Dedication

I dedicate this work to

My mother, father, brothers, Sister, Friends and my lovely child (Mohammed)
Acknowledgements

Thank God for giving me the strength, patience and guidance to go through Reference articles to solve many problems regarding the completion of this research project.

First of all I would like to express my deepest gratitude to Dr. Elmugdad Ahmed Ali for Supporting and helping me by valuable and critical ideas. I can’t forget his fruitful comments by focusing on important points throughout my project.

My appreciations go further deep to all teaching and laboratory staff in chemistry department just for cooperation and good advices till completed my research.
Abstract (English)

The crude sodium chloride in Sudanese market’s is highly contaminated with undesirable contaminants which make it un conformative with the international standards for table salt.

Random samples were collected from the market and were analysed. The result revealed high contamination with SO_4^{2-}, Ca^{2+}, Mg^{2+}, and the moisture content was also found to be high, in addition to insoluble matter.

To get rid of these contaminants the crude salt was washed by brine solution which dissolves the contaminants, but not the sodium chloride. As a result the percentages of impurities were lowered ie. SO_4^{2-} from 0.5 % to 0.3 % and Ca^{2+} from 0.28% to 0.12% and Mg^{2+} from 0.52% to 0.21%. Matter insoluble from 1. 30 % to 0.01% this resulted is increasing the percentage of sodium chloride 96.5% to 99.1% this simple economical method produced table salt which satisfies the requirements of the standards.
ملخص البحث

ملح الطعام الخم المتواجد في الأسواق السودانية ملوث إلى درجة كبيرة بملوثات غير مرغوب فيها مما يجعل خواصه لا تتطابق مع المواصفات العالمية لملح الطعام. اختبرت عينات بطريقة عشوائية من السوق ثم تحليلها. وكشف التحليل أن العينات فيها نسبة عالية من الملوثات مثل Ca²⁺, Mg²⁺, SO₄²⁻، وأيضاً نسبة الرطوبة كانت عالية بالإضافة لبعض العناصر غير الذايدة.

للتخلص من هذه الملوثات غسل الملح بمحلول من ملح الطعام النقى المشبع والذي يذيب الشوائب ولا يذيب ملح الطعام. نتيجة لذلك انخفض تركيز الملوثات مثل أيون الكبريتات انخفض من 0.5% إلى 0.3% و أيون الكالسيوم من 0.28% إلى 0.12% و أيون الماغنزيوم من 0.52% إلى 0.21% و أدى ذلك إلى زيادة نسبة كلوريد الصوديوم من 96.1% إلى 99.1% وبهذه الطريقة الاقتصادية البسيطة تم إنتاج كلوريد الصوديوم تطابق مواصفات مع متطلبات المواصفات القياسية.
Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>II</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>III</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>IV</td>
</tr>
<tr>
<td>List of contents</td>
<td>V</td>
</tr>
<tr>
<td>List of tables</td>
<td>VII</td>
</tr>
<tr>
<td>List of figures</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>IX</td>
</tr>
</tbody>
</table>

Chapter one

Introduction and literature review

1. Introduction
1.1 The Etymology of sodium chloride
1.2 Chemistry Sodium chloride
1.3 Salt Sources and methods of recovery
1.3.1 Solar Evaporation of brine
1.3.2 Quarrying of solid
1.3.3 Mining of solid
1.3.4 Burning of salt- Containing Plants
1.3.5 Evaporation of brine on burning Wood
1.3.6 Evaporation of brine in vessels
1.3.7 Leaching of peat Impregnated with Salt
1.3.8 Sublimation in cold climates
1.3.9 Production of Co- Production By- Product Salt
1.4 Sodium chloride
1.4.1 Solid sodium chloride
1.4.2 Aqueous solution
1.4.3 Unexpected stable stoichiometric variants
1.4.4 Occurrence
1.4.5 Production
1.4.6 Uses
1.4.7 Chemicals production
1.4.8 Chlor-alkali industry
1.4.9 Soda ash industry 16
1.4.10 Standard 16
1.4.11 Miscellaneous industrial uses 17
1.4.12 Water softening 18
1.4.13 Road salt 18
1.4.14 Environmental effects 19
1.4.15 Food industry, medicine and agriculture 19
1.4.16 Firefighting 21
1.4.17 Cleanser 21
1.4.18 Optical usage 21
1.4.19 Biological functions 22
1.5 Manufacture 22
1.5.1 From saturated brine by multiple-effect a process 23
1.5.2 From saturated brine by open (Grainer) process 26
1.5.3 From rock salt by mining 27
1.5.4 From sea water by solar evaporation 17
1.5.5 Other processes 28
1.6 Recrystallization technique 28
1.6.1 Proper purification crystalline solids 28
1.6.2 The steps in the Recrystallization a compound 29
1.6.3 Choosing a solvent 30
1.6.4 Dissolving the solid 31
1.6.5 Using decolorizing carbon 32
1.6.6 Crystallization the solid 32
1.6.7 Isolating the solid by suction filtration 33
1.6.8 Objective of the research project 34

Chapter two
2. Experimental & Results

2.1 Chemical 35
2.2 Apparatus 35
2.3 Chemical analysis methods 35
2.3.1 Purification of the crude salt 36
2.3.2 Moisture content 36
2.3.4. Determination of sodium chloride in the table salt 36
2.3.5 Determination of SO_3^{2-}
2.3.6 Determination of CaO
2.3.7 Determination of calcium and magnesium volumetrically, using EDTA solution
2.3.8 Preparation of brine solution
2.3.9 Analysis of samples
2.4 Results and calculations
2.4.1 Analysis results of the crude salt
2.4.1.1 Moisture Content in crude salt
2.4.1.1 Matter insoluble in water in crude salt
2.4.1.2 Determination of NaCl in crude salt
2.4.1.3% of SO_3^{2-} in crude salt
2.4.1.4 Determination of calcium oxide in crude salt
2.4.1.5 Determination of calcium and magnesium by titration against EDTA solution in crude salt
2.4.2 Analysis Result of the refined salt
2.4.2.1 Moisture content in refined salt
2.4.2.2 Matter insoluble in water in refined salt
2.4.2.3 Determination of NaCl in refined salt
2.4.2.4 % of SO_3^{2-} in refined salt
2.4.2.5 Determination of calcium oxid in refined salt
2.4.2.6 Determination of calcium and magnesium by titration against EDTA solution in refined salt

Chapter three
Discussion and Recommendation

3.1 Discussion
3.2 Conclusion
3.3 Recommendation
3.4 References
List of tables

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: some properties of sodium chloride</td>
<td>10</td>
</tr>
<tr>
<td>Table 2: Solubility of NaCl in various solvents</td>
<td>13</td>
</tr>
<tr>
<td>Table 3: Ingredients and Percent From saturated brine by multiple-effect evaporation process</td>
<td>24</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1: Flow diagram for manufacture of sodium chloride from saturated</td>
<td>24</td>
</tr>
<tr>
<td>brine by multiple-effect evaporation</td>
<td></td>
</tr>
<tr>
<td>Fig 2: Flow diagram for manufacture of sodium chloride from saturated</td>
<td>26</td>
</tr>
<tr>
<td>brine by open pan-Grainer process</td>
<td></td>
</tr>
</tbody>
</table>
List of Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.C.</td>
<td>Before Christ</td>
</tr>
<tr>
<td>A.D.</td>
<td>Is short for anno domini which means the “year of our lord”</td>
</tr>
<tr>
<td>ASTM international</td>
<td>American society for testing and materials</td>
</tr>
<tr>
<td>IMO</td>
<td>International maritime organization</td>
</tr>
</tbody>
</table>