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CHAPTER TWO 

ON THE ANGULAR MOMENTUM OF PHOTONS 

Section (2.1): Introduction   

Setting aside the postulation that the photon’s spin is its intrinsic degree of 
freedom, a notion called correlation between the intrinsic degree of freedom and 
the momentum, the extrinsic degree of freedom, is introduced from the 
transversality condition. Any particular three component wavefunction f that is 
restricted by the transversality condition is expressed in terms of a correlation 
operator 훱 (where 훱 = (푢  푣) )and a two-component wavefuncion 푓. In this way, 
the correlation operator Π plays the role of connecting two different kinds of 
representations. In the so-called Maxwell representation, the wavefunction f 
carries the correlation; the operator of physical quantity does not. In the socalled 
Jones representation, the wavefunction 푓. does not carry the correlation; the 
operator does. Not suffering from any restrictions, 푓, appears to be the 
wavefunction about the intrinsic degree of freedom. Furthermore, the fact that 
the transversality condition cannot completely determine 훱 shows that the 
correlation operator possesses a kind of degree of freedom. So identified 
correlation degree of freedom may take the form of a unit vector I that is 
independent of the wavevector. 

From the point of view of the correlation, it indicates a multiple-to-one 
correspondence between the Maxwell representation and the Jones 
representation. When expressed in the Jones representation, all the physical 
quantities, including the spin and orbital angular momentum (OAM), show up to 
carry the correlation. The spin lies exactly in the wavevector direction, with the 
helicity being the component of newly defined polarization operator in the 
wavevector direction. The OAM about the origin splits into two parts, the OAM of 
the barycenter about the origin and the OAM about the barycenter. The former is 
dependent on the helicity as well as Ι. The correlation degree of freedom I acts as 
a parameter to determine the helicity-dependent barycenter. 

This chapter is concerned with the quantum-mechanical description of 
photon’s angular momentum and related issues. It is known in the first 
quantization theory [1] that the total angular momentum 퐽  consists of the spin 
and the orbital angular momentum (OAM), 
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퐽 = 푆 + 퐿                                                               (2.1) 

The operator of spin 푆  and the operator of OAM 퐿  about the origin can be 
written as 

푆 = ℎ훤                                                                  (2.2푎) 

퐿 = −ℎ푘 × 푋                                                         (2,2푏) 

respectively, where (훤 ) = −푖 ∈   with ∈  the Levi-Civit´a pseudo tensor, 푘 is 
the wavevector, 

푋 = 푖훻                                                                     (2.3) 

is the position operator, and 훻 is the gradient operator in the momentum space 
(k-space). They act on the k-space vector wavefunction 푓(푘, 푡) which satisfies the 
Schrodinger equation, 

푖
휕푓
휕푡

= 푤푓                                                                    (2.4) 

and is restricted by the transversality condition, 

푓 = 0                                                                           (2.5) 

Where 푤 = 푐푘 is the angular frequency, 푘 = |푘| is the wave number, 푤 =  is the 
unit wavevector, superscript † stands for the conjugate transpose, and the 
convention of matrix multiplication is used to denote the scalar product of two 
vectors. The angular frequency w plays the role of Hamiltonian. Equation 
(2.4) together with the transversality condition (2.5) is strictly equivalent to the 
system of free-space Maxwell’s equations [1], [2]. The solution to the Maxwell’s 
equations, 휖(푥, 푡) the real-valued electric field in the position space, is expressed 
in terms of 푓(푘, 푡) by [1], [2] 

휖(푥, 푡) = 푁(휔) 푓푒푥푝(푖푘 ∙ 푋)푑 푘 + 푐                                (2.6) 

Where 푁(휔) = ( )
∈ ( )

⁄
. What should be noted is that [1] it is this electric 

field and the corresponding magnetic field that determine the interaction of the 
photon with the electric charge in the position space. 
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Before the seminal work of Allen and his collaborators [3] on the OAM of 
photons, the above-mentioned separation of total angular momentum into spin 
and orbital parts was known to be physically meaningless [4]. A frequently 
mentioned reason is as follows. The operators of spin and OAM were believed to 
ful ill [5], [6] the following standard commutation relations, 

푆 × 푆 = 푖ℏ푆                                                           (2.7푎) 

퐿 × 퐿 = 푖ℏ퐿                                                           (2.7푏) 

and therefore to be associated [2], [4] with certain kinds of  spatial rotation of the 
wave function. Upon considering  [2], [5] that the rotation generated by either of 
them might ruin the transversality of the wavefunction, the separation of the 
spin from the OAM was thought to be physically meaningless. 

Since the work of Allen et. al. [3], substantial experimental progresses have 
been achieved in distinguishing the difference between the spin and OAM. They 
were found [7], [8] to induce different effects in the interaction with tiny 
birefringent   particles trapped off axis in optical tweezers. The spin angular 
momentum (SAM) makes the particle rotate about its own axis and the OAM 
makes the particle rotate about the axis of the optical beam. The conversion from 
spin to OAM was also observed in anisotropic [9], isotropic [10], and nonlinear 
[11] media. At the same time, much theoretical effort has also been made to 
explain the separation of the spin from the OAM. It showed with paraxial 
Laguerre-Gaussian beams that the OAM is carried by a helical wavefront and the 
spin is carried by the polarization that is denoted by the ellipticity. Nevertheless, 
taking this conclusion as a criterion [12], [13], the separation of the total angular 
momentum into spin and OAM parts was shown to be impossible beyond the 
paraxial approximation. Very recently [14], on the basis of quite a general 
criterion that the SAM is independent of the choice of reference point and the 
OAM is dependent on the choice of reference point, the total angular momentum 
of an arbitrary electromagnetic field was rigorously separated into spin and 
orbital parts. It was shown that [1] the SAM S in a state f was given by the 
expectation value of spin operator (2.2a), 

푆 = 푓 푆 푓푑 푘                                                          (2.8) 
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and the OAM 퐿 about the origin was given by the expectation value of OAM 
operator (2.2b), 

퐿 = 푓 퐿 푓푑 푘                                                           (2.9) 

However, up to now there has not been a well accepted quantum theory to 
explain the separation  of the spin from the OAM. As early as in 1994, van Enk 
and Nienhuis [5] made a valuable attempt to distinguish the spin and OAM in a 
framework of second quantization. They showed that their second-quantization 
operators SEN and LEN for the spin and OAM, respectively, do not satisfy the 
standard commutation relations. Instead, they obtained the following 
commutation relations, 

푆 × 푆 = 0                                                      (2.10푎) 

퐿 × 퐿 = 푖ℎ(퐿 − 푆 )                                           (2.10푏) 

On the other hand, they made every effort to vindicate the commutation relations 
(2.7) for operators 푆  and 퐿  . This is unacceptable upon observing that 
operators 푆   and 퐿  are just the second-quantization counterparts of 
operators 푆  and 퐿  , espectively. After all, commutation relations in quantum 
theory mean nothing but quantization conditions [15]. 

  The purpose of this chapter is to show the develop a quantum theory for 
the angular momentum of photon. It was generally postulated [1, 4] that the spin 
of photon is its intrinsic degree of freedom (IDOF) and the three components of 
wavefunction f represent the “coordinates” of the spin, though the separation of 
the spin from the OAM was in question. But those postulations themselves are 
not without problems. Indeed, noticing that the momentum in the wavefunction f 
represents the photon’s extrinsic degree of freedom, the transversality condition 
(2.5) implies that the three components of f cannot represent the coordinates of 
the photon’s IDOF. This is because, as the notion of IDOF implies, a k-space 
wavefunction about the IDOF must not be subject to any restrictions. The main 
idea of this chapter is to uncover what is hidden beyond the transversality 
condition that is imposed on the wavefunction  푓 . 

Supposing that the three components of 푓 are related somehow to the 
coordinates of the photon’s IDOF, the transversality condition may imply that the 
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IDOF and momentum are not independent of each other. For clarity, such a non-
independence is referred to as the correlation between the IDOF and the 
momentum. In view of this, the three-component wavefunction that is restricted 
by the transversality condition is said to carry the correlation between the IDOF 
and the momentum. If this is true, the concrete forms of the observable operators 
given by Eqs. (2.2) and (2.3) will be misleading, because the spin operator has 
nothing to do with the momentum and the operators of OAM and position 
depend only on the momentum. The primary task of this chapter is to investigate 
whether or not the so-called correlation exists and to explore its physical 
significance. In the remainder of this chapter, the term “correlation” refers only 
to that between the IDOF and the momentum. 

The transversality condition (2.5) makes it possible to express the three-
component wavefunction f in terms of a two-component wavefunction 푓 and a 
quasi unitary matrix 훱. Because 푓  is not subject to any restrictions, its two 
components play the role of representing the coordinates of the photon’s IDOF. 
The quasi unitary matrix 훱 is a 3-by-2 matrix, consisting of two mutually 
orthogonal unit vectors 푢 and 푣 that form a righthand Cartesian coordinate 
system with 휔. It appears to be an operator, called correlation operator, to 
connect two different kinds of representations. In the so-called Maxwell 
representation, the wavefunction 푓 carries the correlation; the observable 
operator does not. The so-called Jones representation does the opposite; the 
wavefunction 푓 does not carry the correlation and the observable operator does. 

Furthermore, the transversality condition itself cannot completely 
determine Π up to a rotation about ω. This shows that the correlation operator 
has some kind of degree of freedom, called correlation degree of freedom, which 
may take the form [16] of a wavevecto rindependent unit vector Ι. What is 
hidden beyond the transversality condition is just this degree of freedom. It 
indicates a multiple-to-one correspondence between the Maxwell representation 
and the Jones representation from the point of view of the correlation. Each 
Maxwell representation is characterized by one specific value of the correlation 
degree of freedom [17]. The main results of this chapter are as follows. 

The correlation operator Π is introduced in Section (2.2). The local 
Cartesian coordinate system uvwis shown in Section (2.3)  to be the natural 
coordinate system to describe the IDOF that is represented in the Jones 
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representation by the Pauli matrices. On this basis, a matrix vector, called 
“polarization” operator, is introduced to explicitly express the correlation. The 
spin is not the IDOF. Carrying the correlation, it lies exactly in the wavevector 
direction, with the helicity being the component of the polarization vector in the 
wavevector direction.  This is discussed in section (2.4) and is shown that the 
operator of position vector relative to the origin in the Jones representation 
splits into two parts, the position vector of the barycenter relative to the origin 
and the position vector relative to the barycenter. The former depends on the 
helicity, though the latter does not. The role of Ι comes out to define the helicity-
dependent barycenter [16], [18]. Also, shown that the operator of OAM about  the 
origin also splits into two parts, the OAM of the barycenter about the origin and 
the OAM about the barycenter. The former also depends on the helicity as well as 
I [14]. As an application, in addition discussed the effect of I on the 
eigenfunctions in the complete orthonormal set of Maxwell representation. 

Section (2.2): From Transversality to the Operator of Correlation 

         Based on the transversality condition (2.5), the wavefunction 푓 can be 
expanded in terms of two time-independent mutually orthogonal base vectors as 

푓 = 푓 푢 + 푓 푣                                                          (2.11) 

Where for simplicity the base vectors u and v are supposed to be real-valued and 
to form a right hand Cartesian coordinate system with ω, satisfying the following 
requirements, 

푉 푢 = 푊 푣 = 푢 푤 = 0                                           (2.12푎) 

|푢| = |푣| = 1                                                     (2.12푏) 

푢 × 푣 = 푤                                                         (2.12푐) 

and the superscript T stands for the transpose. Convert Eq. (2.11) into a compact 
form, 

     푓 = 훱푓                                                                   (2.13) 

Where 

 훱 = (푢  푣)                                                                 (2.14) 
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is a 3-by-2 matrix upon noticing that u and v are column vectors of three 
components. Remembering that 푓 is perpendicular to 푤, the two-component 

wavefunction 푓 = 푓
푓  is the mapping of 푓 on the local coordinate system 

푢푣푤 .Substituting Eq. (2.13) into Eq. (2.4), we arrive at 

푖
휕푓
휕푡

= 휔푓                                                                   (2.15) 

Which is the Schr¨odinger equation for the two-component wavefunction 푓. 
Obviously, Eq. (2.15) together with Eq. (2.13) is equivalent to the system of free-
space Maxwell’s equations. The matrix ∏ in Eq. (2.13) performs a quasi unitary 
transformation in the following sense.  

Firstly, it fulfills 

∏ ∏  = 퐼                                                             (2.16) 

So that keeps unchanged the norm of a wavefunction under the transformation, 

푓 푓 = 푓 푓 

Where 퐼  stands for the 2-by-2 unit matrix. Secondly, we readily obtain from Eqs. 
(2.13) and (2.16) 

푓   = ∏ 푓                                                                (2.17)  

meaning that ∏  transforms a three-component wavefunction into a two-
component wavefunction. Substituting Eq. (2.17) into Eq. (2.13) and taking into 
account the arbitrariness of wavefunction  , we have 

∏∏ = 퐼                                                            (2.18) 

Where 퐼  stands  for the 3-by-3 unit matrix. Eqs. (2.16) and (2.18) express the 
quasi unitarity [19] of the transformation matrix ∏ . ∏   is the Moore-Penrose 
pseudo inverse of  ∏ , and vise versa. 

Distinct from the three-component wave function 푓, the two-component 
wave function  푓 does not suffer from any restrictions. Therefore, it does not 
carry the correlation. Its components, 푓 and 푓 play the role of representing the 
coordinates of the IDOF. It is worth emphasizing that 푓  is the mapping of f onto 
the local coordinate system 푢푣푤. That is to say, 푓 is defined on the local 
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coordinate system. 푓  and 푓 cannot be the Cartesian components of  푓 in the 
laboratory coordinate system. The quasi unitarity of ∏   guarantees that all the 
two-component wave functions obtained via Eq. (2.17) form a representation. 
Noticing that the two-component wavefunction is just the Jones vector [20] for 
the plane-wave component of  푓 at  wave vector 푘, this representation will be 
referred to as the Jones representation, and the two-component wave function 
will be referred to as the Jones wave function. 

That the Jones wave function does not carry the correlation would not 
mean that the IDOF is independent of the momentum in the Jones 
representation. As a matter of fact, substituting Eq. (2.13) into Eq. (2.8) and 
noticing Eq. (2.2a), we express the expectation value of the SAM in terms of the 
Jones wave function as 

푆̅ = 푓 푆 푓푑 푘 

Where 

  푆 = ∏ 푆 ∏  = ℎ∏ 훤 ∏                                           (2.19)  

is interpreted as the operator of spin in the Jones representation. Considering 
that the operator  푆  given by Eq. (2.2a) is independent of the momentum, the 
operator  푆  must not be. In other words, it must carry the correlation. For the 
sake of clarity, the three-component wave function f will be referred to as the 
Maxwell wave function, and the representation consisting of all the Maxwell 
wave functions will be referred to as the Maxwell representation. In view of this, 
the operator 푆  is interpreted as the operator of spin in the Maxwell 
representation. Just the same, the operator   퐿  given by (2.2b) and the operator 
푋  given by Eq. (2.3) are interpreted as the operators of OAM and position, 
respectively, in the Maxwell representation. Substituting Eq. (2.13) into Eq. (2.9), 
we have 

퐿 = 푓 퐿 푓푑 푘 

Where 퐿 = ∏ 퐿 ∏  is the operator of OAM in the Jones representation. Since 
the momentum operator itself in k-space appears to be a 푐 number, 퐿  can be 
expressed as 
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퐿 = −ℎ푘 × 푋                                                        (2.20) 

In terms of the operator of position in the Jones representation, 

푋 =  ∏ 푋 ∏                                                     (2.21) 

Because both 퐿  and 푋 depend only on the momentum, it follows that both 
퐿  and  푋  must depend on the momentum as well as the IDOF. That is, they must 
carry the correlation. 

In a word, the quasi unitary matrix in Eq. (2.13) acts as the operator of 
correlation to connect two different kinds of representations. In the Maxwell 
representation, the wave function carries the correlation; the operator of 
physical observable does not. The Jones representation does just the opposite; 
the  wave function does not carry the correlation and the operator does. 

Section (2.3): IDOF and its Correlation with the Momentum 

A well known two-component notion in classical optics is the Jones vector 
[20], from which the Stokes parameters [21] are de ined in terms of the Pauli 
matrices to describe the state of polarization of a vector plane wave. The Stokes 
parameters constitute a vector that corresponds to one point on the Poincar´e 
sphere. But little attention has been paid to the question of what is meant by the 
direction of that vector. In this section we will show, by generalizing the concept 
of Stokes parameters from a vector plane wave to any Maxwell wave function 푓, 
that the photon’s IDOF in the Jones representation is represented by the Pauli 
matrices but should be understood in the local coordinate system 푢푣휔. Due to 
this reason, the local coordinate system is regarded as the inner coordinate 
system for the IDOF. In addition, a new kind of degree of freedom is needed to 
characterize the inner coordinate system in the laboratory coordinate system. 
This kind of degree of freedom, representable as a unit vector, determines how 
the IDOF is correlated with the momentum. 

(2.3.1):IDOF is a Notion that is Defined in the Inner Coordinate System 

IDOF is represented by the Pauli matrices in the Jones representation. As 
mentioned before, the Jones wave function 푓 (k) given by Eq. (2.17) is the 
mapping of the Maxwell wave function 푓 onto the local coordinate system 푢푣휔. It 
is nothing but the Jones vector for the plane-wave component of  푓 at wave 
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vector 푘. Generalizing the Stoke parameters of a vector plane wave [20], [21], we 
define the Stokes parameters of any Maxwell  wavefunction  푓 in terms of the 
corresponding Jones wave function 푓and the Pauli matrices as 

푠 = 푓 휎 푓 , 푖 = 1,2,3                                                (2.22) 

Where 휎  ’s are the Pauli matrices, 

휎 = 1     0
0  − 1  , 휎 = 0     1

1     0  , 휎 = 0     − 푖
푖       0                 (2.23) 

Considering that the Jones wave function does not carry the correlation and that 
the Pauli matrices have nothing to do with the momentum, it is reasonable to 
think that the Pauli matrices (2.23) represent the IDOF of the photon in the Jones 
representation. 

The correlation operator ∏ given by Eq. (2.14) consists of the unit vectors 
along the transverse axes of the local coordinate system 푢푣휔. But this coordinate 
system cannot be completely determined by the requirements (2.12) that 
originate from the transversality condition, up to a rotation about 휔 [22]. 
Consider a new correlation operator, 

∏∕ = 푢∕ 푣∕                                                             (2.24) 

The base vectors of which are assumed to be related with those of the old one by 
a rotation about w through an angle 휙 that is w-dependent, 

푢∕ = 푢 푐표푠 ∅ + 푣 푠푖푛 ∅                                         (2.25푎)                             

푣∕ = −푢 푠푖푛 ∅ + 푣 푐표푠 ∅                                       (2.25푏)  

These two equations may be integrated into a single equation of the following 
form, 

∏ = ∏퐷                                                             (2.26)                                              

by a 2-by-2 rotation matrix 

퐷 = 푐표푠 ∅     − 푠푖푛 ∅
푠푖푛 ∅        푐표푠 ∅  

So the correlation operator has some kind of degree of freedom. It is the degree 
of freedom to choose the local coordinate system. What is hidden beyond the 
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transversality condition is just this kind of degree of freedom, which will be 
referred to as the correlation degree of freedom. 

(2.3.2): The  Maxwell  Representation  is  Characterized  by the  Correlation  
Degree of  Freedom 

Now that the Jones representation is connected with the Maxwell 
representation by the correlation operator, the existence of the correlation 
degree of freedom means that we cannot have a one-to-one correspondence 
between the Maxwell wavefunction and the Jones wavefunction. Either one Jones 
representation corresponds via Eq. (2.13) to multiple Maxwell representations, 
or one Maxwell representation corresponds via Eq. (2.17) to multiple Jones 
representations. Remembering that the Jones wavefunction does not carry the 
correlation, the Jones representation should be regarded as onefold from the 
point of view of correlation. As a result, the corresponding Maxwell 
representation is multi-fold. Any specific correlation operator that is determined 
by the correlation degree of freedom will transform, via Eq. (2.13), the Jones 
representation into a corresponding Maxwell representation. In other words, the 
multi-fold Maxwell representation is characterized by the correlation degree of 
freedom. 

On the other hand, Eq. (2.13) also means that a given Maxwell wave 
function can be expressed in terms of different correlation operators. That is to 
say, a given Maxwell wave function can be expressed in different Maxwell 
representations. In view of this, different Maxwell representations are said to be 
equivalent. It is worth noting that when expressed in different Maxwell 
representations, a given Maxwell wave function will manifest different 
correlation characterizations and thus correspond to different Jones wave 
functions and different sets of Stokes parameters. Indeed, the pseudo inverse of 
the new correlation operator (2.24) transforms the same Maxwell wave function 
f into a new Jones wave function, 

푓 = ∏ 푓                                                            (2.27) 

Substituting Eqs. (2.26) and (2.13) and making use of Eq. (2.16), we obtain 

푓 = 퐷 푓                                                              (2.28) 
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Since rotation matrix 퐷 is in general dependent on the wavevector, 푓 is 
essentially different from 푓. By definition (2.22), this new Jones wavefunction 
gives a new set of Stokes parameters, 

푆 = 푓 휎 푓                                                              (2.29) 

Substituting Eq. (2.28) into Eq. (2.29) and making use of Eqs. (2.22), we have 

푆 = 푠 푐표푠 2∅ + 푠 푠푖푛 2∅                                     (2.30푎) 

푆 = −푠 푠푖푛 2∅ + 푠 푐표푠 2∅                                  (2.30푏) 

푆 = 푠                                                        (2.30푐) 

These relations imply that the local coordinate system 푢푣휔 in association with a 
particular Maxwell representation acts as the natural coordinate system for the 
IDOF, as we will show below. 

(2.3.3): Local  Coordinate  System  풖풗흎  as  the Natural  Coordinate  System  for 
the   IDOF 

To this end, let us first recall that the three Pauli matrices  휎  form a vector 
quantity [23]. That is to say, the IDOF that is represented by the Pauli matrices in 
the  Jones representation is a vector. Then we observe that the matrix of rotation 
about w can be expressed in terms of the Pauli matrix 휎  as 

퐷 = 푒푥푝(−푖휎 ∅)                                                        (2.31) 

This means that 휎   is the component of the IDOF in the wave vector direction, 
which is in consistency with Eq. (2.30c). Furthermore, we remember that the 
three Pauli matrices fulfill the commutation relations 

휎  , 휎 = 2푖 ∈ 휎                                                (2.32) 

A comparison of Eq. (2.32) with Eq. (2.12c) shows that 휎  and 휎  are the 
components of the IDOF along the axes 푢 and 푣 of the coordinate system 푢푣휔, 
respectively. In other words, the local coordinate system 푢푣휔 appears to be the 
natural Cartesian coordinate system for the IDOF no matter how the local 
coordinate system is chosen. In view of this, it is reasonable to regard the local 
coordinate system as the inner coordinate system for the IDOF. 
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After figuring out the property of the IDOF, we are in a position to explain the 
meaning of the correlation and the origin of the correlation degree of freedom. 

(2.3.4): Polarization as a Notion to Express the Correlation 

            Now that the local coordinate system 푢푣휔 is the inner coordinate system 
to describe the IDOF, when described in the laboratory coordinate system, the 
vector of the IDOF will assume the following form in the Jones representation, 

휎 = 휎 푢 + 휎 푣 + 휎 푤.                                  (2.33) 

Clearly, it is indeterminate unless a particular inner coordinate system is chosen 
in the laboratory coordinate system, or equivalently, a particular Maxwell 
representation is chosen. This matrix vector explicitly expresses the correlation 
of the IDOF with the momentum. Given a Jones wavefunction  푓 that corresponds 
to a Maxwell wavefunction f in a particular Maxwell representation, we introduce 
the so-called Stokes vector [20] as follows, 

푠 = 푓 휎푓 = 푠 푢 + 푠 푣 + 푠 푤                                      (2.34) 

Where 푠  ’s are the Stokes parameters given by Eqs. (2.22). Remembering that 
the role of the Stokes vector in classical optics is to describe the polarization 
state of a plane wave, the matrix vector (2.33) is simply referred to as the 
operator of “polarization” [24]. It is worth pointing out that the Stokes vector is 
also dependent on the choice of the Maxwell representation, except for the 
component in the wavevector direction. In fact, in the new Maxwell 
representation that is associated with the new inner coordinate system 푢 푣 휔, 
the polarization vector (2.33) reads 

휎 = 휎 푢 + 휎 푣 + 휎 푤 

the Stokes vector for the same Maxwell wavefunction is given by 

푠 = 푓 휎 푓 = 푠 푢 + 푠 푣 + 푠 푤 

Substituting Eqs. (2.25) and (2.30) into it, we ind 

푠 = (푠 푐표푠 ∅ + 푠 푠푖푛 ∅)푢 + (푠 푐표푠 ∅ − 푠 푠푖푛 ∅)푣 + 푠 푤 

So far we have explained why the IDOF is correlated with the momentum and 
have shown that the polarization vector introduced here is dependent on the 
choice of the Maxwell representation, or the correlation degree of freedom. Of 
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course, once the correlation degree of freedom is specified, the polarization 
vector as well as the Stokes parameters is well defined. In order to explore the 
physical significance of the correlation, it is necessary to represent the 
correlation degree of freedom explicitly. 

(2.3.5): Representation  of  Correlation  Degree of Freedom in Terms of a Unit 
Vector 

        As observed previously, the correlation degree of freedom is the degree of 
freedom to choose the inner coordinate system 푢푣휔  in the laboratory coordinate 
system. In an effort [16, 17] to formulate a representation theory for vector 
electromagnetic beams, it was once shown that the transverse axes u and v of the 
inner coordinate system can be completely determined by a wave vector 
independent unit vector 퐼 in the following way, 

푢(퐼) = 푣 ×  , 푣(퐼) = ×
| × |

                                         (2.35)                            

This shows that so introduced unit vector 퐼  plays the role of representing the 
correlation degree of freedom. Now we will consider only this correlation degree 
of freedom and denote the correlation operator explicitly by ∏(퐼). Once the 
Maxwell representation is specified by one particular value of the correlation 
degree of freedom 퐼, to each Jones wavefunction 푓 that is defined in the inner 
coordinate system, there will correspond a Maxwell wavefunction that is defined 
in the laboratory coordinate system through the following quasi unitary 
transformation, 

푓 = ∏(퐼)푓                                                              (2.36)                                        

It is worth mentioning that even when the correlation degree of freedom 훪 is 
specified, we still have a degree of freedom to choose the correlation operator. 
This is because the base vectors that make up of the correlation operator are not 
necessarily real valued. It is needless to say that the concrete appearance of the 
Pauli matrices (2.23) depends on the speci ic form of the correlation operator 
(2.14). If we change the form of the correlation operator by altering its base 
vectors, the appearance of the Pauli matrices are expected to change accordingly. 

Now we are ready to examine the physical significance of the correlation in the 
Jones representation. 
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Section (2.4): Sam is Aligned with the Wave Vector Direction 

        The spin operator in the Jones representation is given by Eq. (2.19). Let us 
decompose the vector operator 훤 in the inner coordinate system 푢푣휔 as 

훤 = 푢(푢 푇) + 푣(푣 푇) + 푤(푤 푇) 

Substituting it into Eq. (2.19) and making use of properties (2.12), we get 

푆 = 푤ℎ휎                                                                  (2.37) 

Where 휎  is given in Eqs. (23) and is related to 훤 through 

휎 = ∏ (푤 푇)∏                                               (2.38) 

Eq. (2.37) shows that the spin is neither purely intrinsic nor purely extrinsic 
degree of freedom. It manifests the correlation of the IDOF with the momentum 
in such a way that it lies entirely along the direction of wavevector, with 휎  being 
the operator of helicity in the Jones representation. But it does not depend on the 
correlation degree of freedom. 

From Eq. (2.37) it follows that different Cartesian component of the spin 
commute, 

푆 × 푆 = 0                                                          (2.39) 

This is in agreement with the observation of van Enk and Nienhuis [5]. Besides, 
the spin is a constant of motion, because the momentum and helicity are 
constants of motion. 

Being a quantization condition, a commutation relation should not be 
dependent on the choice of representation. So it is expected from Eq. (2.39) that 
the spin operator 푆  in the Maxwell representation satisfies 

푆 × 푆 = 0                                                         (2.40) 

Indeed, when the quasi unitarities (2.16) and (2.18) are taken into account, it is 
not difficult to find from Eqs. (2.19) and (2.37) that   푆 = ℎ푤훱휎 훱 . Since 

훱휎 훱 = 푊 푇                                                    (2.41) 

as can be seen from Eq. (2.38), we inally have 
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푆 = ℎ푤(푊 푇)                                                    (2.42) 

Obviously, it fulfills commutation relation (2.40). A comparison of Eq. (2.42) with 
Eq. (2.2a) shows that the transversality condition makes the transverse 
components of  훤 vanishes completely [6]. 

Next, we turn our attention to the OAM. Since the momentum operator in 푘-space 
is a 푐 -number, we start with the position operator. 

(2.4.1): Correlation  Degree of  Freedom  Defines  Helicity  Dependent Barycenter 

Substituting  Eqs. (2.14) and (35) into Eq. (2.21) yields, after straightforward 
calculation, 

푋 = 훯 + 휉                                                            (2.43) 

 

Where 

훯 =
퐼 ∙ 푘

푘|퐼 × 푘| 푣휎 ≡ 퐴(퐼, 푘)휎                                  (2.44) 

퐴 = ∙
| × |

푣, and 휉 = 푖훻 that is defined in the Jones representation. The position 

operator in the Jones representation splits into two terms. The first term 훯 is 
neither purely extrinsic nor purely intrinsic degree of freedom. It is 
perpendicular to the wavevector. Its Cartesian components commute with one 
another,  훯 × 훯 = 0. Moreover, it commutes with the Hamiltonian 휔. So this term 
can be regarded as denoting some reference point relative to the origin. The 
second term 휉 is an ordinary gradient operator in k-space. Because the 
wavefunction in the Jones representation is not subject to any restrictions, this 
term fulfills the canonical commutation relations, 

휉 × 휉 = 0                                                                  (2.45) 

Obviously, it has nothing to do with the IDOF, having the meaning of position 
vector relative to the reference point. Because the momentum 푝 also fulfills the 
canonical commutation relations, 

푝 × 푝 = 0                                                                (2.46) 
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휉 appears to be the generalized coordinate that is conjugate to the momentum 
and fulfills the following canonical commutation relations with the momentum, 

휉 ,푃 = 푖ℎ훿                                                          (2.47) 

To understand the meaning of the reference point denoted by 훯, let us examine 
its eigen state that is described by wavefunction 

푓 , (푘) = 훼 훿 (푘 − 푘 )푒푥푝(−푖휔 푡)                                 (2.48) 

Where 훾 = ±1 are the eigenvalues of helicity operator 휎  having eigenfunctions 

훼 =
√

1
푖  푎푛푑 훼 =

√
푖
1                                        (2.49)   

respectively, 푘  is the eigenvalue of the momentum, 휔 = 푐푘 , and 푘 = |푘 ||. On 
one hand, the expectation value of  휉 in the eigen state (2.48) vanishes, 

〈휉〉 = 푓 , 휉푓 , 푑 푘 = 0                                     (2.50) 

On the other hand, to each specific eigen state indexed by 훾 and 푘 , there 
corresponds an eigenvalue of 훯 , 

훯 , =
훾퐼 ∙ 푘

푘 |퐼 × 푘 | 푣                                                       (2.51) 

Where 푣 = ×
| × |

 . We see that the eigenvalue (2.51) represents the position of 

the center of mass [6], [25] or the position of the barycenter. In the following we 
will refer to the reference point denoted by 훯 explicitly as the barycenter. It can 
be understood as the manifestation of the correlation between the IDOF and the 
momentum in the position operator. But different from the spin operator (2.37), 
so defined barycenter (2.44) is not determinable solely by the IDOF and the 
momentum. It also depends on the way the IDOF is correlated with the 
momentum. So it has an unambiguous dependence on the correlation degree of 
freedom. This explains why the so-called spin Hall effect of photon [26] can be 
expounded [18] in terms of this degree of freedom. 

        Due to the correlation of the IDOF with the momentum, the notion of 
position for the photon is no longer a purely extrinsic degree of freedom. It is no 
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wonder why its Cartesian components do not commute with one another 
[6], [27]. Straightforward calculations give  

푋 × 푋 = 푖(훻 × 퐴)휎                                                       (2.52)                                  

So it cannot be regarded as the generalized coordinate that is conjugate to the 
momentum [2]. 

(2.4.2): OAM is Dependent on Helicity 

Substituting Eq. (2.43) into Eq. (2.20), we ind that the OAM in the Jones 
representation splits into two parts, 

퐿 = 훬 + ℷ                                                               (2.53) 

The first part is = ℎ훯 × 푘 , which has the meaning of the OAM of the barycenter 
about the origin. With the help of Eq. (2.44), it becomes 

훬 = ℎ
퐼 ∙ 푘

|퐼 × 푘| 푢휎                                                     (2.54) 

Clearly, it is perpendicular to the wavevector. It depends not only on the extrinsic 
and intrinsic degrees of freedom but also on the correlation degree of freedom. 
Like 훯, it commutes with the Hamiltonian,   

[훬, 휔] = 0                                                             (2.55) 

and its Cartesian components in the laboratory coordinate system commute with 
one another, 

훬 × 훬 = 0                                                            (2.56) 

The second part is 휆 = −ℎ푘 × 휉 which is interpreted as the OAM about the 
barycenter. Being commuting with the Hamiltonian 

[휆, 휔] = 0                                                             (2.57) 

It is a constant of motion. Since 휉 and the momentum fulfill the canonical 
commutation relations (2.47), this part satis ies the standard commutation 
relations, 

휆 × 휆 = 푖ℎ휆                                                         (2.58) 
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The entire OAM about the origin is thus the OAM of the barycenter about the 
origin plus the OAM about the barycenter. According to Eqs. (2.55) and (2.57), 
the entire OAM commutes with the Hamiltonian, 

퐿 , 휔 = 0 

But a straightforward calculation yields    

퐿 × 퐿 = 푖ℎ 퐿 − S   

where  푆  is the SAM given by Eq. (2.37). Contrary to van Enk and Nienhuis’ claim 
[5], the entire OAM in the irst quantization theory does not satisfy the standard 
commutation relations (2.7b). Furthermore, the entire OAM and the SAM do not 
commute. They fulfill the following commutation relations, 

퐿 × 푆 = 푖ℎ푆                                                         (2.59) 

At last, let us have a look at the total angular momentum in the Jones 
representation, 퐽 = 푆 + 퐿 . Clearly, it commutes with the Hamiltonian. 
According to Eqs. (2.37), (2.53), and (2.54), it has the form of 

퐽 = ℎ휎
퐼 × 푣
퐼 ∙ 푣

+ 휆                                                   (2.60) 

which shows a very interesting property that the component of  퐽  in the 
direction of  퐼  does not depend on the IDOF and is equal to the component of  휆 
in the same direction. In addition, it follows from Eqs. (2.56), (2.58), and (2.59) 
that the total angular momentum satisfies the standard commutation relations, 

퐽 × 퐽 = 푖ℎ퐽  

(2.4.3): Implication of the Correlation Degree of Freedom on the Complete  

              Orthonormal Set of Maxwell Representation 

In quantum mechanics, any state function can be expanded in terms of a 
complete orthonormal set of eigenfunctions. According to Eq. (2.13), the 
complete orthonormal set for the Maxwell representation can be obtained from 
the complete orthonormal set for the Jones representation. On the basis of 
commutation relations (2.32) and the properties of observable operators 
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discussed in Section (2.3), the elements of the complete orthonormal set for the 
Jones representation can be written as 

푓 , = 훼 푓                                                              (2.61) 

where 훼 ’s are given by Eqs. (2.49), 푓 ’s are the eigenfunctions of the maximal set 
of commuting observables that depend only on the extrinsic degree of freedom, 
and the suffix 푒  stands for the collection of relevant quantum numbers. 

However, the elements of the complete orthonormal set for the Maxwell 
representation are not so simple, due to the multiple-to-one correspondence 
between the Maxwell representation and the Jones representation. In accordance 
with Eq. (2.36), each Maxwell representation has its own complete orthonormal 
set, the elements of which have to be characterized, in addition to the above-
mentioned quantum numbers 훾 and 푒 , by the correlation degree of freedom, 

푓 , , = 훱(퐼)푓 , = 퐴 , 푓                                            (2.62) 

where  퐴 , = 훱(퐼)훼 . It is remarked that though 퐴 ,   is the eigen function of the 
helicity operator 푤 푇 in the Maxwell representation regardless of how the 
correlation degree of freedom is chosen, the correlation degree of freedom 
determines the helicity-dependent barycenter as was revealed in Section (2.4). 
Here let us appreciate the observable effect of the correlation degree of freedom 
from the point of view of the Maxwell wave function. 

        The eigen function in a specific Maxwell representation that corresponds to a 
particular eigen function   푓 ,  in the Jones representation is given by Eq. (2.62). 
In a different Maxwell representation that is denoted by 퐼  the eigenfunction that 
corresponds to the same eigenfunction in the Jones representation reads 

푓  , , = 훱(퐼  )푓 ,  

Making use of Eqs. (2.26) and (2.31) and noticing that 푓 ,   is the eigen function 
of 휎 with eigenvalue 훾, we get 

푓  , , = 푒푥푝(−푖훾∅)푓  , ,                                               (2.63) 

푓  , ,  is different from 푓  , ,  by a wave vector-dependent phase factor. Upon 
taking Eq. (2.6) into account, we see that they are physically different. 
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As for the factor 푓  that depends only on the extrinsic degree of freedom, 
we may have different choices on the basis of the discussions in subsections 
(2.4.1) and (2.4.2). Three different kinds of schemes are presented below. 

 

(1) Plane waves  

    In the first place, according to commutation relations (2.46), we may choose 
푝 , 푝 , and 푝 as the maximal set of commuting observables. Denoting by 푘 the 
eigen momentum, 푒 = 푘 , we have for the eigenfunction, 

푓  = 훿(푘 − 푘 )푒푥푝(−푖휔 푡) 

This is the case that we discussed in Section (2.4). 

(2) Spherical surface harmonics: 

               According to commutation relations (2.57) and (2.58), a second choice 
for the maximal set of commuting observables is to select 휔, 휆 , and 휆  = −푖ℎ  . 

It is well known that the common normalized eigen functions of 휆  and 휆  in k-
space are the spherical harmonic functions [2], 

푌 (푤) = ( )!
( )!

= 푃 (푐표푠 휗)푒   

Which satisfy the following eigen value equations, 

휆 푌 = 푙(푙 + 1)ℎ 푌  , 푙 = 0,1,2 …                               (2.64푎)                           

휆 푌 = 푚ℎ푌  , 푚 = ±1, ±2, … ± 푙                                 (2.64푏) 

Their orthonormal relations assume the form 

푌∗ 푌 푑훺 = 훿 훿  

Letting be 휔 = 푐푘  the eigen energy, it is easy to show that the expected 
eigenfunction has the form of 

푓 =
훿(푘 − 푘 )

푘
푌 (푤)푒푥푝(−푖휔 푡)                                (2.65) 
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Where 푒 = {휔 , 푙, 푚}. They constitute a complete set and have the following 
orthonormality 

푓∗ 푓 푑 푘 = 훿(푘 − 푘 )훿 훿  

Where 푒 = {휔 , 푙 , 푚 } and 휔 = 푐푘 . 

(3) Non-diffraction beams 

Noticing that 휆  and 푝  commute and they are constants of motion, a third 
choice is to select 휔,  푝 , and 휆   as the maximal set of commuting observables. It 
is known that 푝  and 휆  have the following normalized eigenfunctions in 
cylindrical coordinates, 

푋 , =
1

√2휋
훿(푘 − 푘 )푒 , 푚 = ±1, ±2 … 

With eigenvalues 푘  and 푚ℎ, respectively. The common eigenfunctions of 휔 , 푝 , 
and 휆  are given by 

푓 =
푘

푘푝
훿 푘 − 푘 X exp(−iω t)                                (2.66) 

Where 푒 = {휔 , 푘 , 푚} and 푘 = (푘 − 푘 ) . They satisfy the following 
orthonormal relations, 

f ∗ f k dk dφdk = δ(k − k )δ(k − k )δ  

The complete orthonormal set for each Maxwell representation that is obtained 
by substituting Eq. (2.66) into Eq. (2.62) is basically the complete orthonormal 
set of vector diffraction-free beams in position space [17]. 

Section (2.5): Conclusions 

In conclusion, the transversality condition that is imposed on the Maxwell 
wave function not only indicates the correlation of photon’s IDOF with its 
momentum but also implies a correlation degree of freedom that has observable 
effects. In the Jones representation in which the wave function does not carry the 
correlation, the IDOF is represented by the Pauli matrices. To explicitly express 
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the correlation, the operator of polarization vector is introduced. It reduces to 
the known meaning of polarization in the case of a single plane wave. It is shown 
in the Jones representation that all the physical quantities, including the SAM, 
carry the correlation. The role of the correlation degree of freedom is to 
determine the photon’s barycenter. The spin is aligned exactly with the wave 
vector direction. The helicity is the component of the polarization vector in the 
wave vector direction. The OAM about the origin splits into two parts. One is the 
OAM of the barycenter about the origin. The other is the OAM about the 
barycenter. 

      Both the spin and OAM do not fulfill the standard commutation relations, even 
in the first quantization theory. So neither of them can be regarded as a 
generator of spatial  rotation. Obviously, they are separable, though they both 
depend on the helicity. The spin has nothing to do with the correlation degree of 
freedom. The OAM has one term that depends on the correlation degree of 
freedom. 


