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CHAPTER FIVE 

AXIOMATIC GEOMETRICAL OPTICS 

Section (5.1): Geometric Phases in Physics 

Suppose a system undergoes an evolution so that after some time it 
returns to its original state. We shall call such an evolution a cyclic evolution. If 
the system is classical, then it is impossible to say from its initial and final states 
that it has undergone any evolution. However, the wave function of a quantal 
system retains a memory of its motion in the form of a geometric phase factor. 
This phase factor can be measured by  interfering the wave function with 
another Coherent wave function enabling one to discern whether or not the 
system has undergone an evolution. Therefore geometric phase factors are 
‘signatures’ of quantum motion. The  adjective ‘geometric’ emphasizes that such 
phase factors depend only on the loop in the quantum mechanical  state space 
the set of rays of the Hilbert space, sometimes  called the projective Hilbert 
space. In particular, geometric phases are independent of parameterization of 
the path in the projective Hilbert space, and therefore of the speed at which it has 
been traversed. 

As early as 1956 [37], in  phase  shifts in non-quantal polarized light [38], 
S. Pancharatnam anticipated the quantal geometric phases. He studied the 
problem of determining the phase change undergone by polarized light after it 
has passed through a sequence of polarizers such that its final polarization is the 
same as its initial polarization. To describe how the phase of polarized light 
changes under passage through a polarizer, Pancharatnam needed to define the 
phase difference between two different polarization states. He reasoned that the 
most natural way to accomplish this task is to ask what would happen if two such 
states were brought to interfere with each other, and accordingly he proposed 
the following definition: the polarization states of any two monochromatic 
beams of light with the same  moment are in phase if the superposition of the 
two has the maximum possible intensity. Let |퐴〉 and |퐵〉 represent the 
polarization state-vectors of photons in the two beams. Since the intensity of 
their superposition is proportional to 
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(〈퐴| + 〈퐵|) + (|퐴〉 + |퐵〉) = 2 + 2|⟨퐴|퐵⟩| cos{푝ℎ⟨퐴|퐵⟩}              (5.1) 

according to his convention  |퐴〉 and |퐵〉 are in phase when their scalar product 
⟨퐴|퐵⟩ is real and positive, or equivalently, when  푝ℎ⟨퐴|퐵⟩ = 0. Incidentally, since 
orthogonal states do not interfere, this convention breaks down for such states, 
and the phase difference between them remains undefined. In the general case of 
non orthogonal states, it is natural to identify the phase difference between |퐴〉 
and |퐵〉with the phase 푝ℎ⟨퐴|퐵⟩ of their scalar product. 

Pancharatnam used this  definition of the phase  difference to analyze an 
experiment involving  a sequence of changes in  polarization of a beam of 
classical light by  sending it  through suitable polarizers. His experiment 
consisted of  three sequential changes in  polarization, from |퐴〉  to |퐵〉  to |퐶〉 and 
back to a state |퐴 〉  of the initial  polarization. It is easy to show that in such a 
scheme  each  successive state remains in  phase with the previous one. Now, the 
label A used here to describe a state of a polarized wave of  light represents a set 
of values (the eigenvalues of a complete set of commuting observables) required 
to specify  this state uniquely. In Pancharatnam’s  experiment all but one of these 
values  including the one that specifies the  polarization  were returned  to their 
original values, with the phase of polarization being the only exception. Thus, 
Pancharatnam’s  evolution was not cyclic in the sense  described above. Indeed, 
in what follows, the classical phase difference he observed will be shown to come 
from  the quantum  mechanical phase difference between the initial and final 
one-photon states, 

⟨휓|휓 ⟩ = 푒                                                        (5.2) 

Where 훼 is the solid angle subtended by the geodesic triangle ABC on the 
Poincar´e sphere (whose points, as is well-known, represent all conceivable 
forms of polarization states). For simplicity, we ignore the dynamical phase 
difference due to the fixed frequency of the photon. Remarkably enough, 
Pancharatnam not only anticipated the quantal geometric phases, but also was 
able to corroborate his theory experimentally. 
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Another geometric phase given by a solid-angle formula analogous to (5.2) 
was put forward in 1984 by M.V. Berry (who was unaware of Pancharatnam’s 
work). He investigated the nonrelativistic Schrödinger evolution 

푖
푑
푑푡

휓(푡)〉 = 퐻 푅(푡) |휓(푡)〉                                             (5.3) 

of a quantal system in a slowly changing environment described by a set of N 
time-dependent parameters 푅(푡) = 푅 (푡), 푅 (푡), … , 푅 (푡) , , with the initial 
state 

|휓(0)〉 = |푛; 푅(0)〉                                                        (5.4)  

being the stationary  state given  by the time-independent  Schrödinger equation 

퐻 푅(0) 푛; 푅(0)〉 = 퐸  푅(0) |푛; 푅(0)〉                      (5.5) 

If 퐻 푅(푡)  is non-degenerate and slowly varying, then it is known that the time-
evolving Schrödinger state |휓(푡)〉     remains an eigenstate of the instantaneous 
Hamiltonian 퐻 푅(푡) . More precisely, 

휓(푡)〉 =  푒 ∫ ( ) 푒 [ ; ( )]|퐸 (푅(푡))〉               (5.6)   

Where 

푏[푛; 푅(푡)] = 푑푠 푛; 푅(푠) 푖
푑

푑푠
푛; 푅(푠)                       (5.7) 

or equivalently, 

푏[푛; 푅(푡)] = 푑푅 ∙ ⟨푛; 푅 |푖∇ |푛; 푅 ⟩                      (5.7 )
( )

( )
 

where ∇R is the gradient operator in the parameter space R. This is, of course, 
just the time-honored adiabatic theorem. 
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Berry’s investigations, however, went beyond the usual formulation of the 
adiabatic theorem captured in (5.6) and (5.7). He considered the case of an 
adiabatic transport around a closed path 

휌 = {푅(푡)|푅(푇) = 푅(0); 0 < 푡 < 푇}                                (5.8) 

in the parameter space, and made the crucial observation that in such an 
adiabatic setup the phase factor 푒 [ ; ( )] is not integrable; i.e., in general it 
cannot be written as a function of R, and in particular is not single-valued under 
continuation around the loop: 푒 [ ; ( )] ≠ 푒 [ ; ( )]. Moreover, it is easy to see 
that (5. 7 ) can be reexpressed in the form 

푏[푛; 휌] = 푑푅 ∙ ⟨푛; 푅|푖∇ |푛; 푅⟩ ,                             (5.9)  

from which it is evident that 푏[푛; 푅(푇)], or the Berry phase as it is now called, is 
independent of parameterization: 푏[푛; 푅(푇)] = 푏[푛; 휌], where 휌 denotes the 
unparameterized loop corresponding to 휌 . In particular, unlike the usual 
dynamical phase {− ∫ 푑푠퐸 }, the Berry phase  푏[푛; 휌] is independent of the rate at 
which the state of the system traverses around 휌 . 

To illustrate his findings Berry analyzed the example of a spin-s particle 
interacting with a magnetic field B through the Hamiltonian 

퐻(퐵) = 푘퐵 ∙ 푆                                                         (5.10) 

where 푘 is a constant  involving the gyro magnetic ratio, and 푆 is the vector spin 
operator whose components have 2푠 + 1  eigenvalues 푛 lying between −푠 and 
+푠 with integer spacing. The eigen values of 퐻(퐵) are, of course, 

퐸 (퐵) = 푘퐵푛                                                              (5.11) 

with 퐵 = |퐵|. Now, if one identifies the components of the external magnetic field 
B with the parameter space 푅, then Berry’s formula is easily applicable to this 
case. In particular, (5.9) gives the geometric phase change of an eigenstate 
|푛; 퐵(푡)〉     of 퐻 퐵(푡)  as 퐵(푡) is slowly transported  and hence the spin is slowly 
processed  around a loop  훾 in the B-space. Berry was able to show that, in that 
case, 
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푒 [ ; ( )] = 푒                                                       (5.12) 

where 훼  is the solid angle subtended by the loop  훾 at 퐵 = 0. In particular, when 

푠 =   and the initial state is ; 퐵(0)〉     (‘spin up’ along B), then the right-hand 

side of (5.12) takes the form of the right-hand side of the observation (5.2) of  

Pacharatnam  namely, 푒  . To establish an  analogy between (5.2) and (5.12) 
it suffices now to identify |휓(0)〉  = |휓〉      and |휓(푇)〉  = |휓 〉     , and note that 
the left-hand side of (5.12) can be rewritten, after the dynamical phase is 
removed, in the form  ⟨휓(0)|휓(푇)⟩. 

A simple explanation of the beautiful result (5.12) was given in 1987 by J. 
Anandan and L. Stodolsky [39]. They considered a sphere whose points 
represented the  possible directions of the  magnetic field B. In the above 
example of Berry, it is sufficient for the direction of B to trace a closed curve 훾 on 
this sphere in order for each  eigenstate to acquire a geometric phase. In other 
words, it is not necessary for 퐵(푡)to form a closed curve; it is sufficient if merely 
the directions of 퐵(0) and 퐵(푇) coincide. Anandan and Stodolsky then 
considered a Cartesian triad with its origin on 훾(푡) and its z-axis in the radial 
direction of the sphere (the direction of 퐵(푡) and the spin axis). If the triad is 
moved along 훾(푡) so that the x,y-axes are  parallel-transported along the surface 
of the sphere, then when the triad returns to the original point 훾(0) = 훾(푇), it 
will have  rotated about its z-axis by the solid angle 훼 subtended by 훾 at the 
center of the sphere. Now, relative to the triad, each eigenstate individually 
should acquire only the usual dynamical phase factor because the triad has no 
angular velocity about the spin axis. Consequently, the additional phase factor 
acquired by the eigenstate must be interpreted as the geometric phase factor due 
to the rotation of the triad given by 푒 |푛〉 =푒 |푛〉, where 퐽  generates 
rotation about the z-axis of the triad. 

For an arbitrary cyclic evolution in any  Hilbert space, the above angle  
generalizes to a set of angles 훼 , … , 훼 . These are the geometric quantum angles 
introduced by Anandan [40], which perhaps provides the deepest approach so 
far to the geometric phase. The geometric  phases acquired by a complete set of 
orthogonal states {|푛〉} are now obtained by the action on each |푛〉 by 
푒 ∑ 훼 푗 , where the element of the set  {퐽 } commute among themselves. In 
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the classical limit the geometric angles {훼 }  reduce to the classical angles of J.H. 
Hannay [41], while the observables {퐽 }   become the corresponding action 
variables that are in involution with each other. 

We now illustrate the usefulness of geometric angles by providing a 
quantum-mechanical explanation of the above-mentioned experiment of  
Pancharatnam. For this purpose, we need to generalize his classical 
electromagnetic polarized wave, with fixed momentum p, passing through an 
arbitrary number of polarizers, such that the final polarization is the same as the 
initial polarization. A classical electromagnetic wave is an approximation of a 
coherent state in quantum electrodynamics. In the Coulomb gauge the quantized 
vector-potential for the electromagnetic field may be written as 

퐴 = 훼 , 푒 ( . ) + 훼 , 푒 ( . ) 푒 ,                (5.13) 

where k is the momentum vector, 휔 = |퐾| is the frequency, 푒 ,  are real 
orthogonal polarization vectors perpendicular to 푘 , and 훼 , , 훼 ,   are the 
annihilation and creation operators for the mode (푘, 휆). The electric and 

magnetic fields corresponding to 퐴 are 퐸 = −   and  퐵 = ∇ × 퐴, respectively. 
The coherent state corresponding to the electromagnetic wave considered by 
Pancharatnam is then 

|푧 , 푧 , 푝〉 =푒 | | | | 푒푥푝 푧 훼 , + 푧 훼 , |0〉               (5.14) 

which is an eigen state of  훼 , , with eigen values  푧   Therefore, 

⟨푧 , 푧 , 푝|퐴|푧 , 푧 , 푝⟩
= 2 |푧 |푐표푠(푝. 푥 − 휔푡 + 휃 )푒 , + |푧 |푐표푠(푝. 푥 − 휔푡 + 휃 )푒 ,  (5.15) 

Where 휃  and 휃  are the phases of 푧  and 푧  respectively. It follows that |푧 |휔 and 
|푧 |휔 are the amplitudes of the electric field E in the directions of  푒 ,  and 푒 , , 
respectively. 

We may represent the polarization state of a one-photon state  
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 푧 훼 , + 푧 훼 , |0〉 as a two-component Spinor  in a two dimensional vector 

space with the usual inner product, which makes it a Hilbert space. The 
corresponding projective Hilbert space is the Poincar´e sphere. 

De inition (5.1.1): Poincar´e Sphere 

 ("Considering x and y as the coordinates of a variable point, and t as the 
time, one seeks the motion of a point to which one gives the velocity as a function 
of the coordinates). 

As each photon corresponding to the mode (푝, 휇) passes through the 
polarizer it undergoes a transition to a state (푝, 휇 ). The new state is obtained by 
simply projecting the old state onto the state that passes through the polarizer. It 
can be shown that this corresponds to parallel-transporting the old state-vector 
along the shorter geodesic joining the two points on the Poincar´e sphere 
representing the two polarization states [42]. Therefore, using arguments similar 
to those used by Anandan and Stodolsky [39], the final state obtained after a 
sequence of such polarization changes that return the photons to their initial 
polarization state is given by the action of the operator 푒  on the initial photon 
state. Here 훼 is the solid angle subtended by the geodesic polygon defined by the 
sequence of the polarization states on the Poincar´e sphere, and 퐽 = , 푁 being 
the number operator for the initial and final mode (푝, 휇)  . As a result, the final 
state of the electromagnetic field is 

푒 |푧 , 푧 , 푝〉 = 푧 푒 , 푧 푒 , 푝〉                                          (5.16) 

Finally, in this resultant state we have 

⟨푧 , 푧 , 푝|퐴|푧 , 푧 , 푝⟩ 

= 2 |푧 |푐표푠 푝. 푥 − 휔푡 + 휃 +
훼
2

푒 , + |푧 |푐표푠 푝. 푥 − 휔푡 + 휃 +
훼
2

푒 ,    (5.17) 

Comparison of this expression with equation (5.15) shows that  is the 
phase Pancharatnam observed in his classical experiment. A similar explanation 
can be given to the experiment of Tomita and Chiao [43], except in their case we 
would have 퐽 = 푁 for the photon since it is a spin-1 particle. 
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Having obtained these results using the operator exp (푖훼퐽), which depends 
on the geometric angle 훼, we may  generalize them to an arbitrary superposition 
of number eigenstates with the same  polarization. In general, such a state would 
not be a Coherent state and cannot therefore be represented by a classical 
electromagnetic wave. Nevertheless, the geometric  part of the evolution may be 
obtained by taking the expectation value of exp(푖훼퐽) with respect to the initial 
state. 

The above mentioned geometric treatment of Berry’s phase by Anandan 
and Stodolsky suggest that the geometric phase is associated with the motion of a 
quantum system and not with the particular Hamiltonian used to achieve this 
motion. This is the basic idea used by Aharonov and Anandan [44] in obtaining a 
geometric phase, which, since it is associated with the motion of the quantum-
mechanical state itself, 

Does not require an adiabatically varying Hamiltonian (environment). 
However, if an adiabatically varying Hamiltonian is used to implement this 
motion, then this geometric phase is the same as Berry’s phase. They defined the 
evolution of a normalized state |휓(푡)〉 to be cyclic in the interval [0, 푇] if and only 
if 

휓(푇)〉 = 푒 ∅( , )|휓(0)〉                                                  (5.18) 

where ∅(0, 푇) is a real number. Equivalently, this can be reexpressed with the 
help of the unitary time evolution operator 푈(0, 푇) in the form 

푈(0, 푇) 휓(0)〉 = 푒 ∅( , )|휓(0)〉                                           (5.19)  

It  follows from this equation that for an initial state to evolve cyclicly in 
the interval [0, 푇]  under the time evolution operator 푈(0, 푇), it is necessary and 
sufficient for it to be an eigenstate of the operator 푈(0, 푇). Incidentally, this 
assures the existence of cyclic evolutions as defined above at least in the finite-
dimensional case. According to Aharonov and Anandan, the geometric 
contribution to ∅(0, 푇), denoted by 훽, is 

푒 = 푒 ∅( , ) ∫ ( ) ( )                                          (5.20푎) 
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or equivalently, 

푒 = ⟨휓(0)|휓(푇)⟩푒 ∫ ( ) ( )                                 (5.20푏) 

which reduces to the Berry’s phase factor in the  adiabatic limit [44],[45]. What is 
more, just as Berry’s phase, it is  independent of the choice of parameterization 
or the speed at which the path |휓(푡)〉 is traversed. More significantly, Aharonov 
and Anandan demonstrated that 훽 is projective-geometric in nature; i.e., it is the 
same for all paths |∅(푡)〉  that project to the same path in the projective Hilbert 
space. In other words, it is the same for any two motions |∅(푡)〉  and |휓(푡)〉  such 
that 푃∅( ) = 푃 ( ) , where 푃  denotes a ray corresponding to a vector |훼〉 , namely 

푃 = {|훽〉 ||훽〉 = 푧|훼〉; 푧 ∈ ℂ }                                             (5.21) 

The above two properties imply that 훽 = 훽 푝  , and suggest that 훽 may 
have a geometric interpretation in terms of paths in the projective Hilbert space. 
Indeed, it may be geometrically understood as the anholonomy with respect to 
the natural connection on the projective Hilbert space. This interpretation 
generalizes an earlier  differential-geometric interpretation of the Berry phase 
given by B. Simon in 1983 [46]. In the same year F. Wilczek and A. Zee reported 
on how the theory can be generalized to include the adiabatic  evolution of 
degenerate quantum states [47]. 

De inition (5.1.2): Adiabatic and Sudden Approximations 

In discussing the time-dependent perturbation theory, we have dealt with 
phenomena where the perturbation V(t) is small, but we have payed no attention 
to the rate of change of the perturbation, approximation methods treating 
phenomena where V(t) is not only small but also switched on either adiabatically 
(slowly) or suddenly (rapidly). We assume here that V(t) is switched on at t = 0 
and off at a later time t (the turning on and off may be smooth or abrupt). 

  They showed that in the case of a d-fold degeneracy Berry’s phase factor of 
the nondegenerate case, 푒 [ ; ], is generalized to a 푑 × 푑 unitary matrix, which is 
now called the non-Abelian Berry phase or the Wilczek-Zee phase. More 
precisely, if the  initial state is one of the eigen states belonging to an 
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orthonormal set of eigen states of 퐻 푅(0)  with a d-fold degenerate eigen value 
퐸 푅(0) , i.e. 

퐻 푅(0) 푙; 푅(0)〉 = 퐸 푅(0) |푙; 푅(0)〉                               (5.22)   

With   푙 = 1,2, … , 푑, then 

휓(푡)〉 = 푒 ∫ ( ) 퐷 푙 푙 푅(푡) |푙 ; 푅(푡)〉                     (5.23)   

here, the matrix D is a path-ordered exponential integral 

퐷[푅(푡)] = 푃푒푥푝 푖 푑푅
( )

( )
퐴                                         (5.24) 

with 

퐴  푅(푡) = ⟨푙 ; 푅|푖∇ |푙; 푅⟩                                            (5.25) 

and Ρ represents the path-ordering. The non-Abelian phase factor 퐷[푙; 푅(푇)] is a 
unitary matrix, and may be denoted by 퐷[푙; 휌]  because it too is independent of 
parameterization or the speed with which a particular path is traversed and is 
therefore geometric. 

We conclude by remarking that, there are at least four different reasons for 
the phenomenal success of the concepts related to geometric phases. First, these 
concepts are exceptionally clear and have a very elegant geometric 
interpretation in terms of anholonomies and connections (gauge fields). Second, 
geometric phases have a certain unifying character that enables one to relate 
many apparently disparate phenomena. Third, these phases can be observed and, 
indeed, various predictions of the geometric phases have been amply 
corroborated. Finally, and perhaps most importantly, these concepts reassert the 
importance and fruitfulness of geometric ideas in physical theories. 
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Section (5.2): Geometrical  Representation of  Angular  Momentum Coherence 
and Squeezing 

The harmonic oscillator phase space description of electromagnetic fields 
has had great success in understanding the semi classical and quantum theories 
of coherent. Coherent states are defined generally as minimum uncertainty 
states. The product of the uncertainties in the quadratures is minimum for these 
states and both the quadratures have equal uncertainties. Squeezing 
redistributes the uncertainties of the two quadratures resulting in one of them 
having less than its value for the coherent state at the expense of increasing the 
other [48]. The geometrical description of the Heisenberg uncertainty relation of 
two non commuting variables (quadratures) is well known to give a better 
understanding of the inherent fluctuation due to the quantum nature of the 
squeezed light. The quadratures of the phase space retain the minimum 
uncertainty property of the coherent states. 

De inition (5.2.2): SU(2) 

SU(2) is a 2 × 2 unitary matrix with determinant 1, and with elements as 
complex and used to describe and calculate  internal rotations, and deals with 
systems with two states. 

Angular momentum or SU(2) algebra describes the behavior of an 
ensemble of two quantum-level noninteracting systems. Examples of these 
systems include interferometers, non-interacting ensemble of two-level atoms or 
molecules. Sensitivity of interferometers, when described by SU(2) algebra, can 
be defined in terms of matrix elements of mean and variances of angular 
momentum operators [49]. Feynman et al. [50] have constructed a simple 
geometrical representation of the Schrodinger equation for such two-level 
systems to solve maser problems and radiation damping. In their approach the 
two-level quantum system is described by the state vector r⃗ with components 
determined by the probability amplitude. The dynamics of the system is 

described by the differential equation of the state vector  ⃗ = ω⃗ × r⃗, where ω⃗  is 
the angular velocity. However, in their approach there is no description of the 
uncertainty associated with the state vector. These uncertainties are important 
in describing the full quantum nature of the system e.g., the interaction of the 
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system with quantized radiation. Our section is an extension of the Feynman et 
al.'s description as we have included the uncertainties associated with the state 
vectors. Considerable amount of work has also been done in order to understand 
the coherent angular momentum states [51], [52]. Arecchi had constructed the 
angular momentum coherent states by rotating the angular momentum ground 
state [52] similarly as of displacement operator coherent states for 
electromagnetic waves. During last few years several authors have tried to 
construct squeezed angular momentum states and study their properties in 
terms of atomic systems [53], [54]. 

Schwinger developed an abstract algebra which perfectly describes the 
angular momentum systems [55]. The algebra assumes the angular momentum 
operators as a combination of two sets (±) of uncorrelated creation and 
annihilation operators of spin ±   which obey the bosonic commutation 
relations. Apart from the usual rotational angular momentum states, this algebra 
also describes the pseudo-angular momentum systems such as interferometry or 
a collection of two level systems proving to be quite a success. Atkins and Dobson 
(AD) had constructed angular momentum coherent (SAMC),( where SMAC is 
Schwinger Angular Momentum Squeezed) states using Schwinger 
representation. They had connected these states to two dimensional oscillator 
states quantized in orthogonal direction. The matrix elements of the components 
can be calculated easily from the expressions of their operator form. In the 
classical limit the SAMC states become the classical vector J⃗  in the sense that 
they behave like their classical analogs and their variances are small compared to 
the absolute value of their averages. They have used these states to study 
elliptically polarized states successfully [56]. These SAMC states have also been 
used to describe the rotational levels of nuclear and moleculer systems by Fonda 
itet al. [57]. 

(Recently, we have proposed a technique for the generation of angular 
momentum squeezed states [58]). By combining the Schwinger angular 
momentum representation with boson operators and the concept of squeezing of 
bosons via Bogoliubov transformation, we were successful in producing states 
that exhibit squeezing of angular momentum operators. We have called these 
states Schwinger Angular Momentum Squeezed (SAMS) states. Our procedure 
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was an extension of the  work of Atkins and Dobson [59] on angular momentum 
coherent (SAMC) states. We also found application of the SAMS states in 
enhancing  the sensitivity of  interferometers and in study of two level atoms 
[58]. In this section we have constructed an elegant geometrical representation 
of the concept of coherence and squeezing for the angular momentum operators. 
We present some new results for two mode squeezing and discuss their 
geometrical  behavior and non-usefulness in this section. The results of SAMC 
states and single mode SAMS states are also considered for the  geometrical 
phase space realization of these states. Our representation, combined with the 
picture given by Feynman et al., ensures to be an important tool to study the 
interaction between radiation and coherent or squeezed two-level systems. 

The section is organized as follows. In subsection (5.2.1) we recapitulate 
some results of the Schwinger Angular Momentum Coherent (SAMC) states to 
describe them geometrically and compare them with the bosonic counterpart. In 
the next subsection (5.2.2) we present the new two mode squeezing results 
(5.2.2b) along with relevant single mode SAMS state results (5.2.2a) to 
understand the phase space geometry. Finally we conclude comparing our 
technique with other works on coherent angular momentum in context of 
geometrical understanding of the phase space. We also furnish the possible 
applications of the geometrical representation in the conclusion. 

(5.2.1): ANGULAR MOMENTUM COHERENT STATES 

Schwinger [55] developed the entire angular momentum algebra in terms 
of two sets(up and down) of uncorrelated harmonic oscillator creation and 
annihilation operators constructing the angular momentum operators as 

퐽 = 퐽 + 푖퐽 = 푎 푎                                             (5.26푎) 

퐽 = 퐽 − 푖퐽 = 푎 푎                                             (5.26푏) 

퐽 =  
1
2

 푎 푎 − 푎 푎                                         (5.26푐) 

The operators  a±(a±)  create (annihilate) a ±   spin and follow the bosonic 
commutation relations which means that the whole system is considered as a 
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combination of two sets of boson states. This construction satisfies the standard 
angular momentum commutation relation [J , J ] = iϵ J . The angular 
momentum basis states |j, m〉   can thus be created by action of the oscillator 
operators on the vacuum spinor |0,0〉   

|j, m〉 = |j + m〉    ⊗|j + m〉  

= [(j + m)! (j − m)!] 푎 (푎 ) |0,0〉                         (5.27) 

AD [59] constructed the Schwinger Angular Momentum Coherent (SAMC) 
states as the simultaneous eigenstates of the operators a± . They have shown that 
the SAMC states are minimum uncertainty states for the angular momentum-
angle uncertainty relation in the large N(N = n + n ≥ 10)  limit [59]. 
According to their definition the angular momentum coherent states 
|α〉  = D|0,0〉   , with D = D (α )D (α ) , obey, 

α±|α〉  = α±|α , α 〉                                                  (5.28) 

The expansion of |α〉   in terms of angular momentum basis is given by 

|α〉  = e (2j!)
2j

j + m
α α |j, m〉              (5.29) 

Definition (5.2.3):SO(3) 

SO(3) is a 3 × 3 orthogonal matrix with determinant 1, and with elements 
as real, used to describe and calculate  external rotations. 

The ∞: 1 mapping of α onto 〈J 〉, 〈J 〉, 〈J 〉  is a consequence of the  2: 1 
homomorphism of SU(2) and SO(3) [15]. SU(2) is spanned by the subset of 
spinors of length √N and SO(3) is spanned by the subset of vectors of length 〈J〉. 
The spinor |α〉   is a vector sum of different vectors |j, m〉   in the physical angular 
momentum space. Once the four parameters in α± are fixed, it automatically fixes 
the values of j and m in the angular momentum space. To calculate the mean and 
variances of the angular momentum components one has to use the expressions 
of them in SAMC basis and fix the corresponding parameters. The matrix 
elements can be expressed in terms of any set of these parameters (α± or j and 
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m). The expressions in terms of the angular momentum parameters give better 
understanding in the physical space. For this reason we have expressed the 
matrix elements in terms of angular momentum parameters throughout the 
chapter. 

The mean of the angular momentum components are calculated as 
following 

〈J 〉 = j − m cos θ                                                   (5.30a) 

〈J 〉 = j − m sin θ                                                  (5.30b) 

l〈J 〉 = m                                                                (5.30c)  

Where  θ = (θ − θ ) and the variances are 

∆퐽 = ∆퐽 =
1
2

푗                                                        (5.31)  

The above results show that the average value of J⃗ i.e. the tip of it lies on a sphere 
of radius j. This can easily be verified by squaring and adding the mean values of 
the angular momentum components. The fluctuations of the components are also 
same in the three directions. The equation of the region of uncertainty creates a 

sphere of radius  about the tip of the vector. This is shown in Fig. (5.1). The 

polar angle of the state vector in the three dimensional phase space is actually 
realized to be θ, the difference between two phase angles of the coherence 
parameters. 

We have shown the uncertainties of harmonic oscillator and a schematic of 
In three dimensional phase space we have shown the uncertainty sphere of the 
angular momentum vector in Fig. (5.1.c). This is also compared with the 
uncertainty circle of the harmonic oscillator in two dimensional phase space in 

ig. (5.1.a). For SAMC states the radii of these uncertainty spheres (= ) depend 

only on the radii of the mean sphere (= j) on which the tip of the vector lies. For 
a fixed j value the radii of the uncertainty spheres does not vary on its position on 
the sphere for the choice of the parameters m or θ . The uncertainty spheres has 
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a circular projection (uncertainty circle) in the X − Y plane. We have shown some 
uncertainty spheres on it for some different positions (different values of m and 
θ) in Fig. (5.1.c). The positions for |m||j〉   can be compared with the 
displacement of the ground state in the phase space picture for harmonic 
oscillator. The displacement of the uncertainty circle in the phase space of 
harmonic oscillator is performed by the rotation of the uncertainty sphere in 
corresponding three dimensional phase space for SAMC states. The position after 
rotation is governed by the values of the parameters m and (θ − θ )  . 

The uncertainty relation corresponding to the commutation relation 
between the components of the angular momentum, [퐽 , 퐽 ] = 푖휖 퐽 , is 

∆퐽 ∆퐽 ≥
1
4

|〈퐽 〉|                                                      (5.32)  

Putting the expressions of the matrix elements in the last equation one can 
check that the equality occurs at m = ±j. The two solutions for the equality show 
the SU(2) symmetry of the system. Other values of the angular momentum 
projection have uncertainties of both the quadratures equal and same as the 
extremum cases. Though the non-extremum cases does not violate the 
uncertainty relation in the last equation but the relation is an equality only for 
extremum cases. Anyway, for physical purposes we are interested in the absolute 
uncertainties in the quadratures which remain same for all the SAMC states with 
same j value. 

(5.2.2): ANGULAR MOMENTUM SQUEEZED STATES 

Following the work of AD on angular momentum coherent states, we have 
generated squeezed angular momentum states by operating the squeezing 
operators of the bosonic states on the SAMC states [58]. For the two mode (±) 
bosonic case the squeezing operators can be defined as 

푆±(휉±) = 푒푥푝
1
2

휉±훼± − 휉±
∗훼± ,       휉± = 푟±푒 ∅±             (5.33) 

We have created the general SAMS states by operating the two mode squeezing 
operator S = S (ξ )S (ξ ) on the SAMC states 
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|ψ〉 =  S (ξ )S (ξ )D (γ )D (γ )|0,0〉                               (5.34) 

For convenience in calculation we use the relation to interchange the order of the 
squeezing and displacement operators [16] and write the general SAMS states as 

|ψ〉 =  D (α )D (α )S (ξ )S (ξ )|0,0〉                          (5.35) 

Where γ± = cosh γ±α± + e ∅±sinh γ±α±
∗ 

(A).Single Mode Squeezing 

The calculation of the expectation values and variances of the operators of 
our interest is cumbersome due to the dependence on the large number (eight) 
of parameters involved in the general SAMS states. First we consider the 
squeezing in one mode only. At this point we do this for simplicity though the 
utility of this choice will be clear in the following subsection. The SU(2) 
symmetry tells us that we can choose any one of the modes for squeezing. So we 
choose to squeeze in the + mode which reduces the expression of the basis state 
vectors of single mode SAMS states to 

|ψ〉 =  DS(ξ)|0,0〉                                                      (5.36) 

Where we have dropped the unnecessary suffix +. 

Calculating the mean of the angular momentum components [58] 

〈J 〉 = j − m cos θ                                                (5.37a) 

〈J 〉 = j − m sin θ                                               (5.37b) 

〈J 〉 = m +
1
2

 sinh r                                                (5.37c) 

we see that the traversing spherical surface of the mean of the tip of the angular 
momentum vector has been changed to a prolate ellipsoid with same axes in X 
and Y.The expression for the mean value of the angular momentum projection or 
the Z-axis of the ellipsoid show an increase as squeezing is increased. This is 
shown in Fig. (5.1.d). It is to be noted that squeezing in the other mode will 
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change the mean sphere to an oblate ellipsoid with 〈J 〉 = m −  sinh r      instead 
of a prolate one. However, the other two axes will not change due to the choice of 
mode of squeezing. We calculated the variances to get a feel of the uncertainty 
nature of the SAMS states as 

∆퐽 =
1
2

푗 +
1
2

푠푖푛ℎ 푟
1
2

푠푖푛ℎ 푟{1 + 2(푗 − 푚)} + (푗 − 푚)푐표푠ℎ 푟푐표푠 훿    (5.38푎) 

∆퐽 =
1
2

푗 +
1
2

푠푖푛ℎ 푟
1
2

푠푖푛ℎ 푟{1 + 2(푗 − 푚)} − (푗 − 푚)푐표푠ℎ 푟푐표푠 훿    (5.38푏) 

∆퐽 =
푗 + 푚

4
[푒 푐표푠 휂 + 푒 푠푖푛 휂] +

1
2

푠푖푛ℎ 푟푐표푠ℎ 푟 +  
푗 − 푚

4
      (5.38푐) 

Where δ = 2θ − ∅  and η = θ − ∅.r and ∅  the squeezing parameters of 
the + mode. The effect of squeezing in the other mode on the variances of the 
angular momentum components can be obtained from the last equation by 
interchanging the suffixes which is a consequence of the SU(2) symmetry. The 
uncertainty ellipsoid for m = −j  have been shown in Fig. (5.1.d). It is to be noted 
that all the axes of this uncertainty ellipsoid are different. This results to an 
ellipsoidal projection on the X − Y  plane. The squeezing of angular momentum 
can be compared with the harmonic oscillator squeezing, which is shown in 
Fig.(5.1.b). 
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Fig (5.1) 

 

In Fig. (5.2) we have plotted the dependence of the axes of the projected 
uncertainty ellipses on the squeezing parameter r. The projected uncertainty 
circle on the X − Y  plane for the SAMC states are transformed to ellipses, but 
with greater area (uncertainty product). It is clear from the expressions that the 
maximum squeezing i.e. minimum fluctuation of the squeezed quadrature occurs 
to the minimum uncertainty circle at m = ±j  as expected physically. From Fig. 
(5.2) it is clear that the minimum uncertainty circle is squeezed (length of the 
semiminor axis is reduced) up to a critical value of  r (= r ) though its area 
(uncertainty product) is increased throughout. After that critical value of r the 
length of both the axes of the uncertainty ellipse increases. 

It is interesting to note that squeezing in the + or − mode results 
squeezing of uncertainty in J  and J  respectively. This means that the squeezing 
in the angular momentum quadratures are directly related to the mode of 
squeezing. It will be interesting to express the squeezing operators in terms of 
operators in X − Y coordinates instead of ± to identify the reason and exact 
mapping between them. 

5.1.B 5.1.A 

5.1.C 5.1.D 
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Fig (5.2) 

 

(B).Double Mode Squeezing 

Now we consider the case of double mode squeezing. In the last subsection 
we have squeezed only in one mode for the sake of simplicity and promised to 
give the practical reasoning for this simplification in this subsection. Actually two 
mode squeezing does not help in reducing the uncertainty of any of the 
quadratures which we will show now. We can claim from the results of the last 
subsection that if we squeeze both the modes the uncertainties of the 
quadratures will be squeezed and expanded simultaneously. The squeezing of 
the second mode in effect reduce the amount of squeezing achieved by the first 
mode squeezing. 

We have calculated the expectation values of the components of the 
angular momentum for double mode squeezing as 

〈J 〉 = j − m cos θ                                                    (5.39a) 
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〈J 〉 = j − m sin θ                                                    (5.39b) 

〈J 〉 = m +
1
2

 (sinh r − sinh r )                          (5.39c)  

The expectations of the angular momentum components in X and Y 
direction are seen to be same as that of SAMC states with no effect of squeezing. 
The mean sphere is clearly seen to be transformed to an ellipsoid in general with 
same X and Y axes. The Z axis of the ellipsoid will increase or decrease as 
difference of squares of the hyperbolic sine functions of the two parameters r± 
.This affects the shape of the mean spheroid to prolate or oblate. However, the 
expectation value of J  can be made to be same as that of SAMC states by 
squeezing both the modes equally. This will make the mean ellipsoid to be same 
mean sphere as for SAMC states. 

To show that the effect of double mode squeezing does not help in 
squeezing of the angular momentum quadratures we have calculated the 
uncertainties for some special choice of parameters. We have chosen the phases 
in the squeezing parameters to be equal to zero and the magnitudes of the 
squeezing parameters to be equal to r. This choice does not affect the basic 
motivation of representing the states geometrically or prove the disadvantage of 
double mode squeezing. We have calculated the uncertainties in the angular 
momentum components for this special [60] choice as 

∆퐽 =
1
2

[푗 + 푠푖푛ℎ 푟{푠푖푛ℎ 푟 + 푐표푠ℎ 푟 푐표푠(2휃 )}(푗 + 푚) 

+푠푖푛ℎ 푟{푠푖푛ℎ 푟 + 푐표푠ℎ 푟 푐표푠(2휃 )}(푗 − 푚) + 푠푖푛ℎ 푟1 + 푐표푠ℎ2푟]     (5.40푎) 

∆퐽 =
1
2

[푗 + 푠푖푛ℎ 푟{푠푖푛ℎ 푟 − 푐표푠ℎ 푟 푐표푠(2휃 )}(푗 + 푚) 

+푠푖푛ℎ 푟{푠푖푛ℎ 푟 − 푐표푠ℎ 푟 푐표푠(2휃 )}(푗 − 푚) + 푠푖푛ℎ 푟(1 + 푐표푠ℎ2푟)]     (5.40푏) 

∆퐽 =
푗 + 푚

4
[푒 푐표푠 휃 + 푒 푠푖푛 휃 ] 
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+ 
푗 − 푚

4
[푒 푐표푠 휃 + 푒 푠푖푛 휃 ] + 푠푖푛ℎ 푟 푐표푠ℎ 푟            (5.40푐) 

The uncertainty ellipsoids on the mean ellipsoid are similar as single mode 
squeezing case. The uncertainties of the quadratures and their product are 
plotted in Fig. (5.3)  for 푗 = 50, 푗 = −50 and 휃 = 휃 = 0. . Here we have plotted 
the results for the extremum projection states which drops out the first term in 
both the quadrature uncertainties. The squeezing in the uncertainty of  퐽  prove 
our claim that double mode squeezing deteriorates the effect of single mode 
squeezing which was expected from qualitative reasoning. Squeezing both the 
modes by same amount retains the SU(2) symmetry of the system but the choice 
of the phases and magnitudes of coherent parameters breaks it resulting 
different expressions and curves for the quadratures. This choice has been made 
to show the difference distinctly and the dependence on the coherence phases. 
With all the parameters same for the two modes one can show that the two 
quadratures will behave similarly. We do not present the geometrical pictures 
for the double mode squeezing as they are similar to the single mode squeezing. 
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Fig. (5.3) 

 

 

(5.2.3): Conclusions 

We have represented the angular momentum coherent (SAMC) and 
squeezed (SAMS) states geometrically and studied their properties for a simple 
choice of parameters. These simplifications does not hamper the qualitative 
geometrical interpretation of these states. Actually, consideration of all the 
parameters makes the results complicated and not easily visible in the phase 
space picture. Due to this reason we have simplified the results by these choices. 
We have also shown that two mode squeezing deteriorates the squeezing effect 
in angular momentum quadratures. We applied the SAMS states in analyzing the 
sensitivity of interferometry [58]. The effect of two mode squeezing on 
interferometry can be seen from the results of the uncertainties in two mode 
squeezing. As two mode squeezing increases the uncertainty of the squeezed 
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quadrature it will also increase the value of minimum detectable phase 
difference (∆Φ) of any interferometer using beam splitters. The relation between 

them in the frame rotated by   about X axis can be written as ∆Φ = ∆
|〈 〉|

 [58]. 

Any ensemble of two quantum-level system (e.g. atoms or molecules can 
be considered as a spin-  particle is described by the SU(2) algebra of angular 
momentum systems [51],[52]. The number operators (n± = j ± m) in the case of 
interferometric representation correspond to the population or occupation 
numbers in the upper and lower states of the system. In fact the complete set to 
describe the system is achieved by adding a permutation group P  to the SO(3) 
group. However, this does not change the basic essence of the formalism. 
Squeezed atomic states were constructed by preferential population 
distributions [58]. Feynman et al. [50] have shown that the components of the 
pseudo angular- momentum vector completely specifies the state of the system 
semiclassically. The power of the geometrical method developed by Feynman et 
al., lies in visualising and solving problems involving transition between two 
quantum levels. For example, the two classic problems discussed by them, the 
beam type maser oscillators and the radiation damping, could be visualised very 
clearly by the orientation of the state vector. Later application has led to elegant 
method for visualising and solving the photon echo problem also. Geometrical 
methods are found useful for problems that can be solved analytically. But it can 
also provide valuable insight into the behavior of the prowesses that are 
insolvable by analytical technique. Fermion interferometry can be considered by 
changing the bosonic commutation relation to the anticommutation relation for 
fermions. This is a totally new possibility as no fermion analog of the boson 
squeezed states has yet been found [61]. 

Arecchi [52] had developed the coherent atomic states by rotating the 
minimum uncertainty Dicke state (lowest projection state |j, −j〉 ) in three 
dimensional phase space. Recently, the authers in Ref. [62] have described the 
Dicke states as a cap and annular surfaces. As these states are eigenstates of J   
they should not be described by cap or annular surfaces with nonzero ∆J  on the 
mean sphere of the angular momentum vector. Instead the different Dicke states  
(|j, m〉 ) should be represented by an uncertainty circle. The Arecchi type atomic 
coherent states have some other geometrical representation problem wcich is 



137 
 

not present in our picture. Their coherent states are actually some rotated 
angular momentum ground states.The projections of these rotated states in 
X − Y plane is an ellipse and thus show squeezing. Physically, mere rotation 
should not change the status of the state. This question has been raised by 
Kitagawa et.al [54] that if these Arecchi type coherent states describe squeezed 
angular momentum states under suitable choice of coordinates. Moreover, the 
area of the projected ellipse, which is a measure of the uncertainty product, is 
reduced from the area of the uncertainty circle of the ground state. This is a 
direct violation of Heisenberg uncertainty principle. In our definition of angular 
momentum coherent or squeezed states we have overcome this difficulty in 
representation and answered the question of Kitagawa et al.. The geometrical 
picture developed by us for SAMC or SAMS states does not have this ambiguity 
and thus is a better representation for the angular momentum coherent and 
squeezed states. 

Section (5.3):  Axiomatic geometrical optics, Minkowski controversy 

The discussion about how to define the momentum and the angular 
momentum of a photon in a dispersive medium (PDM), and even simply of a 
classical wave, has recurred in literature periodically during the last 100 years. 
The recent burst of theoretical [63] and experimental [64–66] publications 
indicates both an abiding interest in the problem and, apparently, a lack of 
consensus or certainty about what the correct answer is. Let us mention only 
briefly that two alternative forms of the PDM momentum are adopted most 
commonly: 

      푃 = ℏ휔푛 푐,⁄ 푃 = ℏ휔 (푛 푐),⁄                                      (5.41) 

which are known, respectively, as the Minkowski interpretation and the 
Abraham interpretation [64]. (Here, ω ! is the frequency, c is the speed of light, 
and n = c v ,⁄  and n = c v ,⁄  are the refraction indexes associated with, 
correspondingly, the phase velocity v  and the group velocity v ; for the two 
associated angular momenta,  Ref. [67].) Since both have supporting theoretical 
and experimental evidence [1], the question about which of the two 
interpretations is “more correct” has been controversial. 
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A resolution to this Abraham-Minkowski controversy (AMC) was proposed 
recently in Ref. [68]. It was argued there that both interpretations are correct; 
namely, P  can be attributed as the canonical momentum and P  can be 
attributed as the kinetic momentum of a photon. Yet, strictly speaking, the 
argument of Ref. [68] applies only to the case of a nonrelativistic solid dielectric. 
The subsequent generalization in Ref. [69] is not quite complete either; for 
example, the latter neglects electrostriction and magnetostriction, kinetic effects, 
and spatial dispersion, and also attributes v  entirely to the Poynting flux. Thus, a 
quantitative relativistic theory is still lacking that would correct the existing 
understanding of PDM, and Eqs. (5.41) in particular. The purpose of this section 
is to resolve these issues in a consistent manner and, through that, formulate a 
comprehensive asymptotic theory of linear waves of arbitrary nature. 

To understand what the right framework is for such a calculation, notice 
that introducing a photon implies that the frequency ω and the wave vector k are 
well defined. These are exactly the validity conditions of the asymptotic theory 
commonly known as geometrical optics (GO). (The term “optics” here means 
only that the theory deals with sufficiently large ω and k; i.e., waves need not be 
electromagnetic.) Although usually defined through rays and wave equations 
[70–72], the most fundamental, axiomatic GO is an abstract field theory that 
applies to any field having a Lagrangian density of a speci ic form [Eq. (5.51); 
dissipative effects can also be added. Just like Newton’s laws of particle motion 
hold, with obvious exceptions, independently of specific forces acting on 
particles, the basic GO equations are then invariant to the wave nature [80], and 
the wave properties can be derived in general. Hence, axiomatic GO should 
resolve the AMC automatically and transparently. 

(5.3.1): NOTATION 

Definition (5.3.4): Lorenz's system  

Although the Lorenz's system has no singular approximation, it has been 
numerically checked that its functional jaco- bian matrix possesses at least a 
large and negative real eigenvalue in a large domain of the phase space. So, it can 
be considered as a slow fast dynamical system but not as a singularly perturbed 
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system .Thus, Geo- metric Singular Perturbation Theory can not provide the slow 
invariant manifold associated with Lorenz system. 

The following notation will be assumed below. We use the symbol ≐ for 
definitions. Greek indexes span from 0 to 3 and refer to coordinates in spacetime, 
x . In particular, for the Minkowski spacetime, we adopt  x ≐ ct , where t is time. 
Hence the Lorentz transformation matrix,   Λ ≐ ∂x ∂x⁄  , is given by 

Λ = γ,      Λ = γv c⁄ ,    Λ = γ푣 c⁄ , 

Λ = δ + (훾 − 1)푣 v v⁄                                          (5.42)  

Where v  is the velocity of the “primed” reference frame with respect to the 
laboratory frame, and γ ≐ (1 − v c⁄ ) . Latin indexes i, j, and l span from 1 to 
3 and refer to spatial coordinates, x . Spatial vectors are denoted with bold, X; 
spatial tensors are also marked with hat, T; symbols such as XY ≐ Z stand for 
spatial dyadics, Z = X Y  ; the symbol 1 denotes the unit spatial tensor; and the 
three-tensor 

Λ ≐ 1 +
훾 − 1

푣
푣푣                                                       (5.43) 

is the spatial part of  Λ . Summation over repeating indexes will also be implied; 
e.g., X Y = ∑ X Y . 

Latin indexes (excluding i, j , l, and nonbold roman, as in n ) denote partial 
derivatives with respect to the corresponding variables; e.g., for f ≐ f(푎, ω, k, t, x), 
the symbol f  denotes the derivative (gradient) with respect to the last argument, 
X. In addition to those, we also introduce “full” temporal and spatial derivatives, 
휕 푋 ≡ 휕푋 휕푡⁄  and 휕 푋 ≡ 휕푋 휕푥⁄ , which treat all arguments of (any) 푋 as 
functions of, correspondingly, t and x . For instance, for the above f, one has 

휕 푓 = 푓 휕 푎 + 푓 휕 휔 + 푓 휕 푘 + 푓 ,                               (5.44) 

휕 푓 = 푓 휕 푎 + 푓 휕 휔 + 푓 휕 푘 + 푓 ,                            (5.45) 
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While 휕 푎(푡, 푥) = 푎 (푡, 푥), etc. The symbol ∇ denotes the associated full covariant 
derivative; e.g., 훻 푓 = 휕 푓 is the full gradient of the scalar 푓 , and 훻. 퐹   is the full 
divergence of the vector F ,  

∇. 퐹 =
1
휂

휕
휕푥

휂 퐹                                             (5.46) 

Where η ≐ det η , and  ηij = ηji is the spatial metric. [In Cartesian coordinates, 
Euclidean space has η = ηij = diag(1,1,1), so η = 1] The symbol ,α denotes the 
analogous (to ∂ ) full derivative with respect to x , and α denotes  the analogous 
full covariant derivative. For example, the four-divergence is 

퐹; =
1
g

휕
휕x

gF ,                                                (5.47) 

Where g ≐ −det η ,, and g = g ,,  is the space-time metric. For an 
introduction to the tensor notation and index manipulation rules in particular 

(5.3.2): GENERALWAVES (Covariant formulation) 

First, let us consider a general nondissipative wave described by some 
action integral  S = ∫ 픏 g d x, where 

gd x ≡ g푑푥 푑푥 푑푥 푑푥                                             (5.48) 

is an invariant volume element in spacetime, and the four scalar 픏 is the 
Lagrangian density. Since the action of the underlying medium is not included 
here, no invariance requirements on 픏 are imposed. Instead, we assume that the 
wave structure remains fixed (albeit not necessarily sinusoidal), so the wave is 
fully described by some canonical phase θ , which will be understood as a scalar 
field θ = (x ), and a = a(x ), which is an arbitrary measure of the wave local 
amplitude [74]. We also assume that the envelope evolves on spacetime scales 
that are large compared to those of local oscillations. On such time scales, it is 
only the average Lagrangian density that contributes to S, so one can adopt that 픏 
does not depend on θ explicitly. Instead, 픏 must depend on the phase four-
gradient, 
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푘 ≐ 휃                                                                         (5.49) 

Which is the generalized “wave vector” (actually, a four covector here), obviously 
having zero four-curl, 

푘 ; − 푘 ; = 푘 , − 푘 , = 휃 , − 휃 , = 0.                                   (5.50) 

[Equation (5.50) is known as the consistency relation.] Besides that, 픏 must 
depend on a  ; yet the dependence on the amplitude gradients a,, is negligible in 
the GO limit. Thus, allowing also for slow parametric dependence on the 
spacetime coordinates 푥 , we postulate 

픏 = 픏 푎, 푘 , 푥                                                               (5.51) 

Which as well can be considered as the definition of the GO approximation. 
Hence wave equations are inferred using the least action principle, namely, as 
follows. 

First, let us consider the variation of S with respect to the wave amplitude 
a. Since δ S = ∫ 픏 δ gd x  for any δ  , the requirement δ S = 0  leads to 

픏 = 0.                                                                        (5.52) 

Equation (5.52) can be understood as the wave dispersion relation, and it 
is generally nonlinear, i.e., it may retain essential dependence on [75,77]. 

Second, let us consider the variation of S with respect to the wave phase 
θ[78]. Due to Eq. (5.49) and the fact that 픏 does not depend on θ explicitly, for 
any δ  one has 

δ S = 픏 δθ gd 푥 

= g픏 δ − g픏 δ d 푥 = − 픏 δ gd 푥 
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Where we used the fact that the wave field vanishes at infinity, so ∫(… ) d x = 0. 
Thus, the requirement δ S = 0 yields that the four-divergence of the action flux 
density 풥 ≐ −픏  is zero [79] 

풥 = 0.                                                                      (5.53) 

Which is called the action conservation theorem (ACT). Since the ACT has the 
form of a continuity equation, one can treat  풢 ≐ 풥 ℏ⁄  as the flux density of 
some fictitious quasiparticles, or “photons.” (In application to specific waves, one 
can as well think of plasmons, phonons, polaritons, or any other elementary 
excitations instead). However, remember that within our classical description, it 
is only the product ℏ풢  that has an explicit physical meaning, so the actual value 
of ℏ will be irrelevant for our purposes. 

Finally, let us also introduce the wave EMT as follows. Consider the 
(generally asymmetric) tensor 

풯 ≐ k 풥 + δ  픏.                                                  (5.54) 

The divergence of 풯  equals 

풯 ; = 푘 ; 풥 + 푘 풥 ; + 훿 픏 푎; + 픏 푘 ; + 픏  

= 푘 ; 풥 + 훿 픏 푘 ; + 픏  

= 푘 ; 풥 − 푘 ; 풥 + 픏  

= 푘 ; 풥 − 푘 ; 풥 + 픏  

= 픏 .                                                             (5.55) 

Where we used Eqs. (5.51)–(5.53). This tensor is then associated with the 
conservation law, 풯 ; = 0 , yielded when the system is translationally invariant 

in spacetime (i.e., when the fourforce is zero, 픏 = 0 ). Hence,  풯  is a true 
canonical EMT [80], as one could also infer from the standard definition that is 
based on Noether’s theorem [81]. However, notice that in contrast to the 
fundamental theorem of the vacuum field theory, 풯  does not permit the usual 
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[82] symmetrization, since L is not restricted by any invariance requirements 
[83]. For  symmetrization via adopting an effective, “optical” metric. In particular, 
the very fact that a scalar field such as θ(x ) yields an asymmetric EMT already 
proves the lack of Lorentz invariance [84]. 

(5.3.3): Application to the Minkowski spacetime 

From now on, we will assume the Minkowski spacetime with metric 
signature (−, + , + ,+); hence, 

g = g = −1,     휂 ≐ g ,     휂 = g.                                   (5.56) 

(Although the space is Euclidean, we will allow for curvilinear coordinates; thus, 
albeit flat, the spatial metric η  can otherwise be arbitrary.) In this case, 
k = (− ω c, k⁄ ), and k = (ω c, k⁄ ) , where 

휔 ≐ −휕 휃,       푘 ≐ ∇휃.                                               (5.57) 

Then Eq. (5.50) turns into the following set of equations: 

휕 푘 + ∇휔 = 0,      ∇ × 푘 = 0.                                         (5.58) 

One may notice also that the latter equation here can be considered as the initial 
condition for the former one,taking curl of which readily∂ (∇ × k) = 0. 
Accordingly, Eq. (5.51) becomes 

픏 = 픏(푎, 휔, 푘; 푡, 푥).                                                     (5.59) 

The dispersion relation hence holds in the form (5.52). The ACT can be rederived 
from Eq. (5.59) or it can be deduced from Eq. (5.53) by substituting 풥 = (c풯, 풥) 
either way, one gets 

휕 풯 + ∇. 풥 = 0.                                                           (5.60) 

where  풯 is the action density, and  풥 is the action spatial flux density, introduced 
as follows: 

풯 ≐ 픏 ,      풥 ≐ −픏                                                     (5.61) 
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In particular integrating of Eq.(5.60) over the volume   dV = 휂d x  yields 
conservation of the integral action, 

                                                    퐼 = ∫ 풯d 푉 = 푐표푛푠푡                                                    (5.62)                                               

Introducing the photon density 푁 = 풯 ℎ⁄   and the photon spatial flux density 
풢 = 풯 풽⁄ , one can further rewrite Eq.(5.60) as 휕 푁 + ∇. 풢 = 0.  and Eq.(5.62) will 
yield the photon conservation 푁 = ∫ NdV = const. Also notice that both  퐼 and 푁 
are Lorentz  invariants, as are well known to flow from the general   properties of 
the continuity equation[85]. The elements  of the (contra variant) EMT are now 

                                             풯 = 휔Ι − 픏,       풯 = 휔 풥 c⁄                                     (5.63)  

풯 = 푐푘 풯,            풯 = 푘 풥 + 휂 픏. 

휕풯
휕푡

+
1
휂

휕
휕푥

푐풯 휂 = 푤,                                     (5.64) 

Which is continuity equation for 풯  with the right –hand side being 
휔 = ℊ 푐픏 = −픏 .since the latter has the meaning of the canonical power 
source,ℇ = 풯  must  be the wave canonical energy density ,and 풬 = 푐풯  must  
be the canonical energy flux density .similarly, 

                                          풯 +   풯 휂 = 푓                                      (5.65) 

Which is a continuity equation for the three-vector  풯 c  with the right-hand 

side being f = 픏 . Since the latter has the meaning of the canonical momentum 

source, p = 풯 c  must be the wave canonical momentum density, and the 

(generally asymmetric) three-tensor Π = 풯  must be the canonical momentum 
flux density [86]. 

In summary, one then has 

풯 =
ε 풬 c⁄

푐푝 Π                                                           (5.66) 
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ℰ = 휔풯 −  픏,      풬 = ω풥,          푝 = 푘풯,     Π = k풥 + 픏Ι                  (5.67)  

and Eqs. (5.64) and (5.65) can be written as follows 

휕  ℰ + ∇. 풬 = ω,        휕 푝 + ∇. Π = f.                                     (5.68) 

It is hence seen that the wave energy propagates at velocity 풬
ℰ that is 

generally different from the action flow velocity 풥 풯  Eq. (5.60), and similarly for 

the momentum flow velocity. Moreover, those three turn out to be different from 
the velocities of information, or the nonlinear group velocities, of which there 
can also be more than one.  

(5.3.4): LINEAR WAVES: MINKOWSKI REPRESENTATION Basic equations 

Now let us consider a linear wave, i.e., such that has ω(k; t, x)  independent 
of 푎. In this case, from Eq. (5.52) it is seen that 픏  must be separable 
픏 = 픇(ω, k)A , where A(a, ω, k)  is some function such that  A   is nonzero. 
[Parametric dependence of functions like  픏, 픇 , and A on (t, x) is also assumed, 
but will be omitted for the sake of brevity.] Then, 

픏 = 픇(ω, k)A                                                              (5.69) 

It will hence be convenient to think of a as a linear measure of the 
oscillating field amplitude. Then, most commonly, one will have A ∝ a ; yet for 
our purposes, the actual dependence need not be specified. 

Equation (5.52) now yields 

픇(ω, k) = 0.                                                                 (5.70) 

Thus Eqs. (5.61) become 

풯 = 픇 퐴,        풥 = −픇 퐴,                                                   (5.71) 

and Eqs. (5.67) take the form 
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ℰ = 휔 풯,   풬 = 휔풥,   푝 = 푘 풯,    Π = k풥.                                  (5.72) 

Hence the photon canonical energy H = ℰ N⁄  and the photon canonical 
momentum P = p N⁄   

H = ℏω,          P = ℏk,                                                    (5.73) 

matching the Minkowski interpretation exactly and independently of the wave 
nature. (In fact, P = ℏk holds even for nonlinear waves [Eqs. (5.67)].) In 
particular, P ≐ (H c, P⁄ ) = ℏk  happens to be a true four-vector, by definition of  
k , so P P  is a Lorentz invariant. The latter can also be understood as a measure 
of the photon canonical mass 픐, defined via 

픐 ≐ − P P c⁄                                                      (5.74) 

Further, differentiating Eq. (5.70) with respect to k [with ω = ω(k; t, x)] also 
gives 픇 v + 픇 = 0, where we introduced the linear group velocity v ≐ ω  ; 
therefore, 

v = −픇
픇 = 풥

풯                                                 (5.75) 

Hence, Eq. (5.66) yields  풯 = 풩푇 , where 

푇 =
ℏ휔 ℏ휔v 푐⁄
푐ℏ푘 ℏ푘v                                              (5.76) 

is the canonical EMT per photon. Alternatively, one can also exclude 풩 and 
rewrite Eqs. (5.72) as 

푝 = 푘ℰ 휔,⁄       풬 = ℰv ,       Π = 푝푣g                                   (5.77) 

It is seen, from here and Eqs. (5.68), that the canonical action, energy, and 
momentum are all transported at the same velocity . vg However, keep in mind 
that the full, or kinetic, energy and momentum densities carried by the wave 
generally do not have this property. 
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Finally, let us introduce photon trajectories d x = vg, also known as GO 
rays. Along those trajectories, 

푑 = 휕 + 푣g. ∇                                                           (5.78) 

Then Eqs. (5.58) yield 

푑 푥 = 푣g,     푑 푘 = −휔x,        푑 휔 = 휔t                                     (5.79) 

[Remember that the derivatives ωx and ωt of ω(k; t, x) are taken at fixed k .] In 
particular, the ACT can hence be written as 

푑 ln 풯 = −∇. 푣g                                                          (5.80) 

Also notice that Eqs. (5.79) can be understood as canonical equations for the 
photon motion governed by the Hamiltonian  퐻(푋, 푃; 푡). In this form, i.e, 

푑 푋 = 퐻P,          푑 푃 = −퐻x,      푑 퐻 = 퐻t,                                 (5.81)  

they are identical to the motion of a true classical particle such as an electron, 
which supports the well-known analogy between GO and classical mechanics. 
Reverting to Eqs. (5.51) and (5.59), it is seen then that not just waves, but 
classical particles too can be described in terms of phases and amplitudes [87]. 

Section (5.4): LINEAR WAVES (ABRAHAM REPRESENTATION) 

(5.4.1): Basic definitions  

In addition to the wave canonical, or Minkowski, EMT that we discussed so 
far, one can also introduce the corresponding so-called kinetic, or Abraham, EMT, 

휏 = 휀 휗 푐⁄
푐휌 휋 .                                                        (5.82) 

It is defined such that being a part of the complete EMT that describes the “wave 
+ medium” system (WMS), τ  includes all the wave-related (i.e., a-dependent) 
dynamics of the medium and fields. We hence express it as τ = 풯 + ∆τ , 
where ∆τ  is the “ponderomotive” part that is stored in the medium, and, 
similarly, 
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휀 = ℰ + ∆휀,    휌 = 푝 + ∆휌,   휇 = ℳ + ∆휇.                               (5.83) 

In particular, notice the following. Since the WMS is closed and thus 
Lorentz-invariant, its complete EMT is symmetrizable [82]. Yet its unperturbed 
part is symmetrizable by itself (because it describes a closed system too, namely, 
the medium absent a wave), so τ  is also symmetrizable separately. On the 
other hand, since τ  is proportional to the wave intensity, it is defined uniquely 
and, therefore, must be symmetric. This yields  ρ = ϑ c⁄ , and 

휇 = 푥 × 휌                                                                    (5.84)  

Also, since the integral energy-momentum of the whole WMS is defined 
uniquely, and its a-dependent part is defined uniquely too, one can find (ε c, ρ⁄ ) 
as the a-dependent part of the WMS canonical energy-momentum density. Given 
the WMS Lagrangian density, the latter can, in principle, be found straight 
forwardly in any specific problem [81]. However, the general answer is not 
informative (meaning that τ  is by itself a somewhat artificial construct; [88]). 
Thus, below, we consider only the particular model of an isotropic medium, most 
popular in the AMC context, yet still refrain from specifying the wave nature. 

(5.4.2): Wave energy-momentum in an isotropic medium 

General case: Consider an isotropic medium (such as gas, fluid, or plasma) 
comprised of elementary particles or fluid elements whose dynamics absent a 
wave is described by some aggregate Lagrangian L. In the presence of a wave, the 
WMS Lagrangian is hence L + ∟, where ∟ = ∫ 픏dV is the wave Lagrangian. 
Assuming that particles contribute to ∟ additively, the latter can be written as 
∟ = ∟( ) − ∑ Φℓ

ℓ , where ∟( ) is independent of all particle velocities u(ℓ), and 
each of the so-called ponderomotive potentials Φ(ℓ) [75,76], or dipole potentials , 
depends on the specific u(ℓ) but not on other velocities. Omitting the index ℓ, we 
can write the canonical momentum of each particle as the sum of the mechanical 
part ∂ L and the ponderomotive part − ∂ Φ, also yielding the ponderomotive 
contribution to the particle canonical energy, −u. ∂ Φ. (This energy should not 
be confused with the ponder motive potential Φ itself, which is a part of the wave 
canonical energy [89].) Thus, the densities of the ponderomotive momentum and 
energy stored in particles can be written as follows: 
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∆휌 = − 푛 〈∂ Φ〉( ),                                                   (5.85) 

∆휀 = − 푛 〈푢. ∂ Φ〉( )                                              (5.86) 

Where the summation is taken over different species, n  are the (locally 
averaged) densities of  those species, and angular brackets denote averaging 
over velocities within the corresponding ensembles. 

 If a medium can be modeled as a single fluid (in particular meaning that 
kinetic effects are inessential, unlike, e.g., in warm plasma), one can simplify Eqs. 
(5.86) and (5.85) further as follows. First of all, notice that the velocities u of 
fluid elements are all equal to a single velocity v, so Eqs. (5.85) and (5.86) 
become 

∆휌 = −푛 ∂ Φ,      ∆휀 = v. ∆휌.                                             (5.87) 

It is hence convenient to rewrite Eqs. (5.87) in terms of Lorentz invariant proper 
parameters of the medium [90]. Since Φ that enters here depends on the wave 
intensity, it must be gaugeinvariant; thus, being (minus) the interaction 
Lagrangian of a single element, it transforms as Φ = Φ γ , with primes in this 

section denoting the medium rest frame, and γ = (1 − v c⁄ ) ⁄ . Also, n = γn , 
where n  is the proper density, correspondingly. Since the latter does not depend 
on v, we then get ∆ρ = − ∂v(n  Φ  ) + γ vn Φ  c⁄ . Further, let us denote 

n  Φ = 픏 −  픏 ( ) ≐ 퓊 ,                                                (5.88) 

Where 픏 ( ) is L ( ) per unit volume, and introduce 

ℜ ≐
γ v
c

퓊 ,                                                              (5.89) 

understood as the striction contribution. Since 픏 ( ) is also independent of v, one 
then can write 

∆휌 = 휕v픏 +  ℜ.                                                        (5.90) 
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Due to the fact that a Lagrangian density is a four-scalar, L" that enters Eq. 
(5.90) can also be replaced with 픏. However, using 픏 a , k  is preferable 
because it cannot depend on v explicitly, but rather depends on it solely through 
a  and k  . [Remember that the velocity derivative in Eq. (5.90) must be taken at 
fixed a and k .] Due to 픏 = 0, we then get 

휕v픏 = − 휕vΛ 푘v풥 ,                                               (5.91) 

Where we  substituted the (covector) Lorentz transformation (5.42), 
 k = Λ kv. On the other hand, kv = (Λ ) k  , so Eq. (81) can also be written 
as 

휕v픏 =
−γG 풯

C                                                 (5.92)  

Where we introduced a dimensionless matrix function 

G (v) ≐ (c γ⁄ )(Λ ) ∂ Λ .                                        (5.93) 

As shown in the Appendix, Eq. (82) is also equivalent to 

∂ 픏 = γTr (G풯 ) c⁄ = 픅 + 픓,                                     (5.94) 

Where the terms on the right-hand side are defined as 

픓 = γΛ ∙
픏 v

c
− 풫 ,                                              (5.95) 

픅    =
γ

γ + 1
v
c

×
v
c

× 풫 .                                     (5.96) 

Yet, v  is parallel to k  in an isotropic medium, so 픅 vanishes, and we finally get 

∆휌 =  픓 + ℜ,     ∆휀 = v.(픓 + ℜ).                             (5.97) 
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(5.4.3): LINEAR ELECTROMAGNETIC WAVES(Wave Lagrangian) 

Finally, let us apply the above results to illustrate how the properties of 
linear electromagnetic waves can be calculated explicitly within our general 
approach, without using Maxwell’s equations for the wave envelope. Note also 
that similar calculations can be performed for nonlinear waves too, for which L 
can be constructed from first principles as well [91]. 

First, let us consider a nondissipative wave, as usual. The wave Lagrangian 
density (derived independently, [82]) can be expected in the form 픏 = 픏( ) − 풰 , 
where 

픏( ) ≐
1

16π
E∗ ∙ E − B∗ ∙ B                                               (5.98) 

 E and B are the electric and magnetic field envelopes, and 풰 is the potential-
energy density of the wave-medium interaction. For linear, i.e., dipolar 
interaction, we can take 

풰 = −
1
4

Re E∗ ∙ P − B∗ ∙ M                                        (5.99)   

Here, P is the electric dipole moment density (i.e., the polarization), and M 
is the magnetic dipole moment density (i.e., the magnetization); also, one factor 
1 2⁄  comes from the time averaging and the other 1 2⁄  comes from the fact that P 
and M are linear functions of E and B, correspondingly. Now let us introduce D 
and H via 

D ≐ E + 4πP ≐ ϵ ∙ E,                                                    (5.100) 

B ≐ H + 4πM ≐ μ ∙ H,                                                 (5.101) 

assuming that the permittivity tensor ϵ and the permeability tensor μ (not to be 
confused with the kinetic angular momentum density μ) are Hermitian so the 
assumption of zero dissipation is satisfied. One gets then  

픏 =
1

16π
E∗ ∙ ϵ ∙ E − B∗ ∙ μ ∙ B                                (5.102) 
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(Here μ   is the tensor inverse to μ), also meaning that 

풰 = −
1

16π
E∗ ∙ ϵ − I ∙ E − B∗ ∙ μ − I ∙ B                  (5.103) 

 this implies assigning the following ponderomotive potentials to particles (or 
fluid elements) comprising the medium: 

Φ = −E∗ ∙ α ∙ E 4⁄ − B∗ ∙ β ∙ B 4⁄ ,                           (5.104) 

Where α  and β are the particle electric and magnetic polarizabilities [68], and 

ϵ = I + 4휋 푛( ) 〈α〉( ),                                             (5.105) 

μ = I − 4휋 푛( ) 〈β〉( ).                                        (5.106) 

Parametrization and dispersion. We remember that there is a freedom in 
defining a, so there are various options for how to parametrize the wave 
Lagrangian density. First, let us consider E and E∗ as independent vector fields, 
i.e., a = E, E∗ . In this case, it is convenient to write 

픏( ) =
1

16π
E∗ ∙ E −

c
ω

k × E                                (5.107)  

(where we used that B = ck × E ω⁄  ) and 

픏 =
1

16π
E∗ ∙ ϵ ∙ E −

c
ω

k × E∗ ∙ μ ∙ k × E                  (5.108) 

correspondingly. Using that 

k × E∗ ∙ μ ∙ k × E = − E∗ × k ∙ μ ∙ k × E  

                                                                      = −E∗ ∙ k × μ ∙ k × E                   (5.109)  

one can further rewrite Eq. (5.108) as follows 
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픏 =
E∗

16π
∙ ϵ ∙ E +

c
ω

k × μ ∙ k × E                          (5.110) 

Then, varying 픏 with respect to E∗  yields the following dispersion relation 

ϵ ∙ E +
c
ω

k × μ ∙ k × E = 0,                               (5.111) 

in agreement with Maxwell’s equations [75]. Similarly, varying 픏  with respect to 
E  yields the complex conjugate equation. 

Alternatively, if the polarization vector e is prescribed (or considered as an 
independent field), then one can as well introduce a scalar amplitude instead, 
say,  a = E . This yields  픏 = 픇(ω, k)a  , with 픇(ω, k) given by 

픇 =
1

16π
∙ e∗ ∙ ϵ ∙ e −

c
ω

(k × e∗) ∙ μ ∙ (k × e) .                 (5.112) 

The dispersion relation that follows [Eq. (5.70)] is Eq. (5.111) multiplied by e∗ . 

 


