DEDICATION

This thesis is dedicated to my dear parents, brothers, and to my wife Enas for her endurance, support, and encouragements.

To my supervisors Prof. Babiker Karama Abdalla and Prof. Gurashi Abdalla Gasmelseed Abdalla .

Waleed Nour Eldien Salih

JANUARY 2016

ACKNOWLEDGMENT

Firstly, I thank Almighty God (Allah) for guidance and help and our beloved prophet Mohamed peace be upon him. Deep affection is especially due to my parents who supported and encouraged me throughout my study.

I would like to express my gratitude to my advisor Prof. Babiker Karama Abdalla , and Prof. Gurashi Abdalla Gasmelseed, for their support and guidance throughout this research. Their continuous supervisions is one of the most important factors that drive this research work to excellence. Their dedication to share their time and expertise is immensely appreciated.

I also would like to thanks' Sudan University of Science and Technology, Chemical Engineering Department for their help and support during the period for the work of ph,D thesis.

Finally, I thank my family, my dearest, brothers, for their love, support and encouragement throughout this endeavor, especially my brother Ahemd Mahgoub, and to my dear wife, special thanks for her constant endurance, encouragements, and support for completing this report.

Waleed Nour Eldien Salih JANUARY 2016

ABSTRACT

Many commercial processes are available for the removal of H_2S from gaseous streams. The presence of H_2S in refinery flue gas caused dangerous effect on the environment. Hence, H_2S must be removed from the refinery flue gas, and the relievable mechanism of mass transfer with chemical reactions in a sieve tray column have to be studied. In this study, the chemical absorption of hydrogen sulfide into aqueous ferric sulfate solution $Fe_2(SO_4)_3$ has been studied. Designed calculations for a sieve tray column have been done and the effective operation parameters on this process have been investigated.

Mass transfer was carried out theoretically by developing a mathematical model of mass transfer phenomena with chemical reaction of H_2S into $Fe_2(SO_4)_3$ solution in a sieve tray column. The mass transfer process was described by film model, that yielding a second order differential equation solved numerically by orthogonal collocation to estimate enhancement factor. The mass balance model in plate column consists of differential mass balance of H_2S in gas phase and $Fe_2(SO_4)_3$ in liquid phase giving system of non-linear first order differential equations that were solved numerically by Fourth order Runge-Kutta method under MATLAB Software.

This study assumed steady state and isothermal conditions. In the system studied the refinery flue gas flow rate was, 2.401Ton/h, liquid flow rate was 10000 cm³/s, pressure P is 1atm, temperature 30°C and the concentration of $Fe_2(SO_4)_3$ in inlet absorbent was 0.002 mol/cm³.

It was found that the percentage of absorbed H_2S can be enhanced by increasing the temperature, liquid flow rate, and $Fe_2(SO_4)_3$ concentration, decreasing the flow rate of gas.

المستخلص:

هنالك عدة عمليات لازالة كبريتيد الهيدروجين من تيارات الغاز. وجود كبريتيد الهيدروجين في الغازات العادمة له اثر خطير على البيئة، لذلك يجب تتقية الغازات العادمة من كبريتيد الهيدروجين ، وكان لابد من دراسة ظاهرة انتقال المادة المصحوب بتفاعل كيميائي الذي يحدث في برج امتصاص مستخدمين صواني المناخل. في هذه الدراسة تمت دراسة الامتصاص الكيميائي لكبريتيد الهيدروجين في المحلول المائي لكبريتات الحديديك (SO4) حيث تم تصميم برج الامتصاص وتم التحقق من محدات التشغيل الفعالة للعالم.

تمت دراسة انتقال المادة نظريا" عبر معالجة النموزج الرياضي لظاهرة انتقال المادة مع تفاعل كيميائي الكبريتيد الهيدروجين مع محلول كبريتات الحديديك في برج صواني المناخل. عملية انتقال المادة تم وصفها باستخدام نظرية الغشائين ، حيث تم اشتقاق معادلة تفاضلية من الدرجة الثانية التي تم حلها عدديا" ب باستخدام نظرية الغشائين ، حيث تم اشتقاق معادلة تفاضلية من الدرجة الثانية التي تم حلها عدديا" ب المحمودين المادة في برج الصواني المحمودين المادة في برج الصواني المادة في برج الصواني الكبريتيد الهيدروجين في الطور الغازي و كبريتات الحديديك في طور السائل لتعطي معادلة غير خطية من الدرجة الأولى والتي تم حلها عدديا بواسطة طريقة Runge-Kutta من الدرجة الرابعة وذلك باستخدام تطبيق برنامج الماتلاب.

افترض في هذه الدراسة ان العملية تتم عند ظروف مستقرة وثبات الحرارة. النظام الذي تم دراستة معدل تدفق لماز ات العادمة 2.401Ton/h ، معدل تدفق المزيب السائل 10000cm³/s ، الضغط 1atm ، درجة الحرارة 30°C ، وتركيز المذيب لكبريتات الحديديك 0.002 mol/cm³ . اثبتت الدراسة انه يمكن زيادة نسبة امتصاص 42K بزيادة درجة الحرارة ، معدل تدفق المذيب ، و تركيز المذيب مع تقليل معدل تدفق الغاز .

NOMENCLATURE

a	Interfacial surface for mass transfer per unit volume cm^2/cm^2		
A,B	Parameter, dimensionless; see Eq. 3.33		
С	Concentration of substance in solution.	mol/cm ³	
C _A	Concentration of gas A	mol/cm ³	
C _{A0}	Concentration of A in bulk of liquid	mol/cm ³	
C _{Ai}	Concentration of A at interface	mol/cm ³	
C _B	Concentration of reactant B	mol/cm ³	
C_{BL}	Concentration of B in bulk of liquid	mol/cm ³	
C_{Bi}	Concentration of liquid B in inlet stream	mol/cm ³	
$C_{\rm F}$	Flooding constant for trays, Eq.3.2		
Co	Orifice coefficient		
D	Tower Diameter, Eq.3.11	cm	
D	Diffusivity	cm ² /s	
D_A	Diffusivity of dissolved gas A	cm ² /s	
D _B	Diffusivity of reactant B	cm ² /s	
D_G	Diffusivity of soluble gas in the gas phas	cm ² /s	
d_{o}	Hole diameter	cm	
E	Enhancement factor		
E_i	Enhancement factor when reaction is Instantaneous		
F	The Molar diffusion flux		
f	Friction factor		
F_{LV}	Flow factor		
G'	Gas mass flow rate	kg/s	
G	Superficial gas mass velocity	g/cm ² .s	

G_{m}	Superficial molar gas mass velocity	mol/cm^2s
Gv	Molar gas flow rate	mol/s
g	Gravitational acceleration	cm/s ²
Не	Henry's law constant	atm.cm ³ /mol
$h_{\rm w}$	Weir height	cm
h_1	Weir crest	cm
k_2	Second order reaction rate constant	cm ³ /mol.s
k _G	Gas phase mass transfer coefficient	mol/cm ² atm.s
$k_{\rm L}$	Liquid-film mass transfer coefficient	cm/s
L	Liquid flow rate	cm ³ /s
L'	Liquid mass flow rate	kg/s
m	Order of reaction with respect to A; see Eq 2.43	
$M_{\rm w}$	Molecular weight of liquid	g/mol
М	Diffusion reaction parameter	
\sqrt{M}	Hatta Number	
n	Order of reaction with respect to reactant B; see Eq 2.43	
N_A	Molar flux of A	mol/cm ² .s
$p_{\rm A}$	Partial pressure of soluble gas in bulk of gas	atm
p_{Ai}	Partial pressure of soluble gas at interface	atm
Р	Total Pressure	atm
Q'	Quantity of gas absorbed by unit area in time of contact t	mole/cm ²
Q	Volumetric flow rate of gas	cm ³ /s
q	Volumetric flow rate of liquid	$cm^{3}/2$
$r_{\rm A}$	Rate of reaction of A per unit volume.	mol/cm ³ s
R	Rate of absorption per unit area of surface	mol/cm ² s

R'	Average rate of absorption over contact time	
Re	Reynolds number	
S	Fractional rate of surface-renewal	s ⁻¹
S	Total area of interface	cm ²
t	Time	S
t	tray spacing	cm
Т	Temperature	⁰ C
v	Superficial velocity based on tray tower cross section	cm/s
$v_{\rm F}$	Flooding velocity based on A _n	cm/s
W	Weir length	cm
Х	Distance beneath liquid surface	cm
X	Parameter, dimensionless; see Eq. 3.33	
X _A	Mole fraction, liquid phase	
УА	Mole fraction, gas phase	
Z	Number of moles of reactant reacting with each mole of	

Greek symbols

α	Empirical constant, Eq.3.3	
β	Empirical constant: for flooding velocity, Eq.3.3	
Г	Gamma function	
δ	Thickness of diffusion film	cm
δ'	Distance from interface to reaction site	cm
3	Proportionality constant	
θ	time of exposure of liquid to gas	s

λ	Parameter see Eq. 2.18	
μ	Viscosity of liquid	g/cm.s
μ_{g}	Viscosity of gas phase	g/cm.s
π	3.14	
ρ_L	Density of liquid	g/cm ³
$ ho_G$	Density of liquid	g/cm ³
σ	liquid surface tension	dyn/cm

Subscripts

А	Hydrogen sulfid		
В	Ferric sulfate		
G	Gas phase		
L	Liquid phase		
∞	at t = infinity		
A b b			

Abbreviations

API	American Petroleum Institute
COS	Carbonyl sulfide
DCU	Delayed Coking Unit
EPA	Environmental Protection Agency
EDTA	Ethylene diamine tetraacetic acid
FCC	Fluid catalytic cracking
KRC	Khartoum Refinery Company
LPG	Liquefied Petroleum Gas
LEL	Lower Explosive Limit
NGL	Natural Gas Liquids
RFCC	Residual Fluid Catalytic Cracking

- ppm Part per million
- RSH Mercaptan
- SWS Sour Water Stripping
- TEG Triethylene Glycol
- UEL Upper Explosive Limit
- USEPA United States Environmental Protection Agency

TABLE OF CONTENTS

Dedication	II
Acknowledgement	III
English Abstract	IV
Arabic Abstract	V
Nomenclature	VI
Table of Contents	XI
List of Tables	XIV
List of Figures	XV
CHAPTER ONE	
INTRODUCTION	
1.1 Area of Research	1
1.2 Statement of the Problem	1
1.3 Background	2
1.4 Objectives	14
CHAPTER TWO	
LITERATURE REVIEW	
2.1 Introduction	16
2.2 Gas absorption	16
2.3 Mass Transfer Model at Gas Liquid Interface	20
2.4 Solubility	28
2.5 Mass transfer with Chemical Reaction	30
2.6 Effects of chemical reactions on mass transfer rates	31
2.7 Gas-Liquid Contactors	35

2.8 Selection of tray type

46

2.9 Plate Hydraulic design		
2.10 Flow regimes on the tray		
2.11 Definition of tray areas	49	
2.12 Effect of gas flow conditions on tray design	50	
CHAPTER THREE		
RESEARCH METHODOLOGY		
3.1 Materials and Method	54	
3.2 Research Framework	55	
3.3 Design approach for absorption desorption sieve tray column	55	
3.4 Plate design procedure	57	
3.5 Determine the Theoretical Number of plates	63	
3.6 Mathematical Modeling (Film Model)	64	
3.7 Numerical Solution Collocation Method (Interface Modeling)	66	
3.8 The Development of plate Column Model	70	
3.9 Numerical Solution Runge-Kutta Method	72	
3.10 Kinetics of the absorption of H_2S into aqueous $Fe_2(SO_4)_3$		
3.11 Solubility of Hydrogen Sulfide (H ₂ S) in aqueous $Fe_2(SO_4)_3$	76	
CHAPTER FOUR		
RESULTS AND DISCUSSION		
4.1 Design of absorption column (sieve tray column)	78	
4.1.1 Plate spacing	79	
4.1.2 Plate thickness	79	
4.1.3 Estimation of column diameter	79	
4.1.4 Tray hydraulic parameters		
4.1.5 Check on Flooding, Entrainment and Weeping		

XII

4.1.6 Determine the actual number of plates	83
4.2 Results and Discussion of Simulation	86
4.2.1 Distribution of mole fraction and concentration distribution in tray colu	ımn 86
4.2.2 Variation of the enhancement factor with Hatta Number for different value	of E _i 88
4.2.3 Effect of Temperature on H ₂ S Removal Efficiency	92
4.2.4 The Effect of concentration of $Fe_2(SO_4)_3$ on H_2S Removal Efficiency	94
4.2.5 The Effect of flow rate of $Fe_2(SO_4)_3$ solution on H_2S Removal Efficience	cy 97
4.2.6 The Effect of gas flow rate of sour gas on H_2S Removal Efficiency	99
CHAPTER FIVE	
CONCLUSIONS AND RECOMMENDATIONS	

5.1	Conclusions		103
5.2	Recommendations		104
		REFERENCES	105
		A PPENDIX A	108
		A PPENDIX B	125

LIST OF TABLES

- Table 2.1Comparison of three types of cross-flow trays
- Table 3.1Weir length for straight, rectangular weirs, cross-flow trays
- Table 3.2Polynomial root and weighting (Bruce A.Finlayson)
- Table 3.3
 Lennadr
 Jones Potential Parameters
- Table 4.1Summary of the Design Results
- Table 4.2 Distribution of H_2S in Gas Phase and $C_{Fe2(SO4)3}$ in column.
- Table 4.3 Variation of the E with Hatta Number for different value of E_i
- Table 4.4 Relationship between simulation data and Krevelen Eq. for $E_i = 6.6$
- Table 4.5 Effect of $C_{Fe2(SO4)3}$ on Enhancement factors as function of \sqrt{M}
- Table 4.6Effect of Temperature on H2S Removal Efficiency
- Table 4.7 Temperature Influence on the % Removal with different $C_{Fe2(SO4)3}$
- Table 4.8The Effect of Concentration of Fe2(SO4)3 on H2S Removal Efficiency
- Table 4.9 The Effect of C_{Fe2(SO4)3} on % Removal but with different Temperature
- Table 10 The Effect of Flow Rate of $Fe_2(SO_4)_3$ on $%H_2S$ Removal Efficiency
- Table 4.11 The Effect of Flow Rate of $Fe_2(SO_4)_3 \% H_2S$ Removal with different T
- Table 4.12 The Effect of gas Flow Rate of Refinery flue gas on %H₂S Removal
- Table 4.13 The Effect of gas Flow Rate of Refinery flue gas on % H₂S Removal with different concentration of Fe₂(SO₄)₃
- Table 4.14The Effect of gas Flow Rate of Refinery flue gas on %H2S Removalwith different Temperature

LIST OF FIGURES

- Figure 2.1 The Film model of mass transfer
- Figure 2.2 The Surface Renewal model of mass transfer
- Figure 2.3 Mass transfer of gas into liquid with chemical reaction
- Figure 2.4 Gas phase and liquid phase solute concentration profiles for secondorder reaction
- Figure 2.5 Structured packing (a) metal gauze (b) carbon (c) corrosion-resistant plastic
- Figure 2.6 Random packing
- Figure 2.7 Schematic diagram of a plate contractor
- Figure 2.8 (a) An exploded view of a bubble cap (b) sectional diagram of a bubble cap (c) different types of bubble caps and (d) a bubble cap tray
- Figure 2.9 Sieve tray
- Figure 2.10 A few types of a valves, a part of a valves tray, and gas flow profile through valves.
- Figure 2.11 Types of gas liquid dispersion on a tray
- Figure 2.12 Schematic of a tray operating in the froth regime & Typical cross-flow plate
- Figure 2.13 Sieve tray performance diagram.
- Figure 2.14 Schematic representation of the influence of entrainment on the separation efficiency.
- Figure 3.1 Sieve tray design procedure.
- Figure 3.2 Research Framework
- Figure 3.3 Effective weir length
- Figure 3.4 Entrainment sieve trays

- Figure 3.5 Collocation Points Position
- Figure 3.6 Absorption Flow Diagram in plate Column
- Figure 4.1 Summary of the Design Results
- Figure 4.2 Distribution of H_2S in Gas Phase and $C_{Fe2(SO4)3}$ in column.
- Figure 4.3 Variation of the E with Hatta Number for different value of E_i
- Figure 4.4 Relationship between simulation data and Krevelen Eq. for $E_i = 6.6$
- Figure 4.5 Effect of $C_{Fe2(SO4)3}$ on Enhancement factors as function of \sqrt{M}
- Figure 4.6 Effect of Temperature on H₂S Removal Efficiency
- Figure 4.7 Temperature Influence on the % Removal with different C_{Fe2(SO4)3}
- Figure 4.8 The Effect of Concentration of Fe₂(SO₄)₃ on H₂S Removal Efficiency
- Figure 4.9 The Effect of C_{Fe2(SO4)3} on % Removal but with different Temperature
- Figure 10 The Effect of Flow Rate of Fe₂(SO₄)₃ on %H₂S Removal Efficiency
- Figure 4.11 The Effect of Flow Rate of Fe₂(SO₄)₃ %H₂S Removal with different T
- Figure 4.12 The Effect of gas Flow Rate of Refinery flue gas on %H₂S Removal
- Figure 4.13 The Effect of gas Flow Rate of Refinery flue gas on % H₂S Removal with different concentration of Fe₂(SO₄)₃
- Figure 4.14 The Effect of gas Flow Rate of Refinery flue gas on %H₂S Removal with different Temperature: