
i

SUDAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY COMPUTER

SYSTEMS AND NETWORKS DEPARTMENT

Enhancement of SSH Authentication by Public Key

Cryptography

 تطوير الهويه لل
ٍٍٍ
ٍٍٍ(SSH) تشفير المفتاح العامعن طريق استعمال

A Project Submitted As One Of The Requirements For Obtaining A Bachelor Of Honor

Computer Systems And Networks

October 2015

ii

SUDAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COLLEGE OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY COMPUTER

SYSTEMS AND NETWORKS DEPARTMENT

Enhancement of SSH Authentication by Public Key

Cryptography

Proposed By:

MAZIN ALI ABDELRAHIM BABKAIR

MOHAMED ALKHTIM AHMED ALFADNI

MUHANNED ADIL OMER AHMED

JADALLAH MOHAMED JADALLAH MOHAMED KHAIR

Signature of Supervisor DATE

Eng. Mohamed Elnour Abd Elhafez October 2015

iii

ACKNOWLEDGEMENT

At the beginning and in the end all thanks belongs to ALLAH, we thank the almighty

for giving us the will power and patience to complete this work; truly without hisgrace

nothing is achievable.a lot of appreciation and gratitude to the ones who have put their

trust on us to complete this research.

Our supervisor:eng\ Mohamed Elnour all the regards and respect to the light of the dark

roads we did across:

- T.Majda Omer.

- T.Daliya Mahmud.

-T Intesar Al-Haj

Thanks to every teacher who have taught usthroughout our college years and got us to

where we are today.

Thanks to all of our colleagues in batch eight, we are honored to have studied with such

a batch… for everyone knows our names, thank you.

iv

ABSTRACT

Remote access is the ability of users/system administrators to access their public

and non-public computing resources from external location using the public

network (internet), several systems could be used to facilitate this service such as

Secure Shell (SSH).

 As general, such systems available publicly by default regarding to its nature,

therefore in this study we use public key as replacement of passwords in SSH

authentication to overcome any expected unauthorized access to our service.

 The proposed solution in this study consists of remote access server, remote

access client, and certificate authority to make sure that public key is the right

one, we added an option in CA of which cryptography algorithm to use for data,

using this replacement of public key will lead to better and faster authentication

than using passwords, as shown in this research, we used just RSA algorithm for

encryption, but we recommend to use other algorithms as options in CA form,

and also make this program of ours as a service in Linux kernel.

v

 المستخلص

انٕصٕل ػٍ بؼذ ْٕ قذسة انًسخخذيٍٛ ٔ يسؤٔنٙ انُظاو نهٕصٕل إنٗ يٕاسد انذاسب انؼايت ٔ انخاصت بٓى

ًٚكٍ اسخخذاو ػذة أَظًت نخسٓٛم ْزِ انخذيت ػًٕيايٍ يكاٌ خاسجٙ باسخخذاو انشبكت انؼايت)الإَخشَج(،

، نزنك فٙ ْزِ انذساست كمالاصم يخادت نهطبٛؼت ْزا انُٕع يٍ الاَظًت ٚجؼهٓا فٙ ، . (SSH) يثم بشٔحٕكٕل

نهخغهب ػهٗ أ٘ ٔصٕل غٛش SSHاسخخذاو انًفخاح انؼًٕيٙ كًا اسخبذال كهًاث انًشٔس فٙ انًصادقت فقذ حى

 نًصشح بّ انًخٕقغ نخذيخُا.ا

ٛم ٔصٕل بؼٛذ، ٔيصذق نهخأكذ يٍ أٌ بؼٛذ انٕصٕل، ػًخادو ٙ ْزِ انذساست حخكٌٕ يٍ انًقخشدت ف ذمان

 .انصذٛخو ْٕ انًفخاح انؼا

يُٓا خٕاسصيٛت انخشفٛش لاسخخذاو انبٛاَاث، ٔرنك باسخخذاو ْزا الاسخبذال يٍ انًفخاح CAأضفُا خٛاسا فٙ

انؼًٕيٙ سٛؤد٘ إنٗ يصادقت أفضم ٔأسشع يٍ اسخخذاو كهًاث انًشٔس، كًا ْٕ يبٍٛ فٙ ْزا انبذث،

 CAنخشفٛش، ٔنكٍ يٍ انًسخذسٍ ل اسخخذاو خٕاسصيٛاث أخشٖ كخٛاساث فٙ RSAخٕاسصيٛت اسخخذيُا فقظ

 شكم، ٔأٚضا جؼم ْزا انبشَايج نُا كخذيت فٙ َٕاة نُٛكس.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... i

ABSTRACT ... iv

 v ... المستخلص

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. viii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS ... x

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1. Background……………………………………………………………………………....2

1.2. Problem Statement ……………………………………………………………………....2

1.3. Objectives……………………………………………………………………………......3

1.4. Scope……………………………………………...…………………………………......3

1.5. Importance ……………………………………………………………………………....3

1.6. Dissertation Layout ……………………………………………………………………..4

CHAPTER 2 ... 5

LITERATURE REVIEW ... 5

2.1. Introduction……………………………………………………………………………...6

2.1.1. Communication Tunneling………………………………………………………....6

2.1.2. Application Portals……………………………………………………………...….7

2.1.3. Remote Desktop Access…………………………………………………………....9

2.1.4. Direct Application Access……………………………………………………….....9

2.2. Remote Access Authentication, Authorization, And Access Control………………….10

2.2.1. Remote Access Authentication…………………………………………………....10

2.2.2. Remote Access Authorization……………………………………………………..11

2.2.3. Access Control For Network Communications……………………………….......12

2.2.4. Access Control For Applications……………………………………………….....12

vii

2.3. Secure Shell (SSH)……………………………………………………….….………...13

2.4. Public Key Cryptography…………………………………………………….………..14

2.5. Certificate authority…………………………………………………………..……….16

2.6. Related Studies………………………………………………………………..……….16

CHAPTER 3 ……………………………………………………19

SYSTEM DESIGN AND IMPLEMENTATION…………......19

3.1 Introduction…………………………………………………………………...…........20

3.2 Methodology……………………………………………………………………….....20

3.3 Proposed Design………………………………………………………………...…….21

3.2. System Analysis…………………………………………………………………………..…..24

3.3. UML Language…………………………………………………………………………….....24

3.4. System Implementation………………………………………………………………………28

3.4.2 Certificate Authority (Java Program)………………………………………………..28

3.4.3 SSH Configuration………………………………………………………………......33

CHAPTER 4…………………………………………..………...37

RESULTS AND DISCUSSIONS…………………..………......37

4.1 Remote Access Process…………………………………………………………………….......38

4.1.1. Remote Access Test……………...………………………………………………......38

4.1.2. Discussions of Regular SSH Server………………………………………………….38

4.2 Modified SSH Remote Access:…………………………………………………….......39

4.2.2. Discussions Of Modified SSH Server…………………………………………….....40

CHAPTER 5 ………………………………………………........41

CONCLUSION AND RECOMMENDATIONS…….…....…..41

5.1 CONCLUSION…………………………………………………………………………….......42

5.2. RECOMMENDATIONS………………………………………………………………...........42

References…………………………………………….…………43

Appendix ………………………………………….…………....43

viii

LIST OF FIGURES

Figure 2.1 Tunneling Architecture [4] ... 6

Figure 2.2: Portal Architecture [4] ... 7

Figure 2.3 Remote Desktop Access Architecture [4] .. 8

Figure 2.4 Direct Application Access Architecture [4] ... 10

Figure 3.1: system design diagram .. 19

Figure 3.2 SSH Port Forwarding (SSH tunnel) [13] .. 23

Figure 3.3 Sequence diagram ... 23

Figure 3.4 User case diagram ... 24

Figure 3.5 activity diagram .. 25

Figure 3.6 CA form .. 27

Figure 3.7 CA validation field ... 28

Figure 3.8 execute_command-client .. 31

Figure 3.9 execute_command-server ... 31

Figure 3.10 login-failed-client ... 32

Figure 3.11 login-success-client .. 32

Figure 3.12 login-success-server ... 33

Figure 3.13 run-server ... 33

Figure 3.14 RSA Mechanisms ... 34

Figure 3.15 Public Key Coping Mechanisms in CA ... 35

Figure 3.16 RSA Mechanisms in CA .. 36

Figure 4.1 failed SSH login .. 38

ix

LIST OF TABLES

2.1 Encryption Ciphers .. 14

2.2 Authentication Ciphers .. 14

x

LIST OF ABBREVIATIONS

CGI Common Gateway Interface

DES Data Encryption Standard

DMZ Demilitarized Zone

DNS Domain Name Service

FIFO First In First Out

FTP File Transfer Protocol

ICMP Internet Control Message Protocol

IDEA International Data Encryption Algorithm

IPsec Internet Protocol Security

MPLS Multiprotocol Label Switching

NAT Network Address Translation

NFS Network File System

NIDS Network Intrusion Detection System

PKI Public Key Identifier

PPP Point-to-point Protocols

SMB Server Message Block

SSH Secure Shell

SSL Secure Sockets Layer

TCP/IP Transport Control Protocol/Internet Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VPN Virtual Private Network

1

CHAPTER 1

INTRODUCTION

2

1.1. Background
With new security threats cropping up every day, network managers are

understandably protective of their computing assets. Enhanced security measures,

however, can inflict significant hardships on legitimate users and can lead to

frustration, productivity losses, and dangerous attempts at circumvention of

restrictions. Equipping yourself with proper tools for connectivity can make a task

easier while still maintaining network security and integrity. Secure Shell (SSH) is one

of the most valuable tools in the Information Technology (IT) toolkit. It is typically

used for logging into remote servers to provide a shell access to do maintenance, read

emails, restart services, or any other task required by administrator. Using SSH as a

replacement for Telnet is familiar to most users; however it includes many features and

benefits that could be utilized. When properly configured, a server and client can

connect and communicate virtually any service using the SSH link, and since it is

inherently more secure than Telnet, FTP, or other unencrypted protocols, most network

managers are accommodating to requests to open ports and allow SSH

communications through the firewall. In this research SSH will be utilized as remote

access solution for FAMIS information system.

1.2. Problem Statement

Remote access to networks resources (such as servers, storage) in secure manner are

becoming increasingly important, in most cases it provides the possibility of effective

administration and management using public network (Internet).

Basically the most common technique for remote system authentication is username

and password which is enabled by default, especially in SSH; which is not powerful

enough for most of common attacks to break authority of the system.

3

1.3. Objectives

The proposed objectives are aim to: -

 Replace default login to user of SSH by public key scheme instead of

passwords.

 Add a certificate authority to sure that public keys are used for

authentication are valid.

 Add algorism to encrypt CA data.

1.4. Scope

Is to design a code that simulate SSH mechanism and working environment

with replacing authentication by public key cryptography instead of

passwords and create CA to register and make sure that all users of SSH

service are authenticated.

1.5. Importance

Security has become an important factor of any organization, big

organizations have distributed server to hold their data and information in

different locations, access to these servers will be default physically but by

using remote access techniques , but will be lack of authentication, so in this

project we designed a code that use public key cryptography to enhance

authentication of remote access.

4

1.6. Dissertation Layout
This research is divided into five chapters. Chapter two gives an introduction to

remote access solutions, and it shows also the security techniques used with

remote access solutions, as well provide an idea about how to assist the security

level using security utilities. Chapter three presents the whole remote access

solution security design. Chapter4 contains Implementation and Testing. Finally

Chapter 5 presents conclusion and the fuller recommendations.

5

CHAPTER 2

LITERATURE REVIEW

6

2.1. Introduction
This chapter consist of concepts that is important to our project, and related

studies; Organizations have many options for providing remote access to their

computing resources. The remote access methods most commonly used for

teleworkers have been divided into four categories based on their high-level

architectures: tunneling, portals, remote desktop access, and direct application

access. The remote access methods in all four categories have some features in

common [4].

 They are all dependent on the physical security of the client devices.

 They can use multiple types of server and user authentication mechanisms.

 They can use cryptography to protect the data followed.

 They can allow teleworkers to store data on their client devices [4].

2.1.1.Communication Tunneling
Many remote access methods offer a secure communications tunnel through

which information can be transmitted between networks, including public

networks such as the Internet. Tunnels are typically established through virtual

private network (VPN) technologies. Once a VPN tunnel has been established

between a teleworker’s client device and the organization’s VPN gateway, the

teleworker can access many of the organization computing resources through

the tunnel. It also uses cryptography to protect the confidentiality and integrity

of the transmitted information between the client device and the VPN gateway.

In tunneling solutions, the application client software and data at rest resides on

the client device, are not protected by the tunneling solution and should be

protected by other means. Figure2.1 represents the tunneling architecture [4].

7

Figure 2.1 Tunneling Architecture [4]

The types of VPNs most commonly used for teleworkers are Internet Protocol

Security (IPsec) and Secure Sockets Layer (SSL) tunnels. Tunneling may also

be achieved by using Secure Shell (SSH), although this is less commonly used

and is often considered more difficult to configure and maintain as compared to

IPsec or SSL tunnel VPNs [4].

Many communication encryption protocols can be expanded into tunneling

protocols in the same way that SSL is used for SSL VPNs. For example some

use un-standardized methods such as SSH protocol to create tunnels. In general,

standardized tunneling protocols can be configured to have the same

cryptographic strength and to use the typical mechanism for authenticating the

two parties to each other. Different tunneling systems can tunnel various

protocols; for example, the IPsec has standard extensions that allows to tunnel

Layer 2 protocols such as the Point-to-Point Protocol (PPP) and Multiprotocol

Label Switching (MPLS). In general, almost any communication encryption

protocol can be made to tunnel almost any layer [4].

2.1.2.Application Portals
A portal is a server that offers access to one or more applications through a

single centralized interface. A teleworker uses a portal client on a telework

client device to access the portal. Most portals are web based; the portal client

8

is a regular web browser. Figure 2.2 shows the basic portal solution

architecture. The application client software is installed on the portal server,

and it communicates with application server software on servers within the

organization. The portal server communicates securely with the portal client as

needed [4].

Portals have most of the same characteristics as tunnels: portals protect

information between client devices and the portal, and they can provide

authentication, access control, and other security services. However, there is an

important difference between tunnels and portals. The location of the

application client software and associated data. In a tunnel, the software and

data are on the client device; in a portal, they are on the portal server. A portal

server transfers data to the client device as rendered desktop screen images or

web pages, but data is typically stored on the client device much more

temporarily than data for a tunneled solution is:

 In Tunnel

 A Portal Server [4]

Figure 2.2: Portal Architecture [4]

9

2.1.3.Remote Desktop Access
A remote desktop access solution gives a teleworker the ability to remotely

control a particular desktop computer at the organization, most often the user’s

own computer at the organization office, from a telework client device. The

teleworker has keyboard and mouse control over the remote computer and

monitor that computer’s screen on the local telework client device’s screen.

Remote desktop access allows the user to access all of the applications, data,

and other resources that are normally available from their computer in the

office. Figure 2.3 shows the basic remote desktop access architecture [4].

Figure 2.3 Remote Desktop Access Architecture [4]

2.1.4.Direct Application Access
Remote access can be accomplished without using remote access software. A

teleworker can access an individual application directly, with the application

providing its own security (communications encryption, user authentication,

etc.) Figure 2.4 shows the high-level architecture for direct application access.

The application client software installed on the telework client device initiates a

connection with a server, which is typically located at the organization’s

perimeter zone [4].

The direct application access architecture is generally only acceptable if the

servers being accessed by the teleworkers are located on the organization’s

10

network perimeter, and not internal networks. Servers on the perimeter are

directly accessible from the Internet, so they should be well-secured to reduce

the likelihood of compromise. Many organizations choose to provide direct

application access to only a few lower-risk applications that are widely used,

such as email, and use tunnel or portal methods to provide access to other

applications, particularly those that would be at too much risk if they were

directly accessible from the Internet [4].

Figure 2.4 Direct Application Access Architecture [4]

2.2. Remote Access Authentication,

Authorization, and Access Control
Most of the computing resources used through remote access are available only to

an organization user, and often only a subset of those users. To ensure that access is

restricted properly, remote access servers should authenticate each teleworker

before granting any access to the organization resources, and then use authorization

technologies to ensure that only the necessary resources can be used [4].

2.2.1.Remote Access Authentication
There are many ways to authenticate remote access users, there include the use

of passwords, digital certificates, or hardware authentication tokens. If

passwords are the only form of authentication for a remote access solution, then

generally the remote access solution authentication mechanism should be

11

different from the organization other authentication mechanisms, such as email

or directory service passwords, unless direct application access is being used.

Having different passwords reduces the impact that a compromise of remote

access credentials would have on other information resources, and vice versa,

and it is particularly important if users are entering passwords into telework

devices not controlled by the organization. However, having different

passwords for remote access and other systems is often not enforceable, and it

should be assumed that some users will use the same passwords for both.

Organizations with higher security needs or with concerns about the security of

passwords should consider using authentication that does not rely solely on

passwords, such as multifactor authentication [4].

2.2.2.Remote Access Authorization
After verifying the identity of a remote access user, organizations may choose

to perform checks involving the telework client device to determine which

internal resources the user should be permitted to access. These checks are

sometimes called health, suitability, screening, or assessment checks. The most

common way of implementing this is having the remote access server perform

―health checks‖ on the teleworker client device. These health checks require

software on the system of user that controlled by the remote access server to

verify compliance with certain requirements from the organization secure

configuration baseline. The user antimalware software being up-to-date, the

operating system being fully patched, and the system being owned and

controlled by the organization. If the user has acceptable authorization

credentials but the client device does not pass the health check, then the user

and device may be granted limited access to the internal network. i.e no

network access at all, or access to a quarantine network so that the security

deficiencies can be fixed. This decision can also be based on the part of the

network that the device is trying to access [4].

12

2.2.3.Access Control for Network

Communications
A major component of controlling access to network communications and

protecting their content is the use of cryptography. At a minimum, any sensitive

information passing over the Internet, wireless networks, and other untrusted

networks should have the confidentiality and integrity preserved through use of

cryptography. Some remote access methods such as internet protocol security

(IPsec) and secure sockets layer (SSL) virtual private networks (VPN), often

inherently mechanisms for encrypting communications and verifying their

integrity. Other remote access methods may use Transport Layer Security

(TLS) or other cryptographic mechanisms to provide protection [4].

Access control for network communications may also involve determining

which traffic should be protected. Some remote access solutions offer options

for this; for example, many VPN clients have a feature called split tunneling

where it is tunnel all communications involving the organization internal

resources through the VPN, and protecting them, however, it will exclude all

other communications from going through the tunnel [4].

2.2.4.Access Control for Applications
Different types of remote access architectures offer different levels of

granularity for application access control. Tunnels often have a mechanism for

an administrator to specify which ports on which hosts the teleworker has

access to; this can limit access so that only specific applications can be used.

Portals, by their nature, limit the teleworker to applications run on the portal

server. Similarly, direct application access limits the teleworker to a specific

application on a single server. Remote desktop access can only provide access

13

control to applications by combining its policies with the access control

restrictions that are in place on the internal workstations [4].

2.3. Secure Shell (SSH)
SSH is a program to log into computers, switches ... etc over a network, to

execute commands in a remote machine, and to move files from one machine to

another. It provides strong authentication and secure communications over

unsecure channels. It is intended as a replacement for telnet, rlogin, rsh, and

rcp. For SSH2, there is a replacement of file transfer protocol (FTP), it is secure

file transfer protocol (SFTP). Additionally, SSH provides secure X connections

and secure forwarding of arbitrary TCP connections. There is ability to use SSH

as a tool for things like rsync and secure network backups. The traditional BSD

'r' - commands (rsh, rlogin, rcp) are vulnerable to different kinds of attacks.

Somebody who has root access to machines on the network, or physical access

to the wire, can gain unauthorized access to the systems in a variety of ways. It

is also possible for such person to log all the traffic to and from our system,

including passwords (which SSH never sends in the clear text) [5, 6].

There are two versions of Secure Shell available: SSH1 and SSH2. Thus, it

should be noted that the SSH1 and SSH2 protocols are in fact different and not

compatible with each other [5, 6].

SSH uses the ciphers shown in Table 2.1 for encryption.

http://rsync.samba.org/

14

Table 2.1 Encryption Ciphers [5]

Cipher SSH1 SSH2

DES Yes No

3DES Yes Yes

IDEA Yes No

Blowfish Yes Yes

Twofish No Yes

Arcfour No Yes

Cast128-cbc no Yes

SSH Uses the following ciphers for authentication:

Table 2.2 Authentication Ciphers [5]

Cipher SSH1 SSH2

RSA yes Yes

DSA no Yes

SSH versions (SSH1 and SSH2) are support different types of authentications,

it is as follow.

 Password (the /etc/passwd or /etc/shadow in UNIX).

 User public key (RSA or DSA, depending on the release).

 Kerberos (for SSH1).

 Hostbased (.rhosts or /etc/hosts.equiv in SSH1 or public key in

SSH2) [5].

2.4. Public Key Cryptography
Public-key cryptography refers to a set of cryptographic algorithms that are

based on mathematical problems that currently admit no efficient solution --

particularly those inherent in certain integer factorization, discrete logarithm,

and elliptic curve relationships. It is computationally easy for a user to

generate a public and private key-pair and to use it for encryption and

https://en.wikipedia.org/wiki/Cryptographic
https://en.wikipedia.org/wiki/Algorithms
https://en.wikipedia.org/wiki/Mathematical
https://en.wikipedia.org/wiki/Unsolved_math_problems
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_cryptography

15

decryption. The strength lies in the "impossibility" (computational

impracticality) for a properly generated private key to be determined from its

corresponding public key. Thus the public key may be published without

compromising security. Security depends only on keeping the private key

private. Public key algorithms, unlike symmetric key algorithms,

do not require a secure channel for the initial exchange of one (or

more) secret keys between the parties.

Because of the computational complexity of asymmetric encryption, it is

typically only used for short messages, typically the transfer of a symmetric

encryption key. This symmetric key is then used to encrypt the rest of the

potentially long & heavy conversation. The symmetric encryption/decryption

is based on simpler algorithms and is much faster.

Message authentication involves hashing the message to produce a "digest,"

and encrypting the digest with the private key to produce a digital signature.

Thereafter anyone can verify this signature by (1) computing the hash of the

message, (2) decrypting the signature with the signer's public key, and (3)

comparing the computed digest with the decrypted digest. Equality between

the digests confirms the message is unmodified since it was signed, and that

the signer, and no one else, intentionally performed the signature operation —

presuming the signer's private key has remained secret. The security of such

procedure depends on a hash algorithm of such quality that it is

computationally impossible to alter or find a substitute message that produces

the same digest - but studies have shown that even with the MD5 and SHA-

1 algorithms, producing an altered or substitute message is not

impossible. The current hashing standard for encryption is SHA-2. The

message itself can also be used in place of the digest.

Public-key algorithms are fundamental security ingredients in cryptosystems,

applications and protocols. They underpin various Internet standards, such

as Transport Layer Security (TLS), S/MIME, PGP, and GPG. Some public

key algorithms provide key distribution and secrecy (e.g., Diffie–Hellman

key exchange), some provide digital signatures (e.g., Digital Signature

Algorithm), and some provide both (e.g., RSA).

https://en.wikipedia.org/wiki/Symmetric_key_algorithms
https://en.wikipedia.org/wiki/Secure_channel
https://en.wikipedia.org/wiki/Key_exchange
https://en.wikipedia.org/wiki/Secret_key
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Cryptosystem
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/S/MIME
https://en.wikipedia.org/wiki/Pretty_Good_Privacy
https://en.wikipedia.org/wiki/GNU_Privacy_Guard
https://en.wikipedia.org/wiki/Key_distribution
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/RSA_(algorithm)

16

Public-key cryptography finds application in, amongst others, the IT security

discipline information security. Information security (IS) is concerned with

all aspects of protecting electronic information assets against security

threats. Public-key cryptography is used as a method of assuring the

confidentiality, authenticity and non-reputability of lectronic communications

and data storage. [6]

2.5. Certificate Authority
In cryptography, a certificate authority or certification authority (CA) is an

entity that issues digital certificates. A digital certificate certifies the

ownership of a public key by the named subject of the certificate. This allows

others (relying parties) to rely upon signatures or on assertions made by the

private key that corresponds to the certified public key. In this model of trust

relationships, a CA is a trusted third party—trusted both by the subject

(owner) of the certificate and by the party relying upon the certificate. Many

public-key infrastructure (PKI) schemes feature CAs. [6]

2.6. Related Studies
The following is a summary of recent work related to this research.

―Adding Public Key Security to SSH‖ [1]

The author of this paper presents an investigation of the effects of the ―man-

in-the-middle Attack‖ and provides a solution to avoid the inherent security

flaw by using the concept of the public key.

However, SSH protocol has an inherent security flaw. It is vulnerable to the

―man-in-the-middle Attack‖, when a user establishes his first SSH

connection from a particular client to a remote machine. My thesis entails

designing, evaluating and prototyping a public key infrastructure which can

be used with the SSH2 protocol, in an academic setting, thus eliminating this

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Non-repudiation
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Trusted_third_party
https://en.wikipedia.org/wiki/Public_key_infrastructure

17

vulnerability due to the man in the middle attack. The approach presented is

different from the one that is based on the deployment of a Certificate

Authority. My scheme does not necessarily require third party verification

using a Certificate Authority; it is decentralized in nature and is relatively

easy to set up [1].

―Tunneling TCP over TCP – A study of a real system‖ [2]

The work focuses on the effects of TCP in TCP in VPNs. The aim was to test

the impact on performance by using a Virtual Ethernet Interface, to tunnel a

TCP connection through another TCP connection. The authors wanted to test

the theoretical claims, that problems such as TCP meltdown will occur,

causing decreased good put [2].

Questions raised by the authors were:

 Is TCP in TCP an actual problem which would confirm the theoretical

claims?

 If it is a problem, when do the problems occur?

 Is it realistic that the levels of packet loss will occur, which is needed

for triggering the problem?

To investigate, a test system was created. The test system consisted of three

computers, two of the computers where end hosts and the third computer

acted as a forwarding router between the end hosts. The middle computer

had the purpose of emulating packet loss that can occur on a real, bigger,

network [2].

In the tests the emulator Linux Traffic control Network Emulator, tcNetem,

was used. In the tests only unidirectional packet loss was emulated. Ethereal

18

was used to monitor the traffic. The tests where performed using SSH as

VPN solution. Two different VPN configurations where tested. One was

created using the port forwarding feature of SSH. The other by using the IP

forwarding features [2].

The results of the simulations performed by the authors have showed that the

TCP meltdown does not occur for realistic levels of packet loss, i.e. lower

than 10%. The decrease in bandwidth is only noticeable when the packet loss

consists of ACKs and is approximately unchanged for packet loss of packets

containing payload data [2].

19

CHAPTER 3

SYSTEM DESIGN AND

IMPLEMENTATION

20

3.1 Introduction

This chapter consist of methodology of the work in this research, model of

proposed design with explaining of each component of system, system

analysis using UML, and implementation of project.

3.2 Methodology

The theme of the research that we wish to carryout is divided into three main

phases, are described below:

Phase 1 (Analysis): This part of the research that by the end of it, the general

perception about virtual project laboratories systems and perform special

(security) analysis of OpenSSH, Snort and iptables.

Phase 2 (Implementation and Design): According to the software

configurations and its extended application we need to go through five

essential design issues, it is requirement specification, holistic view of the

system architecture, implementation, and design of security monitoring and

reporting interfaces.

Phase 3 (Testing and Modification): This part is about testing the whole

project in order to verifying its capabilities and limitations then solve any

discovered malfunctioning. The expected duration is estimated to be one

month.

21

3.3 Proposed Design

As any other information system, the proposed design consist of main server

where the projected has been build, the following figure (Figure 3.1) shows the

whole system connectivity and network traffic flow.

Figure 3.1: System Design Diagram

3.1.1 System Components

 Server: which receives IDs from clients then decrypts it and compare IDs

with certificate authority public keys to authorize authentication of clients.

 clients: which send a message contains of two pair ; first part is ID of client

in plain form , the other part is also ID but is encrypted by RSA algorithm

then client send message to server to complete operation.

22

3.1.2. Network Connectivity

The system is connected to the internet directly with a public internet

protocol (IP). According to the design.

3.1.3. Certificate Authority (CA)

certificate authority is consist of table of authorized or non-authorized

public keys and other information like E-mail owner name authorization

validation date (beginning and /or ending) encryption algorithms option

and other information about as full CA.

3.1.4. Remote Access Solution Policy

SSH is the only remote access solution that has been allowed in the system

for the technical suppliers. By default SSH server is protected against attacks

that include:

 IP spoofing, where a remote host sends out packets which pretend

to come from another, trusted host. SSH even protects against a

spoofer on the local network, who can pretend he/she is the router

to the outside.

 IP source routing, where a host can pretend that an IP packet

comes from another trusted host.

 DNS spoofing, where an attacker forges name server records.

 Interception of cleartext passwords and other data by intermediate

hosts.

 Manipulation of data by the staff in control of intermediate hosts.

 Attacks based on listening to X authentication data and spoofed

connection to the X11 server.

23

In other words, SSH never trusts the net somebody hostile has taken over the

network can only force SSH to disconnect but cannot decrypts or plays back

the traffic or hijacks the connection.

SSH will not help users with anything that compromises the host security by

some means. Once an attacker has gained the root access to a machine, the

SSH be subverted. Also if the malevolent has access to user's home directory,

then security is nonexistent. This is similar to the case if a home directory is

exported via Network file service (NFS). SSH is very fixable to be modified it

to add more restriction policy. In this research the following restriction

features will be enabled:

 Restricts communication to version 2 of SSH.

 Forbids root user from connection 2th version using SSH. This

forces the use of 'su' to gain root access to the machine.

 Denies access to accounts with empty passwords.

 Reduces the amount of time that SSH server allows the clients to

presents their credentials.

 Using Public key identifier to authenticate rather than passwords.

Figure 3.2 SSH Port Forwarding (SSH tunnel) [13]

24

We have CA server contain basic information included public key of any

client in network to authorize users of system in this project passwords in

authentication has been replaced by public /private key cryptography, client

send id to the other pair in two parts one of them is encrypted and the other

is in plain mode, intercepted one is by private key, server decrypt encrypted

id then compare to the original one, if they match then user is authorized and

if not server well refuse connection.

3.2. System Analysis

Unified Modeling Language (UML) is an industry-standard graphical language

for analyzing, describing and documenting the components of an object-oriented

system under development and Use graphical notation to communicate more

clearly than natural language which is imprecise and coding which is too

detailed.

UML was used to analyze and describe the system.

3.3. UML Language

Unified Modeling Language (UML) is a standardized general-purpose

modeling language .includes a set of graphic notation techniques to create

visual models of object-oriented software-intensive systems. The proposed

system analyzed using use case, Sequence and Activity diagrams to

emphasize what must happen in the system being modeled. These behavior

diagrams illustrate the behavior of a system; they are used extensively to

describe the functionality of software systems.

The Use case diagrams: Use case diagrams are behavior diagrams used to

describe the interactions that take place between actors and the systems

25

during the execution processes. A use case represents a part of the

functionality of the system and enables the user (modeled as an actor) to

access this functionality.

The sequence diagram: Shows how objects communicate with each other in

terms of a sequence of messages. Also indicates the lifespan of objects

relative to those messages. It is a construct of a message sequence classes

involved in the scenario and the sequence of messages exchanged between

the objects needed to carry out the functionality of the scenario. A sequence

diagram4.1shows. Sequence diagrams typically are associated with use case

realizations in the Logical View of the system under development.

 Figure 3.3 User Case Diagram of SSH Authentication

26

 Figure 3.4 Sequence Diagram SSH Authentication

27

Figure 3.5 Activity Diagram of SSH Authentication

28

3.4. System Implementation

This part showing in details how all the system components has been

implemented in steps supported by screenshots.

3.4.1. Research Environment

Description

Many application software and packages has been used, and it is

summarized in the following manner.

Operating system : Linux CentOS 6.3

Secure shell (SSH) :OpenSSH_4.3

Java language : version 7

C language :version 4.1+

Net beans :6.0

Enterprise architect :7.0.0.4

3.4.2 Certificate Authority (Java Program)
The program asks for basic information to create a certification by public

key, the following are type for information in program :

 Name: is refer to Device name .

 Organization: or company the user or client is belong to.

 City: location information about user.

 State: also for location information.

 Country/Region: location information.

 E-mail: for verification and contact with user.

 Validation Date: is the time between that certification is valid.

29

 Encryption algorithm: to choose which algorithm to encrypt

(recommended to add more algorithms).

 Public key: which is used instead of password for authentication.

Figure 3.6 CA Form

30

Figure 3.7 CA Validation Field

After filling the form and press ok the server will verify your information by

sending a number code to clients email, client should type the same code to

verify its citification, server will check the code; if its match server will register

the client to a file in clients device; if code does not match the server will reject

the operation within error message.

31

Figure 3.8 Execute Command Client

Figure 3.9 Execute Command Server

32

Figure 3.10 Login Failed Client

Figure 3.11 Login Success Client

33

Figure 3.12 Login Success Server

Figure 3.13 Run Server

3.4.3 SSH Configuration

This part shows the steps to configure the server and the clients to use PKI

(Public Key Identifier) authentication rather than password.

34

3.4.3.1 CLIENT SIDE (CONFIGURE PKI “PUBLIC KEY IDENTIFIER”)

The configuration steps bellow suppose the user name “coif_sifsia-fsts” is

already created in the server and it will be used as dedicated user for the SSH

access.

 Generating public RSA key at the client.

Figure 3.14 RSA Mechanisms

 Copying the client public key to the remote server.

as showed in the following figure :

35

Figure 3.15 Public Key Coping Mechanisms in CA

To make sure we haven't added extra keys that you weren't expecting.

Figure 3.16 RSA Mechanisms in CA

We have CA server contain basic information included public key of any

client in network to authorize users of system in this project passwords in

authentication has been replaced by public /private key cryptography,

client sanded to the other pair in two parts one of them is encrypted and

the other is in plain mode, intercepted one is by private key, server decrypt

36

encrypted id then compare to the original one, if they match then user is

authorized and if not server well refuse connection.

37

CHAPTER 4

RESULTS AND DISCUSSIONS

38

4.1 Remote Access Process
Figures 4.1, 4.2 and 4.3 show the attempts of login process to the system before

and after the SSH service has been modified using public key instead of

passwords.

4.1.1 Remote Access Test
The following figure show how regular remote access fail login to server

and explained next to figure:

Figure 4.1Failed SSH Login

4.1.2. Discussions of Regular SSH Server
In this section we will discuss difference between regular SSH access failure

and modified SSH in this points:

 Figure 4.1 shows how to gain root access before SSH service has been

modified. By default SSH service asks for passwords after giving the

name of the remote device and its IP address

 Figure 4.2 shows the response in case that user did not enter correct

password, as showed in Figure 4.2 SSH service will ask user to try

again which give any kind of attackers another chance to try guessing

39

the password of remote device, these other chances could be up to 3

(or more if configured), that will lead to different kinds of attacks

which can break the authentication of clients.

4.2 Modified SSH Remote Access:
The following figure show how modified remote access success login to

server and explained next to figure:

Figure 3.10 Login Success Server

40

Figure 3.9 Login Failed Client

4.2.2. Discussions Of Modified SSH

Server
In this section we will discuss difference between regular SSH access failure

and modified SSH in this following points:

 When a client try to access remote device by modified SSH service as

we show in chapter 3, attacker don’t have any kind of chances to try

guessing pass words because all authorized devices are already

registered in CA server

 If any unregistered device try to access the remote device, server will

reject the request and ask to return to certificate authority to solve the

problem if any.

 Attacker will not return to the CA because he knows that he does not

have any authority, so there is that kind of second chances to try another

password, only authorized clients have access to remote devices.

41

CHAPTER 5

CONCLUSION AND

RECOMMENDATIONS

42

5.1 Conclusion
The SSH has been successfully designed and implemented as a remote access

solution for the proposed aperture system design. We hope that this project

can provided high security features. With new security threats cropping up every

day, network managers are understandably protective of their computing assets.

Enhanced security measures, however, can inflict significant hardships on

legitimate users and can lead to frustration, productivity losses, and dangerous

attempts at circumvention of restrictions. Equipping yourself with proper tools for

connectivity can make a task easier while still maintaining network security and

integrity. Restricted remote access is obtained by replacing SSH password by

public key cryptography.

5.2. Recommendations
Security is not finite in particular limit, this project should provide security

protection and can be even more enhanced by add these recommendation

following:

 Certificate authority have many fields, we recommend adding full CA

standard for more functionality.

 Our project is running as a program; add it to kernel and running as a

service well make it more useful.

 add more algorithms for encryption to RSA.

43

References

[1] Yasir Ali, Adding Public Key Security to SSH, DARTMOUTH COLLEGE,

Hanover, New Hampshire Feb, 20th, 2003.Accessed on 13/10/2015 at 19:00 pm

[2] FarukDabak, Sameer Panjwani, Tunneling TCP over TCP – A Study Of A

Real System, Department of Computer Engineering, Chalmers University of

Technology, Gothenburg 2006.Accessed on 13/10/2015 at 19:00 pm

[3] MD. AHASAN HABIB, SSH Over UDP, Department of computer science

and engineering, University of Gothenburg, Chalmers University ofTechnology,

Sweden, July 2010, Access on 13/10/2015 at 22:00pm

[4] Karen Scarfone, Paul Hoffman, MurugiahSouppaya, Guide to Enterprise

Telework and Remote Access Security, National Institute of Standards and

Technology-Department of Commerce-United States of America, Jun 2009,

Accessed on 01/10/2015 at 19:00 pm

[5] openssh. www.openssh.com. Accessed on 01/10/2015 at 19:00 pm

[6]Wikipedia. www.wikipedia.org. Accessed on 01/10/2015 at 19:00 pm

http://www.openssh.com/

44

 Appendix

SSH (Secure Shell) Configuration in port and permeation

$OpenBSD: sshd_config,v 1.73 2005/12/06 22:38:28 reykExp $

This is the sshd server system-wide configuration file. See

sshd_config(5) for more information.

This sshd was compiled with PATH=/usr/local/bin:/bin:/usr/bin

The strategy used for options in the default sshd_config shipped with

OpenSSH is to specify options with their default value where

possible, but leave them commented. Uncommented options change a

default value.

#Port 22

Port 8888

#Protocol 2,1

Protocol 2

#AddressFamily any

#ListenAddress 0.0.0.0

#ListenAddress ::

HostKey for protocol version 1

#HostKey /etc/ssh/ssh_host_key

HostKeys for protocol version 2

#HostKey /etc/ssh/ssh_host_rsa_key

#HostKey /etc/ssh/ssh_host_dsa_key

Lifetime and size of ephemeral version 1 server key

#KeyRegenerationInterval 1h

#ServerKeyBits 768

Logging

obsoletes QuietMode and FascistLogging

#SyslogFacility AUTH

SyslogFacility AUTHPRIV

#LogLevel INFO

45

Authentication:

#LoginGraceTime 2m

LoginGraceTime 1m

#PermitRootLogin yes

PermitRootLogin no

#StrictModes yes

#StrictModes yes

#MaxAuthTries 1

MaxAuthTries 1

#RSAAuthentication yes

#PubkeyAuthentication yes

#AuthorizedKeysFile .ssh/authorized_keys

For this to work you will also need host keys in /etc/ssh/ssh_known_hosts

#RhostsRSAAuthentication no

RhostsRSAAuthentication no

similar for protocol version 2

#HostbasedAuthentication no

Change to yes if you don't trust ~/.ssh/known_hosts for

RhostsRSAAuthentication and HostbasedAuthentication

#IgnoreUserKnownHosts no

Don't read the user's ~/.rhosts and ~/.shosts files

#IgnoreRhosts yes

To disable tunneled clear text passwords, change to no here!

#PasswordAuthentication yes

#PermitEmptyPasswords no

PermitEmptyPasswords no

PasswordAuthentication no

Change to no to disable s/key passwords

#ChallengeResponseAuthentication yes

ChallengeResponseAuthentication no

Kerberos options

#KerberosAuthentication no

#KerberosOrLocalPasswd yes

#KerberosTicketCleanup yes

46

#KerberosGetAFSToken no

GSSAPI options

#GSSAPIAuthentication no

GSSAPIAuthentication yes

#GSSAPICleanupCredentials yes

GSSAPICleanupCredentials yes

Set this to 'yes' to enable PAM authentication, account processing,

and session processing. If this is enabled, PAM authentication will

be allowed through the ChallengeResponseAuthentication mechanism.

Depending on your PAM configuration, this may bypass the setting of

PasswordAuthentication, PermitEmptyPasswords, and

"PermitRootLogin without-password". If you just want the PAM account and

session checks to run without PAM authentication, then enable this but set

ChallengeResponseAuthentication=no

#UsePAM no

UsePAM yes

Accept locale-related environment variables

AcceptEnv LANG LC_CTYPE LC_NUMERIC LC_TIME LC_COLLATE

LC_MONETARY LC_MESSAGES

AcceptEnv LC_PAPER LC_NAME LC_ADDRESS LC_TELEPHONE

LC_MEASUREMENT

AcceptEnv LC_IDENTIFICATION LC_ALL

#AllowTcpForwarding yes

AllowUsersremoteaccess

#GatewayPorts no

#X11Forwarding no

X11Forwarding yes

#X11DisplayOffset 10

#X11UseLocalhost yes

#PrintMotd yes

PrintMotd yes

#PrintLastLog yes

#TCPKeepAlive yes

#UseLogin no

#UsePrivilegeSeparation yes

UsePrivilegeSeparation yes

#PermitUserEnvironment no

PermitUserEnvironment no

#Compression delayed

#ClientAliveInterval 0

47

#ClientAliveCountMax 3

#ShowPatchLevel no

#UseDNS yes

#PidFile /var/run/sshd.pid

#MaxStartups 10

#PermitTunnel no

#ChrootDirectory none

no default banner path

#Banner /some/path

override default of no subsystems

Subsystem sftp /usr/libexec/openssh/sftp-server

48

