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Abstract

In this research, we show by using integration of different form that , for a compact
orientable manifold of dimension n the De Rham cohomology group H™ (M) is non
zero, we also show that the group for a compact , connected , orientable manifold

is just one-dimensional.

We discuss the metric tensor and Riemannian metric on a manifold in informal
terms. We also illustrate the relation between the integral curve of geodesic flow

and geodesic with some examples and applications .
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Introduction

Today the area of differential geometry becomes one in which recent developments

have effected great changes. However , the studying of its material has been

relatively little affected by many modern developments . this research deal with

some of this developments, and organized as follows:-

In chapter(1) , we discuss the basic concepts of manifold and its general
mathematical structures with some examples and applications. Also , we study the
tangent vector, tangent spaces, cotangent vector and cotangent spaces with some

remarks and examples .

In chapter(2) , we deal with a brief introduction to tangent bundle via our definition
of vector fields and their associated mathematical structures. Also we discuss the

Lie bracket .

In chapter(3) , we study the differential forms and De Rham cohomology groups.
And to get more informations on de Rham cohomology , we study the orientation,

integration of forms and Stokes' Theorem with some examples and applications.

In chapter(4) , we study the degree of smooth maps , De Rham cohomology in the
top dimension, and the concepts of the orientable n-dimensional manifold. Also we

discuss the metric tensor and Geodesic flow with some examples and applications.

Vil



Chapter (1)
Manifolds, Tangent and Contingent Spaces

Section (1.1): Basic Concept of Manifold

The concept of a manifold is a bit complicated, but it starts with defining the

notion of a coordinate chart.

Definition (1.1.1):
A coordinate chart on a set X is a subset U S X together with a bijection
p:U - oU) € R"
onto an open set @(U) in R™.
Thus we can parametrize points x of U by n coordinates ¢(x) = (xq,...,%Xp)-

We now want to consider the situation where X is covered by such charts and

satisfies some consistency conditions. We have
Definition (1.1.2):

An n-dimensional atlas on X is a collection of coordinate charts {Uy, @, }aer

such that

i. X is covered by the {U,},¢;
ii. foreach a € I, p,(U, N Ug) is open in R™
iii. the map

PpPa’t Pa(UgNUg) = @p(UyN Up)

is C®with C® inverse.



Recall that F (x4, ..., x,) € R™is C* if it has derivatives of all orders. We shall
also say that F is smooth in this case. It is perfectly possible to develop the theory

of manifolds with less differentiability than this, but this is the normal procedure.
Examples (1.1.3):

1. Let X = R™and take U = X with ¢ = id. We could also take X to be any
open set in R™.

2. Let X be the set of straight lines in the plane:

P
e

A

S

y=mx+c

Ax+By+C=0 )

Each such line has an equation Ax + By + C = 0 where if we multiply 4, B, C
by a non-zero real number we get the same line. Let Uy be the set of non-vertical

lines.For each line £ € U, we have the equation
y =mx + ¢

where m, c are uniquely determined. So ¢,(¥) = (m,c) defines a coordinate
chart @, : U, — R?. Similarly if U; consists of the non-horizontal lines with

equation

x = my + ¢

we have another chart ¢, : U; - R?



Now Uy U is the set of lines y = mx + ¢ which are not horizontal, so m # 0.

Thus
0o(UpNU;) = {(m,c) € R?: m # 0}

which is open. Moreover, y = impliesx = m™"y — ~*and so
hich M mx + cimpliesx = m™1! cm~! and

@195 (m,c) = (m™',—cm™)

which is smooth with smooth inverse. Thus we have an atlas on the space of lines.

3. Consider R as an additive group, and the subgroup of integers Z < R. Let X
be the quotient group R/Z andp : R = R/Z the quotient homomorphism.

Set Uy = p(0,1) and U; = p(—1/2,1/2). Since any two elements in the subset
p~1(a) differ by an integer, p restricted to (0, 1) or (-1/2, 1/2) is injective and so

we have coordinate charts
Po = p 't Uy = (0,1),0, = p~': U » (=1/2,1/2).
Clearly U, and U; cover R/Z since the integer 0 € Uj.
We check:
Po(UpN Uy) = (0,1/2) U (1/2,1),9,(UyN Uy) = (=1/2,0) U (0,1/2)

Which are open sets . Finally, if x € (0,1/2),¢;0,%(x) =x and ifx €

(1/2,1), @105 (x) = x- 1. These maps are certainly smooth with smooth

inverse so we have an atlas on X = R/Z.

4. Let X be the extended complex planeX = C U{o}. Let
Uy = Cwith ¢y(z) =z € C = R? Now take

Uy = C\{0} U {eo}

3



and define @,(2) = Z7' € Cif Z # wand @,() = 0. Then

0o(UpN Up) = C\{0}

which is open, and

0ot () = 27 == — i

x2+y2 x2+y2'

This is a smooth and invertible function of (x,y). We now have a 2-dimensional

atlas for X, the extended complex plane.

5. Let X be n-dimensional real projective space, the set of 1-dimensional vector
subspaces of R™*1. Each subspace is spanned by a non-zero vector v, and we
define U; © RP™ to be the subset for which the i-th component of v € R™1 is
non-zero. Clearly X is covered by Uy, ..., U,4+1. In U; we can uniquely choose v
such that the ith component is 1, and then U; is in one-to-one correspondence with

Rn+1

the hyperplane x; =1 in , which is a copy of R". This is therefore a

coordinate chart
@;: Uy > R"
The set @;(U; NU;) is the subset for which x; # 0and is therefore open.
Furthermore
pip; ' {x € R"™: x; = 1,x; #0} - {x € R™': x; = 1,x; # 0}
1s

1
UV > —7U
Xi

which is smooth with smooth inverse. We therefore have an atlas for RP™.



Now we will discuss the definition of a manifold, all the examples above are
actually manifolds, and the existence of an atlas is sufficient to establish that, but
there is a minor subtlety in the actual definition of a manifold due to the fact that
there are lots of choices of atlases. If we had used a different basis for R?, our
charts on the space X of straight lines would be different, but we would like to
think of X as an object independent of the choice of atlas. That's why we make the

following definitions:

Definition (1.1.4):

Two atlases {(U,, 94)}, {(V;, ;) } are compatible if their union is an atlas.

1

What this definition means is that all the extra maps ¥;@p, - must be smooth.

Compatibility is clearly an equivalence relation, and we then say that:

Definition (1.1.5):

A differentiable structure on X is an equivalence class of atlases.

Finally we come to the definition of a manifold:
Definition (1.1.6):

An n-dimensional differentiable manifold is a space X with a differentiable

structure.

The upshot is this: to prove something is a manifold, all you need is to find one
atlas. The definition of a manifold takes into account the existence of many more

atlases.

Many books give a slightly different definition -they start with a topological space,

and insist that the coordinate charts are homeomorphisms. This is fine if we see the



world as a hierarchy of more and more sophisticated structures but it suggests that
in order to prove something is a manifold we first have to define a topology. As

we'll see now, the atlas does that for us.

First recall what a topological space is: a set X with a distinguished collection of

subsets V' called open sets such that

i. @ and X are open
il. An arbitrary union of open sets is open

iil. A finite intersection of open sets is open

Now suppose M is a manifold. We shall say that a subset V € M is open fif, for
each a,,(V N U,) is an open set in R™. One thing which is immediate is that

V = Up is open, from Definition (1.1.2).

We need to check that this gives a topology. Condition 1 holds because ¢, (¢p) =
¢ and ¢, (M Nn U,) = ¢,(U,) which is open by Definition (1.1.1) for the other

two, if V/; is a collection of open sets then because ¢, is bijective
Pa((UV) N Ug) =V @a(V; N Uy)

Pa((NV) N Ug) =N g (V; N Uy)

and then the right hand side is a union or intersection of open sets. Slightly less

obvious is the following:
Proposition (1.1.7):

With the topology above ¢,: U, = ¢,(U,) is a homeomorphism.



Proof:

IfV < U, is open in the induced topology on U, then since U, itself is open,
V is open in M. Then @,(V) = @,V NnU,) is open by the definition of the

topology, so ¢! is certainly continuous.

Now let W < ¢, (U,) be open, then ¢z (W) S U, so we need to prove that
@z1 (W) is open in . But

sz W)YN Ug) = gz (W 0 @ (Uy N Up)) (1.1)

From Definition (1.1.2) the set ¢, (U, N Ug) is open and hence its intersection
with the open set W' is open. Now ¢g@p, 1is C* with C* inverse and so certainly a
homeomorphism, and it follows that the right hand side of (1.1) is open. Thus the
left hand side @g(@q wn Ug) 1s open and by the definition of the topology this

means that @1 (W)is open, i.e. ¢, is continuous.

To make any reasonable further progress, we have to make two assumptions about

this topology which will hold for the rest of search:

1. the manifold topology is Hausdorff

i. 1in this topology we have a countable basis of open sets

Without these assumptions, manifolds are not even metric spaces, and there is not

much analysis that can reasonably be done on them.

Now we will discuss further examples of manifolds, we need better ways of
recognizing manifolds than struggling to find explicit coordinate charts. For

example, the sphere is a manifold



and although we can use stereographic projection to get an atlas:

(.00

(=y.2]

[0.a,b)

there are other ways. Here is one.

Theorem (1.1.8):
Let F: U > R™ be a C* function on an open set U S R™™ and
take ¢ € R™. Assume that for each a € F~1(c), the derivative

DFa: Rn+m N Rm



is surjective. Then F~1(c) has the structure of an n-dimensional manifold which is

Hausdorff and has a countable basis of open sets.

Proof:

Recall that the derivative of F at a is the linear map DF,: R"*™ — R™ such

that
F(a + h) = F(a) + DF,(h) + R(a,h)
Where
R(a,h)/||h]l > Oas h - 0.
If we write F(xq, ... ,Xpem) = (Fi,...., FEy) the derivative is the Jacobian matrix

F; : .
a—Z(a) 1<i<ml<j<n+m

Now we are given that this is surjective, so the matrix has rank m. Therefore by

reordering the coordinates x4, ... , X, 4, W€ may assume that the square matrix
0F; , ,
—@ 1<i<ml<j<m
an

1s invertible.
Now define

G: U_)Rn+m

G(%q,) e s Xpam) = (Fuy oo s By Xmat - > Xnem) (1.2)

Then DG, 1s invertible.



We now apply the inverse function theorem to G, a proof of which is given in the
Appendix. It tells us that there is a neighbourhood V of a, and W of G (a) such that
G : V — W is invertible with smooth inverse. Moreover, the formula (1.2) shows
that G maps V N F~1(c) to the intersection of W with the copy of R™ given

by{x € R™™: x; = ¢;,1 < i < m}. This is therefore a coordinate chart .

If we take two such charts ¢g, pg then @o@p 1'is a map from an open set in
{x € R™™: x; = ¢;,1 < i <m} to another one which is the restriction of the
mapGy Gg 1 of (an open set in) R™*™ to itself. But this is an invertible C* map and

so we have the requisite conditions for an atlas.

Finally, in the induced topology from R™*™, G, is a homeomorphism, so open sets

in the manifold topology are the same as open sets in the induced topology. Since

R™™ is Hausdorff with a countable basis of open sets, so is F~1(c).

Effectively (1.2) gives a coordinate chart on R™™ such that F~(c) is a linear

subspace there: we are treating R™*™ as a manifold in its own right.
We can now give further examples of manifolds:
Examples (1.1.9):
1. Let
n={xe Rn+1:2111+1xl_2 =1}
be the unit n-sphere. Define F : R™*1 - R by
F(x) = X1+ xf

This is a C* map and

10



DF,(h) = 2¥;a;h;

is non-zero (and hence surjective in the 1-dimensional case) so long as a is not

identically zero. If F (a) = 1, then
Yi*laf=1#0

so a # 0 and we can apply Theorem (1.1.8) and deduce that the sphere is a

manifold.

2. Let O(n) be the space of n X n orthogonal matrices: AAT = I. Take the
vector space M,, of dimension n? of all real n X n matrices and define the

function
F(A) = AAT

to the vector space of symmetric n X n matrices. This has dimension n (n + 1)/2

then 0(n) = F~1(D).
Differentiating F we have
DF,(H) = HAT + AHT
and putting H = KA this is
KAAT + AATKT = K + K"

if AAT =1, ie. if A € F71(I). But given any symmetric matrix S, taking
K = §/2 shows that DF; is surjective and so, applying Theorem (1.1.8) we find

that O(n) 1s a manifold. Its dimension is

n? —n(n + 1)/2 = n(n — 1)/2.

11



Now we will discuss maps between manifolds, we need to know what a smooth

map between manifolds is. Here is the definition:
Definition (1.1.10):

A map F : M — N of manifolds is a smooth map if for each point x € M and
chart (Uy, ¢,) in M with x € U, and chart (V;,y; ) of N with F(x) € V;, the set

F~Y(;) is open and the composite function
ViF Qg
on ¢, (F~1(V,)) nU,) is a C* function.

Note that it is enough to check that the above holds for one atlas - it will follow

from the fact that (paq)gl is C® that it then holds for all compatible atlases.
The natural notion of equivalence between manifolds is the following:
Definition (1.1.11):

A diffeomorphism F : M — N is a smooth map with smooth inverse.

Example (1.1.12)

Take two of our examples above - the quotient group R/Z and the 1-sphere, the

circle, S1. We shall show that these are eomorphic. First we define a map

G: R/Z - St

G(x) = (cos 2mnx, sin 2mx)

12



This is clearly a bijection. Take x € U, < R/Z then we can represent the point
by x € (0,1). Within the range(0,1/2), sin2mx # 0, so with F = x% + x2, we
have 0F /0x, # 0. The use of the inverse function theorem in Theorem (1.1.8)
then says that x; is a local coordinate for S, and in fact on the whole of (0,1/
2)cos2mx is smooth and invertible. We proceed by taking the other similar open
sets to check fully that G is a smooth, bijective map. To prove that its inverse is
smooth, we can rely on the inverse function theorem, since sin 2mx # 0 in the

interval.

Section (1.2): Tangent Vectors and Cotangent Vectors

We begin this section by study the existence of smooth functions, the most

fundamental type of map between manifolds is a smooth map
f+M—->R

We can add these and multiply by constants so they form a vector space C* (M),
the space of C® functions on M. In fact, under multiplication it is also a
commutative ring. So far, all we can assert is that the constant functions lie in this
space, so let's see why there are lots and lots of global C* functions. We shall use

bump functions and the Hausdorff property.

First note that the following function of one variable is C:

1
fO=eT t>0
=0 t <0

Now form

()
) =—1O
90 =5+ rao

13



so that g is identically 1 when t > 1 and vanishes if ¢ < 0. Next write

h(t) = gt + 2)g2 — t)

This function vanishes if |t| = 2 and is 1 where |t|] < 1:itis completely at on top.

Finally make an n-dimensional version

k(xq, ... ,xp) = h(x1)h(x3) ... h(xy)

In the sup norm, this is 1 if |x| < 1, so k(r~'x) is identically 1 in a ball of radius r

and 0 outside a ball of radius 2r.

We shall use this construction several times later on. For the moment, let M be any

manifold and (U, ¢y) a coordinate chart. Choose a function k of the type above

whose support (remember supp f = {x : f(x) # 0}) lies in ¢y (U) and define

f:M—->R

fx) = kogy(x) x €U
=0 x € M\U

is this a smooth function? The answer is yes: by definition f is smooth for points in

the coordinate neighbourhood U. But supp k is closed and bounded in R™ and so

14



compact and since @y is a homeomorphism, f is zero on the complement of a
compact set in M. But a compact set in a Hausdorff space is closed, so its
complement is open. If y # U then there is a neighbourhood of y on which f is

identically zero, in which case clearly f is smooth at y.

Now we will discuss the derivative of a function, smooth functions exist in
abundance. The question now is: we know what a diferentiable function is - so
what is its derivative? We need to give some coordinate independent definition of
derivative and this will involve some new concepts. The derivative at a point

a € M will lie in a vector space T, called the cotangent space.

First let's address a simpler question - what does it mean for the derivative to
vanish? This is more obviously a coordinate-invariant notion because on a compact
manifold any function has a maximum, and in any coordinate system in a
neighbourhood of that point, its derivative must vanish. We can check that: if

f+ M — R is smooth then the composition

g = foz'

is aC®function of  xq,..,x,.Suppose its derivative vanishes at

Yq(a) = (x1(a), ... , x,(a)) and now take a erent chart pg with h = fgoﬁ_l . Then

g = foz' = fogt oppa’ = hogeit.
But from the definition of an atlas, pg@, 1 is smooth with smooth inverse, so
g(x1, s Xn) = h(Y1(X), oo, Yn (X))

and by the chain rule

Z—i = Zj;—:j(J'(x))%(x).

15



Since y(x) is invertible, its Jacobian matrix is invertible, so that Dg,(a) = 0 if
and only if Dhy(a) = 0. We have checked then that the vanishing of the
derivative at a point a is independent of the coordinate chart. We let Z, ¢ C* (M)
be the subset of functions whose derivative vanishes at a. Since Df, is linear in f

the subset Z,, is a vector subspace.
Definition (1.2.1):
The cotangent space T, at a € M is the quotient space
T, = C*(M)/Z,.
the derivative of a function f at a is its image in this space and is denoted (df),.

Here we have simply defined the derivative as all functions modulo those whose
derivative vanishes. It's almost a tautology, so to get anywhere we have to prove
something about T, . First note that if ¢ is a smooth function on a neighbourhood
of x, we can multiply it by a bump function to extend it to M and then look at its
image in T, = C*(M)/Z, .But its derivative in a coordinate chart around a is
independent of the bump function, because all such functions are identically 1 in a
neighbourhood of a. Hence we can actually define the derivative at a of smooth
functions which are only defined in a neighbourhood of a. In particular we could

take the coordinate functions xy, ..., x,,. We then have
Proposition (1.2.2):
Let M be an n-dimensional manifold, then

i. the cotangent space T, at a € M is an n-dimensional vector space
ii. 1if (U, @) is a coordinate chart around x with coordinates xq, ..., X,, then the

elements (dx;)a, ... (dx,)a form a basis for T, .

16



iii. if f € C*(M) and in the coordinate chart, fo~ ! = ¢(xq, ..., x,,) then
¢
(df)a = Zia_xi(q)(a))(dxi)a (1.3)

Proof:
If f € C®(M), with fo~! = ¢(xy, ..., %) then

o¢

f -2 (@,

is a (locally defined) smooth function whose derivative vanishes at a, so

af

(df)a =25 (@(@)(dxi)q

and (dx;)a, ... (dx,)a spanT,.
If ).; A;(dx;), = Othen };; A;x; has vanishing derivative at a and so A; = 0 for all .

Remark (1.2.3):

It is rather heavy handed to give two symbols f,¢ for a function and its
representation in a given coordinate system, so often in what follows we shall use

just f. Then we can write (1.3) as
o9
df = Za_xl dxi.

With a change of coordinates (x4, ..., x,) = (y1(%), ..., ¥, (x)) the formalism gives

of 0y;

of
df =Xj5-dy; = Xij5--—dx
Vj Yij i

Definition (1.2.4):

The tangent space T, at a € M is the dual space of the cotangent space T,.

17



This is admittedly a roundabout way of defining T,, but since the double dual
(V)" of a finite dimensional vector space is naturally isomorphic to } the notation
is consistent. If xq, ..., x,, is a local coordinate system at a and (dx;)g, ... (dx,),
the basis of T,; a defined in (1.2.2) then the dual basis for the tangent space Ta is
denoted

G, Ga),

a a

This definition at first sight seems far away from our intuition about the tangent

space to a surface in R3.

The problem arises because our manifold M does not necessarily sit in Euclidean
space and we have to define a tangent space intrinsically. There are two ways
around this: one would be to consider functions f: R — M and equivalence
classes of these, instead of functions the other way f: M — R . Another, perhaps
more useful, one is provided by the notion of directional derivative. If f is a
function on a surface in R3, then for every tangent direction u at a we can define
the derivative of f at a in the direction u, which is a real number: u -

V f(a) or Df,(u). Imitating this gives the following:
Definition (1.2.5):

18



A tangent vector at a point a € M is a linear map X, : C*(M) — Rsuch that
Xa(fg) = f(@Xag + g(@)Xaf.
This is the formal version of the Leibnitz rule for differentiating a product.
Now if ¢ € T,, it lies in the dual space of T, = C*(M)/Z, and so

f - 8@f)a)

is a linear map from C* (M) to R. Moreover from (1.3)

d(fg)a = f(@)(dg)a + g(@)(@f)a

and so

Xa(f) =¢((df)a)

is a tangent vector at a. In fact, any tangent vector is of this form, but the price
paid for the nice algebraic definition in (1.2.5) which is the usual one in textbooks

is that we need a lemma to prove it.
Lemma (1.2.6):

Let X, be a tangent vector at a and f'a smooth function whose derivative at a

vanishes. Then X, f = 0.

Proof:

Use a coordinate system near . By the fundamental theorem of calculus,

fO) = f(@ = [y =f(a + t(x — a)dt

19



= il — @) f;;—i(a + t(x — a))dt.
If (df), = Othen
19f
gi(x) = J; a_xi(“ + t(x — a))dt.

vanishes at x = a, as does h;(x) = x; — a;. Now although these functions are

defined locally, using a bump function we can extend them to M, so that
f=fl@ +2Xigh (1.4)
where g;(a) = h;(a) = 0.
By the Leibnitz rule
Xo(1) = Xo(1.1) = 2X,(1)
which shows that X, annihilates constant functions. Applying the rule of (1.4)
Xo(f) = Xa@Zigihi) = Xi(9i(@)Xah; + hi(a)X,9:) = 0.
This means that X, : C*(M) — R annihilates Z,,.

Now if V' © W are vector spaces then the annihilator of V in the dual space W™ is
naturally the dual of /V . So a tangent vector, which lies in the dual of C* (M) is
naturally a subspace of (C*(M)/Z,)* which is, by our definition, the tangent

spaceT,.

The vectors in the tangent space are therefore the tangent vectors as defined by

(1.2.5). Locally, in coordinates, we can write

Xg = Z? Ci (aixi)a

20



and then
Xa(f) —Zlcla (@) (1.5)

Now we will study the derivatives of smooth maps, suppose F: M — N is a

smooth map and f € C®(N). Then f o F is a smooth function on M.

Definition (1.2.7):

The derivative at a € M of the smooth map F: M — N 1is the

homomorphism of tangent spaces
DF, : TuM — Tgg)N
defined by

DFa(Xa)(f) = Xo(f © F):

This is an abstract, coordinate-free definition. Concretely, we can use (1.5) to see

that

DE(57) (1) =50 = F)(@)

=52 @LE@) =32 @)

F(a)
Thus the derivative of F is an invariant way of defining the Jacobian matrix.

With this definition we can give a generalization of Theorem (1.1.8) - the proof is

virtually the same and is omitted.

Theorem (1.2.8):
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Let F:M - N be a smooth map and ¢ € N be such that at each point
a € F~1(c) the derivative DF, is surjective. Then F~1(c) is a smooth manifold of
dimension dimM — dimN.
In the course of the proof, it is easy to see that the manifold structure on
F~1(c) makes the inclusion

1: FFY(c)e M

a smooth map, whose derivative is injective and maps isomorphically to the kernel

of DF. So when we construct a manifold like this, its tangent space at a is
T, = KerDF,

This helps to understand tangent spaces for the case where F is defined on R™:

Examples (1.2.9):
1. The sphere S™ is F~1(1) where F : R™*! - R is given by
F(x) = %, x{.
So here

DF,(x) = 2%;x;a

and the kernel of DF, consists of the vectors orthogonal to a, which is our usual
vision of the tangent space to a sphere.
2. The orthogonal matrices O(n) are given by F~1(I) where
F(A) = AAT .At A = I, the derivative is
DF,(H) = H + HT
so the tangent space to O(n) at the identity matrix is KerDF; , the space of skew
symmetric matrices H = —HT .

The examples above are of manifolds F~1(c) sitting inside M and are examples of
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submanifolds. Here we shall adopt the following definition of a submanifold,
which is often called an embedded submanifold.
Definition (1.2.10):

A manifold M is a submanifold of N if there is an inclusion map

1: M > N

such that
1. tis smooth.
ii. D, is injective for each x — M.
iil.  the manifold topology of M is the induced topology from M.
Remark (1.2.11):
The topological assumption avoids a situation like this:

(t) = (t? — 1,t(t? — 1)) € R?

for t € (—1,%). This is smooth and injective with injective derivative: it is the
part of the singular cubic y2 = x?(x + 1) consisting of the left hand loop and

the part in the first quadrant. Any open set in R? containing 0 intersects the curve
in a t-interval (—1,—1 + &) and an interval (1 — 8,1 + §). Thus (1 — 8,1 +

&) on its own is not open in the induced topology.

/\/
k/\
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Chapter (2)
Vector fields and Tensor Product

Section (2.1) Vector fields and Lie Bracket

We begin with a brief introduction to tangent bundle. Think of the wind

velocity at each point of the earth.

This is an example of a vector field on the 2-sphere S2. Since the sphere sits
insideR3, this is just a smooth map X : 2 — R3 such that X(x) is tangential to

the sphere at x.

Our problem now is to define a vector field intrinsically on a general manifold M,
without reference to any ambient space. We know what a tangent vector ata € M
is - a vector in T, - but we want to describe a smoothly varying family of these. To
do this we need to fit together all the tangent spaces as a ranges over M into a
single manifold called the tangent bundle. We have n degrees of freedom for
a € M and n for each tangent space T, so we expect to have a 2n-dimensional

manifold. So the set to consider is
T™M = Uyxem Ty
the disjoint union of all the tangent spaces.

First let (U, ¢y ) be a coordinate chart for M. Then for x € U the tangent vectors

Ge), o)

X X

provide a basis for eachT).. So we have a bijection

Py - U XRn - UxEUTx
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defined by
d
o n . —
QDU(JC, J’1; ---;yn) - 1 yl (am)x'
Thus

Oy = (@u,id) oyt s UzeuTx = @u(U) X R™
is a coordinate chart for
V =Uyeu Ty
Given Uy, Ug coordinate charts on M, clearly
Pp(Ve N Vg) = @o(Ug N Up) X R™

which is open in R?™. Also, if (x4, ..., x,) are coordinates on U, and (%4, ..., %,) on

Uﬁ then

— 0%;
(ax ) Z] 0x; (ax,)
the dual of Eq(1.3). It follows that
N - 0%, 9%,
PPy YO e X Y1, e V) = (R, ---»xn»Zia_xiJ’i» ---»Zia_xiJ’i)-

and since the Jacobian matrix is smooth in x, linear in y and invertible, @@, Lis

smooth with smooth inverse and so (V,, , ®,) defnes an atlas on TM.
Definition (2.1.1):

The tangent bundle of a manifold M is the 2n-dimensional differentiable

structure on TM defined by the above atlas.
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The construction brings out a number of properties. First of all the projection map
p: TM »> M

which assigns to X, € T,M the point a is smooth with surjective derivative,

because in our local coordinates it is defined by

DXL, ey X Vs s Vi) = (X1, oeey X))

The inverse image p~1(a) is the vector space T, and is called a fibre of the
projection. Finally, TM is Hausdorff because if X, X;, lie in different fibres, since
M is Hausdorff we can separate a,b € M by open sets U, U’ and then the open
sets p~1(U),p~1(U") separate X,, X, in TM. If X,, Y, are in the same tangent space
then they lie in a coordinate neighbourhood which is homeomorphic to an open set
of R?™ and so can be separated there. Since M has a countable basis of open sets

and R™does, it is easy to see that TM also has a countable basis.
We can now define a vector field:
Definition (2.1.2):
A vector field on a manifold is a smooth map
X: M ->TM
such that
p oX = idy.

This is a clear global definition. What does it mean? We just have to spell things

out in local coordinates. Since p o X = id,,,
X(xq1, s Xn) = (X1, o0, X, Y1(X), oor, Y (X))
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where y; (x) are smooth functions. Thus the tangent vector X (x) is given by
0
X@) =21 (52)
v x
which is a smoothly varying field of tangent vectors.

Remark (2.1.3):

We shall meet other manifolds Q with projections p : Q@ — M and the general
terminology is that a smooth map s : M — Q for which pes = idy is called a
section. When Q = TM is the tangent bundle we always have the zero section
given by the vector field X = 0. Using a bump function we can easily construct
other vector fields by taking a coordinate system, some locally defined smooth

functions y;(x) and writing
]
X@) =%y ()
v x
Multiplying by 1 and extending gives a global vector field.

Remark (2.1.4):

Clearly we can do a similar construction using the cotangent spaces T, instead

of the tangent spaces T, and using the basis

(dxl)xi L] (dxn)x

istead of the dual basis

(e, 52

X X
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This way we form the cotangent bundle T*M. The derivative of a function f is then
amap df : M — T*M satisfying p o df = id,, though not every such map of

this form is a derivative.

Perhaps we should say here that the tangent bundle and cotangent bundle are

examples of vector bundles. Here is the general definition:
Definition (2.1.5):

A real vector bundle of rank m on a manifold M is a manifold E with a smooth

projection p : E — M such that

i. each fibre p~1(x) has the structure of an m-dimensional real vector space

il. each point x € M has a neighbourhood U and a diffieomorphism
Yy pTU) = U x R™

such that yis a linear isomorphism from the vector space p~1(x) to the vector

space {x} X R™
iii. on the intersection U N V
Yy, U NV XR™ 5> UNnV x R™
is of the form
(x,v) = (x gyy (X)v)

where gyy (x)is a smooth function on U N V with values in the space of

invertible m X m matrices.

For the tangent bundle g, is the Jacobian matrix of a change of coordinates and

for the cotangent bundle, its inverse transpose.
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Now we will study vector fields as derivations. The algebraic definition of tangent
vector in Definition (1.2.5) shows that a vector field X maps a C*® function to a

function on M:

X(Hx) = X (f)

and the local expression for X means that
G af
XD = Zivi@ (7). O = Ly 51 0.
Since the y;(x) are smooth, X(f) is again smooth and satisfies the Leibnitz
property

X(fg) = f(Xg) + gXf).

In fact, any linear transformation with this property (called a derivation of the

algebra C*(M)) is a vector field:
Proposition (2.1.6):
LetX : C*(M) — C*(M) be a linear map which satisfies

X(fg) = fXg) + g(Xf):

Then X is a vector field.

Proof:
For each a € M,X,(f) = X(f)(a) satisfies the conditions for a tangent
vector at a, so X definesamap X : M — TM withp o X = idy,, and so locally

can be written as

Xy = 2iyi(x) (%)

v x
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We just need to check that the y; (x) are smooth, and for this it suffices to apply X
to a coordinate function x; extended by using a bump function in a coordinate

neighbourhood. We get

Xx; = yi(x)

and since by assumption X maps smooth functions to smooth functions, this is

smooth.

The characterization of vector fields given by Proposition (2.1.6) immediately
leads to a way of combining two vector fields X,Y to get another. Consider both X

and Y as linear maps from C* (M) to itself and compose them. Then
XY =X(F¥g +9¥f)=&NHTg) +fXYg) + (Xg)(Y f) + g XY [)
YX(fg) =Y(f(Xg) +g(Xf)) = (Y HXg) + f(¥ Xg) + (Y 9)(Xf) + g(¥ Xf)
and subtracting and writing [X,Y ] = XY — Y X we have
[X.Y](fg) = f(X.Y]9) + g([X,Y]f)

which from Proposition (2.1.6) means that /X, Y ] is a vector field.
Definition (2.1.7):

The Lie bracket of two vector fields X, Y is the vector field /X, Y /.
Example (2.1.8):
IfM = RthenX = fd/dx,Y = gd/dx and so

(X,Y] = (fg' - 9f)

We shall later see that there is a geometrical origin for the Lie bracket.
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In the following we will discuss one-parameter groups of diffeomorphisms. Think
of wind velocity (assuming it is constant in time) on the surface of the earth as a
vector field on the sphere S2. There is another interpretation we can make. A
particle at position x € S? moves after time t seconds to a positiong,(x) € SZ.

After a further s seconds it is at

Pers(X) = @s(@(x)):

What we get this way is a homomorphism of groups: from the additive group R to
the group of diffeomorphisms of S? under the operation of composition. The

technical definition is the following:

Definition (2.1.9):
A one-parameter group of diffeomorphisms of a manifold M is a smooth map
p: M XR->M
such that (writing ¢, (x) = @(x,t))

1. ¢, M — M is adiffeomorphism
. @9 = id
. @sye = Qs © Py
We shall show that wvector fields generate one-parameter groups of
difffeomorphisms, but only under certain hypotheses. If instead of the whole
surface of the earth our manifold is just the interior of the UK and the wind is
blowing East-West, clearly after however short a time, some particles will be
blown offshore, so we cannot hope for ¢;(x) that works for all x and t. The fact

that the earth is compact is one reason why it works there, and this is one of the

results below. The idea, nevertheless, works locally and is a useful way of
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understanding vector fields as “infinitesimal difficomorphisms" rather than as

abstract derivations of functions.

To make the link with vector fields, suppose ¢; is a one-parameter group of

diffiecomorphisms and f a smooth function. Then

f(pe(a))
1s a smooth function of t and we write
9
af(q)t(a))l r=0 = Xg(f).

It is straightforward to see that, since ¢,(a) = a the Leibnitz rule holds and this
is a tangent vector at a, and so as a = x varies we have a vector field. In local

coordinates we have

Oe(x1, s X)) = 1(x, 0), o, Y (x, 1))

and

d af dyi
5 f O yn) = Zig - () 57 (@] e=o

af
= Lici(x) 5~ ()
which yields the vector field
0
X =205

We now want to reverse this: go from the vector field to the diffeomorphism. The

first point is to track that “trajectory” of a single particle.
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Definition (2.1.10):

An integral curve of a vector field X is a smooth map ¢ : (a,f) € R - M

such that

d
Do, (E) = Xo(t)
Example (2.1.11):

Suppose M = R? with coordinates (x,y) and X = 9/dx. The derivative D, of
the smooth function @(t) = (x(t),y(t)) is

d dx 0 dy 0
oo (8) -5+ 23
¢ dt dt6x+dt6y

so the equation for an integral curve of X is

dx
dat

d
2 — 0
dt

which gives

@) = (t + ag,ay):
In our wind analogy, the particle at (a4, a,) is transported to (t + a4, a,).
In general we have:

Theorem (2.1.12):

Given a vector field X on a manifold M and a € M there exists a maximal

integral curve of X through a.
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By “maximal" we mean that the interval ( @, ) is maximal - as we saw above it

may not be the whole of the real numbers.
Proof:

First consider a coordinate chart (U, ¥, ) around a then if
X = Z C: (x) i
Lot axi
the equation

d
Do, (E) = Xo(t)-
can be written as the system of ordinary diferential equations

dx;

ol ci(xq, .., Xp)

The existence and uniqueness theorem for ODE's asserts that there is some

interval on which there is a unique solution with initial condition

(x1(0), ., %, (0) = Yy (a):

Suppose ¢ : (a,f) > M is any integral curve with @(0) = a.For each
x € (a,pB) the subset @([0,x]) © M is compact, so it can be covered by a finite
number of coordinate charts, in each of which we can apply the existence and
uniqueness theorem to intervals [0, a,], [@y, @5], ..., [y, x]. Uniqueness implies

that these local solutions agree with ¢ on any subinterval containing 0.

We then take the maximal open interval on which we can define .
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To find the one-parameter group of diffeomorphisms we now let a € M vary. In
the example above, the integral curve through (a,,a,) was t » (t + a4,a,) and

this defines the group of diffeomorphisms

Pe(x1,%2) = (& + x1,%2).
Theorem (2.1.13):

Let X be a vector field on a manifold M and for (t,x) € R X M, let

@(t,x) = @¢(x) be the maximal integral curve of X through x. Then

i. The map (t,x) = @¢(x) is smooth.
. @p° @s = @prs Wherever the maps are defined.
iii. If M is compact, then ¢;(x) is defined on R X M and gives a one-parameter

group of diffeomorphisms.
Proof:

The previous theorem tells us that for each a € M we have an open interval
(a(a), B(a)) on which the maximal integral curve is defined. The local existence
theorem also gives us that there is a solution for initial conditions in a

neighbourhood of a so the set
{(t,x) E R XxM: t € (a(x),B(x))}
is open. This is the set on which ¢ (x) is maximally defined.

The theorem on smooth dependence on initial conditions tells us that (¢,x) =

@+ (x)is smooth.

Consider ¢; o @s(x). If we fix s and vary ¢, then this is the unique integral curve of

X through @4(x). But @,5(x) is an integral curve which at t = 0 passes through
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@s(x). By uniqueness they must agree so that ¢ o ¢; = @¢s. (Note that

@ © @_; = id shows that we have a diffeomorphism wherever it is defined).

Now consider the case where M is compact. For each x € M, we have an open
interval (a(x),f(x)) containing 0 and an open set U, & M on which ¢:(x)is

defined. Cover M by {U,}xenm and take a finite subcovering Uy, ..., Uy, , and set
I =NY(alx), B(x)
which is an open interval containing 0. By construction, for t € I we get
Qr: I XM - M

which defines an integral curve (though not necessarily maximal) through each

point x € M and with ¢,(x) = x. We need to extend to all real values of «.

If s,t € R, choose n such that (|s| + |t])/n € I and define (where

multiplication is composition)
e = (@)™ 95 = (@)™
Now because t/n,s/nand (s + t)/n lie in I we have
Pt/nPs/m = Pi+t)y/n = Ps/nPt/n
and so because ¢/, and ¢/, commute, we also have

PrPs = (q)t/n)n (Qos/n)n

= (90(5+t)/n)n

= Qs+t
which completes the proof.
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Now we will discuss the Lie bracket . All the objects we shall consider will have
the property that they can be transformed naturally by a diffeomorphism, and the
link between vector fields and diffeomorphisms we have just observed provides an

“infinitesimal” version of this.

Given a diffeomorphism F: M - M and a smooth function f we get the
transformed function f o F. When F = ¢, , generated according to the theorems

above by a vector field X, we then saw that

2 F (@) o = X(f)

So: the natural action of diffeomorphisms on functions specializes through one-

parameter groups to the derivation of a function by a vector field.

Now suppose Y is a vector field, considered as a map Y: M - TM. With a

diffeomorphism F : M — M, its derivative DF, : Ty — Tp(y gives
DE.(Yy) € Tr(yo-
This defines a new vector field ¥ by
YFuy = DE(Y,) (2.1)

Thus for a function f,

(Y)feF)=({f)F (2.2)
Now if F = ¢, for a one-parameter group, we have Y, and we can differentiate to
get
. 9 ~
Y = EYJ t=0
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From (2.2) this gives
Yf + Y(Xf) = XY f

so that Y = XY — Y X is the natural derivative defined above. Thus the natural
action of diffeomorphisms on vector fields specializes through one-parameter

groups to the Lie bracket [X, Y].

Section (2.2): Tensor Products and Exterior Algebra

We begin this section by studding Tensor products, we have so far encountered
vector fields and the derivatives of smooth functions as analytical objects on
manifolds. These are examples of a general class of objects called tensors which

we shall encounter in more generality. The starting point is pure linear algebra.

Let V, W be two finite-dimensional vector spaces over R. We are going to define a

new vector space V @ W with two properties:

i. ifv € Vandw € W thenthereisaproductv Q w € VQ W

il. the product is bilinear:
vy +uv) Qw =xv; Qw + uv, Qw
VR (wy + uwy) =xv Q@ wy + uv Q wy

In fact, it is the properties of the vector space V' @ W which are more important
than what it is (and after all what is a real number? Do we always think of it as an

equivalence class of Cauchy sequences of rationals?).
Proposition (2.2.1):

The tensor product V @ W has the universal property thatif B: V XW — U
is a bilinear map to a vector space U then there is a unique linear map
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B:VRW - U
such that B(v,w) = f(v @ w).

There are various ways to define V& W. In the finite-dimensional case we can
say that V @ W is the dual space of the space of bilinear forms on V X W:i.e.
maps B : VX W — R such that

B(A vy + uvy,w) =X B(v,w) + uB(vy, w)

B(vxwy; + uwy) =X B(wv,wy) + uB(v,wy)

Givenv,w € V,W wethendefinev® w € V @ W as the map
(v & w)(B) = B(v,w).

This satisfies the wuniversal property because given B: V XW — U and
§ € U & oB is a bilinear form on V' X W and defines a linear map from U”* to
the space of bilinear forms. The dual map is the required homomorphism £ from

V® Wto (U)* = U.

A bilinear form B is uniquely determined by its values B(v;, w;) on basis vectors
Vi, ..,y for V and wy,...,w,, for W which means the dimension of the vector
space of bilinear forms is mn, as is its dual space V @ W. In fact, we can easily

see that the mn vectors
V; ® W]

form a basis for V @ W. It is important to remember though that a typical

element of V' & W can only be written as a sum

2ijayvi @ w
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and not as a pure productV & W.
Taking W = V we can form multiple tensor products

VTRV, VR VRV =R3V,..

We can think of ®P V as the dual space of the space of p-fold multilinear forms

on V.
Mixing degrees we can even form the tensor algebra:
T(V) = ®Fo (® V).
An element of T'(V ) is a finite sum
X1+ +Xvi Q@ v+ X0, Q vy, Q vy

of products of vectors v; € V . The obvious multiplication process is based on

extending by linearity the product
(v1 R . & vp)(ul R .. uq) =1 Q0 ..&Q vy P®u K...Q Ug
It is associative, but noncommutative.

For the most part we shall be interested in only a quotient of this algebra, called the

exterior algebra.

Now we will discuss the exterior algebra. Let T(V ) be the tensor algebra of a real

vector space V and let I(V ) be the ideal generated by elements of the form

v @ v

where v € V . So I(V') consists of all sums of multiples by T(V ) on the left and

right of these generators.
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Definition (2.2.2):
The exterior algebra of V is the quotient
ANV =TW)/IV).
If: T(V) — A"V is the quotient projection then we set
NPV = n(QFPV)

and call this the p-fold exterior power of V . We can think of this as the dual space
of the space of multilinear forms M(vy,...,v,) on V which vanish if any two

arguments coincide the so called alternating multilinear forms. If
a EQPV,be®R?V then a @b EQPTV and taking the quotient we get a

product called the exterior product:
Definition (2.2.3):
The exterior product of @ = mw(a) EAPVand f = nw(b) €NV is
a AN = nm(a Q@ b).
Remark (2.2.4):

If vy,...,v, € Vthen we define an element of the dual space of the space of

alternating multilinear forms by
vy AUy A A Up(M) = M(vy, ..., Up):
The key properties of the exterior algebra follow:
Proposition (2.2.5):
Ifa eAPV,B € ATV then
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a ANB = (—DPIB A a.
Proof:
Because forv € V,v ® v € I(V), it follows that v A v = 0 and hence
0= W +vu) A +1v) =0+v; ANvy, + v, Avg + 0.
So interchanging any two entries from V in an expression like
Vv A AU
changes the sign.

Write a as a linear combination of terms v; A..A v, and B as a linear
combination of w; A ... Aw, and then, applying this rule to bring w; to the front

we see that
(v1 A A1) A (Wy A Awg) = (m1D)Pwy A v A Uy A Wy A A W,
For each of the q w;'s we get another factor (—1)? so that in the end

Wi A Awg) (g Ae Ay) = (DP9 A A ) (Wy A A ).
Proposition (2.2.6):

IfdimV = nthendim A"V = 1.
Proof:

Let w; ... wybe n vectors in V and relative to some basis let M be the square

matrix whose columns are wy ... wy,. then

B(w; ... w,) = detM
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is a non-zero n-fold multilinear form on V . Moreover, if any two of the w;
coincide, the determinant is zero, so this is a non-zero alternating n-linear form - an

element in the dual space of A" V.

On the other hand, choose a basis v; .. v, for V, then anything in @™V is a
linear combination of terms like v;, &® ... ® v; and so anything in A" V' is, after

using Proposition (2.2.5), a linear combination of v; A ... A v,

Thus A™ V is non-zero and at most one-dimensional hence is one-dimensional.

Proposition (2.2.7)

let vy, ..., v, be a basis for V , then the (n) elements v; Av; A..Av; for
p 1 2 p
i1 < ip << ipforma basis for A" V.
Proof:

By reordering and changing the sign we can get any exterior product of the v;’s so

these elements clearly span A™ V. Suppose then that
Zail___ipvil A\ Uiz A LA Uip = 0.

Becausei; < i, << i, each term is uniquely indexed by the

subset{il, i5) ... ,ip} =] c {1,2,..,n}, and we can write

iy = 0 (2.3)

If I and J have a number in common, then v; A v; = 0, so if ] has n — p
elements, v; A v; = 0 unless ] is the complementary subset I’ in which case the

product is a multiple of v; A v, ...A v, and by Proposition (2.2.6) this is non-
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zero. Thus, multiplying (2.3) by each term v, we deduce that each coefficient

a; = 0 and so we have linear independence.
Proposition (2.2.8):

The vector v is linearly dependent on the linearly independent vectors

vy, .., Vpifandonlyif vy A v, ALA v, A v = 0.
Proof:
If v is linearly dependent on vy, ..., v, then v = Y a;v; and expanding
Vi AU AN Uy AV =11 AU AN 1y A QP avy)

gives terms with repeated v;, which therefore vanish. If not, then vy, vy, ..., 1, v

can be extended to a basis and Proposition (2.2.7) tells us that the product is non-

Z€10.
Proposition (2.2.9):

If A: V - W 1is a linear transformation, then there is an induced linear

transformation
N A:ANPV > AP W
such that
N Ay A o A vy) = Avy A Avy A oo A Avy,
Proof:
From Proposition (2.2.7) the formula

AP Ay A o A vp) = Avg A Avy A L A Ay,
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actually defines what AP A is on basis vectors but doesn't prove it is independent of

the choice of basis. But the universal property of tensor products gives us
RQPA:QPV > QP W

and ®P A maps the ideal I(V ) to I(W) so defines AP A invariantly.

Proposition (2.2.10):

If dimV = n, then the linear transformation AP A : A"V — A"V is given by

detA.

Proof:

From Proposition (2.2.7), A™ V is one-dimensional and so A" A is multiplication

by a real numberx (A4). So with a basis vy, ..., Uy,
ANYA(Wy A oo A vy) = Avg A Aoy A Ay =X (A)vg A L A 1y,
But
Av; =X Ajv;
and so
Avy N Avy N A Avy = XA 10, N A a0, A ANA
= ZaeSnAal,lval A AO'Z,ZUO'Z A A Aan,nvan

where the sum runs over all permutations ¢ . But if ¢ is a transposition then the

term
Vg1 N Vgy ... A VUgsy changes sign, so

Avy A Avy A LA AV, = Yges, SGN 0Ag114622 - AgnnVi A o A Ty
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which is the definition of (detA)v,; A ... A vy.
Chapter (3)

Differential Forms ,De Rham Cohomology and S'tokes

Theorem

Section (3.1): Differential Forms and De Rham Cohomology

We begin this section by studding the bundle of p-forms. Now let M be an n-
dimensional manifold and Ty the cotangent space at x. We form the p-fold exterior

power
NP Ty
and, just as we did for the tangent bundle and cotangent bundle, we shall make
AP T*M = UyeyNP Ty
into a vector bundle and hence a manifold.
If x4, ..., x, are coordinates for a chart (U, ¢ ) then for x € U, the elements

dy, A..Ad

Xi 2 xip

1

for iy < i, <...< i, form a basis for AP Ty . The (Z) coefficients of @ € AP T
then give a coordinate chart ¥;; mapping to the open set

oy (U) x AP R™ € R™ x R().
When p = 1 this is just the coordinate chart we used for the cotangent bundle:

q)U(xlzyidxi) = (xll"'lxnlyll' '-:yn)
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and on two overlapping coordinate charts we there had

0%

— ~ ~ 0%;
CDBCDa1(x1,...,xn,y1,...,yn) = (xl,...,xn,Zja—hyi,...,Zjayn )!

For the p-th exterior power we need to replace the Jacobian matrix

j =2

o 0x j
by its induced linear map

AP ] : AP R™ — AP R™

It's a long and complicated expression if we write it down in a basis but it is

invertible and each entry is a polynomial in C* functions and hence gives a

smooth map with smooth inverse. In other words,
Yt
satisfies the conditions for a manifold of dimension n + (Z) .

Definition (3.1.1):

The bundle of p-forms of a manifold M is the differentiable structure
on AP T*M defined by the above atlas. There is a natural projection
p:AP T*M — M and a section is called a differential p —form

Examples (3.1.2):

1. A zero-form is a section of APT* which by convention is just a smooth function

f.
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2. A l-form is a section of the cotangent bundle T*. From our definition of the
derivative of a function, it is clear that df is an example of a 1-form. We can

write in a coordinate system
v .9 4.
af =%; ox) dx;

By using a bump function we can extend a locally-defined p-form like
dx; A dx; A...A\ dx, to the whole of M, so sections always exist. In fact, it will

be convenient at various points to show that any function, form, or vector field can
be written as a sum of these local ones. This involves the concept of partition of

unity.
Now we will illustrate the partition of unity.
Definition (3.1.3):
A partition of unity on M is a collection {¢;};c; of smooth functions such that

ii. {supp @; : i € I}islocally finite.

Here locally finite means that for each x € M there is a neighbourhood U which

intersects only finitely many supports supp ;.
Theorem (3.1.4):

Given any open covering {V,} of a manifold M there exists a partition of unity

{¢;} on M such that supp ¢; < V) for some a(i).

We say that such a partition of unity is subordinate to the given covering.
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Here let us just note that in the case when M is compact, life is much easier: For
each point x € {V,} we take a coordinate neighbourhood U, < {V,} and a bump
function which is 1 on a neighbourhood V, of x and whose support lies in U,.
Compactness says we can extract a finite subcovering of the {V, },cx and so we get
smooth functions y; = 0 fori = 1,...,N and equal to 1 on V,, . In particular

the sum is positive, and defining

b= Yy

gives the partition of unity.

Now, not only can we create global p-forms by taking local ones, multiplying by

@; and extending by zero, but conversely if ais any p-form, we can write it as

a = QipDa =2i(p;a)
which is a sum of extensions of locally defined ones.

At this point, it may not be clear why we insist on introducing these complicated
exterior algebra objects, but there are two motivations. One is that the algebraic
theory of determinants is, as we have seen, part of exterior algebra, and multiple
integrals involve determinants. We shall later be able to integrate p-forms over p-

dimensional manifolds.

The other is the appearance of the skew-symmetric cross product in ordinary three
dimensional calculus, giving rise to the curl differential operator taking vector
fields to vector fields. As we shall see, to do this in a coordinate-free way, and in
all dimensions, we have to dispense with vector fields and work with differential

forms instead.
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In the following we discuss the working with differential forms. We defined a
differential form in Definition (3.1.1) as a section of a vector bundle. In a local

coordinate system it looks like this:
a = N <ip<.<iy Yyiy..i, X)AX;, A dxg, . A dxy) (3.1)

where the coeffcients are smooth functions. If x(y) is a different coordinate

system, then we write the derivatives
axik
dxy, = 2j5, dYj
and substitute in (3.1) to get
a = Zj1<j2<m<jp 4, j,..j, V)AYj, A dyj, ...A dy;)

Example (3.1.5):

Let M = R? and consider the 2-form w = dx; A dx,. Now change to polar

coordinates on the open set (x1,x,) # (0,0):

X, =1rcosf,x, = rsiné.
We have

dx; = cosOdr — rsinf6d@o

dx, = sin@dr + rcos6d@o

so that
w = (cos @dr — rsin8d0) A (sinfdr + rcos8d0) = rdr A dO:

We shall often write
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0P (M)
as the infinite-dimensional vector space of all p-forms on M.

Although we first introduced vector fields as a means of starting to do analysis on
manifolds, in many ways differential forms are better behaved. For example,

suppose we have a smooth map
F: M - N:
The derivative of this gives at each point x € M a linear map
DE, : M - Tg, N

but if we have a section of the tangent bundle TM - a vector field X - then DF, (X,)
doesn't in general define a vector field on N - it doesn't tell us what to choose in

T,N if a € N isnot in the image of F.

On the other hand suppose «a is a section of AP T* N - a p-form on N. Then the

dual map
DE; : TpyN - TeM
defines
NP (DES) : AP pTpyn >AP Ty M
and then

AP (DE))(ap(x))

is defined for all x and is a section of AP T* M - a p-form on M.

Definition (3.1.6):
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The pull-back of a p-form a € QP(N) by a smooth map F: M — N is the p-
form F*a € QP (M) defined by

(Fra)y = AP (DE)(ar(x))
Examples (3.1.7):

1. The pull-back of a O-form f € C®(N) is just the compositionf o F.
2. By the definition of the dual map DF, we have

DF{ (a)(Xy) = app(DFE(X,)), s0if a = df,

DE(df)(Xx) = dfp(DE(Xy)) = Xo(f © F)
by the definition of DF,. This means that F*(df) = d(f o F).
3. Let F: R® —» R?be given by

F(x1,%2,x3) = (X1X2,%2 + x3) = (x,¥)
and take
a = xdx A dy.
Then, using the definition of AP (DF)) and the previous example,

Fra = (x o F)d(x o F)Ad(y o F) = x1x,d(x1x,) A d(xy + x3) =
X%, (x1dx, + xpdx;) A d(xy + x3) = x2x,dx, A dxs + xyx5dx; A dx, +

x1x2dx, A dxs
From the algebraic properties of the maps
ANPA:NPV S APV
We have the following straightforward properties of the pull-back:
i. (FoG)'a=CG(Fa)
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. F*(a + ) = Fra+ F'f
. F*(a AB) = F'a A F*f8

Now we will discuss the exterior derivative. We now come to the construction of
the basic differential operator on forms - the exterior derivative which generalizes
the grads, divs and curls of three-dimensional calculus. The key feature it has is
that it is defined naturally by the manifold structure without any further

assumptions.
Theorem (3.1.8):
On any manifold M there is a natural linear map
d: QP(M) - QP*1(M)
called the exterior derivative such that

1. if f € Q%(M), then df € Q1 (M) is the derivative of
2.d* =0
3. d(@ A B) = da A B + (—1)Pa A dB if @ € OP(M)

Examples (3.1.9):

Before proving the theorem, let's look at M = R3, following the rules of the

theorem, to seed inall casesp = 0,1, 2.
p = 0: by definition

df =L

of of
= . dx; + ox, dx, + oxs dx;
which we normally would write as grad f.

p = 1:take a I-form
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a = a;dx; + a,dx, + azdx;
then applying the rules we have

d(a;dx; + aydx, + azdx;) = day A dx; + da, A dx, + daz A dxs

_ (91 9aq 9a,
= (axl dx; +72dx, + dxg)/\ dx, +

dx, X3

= (52 -2 diy A dry + (52 -52) dry A dry + (52— 22)dx, A dxs.

6x3 6x1 6_361 6x2 6x2 6x3
The coefficients of this define what we would call the curl of the vector field a but

a has now become a 1-form a and not a vector field and d a is a 2-form, not a
vector field. The geometrical interpretation has changed. Note nevertheless that the

invariant statement d2 = 0 is equivalent to curl grad f = 0.
p = 2:now we have a 2-form
ﬁ - bldxz AN dx3 + bzdx3 AN dx1 + b3dx1 AN dxz

and
ab ab db
dﬁ — _1dx1 N dxz N dX3 + _del N\ de A\ dX3 + _3dX1 A dxz A dX3
ax, dx, 0x3

=(%+aﬁ+%) dx; N dxy; N dx;

d0x, Ox, Ox3

which would be the divergence of a vector field b but in our case is applied to a 2-

form . Again d?> = 0 is equivalent to div curl b = 0.

Here we see familiar formulas, but acting on unfamiliar objects. The fact that we
can pull differential forms around by smooth maps will give us a lot more power,
even in three dimensions, than if we always considered these things as vector

fields.
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Let us return to the Theorem (3.1.8) now and give its proof.
Proof:

We shall define da by first breaking up a as a sum of terms with support in a
local coordinate system (using a partition of unity), define a local d operator using

a coordinate system, and then show that the result is independent of the choice.
So, to begin with, write a p-form locally as
a = D, <iy<.<ip Qiyiy..i, X)dxi, A dxi, .. A dx;
and define
da =X <iy<.<ip Aii,.i, N dxy, A dxg, AA dxg
When p = 0, this is just the derivative, so the first property of the theorem holds.

For the second part, we expand

aailiz...ip
da = Zj'i1<i2<'"<ipa—xjdxj ANdx;, A dxg, A...A dxl-p

and then calculate

2
2 ailiz...ip

A’a =Y ikicic.ci ——2Ldx, A dx; A dx; A dx; ...\ dx;
ZLKH<Q<N<% dx;9x k dx, dxh dxh dx%

The term

2
0 QAijiy wip

Oxj0xy
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is symmetric in j,k but it multiplies dxj A dx; in the formula which is skew-

symmetric in j and k, so the expression vanishes identically and d?a = 0 as

required.
For the third part, we check on decomposable forms
a = fdx; A...A dxip = fdx;
B = gdxj A...A dqu = gdx;
and extend by linearity. So
dla A B) = d(fgdx; A dx;) = d(fg) A dx; A dx
= (fdg + gdf) A dx; A dx; = (=1)Pfdx; A dg A dx; + df A dx; A gdx
= (=DPa Adp + da A

So, using one coordinate syste2m we have defined an operation d which satisfies

the three conditions of the theorem. Now represent a in coordinates yy, ..., Vy:
a = i <ip<.<ip Diyiy.ipy Vi, N dyi, AN dy;
and define in the same way
d'a =Y <i,<.<i, Abii,.i, N dyi, A dyi, AN dy;
We shall show that d = d’ by using the three conditions.
From (1) and (3),
da = d(Xby,.1,dyi, A dyi, ...A dyg)

= ). db; , N dy, Ady, AA dyl.p +2b

1i2...l

d(dyl.1 A dyl.2 AN dyl.p)

iyipdp
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and from (3)
d(dy, A dy;, A..A dy)) = d(dy,) A dy, A..A dy, — dyi, A
d(dy;, A...A dy;)

From (1) and (2) d? yi, = 0 and continuing similarly with the right hand term, we

get zero in all terms.
Thus on each coordinate neighbourhood

Uda =X <i,<.<i,db Ady, Ady, A...A dyl.p = d'a and da is thus

iyipip

globally well-defined.

One important property of the exterior derivative is the following:
Proposition (3.1.10):
Let F: M — N be asmooth mapanda € QP(N). Then
d(Ffa) = F*(da)
Proof:
Recall that the derivative DE, : TxM — Tp,)N was defined in (1.2.7) by
DE,(X)(f) = X(f o F)
so that the dual map DF{: Tr,)N — T¢M satisfies
DE(df)ree = d(f o F),

From the definition of pull-back this means that

F*(df) = d(f o F) = d(F'f) (3.2)
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Now if

A = Dy <iy<.<ip Aiyiy..i, X)X, A dxg, AN dxg,

by the multiplicative property of pull-back and then using the properties of d
and (3.2)

d(F*CZ) = Zi1<i2<...<ipd(ailiz___ip(F(x))) N F*dxl-l N F*dxiz N LA F*dxl-p
= Zi1<i2<...<ip F*dailiz___ip A F*dxil A F*dxiz AN LA F*dxip = F*(da)

In the following we will study the lie derivative of a differential form. Suppose
@; 1s the one-parameter (locally defined) group of diffeomorphisms defined by a

vector field X. Then there 1s a naturally defined Lie derivative

d
Lya =—@ia
X atq)t re0

of a p —form a by X. It is again a p-form. We shall give a useful formula for this

involving the exterior derivative.
Proposition (3.1.11):
Given a vector field X on a manifold M, there is a linear map
iy: QP(M) - QP~1(M)
(called the interior product) such that

i ixdf = X(f)
il. iy(a AB)=ixa AB + (—DPa A ixBif a € QP (M)
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The proposition tells us exactly how to work out an interior product: if

9
X ZZiaia_xi;

anda = dx; A dx; A...A dxp is a basic p —form then
ixa = a;dx; A...A dxy, — azdxy A dxs AN dx, + . (3.3)

In particular

ix(ixa) = aya,dxs A...A dxp, — azagdxz A...A dx, +...= 0.
Example (3.1.12):
Suppose
] ]
a= dx A dy, X—xa+y£

then
iya = xdy — ydx:

The interior product is just a linear algebra construction. Above we have seen how
to work it out when we write down a form as a sum of basis vectors. We just need
to prove that it is well-defined and independent of the way we do that, which

motivates the following, more abstract proof:

Proof:

In Remark (2.2.4) we defined AP V as the dual space of the space of alternating
p-multilinear forms on V. If M is an alternating (p — 1) —multilinear form on V

and § a linear form on V' then

59



EM)(vy,...,v) = EW)IM(vy,..., 1) — EWIM(vy,v3,..., ) +...  (34)
is an alternating p-multilinear form. So if @ € AP V we can define i;a € AP~V by
(lg)(M) = a($M)

Taking V. =T" and € = X € V* = (T*)" = T gives the interior product.

Equation (3.4) gives us the rule (3.3) for working out interior products.
Here then is the formula for the Lie derivative:
Proposition (3.1.13):

The Lie derivative Ly a of a p —form a is given by

Lya = d(iy a) + iyda

Proof:

Consider the right hand side

Ry(a) = d(ix a) + ixda

Now iy reduces the degree p by 1 but d increases it by 1, so Ry maps p-forms to

p —forms. Also,
d(d(iy a) + ixyda) = dixda = (diy + ixd)da
because d? = 0, so Ry commutes with d. Finally, because
ix(a ANB)=ixa AB + (—D)Pa A ixf
da A B) =da ANB + (—1D)Pa A dS

we have

60



Rx(a A B) = (Rxa) A B + a A Rx(B)

On the other hand

v} (da) = d(pia)
so differentiating att = 0, we get

Lyda = d(Lya)
and

pr (@ A B) = @ra N @i
and differentiating this, we have
Ly(a ANB)=Lya AN + a ALy

Thus both Ly and Ry preserve degree, commute with d and satisfy the same

Leibnitz identity. Hence, if we write a p-form as

a=Y (i1<i2<-

Adx_(ip)]
Ly and Ry will agree so long as they agree on functions. But
. ]
Ref = ixdf = X(f) =5:f(@0)| _ = Luf
so they do agree.

Now we will study the de Rham cohomology. In textbooks on vector calculus,
one may read not only that curl grad /= 0, but also that if a vector field a satisfies

curl @ = 0, then it can be written as a = grad f for some function f. Sometimes the
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statement is given with the proviso that the open set of R® on which a is defined
satisfies the topological condition that it is simply connected (any closed path can

be contracted to a point).

In the language of differential forms on a manifold, the analogue of the above
statement would say that if a 1-form «a satisfiesda = 0, and M is simply-

connected, there is a function f such that df = a.

While this is true, the criterion of simply connectedness is far too strong. We want

to know when the kernel of

d: QY(M) - Q% (M)
is equal to the image of

d:Q% (M) - QY (M):

Since d?f = 0, the second vector space is contained in the first and what we shall
do is simply to study the quotient, which becomes a topological object in its own
right, with an algebraic structure which can be used to say many things about the

global topology of a manifold.

Definition (3.1.14)

The p-th de Rham cohomology group of a manifold M is the quotient vector

space:

Ker d: QP (M)—- QP+1(M)
Im d:QP~1 (M) -Q P (M)

HP (M) =
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Remark (3.1.15):

1. Although we call it the cohomology group, it is simply a real vector space.
There are analogous structures in algebraic topology where the additive
group structure is more interesting.

2. Since there are no forms of degree -1, the group H°(M) is the space of
functions f such that df = 0. Now each connected component M; of M is

an open set of M and hence a manifold.

The mean value theorem tells us that on any open ball in a coordinate
neighbourhood of M;,df = 0 implies that f'is equal to a constant ¢, and the subset

of Mi on which f'= ¢ is open and closed and hence equal to M;.

Thus if M is connected, the de Rham cohomology group H°(M) is naturally
isomorphic to R: the constant value ¢ of the function £, In general H® (M) is the
vector space of real valued functions on the set of components. Our assumption
that M has a countable basis of open sets means that there are at most countably
many components. When M is compact, there are only finitely many, since
components provide an open covering. In fact, the cohomology groups of a
compact manifold are finite-dimensional vector spaces for all p, though we shall

not prove that here.

It is convenient in discussing the exterior derivative to introduce the following

terminology:

Definition (3.1.16)

Aforma € QP (M) is closed if da = 0.
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Definition (3.1.17):
Aforma € QP(M)is exactif @ = df for some f € QP~1(M).

The de Rham cohomology group HP (M) is by definition the quotient of the space
of closed p —forms by the subspace of exact p —forms. Under the quotient map, a
closed p —form a defines a cohomology class [a] € HP(M),and [a'] = [a] if

and only if @' — a = dp for some .
Here are some basic features of the de Rham cohomology groups.
Proposition (3.1.18):

The de Rham cohomology groups of a manifold M of dimension n have the

following properties:

i. HP(M) = 0ifp > n
ii. for a € HP(M),b € HY(M) there is a bilinear product ab € HPT1(M)

which satisfies
ab = (—1)P%ba
. if F: M — N is a smooth map, it defines a natural linear map
F*: HP(N) - HP(M)
which commutes with the product.
Proof:

The first part is clear since A’ T* = 0 forp > n.
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For the product, this comes directly from the exterior product of forms.

Ifa = [a],b = [B] we define
ab = [a N B]
but we need to check that this really does define a cohomology class. Firstly, since
a, [ are closed,
dla AB) =da A+ (DPands =0

so there is a class defined by a A . Suppose we now choose a different

representative @’ = a + dy for a. Then

a’ AB=(@+dy) AB=aAB +dly AP)

using dff = 0,sod(y AB)=dy A B. Thus a’ A B and @ A B differ by an exact

form and define the same cohomology class. Changing  gives the same result.
The last part is just the pull-back operation on forms. Since
dF*a = F'da
F* defines a map of cohomology groups. And since
F'(a NB) = Fra N F*B
it respects the product.

Perhaps the most important property of the de Rham cohomology, certainly the one
that links it to algebraic topology, is the deformation invariance of the induced
maps F. We show that if F; is a smooth family of smooth maps, then the effect on
cohomology is independent of 7. As a matter of terminology (because we have only

defined smooth maps of manifolds) we shall say that a map
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F: M X [ab] > N

is smooth if it is the restriction of a smooth map on the product with some slightly

bigger open interval M X (a — €,b + ¢€).

Theorem (3.1.19):

Let F: M x [0,1] — N be a smooth map. Set F;(x) = F(x,t) and consider
the induced map on de Rham cohomology F/ : HP(N) — HP(M): Then

F; = F}
Proof:

Represent a € HP(N) by a closed p —form a and consider the pull-back form

F*aon M X [0,1]. We can decompose this uniquely in the form
Fra = +dt Ay (3.5)

where  is a p —form on M (also depending on t) and y is a (p—1)-form on M,
depending on ¢. In a coordinate system it is clear how to do this, but more

invariantly, the form f is just F{'a. To get ¥ in an invariant manner, we can think

of
(x,s) » (x,s + t)

as a local one-parameter group of diffeomorphisms of M X (a, b) which generates

a vector field X = d/dt. Then
y=ix F'a

Now a is closed, so from (3.5),
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0 = dyf + dt A= dt A dyy

where d,, is the exterior derivative in the variables of M. It follows that

9B _
Py dyy

Now integrating with respect to the parameter ¢, and using

— 98

0
—F'a =
at 't at

we obtain
Fla — Fja = [[ZFadt = d[;dt
So the closed forms Fj « and F; a differ by an exact form and
Fi(a) = Fy (a):
Here is an immediate corollary:
Proposition (3.1.20):
The de Rham cohomology groups of M = R™ are zero forp > 0.
Proof
Define F : R™ x [0,1] » R" by
F(x,t) = tx
Then F;(x) = x which is the identity map, and so
F{ : HP(R") - HP(R")

is the identity.
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But Fy(x) = 0 which is a constant map. In particular the derivative vanishes, so the
pull-back of any p —form of degree greater than zero is the zero map. So for

p >0
Fg + HP(R™) - HP(R™)
vanishes.

From Theorem (3.1.19) F; = F;' and we deduce that H? (R™) vanishes for p >

0. Of course R™ is connected so H*(R™) = R.

We are in no position yet to calculate many other de Rham cohomology groups,
but here is a first non-trivial example. Consider the case of R/Z, diffeomorphic to
the circle. In the atlas given earlier, we had @, (x) = x or @05 (x) = x — 1
so thel-form dx = d(x — 1) is well-defined, and nowhere zero. It is not the
derivative of a function, however, since R/Z is compact and any function must

have a minimum where df = 0. We deduce that
HY(R/Z) # O:

On the other hand, suppose that « = g(x)dx is any 1-form (necessarily closed
because it is the top degree). Then g is a periodic function: g(x + 1) = g(x). To

solve df = a means solving f'(x) = g(x) which is easily done on R by:

fex) = [ g(s)ds

But we want f(x + 1) = f(x) which will only be true if

fol g(x)dx =0

Thus in general
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a = g()dx = (f; g(s)ds) dx + df
and any 1-form is of the form cdx + df.Thus H*(R/Z) = R.

We can use this in fact to start an inductive calculation of the de Rham

cohomology of the n-sphere.
Theorem (3.1.21):
Forn > 0,HP(S™) = Rifp = 0orp = nand is zero otherwise.

Proof:
We have already calculated the case of n = I so suppose thatn > 1.

Clearly the group vanishes when p > n, the dimension of S™, and for n > 0, S™ is

connected and so H°(S™) = R.

Decompose S™ into open sets , V , the complement of closed balls around the North
and South poles respectively. By stereographic projection these are diffeomorphic
to open balls in R™. If « is a closed p —form for / < p < n, then by the Poincare
lemma a = du on U and a = dv on V for some (p — 1) forms u, v. On the

intersection U NV,
dlu—v)=a—a =0
so (u - v) 1s closed. But
UnvV = S"1x R
SO

HP=Y(Un V)= HP7I(s™H)
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and by induction this vanishes,soon U N V ,u— v = dw.

Now look at U NV as a product with a finite open interval: S* 1 x (=2,2). We
can find a bump function ¢(s) which is 1 for s € (—1,1) and has support in
(2, 2). Take slightly smaller sets U'c UV’ cV such that
U'nV'= §"1x (—1,1). Then pw extends by zero to define a form on S™ and we
have u on U'and v+ d(ew)onV' withu = v + dw = v + d(pw) on
U' n V'. Thus we have defined a (p - 1) form 8 on S™ such that § = u on U’ and
v + d(ew)on V' and a = df on U' and V' and so globally « = df. Thus the

cohomology class of a is zero.
This shows that we have vanishing of HP (S™) for 1 < p < n.

When p = I, in the argument above u-v is a function on U NV and since
d(u—v) = 0itisaconstant cif U NV is connected, which it is for n > /. Then
d(v + ¢) = a and the pair of functions # on U and v + ¢ on V agree on the

overlap and define a function f such that df = «a.

When p = n the form u-v defines a class in H* (U nV) = H"}(s" 1) = R.
So let  be an (1 - 1) form on S™ ! whose cohomology class is non-trivial and pull
it back to S™ 1 x (—2,2) by the projection onto the first factor. Then
H"1(s™1 x (=2,2)) is generated by [w] and we have

U—v =X w + dw

for some 1 € R.If A = 0 we repeat the process above, so H"(S™) is at most
onedimensional. Note that X is linear in a and is independent of the choice of u
and v- if we change u by a closed form then it is exact since H?~}(U) = 0 and we

can incorporate it into w.
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All we need now is to find a class in H™*(S™) for which 2 # 0. To do this consider
pdt N w

extended by zero outside U NV . Then

(15, 0)ds) w

vanishes for ¢+ < -2 and so extends by zero to define a form u on U such that

du = a. When ¢ > 2 this is non-zero but we can change this to

v = ([, 0()ds) o - (JZ,0(s)ds) w

which does extend by zero to V' and still satisfies dv = a. Thus taking the

difference, A above is the positive number

1= o(s)ds

To get more information on de Rham cohomology we need to study the other

aspect of differential forms: integration.

Section (3.2): Forms Integration and Stokes' Theorem

We will begin this section by studding the orientation. Recall the change of

variables formula in a multiple integral:

ff(yp---;Yn)d%dYZ cdy, = ff(Y1(x)»---»Yn(x)) |det ayi/axj| dx,dx; ...dxy,

and compare to the change of coordinates for an n-form on an n-dimensional

manifold:
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0 = fO ¥ Ay, Ady, A dyy = FO,(0,.,7,00) TiS2 dx; A

AZP ayn dxp f(y1(x) "'yn(x))(det ayi/axj)dxl A dx, ...\ dxy,

The only difference is the absolute value, so that if we can sort out a consistent
sign, then we should be able to assign a coordinate-independent value to the
integral of an n-form over an n-dimensional manifold. The sign question is one of

orientation.
Definition (3.2.1):

An n-dimensional manifold is said to be orientable if it has an everywhere non-

vanishing n-form w.
Definition (3.2.2):

Let M be an n-dimensional orientable manifold. An orientation on M is an

equivalence class of non-vanishing n-forms w where w ~ o' if ' = fw with

£>0.

Clearly a connected orientable manifold has two orientations: the equivalence

classes of +w.

Example (3.2.3):
1. Let M < R™*1 be defined by f{x)=c, with df(a) # 0 if f(a) = c. By

Theorem (1.1.8), M is a manifold and moreover, if
df /0x; # 0,x1,...,Xi—_1,Xi+1, Xn+1 are local coordinates. Consider, on such

a coordinate patch

= (1)

af/a dx; AN A dxi_1 N dXjeq .. N dXpiq (3.6)
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This is non-vanishing.

Now M is defined by f(x) = ¢ so that on M
O dy. =
Zj ox; dx] =0

andif af /dx; # 0

1
dxy = =50 (O [0xidx; + )

Substituting in (3.6) we get

1
af/axj

w = (-1)/ dxqy Ao A dxj_qg A dXjpq .. A dXpy.

The formula (3.6) therefore defines for all coordinate charts a non-vanishing n-

form, so M is orientable.

The obvious example is the sphere S™ with
w = (-1 %dx1 A Adxi_g Ndxjpq.. N dxgiq.

2. Consider real projective space RP™ and the smooth map
p: S*™ - RP"

which maps a unit vector in R™*!to the one-dimensional subspace it spans.
Concretely, if x; # 0, we use x = (x,,...,X,41) as coordinates on S™ and the

usual coordinates (x5 /xq,...,Xn41/%1) on RP™, then

1
X
1+ |lx|I?

p(x) = (3.7)

This is smooth with smooth inverse
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90) = == T4

so we can use (X, ..., X,4+1) as local coordinates on RP™.

Leto: S™ — S™be the di_eomorphism g(x) = —x. Then
c'w = (=1): _ind(—xi) A Ad(=xi_) Ad(=%Xjp1).. A d(=2pq) = (=1 Lo,

Suppose RP™ is orientable, then it has a non-vanishing n-form 6. Since the map
(3.7) has a local smooth inverse, the derivative of p is invertible, so that p*6 is a

non-vanishing n-form on S™ and so
p'0 = fw
for some non-vanishing smooth function /. But p o ¢ = p so that
fo =p0 =0"p0 =(f eo)-D" 0.

Thus, if n is even,

foo=—f

and if f(a) > 0,f(—a) < 0. But RP™ = p(S™) and S™ is connected so RP"

1s connected. This means that f must vanish somewhere, which is a contradiction.
Hence RP?™ is not orientable.

There is a more sophisticated way of seeing the non-vanishing form on S™ which
gives many more examples. First note that a non-vanishing n-form on an n-
dimensional manifold is a non-vanishing section of the rank 1 vector bundle
A" T*M. The top exterior power has a special property: suppose U < V is an m-
dimensional vector subspace of an n-dimensional space V, then V/U has
dimension n-m. There is then a natural isomorphism
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AU QAT (V/U) =AMV (3.8)

To see this let uq,...,u, be a basis of U and vy, ..., v,y vectors in V/U. By

definition there exist vectors ¥y, ..., U_, such that v; = 7; + U. Consider
Uy AUy o AUy ATV AN Dy

This is independent of the choice of ¥; since any two choices differ by a linear
combination of u;, which is annihilated by uq A...u,,. This map defines the

isomorphism. Because it is natural it extends to the case of vector bundles.

Suppose now that M of dimension n is defined as the subset f~1(c) of R™ where
f : R™ - R™ has surjective derivative on M. This means that the 1-forms
dfi,...df, are linearly independent at the points of M < R™. We saw that in this
situation, the tangent space T,M of M at a is the subspace of T,R" annihilated by
the derivative of £, or equivalently the 1-forms df;. Another way of saying this is
that the cotangent space T, M is the quotient of T; R" by the subspace U spanned
by dfi,...,dfm. From (3.8) we have an isomorphism

AU QA (T*M) = A" T*R™.

Now df; Adf, A...Adf,, is a non-vanishing section of A" U and dx; A...A
dx, is a non-vanishing section of A" TR™ so the isomorphism defines a non-

vanishing section w of A" T*M.

All such manifolds, and not just the sphere, are therefore orientable. In the case

m = 1, where M is defined by a single real-valued function f, we have
df N w = dx; N dx,...A dx,

If of /ox,, # O, then x4,...,x,_, are local coordinates and so from this formula
we see that
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1
of [0xn

w = (-1 dx; A...A dx,_q

as above.
Remark (3.2.4):

Any compact manifold M™ can be embedded in RN for some N, but the
argument above shows that M is not always cut out by N — m globally defined
functions with linearly independent derivatives, because it would then have to be

orientable.
Orientability helps in integration through the following:
Proposition (3.2.5):

A manifold is orientable if and only if it has a covering by coordi-nate charts

such that

det (%) > 0
an

on the intersection.
Proof:

Assume M is orientable , and let w be a non-vanishing n —form. In a coordinate

chart
W = f(xq, ., Xp)dxs A ...dx,

After possibly making a coordinate change x; » ¢ — x;, we have coordinates

such that f > 0.

Look at two such overlapping sets of coordinates. Then
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®w =g Y)dyr Ao A dyy = gy1(x), ..., yn(x))(det dy;/0x;)dx, A

dxy ..\ dx, = f(xq,...,x)dxy A...dx,
Since /' > 0 and g > 0, the determinant det dy;/0x; is also positive.

Conversely, suppose we have such coordinates. Take a partition of unity {¢,}

subordinate to the coordinate covering and put
w =Y @ dy¥ A dy$ A...A ddyZ.
Then on a coordinate neighbourhood Ug with coordinates x;, ..., x, we have
wly, =3 @qdet (9y7/0x;)dx; A...dx,.
Since ¢, = 0and det(dy;" /0x;) is positive, this is non-vanishing.

Now suppose M is orientable and we have chosen an orientation. We shall define

the integral
Ju @
of any n-form 8 of compact support on M.

We first choose a coordinate covering as in Proposition (3.2.5). On each coordinate

neighbourhood U, we have
0 | vy = fa(x1,-x0)dxy AN dxp.
Take a partition of unity ¢; subordinate to this covering. Then
00 | v, = gi(xs, ..., x)dx; AL A dix,

where g;is a smooth function of compact support on the whole of R". We then

define
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fM 0 =2 fM @0 =Y; fRn gi (X1, o, xp)dxq ... dx,,.

Note that since 6 has compact support, its support is covered by finitely many open

sets on which ¢; # 0, so the above is a finite sum.

The integral is well-defined precisely because of the change of variables formula in

integration, and the consistent choice of sign from the orientation.

Now we will study Stokes’ theorem. The theorems of Stokes and Green in
vector calculus are special cases of a single result in the theory of differential
forms, which by convention is called Stokes' theorem. We begin with a simple

version of it:
Theorem (3.2.6):

Let M be an oriented n-dimensional manifold and w € Q"1 (M) be of compact

support. Then
fM dw = 0:
Proof:
Use a partition of unity subordinate to a coordinate covering to write
w=Yp;w
Then on a coordinate neighbor hood
piw = a;dx, N...Adx, — a,dx; A dxz A...\ dx, + -

and

d(p;w) = (71+...+7)dx1 Adx, AN dxy,.



From the definition of the integral, we need to sum each

daq aan)
Jgn (_6x1 ot o dx, dx, ...dx,
Consider
da,
fRn a—x1dx1 dxz ...dxn

By Fubini's theorem we evaluate this as a repeated integral

day
Jo Jo o (fa—zldxl) dx,dx; ...dx,

But a, has compact support, so vanishes if |x;| = N and thus

The other terms vanish in a similar way.
Theorem (3.2.6) has an immediate payoff for de Rham cohomology:
Proposition (3.2.7):

Let M be a compact orientable n-dimensional manifold. Then the de Rham

cohomology group H™ (M) is non-zero.
Proof:

Since M is orientable, it has a non-vanishing n-form 0. Because there are no

n + 1-forms, it is closed, and defines a cohomology class [] € H™(M).

Choose the orientation defined by 8 and integrate: we get
Ju® =X fidxydx, ...dx,
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which is positive since each f; = 0 and is positive somewhere.

Now if the cohomology class [#] = 0,0 = dw, but then Theorem (3.2.6) gives
Ju® = Jydw =0

a contradiction.

Here is a topological result which follows directly from the proof of the above fact:

Theorem (3.2.8):

Every vector field on an even-dimensional sphere S*™ vanishes somewhere.
Proof:

Suppose for a contradiction that there is a non-vanishing vector field. For the

sphere, sitting inside R>™*1, we can think of a vector field as a smooth map
v SZm N R2m+1

such that (x,v(x)) = 0 and if v is non-vanishing we can normalize it to be a unit

vector. So assume(v(x),v(x)) = 1.
Now define Ft : $?™ — R?*™M*tlpy
Fi(x) = costx + sintv(x):
Since (x,v(x)) = 0, we have
(costx + sintv(x),costx + sintv(x)) = 1
so that F; maps the unit sphere to itself. Moreover,

Fo(x) = x, E(x) = —x:
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Now let w be the standard orientation form on S2m:

w = dx1 N dxz FANIYAN dem/x2m+1

We see that
Fow = w,FFw = —w

But by Theorem (3.1.19), the maps Fj ,FE; on H>™(S%™) are equal. We deduce
that the de Rham cohomology class of @ is equal to its negative and so must be
zero, but this contradicts that fact that its integral is positive. Thus the vector field

must have a zero.

Green's theorem relates a surface integral to a volume integral, and the full version
of Stokes' theorem does something similar for manifolds. The manifolds we have
defined are analogues of a surface - the sphere for example. We now need to find
analogues of the solid ball that the sphere bounds. These are still called manifolds,

but with a boundary.
Definition (3.2.9):

An n-dimensional manifold with boundary is a set M with a collection of subsets

U, and maps
Og: Uy~ (R = {(xq,...,x,) € R™: x,, =0}
such that

i M =u,U,
ii. @g:Uy = @g(Uy) is a bijection onto an open set of (R™)* and ¢, (U, N Ug)

is open for all a, 3,

81



1il. (pﬁgo(;l b @qa(Ug NUg) = @p(Uy NUp) is the restriction of a C* map from
a neighborhood of ¢, (U, N Ug) S (R™)* € R™to R™
The boundary OM of M is defined as
OM = {x € M: @,(x) € {(x1,...,%p-1,0) € R"}

and these charts define the structure of an (n - 7)-manifold on oM.

Example (3.2.10):

1. The model space (R™)* is a manifold with boundary x,, = 0.
2. The unitball {x € R™: ||x|| < 1} is a manifold with boundary §™1.

3. The Mobius band is a 2-dimensional manifold with boundary the circle:

4. The cylinder I X S’ is a 2-dimensional manifold with boundary the union of

two circles - a manifold with two components.
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We can define differential forms etc. On manifolds with boundary in a
straightforward way. Locally, they are just the restrictions of smooth forms on

some open set in R™ to (R™)*. A form on M restricts to a form on its boundary.
Proposition (3.2.11):

If a manifold M with boundary is oriented, there is an induced orientation on its

boundary.
Proof:

We choose local coordinate systems such that 0M is defined by x,, = 0 and

det(dy;/dx;) > 0. So, on overlapping neighbourhoods,

Yi = yi(xli---an)'yn(xli"-fxn—lio) = 0:

Then the Jacobian matrix has the form

0y,/0x; 0y;/0x, - 0y, /0xy
: (3.9
0 0 0 OYn/0xn

From the definition of manifold with boundary, @z@, L maps x,, > 0to y,, > 0, so

yn has the property thatif x,, =0, y,, = Oandifx, > 0,y, > 0 It follows that

From (3.9) the determinant of the Jacobian for OM is given by
0Yn
detUom) 52|,y = det(i)

so if det(Jy) > 0 so is det(Jap).
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Remark (3.2.12):

The boundary of an oriented manifold has an induced orientation, but there is a
convention about which one to choose: for a surface in R3 this is the choice of an
"inward" or "outward" normal. Our choice will be that if dx; A ... A dx, defines
the orientation on M with x, = 0 defining M locally, then
(=D™dxq A ...Adx,_; (the "outward" normal) is the induced orientation on oM.
The boundary of the cylinder gives opposite orientations on the two circles. The

Mobius band is not orientable, though its boundary the circle of course is.

We can now state the full version of Stokes' theorem:
Theorem (3.2.13): (Stokes' theorem)

Let M be an n-dimensional oriented manifold with boundary 0M and let

w € Q"1 (M) be a form of compact support. Then, using the induced orientation
Jydow = [, o.
Proof:
We write again
w =P
and then
fM dw =% fM d(p;w).
We work as in the previous version of the theorem, with

Q;w = a;dx, A ..ANdx, — aydx; Adxz A ...Adx, + -+ (=1)" " 1a,dx; A

dx,; A ... Ndx,_q
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(3.2.6), but now there are two types of open sets. For those which do not intersect

OM the integral is zero by Theorem (3.2.6). For those which do, we have

day
Jud@i@) = [, (G2 +52) dxidx ... dxy =
Jinoal@n]® dxy oty = = [ones @n (X1, Xay s Xy, )Xy . Xy =
faM piw

where the last line follows since
piwlagy = (D" ta,dx; Adxy, A A dx,_4
and we use the induced orientation (—1)"*dx; A...A dx,_4.

An immediate corollary is the following classical result, called the Brouwer fixed

point theorem.

Theorem (3.2.14):

Let B be the unit ball {x € R™: ||x|| < 1} and let F: B - B be a smooth
map from B to itself. Then F' has a fixed point.

Proof:

Suppose there is no fixed point, so that F(x) # x for all x € B. For each

X € B, extend the straight line segment F (x)x until it meets the boundary sphere

of B in the point f(x). Then we have a smooth function
f: B —> 0B
such thatifx € 0B, f(x) =

Let w be the standard non-vanishing (n — 1) —formon S™™ 1 = 9B, with
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faB w = 1.
Then
1 =fp0 =fopf 0
since fis the identity on S™~1. But by Stokes' theorem,
Jop fro = [pd(frw) = [;f(dw) = 0
since dw = 0 as w is in the top dimension on ™1,

The contradiction / = () means that there must be a fixed point.
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Chapter(4)
Smooth Map and Riemannian Metric

Section (4.1): The Degree of Smooth Map

We begin this section by studying the degree of a smooth map.By using
integration of forms we have seen that for a compact orientable manifold of
dimension n the de Rham cohomology group H™ (M) is non-zero, and that this fact
enable us to prove some global topological results about such manifolds. We shall
now refine this result, and show that the group is (for a compact, connected,
orientable manifold ) just one-dimensional. This gives us a concrete method of
determining the comology class of an n-form: it is exact if and only if its integral is

ZCr1O.

Now we will study de Rham cohomology in the top dimension. First a lemma:

Lemma(4.1.1):

Let U™ ={x € R™|x;| <1} and let w € Q"(R™) be a form with support in
Usuch that

fpp =0
Then there exists 8 € Q" '(R™) with support inU"™ such that w = df8

Proof:

We prove the result by induction on the dimension n, but we make the inductive
assumption that w and fdepend smoothly on a parameter A € R™, and also that if

w vanishes identically for some A, so dose .
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Consider the case n = 1, so = f(x, A)dx . Clearly taking

B, = [T fuDdu (4.1)

Gives us a function with dff = w. But also, since f has support in U ,there is a

6 > 0 such that f vanishes for x > 1 — 6§ orx < —1 + § .Thus

S fwDdu = [2 fuw,Ddu=0

For x >1—6 and similarly for x < -1+ which means that f itself has
support in . If f(x,4) = 0 for all , then from the integration (4.1) so dose B(x, A).

Now assume the result for dimensions less than n and let

W = f(x1, e, Xp, Ddx N\ . Ndxpy_q
Be the given form. Fix x,, = t and consider

f(xq, e, Xp_q, t, )dx N ... Ndxy 4

As a form on R™~! | depending smoothly on t and A . Its integral is no longer zero,
but if ¢ is a bump funtion on U™~ ! such that the integral of odx A ... Addx,_; is 1,

then putting

g(t,A) = fUn_lf (X1, eer Xpp_q, t, Ddx A ... Ad X,
We have a form
f(xq, e Xp_q, 6, D)dxy N\ . Ndxyy_1 — g(t, D)odx; A\ ... Nd x4

With support in U™ ! and zero integral. Apply induction to this and we can write it

as dy where y has support in U1,
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Now put = x, , and consider d(yAdx,) . The x,-derivative of y doesn’t

contribute because of the dx,, factor, and o is independent of x,, , so we get
diyNdx;,) = f(xq, e, Xp_1, t, D)dx N\ . Ndxy—1 — g(t, D)adx A\ ... Ndx,,
Putting
EQxy, v, X, ) = (=) L(7T g (8, DdO)odxy A .. Ndxp—y
Also gives

d¢ = g(x,, Dadx A\ ... \dx,

We can therefore write

F Oy, s X1, & D2y A . Adxn, = d(yAdx,, + &) = df

Now by construction £ has support in |x;| < 1 for 1 <i <n— 1, but what a but
the x,, direction? Since f(xq,...,X,_1,t,A) vanishesfort >1—-8dor<—-1+4+96,
the inductive assumption tells us that y does also for x,, > 1 — 4§ .as for & , if

t>1-6
15,90, ds = £ (fus f@s s Xy, £ ) A o Adity_y ) dt
= [, (Jyno F Gty ooy Xy, £, DA A Aty ) it

= [ nf 1, o, X, DAy A . Adixy, = 0

By assumption . Thus the support of ¢is in U™again , examining the integrals, if

f(x, A) is identically zero for some Aso isf.

Using the lemma, we prove :
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Theorem (4.1.2):

If M is a compact , connected orientable n —dimensional manifold ,

then H*(M) = R
Proof:

Take a covering by coordinate neighbourhoods which map to U™ ={x €
R™:|x;| < 1} and a corresponding partition of unity {¢;}. by compactness, we can
assume we have a finite number Uy, ..., Uy of open sets. Using a bump function ,

fix an n —form « with support in U; and

fMa0=1

Thus , by theorem (3.2.7) the cohomology class [a,] is non-zero. To prove the

theorem we want to show that for any n-form a,
la] = clao]

iethata = cay + dy.

given « use the partition of unity to write
a=Yo;a

then by linearity it is sufficient to prove the result for each ¢;a, so we may assume
that the support of alies in a coordinate neigbourhoodU,,. Because M is connected

we can connect p € U; and q € U, by a path and by the connectedness of open
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intervals we can assume that the path is covered by a sequence of U;’s, each of

which intersects the next : i.e. renumbering we have.
p €Uy, UinUiy1 0, qE€ Uy,

now for 1<i<m—1choose an n-form a«a; with support in U; N U;;; and

integral 1. On U;we have
Jlaog—a) =0

and so applying lemma (4.1.1) , there is a form Sywith support in U; such that
@y —a; = dp;

continuing , we get altogether
ay —a; = dp,

a; — a, = dp;

Am—2 — Ap—1 = dﬁm—l

and adding , we find

Ao — -1 = d(Ziﬁi)

On U,,, we have

Ja=c=[can_,

and applying the limma again , we get @ — ca,,_1 = df and so from (4.2)

Q= Cy_q +df =cag+d(B—cX; Bi)
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as required.

Theorem (4.2.1) tells us that for a compact connected oriented n —dimensional
manifold, H* (M) is one-dimensional. Take a form w,, whose integral over M is 1

, then [w),] is a natural basis element for H™(M). suppose
F:-M—> N

Is a smooth map of compact connected oriented manifolds of the same dimension

n. Then we have the induced map
F*:H*(N) - H*(M)
And relative to our bases
Frloy] = klwy] (4.3)
For some real number k. we now show that k is an integer.

Theorem(4.1.3):

Let M, N be oriented , compact , connected manifolds of the same dimension n,

and F: M - N a smooth map. There exists an integer, called degree of F such that

(i) If w € Q"(N)then

Jy Ffo =deg [, w

(i1) If a is a regular value of F then
degF = Xxer-1(a) Sgn(deg DE,)

Remark(4.1.4):
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1. A regular value for a smooth map F: M — Nis a point a € Nsuch that for each
x € F~(a). The derivative DF, is surjective. When dim M = dim N this means
that DF, is invertible . Sard’s theorem shows that for any smooth map most points

in N are regular values.

2. The expression sgn(det DF,) in the theorem can be interpreted in two ways, but
depends crucially on the notion of orientation — consistently associating the right
sign for all the pointx € F~1(a). The straightforword approach uses proposition
(3.2.5) to associate to an orientation a class of coordinates whose jacobians have
positive determinant . If det DF, is written as a Jacobian matrix in such a set of
coordinates for M and N , then sgn(det DE, ) is just the sign of the determinant .

More invariantly , DF,: T,M — T, N defines a linear map
AN*(DE.):\T*N, = NTyM
Orientations on M and N are define by non-vanishing forms w, wy and
N*(DE)(wy) = AuM
Then sgn(det DE,) is the sign of A.

3. Note the immediate corollary of the theorem: if F is not surjective , then deg

F = 0.
Proof:

For the first part of the theorem, the cohomology class of w is [w] = c[wy] and so

integrating ( and using proposition(3.2.6)),

Jyw=cf, oy=c

Using the number k in (4.3)
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F*lo] = cF*loy] = cklwy]
And integration,

Jy Fo=ck|, oy=ck=k[, w

For the second part , since DE, is an isomorphism at all points in F~1(a) , from
theorem (1.2.8) , F~!(a) is a zero —dimensional manifold . Since it is compact
(closed inside a compact space M) it is a finite set of points. The inverse function
theorem applied to these m points shows that there is a coordinate neighbouhood

Uof a € N such that F~*(U)is a disjoint union of m open sets U;such that
F: Ui -U

Is a diffeomorphism .

Let obe an n-form supported in U with fN o0 =1and consider the

diffeomorphismF: U; — U. Then by the coordinate invariance of integration of

forms, and using the orientations on M and N,
fui F*o =sgnDF, [, 0 =sgnDF,

Hence , summing

Jy F'o = X;sgn DF,,
And this is from the first part

k=k[ o= /[, Fo
Which gives

k=2X;sgnDF,
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Example(4.1.5):

Let M be the extended complex plane : M = C U {oo}.this is a compact , connected
, orientable 2-manifold . In fact it is the 2-sphere . Consider the map F: M —
M defined by

F(z)=z+az" '+ +a, z#w
F(©0) = o

This is smooth because in coordinate near z = oo, F is defined (for w = 1/ 7) by

wk

w =

1+a; w+-+apwk
To find the degree of , consider
Fo(z) =z +t(a 2" 1+ + ap)

This is a smooth map for all £ and by theorem (3.1.19) the action on cohomology is

independent of , so
deg F = deg F,
Where Fy(z) = z*
We can calculate this degree by taking a 2-form , with [z| = rand z = x + iy

f(r)dxAdy = f(r)rdrA\dé
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With f(r) of compact support. Then the degree is given by
deg Fy [, f(r)rdrAdO = [, f(r*)r*d(r*)kdb = k [, f (r)rdrAdo

Thus deg F = k. if k > 0 this means in particular that F is surjective and therefore

takes the value 0 somewhere, so that
Z¥+azZ" 1+ -+, =0
Has a solution. This is the fundamental theorem of algebra.

Example(4.1.6):

Take two smooth maps fi, f>: ST — R3. These give two circle in R3- suppose they

are disjoint. Define

F:S1x St - 52

f1(8)—f2(t)

F —
50 =3 o hol

The degree of this map is called the linking number.

Example(4.1.7):

Let M c R3 be a compact surface and n its unit normal. The Gauss map is the map
F:M - S?

Defined by (x) = n(x) . If we work out the degree by integration , we take the

standard 2-form @ on S2. Then one finds that
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Jy Ffw=[, KNEG — F?dudv

Where K is the Gaussian curvature . The Gauss-Bonnet theorem tells us that the

degree is half the Euler characteristic of M.

Section (4.2): The Metric Tensor

We begin this section by study Riemannian metrics . Differential forms and the
exterior derivative provide one piece of analysis on manifolds which , as we have
seen , links in with global topological questions . There is much more one can do
when one introduces a Riemannian metric . Since the whole subject of Riemannian
geometry is a huge one , we shall here look at only two aspects which relate to the

use of differential forms: the study of harmonic forms and of geodesics.
In particular , we ignore completely here questions related to curvature.

Now we will discuss the metric tensor . In informal terms , Riemannian metric on
a manifold M is a smoothly varying positive definite inner product on the tangent
spaces T, . To make global sense of this , note that an inner product is a bilinear

form , so at each point x we want a vector in the tensor product
Ty Ty
We can put , just as we did for the exterior forms , a vector bundle structure on
T"M @ T°M = Uyen Ty & Ty

The conditions we need to satisfy for a vector bundle are provided by two facts we

used for the bundle of p — forms:

(i) Each coordinate system x4, ..., X,, defines a basic dx;, ..., dx,for each T, in

the coordinate neighbourhood and the n? elements
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dx; ® dx;, 1<ij<n

Give a corresponding basis for Ty @ T

(i) The jacobian of a change of coordinates defines an invertible linear
transformation j: T, — T, and we have a corresponding invertible linear

transformation ] @ J: Ty @ Ty = Ty Q Ty,
Given this , we define :
Definition (4.2.1):

A Riemannain metric on a manifold M is a section g of T* @ T* which at each

point is symmetric and positive definite.
In a local coordinate system we can write
g = 2ij9ij(x)dx; ® dx;

Where g;; = g;;(x) and is a smooth function , with g;;(x) positive definite. Often

the tensor product symbol is omitted and one simply writes
9 = Xij gij(x)dx;dx;
Examples (4.2.2):

1. The Euclidean metric on R™ is defined by
g =Ydx ® dx;

So
(6 6)
axi'axj
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2. A submanifold of R™ has an induced Riemannain metric: The tangent space at x

can be thought of as a subspace of R™ and we take the Euclidean inner product

on R" .

Given a smooth map F:M — N and a metric gon , we can pull back g to a

section F*'g of T" M Q T*M :
(F*9)x(X,Y) = gr(x)(DE(X), DE(Y))

If DE, is invertible ,this will again be positive definite, so in particular if F is a

diffeomorphism.
Definition (4.2.3):
A diffeomorphism F: M — N between two Riemannian manifold is an isometry if
Fgn = 9um -
Example (4.2.4):
Let M = {(x,y) € R?:y > 0} and

_ axrayt

==
Ifz=x+iyand

F@) = o

With a, b, c real and —bc > 0, then

dz

F*dz = (ad — bc) e

And

1 (az+b aZ+b) __ad-bc

cz+d  cz+d)  |cz+d|?

F*y:yoF:

i
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Then

dx?+dy? |cz+d|* dx?+dy?
F*g = (ad — bc)? = =
g ( ) |(CZ+d)2|2 (ad_bc)zyz yz g

So these Mobius transformations are isometries of a Riemannian metric on the
upper half-plane.

We have learned in section ((one- parameter group of diffeomorphisms)) that a
one- parameter group @, of diffeomorphism defines a vector field X .Then we can

define the lie derivative of a Riemannian metric by

d 4
Lyg = E@t!ﬂt:o

If this is a group of isometries then since ¢;g = g , we have Ly, =0 .Such a
vector field is a called a Killing vector field or an infinitesimal isometry.
The lie derivative obeys the usual derivation rules, and commutes with . Since
Lyf = Xf we have
Ly X gij dx; @ dxj = Xi(Xg;j)dx; ® dxj + X gi;d(Xx;) @ d;
+2; 9ijdx; @ d(Xx;)

Example (4.2.5):

Take the Euclidean metric g = ); dx; ® dx; , and a vector field of the form

?
X =2 AriXk ax,

Where A;; is a constant matrix.
This is a Killing vector field if and only if
0 = Xk d(Agixe) & dx; + dx; @ d(Ayixy) = Li,i(Aki + Ay )dx; @ dxy,

In other words if A is skewOsymmetric.
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With a Riemannian metric one can define the length of the a curve:

Definition(4.2.6):

Let M be a Riemannian manifold and y:[0,1] - M a smooth map (i.e. a smooth

curve in M) . The length of the curve is

() = 90 y)de
Where ¥ '(t) = Dy, (d/dt)
With this definition , any Riemannian manifold is a metric space : Define
d(x,y) = inf{£{(y) € R:y(0) = x,y(1) =y}
In fact a metric defines an inner product on T* as well as on , for the map
X— g, -)
Defines an isomorphism from T to T™ . In concrete terms, if g* is the inner product
on T, then
9" (Z; gijdx;, Xk Gra dx1) = G
Which means that
g*(dxj,dx;) = g’*
Where g’ denotes the inverse matrix to g ik -
We can also define an inner product on the exterior product spaces .
(al/\az/\ o Ny, BIABA ... /\[)’p) = degg*(ai, [)’j) (4.4)
In particular, on an n-manifold there is an inner product in each fibre of the bundle
A™T* . S ince each fibre is one-dimensional there are only two unit vectors +u .
Definition(4.2.7):

Let M be an oriented Riemannian manifold , then the volume form is the unique n-
form w of unit length in the equivalence class define by the orientation.

In local coordinates , the definition of the inner product (4.4)gives
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(dxiA ... Adxy, dx; A ... Adxy) = det gj; = (detg;;)™"
Thus if dx; A\ ... Adx,, defines the orientation,

w = ,/degg;; dx;\ ... Adx,

On a compact manifold we can integrate this to obtain the total volume — so a
metric defines not only lengths but also volumes.
Are Riemannian manifolds special? No , because:
Proposition(4.2.8):
Any manifold admits a Riemannian metric.
Proof:
Take a covering by coordinate neighbourhood and a partition of unity subordinate
to the covering. On each open set U, we have a metric
Ja = 2i dxi2
In the local coordinate . define
9 =2 9idag)
This sum is well — defined because the supports of ¢; are locally finite. Since
@; = 0 at each point every term in the sum is positive definite or zero , but at least

one is positive definite so the sum is positive definite.
Section (4.3): The Geodesic Flow.

We begin this section by studying the the geodesic flow. Consider any manifold
M and its cotangent bundle T*M, with projection to the base p : T"M — M. Let X
be tangent vector to T*M at the point £, € T, . Then

Dpe,(X) € TyM

So
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0(X) = $a(Dpg, (X))

defines a canonical 1-form 8 on T*M. In coordinates (x,y) = X;y;dx;, the

projection p is
p(x.y) = x
so if

d d
X Zzaia—Xi'FZbia_Yi

then
0(X) = 2iyidx;(Dpg, X) = X;yia
which gives
0 =2 yidx;
We now take the exterior derivative
w = —df =)dx; A dy;

which is the canonical 2-form on the cotangent bundle. It is non-degenerate, so that

the map
X P iyw
from the tangent bundle of T*M to its cotangent bundle is an isomorphism.

Now suppose f is a smooth function on T*M. Its derivative is a 1-form df.
Because of the isomorphism above, there is a unique vector field X on T*M such

that

iXa) = df
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If g is another function with vector field Y, then

Y()=dfY) = iyixw = —ixlyw = —X(g) (4.5)

On a Riemannian manifold there is a natural function on T*M given by the induced

inner product: we consider the function on T*M defined by

H(o) = 97 (ai$a)-
In local coordinates this is
H(x,y) = Xi 97 ()y;y; -
Deffinition (4.3.1):

The vector field X on T*M given by iyw = dH is called the geodesic flow of

the metric g.
Definition (4.3.2):

If y:(a,b) = T™M is an integral curve of the geodesic flow, then the curve

p(y) in M is called a geodesic.

In local coordinates, if the geodesic flow is
0 0
X =) a; a—x1 + ), b; a_yl
Then

] 9 ij ..
ixw = Ti(ardye — bedxe) = dH = Xy5—duyy; + 2% 97yidy)

Thus the integral curves are solutions of

dxk _

— = 22 g"y; (4.6)
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dyy
?— _ZU dxy, yly] (4-7)

Before we explain why this is a geodesic, just note the qualitative behaviour of
these curves. For each point a € M, choose a point §; € T, a and consider the
unique integral curve starting at £,. Equation (4.6) tells us that the projection of the
integral curve is parallel at a to the tangent vector X, such that g(X,,—) = ¢,.
Thus these curves have the property that through each point and in each direction

there passes one geodesic.

Geodesics are normally thought of as curves of shortest length, so next we shall
link up this idea with the definition above. Consider the variational problem of

looking for critical points of the length functional

() = [ g y)dt

for curves with fixed end-points y(0) = a,y(1) = b. For simplicity assume a, b

are in the same coordinate neighbourhood. If
F(x,2) = Xij 9ij(x)ziz;

then the first variation of the length is

11 1/2( . a_FdX) 11 1/2 oF . _i(l _1/26_F).
f F axixl +aZi dat f F xixl dat ZF 0z; xldt

on integrating by parts with x,(0) = x,(1) = 0. Thus a critical point of the

functional is given by

lp—l/Z a_F_i(lF—l/Z a_F) =0
2 O0x; dt \2 0z;

If we parametrize this critical curve by arc length:
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s = J Ja@y)dt

then F = 1, and the equation simplifes to

o2y _

0x; ds \0z;
But this 1s
99k dxjdx _ & dxi) _
Z 0x; ds ds ds (Zgjk ds ) =0 (4'8)
But now define y; by
dxk ki
ar 2 Zj 9 ]y]

as in the first equation for the geodesic flow (4.6) and substitute in (4.8) and we get
4y, ?—x”‘ 9Yag Yy — = (491 g"*ya) = 0
and using
%i9Ygji = 6
this yields

ol — Wi
dx; YiVk dat

which is the second equation for the geodesic flow. (Here we have used the

formula for the derivative of the inverse of a matrix G: D(G™1) = —G™1DGG™1).

The formalism above helps to solve the geodesic equations when there are

isometries of the metric. If F : M — M is a diffeomorphism of M then its natural
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action on l-forms induces a diffeomorphism of T*M. Similarly with a one-

parameter group ;.

Differentiating at t = 0 this means that a vector field X on M induces a vector
field X on T*M. Moreover, the 1-form 8 on T*M is canonically defined and hence

invariant under the induced action of any diffeomorphism. This means that
Lz =0
and therefore, using (3.1.13) that
igdf + d(iz0) = 0

sosince w = —df

where f = iz0.
Proposition (4.3.3):
The function fabove is f(&,) = &,.(Xy).
Proof: Write in coordinates
> ] ]
X =) a; a—x1 + ) b; a_yl
where 8 = Y; y;dx; . Since X projects to the vector field X on M, then
]
X = Z a; a—x1
and

iz0 ZZiCliJ’i = &(Xy)
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by the definition of 6.

Now let M be a Riemannian manifold and H the function on T*M defined by the
metric as above. If ¢; is a one-parameter group of isometries, then the induced
diffeomorphisms of T*M will preserve the function A and so the vector field ¥

will satisfy
Y(H) =0

But from (4.5) this means that X(f) = 0 where X is the geodesic flow and f the
function iy 6.This function is constant along the geodesic flow, and is therefore a

constant of integration of the geodesic equations.

To see what this constant is, we note that ¥ is the natural lift of a Killing vector

field

Y = Ziaiaixi
so the function f'is f = ); a;y; .
The first geodesic equation is
% =2 g* Y
SO
Yk 9k % = 2y;
and

dxy 1

1 ’
f =329~ =590 X)
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Sometimes this observation enables us to avoid solving any differential equations

as in this example.

Example (4.3.4):

Consider the metric

_dx%+dx}
- 2

X3

on the upper half plane and its geodesic flow X.

The map (x1,x;) = (x1 + t,x;) is clearly a one-parameter group of isometries

(the Mobius transformations z = z + t) and defines the vector field

On the cotangent bundle this gives the function
fl,y) = n
which is constant on the integral curve.

The map z — e’z is also an isometry with vector field

0 0
Z = x—+ xXp—
1ax1 ZaxZ

so that

gx,y) = x1¥1 + %2,

1S constant.

We also have automatically that H = x3(y? + y3) is constant since
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X(H) = ixixw = 0

We therefore have three equations for the integral curves of the geodesic flow:
V1 = G
X1y1 T XY2 = C;

c3

(i + ¥
Eliminating y;, y, gives the geodesics:
(cix1 — €)% + cfxf = c3

If ¢c; # 0, this is a semicircle with centre at (xq,x;) = (c3/c¢q,0). If ¢; = 0then
v, = 0 and the geodesic equation gives x; = const. Together, these are the

straight lines of non-Euclidean geometry.
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