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Abstract 

 

In this thesis, the homotopy perturbation method (HPM) was 

presented, and applied for solving some differential and integral 

equations with non-local conditions (linear and nonlinear). This 

method provides an analytical approximate solution of the differential 

equations. A combined form of the Laplace transform method and 

homotopy perturbation method, called the homotopy perturbation 

transform method (HPTM) was introduced and used to solve nonlinear 

equations. The nonlinear terms of the nonlinear equations was easily 

handled and treated by the use of He’s polynomials. One of the 

significant advantages of this method its ability to find solutions 

without any discretization or restrictive assumptions avoiding the 

round-off errors. The fact that the proposed technique solves nonlinear 

problems without using Adomian’s polynomials can also be considered 

as an additional advantage of this algorithm over the decomposition 

method. Furthermore, a new approach to solving non-local initial-

boundary value problems for linear and nonlinear parabolic  and 

hyperbolic partial differential equations subject to initial and nonlocal 

boundary conditions of integral type was introduced. The technique of 

transforming the given non-local initial-boundary value problems of an 

integral type, into local Dirichlet initial-boundary value problems was 

implemented  for both linear and nonlinear parabolic and hyperbolic 

partial differential equations, and then the homotopy perturbation 

method (HPM) was applied to their problems.  

 

 

 

  

 
 
 
 



IV 

 

 ةـــــــلاصـلخا
 

التفاضلٌة والتكاملٌة ذات ( لحل المعادلات HPM) اتقدٌم طرٌقة الهموتوبٌ فً هذا البحث تم

ٌقة على اٌجاد حلول ة بنوعٌها الخطً واللاخطً .وقد وضح جلٌا ً قدرة هذه الطرعٌوضاللا م الشروط

للرٌاضٌٌن ً ٌشكل تحدٌا متناهٌة  وتحلٌلٌة لبعض المعادلات اللاخطٌة والتً كان حلها التحلٌل تقرٌبٌة بدقة

 من الظواهر فً كافة مناحً الحٌاةمضت بالرغم من أهمٌة هذه المعادلات فً نمذجة الكثٌر  عبر قرون

 زات هذه( بكفاءة وسهولة للتعامل مع الحدود اللاخطٌة .أحد أبرز وأهم ممHeٌ -طبقت كثٌرة حدود )هً .

ٌة دون استخدام  تجزئة مجال اللاخطالطرٌقة هً قدرتها على اٌجاد حلول المعادلات التفاضلٌة الجزئٌة 

 – أو  وضع فروض وقٌود مشددة بالاضافة لقدرتها على الحل دون استخدام كثٌرة حدود )أدومٌن الحل

Adomian) .قدم هذا البحث توجه جدٌد لحل المعادلات  الشٌئ الذي تفتقده الطرق المستخدمة من قبل

ة من النوع التكاملً. قبل الشروع عٌوضمط حدٌة ابتدائٌة ولا باستخدام شروالتفاضلٌة المكافئٌة واللامكافئٌة 

ة من النوع عٌوضالشروط الحدٌة اللامت المكافئٌة والزائدٌة تم تحوٌل ( لحل المعادلا HPMفً تطبٌق ) 

 التكاملً إلى مسائل القٌمة الابتدائٌة والحدٌة لدرٌشلت.
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Introduction 

 

The homotopy perturbation method (HPM) is a series expansion 

method used in the solution of nonlinear partial differential equations. 

The method employs a homotopy transform to generate a convergent 

series solution of differential equations. This gives flexibility in the 

choice of basis functions for the solution and the linear inversion 

operators (as compared to the Adomian decomposition method), it 

helps in retaining a simplicity that makes the method easily 

understandable from the standpoint of general perturbation methods. 

The HPM was introduced by Ji-Huan He in 1998. He [1–14] developed 

the homotopy perturbation method (HPM) by marging the s tandard 

homotopy and perturbation for solving various physical problems.The 

authors have applied this method successfully to problems arising in 

mathematics engineering.  

The HPM is a special case of the homotopy analysis method (HAM) 

developed by Liao Shijunin 1992 [40-43]. The HAM uses a so-called 

convergence-control parameter to guarantee the convergence of 

approximation series over a given interval of physical parameters.  

 The Laplace transform is totally incapable of handling nonlinear 

equations because of the difficulties that are caused by the nonlinear 

terms. Various ways have been proposed recently to deal with these 

nonlinearities such as the Adomian decomposition method [20] and the 

Laplace decomposition algorithm[15–19]. Furthermore, the homotopy 

perturbation method is also combined with the well -known Laplace 

transform method [21] and the variation iteration method [22] to 

produce a highly effective technique for handling many nonlinear 

problems. 

Over the last few years, various processes in the natural sciences and 

engineering lead to the non-classical parabolic initial/boundary-value 

problems. They involve non-local integral terms over the spatial 

domain. The integral terms may appear in the boundary conditions in 

which case the boundary condition is called non-local, or in the 

https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Homotopy
https://en.wikipedia.org/wiki/Adomian_decomposition_method
https://en.wikipedia.org/wiki/Perturbation_methods
https://en.wikipedia.org/wiki/Homotopy_analysis_method
https://en.wikipedia.org/wiki/Liao_Shijun
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governing partial differential equation itself,  it is referred to as a 

partial integro-differential equation, or in both. The non-local boundary 

condition has been studied by several authors [25-39]. 

Non-local boundary-value problems were first used by [23, 24]. The 

presence of an integral term in a boundary condition can complicate the 

application of standard numerical techniques such as finite difference 

procedures, finite element methods, spectral techniques, boundary 

integral equation schemes, etc. It is therefore important to convert the 

non-local boundary value problems to more desirable form. It is a hard 

task to make them more applicable to the problems of practical interest. 

The accuracy of the quadrature must be compatible with the 

discretization of the differential equation.  
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CHAPTER ONE 

Homotopy Perturbation Method (HPM) 

In the last two decades, the rapid development of nonlinear science 

that has appeared ever-increasing interest of scientists and engineers 

in the analytical techniques for nonlinear problems. The widely applied 

techniques are perturbation methods. However,  like other nonlinear 

analytical techniques, perturbation methods have their own limitations. 

Firstly, most perturbation methods are based on an assumption that a 

small parameter must exist in the equation. As it is well known, a 

majority of nonlinear problems have no small parameters at all. 

Secondly, the determination of small parameters seems to be a special 

art requiring special techniques. An appropriate choice of small 

parameters leads to ideal results. Thus, an unsuitable choice of small 

parameters results in bad effects. Furthermore, the approximate 

solutions solved by the perturbation methods are valid. Obviously, all 

these limitations come from the small parameter assumption. Various 

perturbation methods have been widely applied to solve nonlinear 

problems. Many new techniques have been proposed recently to 

eliminate the "small parameter" assumption, such as the artificial 

parameter method proposed by He [44], the homotopy analysis method 

proposed by He [45]. A review of recently developed nonlinear  analysis 

method can be found in details in [46].  The homotopy perturbation 

method (HPM), proposed first by He [1, 2], for solving differential and 

integral equations linear and nonlinear has been the subject of 

extensive analytical and numerical studies.  The method, which is a 

coupling of traditional perturbation method and homotopy in topology, 

reforms continuously to a simple problem which is easily solved. This 

method, which does not require a small parameter in an equation, has a 

significant advantage. This HPM yields a very rapid convergence of the 

solution series in most cases, only a few iterations leading to very 

accurate solutions. Thus, He's HPM is a universal one which can solve 

various kinds of nonlinear equations. This chapter is presented the  

homotopy perturbation method (HPM), the modified homotopy 
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perturbation method. They are applied for solving some partial 

differential equations (linear and nonlinear) and canceling noise -terms 

phenomenon. Homotopy perturbation method doesn’t require a small 

parameter in an equations. This method provides an analytical 

approximate solution for the differential equations.  

1.1 Homotopy perturbation method 

Definition (1.1.1) 

Let   and   be the topological spaces. If     and   are continuous 

maps of the space   into   , it is said that   is homotopic to  , if there is 

continuous map                 Such that                        

      for each     then the map is called homotopy between         . 

The homotopy perturbation method is a combination of classical 

perturbation technique and the homotopy map used in topology. 

1.1.1 Basic Idea of Homotopy Perturbation Method 

To explain the basic ideas of the homotopy perturbation method, 

we consider the following nonlinear differential equation:  

                                                                                 

With the boundary condition; 

 (  
  

  
)                                                                                       

Where   is a general differential operator,   is a boundary 

operator       is a known analytical function and   is the boundary of 

the domain  . Generally speaking, operator A can be divided into two 

parts which are   and   where   is linear, but   is nonlinear. Therefore, 

equation (1) can be rewritten in the form: 

                                                                                       

By the homotopy perturbation technique, we construct a homotopy 

                 which satisfies: 
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Or  

                                                  

Where          is an embedding parameter and    is an initial 

approximation of equation (1).Obviously, from these definitions we will 

have: 

                                                                                    

                                                                                   

The changing process of   from zero to one is just that of         from 

      to     . In topology, this is called deformation and      –        and 

      –        are called homotopy. According to the HPM, we can first use 

the embedding parameter   as a “small parameter” and assumin  that 

the solution of Eq. (4) can be written as a power series in  : 

               . . .                                                                      

Setting      , results in the approximate solution of  Eq. (3): 

     
   

            . . . .                                                           

1.1.2 Analysis of Convergence 

Let us write Eq. (5) in the following form: 

                                                                     

Applying the inverse operator,     to both sides of Eq. (10), We obtain: 

                                                                       

Suppose that 

  ∑  

 

   

                                                                                               

Substituting Eq. (12) into the right-hand side of Eq. (11), we get; 
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      [              [∑  

 

   

  ]    ]                          

If       , the exact solution may be obtained by using Eq. (9) 

     
   

                [∑  

 

   

]          ∑      

 

   

              

To study the convergence of the method let us state the following 

Theorem. 

Theorem (1.1.2) (Sufficient Condition of Convergence) 

Suppose that   and   are Banach spaces and          is a 

contractive nonlinear mapping, that is 

            ‖          ‖  ‖    ‖                  

Then according to Banach's fixed point theorem   has a unique fixed 

point  , that is       . Assume that the sequence generated by 

homotopy perturbation method can be written as ; 

                       ∑   

   

   

                   .              

And suppose that             where                ‖    ‖    , 

then we get; 

(i)          

(ii)           

(i) By inductive approach, for      we get; 

‖    ‖  ‖         ‖   ‖    ‖ 

Assume that 

‖      ‖      ‖    ‖ 

as induction hypothesis, then 
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‖    ‖  ‖            ‖   ‖      ‖    ‖    ‖. 

Using (i), we get;  

‖    ‖    ‖    ‖                 

(ii) Because of 

‖    ‖    ‖    ‖ and            

      ‖    ‖     that is           . 

 

1.2 Application of Homotopy Perturbation Method to Linear 

Partial Differential Equations 

The application of the homotopy perturbation method in linear 

problems has been devoted by scientists and engineers. The most 

perturbation methods are based on the assumption that a small 

parameter exist, which is too over-strict to find wide application. 

Therefore, many new techniques have been proposed to eliminate the 

"small parameter" assumption, such as He’s homotopy perturbation 

method. The homotopy perturbation method, which provides analytical 

approximate solution, is applied to various linear and non-linear 

equations. 

Example (1.2.3) We consider the following inhomogeneous partial 

differential equation [61], 

                                                                                              

With the initial conditions; 

                                                                                         

To solve Eq. (17) with initial conditions Eq. (18), according to the 

homotopy perturbation Eq. (4), we construct the following homotopy: 

                        [           ]                   

Or 
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          [              ]                                        

Suppose the solution of Eq. (17) has the form: 

   ∑     

 

   

                                                                                          

Substituting Eq. (21) into Eq. (20), and comparing coefficients of the 

terms with the identical powers of  , we get; 

(∑     

 

   

)

 

        [      (∑     

 

   

)

 

      ]                      

                                           

                                      
  

 
    

                                       
  

 
                             

                                           

                

Now the solution of Eq. (17) when      will be reduced to: 

                                                                                                     

This solution coincides with the exact one.  

Example(1.2.4)  We consider the following homogeneous Partial 

differential equation  

                                                                                                    

With the initial conditions; 
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To solve Eq. (25) with initial conditions Eq. (26), according to the 

homotopy perturbation Eq. (4) we construct the following homotopy: 

                        [           ]                         

Or 

          [        ]                                                           

Substituting Eq. (9) into Eq. (28), and comparing coefficients of the 

terms with the identical powers of  , we get; 

                                           

                                                                 

                                           

              

Now the solution of  Eq. (25) when      will be reduced to: 

                                                                                                 

This solution coincides with the exact one.  

Example (1.2.5) We consider the following homogeneous Partial 

differential equation [61], 

                                                                                                 

With the initial conditions; 

                                                                                        

To solve Eq. (31) with initial conditions Eq. (32), according to the 

homotopy perturbation Eq. (4) we construct the following homotopy: 

            [        ]   [         ]    

Or 

          [            ]                                              
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Substituting Eq. (9) into Eq. (33), and comparing coefficients of the 

terms with the identical powers of  , we get; 

                                                 

                                                    

                                
    

 
 

Thus, the solution in series form is given by: 

       ∑        

 

   

 

              
  

 
 

  

  
    

The solution for equation (31) in a closed form is given by: 

                                                                                                   

Example (1.2.6) We consider the following inhomogeneous Partial 

differential equation  

                                                                                             

With the initial conditions; 

,

                 

                 

                 

                                                                  

Where              

To solve Eq. (36) with initial conditions Eq. (37), according to the 

homotopy perturbation Eq. (4), we construct the following homotopy:  

          [             ]                                          

Substituting Eq. (9) into Eq. (38), and comparing coefficients of the 

terms with the identical powers of  , we get; 
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Thus, the solution in series form is given by: 

          ∑          

 

   

 

               (    
  

  
 

  

  
  )                           

The solution for equation Eq. (40) in a closed form is given by: 

                                                                                      

Example (1.2.7) We consider the following second order Partial 

differential equation [62], 

                                                                                                 

Subject to the initial condition; 

                                                                                               

And boundary conditions; 

                                                                                   

The standard HPM, in view of the homotopy Eq. (4), we construct the 

homotopy in the following form: 

                                                   

Or 
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Substituting Eq. (9) and the initial condition Eq. (43) into the homotopy 

Eq. (46) and equating the terms with identical powers of   as follows:   

  ∑    

 

   

 

Then 

(∑    

 

   

)

 

        *      (∑    

 

   

)

  

 (∑    

 

   

)

 

+    

Comparing the coefficient of like powers of  , we get; 

                                           

                                                        

                                          

                        

Thus, the solution in series form is given by: 

       ∑        

 

   

 

Or 

                                       

Hence the solution of Eq. (42) with Eqs. (43-44) is given as; 

                                                                                          

This solution coincides with the exact one.  
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Example (1.2.8) We consider linear second order dissipative wave 

equation [62], 

                                                                           

With initial conditions: 

                                                                                      

And boundary conditions: 

                                                                                        

To find a solution by HPM we construct the homotopy in the following 

form: 

                                                          

Or 

                                                  

Substituting Eq. (9) and the initial conditions Eq. (50) into the 

homotopy Eq. (53) and equating the terms with identical powers of   as 

follows:   

                                         

                                                          

                                                                            

                                                

                            

Thus, the solution in series form is given by: 

       ∑        

 

   

 

Or 
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Hence the solution of Eq. (48) with Eqs. (50-51) is given by: 

                                                                                               

Which is the exact solution. 

Example (1.2.9) We consider the following second order linear 

homogeneous partial differential equation [62], 

                                                                                    

With initial condition; 

                                                                                       

And boundary condition; 

                                                                                               

To find solution by HPM we construct the homotopy  in the following 

form: 

                                     

Or 

                                                                       

Substituting Eq. (9) and the initial condition Eq. (57) into the homotopy 

Eq. (59) and equating the terms with identical powers of   as follows: 
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Thus, the solution in series form is given by: 

       ∑        

 

   

 

         (    
  

  
  )    (    

  

  
  ) 

The solution for equation (56) in a closed form is given by: 

                                                                                        

Example (1.2.10)  The telegraph equations appear in the propagation of 

electrical signals along a telegraph line, digital image processing, 

telecommunication, signals and systems .we consider the following 

telegraph equation [62], 

                                                                         

With initial conditions: 

                                                                                

And boundary conditions; 

         
  

 
                                                                       

To find solution by HPM we construct the homotopy in the following 

form: 

                                                       

Or  
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Substituting Eq. (9) and the initial conditions Eq. (63) into the 

homotopy Eq. (65) and equating the terms with identical powers of   as 

follows: 

                                           

   {
                                        

                
  

 
                                                         

                       

                                      

              

Thus, the solution in series form is given by: 

       ∑        

 

   

 

Or 

                                       

Hence the solution of Eq. (33) with Eqs.(34-35) is given by: 

                 
  

 
                                                             

Which is the exact solution. 

 

1.3 The Noice terms 

In this section, we will present a useful tool that will accelerate 

the convergence of the homotopy perturbation method. 

The noise terms phenomenon provides a major advantage in that it 

demonstrates a fast convergence of the solution. It is important to note 

here that the noise terms phenomenon that will be introduced in this 

section, may appear only for inhomogeneous PDEs. In addition, this 
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phenomenon is applicable to all inhomogeneous PDEs of any order and 

will be used where appropriate in the coming chapters.  

The noise terms, if existed in the components    and   , will provide, in 

general, the solution in a closed form with only two successive 

iterations. 

A useful summary about the noise terms phenomenon can be drawn as 

follows: 

1. The noise terms are defined as the identical terms with opposite 

signs that may appear in the components    and   . 

2. The noise terms appear only for specific types of inhomogeneous 

equations whereas noise terms do not appear for homogeneous 

equations. 

3. Noise terms may appear if the exact solution is part of the 

zerothcomponent   . 

4. Verification that the remaining non-canceled terms satisfy the 

equation is necessary and essential.  

The phenomenon of the useful noise terms will be explained by the 

following illustrative examples.  

Example (1.3.11) We consider the following inhomogeneous Partial 

differential equation 

                                                                                          

With the initial conditions; 

                                                                                         

To solve Eq. (68) with initial conditions Eq. (69), according to the 

homotopy perturbation Eq. (4), we construct the following homotopy:  

                        [             ]      

Or 
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          [                ]                                  

Substituting Eq. (9) into Eq. (70), and comparing coefficients of the 

terms with the identical powers of  , we get; 

                               

                                        (  
  

  
)    

                                (
  

  
 

  

  
)                                           

                                      (
  

  
 

  

  
)    

        

It is necessary to mention here that the noise terms are those terms 

who are the same but different in signs .more clearly the noise terms 
  

  
   and  

  

  
   between the components         and         can be 

cancelled and the remaining terms of          still satisfy the equation. 

The exact solution is therefore 

       ∑        

 

   

 

                                                                                                    

Notice that the exact solution is verified through substitution in the 

equation (68) and not only upon the appearance of the noise terms. In 

addition, the other noise terms that appear between other components 

will vanish in the limit.  
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Example (1.3.12) We consider the following inhomogeneous Partial 

differential equation 

                                                                                   

With the initial conditions; 

                                                                                         

To solve Eq. (73) with initial conditions Eq. (74), according to the 

homotopy perturbation Eq. (4), we construct the following homotopy: 

          [                    ]                      

Substituting Eq. (9) into Eq. (75), and comparing coefficients of the 

terms with the identical powers of  , we get; 

                               

                                    

        
  

 
          

We can easily observe that the two components    and    do not contain 

noise terms. This confirms our belief that although the PDE is an 

inhomogeneous equation, but the noise terms between the first two 

components did not exist in this problem. Unlike the previous examples, 

we should determine more components to obtain an insight through the 

solution. Therefore, other components should be determined.  Hence we 

find 

                                (
 

 
      ) 

                                
 

 
                                       

                       

Based on the result we obtained for    , other components of        will 

vanish. 
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Consequently, we find that: 

       ∑        

 

   

 

                                                                                           

 

1.4 Application of Homotopy Perturbation Method to 

Nonlinear Partial Differential Equations 

Many linear and nonlinear problems are of fundamental 

importance in Science and Technology especially in Engineering. The 

investigation of exact or approximate solution of such problems was 

one of the challenges before Mathematicians and Engineers. Some 

valuable contributions have already been made to solving differential 

equations arising in many scientific and engineering applications using 

numerical techniques such as Finite Difference Method. The other 

methods to solve differential equations suggest that in Finite Difference 

Method discretization of the variables leads to computational 

complexities while Adomian method narrow down its application due to 

calculation of complicated Adomian polynomials. Integral transforms 

such as Laplace and Fourier transforms are commonly used to solve 

differential equations and usefulness of these integral transforms lies in 

their ability to transform differential equations into algebraic equations 

which allows simple and systematic solution procedures. However, 

using integral transform in nonlinear problems may increase its 

complexity. Applied Fourier transform to obtain solution of semi linear 

parabolic equations. The HPM has been employed to solve a large 

variety of linear and nonlinear problems. The aim of this study i s to 

extend the Homotopy Perturbation Method (HPM) to find numerical 

solution of some nonlinear partial differential equations.  
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Example (1.4.13) We consider the first order nonlinear ordinary 

differential equation 

                                                                                          

To find a solution by HPM we construct the homotopy in the following 

form: 

           
                                                        

With initial approximation         

Substituting Eq. (9) and the initial approximation into the homotopy 

Eq. (79) and equating the terms with identical powers of   as follows: 

     
    

                                       

     
      

      
                  

     
                                                                                     

     
     

                          
  

 
 

Consequently, the solution in a series form is given by : 

       
 

 
   

 

  
   

  

   
       

And in a closed form by: 

                                                                                                     

Example (1.4.14) We consider the first order nonlinear ordinary 

differential equation 

   
  

    
                                                                                  

We first rewrite the equation by: 
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To find solution by HPM we construct the homotopy in the following 

form: 

           
                                 

Or 

     
      

                                                              

With initial approximation          

Substituting Eq. (9) and the initial approximation into the homotopy  

Eq. (83) and equating the terms with identical powers of   as follows: 

     
    

                                                             

     
    

        
      

                      

     
        

      
                         

 

 
   

     
         

      
                          

 

 
   

And so on. Based on these calculations, the solution in a series form is 

given by: 

                

         
 

 
   

 

 
   

   

  
       

It is clear that a closed form solution where y is expressed explicitly in 

terms of    cannot be found. However, the exact solution can be 

expressed in the implicit expression 
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Example (1.4.15) We consider the nonlinear partial differential 

equation 

                                                                    

To find solution by HPM we construct the homotopy in the following 

form: 

                            

Or 

                                                                              

With initial condition            

Substituting Eq. (9) and the initial condition into the homotopy Eq. (86) 

and equating the terms with identical powers of   as follows: 

                                                                             

                                                               

                                                           

                                                 

        

And so on. Based on these calculations, the solution in a series form is 

given by: 

                     . 

And in a closed form by: 
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Example (1.4.16) We consider the nonlinear partial differential 

equation 

   
 

 
  

                                                                    

To find solution by HPM we construct the homotopy in the following 

form: 

                 [   
 

 
  

    ]                 

Or 

          [      
 

 
  

    ]                                            

With initial condition            

Substituting Eq. (9) and the initial condition into the homotopy Eq. (89) 

and equating the terms with identical powers of   as follows: 

                                                                           

               
 

 
     

 
                           

         
 

 
                                                    

         
 

 
     

 
                              

  

 
 

        

And so on. Based on these calculations, the solution in a series form is 

given by: 

            
 

 
   

 

  
   

  

   
      

And in a closed form by: 
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Example (1.4.17) We consider the nonlinear partial differential 

equation 

                                                                  

To find solution by HPM we construct the homotopy in the following 

form: 

                             

Or 

                                                                             

With initial condition:            

Substituting Eq. (9) and the initial condition into the homotopy Eq. (92) 

and equating the terms with identical powers of   as follows: 

                                                                     

                 
                                    

           
                                    

        

And so on. Based on these calculations, the solution in a series form is 

given by: 

                                                               

Two observations can be made here. First, we can easily observe that: 

                                                                                               

That satisfies the initial condition. We next observe that for       , the 

series solution in Eq. (93) can be formally expressed in a closed form 

by: 

       
 

  
√                                                                         
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Combining Eq. (94) and Eq. (95) gives the solution in the form: 

       {
                                                       
 

  
(√        )                    

                              

Example (1.4.18) We consider the nonlinear partial differential 

equation 

   
 

  
    

                                                             

To find solution by HPM we construct the homotopy in the following 

form: 

                 [   
 

   
   

    ]     

Or 

          [      
 

  
    

    ]                                     

With initial condition            

Substituting Eq. (9) and the initial condition into the homotopy Eq. (98) 

and equating the terms with identical powers of   as follows: 

                                                                

               
 

  
       

 
                           

         
 

  
                                     

         
 

  
 (      

 
              )              

 

 
     

                   

And so on. Based on these calculations, the solution in a series form is 

given by: 
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And in a closed form by: 

                                                                                                

Example (1.4.19)   We consider the following inhomogeneous PDE 

                                                      

To find solution by HPM we construct the homotopy in the following 

form: 

                                            

Or 

                                               

With initial condition:            

Substituting Eq. (9) and the initial condition into the homotopy Eq. 

(101) and equating the terms with identical powers of   as follows: 

                                                

   ,
                                     

                
 

 
   

 

 
                                   

 

   {

                                                                          

         
 

 
   

 

 
   

 

  
    

 

  
   

 

  
    

 

  
  

 

        

It is important to recall here that the noise terms appear between the 

components         and       , where the noise terms are those pairs of 

terms that are identical but carrying opposite signs. More precisely, the 

noise terms  
 

 
   

 

 
   between the components         and         can 
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be cancelled and the remaining terms of          still satisfy the 

equation. 

The exact solution is therefore; 

                                                                                               

 

1.5 An Efficient Modification of the Homotopy Perturbation 

Method 

 In this section we will introduce a new reliable modification of the 

HPM. The new modification demonstrates a rapid convergence of the 

series solution compared with the standard HMP, and therefore it has 

been shown that to be computationally efficient in s everal examples in 

applied fields. In addition the modified algorithm may give the exact 

solution for nonlinear equation by using two iterations only. The 

obtained result suggests that this improvement technique introduces a 

powerful improvement for solving nonlinear problems. 

The new modified form of the HPM can be established based on the 

assumption that the function     can be divided into two parts, namely 

      and       as: 

                                                                                            

On the assumption that the function      can be replaced by a series of 

infinite components. Under this assumption we suggest that     be 

expressed in Taylor series: 

     ∑      

 

   

                                                                                   

According to the first assumption                , we can construct 

the homotopy 

                  

Which satisfies: 
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Or 

                                                                    

Here, a slight variation was proposed only on the component    and   . 

The suggestion was that only the part    be assigned to the 

zeroscomponent   , whereas the remaining part   be combined with the 

component   . If we set           and        , then the homotopy Eq. 

(105) or Eq. (106) reduces to the homotopy Eq. (4) or Eq. (5) 

respectively. However, the success of the method depends on the 

proper selection of the functions    and   . 

According to the second assumption      ∑       
    we can construct 

the homotopy                  which satisfies; 

                                      ∑        

 

   

                   

  Or 

                        ∑        

 

   

                       

If      consists of two terms only then the homotopy Eq. (107) or Eq. 

(108) reduces to the homotopy Eq. (105) or Eq. (106), respectively. In 

this case the term    is combined with the component     and  is 

combined with the component    and    is combined with the 

component    and so on.This suggestion will facilitate the calculations 

of the terms            and hence accelerate the rapid convergence of 

the series solution. 

It is easily to observe that the algorithm of the new modification  of the 

HPM, based on the homotopy given in the equations Eqs. (105 - 108), 

reduces the number of terms involved in each component and hence the 

size of calculations is minimized compared to the standard HPM. 
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Moreover this reduction of terms in each component facilitates the 

construction of the homotopy perturbation solution.  

To demonstrate the effectiveness of the modified HPM, we have chosen 

several differential and integral equations.  

Example (1.5.20)   Consider the nonlinear differential equation [63], 

    
 

 
                                                                               

Subject to the initial conditions;  

                                                                                            

The HPM: To solve Eq. (109) by HPM we construct the following 

homotopy 

    
 

 
                                                                      

Assume that the solution of Eq. (109) has the following form: 

               . . . .                                                                

Substituting Eq. (112) and the initial conditions Eq. (110) in to the 

homotopy Eq. (111) and equation term with identical powers of   , we 

obtain the following set of linear differential equations : 

     
   

 

 
  

                        
        

     
   

 

 
  

     
                           

                              

     
   

 

 
  

     
                        

       

     
   

 

 
  

        
     

                         
       

        

Consequently, solving the above equation, we obtain: 
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  .  .  
    

 

  .  .      
    

 

  .  .      
    

    

And so, in this manner the rest of HPM can be obtained. The solution for 

Eq. (109) given by setting     in Eq. (112) we have; 

            . . . .                                                                        

The noise terms appear between the components         and       , 

where the noise terms are those pairs of terms that are identical but 

carrying opposite signs. More precisely, the noise terms  
 

  
   between 

the components         and         can be cancelled and the remaining 

terms of          still satisfy the equation.  

The exact solution is therefore;  

                                                                                                           

The modified HPM: in view of the homotopy Eq. (106), we construct the 

following homotopy: 

    
 

 
                                                                             

Substituting Eq. (112) in to Eq. (116) and equation term with identical 

powers of    we obtain the following set of linear differential equations : 

     
   

 

 
  

                        
        



30 
 

     
   

 

 
  

     
                         

         

     
   

 

 
  

     
                        

                                            

      
   

 

 
  

        
     

                         
       

        

Consequently, solving the above equation the first few components of 

the homotopy perturbation solution of Eq. (109) are derived as follows; 

      

              

The exact solution  

                                                                                                        

Follows immediately the success of obtaining the exact solution by 

using two iterations is result of the proper selection of       and      . 

Example (1.5.21) Consider the nonlinear partial differetial 

equation[63], 

                                                                    

Subject to the initial conditions; 

                                                                                       

The modified HPM. In view of the homotopy Eq. (106), we construct the 

following homotopy: 

     ⌈                 ⌉                                       

Substituting Eq. (112) and the initial conditions Eq. (120) into the 

homotopy Eq. (121) and equating the terms with identical powers of  , 

we obtain the following set of l inear differential equations: 
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                                                         . 

                    
                                                

                                                                          . 

                          
                                        . 

              

Solving the above equations the first few components of the homotopy 

perturbation solution for Eq. (119) are derived as follows: 

           

             

The exact solution  

                                                                                                

Example (1.5.22)    Consider the nonlinear integral equation[64], 

                   ∫        
 

 

                                           

The modified HPM in view of the homotopy Eq. (106) we construct the 

following homotopy 

      *       ∫        
 

 

+                                              

Substituting Eq. (112) into the homotopy Eq. (125) and equating the 

terms with identical powers of   , we obtain the following set of linear 

integral equations. 

                                   

             ∫   
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       ∫              
 

 

                                                         

       ∫ (              
    )  

 

 

  

     

Solving the above equations, the first few components of the homotopy 

perturbation solution for Eq. (124) are derived as follows: 

                    

              

The exact solution  

                                                                                                 

Follows immediately. It is clear that we used two iterations only to 

obtain the exact solution. 
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CHAPTER TWO 

Homotopy Perturbation Transform Method (HPTM) 

In recent years, it has turned out that many phenomena in 

engineering, physics, chemistry and other sciences can be described 

very successfully by using partial differential equations. Hence, great 

attention has been given to finding solutions of partial d ifferential 

equations. Most partial differential equations do not have exact 

analytical solutions, therefore approximate and numerical techniques 

were used. The homotopy perturbation method (HPM) was first 

introduced by J.H. He. The HPM was applied to solve the 12th order 

boundary value problems. 

In recent years, many authors have paid attention to studying the 

solutions of nonlinear partial differential equations by Adomain 

decomposition method, the tanh method, the sine-cosine method, the 

differential transform method, the variational iteration method, and the 

Laplace decomposition method.  

He developed the homotopy perturbation method for solving linear, 

nonlinear, initial and boundary value problems by merging two 

techniques, the standard homotopy and the perturbation technique.  

In this chapter some basic definitions of Laplace  transform ,homotopy 

perturbation method and He’s polynomials were presented, also a 

reliable combination of homotopy perturbation method and Laplace  

transform was introduced to obtain the solution of linear and  

nonlinear partial differential equations  and system for linear and  

nonlinear partial differential equations.  

Also a combined form of the Laplace transform method with the 

homotopy perturbation method (HPTM) is proposed to solve both 

linear and nonlinear partial differential equations. The nonlinear terms 

can be easily handled by the use of He’s polynomials. The proposed 

method finds the solution without any discretization or restrictive 

assumptions and avoids the round-off errors. The fact that the proposed 
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technique solves nonlinear problems without using Adomian’s 

polynomials can be considered as a clear advantage of this algorithm 

over the decomposition method. 

2.1 Laplace Transform 

The Laplace transform can be helpful in solving ordinary and 

partial differential equations because it can replace an ODE with an 

algebraic equation or replace a PDE with an ODE. Another reason that 

the Laplace transform is useful is that it  can help deal with the 

boundary conditions of a PDE on an infinite domain. In  this 

introductory section, we discuss definitions, theorems, and properties 

of the Laplace transform 

Definition (2.1.1) 

Suppose that   is a real- or complex-valued function of the (time) 

variable       and s is a real or complex parameter. We define 

theLaplace transform of    as 

 ( )   ( ( ))  ∫     
 

 

 ( )      
   

∫     
 

 

 ( )           ( ) 

If the limit exist and it is finite the above  integral is said to be converge 

otherwise it diverges and there is no Laplace transform defined for f 

and the limit is the ordinary Riemann integral  

The notation  ( ) will also be used to denote the Laplace transform 

of   , and the integral is the ordinary Riemann (improper) integral. The 

parameter s belongs to some domain on the real line or in the complex 

plane. We will choose s appropriately so as to ensure the convergence 

of the Laplace integral Eq. (1). In a mathematical and technical sense, 

the domain of   is quite important. However, in a practical sense, when 

differential equations are solved, the domain of   is routinely ignored. 

When s is complex, we will always use the notation         . the 

symbol   is the Laplace transformation, which acts on functions 

     ( ) and generates a new function,  ( )   (  ( )). 
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Definition (2.1.2) 

A function   is said to be piecewise continuous on an interval   if   

can be subdivided into a finite number of subintervals, in each of which 

  is continuous and has finite left- and right-hand limits 

Definition (2.1.3) 

A function   has exponential order   if there exist numbers 

          , such that for some     , 

|  ( )|                            

Theorem (2.1.4) 

If   is piecewise continuous on   , ) and of exponential order  , 

then the Laplace transform  (  ) exists for   ( )      and converges 

absolutely. 

Proof: first 

|  ( )|     
  ,      

For some real  . Also,   is piecewise continuous on   ,     and hence 

bounded there (the bound being just the largest bound over all the 

subintervals), say 

|  ( )|    ,               

Since     has a positive minimum on   ,    , a constant   can be chosen 

sufficiently large so that 

|  ( )|       ,           

Therefore 

∫ |      ( )|
 

 

    ∫   (   )
 

 

   
 

   
 

   (   )

   
 

Letting      and noting that   ( )        then 
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∫ |      ( )|
 

 

   
 

   
 

Thus the Laplace integral converges absolutely in this instance (and 

hence converges) for    ( )     . 

Theorem (2.1.5) (Linearity Property) 

Let   ( ),          ,           be functions whose Laplace 

transforms exist, and let    ,           be real numbers. Then, 

      ( )               ( )                             . 

Proof: 

Clearly, we have 

      ( )               ( )   ∫     
 

 

(    ( )              ( ))   

   ∫       ( )      ∫       ( )  
 

 

 

 

 

                         .                               

This property can be easily extended to more than two functions as 

shown from the above proof. With the linearity property, Laplace 

transform can also be called the linear operator.  

Theorem (2.1.6)  (Uniqueness Property) 

If  ( ) and g( ) are continuous functions for           and 

if          g , then  ( )    g( ), and conversely.  

In fact, if two functions defined on the positive real axis have the same 

transform, then these functions cannot differ over an interval of 

positive length, although they may differ at various isolated points. For 

many applications, it is necessary to recover the function   from its 

Laplace transform     . To this end, if  ( ) is the Laplace transform of a 

function  ( ) and if the function  ( ) is uniquely defined by the Laplace 

transform, i.e., if   g( ) ( )     ( ), then g( )     ( ) for all      , then 
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we define the inverse Laplace transform of  ( ) as the function  ( ) and 

write 

     ( ) ( )   ( ) 

The well-definedness of the inverse Laplace transform plays a central  

role when we solve some initial value problems using the Laplace 

transformation theory in the next section. 

Theorem (2.1.7)  (Inverse Linearity Property) 

Let   ( ),          ,           be continuous functions, and let 

  ( ),            be their Laplace transforms. Then 

        ( )               ( )       
                          . 

    
                           

Theorem (2.1.8)  (Transform of the Derivative) 

Let  ( )( ),         be continuous on   , ) and  ( )( ) be 

piecewise continuous on   , ), with all  ( )( ),        of exponential 

order  . Then, 

 [ ( )]                ( )        ( )     (   )( ). 

2.2 Analysis of method 

2.2.1 Basic idea 

To illustrate the basic idea of this method, we consider a general 

nonlinear non-homogeneous partial differential equation with initial 

conditions of the form 

  ( ,  )     ( ,  )     ( ,  )   g( ,  ),                                  ( ) 

 ( ,  )    ( ),   ( ,  )     ( ) 

Where   is the second order linear differential operator           , is 

the linear differential operator of less order than  ,  represents the 

general non-linear differential operator and g( ,  ) is the source term. 
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Taking the Laplace transform (denoted throughout this chpter by  ) on 

both sides of Eq. (2): 

    ( ,  )      ( ,  )       ( ,  )     g( ,  )  

Using the differentiation property of the Laplace transform, we have ; 

   ( ,  )   
 ( )

  
 

 ( )

  
 

 

  
    ( ,  )  

 

  
  g( ,  )  

 

  
    ( ,  )       ( ) 

Operating with the Laplace inverse on both sides of Eq. (3) gives 

 ( ,  )    ( ,  )     *
 

  
     ( ,  )     ( ,  ) +               ( ) 

Where  ( ,  ) represents the term arising from the source term and the 

prescribed initial conditions. Now, we apply the homotopy perturbation 

method 

 ( ,  )   ∑     ( ,  )

 

   

                                                                   ( ) 

And the nonlinear term can be decomposed as; 

  ( ,  )   ∑     ( )

 

   

                                                                   ( ) 

For some He’s polynomials    [80, 81] that are given by: 

  (  , . . . ,   )   
 

  

  

   
   (∑    

 

   

)

   

   ,      ,  ,  ,   . . .                             ( ) 

Substituting Eqs. (6) and (5) in Eq. (4) we get; 

∑     ( ,  )

 

   

   ( ,  )   (   *
 

  
  [∑     ( ,  )

 

   

 ∑     ( )

 

   

]+)     ( ) 
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Which is the coupling of the Laplace transform and the homotopy 

perturbation method using He’s polynomials. Comparing the coefficient 

of like powers of  , the following approximations are obtained  

      ( ,  )    ( ,  ),                   

      ( ,  )        [
 

  
       ( ,  )      ( ) ] , 

      ( ,  )        [
 

  
       ( ,  )      ( ) ] , 

      ( ,  )       *
 

  
       ( ,  )     ( ) +,    

        

Then the solution is 

 ( ,  )      
   

  ( ,  )    ( ,  )    ( ,  )    ( ,  )    ( ) 

2.2.2 Homotopy Perturbation Method and He’s polynomial:  

The homotopy perturbation method is a technique for solving 

functional equations of various kinds in the form; 

   ( )   ,                                                                                    (  ) 

Where   is nonlinear operator from Hilbert space   to   ,   is unknown 

function, and   is known function in  . 

Consider Eq. (1) in the form 

 ( )     ( )   ( )                                                                (  ) 

With solution  ( ). As possible remedy, we can define homotopy  ( ,  ) 

as follows: 

 ( ,  )   ( ),        ( ,  )   ( ) 

Where  ( ) is an integral operator with known solution    which can be 

obtained easily, typically we may choose a convex homotopy in the form  
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 ( ,  )  (   ) ( )    ( )                                                   (  ) 

And continuously trace implicitly defined curve from starting point 

 (  ,  )   ( ), to the solution function  ( ,  )   ( ), the embedding 

parameter   monotonically increase from zero to unit as the trivial 

problem  ( )    is continuously deformed form to original 

problem  ( )    , the embedding parameter      ,   can be considered 

as an expanding parameter  

                                                                            (  ) 

When    , Eq. (12) corresponds to Eqs. (11) and (13) becomes the 

approximate of Eq. (11) i.e.   

     
   

                                                                       (  ) 

Theorem (2.2.9) [80], Suppose  ( ) is a nonlinear function, and 

   ∑     
 
   , then we have; 

  

   
 ( )    

  

   
   (∑    

 

   

)

   

 
  

   
   (∑    

 

   

)

   

                         (  ) 

Proof: 

Since 

   ∑    

 

   

  ∑    

 

   

  ∑     

 

     

 

We have such result as following: 

  

   
 ( )    

  

   
   (∑    

 

   

)

   

 

 
  

   
   (∑    

 

   

 ∑     

 

     

)
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   (∑    

 

   

)

   

 

Therefore, we obtain: 

  

   
 ( )    

  

   
   (∑    

 

   

)

   

 
  

   
   (∑    

 

   

)

   

 

Theorem (2.2.10) The He’s polynomial can be calculated from the 

formula  

   
 

  

  

   
 (∑    

 

   

)

   

        , , ,  

Proof: 

Taking 

 ( )   ( )   ( )    ( )   , 

And substituting Eq. (3) into Eq. (4) in chapter1, we get; 

 ( ,  )   ( )   ( )    ( )                                             (  ) 

According to Maclaurin expansion of   ( ) with respect to , we get 

 ( )   ( )     (
 

  
 ( )   )    (

 

  

  

   
 ( )   ) 

   (
 

  

  

   
 ( )   )      (

 

  

  

   
 ( )   )    

Substituting Eq. (9) into the above equation, we get;  

 ( )   (∑    

 

   

)

   

  (
 

  
 (∑    

 

   

)

   

) 
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   (
 

  

  

   
 (∑    

 

   

)

   

)    (
 

  

  

   
 (∑    

 

   

)

   

) 

     (
 

  

  

   
 (∑    

 

   

)

   

)    

According to Theorem (2.2.1) 

 ( )   (  )   (
 

  
 (∑    

 

   

)

   

) 

   (
 

  

  

   
 (∑    

 

   

)

   

)    (
 

  

  

   
 (∑    

 

   

)

   

) 

     (
 

  

  

   
 (∑    

 

   

)

   

)    

Substituting Eq. (16) into Eq. (9), and equating the terms with the 

identical powers of  , we get; 

      ( )   ( )      ( )   ( ) 

      ( )   (  )      ( )   (  ) 

     ( )  
 

  
 (∑    

 

   

)

   

     ( )  
 

  
 (∑    

 

   

)

   

 

       

          ( )  
  

   
 (∑    

 

   

)

   

       ( )  
  

   
 (∑    

 

   

)
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Definition (2.2.11) [80], The He polynomials are defined as follows: 

  (          )  
 

  

  

   
 (∑    

 

   

)

   

,      , , ,  

Therefore, the approximate solution obtained by the homotopy 

perturbation method can be expressed in the polynomials: 

 ( )   ( )   (  )⏟  
  

 
 

  
 (∑    

 

   

)

   ⏟          
  

 

 
 

  

  

   
 (∑    

 

   

)

   ⏟          
  

  
 

  

  

   
 (∑    

 

   

)

   ⏟          
  

   

The nonlinear term  ( ) can be also expressed in He polynomials:  

 ( )  ∑   

 

   

(          ) 

   (  )    (  ,   )      (  ,  ,    )      , 

Where 

  (          )  
 

  

  

   
 (∑    

 

   

)

   

 ,      , , ,  

Alternatively, the approximate solution can be expressed as follows: 

 ( )   ( )  ∑   

 

   

(          ) 

It is interesting to point out that we can obtain He polynomials and the 

solution simultaneously, making the solution procedure much more 

attractive and fascinating.  
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2.3 Applications of Homotopy Perturbation Transform 

Method to Linear and Nonlinear Partial Differential 

Equations 

The aim of this section was to present a homotopy perturbation 

transform method for solving linear and nonlinear  partial differential 

equations. The homotopy perturbation transform method is a combined 

form of the homotopy perturbation method and Laplace transform 

method. The nonlinear terms can be easily obtained by the use of He’ s 

polynomials. The technique presents an accurate methodology to solve 

many types of partial differential equations The approximate solutions 

obtained by proposed scheme in a wide range of the problem’s domain 

were compared with those results obtained from the actual solutions. 

Example (2.3.12) Consider the following homogeneous partial 

differential equation [61], 

                                                                                                (  ) 

Subject to the initial condition; 

 ( ,  )    

Taking the Laplace transform on both sides of equation (17) subject to 

the initial condition, we get; 

 ( ,  )  
 

 
 

 

 
                                                                            (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )       *
 

 
     +                                                            (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

    [   *
 

 
 [ ∑     ( ,  )

 

   

]+]            (  ) 
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Or equivalently: 

                 [   *
 

 
   (             ) +]            (  ) 

Comparing the coefficient of like powers of   , the following 

approximations are obtained;  

      ( ,  )         

      ( ,  )     *
 

 
      +                                                 (  ) 

      ( ,  )     *
 

 
      +    

  

  
 

Proceeding in a similar manner, we obtain:  

      ( ,  )    
  

  
 

      ( ,  )    
  

  
 

Therefore the solution  ( ,  ) in series form is given by: 

 ( ,  )    ( ,  )    ( ,  )    ( ,  )    

 ( ,  )         
  

  
   

  

  
   

  

  
                            (  ) 

And in closed form given as: 

 ( ,  )                                                                                            (  ) 

Example (2.3.13)  We consider the following second order PDEs [65], 

                                                                                              (  ) 

With the initial condition; 

 ( ,  )                                                                                      (  ) 
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And boundary conditions; 

 ( ,  )      ,      ( ,  )                                                         (  ) 

Taking the Laplace transform on both sides of equation (25) subject to 

the initial condition Eq. (26), we get; 

 ( ,  )  
    

 
 

 

 
                                                          (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )          *
 

 
         +                                      (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

      

  

[
 
 
 
 

   [
 

 
 *(∑     ( ,  )

 

   

)

  

 (∑     ( ,  )

 

   

)

 

+]

]
 
 
 
 

   (  ) 

Or equivalently:  

                   

  [   *
 

 
  (        )   (        )  +]       (  ) 

Comparing the coefficients of like powers of  , we have: 

      ( ,  )       

      ( ,  )     *
 

 
  (  )   (  )  +                             (  ) 

      ( ,  )     *
 

 
  (  )   (  )  +                      
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  ( ,  )   ,     

Thus, the solution in series form is given by: 

 ( ,  )  ∑   ( ,  )

 

   

 

Or 

 ( ,  )     ( ,  )     ( ,  )     ( ,  ),      

Hence the solution of Eq. (25) with Eqs. (26-27) is given as; 

 ( ,  )                                                                                 (  ) 

This solution coincides with the exact one.  

Example (2.3.14) We consider the following initial-boundary value 

problem [61], 

          ,           ,                                                        (  ) 

Subject to the initial condition;  

 ( ,  )          (  )                                                         (  ) 

And boundary conditions; 

 ( ,  )   ,                                                                                  (  ) 

 ( ,  )   ,                 

Taking the Laplace transform on both sides of  equation (34) subject to 

the initial condition Eq. (35), we get; 

 ( ,  )  
        (  )

 
 

 

 
                                           (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )          (  )     *
 

 
      +                          (  ) 



48 
 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

         (  )   [   *
 

 
  (∑     ( ,  )

 

   

)

  

+]        (  ) 

Or equivalently:  

                      (  ) 

  [   *
 

 
  (             )   +]                               (  ) 

Comparing the coefficients of like powers of   , we have: 

      ( ,  )          (  ) 

      ( ,  )     *
 

 
  (  )   +          (  )              (  ) 

      ( ,  )     *
 

 
  (  )   +     

  

  
   (  ) 

And so on. Consequently, the solution in a series form is given by : 

 ( ,  )           (  ) (        
  

  
  )           (  ) 

Hence the solution of Eq. (34) with Eqs. (35-36) is given as; 

 ( ,  )          (  )                                                      (  ) 

This solution coincides with the exact one.  
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Example (2.3.15) We consider the homogeneous one dimension heat 

equation [63], 

            ,                                                                   (  ) 

With initial condition: 

 ( ,  )    ,                                                                         (  ) 

And boundary condition: 

  ( ,  )   ,                                                                                (  ) 

Taking the Laplace transform on both sides of equation (44) subject to 

the initial condition Eq. (45), we get; 

 ( ,  )  
  

 
 

 

 
                                                                   (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )        *
 

 
        +                                                (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

     [   *
 

 
  (∑     ( ,  )

 

   

)

  

 ∑     ( ,  )

 

   

+]     (  ) 

Or equivalently:  

                 

  [   *
 

 
  (        )   (        ) +]         (  ) 

Comparing the coefficients of like powers of  , we have: 

      ( ,  )     
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      ( ,  )     *
 

 
  (  )      +                         (  ) 

      ( ,  )     *
 

 
  (  )      +  

    

 
     

Proceeding in a similar manner, we get; 

      ( ,  )  
    

  
    

      ( ,  )  
    

  
 

   

  
 

Thus, the solution in series form is given by: 

 ( ,  )  ∑   ( ,  )

 

   

 

 ( ,  )    (    
  

  
 

  

  
  )    (    

  

  
 

  

  
  ) 

Hence the solution of Eq. (44) with Eqs. (45-46) is given as; 

 ( ,  )                                                                               (  ) 

This solution coincides with the exact one.  

Example (2.3.16) We consider the following linear second partial 

differential equation [62], 

                                                                                              (  ) 

With initial condition: 

 ( ,  )                                                                                      (  ) 

And boundary condition: 

 ( ,  )                                                                                        (  ) 
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Taking the Laplace transform on both sides of equation (53) subject to 

the initial condition Eq. (54), we get: 

 ( ,  )  
    

 
 

 

 
                                                          (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )          *
 

 
         +                                      (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

      

  [   *
 

 
  (∑     ( ,  )

 

   

)

  

 (∑     ( ,  )

 

   

)

 

+]     (  ) 

Or equivalently:  

                 

  [   *
 

 
  (        )   (        )  +]       (  ) 

Comparing the coefficients of like powers of   , we have: 

       ( ,  )       

      ( ,  )     *
 

 
  (  )   (  )  +                             (  ) 

      ( ,  )     *
 

 
  (  )   (  )  +                      

  ( ,  )   ,          

Thus, the solution in series form is given by: 
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 ( ,  )  ∑   ( ,  )

 

   

 

Or 

 ( ,  )     ( ,  )     ( ,  )     ( ,  ),      

Hence the solution of Eq. (53) with Eq. (54-55) is given as; 

 ( ,  )                                                                                 (  ) 

This solution coincides with the exact one.  

Example (2.3.17) We consider the following homogeneous advection 

problem [82], 

        ,                                                                                     (  ) 

Subject to the initial condition: 

 ( ,  )    ,                                                                                      (  ) 

By applying the aforesaid method subject to the initial condition, we 

have 

 ( ,  )   
 

 
 

 

 
                                                                      (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )        *
 

 
      +                                                      (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

     *   [
 

 
  ∑     ( )

 

   

]+                 (  ) 

Where    ( ) are He’s polynomials [80, 81] that represent the nonlinear 

terms. 
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The first few components of He’s polynomials, are given by: 

  ( )    (  )  

  ( )    (  )    (  )  

  ( )    (  )    (  )    (  )  

               

Comparing the coefficients of like powers of  , we have: 

      ( ,  )    ,     

      ( ,  )      *
 

 
    ( ) +                                       (  ) 

      ( ,  )      *
 

 
    ( ) +       

Proceeding in a similar manner, we get; 

      ( ,  )      ,    

      ( ,  )      ,      

So that the solution  ( ,  ) is given by 

 ( ,  )    (           )                                             (  ) 

In series form, and 

 ( ,  )  
 

   
,   | |                                                                     (  ) 

In closed form. 

Example (2.3.18) We consider the following non-homogeneous 

advection problem [66], 

                    ,                                                    (  ) 

Subject to the initial condition: 
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 ( ,  )   ,                                                                                         (  ) 

By applying the aforesaid method subject to the initial condition, we 

have 

 ( ,  )  
 

  
 

 

  
 

  

  
 

  

  
 

 

 
                                           (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )        
  

 
  

  

 
    *

 

 
      +                        (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

       
  

 
  

  

 
  *   [

 

 
  ∑     ( )

 

   

]+                   (  ) 

Comparing the coefficients of like powers of  , we have: 

      ( ,  )        
  

 
  

  

 
,         

      ( ,  )      *
 

 
    ( ) + 

  ( ,  )   
 

 
   

 

 
   

 

  
    

 

  
   

 

  
    

 

  
   (  ) 

      ( ,  )      *
 

 
    ( ) + 

  ( ,  )  
 

    
    

 

    
     

    

      
    

  

    
    

 
   

    
   

  

   
    

 

  
   

 

  
    

It is necessary to mention here that the noise terms are those terms 

who are the same but different in signs, more clearly the noise terms 

 
 

 
        

 

 
   between the components   ( ,  ) and   ( ,  ) can be 
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cancelled and the remaining terms of   ( ,  )  still satisfy the equation. 

The exact solution is therefore 

 ( ,  )                                                                                      (  ) 

Example (2.3.19) We consider the following diffusion convection 

problem [67], 

                      ,      ,                                 (  ) 

Subject to the initial condition: 

 ( ,  )    ,                                                                                       (  ) 

Taking the Laplace transform on both sides of equation ( 77) subject to 

the initial condition Eq. (78), we get; 

 ( ,  )  
  

 
 

 

 
  (        )  (      )                   (  ) 

The inverse of Laplace transform implies that:   

 ( ,  )        *
 

 
  (        )  (      ) +       (  ) 

Now, we apply the homotopy perturbation method, we get:  

∑     ( ,  )

 

   

      (   *
 

  
  [∑     ( ,  )

 

   

 ∑     ( )

 

   

]+)          (  ) 

Where    ( ) are He’s polynomials [80, 81] that represent the nonlinear 

terms. 

The first few components of He’s polynomials, are given by  

  ( )    (  )    
  

  ( )    (  )    (  )                                                 (  ) 

  ( )    (  )    (  )    (  )    
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Comparing the coefficients of like powers of  , we have: 

      ( ,  )    , 

      ( ,  )     *
 

 
  (  )   (  )       ( ) +       

      ( ,  )     *
 

 
  (  )   (  )       ( ) +    

  

  
 

      ( ,  )     *
 

 
  (  )   (  )       ( ) +    

  

  
 

Proceeding in a similar manner, we have 

      ( ,  )    
  

  
, 

      ( ,  )    
  

  
, 

        

Therefore the series solution  ( ,  ) is given as; 

 ( ,  )    (    
  

  
 

  

  
 

  

  
  )                                 (  ) 

In series form, and 

 ( ,  )                                                                                           (  ) 

In closed form. 

Example (2.3.20) We consider a nonlinear partial differential equation  

      
 

 
  

 ,                                                                                (  ) 

Subject to the initial condition: 

 ( ,  )   ,                                                                                         (  ) 
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Taking the Laplace transform on both sides of Eq. (85) subject to the 

initial condition Eq. (86), we get; 

 ( ,  )  
  

  
 

 

 
 [

 

 
  

 ]                                                              (  ) 

The inverse of Laplace transform implies that;  

 ( ,  )         *
 

 
 [

 

 
  

 ]+                                                  (  ) 

Now, applying the homotopy perturbation method, we get;  

∑     ( ,  )

  

   

      (   *
 

 
  [

 

 
∑     ( )

 

   

]+)       (  ) 

Where   ( ) are He’s polynomials that represents the nonlinear terms. 

The first few components of He’s polynomials, are given by  

  ( )  (  ) 
  

  ( )   (  ) (  ) 
  

  ( )   (  ) (  )  (  ) 
  

  ( )   (  ) (  )   (  ) (  )  

               

Comparing the coefficients of like powers of   , we get: 

      ( ,  )     ,       

      ( ,  )  
 

 
   *

 

 
    ( ) +  

 

 
                                 (  ) 

      ( ,  )  
 

 
   *

 

 
    ( ) +  

 

  
     

Proceeding in a similar manner, we have: 
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      ( ,  )  
 

   
    ,             

        

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 ( ,  )    (  
  

 
 

 

  
   

 

   
   )                                (  ) 

And in a closed form by; 

 ( ,  )       ( )                                                                           (  ) 

Example (2.3.21) We consider a nonlinear partial differential equation 

[61], 

     
 

 
  

                                                                                    (  ) 

Subject to the initial condition;  

 ( ,  )                                                                                      (  ) 

And boundary condition; 

  ( ,  )                                                                                            (  ) 

Taking the Laplace transform on both sides of Eq. (93) subject to the 

initial condition Eq. (94) and boundary condition Eq. (95), we get; 

 ( ,  )  
    

 
 

 

  
 

 

  
 [  

 

 
  

 ]                                  (  ) 

The inverse of Laplace transform implies that;  

 ( ,  )            [
 

  
    

 

 
  

  ]                           (  ) 

Now, applying the homotopy perturbation method, we get;  
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∑     ( ,  )

  

   

         

  (   *
 

  
  [∑     ( ,  )

 

   

 
 

 
∑     ( )

 

   

]+)               (  ) 

Where   ( ) the homotopy polynomials are represents the nonlinear 

term    
 . 

The first few components of homotopy polynomials are given by: 

  ( )  (  ) 
  

  ( )   (  ) (  ) 
  

  ( )   (  ) (  )  (  ) 
  

               

Comparing the coefficients of like powers of  , we have: 

      ( ,  )        ,    

      ( ,  )     *
 

  
 [   

 

 
  ( )]+  

  

  
 

  

  
              (  ) 

      ( ,  )     *
 

  
 [   

 

 
  ( )]+  

  

  
 

  

  
 

Proceeding in a similar manner, we get; 

      ( ,  )  
  

  
 

  

  
, 

      ( ,  )  
  

  
 

  

  
,         
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And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 ( ,  )     (    
  

  
 

  

  
 

  

  
 

  

  
                       (   ) 

In series form, and 

 ( ,  )                                                                                   (   ) 

This solution coincides with the exact one.  

 

2.4 Systems of Linear and Nonlinear Partial Differential 

Equations by (HPTM) 

It is well-known that many physical and engineering phenomena 

such as wave propagation and shallow water waves can be modeled by 

systems of PDEs  Finding accurate and efficient methods for solving 

nonlinear system of PDEs has long been an active research undertaking. 

HPTM deforms a difficult problem into a set of problems which are 

easier to solve without any need to transform nonlinear terms.  

The aim of this section is to present an approach based homotopy 

perturbation transform method for finding series solutions to linear 

and nonlinear systems of partial differential equations written in an 

operator form 

      ( ,  )    ( ,  )  g                                                   (   ) 

      ( ,  )    ( ,  )  g  

Subject to the initial conditions; 

 ( ,  )    ( )                                                                                (   ) 

 ( ,  )    ( ) 

Where    is consider as a first-order partial differential operator,   ,     

and   ,    are linear and nonlinear operators and g  and g  are source 
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terms. The method consists of first applying the Laplace transform to 

both sides of equations in system Eq. (102) and then by using initial 

conditions Eq. (103), we get; 

           ( ,  )      ( ,  )                                  (   ) 

           ( ,  )      ( ,  )                                  (   ) 

Using the differential property of Laplace transform and initial 

conditions, we get; 

 ( ,  )  
  ( )

 
 

 

 
      

 

 
    ( ,  )  

 

 
    ( ,  )   (   ) 

 ( ,  )  
  ( )

 
 

 

 
      

 

 
    ( ,  )  

 

 
    ( ,  )  (   ) 

Applying the inverse of Laplace transform on both sides of Eqs. (106- 

107), we get:  

 ( ,  )    ( )     *
 

 
[    ( ,  )      ( ,  ) ]+         (   ) 

 ( ,  )    ( )     *
 

 
[    ( ,  )      ( ,  ) ]+         (   ) 

Where   ( ) and   ( ) represents the terms arising from source terms 

and prescribe initial conditions. According to standard homotopy 

perturbation method the solution  and   can be expanded into infinite 

series as; 

 ( ,  )  ∑     ( ,  )

  

   

,    ( ,  )  ∑     ( ,  )

  

   

              (   ) 

Where     ,   is an embedding parameter. Also the nonlinear term    

and    can be written as; 

  ( ,  )  ∑   (  ) ( ,  )

  

   

                                                     (   ) 



62 
 

  ( ,  )  ∑   (  ) ( ,  )

  

   

 

Where     and     are the He's polynomials [80, 81] that represent the 

nonlinear terms. By substituting Eqs. (110) and (111) in Eqs. (108) and 

(109), the solutions can be written as; 

∑     ( ,  )

  

   

   ( )   (   *
 

 
[    ( ,  )    (  )  ]+)                     (   ) 

∑     ( ,  )

  

   

   ( )   (   *
 

 
[    ( ,  )    (  )  ]+)                     (   ) 

In Eqs. (112) and (113),(  ) ,    are He's polynomials can be 

generated by several means. Here we used the following recursive 

formulation: 

  (          )  
 

  

  

   
 (∑    

 

   

)

   

 ,      , , ,                   (   ) 

Equating the terms with identical powers in   in Eqs. (112) and (113), 

we obtained the following approximations: 

  :      ( ) 

  :        *
 

 
 [   (  ,   )   (  )  ]+ 

  :        *
 

 
 [   (  ,   )   (  )  ]+ 

      

Similarly 

  :      ( ) 
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  :        *
 

 
 [   (  ,   )   (  )  ]+                          (   ) 

  :        *
 

 
 [   (  ,   )   (  )  ]+ 

      

The best approximations for the solutions are  

     
   

                                                             (   ) 

     
   

              

To give a clear overview of the content of this work, several illustrative 

examples have been selected to demonstrate the efficiency of the 

method. 

Example (2.4.22)   We first consider the linear system 

       ,                                                                                      (   ) 

       ,           

With the initial conditions;  

 ( ,  )                                                                                         (   ) 

 ( ,  )      

Taking Laplace transform of equation (117) subject to the initial 

conditions Eq. (118), we get; 

 ( ,  )  
  

 
 

 

 
                                                                        (   ) 

 ( ,  )  
   

 
 

 

 
      

The inverse Laplace transform implies that: 
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 ( ,  )        *
 

 
     +                                                        (   ) 

 ( ,  )         *
 

 
     + 

Now applying the homotopy perturbation method, we get;  

∑     ( ,  )

  

   

        [
 

 
 *(∑     ( ,  )

  

   

)

 

+]        (   ) 

∑     ( ,  )

  

   

         [
 

 
 *(∑     ( ,  )

  

   

)

 

+] 

Comparing the coefficients of like power  , we get; 

  :   ( ,  )                     ,           ( ,  )      

  :   ( ,  )               ,            ( ,  )       

  :   ( ,  )  
  

  
          ,           ( ,  )  

  

  
                          (   ) 

  :   ( ,  )  
  

  
         ,       ( ,  )   

  

  
   

      

And so on. Combining the results obtained for the components, the 

solution in a series form is given by; 

 ( ,  )    (    
  

  
 

  

  
  )     (  

  

  
 

  

  
  )                      (   ) 

 ( ,  )     (    
  

  
 

  

  
  )    (  

  

  
 

  

  
  )                      (   ) 

Which has an exact analytical solution of the form;  
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( ,  )  (      ( )         ( ) ,         ( )        ( ))                       (   ) 

Example (2.4.23)  We consider the inhomogeneous linear system [68], 

      (   )    ,                                                               (   ) 

      (   )    , 

With the initial conditions;  

 ( ,  )                                                                                   (   ) 

 ( ,  )        

Taking the Laplace transform on both sides of Eq. (126), then by using 

the differentiation property of Laplace transform and initial conditions 

Eq. (127) gives; 

 ( ,  )  
    

 
 

 

  
 

 

 
     (   )                              (   ) 

 ( ,  )  
     

 
 

 

  
 

 

 
  (   )      

The inverse Laplace transform implies that:  

 ( ,  )             *
 

 
     (   ) +                  (   ) 

 ( ,  )              *
 

 
  (   )     + 

Now applying the homotopy perturbation method, we get;  

∑     ( ,  )

  

   

         

     [
 

 
 *(∑     ( ,  )

  

   

)

 

 (∑     ( ,  )

  

   

 ∑     ( ,  )

  

   

)+]        (   ) 
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∑     ( ,  )

  

   

          

     [
 

 
 *(∑     ( ,  )

  

   

 ∑     ( ,  )

  

   

)  (∑     ( ,  )

  

   

)

 

+]        (   ) 

Comparing the coefficients of like power  , we get; 

  : {
  ( ,  )         

  ( ,  )          
  

   : {
  ( ,  )        

  ( ,  )         
                                                           (   ) 

  :

{
 

   ( ,  )  
  

  
  

  ( ,  )  
  

  
  

   

And so on. Combining the results obtained for the components, the 

solution in a series form is given by;  

{
 
 

 
  ( ,  )      (    

  

  
 

  

  
  )

 ( ,  )       (    
  

  
 

  

  
  )

                           (   ) 

That converges to the exact solutions 

 ( ,  )                                                                                  (   ) 

 ( ,  )          

Which has an exact analytical solution of the form; 

( ,  )  (      ,        )                                                   (   ) 
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Example (2.4.24)  We consider the inhomogeneous nonlinear system 

[61], 

          ,                                                                           (   ) 

          , 

With the initial conditions;  

 ( ,  )                                                                                         (   ) 

 ( ,  )      

Taking the Laplace transform on both sides of Eq. (136), then by using 

the differentiation property of Laplace transform and initial conditions 

Eq. (137) gives; 

 ( ,  )  
  

 
 

 

  
 

 

 
                                                      (   ) 

 ( ,  )  
   

 
 

 

  
 

 

 
         

The inverse Laplace transform implies that:  

 ( ,  )          *
 

 
        +                                     (   ) 

 ( ,  )           *
 

 
        + 

Now applying the homotopy perturbation method, we get;  

∑     ( ,  )

  

   

          *
 

 
 [∑   (  ) ( ,  )

  

   

 ∑     ( ,  )

  

   

]+ (   ) 

∑     ( ,  )  

  

   

          *
 

 
 [∑   (  ) ( ,  )  

  

   

∑     ( ,  )

  

   

]+ (   ) 
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Where (  ) ( ,  ) and (  ) ( ,  ) are He's polynomials that represents 

nonlinear terms     and     respectively. We have a few terms of the 

He's polynomials for     and    , which are given by: 

(  ) ( ,  )    (  )  

(  ) ( ,  )    (  )    (  )                                                (   ) 

(  ) ( ,  )    (  )    (  )    (  )  

                         

(  ) ( ,  )    (  )  

(  ) ( ,  )    (  )    (  )                                                (   ) 

(  ) ( ,  )    (  )    (  )    (  )  

                         

Comparing the coefficients of like power  , we get; 

  : {
  ( ,  )      

  ( ,  )       
                                                                                         (   ) 

  :

{
 
 

 
   ( ,  )      *

 

 
  (  ) ( ,  )    +         

  

  
 

  

  
  

  ( ,  )      *
 

 
  (  ) ( ,  )    +          

  

  
 

  

  
   

  ,  

By canceling the noise terms between    ,  ,··· and between   ,  , ···, we 

find: 

{
 
 

 
  ( ,  )    (    

  

  
 

  

  
  )

 ( ,  )     (    
  

  
 

  

  
  )

                                  (   ) 

That converges to the exact solutions 

{
 ( ,  )      

 ( ,  )                                                                                   (   ) 
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Which has an exact analytical solution of the form;  

( ,  )  (    ,      )                                                                    (   ) 

Example (2.4.25)  We consider the following nonlinear system [61], 

         , 

         ,                                                                                 (   ) 

         , 

With the initial conditions;  

 ( ,  ,  )       

 ( , ,  ,  )                                                                             (   ) 

 ( , ,  ,  )        

Taking the Laplace transform on both sides of Eq. (136), then by using 

the differentiation property of Laplace transform and initial conditions 

Eq. (137) gives; 

 ( ,  ,  )  
    

 
 

 

  
 

 

 
 [    ] 

 ( ,  ,  )  
    

 
 

 

  
 

 

 
 [    ]                                       (   ) 

 ( ,  ,  )  
     

 
 

 

  
 

 

 
 [    ] 

The inverse Laplace transform implies that:  

 ( ,  ,  )            *
 

 
 [    ]+ 

 ( ,  ,  )             *
 

 
 [    ]+                            (   ) 

 ( ,  ,  )           
 

 
 [    ] 
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Now applying the homotopy perturbation method, we get;  

∑     ( ,  ,  )

  

   

            *
 

 
 [∑   (  ) ( ,  ,  )

  

   

]+ 

∑     ( ,  ,  )  

  

   

            *
 

 
 [∑   (  ) ( ,  , )

  

   

]+     (   ) 

∑     ( ,  ,  )  

  

   

             *
 

 
 [∑   (  ) ( ,  ,  )

  

   

]+ 

Where (  ) ( ,  ,  ),(  ) ( ,  ,  ) and (  ) ( ,  ,  ) are He's polynomials 

that represents nonlinear terms     ,      and      respectively. We 

have a few terms of the He's polynomials for      ,      and     , which 

are given by: 

(  ) ( ,  , )  (  ) (  )  

(  ) ( ,  ,  )  (  ) (  )  (  ) (  )                             (   ) 

(  ) ( ,  , )  (  ) (  )  (  ) (  )  (  ) (  )  

                               

(  ) ( ,  ,  )  (  ) (  )  

(  ) ( ,  , )  (  ) (  )  (  ) (  )                             (   ) 

(  ) ( ,  ,  )  (  ) (  )  (  ) (  )  (  ) (  )  

                                   

(  ) ( ,  , )  (  ) (  )  

(  ) ( ,  ,  )  (  ) (  )  (  ) (  )                              (   ) 

(  ) ( ,  , )  (  ) (  )  (  ) (  )  (  ) (  )  

Comparing the coefficients of like power  , we get;  
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  : ,

  ( ,  ,  )            

  ( ,  ,  )            

  ( ,  ,  )          

                                                   (   ) 

  : ,

  ( ,  ,  )        

  ( ,  ,  )        

  ( ,  ,  )     

  ,                                                                (   )  

  : ,

  ( ,  ,  )       

  ( ,  ,  )      

  ( ,  ,  )   

 ,                                                                    (   ) 

,

  ( ,  ,  )       

  ( ,  ,  )      

  ( ,  ,  )   

   ,                                                             (   ) 

Therefore the exact solutions of the above system of inhomogeneous 

nonlinear PDES as follows: 

,

 ( ,  ,  )             

 ( ,  ,  )            

 ( ,  ,  )          

                                                       (   ) 

Which has an exact analytical solution of the form;  

( ,  ,  )  (       ,        ,        )        (   ) 
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CHAPTER THREE 

Homotopy Perturbation Transform Method for Solving 

Physical Models 

The investigation of the exact solutions to nonlinear equations 

plays an important role in the study of nonlinear physical phenomena. 

The linear and nonlinear partial differential equations have been widely 

used in various application areas, e.g, quantum mechanics, optics, 

seismology and plasma physics. Since analytic approaches to the partial 

differential equations have limited applicabili ty in science and 

engineering problems, there is a growing interest in exploring new 

methods to solve the equation more accurately and efficiently. In recent 

years, many research workers have paid attention to study the 

solutions of nonlinear partial differential equations by using various 

methods. Among these the Adomian decomposition method Hashim, 

Noorani, Ahmed.Bakar, Ismail and Zakaria, (2006), the tanh method, the 

homotopy perturbation method Sweilam, Khader (2009), Sharma and 

GirirajMethi (2011), Jafari, Aminataei (2010), (2011), the differential 

transform method (2008), homotopy perturbation transform method 

and the variational iteration method. He[1-5] developed the homotopy 

perturbation method (HPM) by merging the standard homotopy  and 

perturbation for solving various physical problems. It is worth 

mentioning that the HPM is applied without any discretization, 

restrictive assumption or transformation and is free from round off 

errors. Various ways have been proposed recently to deal  with these 

nonlinearities; one of these combinations is Laplace transform and 

homotopy perturbation method. Laplace transform is a useful technique 

for solving linear differential equations, but this transform is totally 

incapable of handling nonlinear equations because of the difficulties 

that are caused by the nonlinear terms.  So, the solution can be obtained 

using both Laplace transform and homotopy perturbation method to 

solve nonlinear problems. This method provides the solution in a rapid 

convergent series which may lead the solution in a closed form. The 

advantage of this method that can combine the two powerful methods 
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for obtaining exact solutions for nonlinear equations.  Finally, the HPTM 

is applies in solving the linear and nonlinear partial differential 

equations to show the simplicity and straight  for wardness of the 

method. 

3.1 The Klein-Gordon Equation 

The Klein-Gordon equations appear in quantum field theory, 

relativistic physics, dispersive wave-phenomena, plasma physics, 

Nonlinear phenomena have important effects on applied mathematics, 

physics and related to engineering; many such physical phenomena are 

modeled in terms of nonlinear partial differential equations.  

 The Klein-Gordon equation has been extensively studied by using 

traditional methods such as finite difference method, finite element 

method, or collocation method, finite element method, Backland 

transformations, and the inverse scattering method were also applied 

to handle Klein-Gordon equation. 

The methods investigated the concepts of existence, a uniqueness of the 

solution and the weak solution as well. The objectives of these studies 

were mostly focused on the determination of numerical solutions where 

a considerable volume of calculations is usually needed.  In this section, 

the homotopy perturbation method will be applied to obtain exact 

solutions if exist, and approximate to solutions for concrete problems.  

3.1.1 Linear Klein-Gordon Equation 

The linear Klein-Gordon equation in its standard form is given by: 

            (   )                                                                   ( ) 

Subject to the initial conditions; 

 (   )   ( )         (   )  g( )                                                 ( ) 

Where   is a constant and  (   ) is the source term.to solve Eq. (1) with 

the initial condition Eq. (2), by the HPTM, we Taking the Laplace 

transform on both sides of equation (1) subject to the initial condition s, 

we get; 
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 (   )  
 ( )

 
 
g( )

  
 
 

  
 [        (   )]                    ( ) 

The inverse of Laplace transform implies that;  

 (   )   ( )   g( )     *
 

  
 [        (   )]+       ( ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

  ( )   g( )     *
 

  
 [ (   )]+ 

     [
 

  
 *(∑    (   )

 

   

)

  

  ∑    (   )

 

   

+]            ( ) 

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )   ( )   g( )   
  *

 

  
 [ (   )]+ 

     (   )   
  *

 

  
 [(  )      ]+                                        ( ) 

     (   )   
  *

 

  
 [(  )      ]+ 

      

Therefore the solution  (   ) in series form is given by: 

 (   )    (   )    (   )    (   )                                  ( ) 

In many cases we can obtain inductively the exact solution. 

Thealgorithm that is  discussed above will be explained by the following 

illustrative examples. 
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Example (3.1.1)   We consider the following linear Klein-Gordon 

equation [69], 

                                                                                           ( ) 

With the initial conditions;  

 (   )                       (   )                                                      ( ) 

Taking the Laplace transform on both sides of equation (8) subject to 

the initial conditions Eq. (9), we get; 

 (   )  
 

  
 
 

  
 [     ]                                                          (  ) 

The inverse of Laplace transform implies that;  

 (   )        *
 

  
 [     ]+                                              (  ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

        [
 

  
 *(∑    (   )

 

   

)

  

 ∑    (   )

 

   

+]    (  ) 

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )            

     (   )   
  *

 

  
 [(  )     ]+     

  

  
                      (  ) 

     (   )   
  *

 

  
 [(  )     ]+    

  

  
 

Proceeding in a similar manner, we obtain;  

     (   )    
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     (   )   
  

  
 

Therefore the solution  (   ) in series form is given by: 

 (   )    (   )    (   )    (   )     

 (   )   (  
  

  
 
  

  
 
  

  
  )                                            (  ) 

And in closed form given as; 

 (   )      ( )                                                                               (  ) 

Example (3.1.2) We consider the following linear Klein-Gordon 

equation [69], 

                                                                                    (  ) 

With the initial conditions;  

 (   )                             (   )                                           (  ) 

Applying the Laplace transform on both sides of Eq. (16) subject to the 

initial conditions Eq. (17), we have; 

 (   )  
     

  
 
    

 
 
 

  
 
 

  
 [     ]                           (  ) 

The inverse of Laplace transform implies that;  

 (   )                   *
 

  
 [     ]+                 (  ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )
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     [
 

  
 *(∑    (   )

 

   

)

  

 ∑    (   )

 

   

+]             (  ) 

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )   
              

     (   )   
  *

 

  
 [(  )     ]+     

      
  

  
  
  

  
                       (  ) 

     (   )   
  *

 

  
 [(  )     ]+  

  

  
     

  

  
     

  

  
 

     (   )   
  *

 

  
 [(  )     ]+   

  

  
     

  

  
 
   

  
     

      

It is necessary to mention here that the noise terms are those terms 

which are the same but different in signs .more clearly the noise terms 

        between the components   (   ) and   (   ) can be cancelled 

and the remaining terms of   (   )  still satisfy the equation. Therefore 

the solution  (   ) in series form is given by: 

 (   )       (  
  

  
 
  

  
 
  

  
  )                                 (  ) 

And in closed form given as; 

 (   )     ( )     ( )                                                               (  ) 

3.1.2 Nonlinear Klein-Gordon Equation 

The nonlinear Klein-Gordon equation in its standard form is given 

by: 

            ( )   (   )                                                  (  ) 

Subject to the initial conditions; 
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 (   )   ( )                (   )  g( )                                        (  ) 

Where   is a constant, (   ) is the source term and  ( ) is a nonlinear 

function of  . The nonlinear term  ( ) will be equated to the infinite 

series of homotopy polynomials.To solve Eq. (24) with the initial 

conditions Eq. (25), by the HPTM, we taking the Laplace transform on 

both sides of Eq. (24) subject to the initial conditions Eq. (25), we get; 

 (   )  
 ( )

 
 
g( )

  
 
 

  
 [        ( )   (   )]   (  ) 

The inverse of Laplace transform implies that;  

 (   )   ( )   g( )     *
 

  
 [        ( )   (   )]+                    (  ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

  ( )   g( )     *
 

  
 [ (   )]+ 

     *
 

  
 *(∑    (   )

 

   

)

  

  ∑    (   )

 

   

+  ∑    ( )

 

   

+           (  ) 

Where   ( ) are He’s polynomials that represents the nonlinear terms  

Comparing the coefficients of like powers    , the following 

approximations are obtained 

     (   )   ( )   g( )   
  *

 

  
 [ (   )]+ 

     (   )   
  *

 

  
 [(  )         ( )]+                    (  ) 

     (   )   
  *

 

  
 [(  )         ( )]+ 
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Therefore the solution  (   ) in series form is given by: 

 (   )    (   )    (   )    (   )                                (  ) 

The following examples will be used to illustrate the algorithm 

discussed above. 

Example (3.1.3)   We consider the following nonlinear Klein-Gordon 

equation [70], 

         
                                                                           (  ) 

With the initial conditions;  

 (   )                         (   )                                                  (  ) 

Applying the Laplace transform on both sides of Eq. (31) subject to the 

initial conditions Eq. (32), we have: 

 (   )  
   

  
 
 

  
 
 

  
 [     

 ]                                           (  ) 

The inverse of Laplace transform implies that;  

 (   )  
    

  
       *

 

  
 [     

 ]+                              (  ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

 
    

  
    

     [
 

  
 *(∑    (   )

 

   

)

  

 ∑    ( )

 

   

+]                (  ) 

Where   ( )   are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by : 

  ( )  (  )
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  ( )        

  ( )        (  )
                                                                    (  ) 

  ( )              

                 

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )  ,
    

  
     

     (   )  , 
  *

 

  
 [(  )     ( )]+   

  

   
 
     

     
 
    

   
 
    

  
     

     (   )  

{
 
 

 
    *

 

  
 [(  )     ( )]+   

     

     
 
     

     
 
  

   
 
       

     

     

        
 
        

        
 
    

   
 

 

         

It is necessary to mention here that the noise terms are those terms 

which are the same but different in signs .more clearly the noise terms 

 
    

  
 between the components   (   ) and   (   ) can be cancelled and 

the remaining terms of   (   )  still satisfy the equation. Therefore the 

solution  (   ) is given by: 

 (   )                                                                                             (  ) 

Example (3.1.4)  We consider the non-linear Klein Gordon equation 

[71], 

           
                                                    (  ) 

With the initial conditions;  

 (   )                        (   )                                                   (  ) 
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Applying the Laplace transform on both sides of Eq. (31) subject to the 

initial conditions Eq. (32), we have; 

 (   )  
  

  
 
  

  
 
    

  
 
 

  
 [       

 ]                      (  ) 

The inverse of Laplace transform implies that;  

 (   )      
 

  
    

 

  
        *

 

  
 [       

 ]+                          (  ) 

Now, applying the homotopy perturbation method, we get; 

∑    (   )

 

   

     
 

  
    

 

  
     

     [
 

  
 *(∑    (   )

 

   

)

  

 ∑    (   )

 

   

 ∑    ( )

 

   

+]              (  ) 

Where   ( )   are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by: 

  ( )  (  )
  

  ( )   (  )
       (  )

  

                 

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

      (   )  {  
  

 

  
    

 

  
                                                                       (  ) 

p  u (x t)  , 
  *

 

s 
 [(u )   u  H (u)]+ 

  
 
  
xt  

 
  
x t  

 
   

xt  
 
   

xt   
 

    
x t   

 
   

x t   
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x t   

 

     
x t   

 

      
x t   

 

       
x t   

 
 

       
x t   

 

         
x t   

        

Considering the first two components    and    in Eq. (43), it is easily 

observed that the noise terms  
 

  
    and  

 

  
      appears in    and    

respectively. By canceling the noise terms, and by verifying that the 

remaining non-canceled terms of    satisfy Eq. (38), we find that the 

exact solution is given by 

 (   )                                                                                            (  ) 

 

3.2 The Porous Medium Equation 

Many of the physical phenomena and processes in various fields of 

engineering and science are governed by partial differential equations. 

The nonlinear heat equation describing various physical phenomena 

called the porous medium equation.  

The standard form of Porous Medium equation is given by : 

   ( 
   )                                                                                      (  ) 

Where   is a rational number. 

Example (3.2.5)[72], Let us take      in equation (45), we get; 

   (   )                                                                                         (  ) 

And 

        (  )
                                                                             (  ) 

With initial condition: 

 (   )                                                                                             (  ) 
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Applying the Laplace transform on both sides of Eq. (47) subject to the 

initial conditions Eq. (48), we have; 

 (   )  
 

 
 
 

 
 [     (  )

 ]                                                   (  ) 

The inverse of Laplace transform implies that;  

 (   )       *
 

 
 [     (  )

 ]+                                       (  ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

       [
 

 
 ∑    ( )

 

   

]                          (  ) 

Where   ( )   are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by : 

  ( )    (  )    (  ) 
  

  ( )    (  )     (  )    (  ) (  )                                                         (  ) 

  ( )    (  )     (  )     (  )    (  ) (  )  (  ) 
  

             

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )                                             

     (   )   
  *

 

 
 [  ( )]+                                                 (  ) 

     (   )   
  *

 

 
 [  ( )]+     

  (   )                     

Therefore the solution  (   ) in series form is given by: 
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 (   )    (   )    (   )    (   )        

And 

 (   )                                                                                        (  ) 

Example (3.2.6)   Let us take       in equation (45), we get; 

   ( 
    )                                                                                     (  ) 

And 

    
       

  (  )
                                                                  (  ) 

With initial condition: 

 (   )  
 

 
                                                                                         (  ) 

Applying the Laplace transform on both sides of Eq. (56) subject to the 

initial conditions Eq. (57), we have; 

 (   )  
 

  
 
 

 
 [        

  (  )
 ]                                     (  ) 

The inverse of Laplace transform implies that;  

 (   )  
 

 
    *

 

 
 [        

  (  )
 ]+                            (  ) 

Now, applying the homotopy perturbation method, we get;   

∑    (   )

 

   

 
 

 
     [

 

 
 ∑    ( )

 

   

]                          (  ) 

Where   ( )   are He’s polynomial that represents the nonlinear terms  

The first two components of He’s polynomials  are given by : 

     ( )  (  
  )(  )   (  

  )(  ) 
 

 

  ( )  (  
  ) ( 

  
  
(  )   (  )  )  (  

  ) (  
  
  
(  ) 

 
 (  ) (  ) ) 
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Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )  
 

 
           

     (   )   
  *

 

 
 [  ( )]+  

 

  
                                          (  ) 

     (   )   
  *

 

 
 [  ( )]+  

  

  
  

Proceeding in a similar manner we have; 

     (   )  
  

  
       

     (   )  
  

  
     

Therefore the solution  (   ) in series form is given by: 

 (   )  
 

 
 
 

  
 
  

  
 
  

  
                                                    (  ) 

Therefore the solution  (   ) in series form is given by: 

 (   )  
 

   
                                                                                   (  ) 

 

3.3 The Gas Dynamics Equation 

Gas dynamics is a science in the branch of fluid dynamics 

concerned with studying the motion of gases and its effects on physical 

systems, based on the principles of fluid mechanics and 

thermodynamics.  
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The science arises from the studies of gas flows, often around or within 

physical bodies, some examples of these studies include but not limited 

to choked flows in nozzles and valves, shock waves around jets, 

aerodynamic heating on atmospheric reentry vehicles and flows of gas 

fuel within a jet engine. The gas dynamics equation as a nonlinear 

model is as follows 

        (   )                                   (  ) 

In this section we discuss the analytical approximate solution of the 

nonlinear gas dynamic equation.  

Example (3.3.7) Consider the nonlinear gas dynamic equation [73],  

        (   )                                                                   (  ) 

With the following initial condition: 

 (   )                                                                                           (  ) 

Applying the Laplace transform on both sides of Eq. (65) subject to the 

initial conditions Eq. (66), we have; 

 (   )  
   

 
 
 

 
 [ (   )     ]                                          (  ) 

The inverse of Laplace transform implies that;  

 (   )         *
 

 
 [        ]+                                   (  ) 

Now, applying the homotopy perturbation method, we get;   

∑    (   )

 

   

         *
 

 
 [∑    (   )

 

   

 ∑    ( )

 

   

]+                      (  ) 

Where   ( )   are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by: 

  ( )  (  )
    (  )  
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  ( )          (  )    (  )  

  ( )        (  )
    (  )    (  )    (  )  

               

Comparing the coefficients of like powers  , the following 

approximations areobtained: 

     (   )   
                                                                         

     (   )   
  *

 

 
 [     ( )]+    

                               (  ) 

     (   )   
  *

 

 
 [     ( )]+  

  

  
                       

     (   )   
  *

 

 
 [     ( )]+  

  

  
     

Proceeding in a similar manner we have; 

     (   )  
  

  
        

     (   )  
  

  
            

Therefore the solution  (   ) in series form is given by: 

 (   )    (   )    (   )    (   )    

    (    
  

  
 
  

  
 
  

  
  )                                             (  ) 

And in closed form given as; 

 (   )                                                                                           (  ) 
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Example (3.3.8) Consider the nonlinear gas dynamic equation [73],  

        (   )    
                                                         (  ) 

With the following initial condition; 

 (   )                                                                                     (  ) 

Applying the Laplace transform on both sides of Eq. (73) subject to the 

initial conditions Eq. (74), we have; 

 (   )  
     

 
 

   

 (   )
 
 

 
 [ (   )     ]            (  ) 

The inverse of Laplace transform implies that;  

 (   )            *
 

 
 [        ]+                         (  ) 

Now, applying the homotopy perturbation method, we get;   

∑    (   )

 

   

            *
 

 
 [∑    (   )

 

   

 ∑    ( )

 

   

]+          (  ) 

Where   ( ) n are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by: 

  ( )  (  )
    (  )  

  ( )          (  )    (  )  

  ( )        (  )
    (  )    (  )    (  )  

               

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )     
                                                  

     (   )   
  *

 

 
 [     ( )]+                                      (  ) 
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     (   )   
  *

 

 
 [     ( )]+             

  (   )                            

Therefore the solution  (   ) in series form is given by: 

 (   )    (   )    (   )                                                           (  ) 

And 

 (   )                                                                                     (  ) 

 

3.4 The Burgers Equation 

The Burgers equation is considered one of the fundamental model 

equations in fluid mechanics. The equation demonstrates the coupling 

between diffusion and convection processes.  

The standard form of Burgers’ equation is given by: 

                                                                                   (  ) 

Where    is a constant that defines the kinematic viscosity.  If the 

viscosity      the equation is called in viscid Burgers equation. The in 

viscid Burgers equation governs gas dynamics. The gas dynamics 

equation has been discussed before in section (3.4).  

However, it is the intention of this text to effectively apply the 

homotopy perturbation transform method. We consider the Burgers’ 

equation  

                                                                                            (  ) 

With initial condition as; 

 (   )   ( )                                                                                    (  ) 

Taking the Laplace transform on both sides of Eq. (82) subject to the 

initial condition Eq. (83), we get; 
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 (   )  
 ( )

 
  

 

 
 [       ]                                              (  ) 

The inverse of Laplace transform implies that;  

 (   )   ( )     *
 

 
 [       ]+                                       (  ) 

Now, applying the homotopy perturbation method, we get;   

∑    (   )

 

   

  ( )      *
 

 
 [∑    (   )

 

   

 ∑    ( )

 

   

]+                 (  ) 

Where   ( ) n are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by: 

  ( )    (  )  

  ( )    (  )    (  )  

  ( )    (  )    (  )    (  )  

                  

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )   ( )                                      

     (   )   
  *

 

 
 [(  )     ( )]+                                   (  ) 

     (   )   
  *

 

 
 [(  )     ( )]+             

     (   )   
  *

 

 
 [(  )     ( )]+            

Therefore the solution  (   ) in series form is given by: 

 (   )    (   )    (   )    (   )                                (  ) 
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The following examples will be used to illustrate the algorithm 

discussed above 

Example (3.4.9) We consider the following Burgers equation [74], 

                                                                                            (  ) 

With initial condition: 

 (   )                                                                                             (  ) 

Taking the Laplace transform on both sides of Eq. (89) subject to the 

initial condition Eq. (90), we get; 

 (   )  
 

 
  

 

 
 [       ]                                                    (  ) 

The inverse of Laplace transform implies that;  

 (   )       *
 

 
 [       ]+                                             (  ) 

Now, applying the homotopy perturbation method, we get;   

∑    (   )

 

   

       *
 

 
 [∑    (   )

 

   

 ∑    ( )

 

   

]+                      (  ) 

Where   ( ) are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by: 

  ( )    (  )  

  ( )    (  )    (  )  

  ( )    (  )    (  )    (  )  

      

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )                                                         
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     (   )   
  *

 

 
 [(  )     ( )]+                           (  ) 

     (   )   
  *

 

 
 [(  )     ( )]+    

                           

     (   )   
  *

 

 
 [(  )     ( )]+      

               

Proceeding in a similar manner we have; 

     (   )    
                                                                           

     (   )     
                                                                       

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )    (   )    (   )    (   )                                (  ) 

  (           ) 

And in closed form given as; 

 (   )  
 

   
       | |                                                                  (  ) 

Example (3.4.10) We consider the following Burgers equation [74], 

                                                                                            (  ) 

With initial condition: 

 (   )    
 

 
                                                                          (  ) 

Taking the Laplace transform on both sides of Eq. (97) subject to the 

initial condition Eq. (98), we get; 

 (   )  
 

 
 
 

  
 
 

 
 [       ]                                               (  ) 

The inverse of Laplace transform implies that;  
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 (   )    
 

 
    *

 

 
 [       ]+                                   (   ) 

Now, applying the homotopy perturbation method, we get;   

∑    (   )

 

   

   
 

 
     *

 

 
 [∑    (   )

 

   

 ∑    ( )

 

   

]+           (   ) 

Where   ( ) n are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by : 

  ( )    (  )  

  ( )    (  )    (  )  

  ( )    (  )    (  )    (  )  

    

Comparing the coefficients of like powers  , the following 

approximations are obtained: 

     (   )    
 

 
                                                                

     (   )   
  *

 

 
 [(  )     ( )]+   

 

  
                 (   ) 

     (   )   
  *

 

 
 [(  )     ( )]+   

 

  
                     

     (   )   
  *

 

 
 [(  )     ( )]+     

 

  
               

Proceeding in a similar manner we have; 

     (   )   
 

  
                                                                        

     (   )   
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And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )    (   )    (   )    (   )                             (   ) 

   
 

 
(  

 

 
 
  

  
 
  

  
  ) 

And in closed form given as; 

 (   )    
 

   
                                                                        (   ) 

 

3.5 The Telegraph Equation 

The standard form of the telegraph equation is given by: 

                                                                                 (   ) 

Where    (   ) is the resistance, and     and   are constants related 

to the inductance, capacitance and conductance of the cable 

respectively. Note that the telegraph equation is a linear partial 

differential equation. The telegraph equation arises in the propagation 

of electrical signals along a telegraph line.  

We now proceed formally to apply the homotopy perturbation 

transform method in a parallel manner to the approach used for 

handling other physical models. Without loss of generality, consider the 

initial boundary value telegraph equation 

                                                                                     (   ) 

With initial conditions; 

 (   )   ( )   (   )   ( )                                          (   ) 

And boundary conditions; 

 (   )   ( )   (   )   ( )                                           (   ) 
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Taking the Laplace transform on both sides of Eq. (106) and using 

boundary conditions Eq. (108), we get; 

 (   )  
 ( )

 
 
 ( )

  
 
 

  
 [        ]                             (   ) 

The inverse of Laplace transform implies that;  

 (   )   ( )    ( )     *
 

  
 [        ]+               (   ) 

Now, applying the homotopy perturbation method, we get; 

∑    (   )

 

   

  ( )    ( ) 

     [
 

  
 *(∑    (   )

 

   

)

  

 (∑    (   )

 

   

)

 

 ∑    (   )

 

   

+]   (   ) 

Comparing the coefficients of like powers of    , we get; 

     (   )   ( )    ( )                              

     (   )   
  *

 

  
 [(  )   (  )    ]+                       (   ) 

     (   )   
  *

 

  
 [(  )   (  )    ]+   

And so on. Combining the results obtained for the components, the 

solution in a series form is given by;  

 (   )    (   )    (   )    (   )                             (   ) 

Example (3.5.11) We consider the following homogeneous telegraph 

equation [61], 

                                                                                     (   ) 

Subject to the initial conditions; 
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 (   )       (   )     
                                             (   ) 

And boundary conditions; 

 (   )         (   )   
                                               (   ) 

Taking the Laplace transform on both sides of Eq. (114) and using 

boundary conditions Eq. (116), we get; 

 (   )  
    

 
 
    

  
 
 

  
 [        ]                             (   ) 

The inverse of Laplace transform implies that;  

 (   )                *
 

  
 [        ]+               (   ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

            

     [
 

  
 *(∑    (   )

 

   

)

  

 (∑    (   )

 

   

)

 

 ∑    (   )

 

   

+]    (   ) 

Comparing the coefficients of like powers of    , we get;  

     (   )   
           

     (   )   
  *

 

  
 [(  )   (  )    ]+  

 

  
       

 

  
        

     (   )   
  *

 

  
 [(  )   (  )    ]+  

 

  
       

 

  
        

Proceeding in similar manner we have; 

     (   )  
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     (   )  
 

  
       

 

  
                

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )      (    
 

  
   

 

  
   

 

  
    )            (   ) 

And in closed form given as; 

 (   )                                                                                       (   ) 

Example (3.5.12) We consider the following homogeneous telegraph 

equation 

                                                                                  (   ) 

Subject to the initial conditions; 

 (   )          (   )                                           (   ) 

And boundary conditions; 

 (   )           (   )                                            (   ) 

Taking the Laplace transform on both sides of Eq. (122) and using 

boundary conditions Eq. (124), we get; 

 (   )  
      

 
 
 

  
 
 

  
 [          ]                    (   ) 

The inverse of Laplace transform implies that;  

 (   )               *
 

  
 [          ]+        (   ) 

Now, applying the homotopy perturbation method, we get; 

∑    (   )
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     [
 

  
 *(∑    (   )

 

   

)

  

  (∑    (   )

 

   

)

 

  ∑    (   )

 

   

+] (   ) 

Comparing the coefficients of like powers of    , we get;  

     (   )     
        

     (   )   
  *

 

  
 [(  )    (  )     ]+    

  
 

 
    

     (   )   
  *

 

  
 [(  )   (  )    ]+  

 

 
   

 

  
    

And so on. Combining the results obtained for the components, the 

solution in a series form is given by;  

 (   )       (     
 

  
(  )  

 

  
(  )  

 

  
(  )   )                (   ) 

And in closed form given as; 

 (   )                                                                                (   ) 

 

3.6 Schrӧdinger Equation 

In this section  the linear and nonlinear Schrӧdinger equations 

will be investigated.It is well-known that this equation arises in the 

study of the time evolution of the wave function.  

3.6.1 The  inear Schrӧdinger Equation 

The initial value problem for the linear Schrӧdinger equation for a 

free particle with mass   is given by the following standard form; 

             
                                                                   (   ) 

And initial condition as; 

 (   )   ( )                                                                                 (   ) 
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Where  ( ) is continuous and square integrable. It is to be noted that 

Schrodinger equation (130) discusses the time evolution of a free 

particle. Moreover, the function  (   ) is complex and Eq. (130) is a 

first order differential equation in  . 

The linear Schrӧdinger equation (130) is usually handled by using the 

spectral transform technique among other methods.  

The homotopy perturbation transform method will be applied here to 

handle the linear and the nonlinear Schrӧdinger equations. To achieves 

this goal. 

We taking the Laplace transform on both sides of Eq. (130) subject to 

the initial condition Eq. (131), we get; 

 (   )  
 ( )

 
 
 

 
 [    ]                                                           (   ) 

The inverse of Laplace transform implies that;  

 (   )   ( )      *
 

 
 [   ]+                                                (   ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

  ( )       [
 

 
 *(∑    (   )

 

   

)

  

+] (   ) 

Comparing the coefficients of like powers of   , we get;  

     (   )   ( )                         

     (   )    
  *

 

 
 [(  )  ]+   

     (   )    
  *

 

 
 [(  )  ]+                                                (   ) 
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     (   )    
  *

 

 
 [(  )  ]+   

       

Thus, the exact solution is given by:  

 (   )  ∑    (   )

 

   

                                                               (   ) 

Example (3.6.13) Consider the linear Schrӧdinger equation 

                                                                                                  (   ) 

And initial condition as; 

 (   )                                                                                         (   ) 

We taking the Laplace transform on both sides of Eq. (137) subject to 

the initial condition Eq. (138), we get; 

 (   )  
   

 
 
 

 
 [    ]                                                              (   ) 

The inverse of Laplace transform implies that;  

 (   )          *
 

 
 [   ]+                                                   (   ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

          [
 

 
 *(∑    (   )

 

   

)

  

+]   (   ) 

Comparing the coefficients of like powers of    , we get;  

     (   )   
                                                     

     (   )    
  *

 

 
 [(  )  ]+      
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     (   )    
  *

 

 
 [(  )  ]+   

 

  
                             (   ) 

     (   )    
  *

 

 
 [(  )  ]+  

 

  
       

     

Proceeding in a similar manner we have: 

     (   )   
 

  
                                            

     (   )  
 

  
                                              

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )    (   )    (   )    (   )                             (   ) 

       (  (  )  
 

  
(  )  

 

  
(  )   ) 

And in closed form given as; 

 (   )    (   )                                                                              (   ) 

Example(3.6.14)   Consider the linear Schrӧdinger equation [75], 

                                                                                            (   ) 

With the initial condition: 

 (   )        (  )                                                               (   ) 

Taking the Laplace transform on both sides of Eq. (145) subject to the 

initial condition Eq. (146), we get; 

 (   )  
      (  )

 
 
 

 
 [    ]                                         (   ) 

The inverse of Laplace transform implies that;  
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 (   )        (  )     *
 

  
  [   ]+                             (   ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

       (  )       [
 

 
  *(∑    (   )

 

   

)

  

+]      (   ) 

Comparing the coefficients of like powers of    , we get;  

     (   )        (  )                                              

     (   )     
  *

 

 
 [(  )  ]+  (    )    (  )   

     (   )     
  *

 

 
 [(  )  ]+  

 

  
(    )     (  ) (   ) 

     (   )     
  *

 

 
 [(  )  ]+  

 

  
(    )     (  )      

       

Proceeding in a similar manner we have: 

     (   )  
 

  
(    )     (  )                           

     (   )  
 

  
(    )     (  )                    

Therefore the solution  (   ) is given by: 

 (   )        (  ) (  (    )  
 

  
(    )  

 

  
(    )   )        (   ) 

In series form, and: 

 (   )             (  )                                                      (   ) 

In closed form. 
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3.6.2 The Nonlinear Schrӧdinger Equation 

We now turn to study the nonlinear Schrӧdinger equation (NLS) 

defined by its standard form: 

         | |
                                                                     (   ) 

Where   is a constant and  (   ) is complex  The Schrӧdinger equation 

(153) generally exhibits solitary type solutions. A solution, or solitary 

wave, is a wave where the speed of propagation is independent of the 

amplitude of the wave. Solutions usually occur in fluid mechanics.  

The nonlinear Schrӧdinger equations that are commonly used are given 

by: 

         | |
                                                                     (   ) 

And  

         | |
                                                                     (   ) 

Moreover, Other forms of nonlinear Schrӧdinger equations are used as 

well depending on the constant   . The inverse scattering method is 

usually used to handle the nonlinear Schrӧdinger equation where 

solitary type solutions were derived.The nonlinear Schrӧdinger 

equation will be handled differently in this section by using the 

homotopy perturbation transform method. We start our analysis by 

considering the initial value problem; 

         | |
                                                                     (   ) 

With initial condition: 

 (   )   ( )                                                                                 (   ) 

Taking the Laplace transform on both sides of Eq. (148) subject to the 

initial condition Eq. (157), we get; 

 (   )  
 ( )

 
 
 

 
  [     | |

  ]                                         (   ) 

The inverse of Laplace transform implies that;  
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 (   )   ( )     *
 

 
  [     | |

  ]+                              (   ) 

Or 

 (   )   ( )     *
 

 
  [      

  ̅]+                                (   ) 

Where    ̅  | |   and  ̅ is the conjugate of  . 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

  ( )      [
 

 
  *(∑    (   )

 

   

)

  

  ∑    ( )

 

   

+] (   ) 

Where   ( ) are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by  

  ( )  (  )
   ̅̅ ̅ 

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅ 

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅          ̅̅ ̅  (  )

   ̅̅ ̅ 

Comparing the coefficients of like powers of    , we get;  

     (   )   ( )                                                            

     (   )    
  *

 

 
 [(  )      ( )]+               

     (   )    
  *

 

 
 [(  )      ( )]+                            (   ) 

     (   )    
  *

 

 
 [(  )      ( )]+           

And so on, therefore the solution  (   ) is given by: 

 (   )    (   )    (   )    (   )    
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Example(3.6.15)   Consider the nonlinear Schrӧdinger equation [75], 

         | |
                                                                     (   ) 

With initial condition: 

 (   )                                                                                         (   ) 

Taking the Laplace transform on both sides of Eq. (163) subject to the 

initial condition Eq. (164), we get; 

 (   )  
   

 
 
 

 
  [     | |

  ]                                            (   ) 

The inverse of Laplace transform implies that;  

 (   )         *
 

 
  [     | |

  ]+                                 (   ) 

Or 

 (   )         *
 

 
  [      

  ̅]+                                    (   ) 

Where    ̅  | |   and  ̅ is the conjugate of  . 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

         [
 

 
  *(∑    (   )

 

   

)

  

  ∑    ( )

 

   

+]  (   ) 

Where   ( ) are He’s polynomial that represents the nonlinear terms. 

The first few components of He’s polynomials  are given by  

  ( )  (  )
   ̅̅ ̅ 

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅ 

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅          ̅̅ ̅  (  )

   ̅̅ ̅ 

Comparing the coefficients of like powers of    , we get;  
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     (   )   
                                                                  

     (   )    
  *

 

 
 [(  )      ( )]+  (  ) 

   

     (   )    
  *

 

 
 [(  )      ( )]+   

(  ) 

  
          (   ) 

     (   )    
  *

 

 
 [(  )      ( )]+  

(  ) 

  
    

Proceeding in a similar manner we have; 

     (   )  
(  ) 

  
                                                         

     (   )  
(  ) 

  
                                                        

     (   )  
(  ) 

  
                                                        

And so on, therefore the solution  (   ) is given by: 

 (   )    (   )    (   )    (   )    

    (  (  )  
(  ) 

  
 
(  ) 

  
  )                                      (   ) 

In series form, and 

 (   )    (   )                                                                              (   ) 

In closed form. 

Example(3.6.16)   Consider the nonlinear Schrӧdinger equation [61], 

         | |
                                                                     (   ) 

With initial condition: 

 (   )                                                                                         (   ) 
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Taking the Laplace transform on both sides of Eq. (172) subject to the 

initial condition Eq. (173), we get; 

 (   )  
   

 
 
 

 
  [     | |

  ]                                            (   ) 

The inverse of Laplace transform implies that;  

 (   )         *
 

 
  [     | |

  ]+                                 (   ) 

Or 

 (   )         *
 

 
  [      

  ̅]+                                    (   ) 

Where    ̅  | |   and  ̅ is the conjugate of  . 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

         [
 

 
  *(∑    (   )

 

   

)

  

  ∑    ( )

 

   

+]   (   ) 

Where  ( ) are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by  

  ( )  (  )
   ̅̅ ̅ 

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅ 

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅          ̅̅ ̅  (  )

   ̅̅ ̅ 

Comparing the coefficients of like powers of   , we get;  

     (   )   
                                                             

     (   )    
  *

 

 
 [(  )      ( )]+   (   ) 

   

     (   )    
  *

 

 
 [(  )      ( )]+   

(   ) 

  
       (   ) 
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     (   )    
  *

 

 
 [(  )      ( )]+   

(   ) 

  
    

Proceeding in a similar manner we have; 

     (   )  
(   ) 

  
                                                        

     (   )   
(   ) 

  
                                                  

And so on, therefore the solution  (   ) is given by: 

 (   )    (   )    (   )    (   )    

    (  (   )  
(   ) 

  
 
(   ) 

  
  )                              (   ) 

In series form, and 

 (   )    (    )                                                                             (   ) 

In closed form. 

Example (3.6.17)  Consider the following nonlinear inhomogeneous 

Schrӧdinger equation [90], 

     
 

 
        

   | |                                          (   ) 

With the initial condition;  

 (   )                                                                                       (   ) 

Taking the Laplace transform on both sides of Eq. (181) subject to the 

initial condition Eq. (182), we get; 

 (   )  
    

 
 
 

 
  [ 

 

 
        

   | |  ]               (   ) 

The inverse of Laplace transform implies that;  
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 (   )          *
 

 
  [ 

 

 
        

   | |  ]+    (   ) 

Or 

 (   )          *
 

 
  [ 

 

 
        

      ̅]+       (   ) 

Where    ̅  | |   and  ̅ is the conjugate of  . 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

      

     [
 

 
  *(∑    (   )

 

   

)

  

      ∑    (   )

 

   

 ∑    ( )

 

   

+] (   ) 

Where  ( ) are He’s polynomial that represents the nonlinear terms  

The first few components of He’s polynomials  are given by  

  ( )  (  )
   ̅̅ ̅   

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅  

  ( )  (  )
   ̅̅ ̅         ̅̅ ̅          ̅̅ ̅  (  )

   ̅̅ ̅  

Comparing the coefficients of like powers of   , we get;  

     (   )        

     (   )     
  *

 

 
 [(  )        

     ( )]+  (
    

 
)       

     (   )     
  *

 

 
 [(  )        

     ( )]+  
 

  
(
    

 
)
 

      

     (   )     
  *

 

 
 [(  )        

     ( )]+  
 

  
(
    

 
)
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Proceeding in a similar manner we have 

     (   )  
 

  
(
    

 
)
 

      

     (   )  
 

  
(
    

 
)
 

      

And so on, therefore the solution  (   ) is given by: 

 (   )    (   )    (   )    (   )                       

     (  (    )  
 

  
(
    

 
)
 

 
 

  
(
    

 
)
 

  )       (   ) 

In series form, and 

 (   )   
    

                                                                              (   ) 

In closed form. 

 

3.7 Korteweg-DeVries Equation 

The Korteweg-DeVries (KDV) equation in its simplest form is 

given by: 

                                                                                 (   ) 

The KDV equation arises in the study of shallow water waves. In 

particular, the KDV equation is used to describe long waves traveling in 

canals. It is formally proved that this equation has solitary waves as 

solutions; hence, it can have any number of solutions.  

The KDV equation has received a lot of attention and has been 

extensively studied. Several numerical and analytical techniques were 

employed to study the solitary waves that result from this equation.  
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In this section, the homotopy perturbation transform method will be 

used to handle the KDV equation. We first consider the initial value 

problem 

                                                                                (   ) 

With initial condition: 

 (   )   ( )                                                                                 (   ) 

Where   and   are constants. 

Taking the Laplace transform on both sides of Eq. (190) subject to the 

initial condition Eq. (191), we get; 

 (   )  
 ( )

 
 
 

 
 [          ]                                         (   ) 

The inverse of Laplace transform implies that;  

 (   )   ( )     *
 

 
 [          ]+                             (   ) 

Now, applying the homotopy perturbation method, we get;  

∑    (   )

 

   

  ( ) 

     [
 

 
 * (∑    (   )

 

   

)

  

  ∑    ( )

 

   

+]            (   ) 

Where   ( ) are He’s polynomial that represents the nonlinear terms. 

The first few components of He’s polynomials  are given by  

  ( )    (  )  

  ( )    (  )     (  )  

  ( )    (  )    (  )    (  )  

Comparing the coefficients of like powers of    , we get;  
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     (   )   ( )                         

     (   )    
  *

 

 
 [ (  )       ( )]+                      (   ) 

     (   )    
  *

 

 
 [ (  )       ( )]+   

     (   )    
  *

 

 
 [ (  )       ( )]+   

And so on, therefore the solution  (   ) is given by: 

 (   )    (   )    (   )    (   )    

Example (3.6.18) Consider the following homogeneous KDV equation 

[91], 

                                                                                 (   ) 

With the initial condition;  

 (   )                                                                                         (   ) 

Taking the Laplace transform on both sides of Eq. (196) subject to the 

initial condition Eq. (197), we get; 

 (   )  
  

 
 
 

 
  [         ]                                              (   ) 

The inverse of Laplace transform implies that 

 (   )        *
 

 
  [         ]+                                   (   ) 

Now, we apply the homotopy perturbation method, we get:  

∑    (   )
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     *
 

 
  ((∑    (   )

 

   

)

   

 ∑    ( )

 

   

)+             (   ) 

Where   ( ) are He’s polynomials that represents the nonlinear terms  

The first few components of He’s polynomials  are given by  

  ( )          

  ( )                                                                             (   ) 

  ( )                    

Comparing the coefficient of like powers of  , the following 

approximations are obtained;  

      (   )                                                                                      

     (   )    
  *

 

 
  [(  )       ( )]+   

     

      (   )     
  *

 

 
  [(  )       ( )]+   

          (   ) 

      (   )     
  *

 

 
  [(  )       ( )]+   

          

Therefore the solution  (   ) is given by: 

 (   )    (  (   )  (   )  (   )  (   )   )                             (   ) 

In series form, and,  

 (   )  
  

     
  |   |                                                         (   ) 

In closed form.  

Example (3.6.19) Consider the following homogeneous KDV equation 

[91], 

                                                                                 (   ) 
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With the initial condition;  

 (   )                                                                                           (   ) 

Taking the Laplace transform on both sides of Eq. (205) subject to the 

initial condition Eq. (206), we get; 

 (   )  
 

 
 
 

 
  [         ]                                                 (   ) 

The inverse of Laplace transformimplies that:  

 (   )       *
 

 
  [         ]+                                     (   ) 

Now, we apply the homotopy perturbation method, we get:  

∑    (   )

 

   

   

     *
 

 
  ((∑    (   )

 

   

)

   

 ∑    ( )

 

   

)+                (   ) 

Comparing the coefficient of like powers of  , the following 

approximations are obtained;  

      (   )                                               

      (   )    
  *

 

 
  [(  )       ( )]+    (  )     

      (   )     
  *

 

 
  [(  )       ( )]+   (  )

      (   ) 

       (   )     
  *

 

 
  [(  )       ( )]+    (  )

   

Therefore the solution  (   ) is given by: 

 (   )   (  (  )  (  )  (  )  (  )  (  )   )                          (   ) 
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In series form, and, 

 (   )  
 

    
                                                                              (   ) 

In closed form. 

Example (3.6.20) Consider the following homogeneous KDV equation 

[91], 

                                                                                 (   ) 

With the initial condition;  

 (   )    
     

(     ) 
                                                              (   ) 

Taking the Laplace transform of both sides of Eq. (213) subject to the 

initial condition Eq. (214), we get; 

 (   )  

  
     

(     )
 

 
 
 

 
  [         ]                              (   ) 

The inverse of Laplace transform implies that:  

 (   )    
     

(     ) 
    *

 

 
  [         ]+             (   ) 

Now, we apply the homotopy perturbation method, we get:  

∑    (   )

 

   

   
     

(     ) 
 

     *
 

 
 ((∑    (   )

 

   

)

   

 ∑    ( )

 

   

)+              (   ) 

Comparing the coefficient of like powers of  , the following 

approximations are obtained;  
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      (   )    
     

(     ) 
 

      (   )    
  *

 

 
  [(  )       ( )]+    

     (     )

(     ) 
   

      (   )     
  *

 

 
  [(  )       ( )]+   

     (           )

(     ) 
   

Therefore, the solution of Eq. (8), when      will be as: 

 (   )    
     

(     ) 
  

     (     )

(     ) 
  

     (           )

(     ) 
     

Using Taylor series, the closed form solution will be as follows:  

 (   )    
    (   

  )

(    (   
  ))

                                                     (   ) 

( It’s worth mentioning that these results were publishrd in  “Mohannad 

H. Eljaily, Tarig M. Elzaki, Homotopy Perturbation Transform Method 

for Solving Korteweg-DeVries (KDV) Equation, Pure and Applied 

Mathematics Journal 2015; 4(6): 264-268 Published online November 

2; 2015 (http://www.sciencepublishinggroup.com/j/pamj); doi: 

10.11648/j.pamj.20150406.17; ISSN: 2326-9790 (Print); ISSN: 2326-

9812 (Online)) 

 

http://www.sciencepublishinggroup.com/j/pamj
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CHAPTER FOUR 

The Homotopy Perturbation Method for Solving Partial 

Differential Equations with Nonlocal Conditions 

Recently, much attention has been to partial differential equations 

with non-local boundary conditions, this attention was driven by the 

needs of applications both in industry and the sciences. Theory and 

numerical methods for solving partial differential equations with 

nonlocal conditions were investigated by many researchers [96-103]. In 

the last decade, there has been a growing interest in the  analytical new 

techniques for linear and nonlinear initial boundary value problems 

with non-classical boundary conditions. The widely applied techniques 

are perturbation methods.  

HPM has gained reputation as being a powerful tool for solving linear 

or nonlinear partial differential equations. This method has been the 

subject of intense investigation during recent years and many 

researchers have used it in their works involving differential equ ations 

see [35,39]. He [47], applied HPM to solve initial boundary value 

problems which are governed by the nonlinear ordinary (Partial) 

differential equations, the results show that this method is efficient and 

simple. Thus,the main goal of this work is to apply the homotopy 

perturbation method (HPM) for solving linear and nonlinear initial 

boundary value problems with nonlocal boundary conditions.  

The general form of the equation is given as: 

    (          )                              ( ) 

Subject to the initial condition;  

 (   )   ( )                                                               ( ) 

And the non-local boundary conditions; 
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 (   )  ∫  (   )
 

 

 (   )     ( )                    ( ) 

 (   )  ∫  (   )
 

 

 (   )     ( )                    ( ) 

Where           and   are sufficiently smooth known functions and   is 

a given constant. 

 

4.1 Analysis of Homotopy Perturbation Method 

To illustrate the basic ideas Let    and   be the topological spaces. 

If    and   are continuous maps of the space   into    , it is said that    is 

homotopic to  , if there is continuous map 

     (      )    Such that  (   )   ( )      (   )   ( )  for each 

      then the map is called homotopy between           

We, consider the following nonlinear differential equation:  

 ( )   ( )                                                                     ( ) 

Subject to the boundary conditions; 

 (  
  

  
)                                                                                   ( ) 

Where   is a general differential operator,   is a boundary 

operator   ( ) is a known analytical function and   is the boundary of 

the domain  . Generally speaking, operator   can be divided into two 

parts which are   and   where   is linear, but   is nonlinear. Therefore, 

equation (5) can be rewritten as follows; 

 ( )   ( )   ( )                                                                      ( ) 

By the homotopy perturbation technique, we construct a homotopy  

 (   )           which satisfies: 

 (   )  (   )  ( )   (  )     ( )   ( )                        ( ) 
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Or equivalently 

 (   )   ( )   (  )    (  )     ( )   ( )          ( ) 

Where          is an embedding parameter and    is an initial 

approximation of the equation (1).Obviously, from these definitions we 

will have: 

 (   )   ( )   (  )                                                             (  ) 

 (   )   ( )   (  )                                                             (  ) 

The changing process of   from zero to one is just that of   (   ) from 

  ( ) to  ( )  In topology, this is called deformation and  ( ) –   (  ) and 

  ( ) –    ( ) are called homotopy. According to the HPM, we can first use 

the embeddin  parameter p as a “small parameter” and assumin  that 

the solution of Eq. (4) can be written as a power series in  : 

                                                                                 (  ) 

Setting      , results in the approximate solution of Eq. (3): 

     
   

                                                                     (  ) 

 

4.2 Linear and nonlinear partial differential Equations 

Subject to a Non-local Boundary Condition 

In this section, we have presented Homotopy Perturbation Method 

(HPM) to solve linear and nonlinear partial differential equations with 

nonlocal boundary conditions. This method provides an analytical 

solution by utilizing only the initial condition. The HPM allows for the 

solution of the nonlinear parabolic equations to be calculated in the 

form of a series with easily computable components.  

In the section we have used the HPM to solve some linear and nonlinear 

partial differential equations with nonlocal boundary conditions and 

compare the solution of them with the exact solution 
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Example (4.2.1)     We consider the problem [20], 

         (   )                                           (  ) 

With the initial condition;  

 (   )   (   )                                                                       (  ) 

And the non-local boundary conditions; 

 (   )  ∫  (   )
 

 

 (   )     ( )                                        (  ) 

Where  (   )  
  

  
 and   ( )    

 (   )  ∫  (   )
 

 

 (   )     ( )                                        (  ) 

Where  (   )  
  

  
 and   ( )    

To solve Eq. (14) with initial conditions Eq. (15) , according to the 

homotopy perturbation Eq. (8), we construct the following homotopy:  

 (   )  (   )    (  )             (   )                           (  ) 

Or 

    (  )    (  )       (   )                           (  ) 

Substituting Eq. (12) into Eq. (19), and comparing coefficients of the 

terms with the identical powers of  , we get; 

    (  )  (  )                (   )   (   )    

    (  )  (  )  (  )    (   )         (   )   (   )       

    (  )  (  )        (   )        

                

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 
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 (   )  ∑   (   )

 

   

 

 (   )   (   )(     )   (       )                  (  ) 

Fig (4.2.2) (A) the exact solution, (B) the approximate solution  

 

 

 

 

 

  

                                

(A)                                                                   (B)              

The numerical results in both figures are in excellent ag reement with 

the exact solution. 

Example (4.2.3)    We consider the problem [83], 

              (                 )                (  ) 

            

With the initial conditions; 

 (   )          (   )                                  (  ) 

And the non-local boundary conditions; 

 (   )  ∫  (   )
 

 

 (   )     ( )    
 

 
                     (  ) 

Where  (   )  
 

 
 and   ( )  
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 (   )  ∫  (   )
 

 

 (   )     ( )    
 

 
                     (  ) 

Where  (   )  
 

 
 and   ( )  

  

  
 

To solve Eq. (20) with initial conditions Eq. (21), according to the 

homotopy perturbation Eq. (8), we construct the following homotopy: 

 (   )  (   )    (  )    

                (                 )      (  ) 

Or 

   (  )    (  )             (                 )    (  ) 

Substituting Eq. (12) into Eq. (26), and comparing coefficients of the 

terms with the identical powers of  , we get; 

   (  )  (  )                  (   )     

   (  )  (  )  (  )   (  )  (  )   (                 )     

   (   )         

    (  )  (  )   (  )  (  )        (   )            

    (  )  (  )   (  )  (  )        (   )           

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )  ∑   (   )

 

   

 

 (   )                                                                                      (  ) 

Which is an exact solution. 
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Table (4.2.4)     Results in different values of   and   

                      |        | 

0.0                         0.0224 
0.1 0.0001                    
0.2 0.0016                     
0.3 0.0081                      
0.4 0.0256                       
0.5 0.0625                       
0.6 0.1296 0.12941 0.00019 
0.7 0.2401 0.23991 0.00019 
0.8 0.4096 0.40941 0.00019 
0.9 0.6561 0.65591 0.00019 
1.0 1.0 0.99981 0.00019 

 

Example (4.2.5)        We consider the problem [84], 

   
 

 
(                 )                                     (  ) 

Subject to the initial condition; 

 (       )                                                                              (  ) 

And the non-local boundary conditions; 

 (       )  ∫ ∫ ∫  (       )      
 

 

    
 

  
  

 

 

           
 

 

 

 (       )  ∫ ∫ ∫  (       )      
 

 

    
 

  
   

 

 

 

 

        
 

 
     

 

 

 

 (       )  ∫ ∫ ∫  (       )      
 

 

    
 

  
(    )

 

 

       
 

  

 

 

 

 (       )  ∫ ∫ ∫  (       )      
 

 

    
 

  
(    )

 

 

       
 

 

 

 

     (  ) 

 (       )  ∫ ∫ ∫  (       )      
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 (       )  ∫ ∫ ∫  (       )      
 

 

    
 

  
  

 

 

       
 

 
        

 

 

 

To solve Eq. (28) with initial conditions Eq. (29) , according to the 

homotopy perturbation Eq. (8), we construct the following homotopy:  

 (   )  (   )    (  )   

  *   (
 

 
(                 ))+                               (  ) 

Or 

    (  )   *(  )  (
 

 
(                 ))+                                (  ) 

Substituting Eq. (13) into Eq. (32), and comparing coefficients of the 

terms with the identical powers of  , we get; 

    *(  )  (  )                  (       )         

    {
(  )  (  )  (

 

 
(  (  )     (  )     (  )  ))   

  (       )         

  

    

{
 
 

 
 (  )  (

 

 
(  (  )     (  )     (  )  ))    

  (       )        
  

  

                  

    

{
 
 

 
 (  )  (

 

 
(  (  )     (  )     (  )  ))   

  (       )        
  

  

             

Proceeding in a similar manner, we obtain:  

      (       )        
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      (       )        
  

  
 

        

Therefore the solution  (       )  in series form is given by: 

 (       )        (    
  

  
 

  

  
  )                         (  ) 

And in closed form given as; 

 (       )                                                                             (  ) 

Which is an exact solution 

Table (4.2.6)    Results for different values of   and   

                 5-

iterates 
|        | 

 
0.0 0.0 0.0 0 0 0 

 
0.1 0.1 0.1                       0 
0.2 0.2 0.2                         0 
0.3 0.3 0.3                         0 
0.4 0.4 0.4                         0 
0.5 0.5 0.5                         0 
0.6 0.6 0.6                         0 
0.7 0.7 0.7 0.11812 0.11812 0 

 
0.8 0.8 0.8 0.26319 0.26319 0 

 
0.9 0.9 0.9 0.53357 0.53357 0 

 
1.0 1.0 1.0 1.004 1.004 0 
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Example (4.2.6) We consider the following nonlinear reaction-diffusion 

equation [85], 

          (  )
                                (  ) 

Subject to the initial condition; 

 (   )                                                                              (  ) 

And the non-local boundary conditions; 

 (   )  ∫  (   )
 

 

 (   )     ( )                                (  ) 

Where  (   )    and   ( )     

 (   )  ∫  (   )
 

 

 (   )     ( )  
 

 
                           (  ) 

Where  (   )  
 

 
 and   ( )  

 

 
   

To solve Eq. (35) with initial conditions Eq. (36), according to the 

homotopy perturbation Eq. (8), we construct the following homotopy:  

 (   )  (   )    (  )                 
                                (  ) 

Or 

    (  )    (  )           
                                (  ) 

Substituting Eq. (13) into Eq. (40), and comparing coefficients of the 

terms with the identical powers of  , we have; 

   (  )  (  )                  (   )     

   (  )  (  )  (  )     
  (  ) 

 
       (   )      

   (  )  (  )          (  ) (  )       (   )  
 

  
     

   (  )  (  )           
   (  ) (  )  (  ) 

 
      (   )  
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Proceeding in a similar manner, we obtain:  

      (    )  
 

  
     

      (   )  
 

  
     

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )  ∑   (   )

 

   

 

 (   )    (    
 

  
   

 

  
    )                                  (  ) 

In series form, and 

 (   )                                                                                           (  ) 

In closed form. 

Table (4.2.7)    Results for different values of   and   

                5-

iterates 
|        | 

0.0 1.004 1.004 0 
0.1 1.1096 1.1096 0 
0.2 1.2263 1.2263 0 
0.3 1.3553 1.3553 0 
0.4 1.4978 1.4978 0 
0.5 1.6553 1.6553 0 
0.6 1.8294 1.8294 0 
0.7 2.0218 2.0218 0 
0.8 2.2345 2.2345 0 
0.9 2.4695 2.4695 0 
1.0 2.7292 2.7292 0 
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4.3 The Wave Equation 

Partial differential equations with nonlocal boundary conditions 

have received much attention in last 20 years. However, most of  the 

articles were directed to the second order parabolic equations, 

particularly to heat conduction equations. We will deal here with a new 

type of nonlocal boundary value problem that is the solution of 

hyperbolic partial differential equations with nonlocal boundary 

specifications. These nonlocal conditions arise mainly when the data on 

the boundary cannot be measured directly. Many physical phenomena 

are modeled by non-classical hyperbolic boundary value problems with 

nonlocal boundary conditions.  

In this section, the following hyperbolic problem is considered with a 

nonlocal constraint in place of a standard boundary condition:  

         (   )                              (  ) 

With initial conditions 

 (   )   ( )      (   )   ( )                                    (  ) 

And Dirichlet (Neumann) boundary conditions 

 (   )   ( )      (   )   ( )                                                   (  ) 

Together with the nonlocal condition 

∫  (   )
 

 

    ( )                                                  (  ) 

Where            and   are known functions. 

It is worth pointing out that   and   satisfies the following 

compatibility conditions 

 ( )   ( )       ( )    ( ) ∫  ( )
 

 

    ( ) ∫  ( )
 

 

     ( )           (  ) 
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Although there has been considerable interest in the mathematical 

properties of equations arising in hyperbolic boundary value problems, 

little attention has been devoted to their numerical solution.  

In this section, we present and discuss the numerical results by 

employing HPM fortwo test examples. The results demonstrate the  

present method is remarkably effective.  

Example (4.3.8)  Consider the following wave equation [88], 

                                               (  ) 

With the initial conditions; 

 (   )         (   )      (  )                       (  ) 

And Dirichlet (Neumann) boundary condition; 

 (   )     (  )                                                                              (  ) 

Together with the nonlocal condition; 

∫  (   )
 

 

                                                           (  ) 

To solve Eq. (48) with boundary condition Eq. (50), according to the 

homotopy perturbation Eq. (8), we construct the following homotopy:  

 (   )  (   )     (  )                             (  ) 

Or 

    (  )     (  )                                                      (  ) 

Substituting Eq. (13) in Eq. (53), and comparing coefficients of the 

terms with the identical powers of  , we have; 

    (  )   (  )                   (   )     (  ) 

    (  )   (  )   (  )         (   )   
 

  
(  )    (  ) 
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    (  )   (  )        (   )  
 

  
(  )    (  ) 

   (  )   (  )        (   )   
 

  
(  )    (  ) 

Proceeding in a similar manner, we obtain:  

      (       )  
 

  
(  )    (  ) 

      (       )   
 

   
(  )     (  ) 

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )  ∑   (   )

 

   

 

 (   )     (  ) (  
 

  
(  )  

 

  
(  )   )                  (  ) 

In series form, and 

 (   )     (  )    (  )                                                             (  ) 

In closed form. 

Example (4.3.9) Consider the following wave equation with an integral 

condition [87], 

                                               (  ) 

With the initial conditions; 

 (   )     (  )        (   )                           (  ) 

And Dirichlet (Neumann) boundary condition; 

  (   )                                                                                            (  ) 

Together with the nonlocal condition; 
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∫  (   )
 

 

                                                           (  ) 

To solve Eq. (56) with initial conditions Eq. (57), according to the 

homotopy perturbation Eq. (8), we construct the following homotopy:  

 (   )  (   )     (  )                               (  ) 

Or 

    (  )     (  )                                                        (  ) 

Substituting Eq. (13) in Eq. (61), and comparing coefficients of the 

terms with the identical powers of  , we have; 

    (  )   (  )                   (   )     (  ) 

    (  )   (  )   (  )         (   )   
 

  
(  )    (  ) 

    (  )   (  )        (   )  
 

  
(  )    (  ) 

   (  )   (  )             (   )   
 

  
(  )    (  ) 

Proceeding in a similar manner, we obtain: 

       (   )  
 

  
(  )    (  ) 

      (   )   
 

   
(  )     (  ) 

And so on. Combining the results obtained for the components, the 

solution in a series form is given by: 

 (   )  ∑   (   )

 

   

 

 (   )     (  ) (  
 

  
(  )  

 

  
(  )   )                 (  ) 
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In series form, and 

 (   )     (  )    (  )                                                             (  ) 

In closed form. 
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CHAPTER FIVE 

Solution of Parabolic and Hyperbolic Equations with Nonlocal 

Conditions by Homotopy Perturbation Method 

Various problems arising in heat conduction [48-50], chemical 

engineering [51], thermo elasticity [52], and plasma physics [53] can be 

reduced to the nonlocal problems. Boundary value problems with 

integral conditions constitute a very interesting and important class of 

problems. Therefore, partial differential equations with nonlocal 

boundary conditions have received much attention in last 20 years. 

However, most of articles were directed to the second order parabolic 

equations, particularly to heat conduction equations.  

We will deal here with a new type of nonlocal boundary value problem 

that is the solution of hyperbolic partial differential equations with 

nonlocal boundary specifications. These nonlocal conditions arise 

mainly when the data on the boundary cannot be measured directly. 

Many physical phenomena are modeled by non-classical hyperbolic 

boundary value problems with nonlocal boundary conditions.Numerical 

solution of hyperbolic partial differential equation with an integral 

condition continues to be a major research area with widespread 

applications in modern physics and technology. The theoretical aspects 

of the solutions to the one-dimensional hyperbolic initial-boundary 

value problems have been studied by several authors [54- 57]. 

The strong solution of an initial-boundary value problem which 

combine Neumann and integral conditions for a hyperbolic equation is 

studied by Bouziani [58]. However, few papers investigate the 

numerical solutions of this class of equations. Bougoffa present s an 

adomian method for a class of hyperbolic equations with Dirichlet 

boundary condition and the nonlocal boundary condition [59]. Dehghan 

developed several new finite difference schemes for an initial -boundary 

value problem which combine Neumann and integral conditio ns for a 

hyperbolic equation [60].This chapter presents solution for nonlocal 

initial-boundary value problems for linear and nonlinear parabolic and 
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hyperbolic partial differential equations. We first transform the given 

nonlocal initial-boundary value problems of integral type for the linear 

and nonlinear parabolic and hyperbolic partial differential equations 

into local Dirichlet initial-boundary value problems, and then use a 

homotopy perturbation method (HPM). Several examples are presented 

to demonstrate the efficiency of the HPM. 

 

5.1 The linear parabolic Equation with Nonlocal Conditions 

In this section, we will employ the homotopy perturbation method 

to solve the nonlocal initial-boundary value problems for linear 

variable-coefficient parabolic partial differential equations. For cases, 

including an input function or additional linear terms, the homotopy 

perturbation method remains the method of choice to easily and quickly 

calculate solutions. Several examples will be presented in the sequel.  

Now we consider the heat equation: 

                             

Where   is a constant, which describes motion with constant speed. We 

specify  (   ) at the initial time  , which we take to be 0, i.e.  (   ) 

equals a given function   ( ) on      , and the boundary condition 

relating the solution of the differential equation to data of the integral 

type ∫  (   )    ( )
 

 
, which is called the nonlocal boundary condition 

of integral type, where  (   ) denotes the concentration of the pollutant 

in gr/cm (unit mass per unit length) at time    and∫  (   )  
 

 
 denotes 

the amount of pollutant in the interval [   ] at time  . The problem of 

determining a solution to a partial differential equation when both 

initial data and nonlocal boundary conditions are specified is called a 

nonlocal initial-boundary value problem. 

We consider the inhomogeneous linear parabolic partial differential 

equation 

    (   )     (   )   (   )                        ( ) 
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Subject to the initial condition; 

 (   )   ( )                                                                                      ( ) 

And the nonlocal inhomogeneous boundary conditions of integral type  

∫   ( ) (   )   
 

 

  ( )   ∫   ( ) (   )   
 

 

  ( )                                   ( ) 

Where   ( )    ( )        and  ( ) are specified as continuous 

functions.  we begin our approach by converting Eqs. (1)– (3) To a local 

initial-boundary value problem by introducing a new function  (   ) 

such that: 

 (   )  ∫  ( ) (   )  
 

 

                                                              ( ) 

Where    ( )    ( )    ( ) 

Hence we have: 

  (   )   ( ) (   )                                                                        ( ) 

And 

 (   )  
  (   )

 ( )
                                                                                 ( ) 

From Eq. (6) we have: 

  (   )  
   (   )

 ( )
                                                                              ( ) 

  (   )  
 

 ( )
  (   )  (

 

 ( )
)
 

  (   )                                 ( ) 

And 

   (   )  (
 

 ( )
)
  

  (   )   (
 

 ( )
)
 

   (   )  (
 

 ( )
)     (   )           ( ) 

Substituting Eqs. (6)– (9) into Eq. (1) we deduce 
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   (   )  ( (   ) (
 

 ( )
)
  

 ( )   (   ))   (   ) 

   (   ) (
 

 ( )
)
 

 ( )   (   )   (   )    (   )   ( ) (   )          (  ) 

By using Eq. (4) we get; 

{
 
 

 
   (   )   ( ) (   )   ( )  ( )    ( ) 

 (   )                                                                     

 (   )  ∫  ( ) (   )  
 

 

  ( )                      

                       (  ) 

Where  ( )    ( )    ( ) 

Thus we deduce: 

Lemma (5.1.1) The general nonlocal initial-boundary value problem 

Eqs. (1)–(3) can always be reduced to a local initial-boundary value 

problem of the form: 

{

     (   )    (   )     (   )      (   ) 

  (   )                                                                   ( ) 

 (   )               (   )                                  ( ) 

            (  ) 

Where 

{
 
 
 

 
 
  (   )    (   ) (

 

 ( )
)
  

 ( )   (   ) 

 (   )                     (   ) (
 

 ( )
)
 

 ( ) 

 ( )                                        ( )    ( ) 

  ( )                                         ( )  ( ) 

 (   )                                      ( ) (   ) 

                             (  ) 

A solution of this problem will lead to a solution of the given o riginal 

problem, where  (   ) is given by Eq. (6). Based on the the homotopy 

perturbation method, we write; 

     (   )    (   )     (   )     g(   ) 
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In operator-theoretic notation as; 

   g                                                                                           (  ) 

Where 

                     (   )    (   )     (   )                                 (  ) 

We conveniently define the inverse linear operator as; 

   
     ∫ ∫ ( )

 

 

 

 

                                                                     (  ) 

Applying the inverse linear operator    
     to Eq. (14), and taking into 

account that   (   )    ( ) and  (   )     we obtain: 

 (   )  ∫   ( )      
    

 

 

g     
                               (  ) 

Proceeding as before, applying the inverse linear operator  

   
    ( )  ∫ ∫ ( )

 

 

 

 

                                                                (  ) 

To both sides of Eq. (14), and taking into account that   (   )    ( ) 

and   (   )   ( )  we obtain: 

 (   )   (   )  ∫   ( )      
    

 

 

g     
             (  ) 

Thus 

 (   )   ( )  ∫   ( )      
    

 

 

g     
                 (  ) 

Adding the relations in Eq. (17) and Eq. (20) together, and then 

dividing by two, we obtain the solution as the equal -weight average 

 (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )      
    

 

 

g     
    g+ 
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[   

          
      ]                                                           (  ) 

Now, we apply the homotopy perturbation method 

 (   )   ∑     (   )

 

   

                                                                 (  ) 

Substituting Eq. (22) into Eq. (21) we get; 

∑     (   )

 

   

 
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )      
    

 

 

g     
    g+ 

 
 

 
 [   

        
    ] ∑     (   )

 

   

                                     (  ) 

Comparing the coefficient of like powers of  , we have; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )      
    

 

 

g     
    g+ 

     (   )  
 

 
[   

        
    ]                                                                        (  ) 

     (   )  
 

 
[   

        
    ]    

      

Proceeding in a similar manner, we have; 

     (   )  
 

 
[   

        
    ]    

     (   )  
 

 
[   

        
    ]    

       

So that the solution  (   ) is given by: 

 (   )     (   )     (   )      (   )                           (  ) 



139 
 

Where the term     is to be determined from the initial and boundary 

conditions. 

Once the function  (   )is calculated, we can return to the original 

dependent variable  (   ) by Eq. (6). 

Example (5.1.2)  We consider the nonlocal linear inhomogeneous 

initial-boundary value problem [50], 

                                                                      (  ) 

Subject to the initial condition; 

 (   )                                                                                         (  ) 

And the nonlocal inhomogeneous boundary conditions of integral type : 

{
 
 

 
 ∫   (   )                                          

 

 

 (   )   

∫ (   ) (   )   
 

 

(      )         

             (  ) 

Where  

{
 
 
 
 

 
 
 
 
                               
                               
 (   )                  

 (   )                     

 (   )                 

 ( )                   

 ( )     (     )

 ( )                       

                                                                      (  ) 

Where    is a constant. 

According to Eq. (13), we have; 
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{
 
 

 
 
g(   )        

  ( )        

 (   )            
 (   )             
                 

                                                                               (  ) 

The recursion scheme Eq. (24) produces a rapidly convergent series as; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )   ∫ ∫ g(   )
 

 

 

 

    
 

 

         

 ∫ ∫ g(   )
 

 

 

 

    + 

  (   )  
 

 
*∫         

 

 

  (     )  ∫         ∫ ∫      
 

 

 

 

    
 

 

  

 ∫ ∫      
 

 

 

 

    + 

Therefore 

   *      (   )                (     ) 

   

{
 
 

 
   (   )  

 

 
*∫ ∫ (  )   

 

 

 

 

     ∫ ∫ (  )   

 

 

 

 

    +

          
  

  
    

 

   

{
 
 

 
   (   )  

 

 
*∫ ∫ (  )   

 

 

 

 

     ∫ ∫ (  )   

 

 

 

 

    +

  
  

  
      

  

  
    

 

Proceeding in a similar manner, we have; 

   *  (   )    
  

  
      

  

  
                                     

   *  (   )   
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And so on. Consequently, the intermediate solution is given as; 

 (   )   (    
  

  
 

  

  
  )       

  (  
  

  
 

  

  
  )      (     )                           (  ) 

Or in a closed form as; 

 (   )            (     )      (     )              (  ) 

Returning to the original dependent variable by Eq. (4), we obtain: 

 (   )  
  (   )

 ( )
 

          (     )    

 
                   (  ) 

Therefore  

 (   )          (     )                                                 (  ) 

Which is the exact solution to this particular nonlocal initial-boundary 

value problem. 

Example (5.1.3) We consider the nonlocal linear homogeneous initial-

boundary value problem 

                                                                   (  ) 

Subject to the initial condition; 

 (   )                                                                                          (  ) 

And the nonlocal inhomogeneous boundary conditions of integral type : 

{
 
 

 
 ∫   (   )                                              

 

 

      

∫ (   ) (   )                       
 

 

(   )     

                    (  ) 
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Where  

{
 
 
 
 

 
 
 
 

                               
                               
 (   )                    

 (   )                     

 (   )                      

 ( )                     

 ( )                      

 ( )                         

                                                                    (  ) 

According to Eq. (13), we have; 

{
 
 

 
 

g(   )                         

  ( )                        

 (   )                          
 (   )                          
                    

                                                                 (  ) 

The recursion scheme Eq. (24) produces a rapidly convergent series as; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )  
 

 

+ 

 
 

 
*∫ ∫ g(   )

 

 

 

 

     ∫ ∫ g(   )
 

 

 

 

    + 

  (   )  
 

 
*∫        

 

 

      ∫       
 

 

+ 

Therefore 

   *      (   )             

   ,  (   )  
 

 
*∫ ∫ ( (  )  (  )   )

 

 

 

 

    + 

  
 

 
*∫ ∫ ( (  )  (  )   )

 

 

 

 

    +                    



143 
 

   ,  (   )  
 

 
*∫ ∫ ( (  )  (  )   )

 

 

 

 

    + 

    
 

 
*∫ ∫ ( (  )  (  )   )

 

 

 

 

    +                   

   ,  (   )  
 

 
*∫ ∫ ( (  )  (  )   )

 

 

 

 

    + 

 
 

 
*∫ ∫ ( (  )  (  )   )

 

 

 

 

    +   
  

 
          

Proceeding in a similar manner, we have; 

   *  (   )    
  

 
                

   *  (   )   
  

  
             

And so on. Consequently, the intermediate solution is given as ; 

 (   )   (  (  )  
(  ) 

  
 

(  ) 

  
 

(  ) 

  
 )                                 (  ) 

Or in a closed form as; 

 (   )                                                                           (  ) 

Returning to the original dependent variable by Eq. (4), we obtain : 

 (   )  
  (   )

 ( )
                                                                 (  ) 

Which is the exact solution to this particular nonlocal initial-boundary 

value problem. 

Example (5.1.4) We consider the nonlocal linear homogeneous initial-

boundary value problem 

                                                                         (  ) 
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Subject to the initial condition: 

 (   )                                                                                            (  ) 

And the nonlocal inhomogeneous boundary conditions of integral type : 

{
 
 

 
 ∫  (   )                                              

 

 

 

 
    

∫   (   )                                              
 

 

 

 
   

                         (  ) 

Where 

{
 
 
 
 

 
 
 
 

                                
                                 
 (   )                        

 (   )                       

 (   )                        

 ( )                         

 ( )                 
 

  
    

 ( )                    

                                                                  (  ) 

According to Eq. (13), we have; 

{
 
 
 

 
 
 

g(   )                           

  ( )                     

 (   )                 
  

(   ) 
 

 (   )                     
 

   
 

                                

                                                             (  ) 

The recursion scheme Eq. (24) produces a rapidly convergent series as; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )   ∫ ∫ g(   )
 

 

 

 

                  
 

 

 ∫ ∫ g(   )
 

 

 

 

    + 
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  (   )  
 

 
*∫ (     )   

 

 

 

  
    ∫ (     )  

 

 

+ 

Therefore 

    {  (   )  
 

 
   

 

 
   

 

 
  

    

{
 
 

 
   (   )  

 

 
*∫ ∫ (  )   

 

 

 

 

     ∫ ∫ (  )   

 

 

 

 

    +

         
 

 
 

 

   ,  (   )  
 

 
*∫ ∫ (  )   

 

 

 

 

     ∫ ∫ (  )   

 

 

 

 

    +

   

  (   )             

Thus, the solution is given by: 

 (   )  
 

 
   

 

 
                                                    (  ) 

Returning to the original dependent variable by Eq. (4), we obtain: 

 (   )  
  (   )

 ( )
 

  (   )    (   )

   
                (  ) 

Which is the exact solution to this particular nonlocal initial -boundary 

value problem. 
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5.2 The Nonlinear parabolic Equation with Nonlocal Conditions 

In this section, the homotopy perturbation method will be 

demonstrated on two examples of nonlinear parabolic equation with 

nonlocal boundary conditions. For our numerical computation, let us  

consider nonlinear parabolic partial differential equation of the form : 

    (   )     (   )   (   )   ( )                            (  ) 

Subject to the initial condition; 

 (   )   ( )                                                                                   (  ) 

And the nonlocal inhomogeneous boundary conditions of integral type: 

∫   ( ) (   )   
 

 

  ( )∫   ( ) (   )   
 

 

  ( )                                         (  ) 

Where   ( )    ( )        and  ( ) are specified as continuous 

functions. we begin our approach by converting Eqs. (50)– (52) To a 

local initial-boundary value problem by introducing a new function 

 (   ) such that: 

 (   )  ∫  ( ) (   )  
 

 

                                                            (  ) 

Where    ( )    ( )    ( ) 

Hence we have: 

  (   )   ( ) (   )                                                                     (  ) 

And 

 (   )  
  (   )

 ( )
                                                                              (  ) 

From Eq. (55) we have: 

  (   )  
   (   )

 ( )
                                                                           (  ) 
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  (   )  
 

 ( )
  (   )  (

 

 ( )
)
 

  (   )                               (  ) 

And 

   (   )  (
 

 ( )
)
  

  (   )   (
 

 ( )
)
 

   (   )  (
 

 ( )
)     (   )         (  ) 

Substituting Eqs.(55)– (58) into Eq. (50) we deduce: 

(
 

 ( )
)     (   )  (  (   ) (

 

 ( )
)
  

 ( )   (   ))   (   ) 

   (   ) (
 

 ( )
)
 

   (   )  
 (   )

 ( )
    (   )   (   )   (

  (   )

 ( )
)    (  ) 

Or 

    ( (   ) (
 

 ( )
)
  

 ( )   (   ))      (   ) (
 

 ( )
)
 

 ( )    

  (   )      ( ) (   )   ( ) (
  (   )

 ( )
)             (  ) 

By using Eq. (53) we get; 

{
 
 

 
   (   )   ( ) (   )   ( )  ( )    ( ) 

 (   )                                                                     

 (   )  ∫  ( ) (   )  
 

 

  ( )                      

                    (  ) 

Where  ( )    ( )    ( ) 

Thus we deduce: 

Lemma (5.2.5) The general nonlocal initial-boundary value problem for 

the nonlinear parabolic partial differential Eq. (50) subject to Eq. (51) 

and Eq. (52) can always be reduced to a local initial-boundary value 

problem of the form: 
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{

     (   )    (   )     (   )     g(   )   ( ) 

  (   )                                                                   ( )              

 (   )               (   )                                  ( )             

(  ) 

Where  

{
 
 
 
 
 

 
 
 
 
  (   )    (   ) (

 

 ( )
)
  

 ( )   (   ) 

 (   )                     (   ) (
 

 ( )
)
 

 ( ) 

 ( )                                        ( )    ( ) 

  ( )                                         ( )  ( ) 

g(   )                                       ( ) (   ) 

 ( )                                     ( ) (
  (   )

 ( )
)  

                            (  ) 

A solution of this problem will lead to a solution of the given original 

problem, where  (   ) is given by Eq. (55). Based on the homotopy 

perturbation method, we write 

     (   )    (   )     (   )     g(   )   ( )                              (  ) 

In operator-theoretic notation as 

   g                                                                                    (  ) 

Where  

                        (   )    (   )     (   )                              (  ) 

We conveniently define the inverse linear operator as ;  

   
     ∫ ∫ ( )

 

 

 

 

                                                                     (  ) 

Applying Eq. (67) to Eq. (65), and taking into account that   (   )  

  ( ) and  (   )     we obtain: 

 (   )  ∫   ( )      
    

 

 

g     
          

        (  ) 
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Proceeding as before, applying the inverse linear operator  to both sides 

of Eq. (65), and taking into account that   (   )    ( ) and   (   )  

 ( )  we obtain: 

   
    ( )  ∫ ∫ ( )

 

 

 

 

                                                                (  ) 

 (   )   (   )  ∫   ( )      
    

 

 

g     
          

                    (  ) 

Thus 

 (   )   ( )  ∫   ( )      
    

 

 

g     
          

                        (  ) 

Adding the relations in Eq. (68) and Eq. (71) together, and then 

dividing by two, we obtain the solution as the equal -weight average 

 (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )      
    

 

 

g     
    g+ 

 
 

 
[   

        
    ](    ( ))                               (  ) 

Where the nonlinear term  ( ) is assumed to be an analytic function 

and can be expressed by an infinite series given in the form : 

 ( (   ))  ∑     ( )

 

   

                                                             (  ) 

For some He’s polynomials    (see [80, 81] that are given by: 

  (         )   
 

  

  

   
   (∑    

 

   

)

   

                                             (  ) 

Now, we apply the homotopy perturbation method 

 (   )   ∑     (   )

 

   

                                                                 (  ) 
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Substituting Eqs. (73) And Eq. (75) into Eq. (72) we get: 

∑     (   )

 

   

 
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )      
    

 

 

g     
    g+ 

 
 

 
 [   

        
    ] ( ∑     (   )  ∑     ( )

 

   

 

   

)      (  ) 

Comparing the coefficient of like powers of  , we have; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )      
    

 

 

g     
    g+ 

     (   )  
 

 
[   

        
    ](      ( ))                                                (  ) 

     (   )  
 

 
[   

        
    ](      ( )) 

      

Proceeding in a similar manner, we have: 

     (   )  
 

 
[   

        
    ](      ( )) 

     (   )  
 

 
[   

        
    ](      ( )) 

So that the solution  (   ) is given by: 

 (   )     (   )     (   )      (   )                           (  ) 

Where the term     is to be determined from the initial and boundary 

conditions. 

Once the function  (   ) is calculated, we can return to the original 

dependent variable  (   ) by Eq. (55). 
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Example (5.2.6) We consider the nonlinear nonlocal inhomogeneous 

initial-boundary value problem [50], 

                                                                   (  ) 

Subject to the initial condition: 

 (   )                                                                                             (  ) 

And the nonlocal inhomogeneous boundary conditions of integral type: 

{
 
 

 
 ∫  (   )                                      

 

 

 

 (   )
 

∫ (    ) (   )                      
 

 

 

 (   )
 

                        (  ) 

Where 

{
 
 
 
 
 

 
 
 
 
 

                                
                                 
 (   )                        

 (   )                       

 (   )                        

 ( )                          

 ( )                      
 

   
 

 ( )                       

 ( )                        

                                                              (  ) 

According to Eq. (63), we have; 

{
 
 

 
 

g(   )                                  

  ( )                                

 (   )                                
 (   )                                 

                          

                                                   (  ) 

And the nonlinear term: 

 ( )   (
 

 ( )
)
 

(  )
  

 

 ( )
                                            (  ) 
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That is 

 ( )     ((  )
       )                                                           (  ) 

Thus 

 ( )  ∑     ( )

 

   

 

The first few components of He’s polynomials  are given by : 

  ( )  (  )
  (  ) (  )   

  ( )        (  ) (  )                                                                                       (  ) 

  ( )  (  )
        (  ) (  )     (  ) (  )    (  ) (  )   

               

The recursion scheme Eq. (77) produces a rapidly convergent series as; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )   ∫ ∫ g(   )
 

 

 

 

    
 

 

 ∫ ∫ g(   )
 

 

 

 

    + 

  (   )  
 

 
*∫       

 

 

 

   
 ∫      

 

 

+ 

Therefore 

   *  (   )    (   )  
 

 
(  

 

   
) 

   

{
 
 

 
 

  (   )  

 

 
∫ ∫ [( (  )    (  )    (  )   )    ( )]

 

 

 

 

    

 
 

 
∫ ∫ [( (  )    (  )    (  )   )    ( )]

 

 

 

 

    

     (   )
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{
 
 

 
 

  (   )  

 

 
∫ ∫ [( (  )    (  )    (  )   )    ( )]

 

 

 

 

    

 
 

 
∫ ∫ [( (  )    (  )    (  )   )    ( )]

 

 

 

 

    

     (   )

 

Proceeding in a similar manner, we have; 

     (   )       (   ) 

     (   )      (   ) 

      

And so on. Consequently, the intermediate solution is given as ; 

 (   )    (   )(           )  
 

 
(  

 

   
)                              (  ) 

Or in a closed form as; 

 (   )  
  (   )

   
 

 

 
(  

 

   
)                                           (  ) 

Returning to the original dependent variable by Eq. (55), we obtain: 

 (   )  
  (   )

 ( )
 (

 

  
)

   

   
 

 

   
                                     (  ) 

Which is the exact solution to this particular nonlocal initial -boundary 

value problem. 

Example (5.2.7) We consider the nonlinear nonlocal inhomogeneous 

initial-boundary value [25], 

          
                                                    (  ) 

Subject to the initial condition: 

 (   )                                                                                            (  ) 

And the nonlocal inhomogeneous boundary conditions of integral type: 
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{
 
 

 
 ∫  (   )                                  

 

 

  (   ) 

∫
 

 
 (   )                             

 

 

 

 
  (   ) 

                          (  ) 

Where  

{
 
 
 
 
 

 
 
 
 
 

                                   
                                     
 (   )                           

 (   )                            

 (   )                           

 ( )                            

 ( )           
 

 
  (   ) 

 ( )             
     

 ( )                           

                                                              (  ) 

According to Eq. (63), we have: 

{
 
 

 
 

g(   )                           

  ( )                      
 

 
   

 (   )                           
 (   )                            
                               

                                                              (  ) 

And the nonlinear term: 

 ( )   
 

 ( )
(   )

  
 

 ( )
(  )

                                             (  ) 

That is 

 ( )  
 

 
((  )

  (   )
 )                                                             (  ) 

Thus 
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 ( )  ∑     ( )

 

   

 

The first few components of He’s polynomials  are given by: 

  ( )  (  ) 
 
 (  )  

  

  ( )   (  ) (  )   (  )  (  )                                         (  ) 

               

The recursion scheme Eq. (77) produces a rapidly convergent series as; 

     (   )  
 

 
*∫   ( )   

 

 

 ( )  ∫   ( )   ∫ ∫ g(   )
 

 

 

 

    
 

 

 ∫ ∫ g(   )
 

 

 

 

    + 

  (   )  
 

 
*∫

 

 
     

 

 

 

 
  (   )  ∫

 

 
    

 

 

+ 

Therefore 

   {  (   )  
 

 
   

 

 
(   )(    ) 

   

{
  
 

  
   (   )  

 

 
∫ ∫ [(  )      ( )]

 

 

 

 

    

                       
 

 
∫ ∫ [(  )      ( )]

 

 

 

 

    

 
 

 
    

 

 
 (   )

 

   

{
  
 

  
   (   )  

 

 
∫ ∫ [[(  )      ( )]    ( )]

 

 

 

 

    

                         
 

 
∫ ∫ [[(  )      ( )]    ( )]

 

 

 

 

    

 
 

 
  

  

  
 

 

 
  (   )
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Proceeding in a similar manner, we have: 

     (   )  
 

 
  

  

  
 

 

  
  (   ) 

     (   )  
 

 
  

  

  
 

 

  
  (   ) 

       

And so on. Consequently, the intermediate solution is given as ; 

 (   )  
 

 
  (    

  

  
 

  

  
 

  

  
  )  

 

 
(   ) (    

  

  
  )  (  ) 

Or in a closed form as; 

 (   )  
 

 
     

 

 
(   )                                                         (  ) 

Returning to the original dependent variable by Eq. (55), we obtain : 

 (   )  
  (   )

 ( )
 

 

 
    

 

 

                                                 (   ) 

Which is the exact solution to this particular nonlocal initial -boundary 

value problem. 

 

5.3 The linear Hyperbolic Equation with Nonlocal Conditions 

In this section, we will employ the homotopy perturbation method 

to solve the nonlocal initial-boundary value problems for linear 

variable-coefficient hyperbolic partial differential equations. For cases, 

including an input function or additional linear terms, the homotopy 

perturbation method remains the method of choice to easily and quickly 

calculate solutions. Several examples will be presented in the sequel.  

Now we consider the inhomogeneous linear hyperbolic partial 

differential equation 
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     (   )     (   )   (   )                                       (   ) 

Subject to the initial conditions: 

 (   )    ( )          (   )    ( )                                      (   ) 

And the nonlocal inhomogeneous boundary conditions of integral type: 

∫   ( ) (   )   
 

 

  ( )∫   ( ) (   )   
 

 

  ( )                                      (   ) 

Where   ( )    ( )        and  ( ) are specified as continuous 

functions. we begin our approach by converting Eqs. (101)– (103) To a 

local initial-boundary value problem by introducing a new function 

 (   ) such that: 

 (   )  ∫  ( ) (   )  
 

 

                                                         (   ) 

Where    ( )    ( )    ( ) 

Hence we have: 

  (   )   ( ) (   )                                                                   (   ) 

And 

 (   )  
  (   )

 ( )
                                                                            (   ) 

From Eq. (106) we have: 

  (   )  
   (   )

 ( )
                                                                        (   ) 

   (   )  
    (   )

 ( )
                                                                      (   ) 

  (   )  
 

 ( )
  (   )  (

 

 ( )
)
 

  (   )                            (   ) 

And 
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   (   )  (
 

 ( )
)
  

  (   )   (
 

 ( )
)
 

   (   )  (
 

 ( )
)     (   )      (   ) 

Substituting Eqs.(106)– (110) into Eq. (101) we deduce: 

    (   )  ( (   ) (
 

 ( )
)
  

 ( )   (   ))   (   ) 

   (   ) (
 

 ( )
)
 

 ( )   (   )   (   )    (   )   ( ) (   )     (   ) 

By using Eq. (104) we get; 

{
 
 

 
 

  (   )   ( ) (   )   ( )   ( )    ( ) 

   (   )   ( )  (   )   ( )   ( )    ( )

 (   )                                                                        

 (   )  ∫  ( ) (   )  
 

 

  ( )                      

             (   ) 

Where  ( )    ( )    ( ) 

Thus we deduce: 

Lemma (5.3.8) The general nonlocal initial-boundary value problem 

(101)–(103) can always be reduced to a local initial-boundary value 

problem of the form 

{

      (   )    (   )     (   )      (   ) 

  (   )      ( )            (   )                         ( )

 (   )                       (   )                            ( ) 

        (   ) 

Where  
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{
 
 
 
 

 
 
 
  (   )    (   ) (

 

 ( )
)
  

 ( )   (   ) 

 (   )                     (   ) (
 

 ( )
)
 

 ( ) 

 ( )                                        ( )    ( ) 

  ( )                                         ( )   ( ) 

  ( )                                         ( )   ( ) 

g(   )                                      ( ) (   ) 

                           (   ) 

A solution of this problem will lead to a solution of the given original 

problem, where  (   ) is given by Eq. (106). Based on the homotopy 

perturbation method, we write 

      (   )    (   )     (   )     g(   )            (   ) 

In operator-theoretic notation as; 

   g                                                                                        (   ) 

Where 

                    (   )    (   )     (   )                               (   ) 

We conveniently define the inverse linear operator as; 

   
      ∫ ∫ ∫ ( )  

 

 

 

 

 

 

                                                       (   ) 

Applying the inverse linear operator    
      to Eq. (116), and taking 

into account that   (   )    ( )    (   )    ( ) and  (   )     we 

obtain: 

 (   )  ∫   ( )    ∫   ( )  
 

 

    
     

 

 

g     
                          (   ) 

Proceeding as before, applying the inverse linear operator  to both sides 

of Eq. (116), and taking into account that   (   )    ( )    (   )  

  ( ) and   (   )   ( )  we obtain: 
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     ( )  ∫ ∫ ∫ ( )

 

 

 

 

 

 

               

 (   )   (   )  ∫   ( )    ∫   ( )  
 

 

    
     

 

 

g     
                   

Thus 

 (   )   ( )  ∫   ( )    ∫   ( )  
 

 

    
     

 

 

g     
            (   ) 

Adding the relations in Eq. (118) and Eq. (120) together, and then 

dividing by two, we obtain the solution as the equal -weight average 

 (   )  
 

 
[∫   ( )   

 

 

 ∫   ( )   
 

 

 ( )  *∫   ( )    ∫   ( )  
 

 

 

 

+] 

 
 

 
[   

     g     
     g     

     
      

       ]             (   ) 

Now, we apply the homotopy perturbation method 

 (   )   ∑     (   )

 

   

                                                               (   ) 

Substituting Eq. (122) into Eq. (121) we get; 

∑     (   )

 

   

 
 

 
[   

     g     
     g] 

 
 

 
[∫   ( )   

 

 

 ∫   ( )   
 

 

 ( )  *∫   ( )    ∫   ( )  
 

 

 

 

+] 

 
 

 
 [   

         
     ] ∑     (   )

 

   

                                  (   ) 

Comparing the coefficient of like powers of  , we have: 
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     (   )  
 

 
*∫   ( )   

 

 

 ∫   ( )   
 

 

 ( )+ 

 
 

 
*∫   ( )    ∫   ( )  

 

 

 (   
     g     

     g)
 

 

+ 

     (   )  
 

 
[   

         
     ]                                    (   ) 

     (   )  
 

 
[   

         
     ]    

Proceeding in a similar manner, we have: 

     (   )  
 

 
[   

         
     ]    

     (   )  
 

 
[   

        
    ]    

So that the solution  (   ) is given by: 

 (   )     (   )     (   )      (   )                         (   ) 

Where the term     is to be determined from the initial and boundary 

conditions. 

Once the function  (   ) is calculated, we can return to the original 

dependent variable  (   ) by Eq. (106). 

Example (5.3.9) We consider the nonlocal linear homogeneous initial-

boundary value problem [77], 

                                                                      (   ) 

Subject to the initial conditions 

 (   )              (   )                                                        (   ) 

And the nonlocal inhomogeneous boundary conditions of integral type : 
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{
 
 

 
 ∫  (   )                                              

 

 

 

 
    

∫   (   )                                              
 

 

 

 
 

  

 
 

                 (   ) 

Where  

{
 
 
 
 
 

 
 
 
 
 

                                
                                 
 (   )                        

 (   )                       

 (   )                        

  ( )                         

  ( )                        

 ( )                 
 

  
 

 

 
   

 ( )                    

                                                        (   ) 

According to Eq. (113), we have: 

{
 
 
 
 

 
 
 
 

g(   )                                                     

  ( )                                              

  ( )                                                      

 (   )                                    
  

(   ) 
 

 (   )                                          
 

   
 

    
 

(   ) 
   

 

   
         

                                   (   ) 

The recursion scheme Eq. (124) produces a rapidly convergent series 

as; 

   

{
 

   (   )  
 

 
*∫ (     )   

 

 

 

  
 

 

 
   ∫ (     )  

 

 

+
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{
  
 

  
   (   )  

 

 
*∫ ∫ ∫ [

 

(   ) 
(  )  

 

   
(  )   (  )   ]       

 

 

 

 

 

 

+

 
 

 
*∫ ∫ ∫ [

 

(   ) 
(  )  

 

   
(  )   (  )   ]       

 

 

 

 

 

 

+

 
 

 
        

 

   

{
 
 

 
   (   )  

 

 
*∫ ∫ ∫ [

 

(   ) 
(  )  

 

   
(  )   (  )   ]       

 

 

 

 

 

 

+

 
 

 
*∫ ∫ ∫ [

 

(   ) 
(  )  

 

   
(  )   (  )   ]       

 

 

 

 

 

 

+

   

 

  (   )             

Thus, the solution is given by; 

 (   )  
 

 
   

 

 
   

 

 
         

 

 
                             (   ) 

Returning to the original dependent variable by Eq. (106), we obtain: 

 (   )  
  (   )

 ( )
 

  (   )    (   )

   
              (   ) 

Which is the exact solution to this particular nonlocal initial -boundary 

value problem. 

Example (5.3.10) We consider the nonlocal linear homogeneous initial-

boundary value problem [78], 

                                                                      (   ) 

Subject to the initial conditions: 

 (   )     (  )    (   )                                           (   ) 

And the nonlocal inhomogeneous boundary conditions of integral type : 
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{
 
 

 
 ∫  (   )                         

 

 

  

∫
 

 
 (   )                      

 

 

  

                                                  (   ) 

Where  

{
 
 
 
 
 

 
 
 
 
 

                                
                                 
 (   )                        

 (   )                       

 (   )                        

  ( )              (  ) 

  ( )                        

 ( )                            

 ( )                          
 

 
 

                                                              (   ) 

According to Eq. (113), we have: 

{
 
 
 

 
 
 

g(   )                            

  ( )             
 

 
   (  ) 

  ( )                               

 (   )                             
 (   )                              
                                

                                                          (   ) 

The recursion scheme Eq. (124) produces a rapidly convergent series 

as; 

     (   )  
 

 
*∫

 

 
   (  )  

 

 

 ∫
 

 
   (  )  

 

 

+  
 

 
   (  ) 

     (   )  

{
 
 

 
  

 
*∫ ∫ ∫ (  )          ∫ ∫ ∫ (  )         

 

 

 

 

 

 

 

 

 

 

 

 

+

  
 

 

(  ) 

  
   (  )
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     (   )  

{
 
 

 
  

 
*∫ ∫ ∫ (  )          ∫ ∫ ∫ (  )         

 

 

 

 

 

 

 

 

 

 

 

 

+

 
 

 

(  ) 

  
   (  )

 

Proceeding in a similar manner,  we have: 

     (   )   
 

 

(  ) 

  
   (  ) 

     (   )  
 

 

(  ) 

  
   (  ) 

And so on. Consequently, the intermediate solution is given as ; 

 (   )  
 

 
   (  ) (  

(  ) 

  
 

(  ) 

  
 

(  ) 

  
  )      (   ) 

Or in a closed form as; 

 (   )  
 

 
   (  )    (  )                                                        (   ) 

Returning to the original dependent variable by Eq. (106), we obtain : 

 (   )  
  (   )

 ( )
    (  )    (  )                                      (   ) 

Which is the exact solution to this particular nonlocal initial-boundary 

value problem. 

 

5.4 The Nonlinear Hyperbolic Equation with Nonlocal Conditions 

In this section, we will employ the homotopy perturbation method 

to solve the nonlocal initial-boundary value problems for nonlinear 

variable-coefficient hyperbolic partial differential equations. For cases, 

including an input function or additional nonlinear terms, the 

homotopy perturbation method remains the method of choice to easily 
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and quickly calculate solutions. Several examples will be presented in 

the sequel. 

Now we consider the nonlinear hyperbolic partial differential equation  

     (   )     (   )   (   )   ( )                         (   ) 

Subject to the initial conditions: 

 (   )    ( )          (   )    ( )                                      (   ) 

And the nonlocal inhomogeneous boundary conditions of integral type  

∫   ( ) (   )   
 

 

  ( )∫   ( ) (   )   
 

 

  ( )                                      (   ) 

Where   ( )    ( )        and  ( ) are specified as continuous 

functions. we begin our approach by converting Eqs. (141)– (143) To a 

local initial-boundary value problem by introducing a new function 

 (   ) such that: 

 (   )  ∫  ( ) (   )  
 

 

                                                         (   ) 

Where    ( )    ( )    ( ) 

Hence we have: 

  (   )   ( ) (   )                                                                   (   ) 

And 

 (   )  
  (   )

 ( )
                                                                            (   ) 

From Eq. (106) we have: 

  (   )  
   (   )

 ( )
                                                                        (   ) 

   (   )  
    (   )

 ( )
                                                                      (   ) 
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  (   )  
 

 ( )
  (   )  (

 

 ( )
)
 

  (   )                            (   ) 

   (   )  (
 

 ( )
)
  

  (   )   (
 

 ( )
)
 

   (   )  (
 

 ( )
)     (   )      (   ) 

Substituting Eqs.(146)– (150) into Eq. (141) we deduce 

    (   )  ( (   ) (
 

 ( )
)
  

 ( )   (   ))   (   ) 

   (   ) (
 

 ( )
)
 

 ( )   (   )   (   )    (   ) 

  ( ) (   )   ( ) ( )                                                          (   ) 

By using Eq. (144) we deduce the initial conditions  and boundary 

conditions as follows; 

{
 
 

 
 

  (   )   ( ) (   )   ( )   ( )    ( ) 

   (   )   ( )  (   )   ( )   ( )    ( )

 (   )                                                                     

 (   )  ∫  ( ) (   )  
 

 

  ( )                      

             (   ) 

Where  ( )    ( )    ( ) 

Thus we deduce: 

Lemma (5.4.11) The general nonlocal initial-boundary value problem 

(141)–(143) can always be reduced to a local initial-boundary value 

problem of the form 

{

      (   )    (   )     (   )      (   )   ( ) 

  (   )      ( )            (   )                         ( )

 (   )                       (   )                            ( ) 

(   ) 

Where  
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{
 
 
 
 
 

 
 
 
 
  (   )    (   ) (

 

 ( )
)
  

 ( )   (   ) 

 (   )                     (   ) (
 

 ( )
)
 

 ( ) 

 ( )                                        ( )    ( ) 

  ( )                                         ( )   ( ) 

  ( )                                         ( )   ( ) 

g(   )                                        ( ) (   ) 

 ( )                                     ( ) (
  (   )

 ( )
)

                       (   ) 

A solution of this problem will lead to a solution of the given original 

problem, where  (   ) is given by Eq. (146). Based on the homotopy 

perturbation method, we write 

      (   )    (   )     (   )     g(   )   ( ) 

In operator-theoretic notation as; 

   g                                                                                 (   ) 

Where  

                  (   )    (   )     (   )       (   ) 

We conveniently define the inverse linear operator as; 

   
      ∫ ∫ ∫ ( )  

 

 

 

 

 

 

                                                       (   ) 

Applying Eq. (157) to Eq. (155), and taking into account that 

  (   )    ( )    (   )    ( )  and  (   )     we obtain: 

 (   )  ,∫   ( )    ∫   ( )  
 

 

    
     

 

 

g 

    
           

                                                (   ) 
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Proceeding as before, applying the inverse linear operator  to both sides 

of Eq. (115), and taking into account that   (   )    ( )    (   )  

  ( ) and   (   )   ( )  we obtain: 

   
     ( )  ∫ ∫ ∫ ( )

 

 

 

 

 

 

                                                   (   ) 

 (   )   (   )  ∫   ( )    ∫   ( )  
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Thus 

 (   )   ( )  ∫   ( )    ∫   ( )  
 

 

    
     

 

 

g 

    
           

                                                       (   ) 

Adding the relations in Eq. (158) and Eq. (160) together, and then 

dividing by two, we obtain the solution as the equal -weight average 

 (   )  
 

 
[∫   ( )   

 

 

 ∫   ( )   
 

 

 ( )  *∫   ( )    ∫   ( )  
 

 

 

 

+] 

 
 

 
[   

     g     
     g]  

 

 
[   

         
     ][    ( )]      (   ) 

Where the nonlinear term  ( ) is assumed to be an analytic function 

and can be expressed by an infinite series given in the form : 

 ( (   ))  ∑     ( )

 

   

                                                           (   ) 

For some He’s polynomials    (see [80, 81] that are given by: 

  (         )   
 

  

  

   
   (∑    

 

   

)

   

                                          (   ) 
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Now, we apply the homotopy perturbation method 

 (   )   ∑     (   )

 

   

                                                               (   ) 

Substituting Eq. (164) into Eq. (163) we get; 

∑     (   )
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Comparing the coefficient of like powers of  , we have: 
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Proceeding in a similar manner, we have: 

     (   )  
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So that the solution  (   ) is given by: 

 (   )     (   )     (   )      (   )                         (   ) 

Where the term     is to be determined from the initial and boundary 

conditions. 

Once the function  (   ) is calculated, we can return to the original 

dependent variable  (   ) by Eq. (156). 

Example (5.4.12) We consider the nonlocal linear homogeneous initial -

boundary value problem [79], 

                                                              (   ) 

Subject to the initial conditions: 

 (   )      (   )                                                                  (   ) 

And the nonlocal inhomogeneous boundary conditions of integral type : 

{
 
 

 
 ∫  (   )                                              

 

 

  

∫ (   ) (   )                              
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Where  

{
 
 
 
 
 

 
 
 
 
 

                                
                                 
 (   )                        

 (   )                       

 (   )                        

  ( )                        

  ( )                        

 ( )                          
 

 
 

 ( )                          

                                                                 (   ) 

According to Eq. (154), we have:  
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{
 
 
 
 

 
 
 
 

g(   )                                 

  ( )                                   

  ( )                                   

 (   )                             
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And the nonlinear term  

 ( )    ( ) (
  

 ( )
)
 

                                                               (   ) 

That is 

 ( )   
 

 
(  )

                                                                             (   ) 

Thus 

 ( )  ∑     ( )

 

   

 

The first few components of He’s polynomials  are given by : 

  ( )  (  ) 
  

  ( )   (  ) (  )                                                                      (   ) 

  ( )  (  ) 
 
  (  ) (  )  

The recursion scheme Eq. (166) produces a rapidly convergent series 

as; 
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{
 
 

 
   (   )  

 

 
*∫ ∫ ∫ [

 

 
(  )  (  )    (  )      ( )]       

 

 

 

 

 

 

+

 
 

 
*∫ ∫ ∫

 

 
(  )  (  )    (  )      ( )

 

 

 

 

 

 

+       

  

 

  (   )             

Thus, the solution is given by: 

 (   )  
 

 
   

 

 
                                                                          (   ) 

Returning to the original dependent variable by Eq. (106), we obtain : 

 (   )  
  (   )

 ( )
                                                                      (   ) 

Which is the exact solution to this particular nonlocal initial -boundary 

value problem. 
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