

  xxU sin0,                                              (16) 

Taking Sumudu transform on both sides of equation (14) subject to the initial 

condition, we get; 

    xxUuSxtxUS  sin,                                   (17) 

The inverse of Sumudu transform implies that; 

    xxUuSSxtxU 1sin,                               (18) 

Now, applying the homotopy perturbation method, we get; 

   























































 








 xxn

n

n

n

n

n txUpuSSpxtxUp
0

1

0

,sin,             (19) 

Or equivalently;  

   
xx

UpUpUpUSuSpx

UpUpUpU







3

3

2

2

10

1

3

3

2

2

10

sin
    (20) 
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Comparing the coefficients of like power p , we get;  

 

     

      x
t

USuStxUp

xtUSuStxUp

xtxUp

xx

xx

sin
!2

,:

sin,:

sin,:

2

1

1

2

2

0

1

1

1

0

0










                        (21) 

Proceeding in a similar manner, we obtain; 

   

 

  x
t

txUp

x
t

txUp

sin
!4

,:

sin
!3

,:

4

4

4

3

3

3





                                          (22) 

Therefore the solution  txU , in series form is given by; 

                                           txUtxUtxUtxU ,,,, 210  

  x
ttt

ttxU sin
!4!3!2

1,
432









                               (23) 

And in closed form given as; 

  xetxU t sin,                                               (24) 

 

Example (2.2.2):  Consider the following one-dimensional initial boundary value 

problem as heat-like methods; 

0,0,  txUU xxt                                (25) 

With boundary condition as;       

    tt etUetU    ,,,0                            (26) 

And the initial condition as; 

  xxxU cos0,                                            (27) 

Taking Sumudu transform of both sides of  the equation (25) subject to the initial 

condition, we get; 

    xxUuSxxtxUS  cos,                               (28) 

The inverse of Sumudu transform implies that; 

    xxUuSSxxtxU 1cos,                           (29) 

Now, applying the homotopy perturbation method, we get; 

   























































 








 xxn

n

n

n

n

n txUpuSSpxxtxUp
0

1

0

,cos,             (30) 
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Or equivalently;  

   
xx

UpUpUpUSuSpxx

UpUpUpU







3

3

2

2

10

1

3

3

2

2

10

cos
     (31) 

Comparing the coefficients of like power p , we get;  

 

     

      x
t

USuStxUp

xtUSuStxUp

xxtxUp

xx

xx

cos
!2

,:

cos,:

cos,:

2

1

1

2

2

0

1

1

1

0

0










                       (32) 

Proceeding in similar manner, we obtain; 

   

 

  x
t

txUp

x
t

txUp

cos
!4

,:

cos
!3

,:

4

4

4

3

3

3





                                          (33) 

Therefore the solution  txU , in series form is given by; 

  x
ttt

txtxU cos
!4!3!2

1,
432









                        (34) 

And in closed form given as;  

  xextxU t cos,                                        (35) 

 

Example (2.2.3):  Consider the following one-dimensional initial boundary value 

problem as heat-like methods; 

0,10,
2

1 2  txUxU xxt                         (36) 

With boundary condition as;        

    tetUtU  ,1,0,0                         (37) 

And the initial condition as; 

  20, xxU                                              (38) 

Taking Sumudu transform of both sides of  the equation (36) subject to the initial 

condition, we get; 

    xxUSuxxtxUS 22

2

1
,                                 (39) 

The inverse of Sumudu transform implies that; 

    xxUuSSxxtxU 122

2

1
,                              (40) 
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Now, applying the homotopy perturbation method, we get; 

   























































 








 xxn

n

n

n

n

n txUpuSSxpxtxUp
0

122

0

,
2

1
,             (41) 

Or equivalently;  

  













xx
UpUpUpUSuSxpx

UpUpUpU

3

3

2

2

10

122

3

3

2

2

10

2

1      (42) 

Comparing the coefficients of like power p , we get;  

 

     

     
!22

1
,:

2

1
,:

,:

2
2

1

12

2

2

2

0

12

1

1

2

0

0

t
xUSuSxtxUp

txUSuSxtxUp

xtxUp

xx

xx










                        (43) 

Proceeding in a similar manner, we obtain; 

    

 

 
!4

,:

!3
,:

4
2

4

4

3
2

3

3

t
xtxUp

t
xtxUp





                                          (44) 

Therefore the solution  txU , in series form is given by; 

                                    txUtxUtxUtxU ,,,, 210  

  









!4!3!2
1,

432
2 ttt

txtxU                               (45) 

And in closed form given as;  

  textxU 2,                                                (46) 
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2.2.2: Two Dimensional Heat Flow 

    The distribution of heat flow in a two dimensional space is governed by the 

following initial boundary value.  

 

Example (2.2.4):  Consider the following two-dimensional initial boundary value 

problem which describes the heat-like models; 

0,,0,  tyxUUU yyxxt                            (47) 

With boundary conditions as;         

   
    0,,,0,

0,,,,0





txUtxU

tyUtyU




                                 (48) 

And the initial condition as; 

    yxyxU sinsin0,,                                          (49) 

Taking Sumudu transform of both sides of  the equation (47) subject to the initial 

condition, we get; 

       yyxx UUuSyxtyxUS  sinsin,,                         (50) 

The inverse of Sumudu transform implies that; 

       yyxx UUuSSyxtyxU  1sinsin,,                      (51) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 

   





0

,,,,
n

n tyxUtyxU  

Now, applying the homotopy perturbation method, we get; 

   

 
























































































































yy
n

n

n

xx
n

n

n

n

n

n

tyxUpuSS

tyxUpuSSpyxtyxUp

0

1

0

1

0

,,

,,sinsin,,

    (52) 

Comparing the coefficients of like power p , we get;  

 

 

         

           
yx

t
USuSUSuStyxUp

yxtUSuSUSuStyxUp

yxtyxUp

yyxx

yyxx

sinsin
!2

2
,,:

sinsin2,,:

sinsin,,:

2

1

1

1

1

2

2

0

1

0

1

1

1

0

0










     (55) 
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Proceeding in a similar manner, we obtain; 

   

 
 

 
 

yx
t

tyxUp

yx
t

tyxUp

sinsin
!4

2
,,:

sinsin
!3

2
,,:

2

4

4

2

3

3





                               (56) 

Therefore the solution  tyxU ,, in series form is given by; 

 
     

yx
ttt

ttyxU sinsin
!4

2

!3

2

!2

2
21,,

432














                    (57) 

 And in closed form given as; 

  yxetyxU t sinsin,, 2                                       (58) 

 

Example (2.2.5):  Consider the following two-dimensional initial boundary value 

problem which describes the heat-like models; 

0,,0,  tyxUUUU yyxxt                        (59) 

With boundary conditions as;         

   

    xetxUtxU

tyUtyU

t sin,,,0,

0,,,,0

3






                          (60) 

And the initial condition as; 

  yxyxU cossin0,,                                         (61) 

Taking Sumudu transform of both sides of  the equation (59) subject to the initial 

condition, we get; 

    UUUuSyxtyxUS yyxx  cossin,,                           (62) 

The inverse of Sumudu transform implies that; 

    UUUuSSyxtyxU yyxx  1cossin,,                       (63) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 

   





0

,,,,
n

n tyxUtyxU  

Now, applying the homotopy perturbation method, we get; 
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0

,,,,

,,cossin,,

n

n

n

yy
n

n

n

xx
n

n

n

n

n

n

tyxUpuSStyxUpuSS

tyxUpuSSpyxtyxUp

       (64) 
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Comparing the coefficients of like power p , we get;  

 

 

            

            

 
yx

t

USuSUSuSUSuStyxUp

yxt

USuSUSuSUSuStyxUp

yxtyxUp

yyxx

yyxx

cossin
!2

3

,,:

cossin3

,,:

cossin,,:

2

1

1

1

1

1

1

2

2

0

1

0

1

0

1

1

1

0

0















        (65) 

Proceeding in a  manner, we obtain; 

   

 
 

 
 

yx
t

tyxUp

yx
t

tyxUp

cossin
!4

3
,,:

cossin
!3

3
,,:

2

4

4

2

3

3





                                (66) 

Therefore the solution  tyxU ,, in series form is given by; 

 
     

yx
ttt

ttyxU cossin
!4

3

!3

3

!2

3
31,,

432














                    (67) 

And in closed form given as;  

  yxetyxU t cossin,, 3                                     (68) 

 

Example (2.2.6):  Consider the following two-dimensional initial boundary value 

problem which describes the heat-like models; 

  0,1,0,
2

1 22  tyxUyUxU yyxxt                      (69) 

With boundary conditions as;        

   
    ttxUtxU

ttyUtyU

cosh2,1,,0,0,

sinh2,,1,0,,0




                          (70) 

And  the initial condition as; 

  20,, yyxU                                            (71) 

Taking Sumudu transform of both sides of  the equation (69) subject to the initial 

condition, we get; 

      yyxx UuSxUuSyytyxUS 222

2

1

2

1
,,                       (72) 
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The inverse of Sumudu transform implies that; 

       yyxx UuSSxUuSSyytyxU 12122

2

1

2

1
,,                  (73) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 

   





0

,,,,
n

n tyxUtyxU  

Now, applying the homotopy perturbation method, we get; 
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n

n

tyxUpuSSx

tyxUpuSSypytyxUp

0

12

0

122

0

,,
2

1

,,
2

1
,,

            (74) 

Comparing the coefficients of like power p , we get;  

 

 

         

         
!22

1

2

1
,,:

2

1

2

1
,,:

,,:

2
2

1

12

1

12

2

2

2

0
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0
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1

1

2

0

0

t
yUSuSxUSuSytyxUp

txUSuSxUSuSytyxUp

ytyxUp

yyxx

yyxx










       (75) 

Proceeding in a similar manner, we obtain; 

   

 

 
!4

,,:

!3
,,:

4
2

4

4

3
2

3

3

t
ytyxUp

t
xtyxUp





                                        (76) 

Therefore the solution  tyxU ,, in series form is given by; 

  


















!4!2
1

!5!3
,,

42
2

53
2 tt

y
tt

txtyxU                  (77) 

And in closed form given as;  

  tytxtyxU coshsinh,, 22                                      (78) 
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2.2.3: Three Dimensional Heat Flow 

     The distribution of heat flow in a two dimensional space is governed by the 

following initial boundary value problem. 

 

Example (2.2.7): Consider the following three-dimensional inhomogeneous initial 

boundary value problem which describes the heat-like models as; 

0,,,0,  tzyxUUUU zzyyxxt                    (79) 

With boundary conditions as;  

   
   
    0,,,,0,,

0,,,,,0,

0,,,,,,0







tyxUtyxU

tzxUtzxU

tzyUtzyU







                                 (80) 

And the initial condition as; 

  zyxzyxU sinsinsin20,,,   

Taking Sumudu transform of both sides of  the equation (79) subject to the initial 

condition, we get; 

    zzyyxx UUUuSzyxtzyxUS  sinsinsin2,,,                (81) 

The inverse of Sumudu transform implies that; 

    zzyyxx UUUuSSzyxtzyxU  1sinsinsin2,,,           (82) 

The decomposition method defined the solution  tzyxU ,,,  as a series given by; 

   





0

,,,,,,
n

n tzyxUtzyxU  

Now, applying the homotopy perturbation method, we get; 
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0

1

0

1

0

1

0

,,,,,,

,,,sinsinsin2,,,

   (83) 

Comparing the coefficients of like power p , we get; 

 

             

  zyxt

USuSUSuSUSuStzyxUp

zyxtzyxUp

zzyyxx

sinsinsin32

,,,:
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0
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0
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1
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zyx

t

USuSUSuSUSuStzyxUp zzyyxx

sinsinsin
!2

32

,,,:

2

1

1

1

1

1

1

2

2



 

     (84) 

Proceeding in similar manner, we obtain; 

   

 
 

 
 

zyx
t

tzyxUp

zyx
t

tzyxUp

sinsinsin
!4

32
,,,:

sinsinsin
!3

32
,,,:

4

4

4

3

3

3





                          (85) 

Therefore the solution  tzyxU ,,, in series form is given by;     

 
     
















!4

3

!3

3

!2

3
31sinsinsin2,,,

432
ttt

tzyxtzyxU      (86) 

And in closed form given as;  

  zyxetzyxU t sinsinsin2,,, 3                                   (87) 

 

Example (2.2.8): Consider the following three-dimensional inhomogeneous initial 

boundary value problem which describes the heat-like models as; 

0,,,0,2  tzyxUUUUU zzyyxxt                    (88) 

With boundary conditions as; 

   
   

    0,,,,0,,

0,,,,,0,

0,,,,,,0







tyxUtyxU

tzxUtzxU

tzyUtzyU







                                 (89) 

And the initial condition as; 

  zyxzyxU sinsinsin0,,,   

Taking Sumudu transform of both sides of  the equation (88) subject to the initial 

condition, we get; 

    UUUUuSzyxtzyxUS zzyyxx 2sinsinsin,,,                 (90) 

The inverse of Sumudu transform implies that: 

    UUUUuSSzyxtzyxU zzyyxx 2sinsinsin,,, 1             (91) 

The decomposition method defined the solution  tzyxU ,,,  as a series given by; 

   





0

,,,,,,
n

n tzyxUtzyxU  
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Now, applying the homotopy perturbation method, we get; 
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n

tzyxUpuSS

tzyxUpuSStzyxUpuSS

tzyxUpuSSpzyxtzyxUp

   (92) 

Comparing the coefficients of like power p , we get;  
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                    (93) 

Proceeding in a similar manner, we obtain; 
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t
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t

tzyxUp

sinsinsin
!4

5
,,,:

sinsinsin
!3

5
,,,:

4

4

4
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3

3





                          (94) 

Therefore the solution  tzyxU ,,, in series form is given by;         

 
     
















!4

5

!3

5

!2

5
51sinsinsin,,,

432
ttt

tzyxtzyxU      (95) 

And in closed form given as;  

  zyxetzyxU t sinsinsin,,, 5                                  (96) 
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Example (2.2.9): Consider the following three-dimensional inhomogeneous initial 

boundary value problem which describes the heat-like models as; 

  0,1,,0,
36

1 222444  tzyxUzUyUxzyxU zzyyxxt       (97) 

With boundary conditions as; 

     
     
     1,,,,0,0,,

1,,,,0,,0,

1,,,,0,,,0

44

44

44







t

t

t

eyxtyxUtyxU

ezxtzxUtzxU

ezytzyUtzyU







                           (98) 

And the initial condition as; 

  00,,, zyxU                                             (99) 

Taking Sumudu transform of both sides of  the equation (97) subject to the initial 

condition, we get; 

    zzyyxx UzUyUxuStzyxtzyxUS 222444

36

1
,,,                 (100) 

The inverse of Sumudu transform implies that: 

    zzyyxx UzUyUxuSStzyxtzyxU 2221444

36

1
,,,                (101) 

The decomposition method defined the solution  tzyxU ,,,  as a series given by; 

   





0

,,,,,,
n

n tzyxUtzyxU  

Now, applying the homotopy perturbation method, we get; 
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0
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0

12444

0

,,,
36

1
,,,

36

1

,,,
36

1
,,,

   (102) 

Comparing the coefficients of like power p , we get;  
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t
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      (103) 

Proceeding in a similar manner, we obtain; 
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5
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4
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t
zyxtzyxUp

t
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                                   (104) 

Therefore the solution  tzyxU ,,, in series form is given by;         

  









!4!3!2
,,,

432
444 ttt

tzyxtzyxU                    (105) 

And in closed form given as;  

   1,,, 444  tezyxtzyxU                                    (106) 
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2.3: Wave Equations 

         In this section, we will apply the newly developed homotopy perturbation 

method and Sumudu transform to handle the wave equation. 

 

6.2.3: One Dimensional Wave Equations 

   The homotopy perturbation method will be illustrated by discussing the 

following typical wave model. 

Without loss of generality, as a simple wave equation, consider the following 

initial-boundary value problem: 

0,0,2  tlxUcU xxtt  

Subject to boundary conditions as;          

                                        0,,0,0  tlUtU ,                                      (107) 

And the initial condition as; 

       xgxUxfxU t  0,,0,  

It is obvious the Eq. (107), that governs the wave displacement, contains the 

term ttU . Consequently, two initial conditions should be given. The initial conditions 

describe the initial displacement and the initial velocity of any point at the starting 

time 0t . 

 

Example (2.3.10):  Consider the following one-dimensional initial boundary value 

problem which describes the wave-like models as; 

0,0,  txUU xxtt                                (108) 

Subject to boundary conditions as;        

    0,,0,0  tUtU                                   (109) 

And the initial condition as; 

    xxUxU t sin0,,00,                                  (110) 

Taking Sumudu transform of both sides of  the equation (108) subject to the initial 

condition, we get; 

    xxUSuxutxUS 2sin,                                    (111) 

The inverse of Sumudu transform implies that: 

    xxUSuSxttxU 21sin,                                  (112) 
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Now, applying the homotopy perturbation method, we get; 

   























































 








 xxn

n

n

n

n

n txUpSuSpxttxUp
0
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0

,sin,             (113) 

Or equivalently;  

   
xx

UpUpUpUSuSpxt

UpUpUpU







3

3

2

2

10
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3

3

2

2

10

sin
    (114) 

Comparing the coefficients of like power p , we get;  

 

     

      x
t

USuStxUp

x
t

USuStxUp
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xx

xx
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,:

sin
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,:

sin,:

5

1
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1

1

0
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                        (115) 

Proceeding in a similar manner, we obtain; 

   

 

  x
t

txUp

x
t

txUp

sin
!9

,:

sin
!7

,:

9

4

4

7

3

3





                                        (116) 

Therefore the solution  txU , in series form is given by;         

                                           txUtxUtxUtxU ,,,, 210  

  x
ttt

ttxU sin
!7!5!3

,
753









                               (117) 

And in closed form given as; 

  xttxU sinsin,                                              (118) 

 

Example (2.3.11):  Consider the following one-dimensional initial boundary value 

problem which describes the wave-like models as; 

0,0,  txUU xxtt                                   (119) 

Subject to boundary conditions as;          

    ttUttU sin1,,sin1,0                               (120) 

And the initial condition as; 

    xxUxU t cos0,,10,                                  (121) 
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Taking Sumudu transform on both sides of equation (119) subject to the initial 

condition, we get; 

    xxUSuxutxUS 2cos1,                                    (122) 

The inverse of Sumudu transform implies that: 

    xxUSuSxttxU 21cos1,                              (123) 

Now, applying the homotopy perturbation method, we get; 
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n

n

n

n txUpSuSpxttxUp
0

21

0

,cos1,             (124) 

Comparing the coefficients of like power p , we get;  
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                        (125) 

Proceeding in a similar manner, we get; 

   

 

  x
t

txUp

x
t

txUp

cos
!9

,:

cos
!7

,:

9

4

4

7

3

3





                                          (126) 

Therefore the solution  txU , in series form is given by;         

         txUtxUtxUtxU ,,,, 210  

  x
ttt

ttxU cos
!7!5!3

1,
753









                       (127) 

And in closed form given as; 

  xttxU cossin1,                                           (128) 

 

Example (2.3.12):  Consider the following one-dimensional initial boundary value 

problem which describes the wave-like models as; 

0,10,
2

1 2  txUxU xxtt                                (129) 

Subject to boundary conditions as;          

    ttUtU sinh1,1,0,0                                   (130) 
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And the initial condition as; 

    20,,0, xxUxxU t                                    (131) 

Taking Sumudu transform of both sides of  the equation (129) subject to the initial 

condition, we get; 

    xxUSuxxuxtxUS 222

2

1
,                                  (132) 

The inverse of Sumudu transform implies that: 

    xxUSuSxxtxtxU 2122

2

1
,                             (133) 

Now, applying the homotopy perturbation method, we get; 
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,        (134) 

Comparing the coefficients of like power p , we get;  
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                         (135) 

Proceeding in a similar manner, we obtain; 

   

 

 
!9

,:

!7
,:

9
2

4

4

7
2

3

3

t
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t
xtxUp





                                          (136) 

Therefore the solution  txU , in series form is given by;         

                                           txUtxUtxUtxU ,,,, 210  

  









!7!5!3
,

753
2 ttt

txxtxU                          (137) 

And in closed form given as; 

  txxtxU sinh, 2                                       (138) 
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2.3.2: Two Dimensional Wave Equation 

     The propagation of waves in a two dimensional vibrating membrane of length 

a  and width b  is governed by the following initial-boundary value problem; 

  0,0,0,2  tbxaxUUcU yyxxtt               (139) 

Subject to boundary conditions;         

   
    0,,,0,

0,,,,0





tbxUtxU

tyaUtyU
                                    (140) 

And the initial condition; 

       yxgyxUyxfyxU t ,0,,,,0,,                   (141) 

As discussed before, the solution in the t direction, in the spacex , or in the 

spacey  will lead to identical results. However, the solution in the directiont

reduces the size of calculations compared with the other space solutions because it 

uses the initial conditions only. For this reason the solution in the t direction will be 

discussed in this chapter. 

 

Example (2.3.13):  Consider the following two-dimensional initial boundary value 

problem which describes the heat-like models as; 

  0,,0,2  tyxUUU yyxxtt                      (142) 

With boundary conditions as;          

   
    0,,,0,

0,,,,0





txUtxU

tyUtyU




                                (143) 

And the initial condition as; 

    00,,,sinsin0,,  yxUyxyxU t                         (144) 

Taking Sumudu transform of both sides of  the equation (142) subject to the initial 

condition, we get; 

    yyxx UUSuyxtyxUS  22sinsin,,                           (145) 

The inverse of Sumudu transform implies that: 

    yyxx UUSuSyxtyxU   212sinsin,,                        (146) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 

   





0

,,,,
n

n

n tyxUptyxU  
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Now, applying the homotopy perturbation method, we get; 
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0

,,

,,2sinsin,,

            (147) 

Comparing the coefficients of like power p , we get;  
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21

1

1

0

0










     (148) 

Proceeding in a similar manner, we obtain: 
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t

tyxUp

yx
t

tyxUp

sinsin
!8

2
,,:
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!6

2
,,:

8

4

4

6

3

3





                                     (149) 

Therefore the solution  tyxU ,,  in series form is given by;     

 
     

yx
ttt

tyxU sinsin
!6

2

!4

2

!2

2
1,,

642














                    (150) 

And in closed form given as; 

   tyxtyxU 2cossinsin,,                                        (151) 

 

Example (2.3.14):  Consider the following two-dimensional initial boundary value 

problem which describes the wave-like models; 

  0,,0,
2

1
 tyxUUU yyxxt                       (152) 

With boundary condition as;          

   
    txtxUtxtxU

tyUtyU

sinsin1,,,sinsin1,0,

1,,,,0








           (153) 

And the initial condition as; 

    yxyxUyxU t cossin0,,,10,,                            (154) 
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Taking Sumudu transform on both sides of equation (152) subject to the initial 

condition, we get; 

    yyxx UUSuyxutyxUS  2

2

1
cossin1,,                (155) 

The inverse of Sumudu transform implies that: 

    yyxx UUSuSyxttyxU   21

2

1
cossin1,,              (156) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 

   





0

,,,,
n

n

n tyxUptyxU  

Now, applying the homotopy perturbation method, we get; 
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1
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     (157) 

Comparing the coefficients of like power p , we get;  
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,,:
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            (158) 

Proceeding in a similar manner, we obtain; 

   

    

    yx
t

tyxUp

yx
t

tyxUp

cossin
!9

,,:

cossin
!7

,,:

9

4

4

7

3

3





                                  (159) 

Therefore, the solution  tyxU ,,  in series form is given by;     

    yx
ttt

ttyxU cossin
!7!5!3

1,,
753









                  (160) 
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And in closed form given as; 

     tyxtyxU sincossin1,,                               (161) 

 

Example (2.3.15):  Use the homotopy perturbation method to solve the   initial 

boundary value problem;  

  0,1,0,
12

1 22  tyxUyUxU yyxxtt                      (162) 

Subjected the Neumann boundary conditions as; 

   

    ttxUtxU

ttyUtyU

yy

xx

sinh4,,,0,0,

cosh4,,1,0,,0






                       (163) 

And the initial condition as; 

                                       44 0,,,0,, yyxUxyxU t   

Taking Sumudu transform of both sides of  the equation (162) subject to the initial 

condition, we get; 

      yyxx USuyUSuxyuxtyxUS 222244

12

1

12

1
,,                (164) 

The inverse of Sumudu transform implies that; 

       yyxx USuSyUSuSxytxtyxU 21221244

12

1

12

1
,,           (165) 

The decomposition method defined the solution  tyxU ,,  as a series given by; 
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,,,,
n

n

n tyxUptyxU  

Now, applying the homotopy perturbation method, we get; 
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      (166) 

Comparing the coefficients of like power p , we get;  
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   (167) 
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1
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5
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4
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2

t
y

t
x

USuSyUSuSxtyxUp
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Proceeding in a similar manner, we obtain; 
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                                (168) 

Therefore the solution  tyxU ,, in series form is given by;     

  


















!5!3!4!4
1,,

53
4

42
4 tt

ty
tt

xtyxU            (169) 

 And in closed form given as; 

  tytxtyxU sinhcosh,, 44                                  (170) 

 

2.3.3: Three Dimensional Wave Equation 

The propagation of waves in a three dimensional volume of length a, width b, and 

height d is governed by the following initial boundary value problem; 

  0,2  tUUUcU zzyyxxtt                                (171) 

With the following boundary conditions; 

   
   
    0,,,,0,,

0,,,,,0,

0,,,,,,0







tdyxUtyxU

tzbxUtzxU

tzyaUtzyU

                                 (172) 

 And the initial condition as; 

       zyxgzyxUzyxfzyxU t ,,0,,,,,,0,,,           (174) 

 

 Where dzbyax  0,0,0 , and  tzyxUU ,,, is the displacement 

of any point located at the position  zyx ,, of a rectangular volume at any time t , and 

c  is the velocity of a propagating wave. 
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Example (2.3.16): Consider the following three-dimensional inhomogeneous initial 

boundary value problem which describes the wave-like models;  

  0,,,0,3  tzyxUUUU zzyyxxtt                    (175) 

Subject to the following boundary conditions; 

   
   
    0,,,,0,,

0,,,,,0,

0,,,,,,0







tyxUtyxU

tzxUtzxU

tzyUtzyU







                                   (176) 

And the initial condition as; 

    zyxzyxUzyxU t sinsinsin30,,,,00,,,   

Taking Sumudu transform of both sides of  the equation (175) subject to the initial 

condition, we get; 

    zzyyxx UUUSuzyxutzyxUS  23sinsinsin3,,,                (177) 

The inverse of Sumudu transform implies that: 

    zzyyxx UUUSuSzyxttzyxU   213sinsinsin3,,,           (178) 

The decomposition method defined the solution  tzyxU ,,,  as a series given by; 

   





0

,,,,,,
n

n

n tzyxUptzyxU  

Now, applying the homotopy perturbation method, we get; 
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   (179) 

Comparing the coefficients of like power p , we have;  
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        (180) 
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Proceeding in a similar manner, we obtain; 
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                          (181) 

Therefore, the solution  tzyxU ,,, in series form is given by;     

 
     
















!7

3

!5

3

!3

3
3sinsinsin3,,,

753
ttt

tzyxtzyxU      (182) 

And in closed form given as; 

   tzyxtzyxU 3sinsinsinsin,,,                               (183) 

 

Example (2.3.17): Consider the following three-dimensional inhomogeneous initial 

boundary value problem which describes the heat-like models;  

0,,,0,  tzyxUUUUU zzyyxxtt                  (184) 

Subject to the following boundary conditions; 

   
   
    0,,,,0,,

0,,,,,0,

0,,,,,,0







tyxUtyxU

tzxUtzxU

tzyUtzyU







                                    (185) 

And the initial condition as; 

    zyxzyxUzyxU t sinsinsin20,,,,00,,,   

Taking Sumudu transform of both sides of  the equation (184) subject to the initial 

condition, we get; 

    UUUUSuzyxutzyxUS zzyyxx  2sinsinsin2,,,            (186) 

The inverse of Sumudu transform implies that; 

    UUUUSuSzyxttzyxU zzyyxx   21sinsinsin2,,,              (187) 

The decomposition method defined the solution  tzyxU ,,,  as a series given by; 
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n

n tzyxUptzyxU  
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Now, applying the homotopy perturbation method, we get; 

   

   

 



































































































































































































0

21

0

21

0

21

0

21

0

,,,

,,,,,,

,,,sinsinsin,,,

n

n

n

zzn

n

n

yyn

n

n

xxn

n

n

n

n

n

tzyxUpSuS

tzyxUpSuStzyxUpSuS

tzyxUpSuSpzyxttzyxUp

   (188) 

Comparing the coefficients of like power p , we get;  

 

         
      

 

         
      

 
zyx

t

USuSUSuS

USuSUSuStzyxUp

zyx
t

USuSUSuS

USuSUSuStzyxUp

zyxttzyxUp

zz

yyxx

zz

yyxx

sinsinsin
!5

2

2

,,,:

sinsinsin
!3

2

2

,,,:

sinsinsin2,,,:

5

1

1

1

1

1

1

1

1

2

2

3

0

1

0

1

0

1

0

1

1

1

0

0























                   (189) 

Proceeding in a similar manner, we obtain; 
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                          (190) 

Therefore the solution  tzyxU ,,, in series form is given by;     
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2sinsinsin,,,

753
ttt

tzyxtzyxU      (191) 

 And in closed form given as;  

   tzyxtzyxU 2sinsinsinsin,,,                           (192) 
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Example (2.3.18): Consider the following three-dimensional inhomogeneous initial 

boundary value problem which describes the heat-like models;  

    0,1,,0,
2

1 222222  tzyxUzUyUxzyxU zzyyxxtt     (193) 

Subject to the following boundary conditions; 

            
            
           11,,,,1,0,,

111,,,,11,,0,

111,,,1,11,,,0

2222

2222

2222













ttt

tttt

tttt

eeyxtyxUezxtyxU

ezextzxUezextzxU

ezeytzyUezeytzyU



       (194)           

And the initial condition as; 

    2220,,,,00,,, zyxzyxUzyxU
t

                    (195) 

Taking Sumudu transform of both sides of  the equation (193) subject to the initial 

condition, we get; 

      

 zzyyxx UzUyUxSu

uzyxuzyxtzyxUS

2222

2222222

2

1

,,,





               (196) 

The inverse of Sumudu transform implies that: 
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2
,,,







                     (197) 

The decomposition method defined the solution  tzyxU ,,,  as a series given by; 

   





0

,,,,,,
n

n
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Now, applying the homotopy perturbation method, we get; 
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   (198) 
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Comparing the coefficients of like power p , we get;  
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                  (199) 

Therefore the solution  tzyxU ,,, in series form is given by;     
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,,,
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2
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22

ttt
tz

ttt
tyxtzyxU

                  (200) 

 And in closed form given as; 

     222222,,, zyxezeyxtzyxU tt                 (201) 
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CHAPTER THREE 

Nonlinear Partial Differential Equations 

   

3.1:    Homotopy Perturbation Method 

     In the previous chapters, the homotopy perturbation method has been applied to 

a broad class of linear partial differential equations. It is evident that this method can 

be applied to homogeneous and inhomogeneous problems without any restriction or 

linearization. The method emphasizes on decomposing the unknown function, u into 

an infinite series of recursive components through iterations.  

 

     In this chapter, the homotopy perturbation method will be applied to nonlinear 

partial differential equations. This method involves a special representation for 

nonlinear terms such as 2 3 4 2, , , sin , , , ...u

x xu u u u e uu u  . The method introduces a 

formal algorithm in representing nonlinear terms, and it is necessary to represent 

nonlinear terms in proper form [14]. 

    

  In the following sections, representations of nonlinear terms are illustrated with 

examples, and an alternate algorithm for calculating homotopy polynomials will be 

outlined with examples. 

 

3.1.1: Calculation of Homotopy Polynomials 

     It is well known now that homotopy perturbation method suggests that the 

unknown linear function u  may be represented by the decomposition series 

                                      





0n

n

n upu       ,                                             (1) 

The nonlinear term  uN , such as 2432 ,,,sin,,, xx

u uuueuuuu , etc. can be expressed 

by an infinite series of the so-called homotopy polynomials  uHn  given in the form 

                      





0

210 ,,,,
n

nn uuuuHuN ,                                   (2) 

where  uHn  the homotopy polynomials. 

In literature, several strategies have been introduced to calculate homotopy 

polynomials. An alternate reliable method which employs only elementary operations 
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and does not require specific formulas has been reported. This alternate method that is 

based on algebraic & trigonometric identities and on Taylor series. 

The homotopy polynomials  uHn  can be found by the following expression  

          






























 ,2,1,0,
!

1

0
0

nupN
dp

d

n
uH

p

n

i

i

i

n

n

n .             (3) 

The general formula Eq. (3) can be formulated as following;               
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  (4) 

Other polynomials can be generated in a similar manner. 

Two important observations can be made here. First, 0H  depends only on 0u , 

1H  depends only on 0u  and 1u , 2H  depends only on  10 ,uu and 2u , and so on. 

Second, substituting Eq. (4) into Eq. (2) gives; 
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1

uNuuuNuuuN

uNuuuuuuuu

uNuuuuuu

uNuuuuN

HHHHuN

. 

The homotopy polynomials given above in Eq. (4) clearly show that the sum of 

the subscripts of the components of u  of each term of  uHn  is equal to n. As stated 

before, it is clear that 0H  depends only on 10 , Hu depends only 0u  and 1u , 2H  

depends only on 10 ,uu and 2u . The same conclusion holds for other polynomials. 

In the following section, an attempt is made to calculate homotopy polynomials for 

different forms of nonlinearity that may arise in nonlinear ordinary or partial 

differential equations. 
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3.1.2: Calculation of Homotopy Polynomials nH  

 

I: Nonlinear Polynomials 

Case 1:                                                  2uuN   

The polynomials can be obtained as follows: 
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Case 2:                                                  3uuN   

The polynomials are given by; 
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Case 3:                                                   4uuN   

Proceeding as before we find 
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, 

In a parallel manner, homotopy polynomials can be calculated for nonlinear 

polynomials of higher degrees. 
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II: Nonlinear Derivatives 

Case 1:                                              2xuuN   

The homotopy polynomials are given by; 

                                

.22

,2

,2

,

21303

2

1202

101

2

00

xxxx

xxx

xx

x

uuuuH

uuuH

uuH

uH









  

Case 2:                                                  3

xuuN   

The homotopy polynomials are given by; 

                                

.63

,33

,33

,

3

12103

2

03

2

102

2

02

2

102

2

01

3

00

xxxxxx

xxxx

xxxx

x

uuuuuuH

uuuuH

uuuuH

uH









 

Case 3:                                           2

2

1
uLuuuN xx   

The homotopy polynomials for this nonlinearity are given by; 

    

 

 

 

  .22
2

1

,2
2

1

,2
2

1

,

0312213021303

021120

2

1202

1010101

0000

uuuuuuuuuuuuLH

uuuuuuuuuLH

uuuuuuLH

uuuNH

xxxx

xxx

xx

x

x

x

x









 

 

III: Trigonometric Nonlinearity 

Case 1:                                                uuN sin  

The homotopy polynomials of this form of nonlinearity are given by; 

                                

.cos
!3

1
sincos

,sin
!2

1
cos

,cos

,sin

0

3

1021033

0

2

1022

011

00

uuuuuuuH

uuuuH

uuH

uH
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Case 2:                                                 uuN cos  

Proceeding as before giving; 

                                

.sin
!3

1
cossin

,cos
!2

1
sin

,sin

,cos

0

3

1021033

0

2

1022

011

00

uuuuuuuH

uuuuH

uuH

uH









 

IV:  Hyperbolic Nonlinearity 

Case 1:                                                uuN sinh  

The nH  polynomials of this form of nonlinearity are given by; 

                                

.cosh
!3

1
sinhcosh

,sinh
!2

1
cosh

,cosh

,sinh

0

3

1021033

0

2

1022

011

00

uuuuuuuH

uuuuH

uuH

uH









 

Case 2:                                               uuN cosh  

The homotopy polynomials are given by; 

.sinh
!3

1
coshsinh

,cosh
!2

1
sinh

,sinh

,cosh

0

3

1021033

0

2

1022

011

00

uuuuuuuH

uuuuH

uuH

uH









 

V:  Exponential Nonlinearity 

Case 1:                                                  ueuN   

The homotopy polynomials of this form of nonlinearity are given by; 

                                

.
!3

1

,
!2

1

,

,

0

0

0

0

3

12133

2

122

11

0

u

u

u

u

euuuuH

euuH

euH

eH
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Case 2:                                                 ueuN   

Proceeding as before gives; 

.
!3

1

,
!2

1

,

,

0

0

0

0

3

12133

2

122

11

0

u

u

u

u

euuuuH

euuH

euH

eH

































 

VI:  Logarithmic Nonlinearity 

Case 1:                                            0,ln  uuuN  

The nH  polynomials for logarithmic nonlinearity are given by; 

                                

.
3

,
2

,

,ln

3

0

3

1

2

0

21

0

3
3

2

0

2

1

0

2
2

0

1
1

00

u

u

u

uu

u

u
H

u

u

u

u
H

u

u
H

uH









 

Case 2:                                      11,1ln  uuuN  

The nH  polynomials are given by; 

                                

 

   
.

1311

,
2

,
1

,1ln

3

0

3

1

2

0

21

0

3
3

2

0

2

1

0

2
2

0

1
1

00

u

u

u

uu

u

u
H

u

u

u

u
H

u

u
H

uH
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3.1.3: Alternative Algorithm for Calculating Homotopy Polynomials 

    

 It is important to note that various practical techniques that may calculate 

homotopy polynomials in a practical way without the use of special formulae were 

attempted by many researchers. However, the methods developed so far in doing so 

are same as that of homotopy. Therefore, there is a need of simple and reliable 

technique for calculation. 

 

    In this section, alternate algorithms that may be used to calculate homotopy 

polynomials for nonlinear terms are presented in an easier way [14, 15]. The methods 

depend mainly on algebraic and trigonometric identities and on Taylor expansion.  

 

     Moreover, we should use the fact that the sum of subscripts of the components 

of u  in each term of the polynomial nH is equal to n . The alternative algorithm 

suggests that we substitute u  as a sum of components 0, nun as defined by the 

decomposition method. It is clear that 0H  is always determined independent of the 

other polynomials 1, nH n , where 0H  is defined by; 

                                              00 uNH  .                                                     (5) 

The alternative method assumes that we first separate  00 uNH   for every 

nonlinear term  uN .With this separation done, the remaining components of  uN

can be expanded by using algebraic operations, trigonometric identities, and Taylor 

series as well. We next collect all terms of the expansion obtained such that the sum 

of the subscripts of the components of u  in each term is the same. Having collected 

these terms, the calculation of the homotopy polynomials is thus completed. Several 

examples have been tested, and the obtained results have shown that homotopy 

polynomials can be elegantly computed without any need to the formulas established 

by homotopy. The technique will be explained by discussing the following illustrative 

examples. 
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3.1.4: Homotopy Polynomials by Using the Alternative Method 

 

I: Nonlinear Polynomials 

Case 1:                                                   2uuN   

We first set 

                                               





0n

n

n upu .                                                    (6) 

Substituting Eq. (6) into   2uuN  gives; 

                              23210  uuuuuN .                                       (7) 

Expanding the expression at the right hand side gives; 

                       2130

2

12010

2

0 2222 uuuuuuuuuuuN .                  (8) 

The expansion in Eq. (8) can be rearranged by grouping all terms with the sum of the 

Subscripts are the same. This means that we can rewrite Eq. (8) as; 

 



    

43210

2

231402130

2

12010

2

0 222222

HHHHH

uuuuuuuuuuuuuuuuN       (9) 

This completes the determination of homotopy polynomials given by 

                                

.22

,2

,2

,

21303

2

1202

101

2

00

uuuuH

uuuH

uuH

uH









, 

Case 2:                                                    3uuN   

Proceeding as before, we set; 

                                             





0n

n

n upu .                                               (10) 

Substituting Eq. (10) into   3uuN   gives; 

                              33210  uuuuuN .                                   (11) 

Expanding the right hand side yields 

             
 





3100

2

22

2

14

2

0

3

12103

2

0

2

102

2

01

2

0

3

0

6333

63333

uuuuuuuuu

uuuuuuuuuuuuuuN
             (12) 

We can rewrite Eq. (12) as; 

            

 






  

    

4

3210

3100

2

22

2

14

2

0

3

12103

2

0

2

102

2

01

2

0

3

0

6333

63333

H

HHHH

uuuuuuuuu

uuuuuuuuuuuuuuN

.            (13) 
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Consequently, homotopy polynomials can be written by; 

                                

.63

,33

,3

,

3

12103

2

03

2

102

2

02

1

2

01

3

00

uuuuuuH

uuuuH

uuH

uH









, 

II: Nonlinear Derivatives 

Case 1:                                                    2

xuuN   

We first set 

                                         





0n

n

n

x x
upu  .                                              (14) 

Substituting Eq. (14) into   2

xuuN   gives; 

   23210 
xxxx

uuuuuN .                                  (15) 

Squaring the right side gives; 

           
xxxxxxxxxx

uuuuuuuuuuuN 2130

2

12010

2

0 2222 .              (16) 

Grouping the terms as discussed above we find 

 



    

43210

2

231402130

2

12010

2

0 222222

H

x

HHHH

xxxxxxxxxxxxxx
uuuuuuuuuuuuuuuuN    (17)                                                                                        

Homotopy polynomials are given by; 

                                

.22

,22

,2

,2

,

2

231404

21303

2

1202

2

101

2

00

xxxxx

xxxx

xxx

xx

x

uuuuuH

uuuuH

uuuH

uuH

uH











 

Case 2:                                                  xuuuN   

We first set 

                                            

















0

0

n

n

n

x

n

n

n

x
upu

upu

                                                 (18) 

Substituting Eq. (18) into   xuuuN  yields; 

               
xxxx

uuuuuuuuuN 32103210 .               (19) 
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Multiplying the two factors gives; 

                

 







xx

xxxxxx

xxxxxxx

uuuu

uuuuuuuuuuuu

uuuuuuuuuuuuuuuN

2231

314040031221

30021120101000

.                     (20) 

Proceeding with grouping the terms we obtain; 

                     

 







  

  

  

4

3

210

2231314040

03122130

021120101000

H

H

HHH

xxxxx

xxxx

xxxxxx

uuuuuuuuuu

uuuuuuuu

uuuuuuuuuuuuuN

                                (21) 

It then follows that homotopy polynomials are given by; 

                                

.

,

,

,

031221303

0211202

10101

000

uuuuuuuuH

uuuuuuH

uuuuH

uuH

xxxx

xxx

xx

x









 

III: Trigonometric Nonlinearity 

Case 1:                                                  uuN sin  

Note that algebraic operations cannot be applied here. Therefore, our main aim is to 

separate  00 uNH   from other terms. To achieve this goal, we first substitute 

                                             





0n

n

n upu ,                                                   (22) 

Into   uuN sin to obtain; 

                              43210sin uuuuuuN     .                             (23) 

To calculate 0H , recall the trigonometric identity; 

                            sincoscossinsin          .                             (24) 

Accordingly, Equation (23) becomes; 

                     
   

 



43210

43210

sincos

cossin

uuuuu

uuuuuuN
  .                              (25) 

Separating   00 sinuuN  from other factors and using Taylor expansions for 

  21cos uu and   21sin uu give; 

            
     

    



















3

21210

4

21

2

210

!3

1
cos

!4

1

!2

1
1sin

uuuuu

uuuuuuN
                    (26) 
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So that 

                  
   

  



















3

1210

21

2

10

!3

1
cos

2
!2

1
1sin

uuuu

uuuuuN
                               (27) 

On expanding the terms algebraically, few terms of each expansion are below. The 

last expansion can be rearranged by grouping all terms with the same subscripts. 

Equation (27) can be rewritten as: 

           

 





  

  


4

2

10

)sin
!3

1
sincos(

)sin
!2

1
cos(cossin

0

3

102103

0

2

102010

H

H

HH

uuuuuuu

uuuuuuuuN

                             (28) 

Case 2:                                                 uuN sin  

Proceeding as before we obtain; 

               

 





  

  


4

2

10

)sin
!3

1
cossin(

)cos
!2

1
sin(sincos

0

3

102103

0

2

102010

H

H

HH

uuuuuuu

uuuuuuuuN

                          (29) 

IV:  Hyperbolic Nonlinearity 

Case 1:                                                uuN sinh  

To calculate the nH  polynomials for   uuN sinh , we first substitute; 

                                            





0n

n

n upu        ,                                            (30) 

Into   uuN sinh  to obtain; 

                          43210sinh uuuuuuN     .                            (31) 

To calculate 0H , recall the hyperbolic identity; 

                     sinhcoshcossinhsinh      .                            (32) 

Accordingly, Eq. (31) becomes; 

                    
   

 



43210

43210

sinhcosh

coshsinh

uuuuu

uuuuuuN
    .                           (33) 
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Separating   00 sinhuuN   from other factors and using Taylor expansions for 

  21cosh uu and   21sinh uu  give; 

     

   

 

  







































3

1210

21

2

10

3

21210

4

21

2

210

!3

1

2
!2

1
1sinh

!3

1
cosh

!4

1

!2

1
1sinh

uuucohsu

uuuu

uuuuu

uuuuuuN

. 

By grouping all terms with the same sum of subscripts we find 

                

 





  

  


4

2

10

)sinh
!3

1
sinhcosh(

)sinh
!2

1
cosh(coshsinh

0

3

102103

0

2

102010

H

H

HH

uuuuuuu

uuuuuuuuN

   .                     (34) 

Case 2:                                                uuN cosh  

Proceeding as in xsinh  we find 

            

 





  

  


4

2

10

)sinh
!3

1
coshsinh(

)cosh
!2

1
sinh(sinhcosh

0

3

102103

0

2

102010

H

H

HH

uuuuuuu

uuuuuuuuN

    .                 (35) 

V: Exponential Nonlinearity 

Case 1:                                                   ueuN   

                                                       





0n

n

n upu   ,                                                (36) 

 

Into   ueuN  gives; 

                                                    
 43210 uuuuu

euN     ,                                    (37) 

 

Or equivalently; 

   
 43210 uuuuu

eeuN    .                                  (38) 
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Keeping the term 0u
e  and using the Taylor expansion for the other factor we obtain; 

      









2

43214321
!2

1
10 uuuuuuuueuN

u .        (39) 

By grouping all terms with identical sum of subscripts we find; 

   

  






























  

    


4

0

3

0

3

0

1

0

0

0

4

12

2

1

2

2314

3

1213

2

121

!4

1

!2

1

!2

1

!3

1

!2

1

H

u

H

u

H

u

H

u

H

u

euuuuuuu

euuuueuueueuN

     .               (40) 

Case 2:                                                   ueuN   

Proceeding as before we find 

    


































  

    


4

0

3

0

3

0

1

0

0

0

4

12

2

1

2

2314

3

1213

2

121

!4

1

!2

1

!2

1

!3

1

!2

1

H

u

H

u

H

u

H

u

H

u

euuuuuuu

euuuueuueueuN

.     (41) 

 

VI: Logarithmic Nonlinearity 

Case 1:                                            0,ln  uuuN  

Substituting 

                                                





0n

n

n upu ,                                                    (42) 

Into   uuN ln gives; 

                                 43210ln uuuuuuN    .                              (43) 

Equation (43) can be written as; 

                             
























0

3

0

2

0

1
0 1ln

u

u

u

u

u

u
uuN    .                            (44) 

Using the fact that    lnlnln  , Equation (44) becomes; 

                    









0

3

0

2

0

1
0 1lnln

u

u

u

u

u

u
uuN     .                            (45) 
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Separating   00 ln uuN  and using the Taylor expansion of the remaining term we 

obtain; 

  

 





















































4

0

3

0

2

0

1

3

0

3

0

2

0

1

2

0

3

0

2

0

1

0

3

0

2

0

1
0

4

1

3

1

2

1
ln

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
uuN

     .              (46) 

Proceeding as before, Equation (46) can be written as; 

              






  
321

0

3

0

3

1

2

0

21

0

3

2

0

2

1

0

2

0

1
0

3

1

2

1
ln

HHH

H
u

u

u

uu

u

u

u

u

u

u

u

u
uuN      .                (47) 

Case 2:                                       11,1ln  uuuN  

In a like manner we obtain; 

                  

   
 

   




















  

  


3

21

0

3

0

3

1

2

0

21

0

3

2

0

2

1

0

2

0

1
0

13

1

11

12

1

11
1ln

H

HH

H

u

u

u

uu

u

u

u

u

u

u

u

u
uuN

    .                   (48) 

As mentioned before, there are other methods to evaluate homotopy polynomials, but 

disadvantage of methods is prolonged calculations. For this reason, the most 

commonly used methods are presented. 
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3.2:  Homotopy perturbation and Sumudu Transform Method 

                                            (HPSTM)                                                           

To illustrate the basic idea of this method, we consider a general nonlinear non-

homogenous partial differential equation with the initial conditions of form 

                              txgtxUNtxURtxUD ,,,,                        (49) 

       xfxUxhxU t  0,,0,  

Where D  is the second order linear differential operator, 2

2

t
D




 , R is the linear 

differential operator of less order than ND , represents the general nonlinear 

differential operator and  txg , is the source term [15]. 

Taking Sumudu transform of both sides of Eq. (94), we get; 

                            txgStxUNStxURStxUDS ,,,,             (50) 

Using the differential operator property of the Sumudu transform and above initial 

conditions, we get; 

                 
         

     txUNStxURSu

xfuxhtxgSutxUDS

,,

,,

2

2




                   (51) 

Now, applying the inverse Sumudu transform of both sides of Esq. (51), we get;  

                            txUNtxURSuStxGtxU ,,,, 21  
              (52) 

Where  txG ,  represents the term arising from the source term and the prescribed 

initial conditions. We apply the homotopy perturbation method;  

   





0

,,
n

n

n txUptxU                                            (53) 

And the nonlinear term can be decomposed as;  

   





0

,,
n

n

n txHptxUN                                         (54) 

For some He’s polynomials  UH n  that are given by; 

    





































 ,3,2,1,0,,
!

1
,,,,

0
0

210 ntxUpN
pn

UUUUH

p
i

i

i

n

n

nn
  (55) 

Substituting Eqs.  (53) and (54) in Eq. (52) we get; 

   

   























































txHptxUpRSuSp

txGtxUp

n

n

n

n

n

n

n

n

n

,,

,,

00

21

0

 (56) 
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This is the coupling of the Sumudu transform and the homotopy perturbation method 

using He’s polynomials. 

Comparing the coefficient of like power of p , the following approximation is 

obtained; 

   

       
       
       



















UHtxURSuStxUp

UHtxURSuStxUp

UHtxURSuStxUp

txGtxUp

22

21

3

3

11

21

2

2

00

21

1

1

0

0

,,:

,,:

,,:

,,:

                (57) 

Example (3.2.1): Consider the following nonlinear advection problem 

                                                      0 xt UUU                                             (58) 

                    xxU 0, . 

Taking Sumudu transform of both sides of Eq. (58) subject to the initial 

Condition, we get; 

                                               xUUSuxtxUS ,                                (59) 

The inverse of Sumudu transform implies that; 

                                                xUUSuSxtxU 1,                               (60) 

Now, applying the homotopy perturbation method, we get; 

                              

































 








 0

1

0

),(
n

n

n

n

n

n UHpSuSpxtxUp              (61) 

Where  UHn are He’s polynomials that represents the nonlinear terms. 

The first few components of He’s polynomials, are given by; 

                          
 

.

.

.

)(

)(

)(

031221303

0211202

01101

000

xxxx

xxx

xx

x

UUUUUUUUUH

UUUUUUUH

UUUUUH

UUUH









                 (62) 
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Comparing the coefficients of like powers of p , we get; 

                             

 

     

     

      3

2

1

3

3

2

1

1

2

2

0

1

1

1

0

0

,:

,:

,:

,:

txUHSuStxUp

txUHSuStxUp

txUHSuStxUp

xtxUp















                      (63) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  

                            321, tttxtxU                               (64) 

And in a closed form by; 

                                                   
1

,



t

x
txU                                                (65) 

 

Example (3.2.2): Consider a nonlinear partial differential equation 

                                                      
22

4

1
xt UxU                                              (66) 

         00, xU . 

Taking Sumudu transform of both sides of Eq. (66) subject to the initial 

Condition, we get; 

                                               22

4

1
, xUSuuxtxUS                                     (67) 

The inverse of Sumudu transform implies that; 

                                                212

4

1
, xUSuStxtxU                                    (68) 

Now, applying the homotopy perturbation method, we get; 

                               

































 








 0

1

0

2

4

1
),(

n

n

n

n

n

n UHpSuSptxtxUp           (69) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by 

                                    

  xxxx

xxx

xx

x

UUUUUH

UUUUH

UUUH

UUH

21303

2

1202

101

2

00

22

2)(

2)(

)(









                                 (70) 
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Comparing the coefficients of like powers of p , we get; 

                             

 

     

     

      72

2

1

3

3

52

1

1

2

2

32

0

1

1

1

2

0

0

315

17

4

1
,:

15

2

4

1
,:

3

1

4

1
,:

,:

txUHSuStxUp

txUHSuStxUp

txUHSuStxUp

txtxUp















                  (71) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  

                          







 7532

315

17

15

2

3

1
, ttttxtxU                      (72) 

And in a closed form of; 

                                                    txtxU tan, 2                                               (73) 

 

Example (3.2.3): Consider a nonlinear partial differential equation,    

                                       UtUUU xxttt                                           (74) 

      
 
  10,

sin0,





xU

xxU

t

. 

Taking Sumudu transform of both sides of Eq. (74) subject to the initial 

Condition, we get; 

                           xxtUUUSuuxutxUS  23sin,                         (75) 

The inverse of Sumudu transform implies that; 

                xxtUUUSuS
t

xttxU   21
3

6
sin,                       (76) 

Now, applying the homotopy perturbation method, we get; 

  

































 








 0

21

0

3

6
sin),(

n

nn

n

n

n

n UBUpSuSp
t

xttxUp    (77) 

Where  UBn the homotopy polynomials are represents the nonlinear term xxtUU . 

To use the modified decomposition method, we identify the component 0U  by

6
sin

3

0

t
xtU  , and remaining term 

6

3t
 will be assigned   txU ,1  among other 

terms. Consequently, we obtain the recursive relation; 
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      1,,

,

6
sin,

21

1

00

21

1

3

0













nUBUSuStxU

UBUSuStxU

t
xttxU

nnn

 

Consequently, we obtain; 

 

     
6

,

6
sin,

3

00

21

1

3

0

t
UBUSuStxU

t
xttxU







 

The exact solution is;  

                                                  xttxU sin,                                                (78) 

 

Example (3.2.4): Consider a nonlinear partial differential equation, 

                                         UUU xtt  2

4

1
                                                (79) 

           
 
  10,

10, 2





xU

xxU

t

. 

Taking Sumudu transform of both sides of Eq. (79) subject to the initial 

Condition, we get; 

                          







 222

4

1
1, xUUSuuxuxUS                           (80) 

The inverse of Sumudu transform implies that; 

              















  2212

4

1
1, xUUSuSuxtxU                          (81) 

Now, applying the homotopy perturbation method, we get;  

            









































 








 0

21

0

2

4

1
1),(

n

n

n

n

n

n UHUpSuSpuxtxUp    (82) 

Where  UHn the homotopy polynomials are represented the nonlinear term 2

xU . 

The decomposition method admits the use recursive relation; 

 

    1,
4

1
,

1,

21

1

2

0























 kUHUSuStxU

txtxU

kkk
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The homotopy polynomials are given by; 

.22

,22

,2

,2

,

2

231404

21303

2

1202

2

101

2

00

xxxxx

xxxx

xxx

xx

x

uuuuuH

uuuuH

uuuH

uuH

uH











 

Comparing the coefficients of like powers of p , we get; 

 

   

   

   
!7!64

1
,:

!5!44

1
,:

!3!24

1
,:

1,:

76

22

21

3

3

54

11

21

2

2

32

00

21

1

1

2

0

0

tt
UHUSuStxUp

tt
UHUSuStxUp

tt
UHUSuStxUp

txtxUp































































 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by; 

  









!4!3!2
1,

432
2 ttt

txtxU  

And in closed form given as; 

                                                  textxU  2,                                                 (83) 

 

Example (3.2.5): Consider a nonlinear partial differential equation, 

                                       022  xtt UUU                                          (84) 

 

  x

t exU

xU





0,

00,
. 

Taking Sumudu transform of both sides of Eq. (84) subject to the initial 

Condition, we get; 

                                     222, UUSueuuxUS x

x                            (85) 

The inverse of Sumudu transform implies that; 

                                2221, UUSuSettxU x

x  
                          (86) 
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Now, applying the homotopy perturbation method, we get; 

        

































 








 0

21

0

),(
n

nn

n

n

x

n

n UAUBpSuSpettxUp       (87) 

Where    UAUB nn ,  are the homotopy polynomials that represents the nonlinear term 

2

xU  and 2U  respectively. We next set the recursive relation 

 

        1,,

,

21

1

0







 kUAUBSuStxU

ettxU

kkk

x

 

The homotopy polynomials are given by; 

                                        

2130321303

2

1202

2

1202

2

101

2

101

2

00

2

00

22,22

,2,2

,2,2

,,

uuuuAuuuuB

uuuAuuuB

uuAuuB

uAuB

xxxx

xxx

xx

x









 

The first few components of the solution  txU ,  are given by; 

 

        0,:

,:

00

21

1

1

0

0





 UAUBSuStxUp

ettxUp x

 

And therefore other components vanish. Consequently, the exact solution is given 

                                                  xettxU ,                                           (88) 

 

Example (3.2.6): consider the following non homogenous advection problem, 

                                           
32

36

1
xUxU xxt                                             (89) 

               00, xU    

Taking Sumudu transform of both sides of Eq. (89) subject to the initial condition, we 

get; 

                                        2

36

1
3, xxUxSuuxtxUS                                 (90) 

The inverse of Sumudu transform implies that; 

                                        213

36

1
, xxUxSuStxtxU                               (91) 

Now, applying the homotopy perturbation method, we get; 

                       

































 








 0

1

0

3

36

1
),(

n

n

n

n

n

n UHpxSuSptxtxUp         (92) 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by 

                                    

.

.

2)(

2)(

)(

2

1202

101

2

00

xxxxxx

xxxx

xx

UUUUH

UUUH

UUH







                                      (93) 

Comparing the coefficients of like powers of p, we get; 

              

 

     

     

      73

2

1

3

3

53

1

1

2

2

33

0

1

1

1

3

0

0

315

17

36

1
,:

15

2

36

1
,:

3

1

36

1
,:

,:

txUHxSuStxUp

txUHxSuStxUp

txUHxSuStxUp

txtxUp















                (94) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;                       

       







 7533

315

17

15

2

3

1
, ttttxtxU                  (95) 

And in a closed form of, 

                                                    txtxU tanh, 2                                          (96) 

 

Example (3.2.7): Consider the following homogenous advection problem, 

                                        02  xt UUU                                                 (97) 

           xxU 20,  . 

Taking Sumudu transform of both sides of Eq. (97) subject to the initial 

Condition, we get; 

                                     xUUSuxtxUS 22,                                 (98) 

The inverse of Sumudu transform implies that; 

                            xUUSuSxtxU 212,                               (99) 

Now, applying the homotopy perturbation method, we get; 

                        

































 








 0

1

0

2),(
n

n

n

n

n

n UHpSuSpxtxUp          (100) 



Nonlinear Partial Differential Equations        3 
 

76 

 

Where  UHn the homotopy polynomials are represented the nonlinear term, xUU 2 . 

This gives the recursive relation, 

                        
 

      1,,

2,

1

1

0







 kUHSuStxU

xtxU

kk

                (101) 

This gives the first few components of   txU ,  as, 

                     

 

     

     

      34

2

1

3

3

23

1

1

2

2

2

0

1

1

1

0

0

640,:

64,:

8,:

2,:

txUHSuStxUp

txUHSuStxUp

txUHSuStxUp

xtxUp















             (102) 

And so on. It follows that the solution in a series form is given by,  

                               34232 6406482, txtxtxxtxU                        (103) 

Two observations can be made here. First, we can easily observe that 

                                 0,2,  txtxU                                          (104) 

That satisfies the initial condition. We next observe that for 0t , the series 

solution in Eq. (103) can be formally expressed in a closed form by:  

                                  1161
4

1
,  tx

t
txU                                      (105) 

Combining Eq. (104) and Eq. (19) gives the solution in the form; 

                       












0,1161

4

1

02

,
ttx

t

tx

txU                           (106) 

 

Example (3.2.8): Consider the following homogenous advection problem, 

                                                  0 xt UUU                                                (107) 

             xxU sin0,  . 

Taking Sumudu transform of both sides of Eq. (107) subject to the initial 

Condition, we get; 

                                               xUUSuxtxUS  sin,                               (108) 

The inverse of Sumudu transform implies that; 

                                             xUUSuSxtxU 1sin,                              (109) 
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Now, applying the homotopy perturbation method, we get; 

                  

































 








 0

1

0

sin),(
n

n

n

n

n

n UHpSuSpxtxUp             (110) 

Where  UHn are He’s polynomials that represented the nonlinear terms. 

The first few components of He’s polynomials, are given by 

                           









.

)(

)(

)(

0211202

01101

000

xxx

xx

x

UUUUUUUH

UUUUUH

UUUH

                             (111) 

Comparing the coefficients of like powers of p , we get; 

 

     

      232

1

1

2

2

0

1

1

1

0

0

sin
2

1
cossin,:

cossin,:

sin,:

txxxUHSuStxUp

xxtUHSuStxUp

xtxUp


















      (112) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  

    







 232 sin

2

1
cossincossinsin, txxxxxtxtxU     (113) 

However, by using the traditional method of characteristics, we can show that the 

solution can be expressed in the parametric form: 

                                             
 





sin

,sin,

tx

txU




                                   (114) 

For numerical approximations, the series solution obtained above is more effective 

and practical compared to the parametric form solution given in Eq. (114). 
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3.3: Solving System of Nonlinear Partial Differential Equations 

 

Example (3.3.9): Consider the following system of partial differential equations; 

02

02





UVV

VUU

xt

xt
                                           (115) 

With the initial conditions; 

 
  xxV

xxU

sin0,

cos0,




 

Taking Sumudu transform of Eq. (115) subject to the initial conditions, we get; 

    
    x

x

VUSuxtxVS

UVSuxtxUS





2sin,

2cos,
                                (116) 

The inverse Sumudu transform implies that: 

    

    x

x

VUSuSxtxV

UVSuSxtxU









2sin,

2cos,

1

1

                             (117) 

Now applying the homotopy perturbation method, we get; 

    

    
























































































0

1

0

0

1

0

2sin,

2cos,

n
xnn

n

n

n

n

n
xnn

n

n

n

n

VUpSuSpxtxVp

UVpSuSpxtxUp

              (118) 

Comparing the coefficients of like power p , we get; 

   

   

   

    x
t

txVx
t

txUp

x
t

txVx
t

txUp

xttxVxttxUp

xtxVxtxUp

cos
!3

,,sin
!3

,:

sin
!2

,,cos
!2

,:

cos,,sin,:

sin,,cos,:

3

3

3

3

3

2

2

2

2

2

11

1

00

0









                  (119) 

And so on, using (119) we obtain;  

 

  





































!5!3
cos

!4!2
1sin,

,
!5!3

sin
!4!2

1cos,

5342

5342

tt
tx

tt
xtxV

tt
tx

tt
xtxU

                    (120) 

This has an exact analytical solution of the form 

      txtxVU  sin,cos,                                     (121) 
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Example (3.3. 10):  Consider the following system of nonlinear partial differential 

equations,  

1

1





VVUV

UUVU

xt

xt
                                             (122) 

With the initial conditions; 

 

  x

x

exV

exU





0,

0,
 

Taking Sumudu transform of Eq. (122) subject to the initial conditions, we get; 

    

    1,

1,





 VVUSuetxVS

UUVSuetxUS

x

x

x

x

                               (123) 

The inverse Sumudu transform implies that: 

    

    1,

1,

1

1









VVUSuSetxV

UUVSuSetxU

x

x

x

x

                              (124) 

Now applying the homotopy perturbation method, we get; 

   

   
























































































0

1

0

0

1

0

,

,

n

n

nx

n

n

n

n

n

nx

n

n

n

VHpSuSpetxVp

UHpSuSpetxUp

                (125) 

Where,  UHn ,  VHn are He’s polynomials that represented the nonlinear terms. 

   
   1

1





VVUpVH

UUVpUH

xn

xn    

Where, 





2

2

10

2

2

10

VpVpVV

UpUpUU
 

The first few components of He’s polynomials, are given by, 

2021120220211202

101101101101

00000000

)(,)(
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VVUVUVUVHUUVUVUVUH

VVUVUVHUUVUVUH

VVUVHUUVUH

xxxxxx
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  (126) 
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Comparing the coefficients of the same powers of p, we get; 

   

           

           

            xx

xx

xx
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e
t

VHSuStxVe
t
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e
t

VHSuStxVe
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,,,:
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2

2
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1

1

1

00

0

     (127)                  

And so on, using (127) we obtain;  

 

  xtx

txx

e
tt

tetxV

e
tt

tetxU

























!3!2
1,

,
!3!2

1,

32

32

                              (128) 

This has an exact analytical solution of the form: 

   xttx eeVU  ,,                                              (129) 

 

Example (3.3.11): Consider the following system of nonlinear partial differential 

equations, 

WVUVUW

VVWUWV

UWVWVU

xyyxt

xyyxt

xyyxt







                                     (130) 

With the initial conditions; 

 

 

  yx

yx

yx

eyxW

eyxV

eyxU













0,,

0,,

0,,

 

Taking Sumudu transform of Eq. (130) subject to the initial conditions, we get; 

    
    
    xyyx

yx

xyyx

yx

yxxy

yx

VUVUWSuetyxWS

UWUWVSuetyxVS

UWVWVSuetyxUS













,,

,,

,,

                   (131) 

The inverse Sumudu transform implies that: 
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xyyx
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yxxy
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VUVUWSuSetyxW

UWUWVSuSetyxV

UWVWVSuSetyxU
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,,

                 (132) 
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Now applying the homotopy perturbation method, we get; 
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n

WHpSuSpetyxWp

VHpSuSpetyxVp

UHpSuSpetyxUp

             (133) 

Where      WHVHUH nnn ,, are He’s polynomials that represents the nonlinear 

terms, 

   
   
   xyyx

xyyxn

yxxyn

VUVUWpWH

UWUWVpVH

UWVWVpUH







   

Where,  
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2

10

WpWpWW

VpVpVV

UpUpUU

 

Comparing the coefficients of the same powers of p, we get; 
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       (134)     
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And so on, using (134) we obtain;  

 

 

  tyxyx
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e
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e
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e
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,
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1,,

32

32

32

                    (135) 

This has an exact analytical solution of the form; 

   tyxtyxtyx eeeWVU  ,,,,                                  (136) 

 

Example (3.3.12): Consider the following system of nonlinear partial differential 

equations, 

 

  02

02





xxxxt

xxxxt

VUVVVV

VUUUUU
                               (137) 

With the initial conditions; 

 
  xxV

xxU

sin0,

sin0,




 

Taking Sumudu transform of Eq. (137) subject to the initial conditions, we get; 

    
    xxxxx

xxxxx

UVVUVVVSuxtxVS

UVVUUUUSuxtxUS





2sin,

2sin,
              (138) 

The inverse Sumudu transform implies that: 

    

    xxxxx

xxxxx

UVVUVVVSuSxtxV

UVVUUUUSuSxtxU









2sin,

2sin,

1

1

           (139) 

Now applying the homotopy perturbation method, we get; 
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VHpSuSpxtxVp

UHpSuSpxtxUp

             (140) 

Where  UHn ,  VHn are He’s polynomials that represents the nonlinear terms. 
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Where  





2
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2

2
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UpUpUU
 

The first few components of He’s polynomials, are given by, 
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         (141) 

Comparing the coefficients of the same powers of p, we get; 
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                          (142)                  

And so on, using (142) we obtain;  

 

  ;sinsin
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1,

;sinsin
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1,

32

32

xex
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tt
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t

t

























                         (143) 

This has an exact analytical solution of the form: 

   xexeVU tt sin,sin,                                       (144) 
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CHAPTER FOUR 

Linear and Nonlinear Fractional Differential Equations and 

Sumudu Transform 
 

4.1: Linear Fractional Differential Equations 

Fractional calculus provides an efficient and an excellent way of describing 

many dynamical phenomena in scientific and engineering areas such as physics, 

chemistry, and economics [19]. This feature of fractional calculus has appealed many 

researchers in  the past.  In this chapter, a new method called homotopy perturbation 

Sumudu transform method (HPSTM) is introduced for solving the linear and initial 

value problems. This method is a combination of Sumudu transform, homotopy 

perturbation method.  

 

The following section offers the effectiveness of the homotopy perturbation 

Sumudu transform method (HPSTM) in solving fractional initial boundary value 

(FIBVP). 

 

4.1.1: Preliminaries and Notations 

In this section, we give some basic definitions and properties of the fractional 

calculus theory which are further used in this chapter. 

 

Definition (4.1.1) [16]:  

  A real function   0, xxf is said to be in space  ,C if there exists a 

real number p , such that    tfttf p

1 , where     ,01 Ctf , and it is said 

to be in the space 
nC   if and only if NnCf n  , . 

 

Definition (4.1.2) [16]:  

  The Riemann-Liouville fractional integral operator of order 0 , of a 

function 1,  Cf , is defined as; 

                
 

    





t

duufuttfJ
0

1
0,

1





                        (1) 

   tftfJ 0
. 
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Some properties of the operator J , which are needed here, are as following: 

For NnCf n  , , 0,  and 1 : 

i.    tfJtfJJ    

ii. 
 

 




 




 ttJ

1

1
                                           (2) 

Definition (4.1.3) [18]:  

The Sumudu transform of the Caputo fractional derivative is defined as 

follows: 

         mmfutfSutfDS k
m

k

k

t  




   1,0
1

0

 

Definition (4.1.4) [16]: 

 The fractional derivative of  tf  in the Caputo sense is defined as; 

                              tfDJtfD mm                                           (3) 

For 0,,1  tNmmm   and 
mCf 1      

Caputo fractional derivative initially calculates an ordinary derivative and then 

followed by fractional integration to  a desired order of fractional derivative. 

Similar to the integer-order integration, the Riemann-Liouville fractional integral 

operator is a linear operation: 

                             















 n

i

ii

n

i

ii tfJctfcJ
11


                                   (4) 

Where  n

iic
1 are constants. 

In the present work, the fractional derivatives are considered in the Caputo sense. 

The reason for adopting the Caputo definition, as pointed by [35], is as follows: to 

therefore familiar to us. In contrast, for the Riemann-Liouville fractional differential 

equations, these additional conditions constitute certain fractional derivatives solve 

differential equations (both classical and fractional); we need to specify additional 

conditions in order to produce a unique solution. For the case of the Caputo fractional 

differential equations, these additional conditions are just the traditional conditions, 

which are akin to those of classical differential equations, and are (and/or integrals) of 

the unknown solution at the initial point 0x , which are functions of x . These 

initial conditions are not physical; furthermore, it is not clear how such quantities are 

to be measured from experiment, say, so that they can be appropriately assigned in an 

analysis. For more details see [35]. 
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4.1.2: Sumudu Transform 

 

The Sumudu transform is a powerful tool in applied mathematics and engineering. 

Virtually every beginning course in differential equations at the undergraduate level 

introduces this technique for solving linear differential equations. The Sumudu 

transform is indispensable in certain areas of control theory.  

 

Given a function  xf defined for  x0 , the Sumudu transform  uF is 

defined as; 

                               



0

dxeuxfuF x
                                        (5) 

At least for those s for which the integral converges. 

Let  xf  be a continuous function on the interval  ,0  which is of exponential 

order, that is, for some c  and 0x  

 


xce

xf
sup . 

In this case the Sumudu transform Eq. (5), exists for all c
u


1
. 

Some of the useful Sumudu transforms which are applied in this section are as 

follows: 

For     uFxfS   and     uGxgS   

              uGuFxgxfS  , 

                          ,1,1   uxS  

                         
u

f

u

f

u

f

u

uF
xfS

n

nnn

n 000 1

1







                      (6) 

                                            uFudttfS

x










0

 

                           uGuFudttgtxfS

x











0

.                             (7) 
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Lemma (4.1.5): 

 The Sumudu transform of Riemann-Liouville fractional integral operator of 

order 0 can be obtained in the form of: 

    uFuxfJS   . 

Proof:  

The Sumudu transform of Riemann-Liouville fractional integral operator of 

order 0  is: 

  
 

   
 

   uGuFudttfxSxfJS

x





















 

 11

0

1
, 

Where 

        11 uxSuG  

 

Lemma (4.1.6):  

The Sumudu transform of Caputo fractional derivative for

Nmmm  ,1  , can be obtained in the form of: 

           



















u

f

u

f

u

f

u

uF
uxfDS

m

mmm

m 000 1

1


 

Proof: 

The Sumudu transform of the Caputo fractional derivative of order 0 is: 

          xfSuxfJSxfDS mmmm    . 

Using equation (64). Now, we can transform fractional differential equations into 

algebraic equations and then by solving this algebraic equation, we can obtain the 

unknown Sumudu function  uF . 

 

4.1.3: Inverse Sumudu Transform 

The function  xf  in Eq. (5), is called the inverse Sumudu transform of  uF and 

will be denoted by     uFSxf 1 in the section. In practice, when one uses the 

Sumudu transform to, for example, solve a differential equation, one has to at some 

Point invert the Sumudu transform by finding the function  xf which corresponds to 

some specified  uF [17]. 
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The Inverse Sumudu transform of  uF  is defined as: 

      




 

Ti

Ti

u

x

dueuFu
i

uFSxf




2

11 , 

Where,  large enough that is  uF  is defined for the real part of 
u

1

surprisingly, this formula isn’t really useful. Therefore, in this section some useful 

function  xf  is obtained from their Sumudu transform. In the first we define the 

most important special functions used in fractional calculus the Mittag-Leffler 

functions and the generalized Mittag-Leffler functions. 

For 0,   and Cz   
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n
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zE


 . 

Now, we prove some Lemmas which are useful for finding the function  xf  from 

its Sumudu transform. 

 

Lemma (4.1.7): 

 For  Ca  and a
u




1
 we have the following inverse Sumudu transform 

formula, 

 








xaEx
ua

u
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,

1
1

1

1
 . 

Proof: 

By using the series expansion can be rewritten 



ua

u

1
as; 
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 . 

The inverse Sumudu transform of  the above function is; 
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Lemma (4.1.8):  

For  a,0 and 0,  we get; 
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 . 

 

Proof: 

 Using the series expansion of    1
1




n
x  of the form: 

 
 k

k
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x
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kn
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We get; 
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Giving the inverse Sumudu transform of above function can prove the Lemma. 

 

Lemma (4.1.9): 

 For  a,,  and b
ua

u


 







1

1

we get; 
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Proof: 

 








 ubuau

u 1

By using the series expansion can be rewritten as;  
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Now by using Lemma (4.1.8) the Lemma can be proved. 
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4.1.4: The Homotopy Perturbation Sumudu Transform Method 

 

      In order to elucidate the solution procedure of this method, we consider a 

general fractional nonlinear partial differential equation of the form: 

       txqtxUNtxLUtxUDt ,,,, 
                           (8) 

With nn  1 , and subject to the initial condition; 

        xfxU
t

xU
r

r

r

r





0,

0,
                                    (9) 

1,...,1,0  nr  

Where  txUDt , is the Caputo fractional derivative,  txq , is the source term, L 

is the linear operator and N  is the general nonlinear operator. 

Taking the Sumudu transform (denoted throughout this section by S) on both sides of 

Eq. (8), we get; 

         txqtxUNtxLUStxUDS t ,,,, 
                     (10) 

Using the property of the Sumudu transform and the initial conditions in Eq. (9), we 

get; 

              txqtxUNtxLUSxUutxUSu
n

k

kk ,,,0,,
1

0






 
     (11) 

And 

           txqtxUNtxLUSuxfutxUS
n

k

k

k ,,,,
1

0

 





         (12) 

Operating with the Sumudu inverse on both sides of Eq. (12) we get; 

             txqtxUNtxLUSuSxfuStxU
n

k

k

k ,,,,
1

0

11  




 
      (13) 

Now, applying the classical perturbation technique. And assuming that the solution of 

Eq. (13) is in the form; 

   





0

,,
n

n

n txUptxU                                           (14) 

Where  1,0p is the homotopy parameter. 

The nonlinear term of Eq. (13) can be decomposed 

   





0

,
n

n

n UHptxUN                                         (15) 
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Where iH  are He’s polynomials, which can be calculated with the formula: 

  ...,2,1,0,
!

1
,...,,,

0
0

210 
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p
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nn                  (16) 

Substituting Eqs. (14) and (15) in Eq. (13), we get; 
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n
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n
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n

n

n txqUHptxUpLSuSpxfuStxUp    (17) 

Equating the terms with identical powers of p ; we can obtain a series of equations as 

the follows: 
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k

k

k

txqUHptxUpLSuStxUp

xfuStxUp



              (18) 

By utilizing the results in Eq. (18), and substituting them into Eq. (13) then the 

solution of Eq. (8), can be expressed as a power series in p. The best approximation 

for the solution of Eq. (9), is: 

     





210

0
1

,lim, UUUtxUptxU
n

n

n

p
                (19) 

The solutions of Eq. (19) generally converge very rapidly. 
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4.1.5: Illustrative Examples 

 

In this section is applied the method presented and give an exact solution of some 

linear fractional differential equations. 

 

Example (4.1.10): 

 As the first example, we consider the following initial value problem in the 

case of the inhomogeneous Bagley-Torvik equation,  

                                       xxyxyDxyD  12

3

2 ,                                   (20) 

    100  yy . 

This equation by using Sumudu transform is converted to, 

      
     

  uuF
u

y

u

y

u

uF
uyuyuF

u








 
  1

00
00

1
22

2

2

  

  
 

  uuF
uuu

uF
uuuF

u









  1

11
1

1
22

2

2

  

  






 








 








 












2

22

2

22

2

22













u

uuu
u

u

uuu

u

uuu
uF  

  uuF  1 . 

Using the inverse Sumudu transform the exact solution of this problem   xxy  1  
can be obtained. 

 

Example (4.1.11): 

Our second example covers the inhomogeneous linear equation,  

                          
   

xx
xx

xyxyD 








2
12

23

2




                        (21) 

  10,00  y . 

Using the Sumudu transform  uF  is obtained as follows: 

   
  uuuuuF

u

y

u

uF
u 








  2121 22

0   

      1121 2    uuuuuuF   

  uuuF  22 . 

Then   xxxy  2  is obtained by using the inverse Sumudu transform. 
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Example (4.1.12): 

  Consider the following linear initial value problem,  

                                   0 xyxyD                                              (22) 

    00,10  yy . 

The second initial condition is for 0 only. 

In two cases of   xyDS  ,  is obtained as; 

i. For   1                   




u

uF

uu

uF
uxyDS

11
22

2 









   

ii. For   1                 




u

uF

uu

uF
uxyDS

11
22

2 









   

Which are the same. Now the Sumudu transform  uF is obtained as; 

 
  0

1



uF

u

uF


 

 
u

uF



1

1
 

Using the lemma (4.1.7), the exact solution of this problem can be obtained as: 

   
 xExy   

 

Example (4.1.13): 

Consider the following linear initial value problem;  

                  10,1   xyxyD                          (23) 

  00 y . 

Using the Sumudu transform  uF  is obtained as follows; 

 
  1 uF

u

uF


 

 




u

u
uF




1
 

Using the Lemma (4.1.7) the exact solution of this problem can be obtained as: 

   


 xExxy 1,   

Example (4.1.14): 

  Consider the composite fractional oscillation equation; 

                    21,8   xybxyDaxy                    (24) 

    000  yy . 



Fractional Differential Equations      4  

 

94 
 

Using the Sumudu transform,  uF  is obtained as follows; 

   
  8

2

2

2
  uFb

u

uF
ua

u

uF   

 
22

28











ubuau

u
uF . 

Using the lemma (4.1.9) the exact solution of this problem can be obtained as: 
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Example (4.1.15): 

 Consider the following system of fractional algebraic-differential equations,  

                 10,01   xyttxtyttxD                    (25) 

  0sin  tty , 

Subject to the initial conditions; 

    00,10  yx . 

Using the Sumudu transform     tySuF 1  and     txSuG 1  is obtained as follows 

 
            0

1 21 
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d
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d
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2
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1

. 

The exact solution for 1  is   tetttx  sin . Using the Lemma (4.1.7) and (4.1.8) 

the exact solution for 10    can be obtained as: 
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  tty sin  
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Example (4.1.16): Consider the two-dimensional fractional wave equation of the 

form: 

 
   




















2

2

2

2 ,,,,
2,,

y

tyxU

x

tyxU
tyxUDt


                  (26) 

Where  yx ,,21  ; subject to the initial condition; 

 
 

0
0,,

,sinsin0,, 





t

yxU
yxyxU  

Taking the Sumudu transform of both sides of Eq. (26), thus we get; 

       tyxUDDStyxUDS yxt ,,2,, 22 
                               (27) 

Using the property of the Sumudu transform and the initial condition in Eq. (27), we 

get; 

    
      tyxUDDS

t

yxU
u

yxUutyxUSu

yx ,,2
0,,

0,,,,

221 















                     (28) 

And 

     UDDSuyxtyxUS yx

222sinsin,,  
 

Operating with the Sumudu inverse on both sides of Eq. (28) we get; 

     UDDSuSyxtyxU yx

221 2sinsin,,   
                        (29) 

By applying the homotopy perturbation method in Eq. (29) we get; 

     

































 








 0

221

0

,,2sinsin,,
n

n

n
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n

n

n tyxUpDDSuSpyxtyxUp 
       (30) 

Equating the terms with identical powers of p , we get; 
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              (31) 
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Thus the solution of Eq. (26) is given by 
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4
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                      (32) 

If we put 2 in Eq. (32) or solve Eq. (26) with 2 , we obtain the exact 

solution 

 
   
 

 tyx
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t
yxtxU

n

nn

2cossinsin

1

21
sinsin,

0






 



       

Example (4.1.17): Consider the following three-dimensional fractional heat-like 

equation: 

   zzyyxxt UzUyUxzyxtzyxUD 222444

36

1
,,,                     (33) 

Where 10,1,,0  zyx ;  

Subject to the initial condition; 

  00,,, zyxU  

Taking the Sumudu transform of both sides of Eq. (33), thus we get; 

    







 zzyyxxt UzUyUxzyxStzyxUDS 222444

36

1
,,,              (34) 

Using the property of the Sumudu transform and the initial condition in Eq. (34), we 

get; 

    







 zzyyxx UzUyUxSuzyxtzyxUS 222444

36

1
,,,            (35) 

Operating with the Sumudu inverse on both sides of Eq. (35) we get; 

    zzyyxx UzUyUxSuSzyxtzyxU 2221444

36

1
,,,           (36) 

By applying the homotopy perturbation method in Eq. (36) we get; 
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        (37) 
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Equating the terms with identical powers of p , we get; 
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             (38) 

Thus the solution of Eq. (33) is given by: 
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2
444
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1 121

1,lim,

















 




          (39) 

If we put 1 in Eq. (39) or solve Eq. (33) with 1 , we obtain the exact 

solution; 

  tezyxtxU 444,   

 

Example (4.1.18): Consider the linear inhomogeneous fractional KdV equation, 

      10,0,cos2,,,   txttxUtxUtxUD xxxxt      (40)  

Subject to the initial condition; 

  00, xU  

We can solve Eq. (40) by HPSTM by applying the Sumudu transform of both sides of 

Eq. (40), we obtain:  

         xtStxUtxUStxUDS xxxxt cos2,,,              (41)  

Using the property of the Sumudu transform, we get;    

                       xttxUtxUSuxUtxUS xxxx cos2,,0,,       (42)  
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Now applying the Sumudu inverse on both sides of Eq. (42) we obtain:  

    
 

     txUtxUSuS
t

xtxU xxxx ,,
2

cos2, 1
1




 






      (43) 

 Now, applying the classical homotopy perturbation technique, the solution can be 

expressed as a power series in P  as given below:  

   txUptxU n

n

n ,,
0






                                      (44)  

Where the homotopy parameter p is considered as a small parameter  1,0p . By 

substituting from Eq. (44) into Eq. (43) and using HPM we get:  
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    (45) 

By equating the coefficient of corresponding power of p on both sides, the following 

approximations are obtained as: 
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0,:

2
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t
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                                            (46)  

The HPSTM series solution is; 

  
 2

cos2,
1








t
xtxU                                        (47)  

For the special case 1 , we obtain; 

  xttxU cos, 2                                              (48) 

 

Example (4.1.19): Consider the following system of linear FPDEs; 











0

0

UVUVD

UVVUD

xt

xt





                                        (49) 

Where 1,0   ; subject to the initial condition; 

    xxVxxU cosh0,,sinh0,   
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Taking the Sumudu transform of both sides of Eq. (49), thus we get; 

    

    









UVUStxVDS

UVVStxUDS

xt

xt

,

,





                                     (50) 

Using the property of the Sumudu transform and the initial condition in Eq. (50), we 

get; 
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                             (51) 

And 
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Operating with the Sumudu inverse on both sides of Eq. (51) we get; 
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By applying the homotopy perturbation method in Eq. (52) we get; 
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Equating the terms with identical powers of p , we get; 

   

 
 

 
 

 
     

 
     






















































x
t

x
t

x
t

txV

x
t

x
t

x
t

txU

p

x
t

txVx
t

txUp

xtxVxtxUp

sinh
12

cosh
1

sinh
1

,

cosh
12

sinh
1

cosh
1

,

:

sinh
1

,,cosh
1

,:

cosh,,sinh,:

2

2

2

2

2

11

1

00

0













          (54) 
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Thus the solution of Eq. (49) is given by; 
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Setting   in Eq. (55) we reproduce the solution  
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    (56) 

If we put 1 in Eq. (56) or solve Eq. (49) with 1  , we obtain the exact 

solution 
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4.2: Nonlinear Fractional Differential Equations 

 

     In this section, the homotopy perturbation Sumudu transform method (HPSTM) 

is used to evaluate the exact analytical solution of nonlinear fractional partial 

differential equations [20]. 

 

Example (4.2.20):  Consider the nonlinear time fractional FPE: 

       txUtxU
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           (57) 

Where 10,;0  xt ; subject to the initial condition; 

  20, xxU   

Taking the Sumudu transform of both sides of Eq. (57), thus we get; 
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Using the property of the Sumudu transform and the initial condition in (58), we get; 
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          (59) 

Operating with the Sumudu inverse on both sides of Eq. (59) we get; 
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       (60) 

By applying the homotopy perturbation method in Eq. (60) we get; 
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                     (61) 

Where 
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Equating the terms with identical powers of p , we get; 
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Thus the solution of Eq. (26) is given by: 
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                       (63) 

If we put 1 in Eq. (63) or solve Eq. (57) with 1 , we obtain the exact 

solution; 

  textxU 2,   

 

Example (4.2.21): Consider the following generalized nonlinear time fractional-

order biological population model: 
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                   (64) 

Where 10   ; subject to the initial condition; 

 
 

















yx

r

eyxU
22

1

0,,  

Taking the Sumudu transform of both sides of Eq. (64), thus we get; 

            tyxUrtyxUtyxUDDStyxUDS yxt ,,1,,,,2,, 222 
     (65) 

Using the property of the Sumudu transform and the initial condition in Eq. (65), we 

get; 

    

         tyxUrtyxUtyxUDDS

yxUutyxUSu

yx ,,1,,,,2

0,,,,

222 

  

          (66) 

And 
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Operating with the Sumudu inverse on both sides of Eq. (66) we get; 
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       (67) 

By applying the homotopy perturbation method in (67) we get; 
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         (68) 

Equating the terms with identical powers of p , we get; 
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          (69) 

Thus the solution of Eq. (64) is given by 
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                      (70) 

If we put 1 in Eq. (70) or solve Eq. (64) with 1 , we obtain the exact 

solution 
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eeetxU
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Example (4.2.22): Consider the nonlinear no homogenous time-fractional invicid 

Burgers equation 

      txtxUtxUtxUD xt  1,,,                          (71) 

Where 10   ; subject to the initial condition; 

  xxU 0,  

Taking the Sumudu transform of both sides of Eq. (71), thus we get; 

       txUtxUtxStxUDS xt ,,1, 
                        (72) 

Using the property of the Sumudu transform and the initial condition in Eq. (72), we 

get; 

       txUtxUtxSuSxtxU x ,,1, 1   
                  (73) 

By applying the homotopy perturbation method in Eq. (73) we get; 
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      (74) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 

                           

...

)(

)(

)(

0211202

01101

000

xxx

xx

x

UUUUUUUH

UUUUUH

UUUH







                              (75) 

The coefficients of like powers of p , we get; 
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                            (76) 

Thus the solution of Eq. (71) is given by;  
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           (77) 

If we put 
2

1
 in Eq. (77) or solve (71) with 

2

1
 , we obtain the exact solution, 

 

 


t
terfcetx

tEttEtxtxU

t 222
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2
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If 1   then,       txtEttEtxtxU  2,11,11,  

 

Example (4.2.23): Consider the following nonlinear time-fractional equation, 

      xUtxUtxUtxUD xt  2,,,
                          (78) 

Where 21   ; subject to the initial condition; 

    10,,10,  xUxxU t  
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Taking the Sumudu transform of both sides of Eq. (78), thus we get; 

       txUtxUxUStxUDS xt ,,2, 
                    (79) 

Using the property of the Sumudu transform and the initial condition in Eq. (79), we 

get; 

       txUtxUUxSuSxtxU x ,,2, 1   
             (80) 

By applying the homotopy perturbation method in Eq. (80) we get; 
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   (81) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by 
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                            (82) 

Comparing the coefficients of like powers of p , we get; 
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          (83) 

Thus the solution Eq. (78) is given by; 

 
       

 



















13

221221
1,

3

1221








t

tttt
txtxU

     (84) 
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As a special case if we take 2 , we get; 
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tEttExtxU
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Example (4.2.24): Consider the time-fractional fifth order KdV equation, 

  0,  xxxxxxxxxt UUUUUtxUD
                      (85) 

Where 10   ; subject to the initial condition; 

  xexU 0,  

Taking the Sumudu transform of both sides of Eq. (85), thus we get; 

    xxxxxxxxxt UUUUUStxUDS ,
                     (86) 

Using the property of the Sumudu transform and the initial condition in Eq. (86), we 

get; 

    xxxxxxxxx

x UUUUUSuSetxU   1,                (87) 

By applying the homotopy perturbation method in Eq. (87) we get; 
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  (88) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by; 
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            (89) 
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Comparing the coefficients of like powers of p , we get; 
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               (90) 

Thus the solution of Eq. (85) is given by; 
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             (91) 

As a special case if we take 
2

1
 , we get; 

   terfcetEetxU xtx 













 2

1

1,
2

1,  

If 1   then, we get the solution of the classical equation as; 

  txetxU ,  
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CHAPTER FIVE 

Linear and Nonlinear Physical Models 
 

This chapter presents linear and nonlinear application in applied sciences [15]. 

In the last few decades, extensive studies were carried out in modeling linear and 

nonlinear partial differential equations. Several approaches such as characteristic 

methods, spectral methods and perturbation techniques have been used in studying 

these problems. 

The following section offers the effectiveness of the homotopy perturbation 

Sumudu transform method (HPSTM) in solving linear and nonlinear physical models. 

 

5.1: The Nonlinear Advection Problems 

The nonlinear partial differential equation of the advection problem is of the 

form 

           xgxUtxftxUtxUtxU xt  0,,,,,,             (1) 

The problem is solved by using the characteristic method, and by applying 

numerical methods such as Fourier series and Runge-Kutta method. In this section, 

the advection problem [16] is studied by utilizing homotopy perturbation method and 

Sumudu transform method.  

On applying the Sumudu transform of both sides of Eq. (1),  

                        txfSUSUS xt ,
2

1 2                                 (2) 

Using the differential operator property of the Sumudu transform and above initial 

conditions, we get; 

                          







 xUtxfuSxgtxUS 2

2

1
,,                  (3) 

Now, applying the inverse Sumudu transform of both sides of Eq. (3), we get  

                           















 

xUtxfSuSxgtxU 21

2

1
,,                (4) 

Where  txG ,  represents the term arising from the source term and the prescribed 

initial conditions. We apply the homotopy perturbation method;  
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n

n

n txUptxU                                        (5) 

 



Linear and Nonlinear Physical Models      5 
 

110 

 

And the nonlinear term can be decomposed as;  
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2

n

n

n UHpU                                          (6) 

For some He’s polynomials  UH n  that are given by; 
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nn     (7) 

Substituting Eqs. (5), and (6) in Eq. (4), we get;       
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0 2

1
,,    (8) 

This is the coupling of the Sumudu transform and the homotopy perturbation 

method using He’s polynomials. 

Comparing the coefficient of like power of p , the following approximation is 

obtained; 
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                           (9) 

Thus, the exact solution is given by; 

   





0

,,
n

n

n txUptxU  

 

Example (5.1.1):  Consider the inhomogeneous advection problem; 

                                          xx

xt eteUU 222

2

1
                                        (10) 

And the initial condition; 

         00, xU . 

Taking the Sumudu transform of both sides of Eq. (10), subject to the initial 

Condition, we get; 

                           
x

xx USueueutxUS 223

2

1
2,                          (11) 
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The inverse of Sumudu transform implies that; 

                   
x

xx USuSetettxU 2123
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1
,                         (12) 

Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 
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                             (14) 

Comparing the coefficients of like powers of p , we get; 
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       (15) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  
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                  (16) 

And in a closed form by; 

                                                    xettxU ,                                               (17) 
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Example (5.1.2):  Consider the inhomogeneous advection problem, 

        txtxUU xt  2sin
2

1
sin

2

1 2
                          (18) 

And the initial condition as; 

         xxU cos0,  . 

Taking the Sumudu transform of both sides of Eq. (18) subject to the initial 

Condition, we get; 

         
xUSutxtxSuxtxUS 2

2

1
2sin

4

1
sincos, 








        (19) 

The inverse of Sumudu transform implies that; 

           
xUSuSxtxtxtxU 21

2

1
2cos

4

1
2cos

4

1
cos,             (20) 

Now, applying the homotopy perturbation method, we get; 
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         (21) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 
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Comparing the coefficients of like powers of p , we get; 
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          (23) 

It is noted that two noise terms appears in the components  txU ,0  and  txU ,1 . 
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By removing these noise terms from 0U , the remaining terms of 0U  provides the exact 

solution. The exact solution is given by:  

     txtxU  cos,                                         (24) 

 

Example (5.1.3):  Consider the homogeneous nonlinear problem, 

                                        02  xt UUU                                             (25) 

And the initial condition as; 

         xxU 30,  .  

Taking the Sumudu transform of both sides of Eq. (25) subject to the initial 

Condition, we get; 

                          xUUSuxtxUS 23,                                (26) 

The inverse of Sumudu transform implies that; 

                  xUUSuSxtxU 213,                              (27) 

Now, applying the homotopy perturbation method, we get; 
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n UHpSuSpxtxUp                 (28) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 
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                            (29) 

This gives; 
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              (30) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  

         34232 10935486273, txtxtxxtxU               (31) 

Based on this, the solution can be expressed in the form; 
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5.2: The Klein-Gordon Equation 

In this section, the homotopy perturbation Sumudu transform method (HPSTM) 

has been applied to obtain the solution of the linear and nonlinear Klein-Gordon 

equations. The homotopy perturbation Sumudu transform method is a combined form 

of the Sumudu transform method with the homotopy perturbation method. This 

scheme finds the solution without any discretization or restrictive assumptions and 

avoids the round-off errors. The fact that this technique solves nonlinear problems 

without using Adomian’s polynomials can be considered as a clear advantage of this 

technique over the decomposition method. The results reveal that the proposed 

algorithm is very efficient, simple and can be applied to other nonlinear problems. 

 

5.2.1: Linear Klein-Gordon Equation 

The linear Klein-Gordon equation in its standard form is given by; 

       txhtxUatxUtxU xxtt ,,,,                                      (33) 

Subject to the initial conditions, 

       xgxUxfxU t  0,,0,  

Where a is a constant and  txh ,  is the source term. It is interesting to note that if

0a ; equation (33) becomes inhomogeneous wave equation.  

Applying the Sumudu transform of both sides  the equation (33) subject to the initial 

condition, we get, 

             txUatxUtxhSuxguxftxUS xx ,,,, 2        (34) 

The inverse of Sumudu transform implies that;  

                  txUatxUtxhSuSxgtxftxU xx ,,,, 21  
     (35) 

Now, applying the homotopy perturbation method, we get; 
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                 (36)   

Comparing the coefficients of like power p , we get;  
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                        (37) 
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Thus, the exact solution is given by; 

   





0

,,
n

n

n txUptxU                                        (38) 

 

Example (5.2.4):   Consider the following linear Klein-Gordon equation, 

      0,,,  txUtxUtxU xxtt ;                                      (39) 

With the initial conditions;  

     xxUxU t  0,,00, ; 

Taking the Sumudu transform on both sides of equation (39) subject to the initial 

condition, we get; 

       txUtxUSuxutxUS xx ,,, 2                           (40) 

The inverse of Sumudu transform implies that; 

       txUtxUSuStxtxU xx ,,, 21  
                       (41) 

Now, applying the homotopy perturbation method, we get; 
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n

n

n

n txUptxUpSuSptxtxUp     (42)   

Comparing the coefficients of like power p , we get;  
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                      (43) 

Therefore the solution  txU , in series form is given by; 

                                           txUtxUtxUtxU ,,,, 210   

  x
ttt

ttxU 









!7!5!3
,

753

                                (44) 

And in closed form given as; 

  txtxU sin,                                               (45) 
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Example (5.2.5):  Consider the following linear Klein-Gordon equation:   

      xtxUtxUtxU xxtt sin2,,,  ;                                    (46) 

With the initial conditions;  

    10,,sin0,  xUxxU t ; 

Taking the Sumudu transform of both sides of the equation (46) subject to the initial 

condition, we get; 

       txUtxUSuxuuxtxUS xx ,,sin2sin, 22            (47) 

The inverse of Sumudu transform implies that; 

       txUtxUSuSxttxtxU xx ,,sinsin, 212  
        (48) 

Now, applying the homotopy perturbation method, we get; 
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    (49)   

Comparing the coefficients of like power p , we get;  
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       (50) 

Therefore the solution  txU , in series form is given by; 

                                           txUtxUtxUtxU ,,,, 210  

  









!7!5!3
sin,

753 ttt
txtxU                            (51) 

And in closed form given as; 

  txtxU sinsin,                                          (52) 
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5.2.2: Nonlinear Klein-Gordon Equation 

The nonlinear Klien-Gordon equation [15] describes nonlinear wave 

interaction, which is given by: 

       txgtxUNtxURtxUD ,,,,                         (53) 

Subject to the initial conditions; 

       xgxUxfxU t  0,,0, ; 

 Where D  is the second order linear differential operator 
2

2

t
D




 , R is the 

linear differential operator of less order than ND , represents the general nonlinear 

differential operator and  txg , is the source term. 

 

Applying the Sumudu transform of both sides of the equation (53) subject to 

the initial condition, we get: 

      

         txUFtxUatxUtxhSu

xguxftxUS

xx ,,,,

,

2 


    (54) 

The inverse of Sumudu transform implies that;  
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     (55) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like power p , we get;  
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Example (5.2.6): Consider the following nonlinear Klein-Gordon equation, 

      222 ,,, txtxUtxUtxU xxtt                         (58) 

With the initial conditions;  

           xxUxU t  0,,00, . 

Taking the Sumudu transform of both sides of Eq. (58) subject to the initial 

Condition, we get: 

                         txUtxUSuuxxutxUS xx ,,2, 2242               (59) 

The inverse of Sumudu transform implies that: 

       txUtxUSuS
tx

xttxU xx ,,
12

, 221
42

 
               (60) 

Now, applying the homotopy perturbation method, we get: 
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n

xxn

n

n

n

n

n UHptxUpSuSp
tx

xttxUp     (61) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 

                                    

  21303
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2)(

2)(

)(

UUUUUH

UUUUH

UUUH
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                                 (62) 

Comparing the coefficients of like powers of p , we get: 

 

       

       

25215921360

383

45360

11

186624001802268071280

,:

1225212960180

,:

12
,:

73135104

16669122

11
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42731042
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1

42

0

0

txtxtx

txtxttx

UHUSuStxUp

txtxtxt

UHUSuStxUp

tx
xttxUp

xx

xx

















                  (63) 

And so on. Combining the results obtained for the components, the solution in a form:  

                            txtxUptxU
n

n

n





0

,,                                    (64) 
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Example (5.2.7): Consider the following nonlinear Klein-Gordon equation, 

      44222 22,,, txtxtxUtxUtxU xxtt                (65) 

With the initial conditions;  

           00,,00,  xUxU t . 

Taking the Sumudu transform of both sides of Eq. (65) subject to the initial 

Condition, we get: 

       txUtxUSuuxuuxtxUS xx ,,2442, 2264422          (66) 

The inverse of Sumudu transform implies that: 

       txUtxUSuStxttxtxU xx ,,
30

1

6

2
, 22164422  

      (67) 

Now, applying the homotopy perturbation method, we get: 
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    (68) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 
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                               (69) 

Comparing the coefficients of like powers of p , we get: 
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               (70) 

And so on. Combining the results obtained for the components, the solution in a form:  

                            22

0

,, txtxUptxU
n

n

n




                                 (71) 
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5.3: The Burgers Equation 

The Burger's equation [23] is one of the fundamental equations in fluid 

mechanics. Burger's equation describes the coupling between diffusion and 

convection processes.  

 

The standard form of Burgers’ equation is given by: 

0,  tUVUUU xxxt                                (72) 

Where V  is a constant that defines the kinematic viscosity. If the viscosity,

0V the equation is called in viscid Burgers equation. The in viscid Burgers 

equation governing gas dynamics. In the viscid Burgers equation has been discussed 

before as a homogeneous case of the advection problem. 

 Nonlinear Burger's equation is considered as a simple nonlinear partial 

differential equations [15] involving both convection and diffusion in fluid dynamics. 

Burger introduced this equation [23] in order to study the interaction of the opposite 

effects of convection and diffusion in turbulent fluid in a channel. This equation also 

describes the structure of shock waves, traffic flow and acoustic transmission. A lot of 

research has been carried out on Burger's equation.  

 

The Cole-Hopf transformation is the commonly used approach. The solution 

 txU ,  was replaced by x  in Eq. 72) to obtain; 

xxxxxxtx V                                 (73) 

Where by integrating this equation with respect to x  we find: 

xxxt V  2

2

1
                                 (74) 

Using the Cole-Hopf transformation: 

 ln2V                                           (75) 

So that: 

           



 x

x VtxU 2,                                 (76) 

Transforms the nonlinear equation into the heat flow equation: 

xxt V                                           (77) 

It is clear that nonlinear Burger's equation (72) has been converted to an easily 

solvable linear equation.  
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Let us consider the Burgers equation: 

xxxt UUUU                                          (78) 

And the initial condition as; 

          xfxU 0, . 

Taking the Sumudu transform of both sides of Eq. (78) subject to the initial 

Condition, we get; 

                            xxx UUUSuxftxUS ,                          (79) 

The inverse of Sumudu transform implies that; 

                    xxx UUUSuSxftxU  1,                            (80) 

Now, applying the homotopy perturbation method, we get; 
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n UHptxUpSuSpxftxUp   (81) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 
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                  (82) 

Comparing the coefficients of like powers of p , we get; 
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3
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2

00
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1
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,:

,:

,:

                          (83) 

Additional components may be computed to increase the accuracy level. 

 

The solution in a series form is as follows. However, the n term approximant 

n can be determined by: 

 





1

0

,
n

k

k

n

n txUp                                             (84) 
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In the following we list some of the derived exact solutions of Burgers equation 

derived by many researchers: 

 

 

 
xe

xe

xe

xe
txU

tt

tx

txt

x

t

x
txU

xxxtxU

t

t

t

t

cos1

sin2
,

sin1

cos2
,

2
,

2
,,

tanh2,cot2,tan2,

2



























                            (85) 

The following examples will illustrate the discussion carried out above by 

using homotopy perturbation method. 

 

Example (5.3.8):  Consider the following Burgers equation, 

xxxt UUUU                                          (86) 

And the initial condition as; 

         xxU 0, . 

Taking the Sumudu transform of both sides of Eq. (86) subject to the initial 

Condition, we get; 

                          xxx UUUSuxtxUS ,                            (87) 

The inverse of Sumudu transform implies that; 

                  xxx UUUSuSxtxU  1,                              (88) 

Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by: 
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                  (90) 
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Comparing the coefficients of like powers of p , we get; 

         

 

       

       

       
















3

22

1

3

3

2
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1

2

2

00

1

1

1

0
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,:

,:

,:

txUHUSuStxUp

txUHUSuStxUp

txUHUSuStxUp

xtxUp

xx

xx

xx

                     (91) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by; 

    321, tttxtxU                              (92) 

Consequently, the exact solution is given by; 

  1,
1

, 


 t
t

x
txU                                 (93) 

 

Example (5.3.9):  Consider the following Burgers equation, 

xxxt UUUU                                           (94) 

And the initial condition as; 

         0,
2

10,  x
x

xU . 

Taking the Sumudu transform of both sides of Eq. (94) subject to the initial 

Condition, we get; 

                          xxx UUUSu
x

txUS 
2

1,                            (95) 

The inverse of Sumudu transform implies that; 

                  xxx UUUSuS
x

txU  12
1,                               (96) 

Now, applying the homotopy perturbation method, we get; 
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txUp   (97) 

Where  UHn are He’s polynomials that represents the nonlinear terms. 
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The first few components of He’s polynomials, are given by: 
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Comparing the coefficients of like powers of p , we get; 
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                (99) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by; 

   3

4

2

32

2222
1, t

x
t

x
t

xx
txU                (100) 

is readily obtained. To determine the exact solution, Eq. (100) can be rewritten as; 

 
txx

t

x

t

x

t

x
txU













2
11

2
1,

3

3

2

2

           (101) 

 

Example (5.3.10):  Consider the following Burgers equation, 

xxxt UUUU                                           (102) 

And the initial condition as; 

         xxU tan20,  . 

Taking the Sumudu transform of both sides of Eq. (102) subject to the initial 

Condition, we get; 

                          xxx UUUSuxtxUS  tan2,                           (103) 

The inverse of Sumudu transform implies that; 

                  xxx UUUSuSxtxU  1tan2,                             (104) 
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Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by, 
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Comparing the coefficients of like powers of p , we get; 
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                     (107) 

Thus, the exact solution is given by; 

  xtxU tan2,                                          (108) 

 

Example (5.3.11):  Consider the following Burgers equation, 

xxxt UUUU                                          (109) 

And the initial condition as; 

          
2

21
,0,

2
,0

tt
tU

t
tU x  . 

Applying the Sumudu transform of both sides of Eq. (109) subject to the initial 

Condition, we get: 

    xt UUUSu
tt

u
t

txUS 







 2

2

212
,                      (110) 

The inverse of Sumudu transform implies that; 

                  xt UUUSuS
tt

x
t

txU 







  21

2

212
,                         (111) 

 



Linear and Nonlinear Physical Models      5 
 

126 

 

Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by, 
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Comparing the coefficients of like powers of p , we get; 
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And so on. Combining the results obtained for the components, the solution in a series 

form is given by; 
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Consequently, the exact solution is given by; 

  ,
2

,
txt

x
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                              (116) 
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5.4: The Telegraph Equation 

The standard form of the telegraph equation [15] is given by: 

UcUbUaU tttxx                                      (117) 

Where  txUU , is the resistance, and ba , and c  are constants related to 

the inductance, capacitance and conductance of the cable respectively.  

 

Note that the telegraph equation is a linear partial differential equation. The 

telegraph equation arises in the propagation of electrical signals along a telegraph line. 

Assuming 0a and 0c , because of electrical properties of the cable, then we 

obtain: 

txx UbU                                            (118) 

Which is the standard linear heat equation mentioned before in Chapter 2.  

On the other hand, the electrical properties may lead to 0b  and 0c . Hence we 

obtain: 

ttxx UaU                                            (119) 

Which is the standard linear wave equation presented in Chapter 2. 

LxUUUU tttxx  0,                       (120) 

With the boundary and initial conditions; 

       
       

       xvxUxhxUCI

tgtUtftUCB

t

t





0,,0,

,0,,0
. 

Taking the Sumudu transform of both sides of Eq. (120) subject to the initial 

Condition, we get; 

          UUUSutgutftxUS ttt  2,                   (121) 

The inverse of Sumudu transform implies that; 

                      UUUSuStgxtftxU ttt   21,                      (122) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 
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Thus, the exact solution is given by; 
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n

n

n txUptxU                                   (125) 

Example (5.4.12): Consider the following homogeneous telegraph equation:   

UUUU tttxx                                         (126) 

With the boundary and initial conditions; 

       
   

    x

t

x

t

t

t

exUexUCI

etUetUCB

20,,0,

,0,,0 22



 

.  

Taking the Sumudu transform of both sides of Eq. (126) subject to the initial 

Condition, we get; 

      UUUSueuetxUS ttt

tt   222,                 (127) 

The inverse of Sumudu transform implies that; 

                  UUUSuSexetxU ttt

tt   2122,                      (128) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 
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     (130) 
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And so on. Combining the results obtained for the components, the solution in a series 

form is given by; 

  







  54322
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1
1, xxxxxetxU t

       (131) 

Consequently, the exact solution is given by; 

  txetxU 2,                                          (132) 

 

Example (5.4.13):  Consider the following homogeneous telegraph equation: 

UUUU tttxx 44                                       (133) 

With the boundary and initial conditions; 

       
   

    20,,10,

2,0,1,0
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tUetUCB

t

x
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t

. 

Taking the Sumudu transform of both sides of Eq. (133) subject to the initial 

Condition, we get; 

      UUUSuuetxUS ttt

t 4421, 22                  (134) 

The inverse of Sumudu transform implies that; 

                  UUUSuSxetxU ttt

t 4421, 212  
                   (135) 

Now, applying the homotopy perturbation method, we get; 
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         (136) 

Comparing the coefficients of like powers of p , we get; 
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      (137) 
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And so on. Combining the results obtained for the components, the solution in a series 

form is given by; 

      







  322 2
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1
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1
21, xxxetxU t

        (138) 

Consequently, the exact solution is given by; 

  tx eetxU 22,                                  (139) 

 

5.5: Schrodinger Equation 

In this section, linear and nonlinear Schrodinger equations [24, 25] will be 

discussed and investigated. It is well known that Schrodinger equations arise in the 

study of the time evolution of the wave function. 

 

5.5.1: The Linear Schrodinger Equation 

The initial value problem for the linear Schrodinger equation for a free particle 

with mass m is given by the following standard form; 

0,1, 2  tiUiU xxt                          (140) 

And the initial condition as; 

          xfxU 0, . 

Where  xf is continuous & square integrable. It is to be noted that the 

Schrodinger equation (140) discusses the time evolution of a free particle. Moreover, 

the function  txU , is complex, and Eq. (140) is a first order Schrodinger differential 

equation in t . 

 

The homotopy perturbation method will be applied to handle the linear and the 

nonlinear Schrodinger equations. In order to achieve this, applying the Sumudu 

transform of both sides of Eq. (140) subject to the initial condition, we get: 

        xxUSuixftxUS ,                               (141) 

The inverse of Sumudu transform implies that; 

                    xxUSuSixftxU 1,                                (142) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 
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Thus, the exact solution is given by; 
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Example (5.5.14): Consider the linear Schrodinger equation, 

xxt UiU                                                 (146) 

And the initial condition as; 

  xiexU 0,  

Taking the Sumudu transform of both sides of Eq. (146) subject to the initial 

Condition, we get; 

      xx

xi USuietxUS ,                                (147) 

The inverse of Sumudu transform implies that; 

                  xx

xi USuSietxU 1,                                   (148) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 
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Summing these iterations yields the series solution; 
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                (151) 

That leads to the exact solution; 

   txietxU ,                                          (152) 

 

Example (5.5.15): Consider the linear Schrodinger equation, 

xxt UiU                                                   (153) 

And the initial condition as; 

  xxU sinh0,    

Taking the Sumudu transform of both sides of Eq. (153) subject to the initial 

Condition, we get; 

      xxUSuixtxUS  sinh,                               (154) 

The inverse of Sumudu transform implies that; 

                  xxUSuSixtxU 1sinh,                                  (155) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 
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Summing these iterations yields the series solution; 
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That leads to the exact solution; 

  xetxU ti sinh,                                         (159) 
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5.5.2: The Nonlinear Schrodinger Equation 

The nonlinear Schrodinger equation (NLS) in standard form is defined as 

0
2

 UUUUi xxt                                    (160) 

Where  is a constant and  txU ,  is complex. Equation (160) represents solitary type 

solutions. A solitary wave is a wave where the speed of propagation is independent of 

the amplitude of the wave.  

 

The nonlinear Schrodinger equations are given by; 

02
2

 UUUUi xxt                                    (161) 

And  

02
2

 UUUUi xxt                                    (162) 

Let us begin our analysis by considering the initial value problem; 

   xfxUUUUUi xxt  0,,0
2

                   (163) 

Taking the Sumudu transform of both sides of Eq. (163) subject to the initial 

Condition, we get; 

        UUUSuixftxUS xx

2
,                        (164) 

The inverse of Sumudu transform implies that; 

                    UUUSuSixftxU xx

21,  
                           (165) 

Recall from complex analysis that: 

UUU 
2

                                              (166) 

Where U  is the conjugate of U . Where the nonlinear term   txUN , is given by: 

  UUUN 2                                               (167) 

In view of (167), and following the formal techniques used before to derive the 

homotopy polynomials, we can easily derive that  UN  has the following polynomials 

representation. 
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  (168) 
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Now, applying the homotopy perturbation method, we get; 
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n UHptxUpSuSpixftxUp      (169) 

Comparing the coefficients of like powers of p , we get; 
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                         (170) 

Thus, the exact solution is given by; 

   





0

,,
n

n

n txUptxU                                         (171) 

The analysis introduced above will be illustrated by discussing the following 

examples. 

 

Example (5.5.16): Consider the following nonlinear Schrodinger equation, 

02
2

 UUUUi xxt                                   (172) 

And the initial condition as; 

  xiexU 0,  

Taking the Sumudu transform of both sides of Eq. (172) subject to the initial 

Condition, we get; 

      UUUSuietxUS xx

xi 2
2,                        (173) 

The inverse of Sumudu transform implies that; 

                  UUUSuSietxU xx

xi 21 2,  
                          (174) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 

 

       

       

        xi
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2,:

!2

1
2,:

2,:
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           (176) 

Summing these iterations yields the series solution; 

         









32

!3

1

!2

1
1, tititietxU xi

            (177) 

That leads to the exact solution; 

   txietxU ,                                        (178) 

Example (5.5.17): Consider the following nonlinear Schrodinger equation, 

02
2

 UUUUi xxt                                   (179) 

And the initial condition as; 

  xiexU 0,  

Taking the Sumudu transform of both sides of Eq. (179) subject to the initial 

Condition, we get; 

      UUUSuietxUS xx

xi 2
2,                        (180) 

The inverse of Sumudu transform implies that; 

                  UUUSuSietxU xx

xi 21 2,  
                          (181) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like powers of p , we get; 
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        (183) 
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Summing these iterations yields the series solution; 

           









32
3

!3

1
3

!2

1
31, tititietxU xi

           (184) 

That leads to the exact solution; 

   txietxU 3,                                       (185) 

 

5.6: Korteweg-deVaries Equation 

The Korteweg-deVaries (KdV) equation in simplest form [26- 28] is given by: 

0 xxxxt UUUaU                                  (186) 

Let us first consider the initial value problem 

   xfxUUbUUaU xxxxt  0,,0                   (187) 

Where a  and b  are constants. 

Taking the Sumudu transform of both sides of Eq. (187) subject to the initial 

Condition, we get; 

                   xxxx UbUUaSuxftxUS ,                          (188) 

The inverse of Sumudu transform implies that; 

                   xxxx UbUUaSuSxftxU  1,                        (189) 

Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by; 
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Comparing the coefficients of like powers of p , we get; 
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                      (192) 

Thus, the exact solution is given by; 

   





0

,,
n

n

n txUptxU                                         (193) 

 

Example (5.6.18):  Consider the following homogeneous KdV equation; 

06  xxxxt UUUU                                    (194) 

And the initial condition as; 

  xxU 60,   

Taking the Sumudu transform of both sides of Eq. (194) subject to the initial 

Condition, we get; 

                 xxxx UUUSuxtxUS  66,                           (195) 

The inverse of Sumudu transform implies that; 

                 xxxx UUUSuSxtxU   66, 1                         (196) 

Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by; 
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Comparing the coefficients of like powers of p , we get; 
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                  (199) 

 Summing these iterations yields the series solution; 

         
32

36363616, tttxtxU             (200) 

That leads to the exact solution; 

  136,
361

6
, 


 t

t

x
txU                             (201) 

Example (5.6.19):  Consider the following homogeneous KdV equation: 

06  xxxxt UUUU                                    (202) 

And the initial condition as; 

   1
6

1
0,  xxU  

Taking the Sumudu transform on both sides of Eq. (202) subject to the initial 

Condition, we get; 

                   xxxx UUUSuxtxUS  61
6

1
,                      (203) 

The inverse of Sumudu transform implies that; 

                   xxxx UUUSuSxtxU   61
6

1
, 1

                   (204) 

Now, applying the homotopy perturbation method, we get; 
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Where  UHn are He’s polynomials that represent the nonlinear terms. 

The first few components of He’s polynomials, are given by; 
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             (206) 
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Comparing the coefficients of like powers of p , we get; 
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            (207) 

 Summing these iterations yields the series solution; 

         3211
6

1
, tttxtxU                    (208) 

That leads to the exact solution; 

  1,
1

1

6

1
, 












 t

t

x
txU                             (209) 

Example (5.6.21): 

 Consider an equation with initial condition is given by  

  x

xxxxxxxxxt exUUUUUUU  0,,0                   (210) 

Taking Sumudu Transform on both sides of Eq. (210) subject to the initial 

Condition, we get; 

     xxxxxxxxx

x UUUUUSuetxUS ,                      (211) 

The inverse of Sumudu transform implies that; 

      xxxxxxxxx

x UUUUUSuSetxU  1,                    (212) 

Now, applying the homotopy perturbation method, we get; 
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n txUpBHpSupetxUp    (213) 

Where  UHn and  UBn are He’s polynomials that represents the nonlinear terms. 

The first few components of He’s polynomials, are given by; 
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              (214) 
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Comparing the coefficients of like powers of p , we get; 
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           (215) 

 Summing these iterations yields the series solution; 

     









!3!2
1,

32 tt
tetxU x

                        (216) 

That leads to the exact solution; 

  tx eetxU ,                                             (217) 

 

Example (5.6.22): 

 Consider the following FKdV Equation  

020 22  xxxxxxxxxxxxxxt UUUUUUUUU               (218) 

With the initial condition, 

 
x

xU
1

0,   

Taking Sumudu transform of both sides of Eq. (218) subject to the initial 

Condition, we get; 

     xxxxxxxxxxxxxx UUUUUUUUSu
x

txUS  2220
1

,      (219) 

The inverse of Sumudu transform implies that; 

      xxxxxxxxxxxxxx UUUUUUUUSuS
x

txU   221 20
1

,    (220) 

Now, applying the homotopy perturbation method, we get; 
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             (221) 

Where    UBUH nn , and  URn are He’s polynomials that represent the nonlinear 

terms. 
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The first few components of He’s polynomials, are given by; 
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Comparing the coefficients of like powers of p , we get; 
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 Summing these iterations yields the series solution; 
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That leads to the exact solution; 
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CHAPTER SIX 

Comparison of Homotopy Perturbation Method and 

Sumudu Transform and Another Method 

 
 The homotopy perturbation Sumudu transform method (HPSTM) is the 

combination of Sumudu transform and the homotopy perturbation method. This 

method does not require any additional polynomial such as Adomian polynomial. One 

may visualize that all these three methods HPSTM, ADM and STM are powerful and 

accurate for solving different kinds of linear and nonlinear fractional differential 

equations. The features of HPSTM are: it is very simple, straightforward and user 

friendly, it can be used for solving nonlinear problems, which is not possible using 

ADM and STM, and it does not require polynomial such as Adomian polynomial.  

 

6.1: Comparison of Homotopy Perturbation Sumudu Transform 

Method and Sumudu Transform for Solving Linear Partial 

Differential Equations 

 

6.1.1: Basic Idea of HPSTM                                                          

To illustrate the basic idea of this method, we consider a general nonlinear non-

homogenous partial differential equation with the initial conditions of form 

         txgtxUNtxURtxUD ,,,,                            (1) 

       xfxUxhxU t  0,,0,  

Where D  is the second order linear differential operator 
2

2

t
D




 , R is the 

linear differential operator of less order than ND , represents the general nonlinear 

differential operator and  txg , is the source term. 

Taking the Sumudu Transform on both sides of Eq. (1), we get 

                            txgStxUNStxURStxUDS ,,,,                 (2) 

Using the differential operator property of the Sumudu Transform and above initial 

conditions, we get; 

                 
         

     txUNStxURSu

xfuxhtxgSutxUDS

,,

,,

2

2




                         (3) 
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Now, applying the inverse Sumudu Transform on both sides of Eq(3), we get  

                            txUNtxURSuStxGtxU ,,,, 21  
                   (4) 

Where  txG ,  represents the term arising from the source term and the prescribed 

initial conditions. We apply the Homotopy perturbation method;  

   





0

,,
n

n

n txUptxU                                               (5) 

And the nonlinear term can be decomposed as;  
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,,
n

n

n txHptxUN                                           (6) 

For some He’s polynomials  UH n  that are given by; 
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Substituting Eqs.  (5) and (6) in Eq. (4), we get; 
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This is the coupling of the Sumudu Transform and the Homotopy perturbation method 

using He’s polynomials. 

Comparing the coefficient of like power of p , the following approximation is 

obtained; 
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                       (9) 

 

6.1.2: Method of Solution of the Problem 

Consider the following linear Klein-Gordon equation,  

      txtxUtxUtxU xxtt sinsin2,2,,  ;                              (10) 

With the initial conditions;  

    xxUxU t sin0,,00,  ; 
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Taking the Sumudu transform of both sides of Eq. (10), subject to the initial 

condition, we get;  

       txtxUtxUSuxutxUS xx sinsin2,2,sin, 2               (11) 

The inverse of Sumudu transform implies that; 

       txUtxUSuSxttxU xx ,,sin, 21  
                        (12) 

Now, applying the homotopy perturbation method, we get; 
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Comparing the coefficients of like power p , we get;  
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                  (14) 

Therefore the solution  txU , in series form is given by; 

  x
ttt

ttxU sin
!7!5!3

,
753









                                     (15) 

And in closed form given as; 

  xttxU sinsin,                                                  (16) 
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6.1.3: Basic Idea of STM (Definitions and Theorems) 

 

The Sumudu transform is an integral transform similar to the Laplace transform, 

introduced in the early 1990s by Watugala [29] to solve linear differential equations 

and control engineering problems. 

 

Note that these the theorems and definitions will use in this section. 

 

Definition (6.1.1): The Sumudu transform of a function  tf , defined for all real 

numbers 0t  , is the function  uFs  , defined by: 
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dttf
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u
uFtfS s                            (17) 

 

Definition (6.1.2): The double Sumudu transform of a function  txf ,  , defined for 

all real numbers  0,0  xt  , is defined by: 
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, dttxf
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u
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In the same line of ideas, the Sumudu transform of the second partial derivative with 

respect to t  is of the form [30], 
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Similarly, the Sumudu transform of the second partial derivative with respect to x  is 

of form [30], 

 
 uxF

dx

d

x

txf
S ,

,













 

 
 uxF

dx

d

x

txf
S ,

,
2

2

2

2













                                     (20) 
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Theorem (6.1.3) [29]:  Let  uG  be the Sumudu transform of  tf such that 

i.   ssG 1 is a meromorphic function, with singularities having   sRe and 

ii. there exist a circular region with radius R and positive constants M and K

with   KRMssG 1 , then the function  tf is given by; 
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6.1.4: Method of Solution of the Problem 

Applying the Sumudu transform of Eq. (10), we get: 

       txSUSUSUS xxtt sinsin22                              (22) 
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Thus we have the ordinary differential equation: 
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The initial conditions gives;  

0 BA  

Then  

0cU                                                      (25) 

And 

  x
u

u
uxU p sin

1
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The solution is; 
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Taking the inverse of Sumudu transform: 

  x
u

u
StxU sin

1
,

2

1











 

                                       (28) 

  xttxU sinsin,                                                    (29) 

 

6.2: Comparison of Homotopy Perturbation Sumudu Transform 

Method and Homotopy-Perturbation Method for Solving 

Nonlinear Partial Differential Equations 

 

6.2.1: Basic Idea of HPM 

We consider the following general nonlinear differential equation, 

 txfuNuL ,                                               (30) 

With the initial conditions, 

    21 0,,0, cxucxu t   

Where u  is a function of x  and t and 1c ; 2c  , are constants or functions of x , 

and L , and N  are respectively, the linear and nonlinear operators. 

According to HPM, we construct a homotopy which satisfies the following relation, 

     0,, 00  txfuNpvLpvLuLpuH                  (31) 

Where  1,0p is an embedding parameter and 0v  is an arbitrary initial 

approximation satisfying the given initial conditions. When we put 
0p and 

1p  in 

Eq. (32), we obtain: 

  00, 0  vLuLuH   , and        0,1,  txfuNuLuH      (32) 

Which are the linear and nonlinear original equations, respectively. In 

topology, this is called deformation and 0 ,Lu Lv and  txfuNuL , are called 

hemitropic. Here the embedding parameter is introduced much more naturally, 

unaffected by artificial factors; further it can be considered as a small parameter for

10  p . 

 

We introduce in this work an alternative way of choosing the initial 

approximations, that is, 

       txfLctctxfLxutxuv t ,,0,0, 1

11

1

0            (33) 
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Where     

ttt

dtdtdtL
000

1 ......  depends on the order of the linear 

operator. We assume that the initial approximation 0v  given in Eq. (33) can be 

decomposed into two parts, namely 1,0v and 2,0v such that: 

2,01,00 vvv                                                (34) 

In HPM, the solution of Eq. (31) is expressed as: 

         txuptxuptxutxu ,,,, 2

2

10                     (35) 

Hence, the approximate solution of Eq. (30) can be expressed as a series of the powers 

of p , i.e. 




210
1

lim uuuuu
p

                               (36) 

 

6.2.2: Methods of Solution Problems 

 

i. Homotopy Perturbation Sumudu Transforms Method 

Consider the following homogenous advection problem, 

                                                      0 xt UUU                                                   (37) 

  xxU 0, . 

Taking the Sumudu Transform on both sides of Eq. (37) subject to the initial 

Condition, we get; 

                                               xUUSuxtxUS ,                                     (38) 

The inverse of Sumudu Transform implies that; 

        xUUSuSxtxU 1,                                     (39) 

Now, applying the homotopy perturbation method, we get; 
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n

n

n

n

n UHpSuSpxtxUp                 (40) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 

Comparing the coefficients of like powers of p , we get; 
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                     (41) 
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And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  

                            321, tttxtxU                               (42) 

And in a closed form by; 

                                                   
1

,



t

x
txU                                                (43) 

ii. Homotopy perturbation Method  

To solve Eq. (37) with initial condition, according to the homotopy perturbation 

technique, we construct the following homotopy; 

  01 0 
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or equivalently; 

000 
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U
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t

U

t

v
; 

Suppose that the solution of Eq. (44) can be represented as; 

 3

3

2

2

10 vpvpvpvv  .                                  (45) 

Substituting Eq. (45) into Eq. (44), and equating the terms of the same power, of P , it 

follows that; 
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v
p

.                         (46) 

By choosing     xxUtxU  0,,0 , and solving the above equations, we obtain 

the following approximations; 
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                     .                          (47) 
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Then the exact solution of Eq. (37) is given by: 

    321, tttxtxU                                 (48) 

Or in a closed form by: 

 
1

,



t

x
txU                                                   (49) 

 

6.3: Comparison of Homotopy Perturbation Sumudu Transform 

Method and Adomian Decomposition Method for Solving 

Nonlinear Partial Differential Equations 

 

6.3.1: Basic Idea of ADM 

The principle of the Adomian decomposition method (ADM) when applied to a 

general nonlinear equation is in the following form: 

         txgtxUNtxURtxUL ,,,,                            (50) 

       xfxUxhxU t  0,,0,  

inverse operator, L  , with     

t

dtL
0

1
Equation (50) can be hence as; 

          txUNLtxURLtxgLtxU ,,,, 111                  (51) 

The decomposition method represents the solution of equation (50) as the following 

infinite series: 

   





0

,,
n

n txUtxU                                              (52) 

The nonlinear operator  UUN   is decomposed as: 

  





0

,
n

nAtxUN                                               (53) 

Where, nA  are Adomian's polynomials, which are defined as [33]: 
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                  (54) 

Substituting equations Eqs. (52) and (53) into equation (50), we have 
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Consequently, it can be written as: 
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                                 (56) 

where   is the initial condition, 

Hence all the terms of U are calculated and the general solution obtained according to 

ADM as 





0n

nUU . The convergence of this series has been proven in [33]. 

However, for some problems [32] this series can’t be determined, so we use an 

approximation of the solution from truncated series 

0

,
M

M n

n

U U


  with,     UUM
M




lim                        (57) 

 

5.4.2: Method of Solution of the Problem  

i. Homotopy Perturbation Sumudu Transforms Method 

Consider the following homogenous advection problem [31], 

   232 txtxtUUU xt                                (58) 

  00, xU . 

Taking the Sumudu Transform on both sides of Eq. (58) subject to the initial 

Condition, we get; 

      xUUSuuxuuxutxUS  342 232,                (59) 

The inverse of Sumudu Transform implies that; 

      xUUSuStxttxttxU 1342

3

1

4

1
,                  (60) 

Now, applying the Homotopy perturbation method, we get; 
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n

n UHpSuSptxttxttxUp     (61) 

Where  UHn are He’s polynomials that represent the nonlinear terms. 
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Comparing the coefficients of like powers of p , we get; 
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              (62) 

And so on. Combining the results obtained for the components, the solution in a series 

form is given by;  

      txttxU  2,                                                (63) 

 

ii. Adomian decomposition method 

We first rewrite Eq. (58) in an operational form; 

  00,

2 23





xU

UUtxtxtUL x
                                (64) 

Where the differential operator L  is; 

t
L




                                                          (65) 

The inverse 1L is assumed as an integral operator given by: 

    

t

dtL
0

1
                                               (66) 

Applying the inverse operator 1L on both sides of Eq. (64) and using the initial 

condition we find: 

   xUULtxttxttxU 1342

3

1

4

1
,                     (67) 

Substituting Eqs. (52) and (53) into the functional equation (64) gives: 
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0 3

1
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1
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n

n

n

n ALtxttxttxU               (68) 

Where nA  are the so-called Adomian polynomials, identifying the zeroth component 

 txU ,0  by 342

3

1

4

1
txttxt  , the remaining components   1,, ntxUn , can be 

determined by using the recurrence relation: 
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 kALtxU

txttxttxU

kk

                            (69)  

Where kA  are Adomian polynomials that were evaluated before in the homogeneous 

case. This in turn gives the components: 
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ttxtxtxttxU
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               (70) 

It is important to recall here that the noise terms appear between the two components 

0U  and 1U . The noise terms are identified as the identical terms with opposite signs. 

We then cancel the noise terms 34

3

1

4

1
txt  between the components 0U  and 1U , and 

justify that the remaining terms of u0 satisfy the equation. Consequently, the exact 

solution is: 

  txttxU  2,                                                 (71) 

 

 

6.4: Comparison of Homotopy Perturbation Sumudu Transform 

Method and Adomian Decomposition Method for Solving 

Nonlinear Fractional Partial Differential Equations 

 

6.4.1: Basic Idea of HPSTM 

To illustrate the basic idea of this method, we consider a general fractional 

nonlinear no homogeneous partial differential equation with the initial condition of 

the form, 

       txgtxUNtxRUtxUDt ,,,,                            (72) 

   xfxU 0,  

Where  txUDt ,  is the Caputo fractional derivative of the function  txU ,  , R is the 

linear differential operator, N  represents the general nonlinear differential operator 

and  txg ,  is the source term. 
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Applying the Sumudu Transform (denoted in this section by S  ) on both sides of        

Eq. (72), we get:  

          txgStxUNtxLUStxUDS t ,,,,                    (73) 

Using the property of the Sumudu transform, we get; 

       

    txUNtxRUSu

txgSuxftxUS

,,

,,









                             (74)                   

Operating with the Sumudu inverse on both sides of Eq. (73) gives; 

         txUNtxRUSuStxGtxU ,,,, 1   
                 (75) 

Where  txG ,  represents the term arising from the source term and the prescribed 

initial conditions. We apply the Homotopy perturbation method; 

   





0

,,
n

n

n txUptxU                                          (76)  

And the nonlinear term can be decomposed as; 
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,
n

n

n UHptxUN                                         (77) 

For some He's polynomials  UH n  [26, 45] that are given by; 
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nn                 (78) 

Substituting Eqs. (76) and (77) in Eq. (75), we get; 
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n UHptxUpRSuSptxGtxUp 
             (79) 

This is the coupling of the Sumudu Transform and the HPM using He’s polynomials. 

Comparing the coefficients of like powers of p , the following approximations are 

obtained: 
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                                (80) 
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By utilizing the results in Eq. (80), and substituting them into Eq. (75) then the 

solution of Eq. (72) can be expressed as a power series in p. The best approximation 

for the solution of initial condition is: 

     





210

0
1

,lim, UUUtxUptxU
n

n

n

p
                (81) 

The solutions of Eq. (81) generally converge very rapidly 

 

6.4.2: Methods of Solution of the Problems 

Consider the following nonlinear time-fractional Harry Dym equation, 

      10,,,, 33   txUtxUtxUD xt                (82) 

With the initial condition; 
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3
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 x

b
axU  

Applying the Sumudu Transform on both sides of Eq. (82), subject to initial 

conditions, we get; 

       txUtxUSux
b

atxUS x ,,
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3
, 33

3
2















                 (83) 

The inverse Sumudu Transform implies that; 
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b

atxU x ,,
2

3
, 331
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                 (84) 

Now applying the HPM, we get; 

   


































 








 0

1

3
2

0 2

3
,

n

n

n

n

n

n UHpSuSpx
b

atxUp 
                   (85) 

Where are He’s polynomials that represent the nonlinear terms. So, then He’s 

polynomials are given by; 
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n

n

n 33

0






                                          (86) 

The first few components of He’s polynomials are given by; 
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Comparing the coefficients of like powers of p , we get;   
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        (88) 

In this manner the rest of components of the HPSTM solution can be obtained. Thus, 

the solution  txU , of the Eq. (82) is given as; 
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  (89) 

 

6.4.3: Basic Idea of ADM 

To illustrate the basic idea of Adomian decomposition method, we consider a 

general fractional nonlinear no homogeneous partial differential equation with the 

initial condition of the form, 

       txgtxUNtxRUtxUDt ,,,,                             (90) 

Where  txUDt , is the Caputo fractional derivative of the function  txU ,  , R is 

the linear differential operator, N represents the general nonlinear differential 

operator, and  txg , is the source term. 

Applying the operator 
tJ on both sides of Eq. (90), we get; 

        txUNtxURJtxgJ
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Next, we decompose the unknown function into sum of an infinite number of 

components given by the decomposition series; 







0n

nUU                                                  (92) 

And the nonlinear term can be decomposed as; 
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nAUN                                                 (93) 

Where nA are Adomian polynomials that are given by; 
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The components ...,,, 210 UUU are determined recursively by substituting Eqs. (92) 

and (93) into Eq. (91) leading to; 
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This can be written as; 
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Adomian method uses the formal recursive relations as; 
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                                     (97) 

 

6.4.4: Methods of Solution of The Problems 

To solve the nonlinear time-fractional Harry Dym equation (82), we apply the 

operator on both sides of Eq. (82) we get; 
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This gives the following recursive relations using Eq. (97): 
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Where 
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The first few components of Adomian polynomials are given by 
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The components of the solution can be easily found by using the previous recursive 

relations as; 
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  (102) 

And so on. In this manner the rest of the components of the decomposition solution 

can be obtained. Thus, the ADM solution  txU , of Eq. (82) is given as; 
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  (103) 

This is the same solution as obtained by using HPSTM. 
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Table: Laplace and Sumudu transform of some function 

 tf      tfLsF       tfSuF   

1 
s

1
 1 

t  
2

1

s
 u  

 






,2,1
!1

1

n
n

t n

 ns

1
 

1nu  

t

1
 

s

1
 

u

1
 



t
2  

2

3
1

s

 u  

 
0,

1






a
a

t a

 as

1
 

1au  

ate  
as 

1
 

au1

1
 

atet  
 2

1

as 
 

 2
1 au

u


 

 
,...2,1,

!1

1 1 


 net
n

atn  
 n

as 

1
 

 n

n

au

u





1

1

 

 
0,

1 1 


 ket
k

atk  
 k

as 

1
 

 k

k

au

u





1

1

 

 
  baee

ba

btat 


,
1

 
  bsas 

1
 

  buau

u

 11
 

 
  baebea

ba

btat 


,
1

 
  bsas

s


 

  buau  11

1
 



160 
 

wt
w

sin
1

 
22

1

ws 
 

221 wu

u


 

wtcos  
22 ws

s


 

221

1

uw
 

at
a

sinh
1

 
22

1

as 
 

221 ua

u


 

atcosh  
22 as

s


 

221

1

ua
 

wte
w

at sin
1

 
  22

1

was 
 

  222
1 uwau

u


 

wteat cos  
  22

was

as




 

  222
1

1

uwau

au




 

 wt
w

cos1
1

2
  

 22

1

wss 
 

22

2

1 uw

u


 

 wtwt
w

sin
1

3
  

 222

1

wss 
 

22

3

1 uw

u


 

 wtwtwt
w

cossin
2

1
3

  
 222

1

ws 
 

 222

3

1 uw

u


 

wt
w

t
sin

2
 

 222 ws

s


 

 222

2

1 uw

u


 

 wtwtwt
w

cossin
2

1
  

 222

2

ws

s


 

 2221 uw

u


 

ktkt
k

sinhsin
2

1
2

 
44 4ks

s


 

44

2

41 uk

u


 

 ktkt
k

sinsinh
2

1
3

  
44

1

ks 
 

44

3

1 uk

u


 



161 
 

 ktkt
k

coscosh
2

1
2

  
44 ks

s


 

44

2

1 uk

u


 

 atj0  
22

1

as 
 

221

1

ua
 

 atH   ase
s

1
 u

a

e


 

 at   ase  
u

a

e
u

1
 

 wt
t

cos1
2

  







 
2

22

ln
s

ws
  221ln

1
uw

u
  

 at
t

cosh1
2

  
2

22

ln
s

as 
  221ln

1
ua

u
  

wt
t

sin
1

 
s

w1tan  wu
u

1tan
1   

 

 

 

 

 

 

 

 

 



162 
 

References: 

[1] G. K.Watugala, Sumudu transform—a new integral transform to solve   

differential equations and control engineering problems, Math. Engrg. Indust. 6 

(1998), no. 4, 319–329. 

[2] Fethi Muhammed Belgacem, Ahamed Abdullatif and Shyam L. Kalla, Analytical 

investigations of the Sumudu Transform and applications to integral production 

equations 

[3] Eda Nur PEKTEZEL-Sila CETINKAYA, Sumudu transform: a new integral 

transform to solve di_erential equations and control engineering problems, (2011) 

[4] He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng 

1999; 178:257–62. 

[5] Ariel PD, Hayat T, Asghar S. Homotopy perturbation method and axisymmetric 

flow over a stretching sheet. Int J Non-linear SciNumer Simul 2006; 7:399–406. 

[6] Bele´ndez A, Herna´ndez T, Bele´ndez, et al. Application of He’s homotopy 

perturbation method to the duffing-harmonic oscillator. Int J Non-linear Sci 

Numer Simul 2007; 8:79–88. 

[7] Cveticanin L. Homotopy-perturbation method for pure nonlinear differential 

equation. Chaos, Solitons & Fractals 2006; 30:1221–30. 

[8] Ganji DD, Sadighi A. Application of He’s homotopy-perturbation method to 

nonlinear coupled systems of reaction–diffusion equations. Int J Non-linear Sci 

Numer Simul 2006;7:411–8. 

[9] Rafei M, Ganji DD. Explicit solutions of Helmholtz equation and fifth-order KdV 

equation using homotopy perturbation method. Int J Non-linear Sci Numer Simul 

2006; 7:321–8. 

[10] Siddiqui AM, Mahmood R, Ghori QK. Thin film flow of a third grade fluid on 

a moving belt by He’s homotopy perturbation method. Int J Non-linear Sci Numer 

Simul 2006; 7:7–14. 

[11] Siddiqui AM, Ahmed M, Ghori QK. Couette and Poiseuille flows for non-

Newtonian fluids. Int J Non-linear Sci Numer Simul 2006;7:15–26. 

[12] Ozis T, Yidirim A. Determination of limit cycles by a modified straightforward 



163 
 

expansion for nonlinear oscillators. Chaos, Solitons & Fractals 2007; 32:445–8. 

[13] Wazwaz, A. M. and Gorguis, A. 2004, exact solutions for heat-like and wave-

like equations with variable coefficients. Applied Mathematics and Computation. 

149 (1) 15-29. 

[14] A.M. Wazwaz, A new technique for calculating Adomian polynomials for 

nonlinear polynomials, Appl. Math. Compt., 111 (2000), 33-51. 

[15] A.M. Wazwaz, Partial Differential Equations: Methods and Applications, 

Balkema, Leiden, (2002). 

[16] Saeed Kazem, Exact Solution of Some Linear Fractional Differential Equations 

by Laplace Transform, International Journal of Nonlinear Science Vol.16 (2013) 

No.1, pp. 3-11 

[17] R. Churchill, Operational Mathematics (3rd edition), McGraw-Hill,New York, 

1972 

[18] V. B. L. Chaurasia and J. Singh, “Application of Sumudu transform in 

Sch¨odinger equation occurring in quantum mechanics,” Applied Mathematical 

Sciences, vol. 4, no. 57–60, pp. 2843– 2850, 2010. 

[19] Jagdev Singh1, Devendra Kumar2, and A. Kılıçman3, Homotopy Perturbation 

Method for Fractional Gas Dynamics Equation Using Sumudu Transform, 

Hindawi Publishing Corporation Abstract and Applied Analysis, Volume 2013, 

Article ID 934060, 8 pages. 

[20] Eltayeb A. Yousif, Solution of Nonlinear Fractional Differential Equations 

Using the Homotopy Perturbation Sumudu Transform Method, Applied 

Mathematical Sciences, Vol. 8, 2014, no. 44, 2195 – 2210. 

[21] A. M. Wazwaz, A new approach to the nonlinear advection problem, an 

application of the decomposition method, Appl. Math. Comput., 72, 175–181, 

(1995). 

[22] G.B. Whitham, Linear and Nonlinear Waves, John Wiley, New York, (1976). 

[23] J.M. Burgers, A mathematical model illustrating the theory of turbulence,                 

Adv. Appl. Mech. 1,171 – 199, (1948). 

 



164 
 

[24] M. J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and 

Inverse Scattering, Cambridge University Press, Cambridge, (1991). 

[25] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, 

SIAM, Philadelphia (1981). 

[26] W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of 

nonlinear partial differential equations, Math. Comput. Simulation, 43, 13–27, 

(1997). 

[27] R. Hirota, the Direct Method in Soliton Theory, Cambridge University Press, 

Cambridge, (2004). 

[28] R. M. Miura, The Korteweg de-Vries equation: a survey of results, SIAM Rev., 

18, 412–459, (1976). 

[29] G. K. Watugala, “Sumudu transform: a new integral transform to solve 

differential equations and control engineering problems,”International Journal of 

Mathematical Education in Science and Technology, vol. 24, no. 1, pp. 35–43, 

1993. 

[30] H. Eltayeb and A. Kılıçman, “A note on the Sumudu transforms and differential 

equations,” Applied Mathematical Sciences, vol. 4, no. 22, pp. 1089–1098, 2010. 

[31] K. Abbaoui and Y. Cherruault, “New ideas for proving convergence of 

decomposition methods,” Computers and Mathematics with Applications, vol. 29, 

no. 7, pp. 103–108, 1995. 

[32] Seng V. Abbaoui K. Cherruault Y., (1996), “Adomian’s polynomial for 

nonlinear operators”, J. Math. Comput. Modeling, Vol. 24, No. 1, p. 59-65. 

[33] Bellman R., Kashef B.G. and Casti J., (1972), “Differential quadrature: A 

technique for the rapid solution of nonlinear partial differential equations”, 

J.comput. Phys., Vol.10, No.1, p. 

[34] I. Podlubny, Geometric and physical interpretation of fractional integration and 

fractional differentiation, Fract. Calculus. Appl. Anal, 5 (2002): 367-386. 

[35] S. Momani, M. A. Noor, Numerical methods for fourth-order fractional 

integrodifferential equations, Appl. Math. Comput, 182 (2006): 754-760. 

 



165 
 

[36] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & 

Francis, London, UK, 1992, English translation. 

[37]  A.V. Karmishin, A.I. Zhukov and V.G. Kolosov, Methods of Dynamics 

Calculation and Testing for Thin-Walled Structures, Mashinostroyenie, Moscow, 

Russia, 1990. 

[38]  J.H. He, Homotopy perturbation technique, Computer Methods in Applied 

Mechanics and Engineering, 178 (1999), 257–262. 

[39] J. Saberi-Nadjafi and A. Ghorbani, He’s homotopy perturbation method: an 

effective tool for solving nonlinear integral and integro-differential equations, 

Computers & Mathematics with Applications, 58 (2009), 1345– 1351. 172 J. 

Singh, D. Kumar and Sushila 

[40]  N.H. Sweilam and M.M. Khader, Exact solutions of some coupled nonlinear 

partial differential equations using the homotopy perturbation method, Computers 

& Mathematics with Applications, 58 (2009), 2134– 2141. 

[41] R. Hirota, Exact solutions of the Korteweg–de Vries equation for multiple 

collisions of solitons, Physical Review Letters, 27 (1971), 1192–1194. 

[42] A. M. Wazwaz, on multiple soliton solutions for coupled KdV–mkdV equation, 

Nonlinear Science Letters A, 1 (2010), 289–296. 

[43] G. Adomian, Solving Frontier Problems of Physics: The Decomposition 

Method, Kluwer Acad. Publ., Boston, 1994. 

[44] G. C. Wu and J.H. He, Fractional calculus of variations in fractal space-time, 

Nonlinear Science Letters A, 1 (2010), 281–287. 

[45] J. H. He, Variational iteration method—a kind of nonlinear analytical 

technique: some examples, International Journal of Nonlinear Mechanics, 34 

(1999), 699–708. 

[46] J. H. He and X.H. Wu, Variational iteration method: new development and 

applications, Computers & Mathematics with Applications, 54 (2007), 881–894. 

[47] J. H. He, G.C. Wu and F. Austin, The variational iteration method which should 

be followed, Nonlinear Science Letters A, 1 (2009), 1–30. 

 



166 
 

[48] L. A. Soltani and A. Shirzadi, A new modification of the variational iteration 

method, Computers & Mathematics with Applications, 59 (2010), 2528–2535. 

[49] N. Faraz, Y. Khan and A. Yildirim, Analytical approach to two-dimensional 

viscous flow with a shrinking sheet via variational iteration algorithm-II, Journal 

of King Saud University, (2010) doi: 10.1016/j. jksus.2010.06.010. 

[50] G. C. Wu and E.W.M. Lee, Fractional variational iteration method and its 

application, Physics Letters A, (2010) doi: 10.1016/j.physleta.2010.04.034. 

[51]  E. Hesameddini and H. Latifizadeh, Reconstruction of variational iteration 

algorithms using the Laplace transform, International Journal of Nonlinear 

Sciences and Numerical Simulation, 10 (2009), 1377–1382. Homotopy 

perturbation Sumudu transform method 173 

[52]  C. Chun, Fourier-series-based variational iteration method for a reliable 

treatment of heat equations with variable coefficients, International Journal of 

Nonlinear Sciences and Numerical Simulation, 10 (2009), 1383– 1388. 

[53] G. Adomian, Solution of physical problems by decomposition, Computers & 

Mathematics with Applications, 2 (1994), 145–154. 

[54] A. M. Wazwaz, A comparison between the variational iteration method and 

adomian decomposition method, Journal of Computational and Applied 

Mathematics, 207 (2007), 129–136. 

[55] M .A. Abdou and A.A. Soliman, New applications of variational iteration 

method, Physica D: Nonlinear Phenomena, 211 (2005), 1–8. 

[56] M. Dehghan,Weighted finite difference techniques for the one-dimensional 

advection–diffusion equation, Applied Mathematics and Computation, 147 (2004), 

307–319. 

[57] D.D. Ganji and A. Sadighi, Application of He’s homotopy perturbation method 

to nonlinear coupled systems of reaction diffusion equations, International Journal 

of Nonlinear Sciences and Numerical Simulation, 7 (2006), 411– 418. 

[58] Y. Khan and F. Austin, Application of the Laplace decomposition method to 

nonlinear homogeneous and non-homogenous advection equations, Zeitschrift 

fuer Naturforschung, 65a (2010), 1–5. 

 



167 
 

[59] S. T. Mohyud-Din and A. Yildirim, Homotopy perturbation method for 

advection problems, Nonlinear Science Letters A, 1 (2010), 307–312. 

[60] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, 

Applied Mathematics and Computation, 135 (2003), 73–79. 

[61] J. H. He, Comparison of homotopy perturbation method and homotopy analysis 

method, Applied Mathematics and Computation, 156 (2004), 527–539. 

[62] J. H. He, The homotopy perturbation method for nonlinear oscillators with 

discontinuities, Applied Mathematics and Computation, 151 (2004), 287– 292. 

[63] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, 

International Journal of Nonlinear Sciences and Numerical Simulation, 6 (2005), 

207–208. 174 J. Singh, D. Kumar and Sushila 

[64] J. H. He, some asymptotic methods for strongly nonlinear equation, 

International Journal of Modern Physics, 20 (2006), 1144–1199. 

[65] J. H. He, Homotopy perturbation method for solving boundary value problems, 

Physics Letters A, 350 (2006), 87–88. 

[66] M. Rafei and D.D. Ganji, Explicit solutions of helmhotz equation and fifth-

order KdV equation using homotopy perturbation method, International Journal of 

Nonlinear Sciences and Numerical Simulation, 7 (2006), 321–328. 

[67] A. M. Siddiqui, R. Mahmood and Q.K. Ghori, Thin film flow of a third grade 

fluid on a moving belt by He’s homotopy perturbation method, International 

Journal of Nonlinear Sciences and Numerical Simulation, 7 (2006), 7–14. 

[68] D. D. Ganji, The applications of He’s homotopy perturbation method to 

nonlinear equation arising in heat transfer, Physics Letters A, 335 (2006), 337–

341. 

[69] Y. Khan and Q. Wu, Homotopy perturbation transform method for nonlinear 

equations using He’s polynomials, Computer and Mathematics with Applications, 

(2010), doi: 10.1016/j.camwa.2010.08.022. 

[70] A. Ghorbani and J. Saberi-Nadjafi, He’s homotopy perturbation method for 

calculating adomian polynomials, International Journal of Nonlinear Sciences and 

Numerical Simulation, 8 (2007), 229–232. 



168 
 

[71] A. Ghorbani, Beyond adomian’s polynomials: He polynomials, Chaos Solitons 

Fractals, 39 (2009), 1486–1492. 

[72] S. . Mohyud-Din, M.A. Noor and K.I. Noor, Traveling wave solutions of sevent 

h-order generalized KdV equation using He’s polynomials, International Journal 

of Nonlinear Sciences and Numerical Simulation, 10 (2009), 227–233. 

[73]  J. Biazar, M. Gholami Porshokuhi and B. Ghanbari, Extracting a general 

iterative method from an adomian decomposition method and comparing it to the 

variational iteration method, Computers & Mathematics with Applications, 59 

(2010), 622–628. Homotopy perturbation Sumudu transform method 175 

[74] S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear 

differential equations, Journal of Applied Mathematics, 1 (2001), 141–155. 

[75] E. Yusufoglu, Numerical solution of Duffing equation by the Laplace 

decomposition algorithm, Applied Mathematics and Computation, 177 (2006), 

572–580. 

[76] Yasir Khan, An effective modification of the Laplace decomposition method 

for nonlinear equations, International Journal of Nonlinear Sciences and 

Numerical Simulation, 10 (2009), 1373–1376. 

[77] Yasir Khan and Naeem Faraz, A new approach to differential difference 

equations, Journal of Advanced Research in Differential Equations, 2 (2010), 1–

12. 

[78] S. Islam, Y. Khan, N. Faraz and F. Austin, Numerical solution of logistic 

differential equations by using the Laplace decomposition method, World Applied 

Sciences Journal, 8 (2010), 1100–1105. 

[79] M. Madani and M. Fathizadeh, Homotopy perturbation algorithm using 

Laplace transformation, Nonlinear Science Letters A, 1 (2010), 263–267. 

[80] M.A. Noor and S.T. Mohyud-Din, Variational homotopy perturbation method 

for solving higher dimensional initial boundary value problems, Mathematical 

Problems in Engineering, 2008 (2008) 11. Article ID 696734, doi: 

10.1155/2008/696734. 

 

 



169 
 

[81] M. A. Asiru, Sumudu transform and the solution of integral equation of 

convolution type, International Journal of Mathematical Education in Science and 

Technology, 32 (2001), 906-910. 

[82] F. B. M. Belgacem, A.A. Karaballi and S.L Kalla, Analytical investigations of 

the Sumudu transform and applications to integral production equations, 

Mathematical problems in Engineering, 3 (2003), 103-118. 

[83] F. B. M. Belgacem and A.A. Karaballi, Sumudu transform fundamental 

properties investigations and applications, International J. Appl. Math. Stoch. 

Anal., (2005), 1-23. 

[84] Amjad. Ezoo. Hamza and Tarig. M. Elzaki, Linear Fractional Differential 

Equations and Sumudu Transform, International Journal of Applied Engineering 

Research, ISSN 0973-4562 Volume 10, Number 4 (2015) pp. 9923-9934. 

[85]  Amjad. Ezoo. Hamza and Tarig. M. Elzaki, Application of Homotopy 

Perturbation and Sumudu Transform Method for Solving Burgers Equations, 

American Journal of Theoretical and Applied Statistics, 2015; 4(6): 480-483, 

Publised online October 13,2015(http://www.sciencepublishinggroup.com/j/ajtas), 

doi: 10.11648/j. ajtas.20150406.18. 

http://www.sciencepublishinggroup.com/j/ajtas

	1
	2
	3
	4
	5
	6
	7
	8
	9

