
 1

 بسم الله الرحمن الرحيم

Sudan University of Science and Technology

College of Graduate Studies

Implementation and Simulation of Rotary

Automated Car Parking System

اروّد ىلآنظام موقف سيارات ومحاكاة تنفيذ

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of M.Sc. in Electrical Engineering (Control and Microprocessor)

Prepared by:

Saad Eldin Suliman Yousif Ali

Supervised by:

Dr. Awadallah Taifour Ali

January 2016

 I

مِناً وَارْزُقْ أَهْلَهُ ءاالَ إِبْرَاهِيمُ رَبِّ اجْعَلْ هَـَذَا بَلَداً وَإِذْ قَ)

 (مِنَ الثَّمَرَاتِ

621

 II

Dedication

I would like to dedicate this work to my mother, father and the rest of my family also to all

who helped me.

Thank you all…

 III

Acknowledgement

Great thankful to Allah who lightens our ways, our life and our heart…

I would like to convey my appreciation to the Sudan University of Science and Technology.

Apart from the efforts of me, the success of any research depends largely on the encouragement

and guidelines of many others. I take this opportunity to express my gratitude to the people

who have been instrumental in the successful completion of this research.

I would like to show my greatest appreciation to Dr. Awadallah Taifour Ali. I cannot say

thank you enough for his tremendous support and help.

 IV

Abstract

Lack of space availability has always been a problem in urban areas and major cities and to

add to it there are cars parked randomly on the streets that further limit the space. In order to

handle the issue of parking in busy places various types of vehicle parking systems are used

worldwide namely such as multi-level automated car parking, Volkswagen car parking and

many more, but the rotary automated car parking system is best and suitable because it

availability space and it does not need big space for construction. The present research is aimed

to design and implementation a control system and model for the rotary automated car parking

system to accommodate six cars. This was carried out using different devices such as

ATmega16, IR sensor and stepper motor. Also PROTEUS software is used for system

simulation.

After testing and study the rotary automated car parking is found to be very suitable so it

contribute to solve the problem of traffic congestion, as well as that of the control circuit is

easy to design and programming.

 V

 مستخلص

في المناطق الحضرية والمدن الكبرى وإضافة إلى ذلك هناك دائمة ان عدم توفر المساحة مشكلة

من مشكلةحد من المساحة. من أجل التعامل مع هذه الالتي تزيد إلى في الشوارع عشوائياًات متوقفة سيار

وقوف السيارات في الأماكن المزدحمة تستخدم أنواع مختلفة من أنظمة مواقف السيارات في جميع أنحاء

الكثير، ولكن نظام العالم مثل مواقف السيارات الآلي متعدد المستويات ومواقف فولكس واجن وغيرها

نسب لأنه يوفر المساحة و لا يحتاج إلى مساحة كبيرة للبناء. موقف السيارات الٓالي الدّوارهو الأفضل والأ

يهدف هذا البحث إلى تصميم وتنفيذ نظام تحكم لموقف السيارات الالي الدّوار يستوعب ست سيارات، وتم

الأشعة تحت الحمراء ومحرك الخطوة. أيضا تم ، حساس ATmega16 ل تنفيذ ذلك باستخدام أجهزة مث

 .من أجل محاكاة النظام PROTEUS استخدام برنامج المحاكاة

حل حيث أنه يساهم في لي الدّوار مناسب جدا الٓاأن نظام موقف السيارات جدو والدراسة ختباربعد الإ

 .برمجتها دائرة التحكم يسهل تصميمها وأن زدحام المروري، بالاضافة اليمشكلة الإ

 VI

Table of Contents

 Page No.

يةالٓا i

Dedication ii

Acknowledgment iii

Abstract iv

 v مستخلص

Table of Contents vi

List of Figures vii

Chapter One: Introduction

1.1 General 1

1.2 Problem Statement 1

1.3 Objectives 2

1.4 Methodology 2

1.5 Layout 2

Chapter Two: Theoretical Background and Literature Review

2.1 History 3

2.2 Types of Parking 3

2.2.1 Traditional car parking 4

2.2.2 Automatic car parking system 4

2.3 Microcontroller 8

2.4 Seven Segment Display 9

2.5 Infrared Sensor 9

Chapter Three: Hardware and Software Considerations

3.1 System Description 10

3.2 Microcontroller Atmega16 10

 VII

3.2.1 Atmega16 block diagram 11

3.2.2 Atmega16 pin descriptions 14

3.3 Stepper Motor 15

3.4 ULN 2003A Driver 16

3.5 Break Beam Sensors 17

3.6 Seven Segment Display 17

3.7 Push Button Switch 18

3.8 Power Supply 18

3.8.1 Step down transformer 18

3.8.2 Rectifier unit 18

3.8.3 Input filter 19

3.8.4 Regulator unit 19

3.8.5 Output filter 19

3.9 System Simulation 19

3.10 Working Principle of Circuit 20

3.11 System Flowchart 23

3.12 System Code 24

Chapter Four: System Implementation and Testing

4.1 System Implementation 25

4.1.1 Step one 25

4.1.2 Step two 25

4.1.3 Step three 26

4.1.4 Step four 26

4.1.5 Step five 27

4.1.6 Step six 28

4.2 System Testing 28

4.2.1 Step one 28

4.2.2 Step two 29

4.2.3 Step three 30

Chapter Five: Conclusion and Recommendations

 VIII

5.1 Conclusion 31

5.2 Recommendations 31

References 32

Appendix A

 IX

List of Figures

Figure Title Page

No.

2.1 Traditional car parking 4

2.2 Robot car parking 5

2.3 Integrated car parking solution 6

2.4 Multi-level automated car parking

7

2.5 Rotary smart parking system 8

3.1 Block diagram for the circuit control 10

3.2 Atmega16 11

3.3 Atmega16 block diagram 13

3.4 Stepper motor 14 16

3.5 ULN2003A driver 17

3.6 Break beam sensor 17

3.7 Electrical circuit break beam sensor 18

3.8 The main circuit design 20

3.9 The main circuit design after running 21

3.10 The main circuit design after park car number one 22

3.11 System flowchart 23

4.1 Installation atmega16 25

4.2 Installation ULN2003A and stepper motor 26

4.3 Installation 7-segment display and LEDs 26

4.4 Connecting IR sensors and push button switches 27

4.5 Connecting the power supply 27

4.6 The final model 28

4.7 Entry of first car 29

 X

4.8 Status of full parking 30

4.9 Retrieving a car number 4 30

 1

 CHAPTER ONE

Introduction

1.1 General

The rotary automated car parking system belongs to the class of rotary smart car parking

systems. The traditional parking systems such as multilevel or multi-storey car parking systems

(non-automated), robot car parking systems, automated multilevel car parking systems etc.

have been implemented on a huge scale. But these systems have a major disadvantage of large

space consumption which is successfully eliminated with the use of a rotary car parking

system. Moreover, the latter provides the added benefits of flexible operation without the need

of an attendant and added security and least chances of vehicle damage. Since the model makes

use of composite parts, it is easy to assemble and dismantle and is thus more convenient than

the traditional car parking systems. The rotary model is specifically designed to accommodate

multiple cars in the horizontal space of two. The structure can accommodate six cars in the

space of two and can even be customized to hold a greater number depending upon the

requirements of the user and can be efficiently put to use in much space crunched areas.

Parking spaces cannot cope with the growth of the number of vehicles. In many urban housing

societies, the parking space ratio is 1:1.

As compared to the existing parking arrangements, the most obvious advantage is

maximum space utilization; it is safer and more convenient. The rotary automated car parking

system is totally automated with the user being given a unique IDentification (ID)

corresponding to the trolley being allocated to him/her. This kind of equipment is useful to

solve the issue of limited parking space available in busy cities [1].

1.2 Problem Statement

In metropolitan cities, vehicle parking has become a major concern in all busy areas and a

good traffic system needs a good parking system. Wherefore design a stable and good control

system is the solution to this problem using high technology to make it easier to deal with the

 2

system, in order to put this system in a real model for performs work as required, and at the

same time do not ignore the importance of time and the necessary safety.

1.3 Objectives

The Objectives of this research is to design and implementation of a control system for the

rotary automated car parking system to accommodate six cars.

1.4 Methodology

 Study of all preview related works.

 Selecting a suitable control.

 Coding of the control algorithm is written using C language.

 Drawing control circuit using PROTEUS simulation program.

 Design a small model to testing the control system.

1.5 Layout

This thesis consists of five chapters. Chapter one deals with introduction, problem

statement and objectives of the study. Chapter two discusses history and types of the car

parking system in addition to explaining the elements used in the research in general. Chapter

three presents the devices used in the research indeed, also explanation the system simulation,

system flowchart and the system code. Chapter four illustrates implementation and testing the

control circuit and model. Chapter five contains conclusion and recommendations.

 3

CHAPTER TWO

Theoretical Background and Literature Review

2.1 History

With the increase in the number of vehicles in high-density urban housing the problem with

a limited amount of parking space appeared. The solution to this problem is the automatic

parking system. The first such system was created in the United States the automatic parking

system attracted attention in the years 1940-1950, and the systems used were Bowser, Pigeon

Hole and Roto Park. In the years 1957 to 1974 Bowser and Pigon Hole systems were used [2],

but due to frequent mechanical problems and prolonged waiting time for the vehicle, the

interest in such a solution significantly decreased. This interest, however, came back since

1990, and already in 2012 there were 25 projects planned or in progress, which yielded about

6,000 parking spaces. While until 1990 the interest in the systems was mediocre in Europe,

Asia and Central America, since 1970 in the automatic parking system more advanced

technology was use. In Japan, since the early 1990's about 40,000 parking spaces based on the

automatic parking system paternoster type were created. It is estimated that in Japan in 2012

there were about 1.6 million parking spaces.

A car parking system is a mechanical device that multiplies parking capacity inside a

parking lot. Parking systems are generally powered by electric motors or hydraulic pumps that

move vehicles into a storage position.

There are two types of car parking systems: traditional and automated. In the long term,

automated car parking systems are likely to be more cost effective when compared to

traditional parking garages. Automatic multi-storey automated car park systems are less

expensive per parking slot, since they tend to require less building volume and less ground area

than a conventional facility with the same capacity. Both automated car parking systems and

automated parking garage systems reduce pollution cars are not running or circling around

while drivers look for parking spaces [3].

2.2 Types of parking

Parking system progression through several stages of development, is generally

divided into:

 4

2.2.1 Traditional car parking

Traditional car parking shown in Figure 2.1, is one of the first forms, where it is allocated

specific parking place and then draw lines by white paint or yellow paint.

Figure 2.1: Traditional car parking

2.2.2 Automatic car parking system

Automated car parking systems use a similar type of technology to that used for mechanical

parcel handling and document retrieval. The driver leaves the car inside an entrance area and

technology parks the vehicle at a designated area. Hydraulic or mechanical car lifters raise the

vehicle to another level for proper storing. The vehicle can be transported vertically (up or

down) and horizontally (left and right) to a vacant parking space until the car is needed again.

When the vehicle is needed, the process is reversed and the car lifts transport the vehicle back

to the same area where the driver left it. In some cases, a turntable may be used to position the

car so that the driver can conveniently drive away without the need to back up. The automatic

parking system has many kinds and some of these will be explained below:

 5

 Robot car parking

Dubai is car park Capable of handling 765 vehicles, it is the first of several large-scale

robotic car parks being built to address parking problems in the United Arab Emirate (UAE) as

shown in Figure 2.2. All the customer sees is a parking garage with space for one car, though

the ‘floor’ is platform which rides on the top of a robotic trolley. When the customer leaves the

vehicle and collects a ticket, the wall of the garage drops away and the car is whisked to an

elevator, which in turn takes the car to another trolley. From there, the machine parks the car in

the dark depths of the structure. In total, the process takes around three minutes.

With this technology, you do not need to drive through the garage to find a parking space.

You simply drive your car to an entry station and leave your car to be picked up by the

computerized lifts that will safely place it inside the building on a shelving system. When you

leave and when you return to a central point and your car is swiftly retrieved for you.

Figure 2.2: Robot car parking

 Integrated car parking solution

Integrated car parking solution Shown in Figure 2.3, has the Following characteristic:

- Customized application suitable for various types of landscapes and buildings.

- Structures available below or / and above the ground.

- Reducing management cost through precise control and low power consumption.

 6

- User is easy control by soft touch on the operation panel screen.

- Simultaneous vertical and horizontal movement for short waiting periods.

- When a vehicle stops in front of the entrance, automatically door opens and trolley transfers

the vehicle to parking cell.

- Very safe for the driver with no need to stay in the car.

- Good for underground parking lot.

Figure 2.3: Integrated car parking solution

 Multi-level automated car parking

A multi-level car parking shown in Figure 2.4, is essentially a building with number of

floors or layers for the cars to be parked. The different levels are accessed through interior or

exterior ramps. An automated car parking has mechanized lifts which transport the car to the

different levels. Therefore, these car parks need less building volume and less ground space

and thus save on the cost of the building. It also does away the need for employing too many

personal to monitor the place. In an automated multi-level car parking, the cars are left at the

entrance and are further transported inside the building by robot trolley. Similarly, they are

retrieved by the trolley and placed at the exit for the owner to drive away.

 7

Figure 2.4: Multi-level automated car parking

 Rotary smart parking system

The rotary smart parking system shown in Figure 2.5, consists of one automated

mechanical system, which rotates at an angle of being perpendicular to the ground. By this

way, cars parking and retrieving is reliable. It runs in a rotating way that driven by the reducer,

transmission device drives the parking pallets rotating for cars parking and retrieving. The

smart rotary parking system has the advantages of [4]:

- Adopting the Rubik is cube technique, saving lots of land coverage.

- Small land coverage, flexible equipment and high space utilization ratio.

- Low cost of fire control, external package and civil engineering base.

- Brief structure, package available, good-looking appearance, permeability good and

coordination with the surrounding landscape.

- It ensures quick and automated parking and easy retrieval of vehicles.

- The surface space required is equivalent to the parking space of two cars only.

- Most suitable for parking in offices, malls and similar places.

 8

- Low maintenance levels are required by the system.

- Does not require any parking attendant.

- It can be easily constructed in a small area, just requiring a simple concrete base and three

phase power supply.

Figure 2.5: Rotary smart parking system

2.3 Microcontroller

A microcontroller is a small computer on a single integrated circuit containing a processor

core, memory, and programmable input/output peripherals. Program memory in the form of

ferroelectric Random Access Memory (RAM), NOR flash or One Time Programmable Read

Only Memory (OTP ROM) is also often included on chip, as well as a typically small amount

of RAM. Microcontrollers are designed for embedded applications, in contrast to the

microprocessors used in personal computers or other general purpose applications.

Microcontrollers are used in automatically controlled products and devices, such as automobile

engine control systems, implantable medical devices, remote controls, office machines,

appliances, power tools, toys and other embedded systems. By reducing the size and cost

compared to a design that uses a separate microprocessor, memory, and input/output devices,

microcontrollers make it economical to digitally control even more devices and processes.

Mixed signal microcontrollers are common, integrating analog components needed to control

non-digital electronic systems.

Some microcontrollers may use four-bit words and operate at clock rate frequencies as low as 4

kHz, for low power consumption (single-digit mill watts or microwatts). They will generally

 9

have the ability to retain functionality while waiting for an event such as a button press or other

interrupt; power consumption while sleeping (Central Processing Unit (CPU) clock and most

peripherals off) may be just Nano watts, making many of them well suited for long lasting

battery applications. Other microcontrollers may serve performance-critical roles, where they

may need to act more like a Digital Signal Processor (DSP), with higher clock speeds and

power consumption [5].

2.4 Seven Segment Display

A 7-segment display, or seven-segment indicator, is a form of electronic display device for

displaying decimal numerals that is an alternative to the more complex dot matrix displays.

seven segment displays are widely used in digital clocks, electronic meters, basic calculators,

and other electronic devices that display numerical information.

2.5 Infrared Sensor

InfRared sensor (IR) detectors have been called the eyes of the digital battlefield. Military

applications in Western countries have spearheaded and dominated the requirements in this

field akin to many other emerging fields. In addition to many military applications for IR

systems such as target acquisition, search and track, missile seeker guidance, there is a great

potential for IR systems in the commercial market. IR systems enhance automobile and aircraft

safety, medical diagnosis, and manufacturing quality and control. Industry is looking to expand

into the commercial market because the military market is decreasing and concurrently

becoming more specialized. Today, only about 20% of the market is commercial. After a

decade, the commercial market is estimated to grow by over 70% in volume and 40% in

value [6].

 10

CHAPTER THREE

Hardware and Software Considerations

3.1 System Description

The rotary automated car parking system block diagram shown in Figure 3.1, mainly consists

of a microcontroller ATmega16, stepper motor, ULN2003A driver, infrared sensor, 7-

segment display, push button switch, power supply.

Figure 3.1: Block diagram for the circuit control

3.2 Microcontroller ATmega16

The ATmega16 microcontroller is a 40-pin wide Dual In Line (DIP) package chip. This chip

was selected because it is robust, and the DIP package interfaces with prototyping supplies like

solderless bread boards and solder-type perf-boards. This same microcontroller is available in a

surface mount package, about the size of a dime. Surface mount devices are more useful for

circuit boards built for mass production. Figure 3.2 shows the ‘pin-out’ configuration of the

ATmega16. This diagram is very useful, because it tells you where power and ground should

 11

be connected, which pins tie to which functional hardware, etc [7].

Figure 3.2: ATmega16

3.2.1 ATmega16 Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All

the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two

independent registers to be accessed in one single instruction executed in one clock cycle. The

resulting architecture is more code efficient while achieving throughputs up to ten times faster

than conventional Complex Instruction Set Computer (CISC) microcontrollers.

The ATmega16 provides the following features: 16 Kbytes of In-System Programmable Flash

Program memory with Read-While-Write capabilities, 512 bytes Electrically Erasable

Programmable Read Only Memory (EEPROM), 1 Kbyte SRAM, 32 general purpose

input/output lines, 32 general purpose working registers, a Joint Test Action Group (JTAG)

interface for Boundary scan, On-chip Debugging support and programming, three flexible

 12

Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable

Universal Synchronous/Asynchronous Receiver/Transmitter (USART), a byte oriented Two-

wire Serial Interface, an 8-channel, 10-bit Analog-to-Digital Converter (A/DC) with optional

differential input stage with programmable gain (Thin Quad Flat Package (TQFP) only), a

programmable Watchdog Timer with Internal Oscillator, an Serial Peripheral Interface (SPI)

serial port, and six software selectable power saving modes. The Idle mode stops the CPU

while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI

port, and interrupt system to continue functioning. The Power-down mode saves the register

contents but freezes the Oscillator, disabling all other chip functions until the next External

Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run,

allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC

Noise Reduction mode stops the CPU and all Input/Output (I/O) modules except

Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In

Standby mode, the crystal/resonator Oscillator is running while the rest of the device is

sleeping. This allows very fast start-up combined with low-power consumption. In Extended

Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high density nonvolatile memory technology. The

Onchip In-System Programming (ISP) Flash allows the program memory to be reprogrammed

in-system through an SPI serial interface, by a conventional nonvolatile memory programmer,

or by an On-chip Boot program running on the AVR core. The boot program can use any

interface to download the application program in the Application Flash memory. Software in

the Boot Flash section will continue to run while the Application Flash section is updated,

providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System

Self-Programmable Flash on a monolithic chip, the ATmega16 is a powerful microcontroller

that provides a highly-flexible and cost-effective solution to many embedded control

applications.

The ATmega16 AVR is supported with a full suite of program and system development tools

including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators,

and evaluation kits [7]. The ATmega16 block diagram shown in Figure 3.3.

 13

 Figure 3.3: ATmega16 block diagram

 14

3.2.2 ATmega16 Pin Descriptions

VCC

Digital supply voltage.

GND

Ground.

Port A (PA7..PA0)

Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit bi-

directional input/output port, if the A/D Converter is not used. Port pins can provide internal

pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive

characteristics with both high sink and source capability. When pins PA0 to PA7 are used as

inputs and are externally pulled low, they will source current if the internal pull-up resistors are

activated. The Port A pins are tri-stated when a reset condition becomes active, even if the

clock is not running.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional input/output port with internal pull-up resistors (selected for

each bit). The Port B output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port B pins that are externally pulled low will source current

if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition

becomes active, even if the clock is not running. Port B also serves the functions of various

special features of the ATmega16.

Port C (PC7..PC0)

Port C is an 8-bit bi-directional input/output port with internal pull-up resistors (selected for

each bit). The Port C output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port C pins that are externally pulled low will source current

if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition

becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up

resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs.

Port C also serves the functions of the JTAG interface and other special features of the

ATmega16.

 15

Port D (PD7..PD0)

Port D is an 8-bit bi-directional input/output port with internal pull-up resistors (selected for

each bit). The Port D output buffers have symmetrical drive characteristics with both high sink

and source capability. As inputs, Port D pins that are externally pulled low will source current

if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition

becomes active, even if the clock is not running. Port D also serves the functions of various

special features of the ATmega16.

RESET

Reset Input. A low level on this pin for longer than the minimum pulse length will generate a

reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.

XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting Oscillator amplifier.

AVCC

AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally

connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to

VCC through a low-pass filter.

AREF

AREF is the analog reference pin for the A/DC [7].

3.3 Stepper Motor

A stepper motor shown in Figure 3.4, is an electric motor that rotates in discrete step

increments. The movement of each step is precise and repeatable; therefore, the motor is

position can be controlled precisely without any feedback mechanism, as long as the motor is

carefully sized to the application. This type of control eliminates the need for expensive

sensing and feedback devices such as optical encoders. The position is known simply by

keeping track of the input step pulses. It is one of the most versatile forms of positioning

systems. They are typically digitally controlled as part of an open loop system, and are simpler

and more rugged than closed loop servo systems.

 16

The essential property of the stepping motor is its ability to translate switched excitation

changes into precisely defined increments of rotor position ('steps'). Stepping motors are

categorised as doubly salient machines, which means that they have teeth of magnetically

permeable material on both the stationary part (the stator) and the rotating part (the rotors).

Most stepping motors can be identified as variations on the two basic types: variable-reluctance

or hybrid. For the hybrid motor the main source of magnetic flux is a permanent magnet, and

tic currents flowing in one or more windings direct the flux along alternative paths.

There are two configurations, for the variable-reluctance stepping motor, but in both cases the

magnetic field is produced solely by the winding currents [8].

Figure 3.4: Stepper motor

3.4 ULN 2003A Driver

ULN2003 driver shown in Figure 3.5, is a high voltage and high current Darlington array

Integrated Circuit (IC). It contains seven open collector Darlington pairs with common

emitters. A Darlington pair is an arrangement of two bipolar transistors.

ULN2003 belongs to the family of ULN200X series of ICs. Different versions of this family

interface to different logic families. ULN2003 is for 5V Transistor-Transistor Logic (TTL),

Complementary Metal Oxide Semiconductor (CMOS) logic devices. These ICs are used when

driving a wide range of loads and are used as relay drivers, display drivers, line drivers etc.

ULN2003 is also commonly used while driving stepper motors. refer stepper motor interfacing

using ULN2003.

 Each channel or Darlington pair in ULN2003 is rated at 500mA and can withstand peak

current of 600mA. The inputs and outputs are provided opposite to each other in the pin layout.

 17

Each driver also contains a suppression diode to dissipate voltage spikes while driving

inductive loads [9].

Figure 3.5: ULN2003A driver

3.5 Break Beam Sensors

These types of active IR sensor have emitter and receiver placed in such a way that the IR

emitted by the emitter falls directly in to the receiver. During the operation as shown in Figure

3.6, IR beam is emitted continuously towards the receiver. The flow of IR can be interrupted by

placing an object between the emitter and receiver. If the IR is transmitted but altered then

receiver generates output based on the change in radiation. Similarly if the radiation is

completely blocked the receiver can detect it and provide the desired output. For example: let

us consider a break beam sensor and a conveyer belt. When an opaque object interrupts the IR

flow the receiver does not receive any signal thus the conveyer belt stops [6].

Figure.3.6: Break beam sensor

For connect break beam sensors in the electrical circuit we need driveway as shown in Figure

3.7.

3.6 Seven Segment Display

 In the common cathode display, all the Anode connections of the LED segments are joined

 18

together to logic “1” or ground. The individual segments are illuminated by application of a

“LOW”, or logic “0” signal via a current limiting resistor to forward bias the individual anode

terminals (a-g).

Figure.3.7: Electrical circuit break beam sensor

3.7 Push Button Switch

The system designed to accommodate six cars. The key pad used for the system contains six

keys to be restored by the Special number for the car, as well as key to perform this operation

(key to confirm).

3.8 Power Supply

ATmega16 can operate with a power supply +2.7 to +5.5 usually [10]. Charger unit consists of

the following units [11]:

3.8.1 Step down transformer

It is used to step down the main supply voltage by using step down transformer. It consists of

primary and secondary coils. The output from the secondary coil is also Alternating Current

(AC) voltage output. Therefore, we have to convert the easy Direct Current (DC) voltage by

using rectifier unit.

3.8.2 Rectifier unit

We have to convert AC voltage to DC using rectifier. Bridge rectifier is used. This output

voltage often rectifier is in rippled form, so we have to remove ripples from DC voltage.

 19

3.8.3 Input filter

Capacitor acts as filter. The principle of the capacitor is charging and discharging. It charges in

the positive half cycle of the AC voltage and it will discharge in the negative half cycle. So this

allows only AC voltage and does not allow the DC voltage. This filter is fixed before the

regulator.

3.8.4 Regulator unit

Regulator regulates the output voltage constant depends upon the regulator. It is classified as

follows:

Positive regulator L7805CV

Input pin.

Ground pin.

Output pin.

It regulates the positive voltage.

Negative regulator 7905

Ground pin.

input pin.

output pin.

 It regulate the negative voltage.

3.8.5 Output filter

Capacitor acts as filter. The principle of the capacitor is charging and discharging. It charges in

positive half cycle of the AC voltage an it will discharge in negative half cycle. So it allow only

allows AC voltage and does not allow the DC voltage. This filterer fixed after the regulator.

3.9 System Simulation

Computer simulations have become a useful part of mathematical modelling of many natural

systems to observe their behaviour. It allows the engineer to test the design before it is built in

the real situation.

As mentioned earlier, the simulations for this research were performed in PROTEUS program

 20

shown in Figure 3.8. These software applications are widely used in control engineering for

both simulation and design.

Figure 3.8: The main circuit design

3.10 Working Principle of Circuit

The control circuit contains five IR sensors that responsible to park the car and in order to

complete this process there are some conditions series that should be fulfilled, and these

conditions are represented as:

The activation of IR sensor Gate one indicates that there is an arrived car, also show whether or

not parking is full by turning on lamps green for empty or red for full.

The activation of IR Door indicates to continuation of car entry.

Activation of IR Trolley indicates to occupation of trolley.

As for the IR Human Left or Right, they indicate that driver got off the car.

Once IR Door has been activated for the second time the stepper motor will start running to

park the car and to provides a new empty trolley and display number of trolley in the 7-

 21

segment display.

In addition, the control circuit contains eight keys in order to retrieve the car, where six of

which refers to a number trolley, and the keys seven and eight refer to confirmation and clear

respectively.

While the circuit is running, the 7-segment display initial value (number one) to indicate the

states of trolley in the parking as shown in Figure 3.9.

Figure 3.9: The main circuit design after running

After apply all conditions respectively the stepper motor will start running to park the car and

to provides a new empty trolley and display number of trolley in the seven-segment display as

shown in Figure 3.10, and we can repeat this process until the parking becomes full. In addition

to this, we can retrieve the car by press any push button switch (sw1 to sw6) then press ENTER

 22

switch for confirmation.

Figure 3.10: The main circuit design after park car number one

3.11 System Flowchart

A flowchart is a type of diagram that represents an algorithm, workflow or process, showing

 23

the steps as boxes of various kinds, and their order by connecting them with arrows. This

diagrammatic representation illustrates a solution model to a given problem. Flowcharts are

used in analysing, designing, documenting or managing a process or program in various fields,

in this thesis the flowchart illustrates the principle of system code as shown in Figure 3.11.

Figure 3.11: System flowchart

 24

3.12 System Code

The Code has been written in C language using program AVR Studio to program ATmega16,

after program is completed it has been converted to Hex file to install it in ATmega16. Where

was the use of primary and non-complex instructions in writing program such as IF-statement

instruction and While-loop instruction to implement the control conditions. The illustrative

code in Appendix A.

 25

CHAPTER FOUR

System Implementation and Testing

4.1 System Implementation

The control circuit consists of different devices represented in ATmega16, stepper motor (5V),

ULN2003A driver, IR sensor transmitter and receiver, 7-segment display, push button switch,

resistors and DC supply 5V and 2A.

For the implementation of the control circuit correctly follow the following steps:

4.1.1 Step one

Programming of ATmega16 and installation in the port as shown in Figure 4.1.

Figure 4.1: Installation atmega16

4.1.2 Step two

Installation of ULN2003A driver in the port then connecting it with ATmega16 (port D pin0

with 1B, pin1 with 2B, pin2 with 3B and pin3 with 4B respectively) also connecting

ULN2003A (com, 1c, 2c, 3 and 4c respectively) with stepper motor as shown in Figure 4.2.

 26

Figure 4.2: Installation ULN2003A and stepper motor

4.1.3 Step three

Installation of 7-segment displays in the port then connecting it with ATmega16 (port C pin0 ~

pin6), also connecting the LEDs (Green and Red) with ATmega16 (port D pin4 and pin5) as

shown in Figure 4.3.

Figure 4.3: Installation 7-segment display and LEDs

4.1.4 Step four

Connecting five IR transmitters with 5V and resistances (100 ohm) then connecting five IR

receivers with ATmega16 (port A pin0 ~ pin4) and resistors (1K), also connecting eight push

button switches with ATmega16 (port B pin0 ~ pin7) as shown in Figure 4.4.

 27

Figure 4.4: Connecting IR sensors and push button switches

4.1.5 Step five

Connecting the power DC supply 5V and 2A for the electrical circuit as shown in Figure

4.5.

Figure 4.5: Connecting the power supply

 28

4.1.6 Step six

Finally, the installation of an electrical circuit in the final model as shown in Figure 4.6.

Figure 4.6: The final model

4.2 System Testing

After the electrical circuit is completed, it has been installed in small model to simulate the real

parking and to test the electrical circuit and assure its efficiency and apply the possible

conditions and it has been illustrated in the following steps:

4.2.1 Step one (entry of first car)

Every car that enters the parking must fulfill the conditions that mentioned previously so the

system could deals with it and provide new free trolley and take in consideration the nearest

free trolley to save time. The Figure 4.7 demonstrates the five levels of car entry.

 29

Figure 4.7: Entry of first car

4.2.2 Step two

Status of Full parking and the entry of new car where the system turns on a red LED (or green

LED for the empty) and to demonstrate the status of car parking as shown in Figure 4.8.

 30

Figure 4.8: Status of full parking

4.2.3 Step three

Retrieving a car number 4 from parking (for illustration) by pressing the key that assigned to it

where system retrieves it from nearest direction to save time. This is shown in Figure 4.9.

Figure 4.9: Retrieving a car number 4

 31

CHAPTER FIVE

Conclusion and Recommendations

5.1 Conclusion

The model has been designed and the software as well as the control circuit has been

implemented successfully. It demonstrates the working of the planned rotary automated car

parking system. ATmega16 is the most suitable controller whence the cost, ease of use, reliable

in the work and available in the markets.

5.2 Recommendations

The proposed rotary automated car parking system will be provided with safety devices such as

firefighting system.

The platforms can also be equipped with safety sensors guiding the movement of vehicles in

the platforms.

Add of a rotary platform to route the car to street after going out of parking.

Add of Radio Frequency IDentification (RFID) in order to allow specific cars to login into

parking by using database of the server.

 32

References

[1] M Childs, "Parking Spaces; A Design, Implementation and Use Manual for Architects

Planners and Engineers" McGraw-Hill, 2009.

[2] McDonald S. Shannon, “Cars Parking and Sustainability”, The Transportation Research

Forum, 2012.

[3] Beebe Richard, “Automated Parking”, Status in the United States, 2001.

[4] H Hwang, S Lee, "Expected Service Time Model for A Rotary Parking System”, Computer

Industrial Engineering, 1998.

[5] Steven F. Barrett & Daniel J. Pack, “Atmel AVR Microcontroller Primer: Programming

and Interfacing”, 2008.

[6] C.desilva, “Control Sensors and Actuators”, prentice hall, 1989.

[7] Atmel Corporation, “Datasheetatmega16”, San Jose USA, 2010.

[8] Paul Acarnley,”Stepping Motors a guide to theory and practice”, 4th Edition, IEE, 2002.

[9] STMicroelectronics, “DatasheetULN2003A”, Italy, 2002.

[10] Dogn Ibrahim, “Microcontroller Based Temperature Monitoring and control”, Elsevier

Science & Technology Books, 2002.

[11] C.B. Gray, “Electrical Machines and Drive System", 1989.

 1

Appendix A

Code:

#include <avr/io.h>

#include <util/delay.h>

unsigned char T1=0x00;

unsigned char T6=0x00;

unsigned char RFID=0x00;

unsigned char Car1=0x00;

unsigned char SW_1=0x00;

unsigned char SW_2=0x00;

unsigned char SW_3=0x00;

unsigned char SW_4=0x00;

unsigned char SW_5=0x00;

unsigned char SW_6=0x00;

unsigned char SW_11=0x00;

unsigned char T2=0x00;

unsigned char T3=0x00;

unsigned char T4=0x00;

unsigned char T5=0x00;

unsigned char SW_22=0x00;

unsigned char SW_33=0x00;

unsigned char SW_44=0x00;

unsigned char SW_55=0x00;

unsigned char SW_66=0x00;

 2

unsigned char Error=0x00;

unsigned char j = 0;

unsigned char Human = 0x00;

unsigned char IR_Trolley = 0x00;

unsigned char IR_DOOR = 0x00;

void main (void)

{

 DDRA = 0x00; /* set PORTB for Input*/

/*PORTA = 0x1F; /*in Simulation*/

DDRB = 0x00; /* set PORTD for Input*/

 DDRC = 0xFF; /* set PORTB for output*/

DDRD = 0xFF; /* set PORTD for output*/

 PORTC = 0b01111001; /* num 1 */

 while (1) {

if(PINA == 0x1E | PINA == 0x1A) /* Test RFID sensor */

 { if (T1==0x01 & T2==0x01 & T3==0x01 & T4==0x01& T5==0x01 & T6==0x01)

 { PORTD = 0x10; } else {

 PORTD = 0x20;

 RFID = 0x01; }}

if (RFID == 0x01 & PINA == 0x1D)

 { IR_DOOR = 0x01;}

 if (PINA == 0x1B)

 { IR_Trolley = 0x01; }

if (IR_DOOR == 0x01 & IR_Trolley == 0x01)

 {

if(PINA == 0x13 | PINA == 0x0B)/*Test Human sensor Left or Right */

 3

 { Human = 0x01;}}

 if(Human == 0x01)

 { Human = 0x00;

 RFID = 0x00;

 IR_DOOR = 0x00; while(PINA != 0x19); /*Test Door sensor */

 IR_Trolley == 0x00;

/******* Test Trolley1 **********/

 if (Car1 == 0x00)/* Test num of trolley in Door Parking */

 {

if (T2 == 0x00) /* To know trolley num 2 empty */

 { One_cycle();

 Forward();

PORTC = 0b00100100; /* 7seg num 2 */

 Car1 = 0x01;

 T1 = 0x01; } else {

if (T6 == 0x00) /*To know trolley num 6 empty */

{ One_cycle(); /* For go to trolley 2 */

 Backward();

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05;

 T1 = 0x01; } else {

 if (T3 == 0x00)

 { Two_cycle();

 Forward();

PORTC = 0b00100100; /* 7seg num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 4

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;

 T1 = 0x01; } else {

 if (T5 == 0x00)

 { Two_cycle();

 Backward();

PORTC = 0b00000010; /* num 6 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04;

 T1 = 0x01; } else {

 if (T4 == 0x00)

 { Three_cycle();

 Forward();

PORTC = 0b00100100; /*num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03;

 T1 = 0x01; } else {

 if (T2 == 0x01)

 5

 {

 One_cycle();

 Forward();

 PORTC = 0b00100100; /* 7seg num 2 */

 Car1 = 0x01;

 T1 = 0x01; } }}}}} } else {

/********* Test Trolley 2 **********/

 if(Car1 == 0x01) /* in Door Parking trolley 2 */

 { if (T3 == 0x00)

 { One_cycle();

 Forward();

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;

 T2 = 0x01; } else {

 if (T1 == 0x00)

 { One_cycle();

 Backward();

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00;

 T2 = 0x01; } else {

 if (T4 == 0x00)

 { Two_cycle();

 Forward();

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 6

 Car1 = 0x03;

 T2 = 0x01; } else {

 if (T6 == 0x00)

 { Two_cycle();

 Backward();

 PORTC = 0b01111001; /* num 1 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05;

 T2 = 0x01; } else {

 if (T5 == 0x00)

 { Three_cycle();

 Forward();

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04;

 T2 = 0x01; } else {

 if (T3 == 0x01)

 { One_cycle();

 7

 Forward();

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;

 T2 = 0x01; } }}}}} } else {

/********** Test Trolley 3 ***********/

 if (Car1 == 0x02)

 { if (T4 == 0x00)

 { One_cycle();

 Forward();

PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03;

 T3 = 0x01; } else {

 if (T2 == 0x00)

 { One_cycle();

 Backward();

PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01;

 T3 = 0x01; } else {

 if (T5 == 0x00)

 { Two_cycle();

 Forward();

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04;

 T3 = 0x01; } else {

 8

 if (T1 == 0x00)

 { Two_cycle();

 Backward();

 PORTC = 0b00100100; /* num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00;

 T3 = 0x01; } else {

 if (T6 == 0x00)

 { Three_cycle();

 Forward();

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05;

 T3 = 0x01; } else {

 if (T4 == 0x01)

 { One_cycle();

 9

 Forward();

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03;

 T3 = 0x01; } }}}}}} else {

/*********** Test Trolley 4 **********/

 if (Car1 == 0x03)

 { if (T5 == 0x00)

 { One_cycle();

 Forward();

PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04;

 T4 = 0x01; } else {

 if (T3 == 0x00)

 { One_cycle();

 Backward();

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;

 T4 = 0x01; } else {

 if (T6 == 0x00)

 {

 Two_cycle();

 Forward();

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05;

 10

 T4 = 0x01; } else {

 if (T2 == 0x00)

 { Two_cycle();

 Backward();

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01;

 T4 = 0x01; } else {

 if (T1 == 0x00)

 { Three_cycle();

 Forward();

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00;

 T4 = 0x01; } else {

 if (T5 == 0x01)

 { One_cycle();

 Forward();

 11

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04;

 T4 = 0x01; } }}}}} } else {

/*********** Test Trolley 5 **********/

 if (Car1 == 0x04)

 { if (T6 == 0x00)

 { One_cycle();

 Forward();

PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05;

 T5 = 0x01; } else {

 if (T4 == 0x00)

 { One_cycle();

 Backward();

PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03;

 T5 = 0x01; } else {

 if (T1 == 0x00)

 { Two_cycle();

 Forward();

PORTC = 0b00000010; /* num 6 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00;

 T5 = 0x01; } else {

 if (T3 == 0x00)

 12

 { Two_cycle();

 Backward();

PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;

 T5 = 0x01; } else {

 if (T2 == 0x00)

 { Three_cycle();

 Forward();

PORTC = 0b00000010; /* num 6 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b01111001; /* num 1 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01;

 T5 = 0x01; } else {

 if (T6 == 0x01)

 { One_cycle();

 Forward();

PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05;

 13

 T5 = 0x01; } }}}}} } else {

/*********** Test Trolley 6 **********/

 if (Car1 == 0x05)

 { if (T1 == 0x00)

 { One_cycle();

 Forward();

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00;

 T6 = 0x01; } else {

 if (T5 == 0x00)

 { One_cycle();

 Backward();

PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04;

 T6 = 0x01; } else {

 if (T2 == 0x00)

 { Two_cycle();

 Forward();

PORTC = 0b01111001; /* num 1 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01;

 T6 = 0x01; } else {

 if (T4 == 0x00)

 { Two_cycle();

 Backward();

 14

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03;

 T6 = 0x01; } else {

 if (T3 == 0x00)

 { Three_cycle();

 Forward();

 PORTC = 0b01111001; /* num 1 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00100100; /* num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;

 T6 = 0x01; } else {

 if (T1 == 0x01)

 { One_cycle();

 Forward();

PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00;

 T6 = 0x01; }}}}}}}}}}}} } else {

/********* Clear SW *************/

 15

if(PINB == 0x80) /* Test SW clear */

 {PORTC = 0b01111111; }/* Clear 7 segment */

/*********** Test SW 1 **********/

 if(PINB == 0x01) /* Test SW 1 */

 { SW_1 = 0x01;

PORTC = 0b01111001; }/* num 1 */

 if (SW_1 == 0x01 & PINB == 0x40)

 { SW_1 = 0x00;

 SW_11 = 0x01; }

 if (SW_11 == 0x01)

 { if(Error == 0x02)/* Error 2 */

 { SW_22 = 0x00;

 T2 = 0x01; } else {

 if(Error == 0x03)/* Error 3*/

 { SW_33 = 0x00;

 T3 = 0x01; } else {

 if(Error == 0x04)/*Error 4*/

 { SW_44 = 0x00;

 T4 = 0x01; } else {

 if(Error == 0x05)/* Error 5*/

 { SW_55 = 0x00;

 T5 = 0x01; } else {

 if(Error == 0x06)/*Error 6*/

 { SW_66 = 0x00;

 T6 = 0x01; } }}}}

 if (Car1 == 0x01)

 { One_cycle();

 Backward();

 16

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00; } else {

 if (Car1 == 0x02)

 { Two_cycle();

 Backward();

 PORTC = 0b00100100; /* num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00; } else {

 if (Car1 == 0x03)

 { Three_cycle();

 Backward();

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00100100; /* num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00; } else {

 if (Car1 == 0x04)

 { Two_cycle();

 Forward();

 PORTC = 0b00000010; /* num 6 */

 17

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00; } else {

 if (Car1 == 0x05)

 { One_cycle();

 Forward();

 PORTC = 0b01111001; /* num 1 */

 Car1 = 0x00; } }}}}

 if(PINA == 0x1B)

 {Error = 0x01;/*Error 1;*/

 Car1 = 0x00; } else {

 Error = 0x00; /*Error 0;*/

 SW_11 = 0x00;

 T1 = 0x00;

 Car1 = 0x00; } }

/************ Test SW 2 **********/

 if(PINB == 0x02) /* Test SW 2 */

 { SW_2 = 0x01;

PORTC = 0b00100100; }/* num 2 */

 if (SW_2 == 0x01 & PINB == 0x40)

 { SW_2 = 0x00;

 SW_22 = 0x01; }

 if (SW_22 == 0x01)

 {

 if(Error == 0x01)/*Error == 0x01)*/

 { SW_11 = 0x00;

 18

 T1 = 0x01; } else {

if(Error == 0x03)/*Error == 0x03)*/

 { SW_33 = 0x00;

 T3 = 0x01; } else {

if(Error == 0x04)/*Error == 0x04)*/

 { SW_44 = 0x00;

 T4 = 0x01; } else {

 if(Error == 0x05)/* Error 5*/

 { SW_55 = 0x00;

 T5 = 0x01; } else {

 if(Error == 0x06)/*Error 6*/

 { SW_66 = 0x00;

 T6 = 0x01; } }}}}

 if (Car1 == 0x00)

 { One_cycle();

 Forward();

 PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01; } else {

 if (Car1 == 0x02)

 { One_cycle();

 Backward(); PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01; } else {

 if (Car1 == 0x03)

 { Two_cycle();

 Backward();

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 19

 _delay_ms(1000);

 PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01; } else {

 if (Car1 == 0x04)

 { Three_cycle();

 Backward();

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01; } else {

 if (Car1 == 0x05)

 { Two_cycle();

 Forward();

 PORTC = 0b01111001; /* num 1 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00100100; /* num 2 */

 Car1 = 0x01; } }}}}

 if(PINA == 0x1B)

 {Error = 0x02;/*Error 2;*/

 Car1 = 0x01; } else {

 20

 Error = 0x00;/*Error 0;*/

 SW_22 = 0x00;

 T2 = 0x00;

 Car1 = 0x01; } }

/********** Test SW 3 **********/

 if(PINB == 0x04) /* Test SW 3 */

 { SW_3 = 0x01;

PORTC = 0b00110000;} /* num 3 */

 if (SW_3 == 0x01 & PINB == 0x40)

 { SW_3 = 0x00;

 SW_33 = 0x01; }

 if (SW_33 == 0x01)

 { if(Error == 0x01)/*Error == 0x01)*/

 { SW_11 = 0x00;

 T1 = 0x01; } else {

 if(Error == 0x02)/* Error 2 */

 { SW_22 = 0x00;

 T2 = 0x01; } else {

 if(Error == 0x04)/* Error 4 */

 { SW_44 = 0x00;

 T4 = 0x01; } else {

 if(Error == 0x05)/* Error 5*/

 { SW_55 = 0x00;

 T5 = 0x01; } else {

 if(Error == 0x06)/*Error 6*/

 { SW_66 = 0x00;

 T6 = 0x01; } }}}}

 if (Car1 == 0x00)

 21

 { Two_cycle();

 Forward();

 PORTC = 0b00100100; /* num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02; } else {

 if (Car1 == 0x01)

 { One_cycle();

 Forward();

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02; } else {

 if (Car1 == 0x03)

 { One_cycle();

 Backward();

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02; } else {

 if (Car1 == 0x04)

 { Two_cycle();

 Backward();

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02; } else {

 22

 if (Car1 == 0x05)

 { Three_cycle();

 Backward();

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000); _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 _delay_ms(1000); _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00110000; /* num 3 */

 Car1 = 0x02;} }}}}

 if(PINA == 0x1B)

 { Error = 0x03;/*Error 3 */

 Car1 = 0x02; } else {

 Error = 0x00; /*Error 0*/

 SW_33 = 0x00;

 T3 = 0x00;

 Car1 = 0x02; } }

/*********** Test SW 4 ***********/

 if(PINB == 0x08) /* Test SW 4 */

 { SW_4 = 0x01;

PORTC = 0b00011001; } /* num 4 */

 if (SW_4 == 0x01 & PINB == 0x40)

 { SW_4 = 0x00;

 SW_44 = 0x01; }

 if (SW_44 == 0x01)

{ if(Error == 0x01)/*Error 1 */

 { SW_11 = 0x00;

 T1 = 0x01; } else {

 23

 if(Error == 0x02)/*Error 2*/

 { SW_22 = 0x00;

 T2 = 0x01; } else {

 if(Error == 0x03)/*Error 3*/

 { SW_33 = 0x00;

 T3 = 0x01; } else {

 if(Error == 0x05)/* Error 5 */

 { SW_55 = 0x00;

 T5 = 0x01; } else {

 if(Error == 0x06)/* Error 6*/

 { SW_66 = 0x00;

 T6 = 0x01; } }}}}

 if (Car1 == 0x00)

 { Three_cycle();

 Forward();

 PORTC = 0b00100100; /* num 2 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03; } else {

 if (Car1 == 0x01)

 { Two_cycle();

 Forward();

 24

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03; } else {

 if (Car1 == 0x02)

 { One_cycle();

 Forward();

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03; } else {

 if (Car1 == 0x04)

 { One_cycle();

 Backward();

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03; } else {

 if (Car1 == 0x05)

 { Two_cycle();

 Backward();

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 Car1 = 0x03; } }}}}

 if(PINA == 0x1B)

 { Error = 0x04;/*Error 4*/

 Car1 = 0x03; } else {

 25

 Error = 0x00; /*Error 0;*/

 SW_44 = 0x00;

 T4 = 0x00;

 Car1 = 0x03; } }

/********** Test SW 5 ***********/

 if(PINB == 0x10) /* Test SW 5 */

 { SW_5 = 0x01;

PORTC = 0b00010010; }/* num 5 */

 if (SW_5 == 0x01 & PINB == 0x40)

 { SW_5 = 0x00;

 SW_55 = 0x01; }

 if (SW_55 == 0x01)

 { if(Error == 0x01)/*Error 1 */

 { SW_11 = 0x00;

 T1 = 0x01; } else {

 if(Error == 0x02)/*Error 2*/

 { SW_22 = 0x00;

 T2 = 0x01; } else {

 if(Error == 0x03)/*Error 3*/

 { SW_33 = 0x00;

 T3 = 0x01; } else {

 if(Error == 0x04)/* Error 4 */

 { SW_44 = 0x00;

 T4 = 0x01; } else {

 if(Error == 0x06)/* Error 6*/

 { SW_66 = 0x00;

 T6 = 0x01; } }}}}

 if (Car1 == 0x00)

 26

 { Two_cycle();

 Backward();

 PORTC = 0b00000010; /* num 6 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04; } else{

 if (Car1 == 0x01)

 { Three_cycle();

 Forward();

 PORTC = 0b00110000; /* num 3 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04; } else {

 if (Car1 == 0x02)

 { Two_cycle();

 Forward();

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 27

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04; } else{

 if (Car1 == 0x03)

 { One_cycle();

 Forward();

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04; } else {

 if (Car1 == 0x05)

 { One_cycle();

 Backward();

 PORTC = 0b00010010; /* num 5 */

 Car1 = 0x04; } }}}}

 if(PINA == 0x1B)

 { Error = 0x05;/*Error 5*/

 Car1 = 0x04;

 } else {

 Error = 0x00; /*Error 0 */

 SW_55 = 0x00;

 T5 = 0x00;

 Car1 = 0x04;

 } }

/*********** Test SW 6 ***********/

 if(PINB == 0x20) /* Test SW 6 */

 { SW_6 = 0x01;

PORTC = 0b00000010; }/* num 6 */

if (SW_6 == 0x01 & PINB == 0x40)

 { SW_6 = 0x00;

 SW_66 = 0x01; }

 28

 if (SW_66 == 0x01){

 if(Error == 0x01)/*Error 1 */

 { SW_11 = 0x00;

 T1 = 0x01; } else { if(Error == 0x02)/*Error 2*/

 { SW_22 = 0x00;

 T2 = 0x01; } else {

 if(Error == 0x03)/*Error 3*/

 { SW_33 = 0x00;

 T3 = 0x01; } else {

 if(Error == 0x04)/* Error 4 */

 { SW_44 = 0x00;

 T4 = 0x01; } else {

 if(Error == 0x05)/* Error 5*/

 { SW_55 = 0x00;

 T5 = 0x01; } }}}}

 if (Car1 == 0x00)

 { One_cycle();

 Backward();

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05; } else {

 if (Car1 == 0x01)

 { Two_cycle();

 Backward();

 PORTC = 0b01111001; /* num 1 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 29

 Car1 = 0x05; } else {

 if (Car1 == 0x02)

 { Three_cycle();

 Forward();

 PORTC = 0b00011001; /* num 4 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05; } else {

 if (Car1 == 0x03)

 { Two_cycle();

 Forward();

 PORTC = 0b00010010; /* num 5 */

 _delay_ms(1000);

 _delay_ms(1000);

 _delay_ms(1000);

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05; } else {

 if (Car1 == 0x4)

 { One_cycle();

 Forward();

 PORTC = 0b00000010; /* num 6 */

 Car1 = 0x05; } }}}}

 30

 if(PINA == 0x1B)

 { Error = 0x06;/*Error 6*/

 Car1 = 0x05; } else {

 Error = 0x00; /*Error 0;*/

 SW_66 = 0x00;

 T6 = 0x00;

 Car1 = 0x05;

 } } }}} /* else main */

 void Forward() /* Clokwise */ {

 while(j!=0)

 { j--;

 PORTD = 0b00000011;

 _delay_ms(900);

 PORTD = 0b00001001;

 _delay_ms(900);

 PORTD = 0b00001100;

 _delay_ms(900);

 PORTD = 0b00000110;

 _delay_ms(900); }

 return;

 }

void Backward() /* UN Clokwise */

 { while(j!=0)

 { j--;

 PORTD = 0b00000110;

 _delay_ms(900);

 PORTD = 0b00001100;

 31

 _delay_ms(900);

 PORTD = 0b00001001;

 _delay_ms(900);

 PORTD = 0b00000011;

 _delay_ms(900); }

 return; }

 void One_cycle()

 { j = 85;

 return; }

 void Two_cycle()

 { j = 170;

 return; }

 void Three_cycle()

 { j = 255;

 return; }

