Chapter 1
Classification of Nonsimple Graph C*-algebras

Section (1.1): Graph C*-algebra results and classification

The classification program for C*-algebras has for the most part progressed
independently for the classes of infinite and finite C*-algebras. Great strides have
been made in this program for each of these classes. In the finite case, Elliott’s
Theorem classifies all AF-algebras up to stable isomorphism by the ordered K,-
group. In the infinite case, there are a number of results for purely infinite C*-
algebras. The Kirchberg-Phillips Theorem classifies certain simple purely infinite
C*-algebras up to stable isomorphism by the K,-group together with the K;-group.
For nonsimple purely infinite C*-algebras many partial results have been obtained:
Rgrdam has shown that certain purely infinite C*-algebras containing exactly one
proper nontrivial ideal are classified up to stable isomorphism by the associated
six-term exact sequence of K-groups, Restorff has shown that nonsimple Cuntz-
Krieger algebras satisfying Condition (Il) are classified up to stable isomorphism
by their filtrated K-theory, and Meyer and Nest have shown that certain purely
infinite Cx-algebras with a linear ideal lattice are classified up to stable
isomorphism by their filtrated K-theory. However, in all of these situations the
nonsimple C*-algebras that are classified have the property that they are either AF-
algebras or purely infinite, and consequently all of their ideals and quotients are of
the same type.

Restorff and Ruiz have provided a framework for classifying nonsimple C*-
algebras that are not necessarily AF-algebras or purely infinite C*-algebras. In
particular, they have shown that certain extensions of classifiable C*-algebras may
be classified up to stable isomorphism by their associated six-term exact sequence
in K-theory. This has allowed for the classification of certain nonsimple C*-
algebras in which there are ideals and quotients of mixed type.

We consider the classification of nonsimple graph C*-algebras. Simple graph
C*-algebras are known to be either AF-algebras or purely infinite algebras, and
thus are classified by their K-groups according to either Elliott’s Theorem or the
Kirchberg-Phillips Theorem. Therefore, we begin by considering nonsimple graph



C*-algebras with exactly one proper nontrivial ideal. These C*-algebras will be
extensions of simple C*-algebras that are AF or purely infinite by other simple C*-
algebras that are AF or purely infinite — with mixing of the types allowed. We are
able to show that a graph C*-algebra with exactly one proper nontrivial ideal is
classified up to stable isomorphism by the six-term exact sequence in K-theory of
the corresponding extension. Additionally, we are able to show that a graph C*-
algebra with a largest proper ideal that is an AF-algebra is also classified up to
stable isomorphism by the six-term exact sequence in K-theory of the
corresponding extension.

Note that the extensions of graph C*-algebras constitute a very large class.
Every AF-algebra is stably isomorphic to a graph C*-algebra, and every Kirchberg
algebra with free K;-group is stably isomorphic to a graph C*-algebra. Thus the
extensions we consider comprise a wide variety of extensions of AF-algebras.

We establish some basic facts and notation for graph C*-algebras and extensions.

A (directed) graph E = (E° E1,r,s) consists of a countable set E° of vertices,
a countable set E! of edges, and maps r,s: E! - E© identifying the range and
source of each edge. A vertex v € E° is called a sink if |s™1(v)| =0, and v is
called an infinite emitter if |s~(v)| = co. A graph E is said to be row-finite if it
has no infinite emitters. If v is either a sink or an infinite emitter, then we call v a
singular vertex. We write ESOing for the set of singular vertices. Vertices that are not
singular vertices are called regular vertices and we write Efeg for the set of regular
vertices. For any graph E, the vertex matrix is the E° x E® matrix Az with
A, (v,w) := |{e € E':s(e) = vand r(e) = w}|. Note that the entries of A are
elements of {0,1,2,...} U {oo}.

If E is a graph, a Cuntz-Krieger E-family is a set of mutually orthogonal
projections {pv:v € E°} and a set of partial isometries {se:e € E'} with
orthogonal ranges which satisfy the Cuntz-Krieger relations:

(i) sis,=pr(e)foreverye € E?;
(ii) s,s; < ps(e) forevery e € E1;
(il))  pv Xse)=v SeSe forevery v € E° that is not a singular vertex.



The graph algebra C*(F) is defined to be the C*-algebra generated by a universal
Cuntz-Krieger E-family.

A path in E is a sequence of edges a = a a5...a, with r(a;) = s(a;,1) for
1 <i <n, and we say that o has length |a| = n. We let E™ denote the set of all
paths of length n, and we let E*: = U, -, E™ denote the set of finite paths in G.
Note that vertices are considered paths of length zero. The maps r, s extend to E*,
and for v,w € E° we write v > w if there exists a path a« € E* with s(a) = v and
r(a) =w. Also for a path a:= a;...a, we define s,:=5,4,...5,,, and for a
vertex v € E® we let s,: = p,. It is a consequence of the Cuntz-Krieger relations
that C*(E) = span{s,s*f:a,f € E* and r(a) = r(f)}.

We say that a path a:= «a;...a, of length 1 or greater is a cycle if r(a) =
s(a), and we call the vertex s(a) = r(a) the base point of the cycle. A cycle is
said to be simple if s(a;) # s(ay) forall 1 < i < n. The following is an important
condition in the theory of graph C*-algebras.

Condition (K): No vertex in E is the base point of exactly one simple cycle; that
IS, every vertex is either the base point of no cycles or at least two simple cycles.

For any graph E a subset H € E° is hereditary if whenever v,w € E® with
v E€H and v > w, then w € H. A hereditary subset H is saturated if whenever
v € Ep,y with (s~ (v)) € H, then v € H. For any saturated hereditary subset H,
the breaking vertices corresponding to H are the elements of the set

By ={w€eE%|s7!(w)]=o and 0<|s71(v) nr Y} (E°\H)| < oo}.

An admissible pair (H, S) consists of a saturated hereditary subset H and a subset
S € By. For a fixed graph E we order the collection of admissible pairs for E by
defining (H,S) < (H',S") if and only if HS H and S< H US'. For any
admissible pair (H, S) we define

I(H,S): = the ideal in C*(E) generated by {p,: v € H} U {p;}: v0 € S},

where pjl is the gap projection defined by



pfo = Py, — SeSe-
s(e)=vy,
r(e)¢H
Note that the definition of BH ensures that the sum on the right is finite.

For any graph E there is a canonical gauge action y: T — AutC*(E) with the
property that for any z € T we have y,(p,) = p, for all v € E° and y,(s,) = zs,
for all e € E1. We say that an ideal I < C*(E) is gauge invariant if y,(I) € I for
all z € T.

There is a bijective correspondence between the lattice of admissible pairs of E and
the lattice of gauge-invariant ideals of C*(E) given by (H,S) » Iy s). When E
satisfies Condition (K), all ideals of C*(E) are gauge invariant and the map
(H,S) +— Iy is onto the lattice of ideals of C*(E). When By = @, we write Iy

in place of Iy 4) and observe that I; equals the ideal generated by {p,:v € H}.

Note that if E is row-finite, then By is empty for every saturated hereditary subset
H.

All ideals in C*-algebras will be considered to be closed two-sided ideals. An
element a of a C*-algebra A (respectively, a subset S € A) is said to be full if a
(respectively, S) is not contained in any proper ideal of A. A map ¢: A — B is full
if img is full in B,

If A and B are C*-algebras, an extension of A by B consists of a C*-algebra E
and a short exact sequence

a B
e: 0O0-B-oE->A-0.

We say that the extension e is essential if a(B) is an essential ideal of E, and we
say that the extension e is unital if E is a unital C*-algebra. For any extension there
exist unique *-homomorphisms n.:E - M(B) and t,:A - Q(B):= M (B)/B
which make the diagram
0 B—"r—r a0
I 17, T 4

0 —— B> M(B)S0(B) —— 0
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commute. The *-homomorphism z, is called the Busby invariant of the extension,
and the extension is essential if and only if z, is injective. An extension e is full if
the associated Busby invariant t, has the property that z,.(a) is full in Q(A) for
every a € A\{0}.

For an extension e, we let Ky denote the cyclic six-term exact sequence
of K-groups
Ko(B) —— Ko(E) — Ko (4)
T \)
K1 (A) «—— Ky (E) «—— K1(B)

where K,(B),K,(E), and K,(A) are viewed as (pre-)ordered groups. Given two
extensions

we say Kix(e,) 1S 1SOMOrphic to Kgix(e,), Written Kgive,) = Kiix(e,), if there exist
isomorphisms a, 5,7, 6, €, and & making the following diagram commute

Ko(B)) — Ko(E)) — Ko (4;)

N 4

Ko (B;) — Ko(E;) — Ky (4,)

K, (A;) — K (E;) — K, (B;)

] N

Ki(A)) e—K;(E;) «¥— K;(B;)

and where a, B, and vy are isomorphisms of (pre-)ordered groups.



Lemma (1.1.1) [1]:

If E is a graph such that C*(E") contains a unique proper nontrivial ideal I, then
the following six conditions are satisfied:

(i) E satisfies Condition (K),

(i) E contains exactly three saturated hereditary subsets {@, H, E°},
(iii) E contains no breaking vertices; i.e., By = @,

(iv) Iisagauge invariantideal and I, = I,

(v) If X is a nonempty hereditary subset of E, then X N H # @, and
(vi) E has at most one sink, and if v is a sink of E then v € H.

Proof:

Suppose that E does not satisfy Condition (K). Then there exists a saturated
hereditary subset H € E° such that E\H contains a cycle a = e;...e, with no
exits. The set X = {s(e;)}i=, is a hereditary subset of E\H, and Iy is an ideal in
C*(E\H) Morita equivalent to M,,(C(T). Thus Iy, and hence C*(E\H), contains a
countably infinite number of ideals. Since C*(E\H) = C*(E) /Iy gy, this implies
that C*(E) has a countably infinite number of ideals. Hence if C*(E) has a finite
number of ideals, E satisfies Condition (K).

Because E satisfies Condition (K), it follows that the ideals of C*(E) are in one-
to-one correspondence with the pairs (H,S) where H is saturated hereditary, and
S € BH is a subset of the breaking vertices of H. Since E contains a unique proper
nontrivial ideal, it follows that E contains a unique saturated hereditary subset H
not equal to E° or @, and that there are no breaking vertices; i.e., BH = @. It must
also be the case that I = IH. Moreover, since E satisfies Condition (K), shows that
all ideals of C*(E) are gauge-invariant.

In addition, suppose X is a hereditary subset with X N H = @. Since H is
hereditary, none of the vertices in H can reach X, and thus the saturation X
contains no vertices of H, and X N H = @. But then X is a saturated hereditary
subset of E that does not contain the vertices of H, and hence must be equal to @.
Thus if X is a nonempty hereditary subset of E, then X N H # @.



Finally, suppose v is a sink of E. Consider the hereditary subset X: = {v}. From
the previous paragraph it follows that X N H # @ and hence v € H. In addition,
there cannot be a second sink in E, for if v’ is a sink, then X: = {v} and Y: = {v'}
are distinct hereditary sets. Since v cannot reach v, we see that v is not in the
saturation Y . Similarly, since v’ cannot reach v, we have that v’ is not in the
saturation X. Thus X and Y are distinct saturated hereditary subsets of E that are
proper and nontrivial, which is a contradiction. It follows that there is at most one
sink in E.

Definition (1.1.2) [1]:

Let A be a C*-algebra. A proper ideal I < A is a largest proper ideal of A if
whenever | < A, then either ] € I or ] = A.

Observe that a largest proper ideal is always an essential ideal. Also note that if
A is a C*-algebra with a unique proper nontrivial ideal I, then I is a largest proper
ideal; and if A is a simple C*algebra then {0} is a largest proper ideal.

Lemma (1.1.3): [1]

Let E be a graph, and suppose that I is a largest proper ideal of C*(E). Then I is
gauge invariant and I = Iy gy for some saturated hereditary subset H of E®.

Furthermore, if K is any saturated hereditary subset of E, then either K € H or
K =E°.

Proof:

Let y denote the canonical gauge action of T on C*(E). For any z € T we have
that y, (1) is a proper ideal of C*(E). Since I is a largest proper ideal of C*(E), it
follows that y,(I) € I. A similar argument shows that y,-1(I) € I. Thus y,(I) =1
and | is gauge invariant. It follows that I = Iy s, for some saturated hereditary
subset H of E° and some subset S € BH. Because I is a largest proper ideal, it
follows that S = By, and hence I = Iy gyy. Furthermore, if K is a saturated
hereditary subset, then either I gxy S I gy OF Ik pxy = C*(E). Hence either
K< HorK =E°.



Lemma (1.1.4) [1]:

Let E be a graph and suppose that I is a largest proper ideal of C*(E) with the
property that C*(E)/I is purely infinite. Then I = [y gy for some saturated
hereditary subset H of E°, and there exists a cycle y in E\H and an edge f € E?
with s(f) = s(y) and r(f) € H. Furthermore, if x € E°, then x > s(y) if and only
if x € EO\H.

Proof:

Lemma (1.1.3) shows that I = Iy gy for some saturated hereditary subset H of
E°. It follows that C*(E)/I(H,BH) = C*(E\H) is the subgraph of E with
(E\H)?:= E°\H and (E\H)1:= E1\r — 1(H). Since C*(E\H) is purely infinite,
it follows that E\H contains a cycle a. Define K:= {x € E%: x £ s(a)}. Then K is
saturated hereditary, H € K, and K # E°. Hence Ity gry < Ik pxyC™(E), and the
fact that Iy gy is a largest proper ideal implies that Iy gpy = Ik pk) SO that
H = K. Hence for x € E® we have x > s(a) if and only if x € E°\H.

Consider the set J: = {x € E%:s(a) = x}. Then J is a hereditary subset and we
let J denote its saturation. Since Iy gy 1s @ largest proper ideal, it follows that
either J € H or J = E°. Since s(a) € J\H, we must have | = E°. Choose any
element w € H. Since w € J it follows that there exists v € J with w > v. But
since w = v and H is hereditary, it follows that v € H. Hence v € ] N H, and there
Is a path from s(a) to a vertex in H. Choose a path u = p ;... u, with s(u) =
s(a),r(u,-1)/¢ H, and r(u,) € H. Since r(u,—,)/€ H the previous paragraph
shows that there exists a path v with s(v) = r(u,,—,) and r(v = s(a). Let y:=
VUjp...Un—qand let fi=pu,. Then y is a cycle in E\H and f is an edge with
s(f) = s(y) and r(f) € H. Furthermore, since s(«) is a vertex on the cycle y, we
see that for any x € E° we have x = s(y) if and only if x > s(«). It follows from
the previous paragraph that if x € E°, then x > s(y) ifand only if x € E°\H.

Definition (1.1.5) [1]:

We say that two projections p,q € A are equivalent, written p ~ q, if there
exists an element v € A with p = vv* and g = v*v. We write p < g to mean that
p is equivalent to a subprojection of g; that is, there exists v € A such that p = vv”*
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and v*v < q. Note that p < g and g < p does not imply that p ~ g (unless A is
finite).

If e € G then we see that pr(e) = s;s, and s,s; < ps(e). Therefore p,(e)
ps(e). More generally we see that v > w implies p,, < p,,.

Lemma (1.1.6) [1]:

Let A be a C*-algebra with an increasing countable approximate unit {p;,, }n-1
consisting of projections. Then the following are equivalent.

(i) Ais stable.

(if)For every projection p € A there exists a projection g € A such that p ~ g
andp 1 gq.

(iii) For all n € N there exists m > n such that p,, < p,, — Pn-

Lemma (1.1.7) [1]:

Let A be a C*-algebra. Suppose p,,p,,...,pnare mutually orthogonal
projections in A, and q4, g5, ..., q, are mutually orthogonal projections in A with
pi~q;forl <i<n ThenY p;i~>,q.

Proof:

Since p; ~ q; there exists v; € A such that v;v; = p; and v;v; = q;. Thus for
[ # j we have vjv; = v;vvjvv;v; = v7q;qv; = 0 and v v = v vvjvv; =
vipipjv; = 0. Hence Qo1 V)" Xiz1 Vi = Ximq ViV = Xisa D and
o1 Vi iz v)" = Xis vy = Xt g Thus Xity o ~ Xz G-
Proposition (1.1.8) [1]:

Let E be a graph with no breaking vertices, and suppose that I is a largest
proper ideal of C*(E) and such that C*(E)/I is purely infinite and | is AF. Then
there exists a projection p € C*(E) such that pC = (E)p is a full corner of C*(E)
and p I p is stable.



Proof:

Lemma (1.1.6) implies that I = [y gy, for some saturated hereditary subset H
of E,, and there exists a cycle y in E\H and an edge f € E* with s(f) = s(y) and
r(f) € H; and furthermore, if x € E°, then x > s(y) if and only if x € E°\H.
Since E has no breaking vertices, we have that By = @ so that Iy gy is the ideal
generated by {p,: v € H} and we may write Iy gy s IH.

Let v=s(f)=s(y) and let w=r(f). Define p:=p,+p,. Suppose
J < C*(E) and pC*(E)p < J. Since v ¢ H we see that p, € I and hence p, €
pC*(E)p\I € J\I. Thus ] € I and the fact that I is a largest proper ideal implies
that /] = C*(E). Hence pC*(E)p is a full corner of C*(E).

In addition, since there are no breaking vertices

plp=plyp
= p(Span{ps,szp:r(a) =r(B) € H})p
= span{ps,szp:r(a) = r(B) € H}

= M{sasg:r(a) =r(f) €H and s(a),s(B) € {v, W}}-

Let S:={a € E*:s(a) = vand r(a) = w}. Since S is a countable set we may list
the elements of S and write S = {ay, a3, a3,...}. Define py: = p,, and p,,: = p,, +
k=1Sa, Sa, forn € N,

We will show that for u, v € S we have

v o (pr(u) ifm=v 1
SuSy { 0 otherwise. (1)

First suppose that s;s,, # 0. Then one of u and v must extend the other. Suppose u
extends v. Then u =vA for some A € E*. Thus s(4) =r(v) =w and r(1) =
r(u) = w. However, Iy is an AF-algebra, and C*(Ey) is strongly Morita
equivalent to Iy, so C*(Ey) is an AF-algebra. Thus Ey contains no cycles. Since A
Is a path in EH with s(4) = r(4) = w, and since Ey contains no cycles, we may
conclude that A = w. Thus u = v. A similar argument works when v extends pu.
Hence the equation in (1.1) holds. It follows that the elements of the set {s,s, :
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a € S} U {pw} are mutually orthogonal projections, and hence {p,}n=, IS an
sequence of increasing projections.

Next we shall show that {p,};-, is an approximate unit for pIp. Given s,sg
with r(a) = r(B) € H and s(a), s(B) € {v,w}, we consider two cases.

Case I: s(ar) = w. Then for any a;, € S we see that (s, Sz, )SaSp SaySePwSaSp =
0. In addition, p,, (S¢Sg) = SeSg- Thus limy, o, P, SeSg = SaSp-

Case II: s(a) = v. Then a = a;A for some a; € S and some A € E; with s(1) =
w. We have p,, (s,sg) = 0, and also (1) implies that

SaSp k=]

0 k=#j 2)

* * * *
(SaSai)SaSp = SaySarSa; 155 = {
Thus limy,_,o PpSaSg = SaSp-

The above two cases imply that lim,,,p,x=x for any
x € span {s,sg:r(a) =71(B) € H and s(a), s(p) € {v,w}}. Furthermore, an €/3-
argument shows that lim,_, p, x = x for any x € plyp = span{s,ss:r(a) =
r(B) € H and s(@), s(B) € {v,w}}. A similar argument shows that lim,,_,., xp,, =
x forany x € plyp. Thus {p,}n=1 IS an approximate unit for pIyp.

We shall now show that pIp is stable. For each n € N define

At=yy .V f.

n times

For any k,n € N we have
* * * *
SynSyn ~ SjnSyn = p,(A") = p,, = Sa;Sa, ~ SapSay -

For any n € N choose g large enough that |A9| > |ay| for all 1 < k < n. Then for
all j € N we see that 197/ € S and 19" = q, for all 1 < k <n. Thus for any
1 <k < nwe have

* * _ — _ +Kk\ — % *
Saksak ~ Saksak - pr(ak) =DPw = pr(lq ) - S/lq+k51q+k ~ S;tq+kS;t q+k
and
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Pw = S7aSaa ~ S3d4Sya -
It follows from Lemma (1.1.7) that

n

n
Pn = Pw + z SaSaye S Z Spa+kSyq+k S Pm — Pn
k=1 k=0
where m is chosen large enough that 29%% € {a;, a5,...,a,,} for all 0 < k <n.
Lemma (1.1.6) shows that pIyp is stable.

We apply the methods to classify certain extensions of graph C*-algebras in terms
of their six-term exact sequences of K-groups.

Definition (1.1.9) [1]:

We will be interested in classes C of separable nuclear unital simple C*-
algebras in the bootstrap category IV satisfying the following properties:

(i) Any element of C is either purely infinite or stably finite.

(iii) C is closed under tensoring with M,,, where M,, is the C*-algebra of n by n
matrices over C.

(iv) If Aisin C, then any unital hereditary C*-subalgebra of A isin C.

(v) For all A and B in C and for all x in KK(A4,B) which induce an
isomorphism from (K} (4),[1,]) to (Kf(A),[1g]), there exists a *-
isomorphism a: A = B such that KK (a) = x.

Definition (1.1.10) [1]:

If B is a separable stable C*-algebra, then we say that B has the Corona
factorization property if every full projection in M'(B) is Murray-von Neumann
equivalent to 1,,(p).

Lemma (1.1.11) [1]:

Let C; and Cy be classes of unital nuclear separable simple C*-algebras in the
bootstrap category V satisfying the properties of Definition (1.1.9). Let 4; and A4,
be in Cy and let B; and B, be in C; with B; ® K and B, ® K satisfying the
Corona factorization property. Let
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61:0—>31®K E1 \Al 0
eZ:O—)Bz®K EZ AZ 0

be essential and unital extensions. If K, (e1)Kix(e2), then E; @ KE, ® K.
Proof:

Tensoring the extension ¢; by K we obtain a short exact sequence ¢’; and and
vertical maps

O—>B1®K

T

O—>B1®K

from e, into ¢’; that are full inclusions. These full inclusions induce isomorphisms
of K-groups and hence we have that K, (e;) = Ksi(e'1). In addition, since e, is
essential, B; @ K is an essential ideal in E;, and the Rieffel correspondence
between the strongly Morita equivalent C*-algebras E; and E; @ K implies that
(B, ® K) ® K is an essential ideal in E; ® K, so that ¢'; is an essential extension.
Furthermore, since B; @ K is stable and e, is essential and full, it follows that ¢',
is full. Moreover, since K @ K = KK, we may rewrite ¢'; as

10— B ®K—E K— A,  K—— 0.
By a similar argument, there is an essential and full extension
e, 0— B, QK—E, K— 4,  K—— 0.

such that K, (e',) = K,ix(e;). Thus K, (e'1)Ksix(e',), and implies that E; @
K =E, ®K.
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Lemma (1.1.12) [1]:

Let A be a C*-algebra and let I be a largest proper ideal of A. If p € A is a full
projection, then the inclusion map pIp < I and the inclusion map pAp/plp < A/I
are both full inclusions.

Proof:

Since p is a full projection, we see that A is Morita equivalent to pAp and the
Rieffel correspondence between ideals takes the form J = pJp. If ] is an ideal of |
with pIp € J, then by compressing by p we obtain pIp € pJp. Since the Rieffel
correspondence is a bijection, this implies that I < J, and because J is an ideal
contained in I, we get that I = J. Hence pIp < I is a full inclusion. Furthermore,
because I is a largest proper ideal of A, we know that A/I is simple and thus
pAp/plp < A/I is a full inclusion.

Theorem (1.1.13) [1]:

If A is a graph C*-algebra with exactly one proper nontrivial ideal I, then A
classified up to stable isomorphism by the six-term exact sequence

Ko(I) — Ko(EA) — Ko(A/D)
T l
Ki(A/I) «— K1 (A) — K, (1)

with all K,-groups considered as ordered groups. In other words, if A is a graph
C*-algebras with precisely one proper nontrivial ideal I, if A" is a graph
C*-algebras with precisely one proper nontrivial ideal I', and if

et 0 I > A > A/l —> 0
e, 0 I A >»A'/I'— 0

are the associated extensions, then A @ K= A’ ® K if and only if K,(e;) =
Ksix(eZ)'

Theorem (1.1.14) [1]:

If A is a the C* -algebra of a graph satisfying Condition (K), and if A has a
largest proper ideal I such that I is an AF-algebra, then A is classified up to stable
isomorphism by the six-term exact sequence
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Ko(I) — Ky(4) — Ky (A/1)
T l
Ki(A/1) —— K1 (A) «—— K, (1)

with K, (I) considered as an ordered group.

In other words, if A is the C*-algebra of a graph satisfying Condition (K)
with a largest proper ideal I that is an AF-algebra, if A" is the C*-algebra of a graph
satisfying Condition (K) with a largest proper ideal I that is an AF-algebra, and if

et 0 I > A >A/l — 0
e, 0 I A A'/I'—0

are the associated extensions, then A Q@ K = A’ ® K if and only if K (e;) =
Ksix(ez)-
Examples (1.1.15) [1]:

To illustrate our methods we give a complete classification, up to stable
isomorphism, of all C*-algebras of graphs with two vertices that have precisely one
proper nontrivial ideal. Combined with other results, this allows us to give a

complete classification of all C*-algebras of graphs satisfying Condition (K) with
exactly two vertices.

If E is a graph with two vertices, and if C*(E) has exactly one proper ideal, then
E must have exactly one proper nonempty saturated hereditary subset with no
breaking vertices. This occurs precisely when the vertex matrix of E has the form

[a b
0 d
where a,d € {0,2,3,...,0}and b € {1,2,3,..., 0} with the extra conditions

a=0=b=owandb =0 = (a =0o0ra = x),

Computing K-groups, we see that in all of these cases the K;-groups of C*(E), the
unique proper nontrivial ideal 1, and the quotient C*(E)/I all vanish. Thus the six-
term exact sequence becomes 0 — Ky(I) = Ky,(C*(E)) = Ky (C*(E)/I) = 0, and
to compute the K,-groups and the induced maps we obtain the following cases.
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a | d| b | Ky~ Ky(C"(E)) = Ko(C*(E)/I ~ ZD) Case
0 [0] oo Zyoy > LOL - L, [11]
0 n o Lo = Lqg 1 @L—>ZLyy [01]
0 [w| o L, — 1OL— L, [oo1]
n | 0| 1Ln 7., - coker ([a f 1]) N [100]
n |[n| Ln Zy_, — coker ([d 8 1 . E 1]) = Zg_1q [ooco]
n | %® Ln Z, — coker ([a E 1]) = Zg—q [coco]
o0 0 |1,n,00 Lyy = LOL — 1L, [1c0]
© |'n|1noo Lg—q = Ly DL~ Ly [coco]
oo o | 1,n,00 Ly - LDL - Ly [co0]

« »”n

where “n” indicates an integer > 2,“Z,.” indicates a copy of Z ordered with
Z, = N and “Z.” indicates a copy of Z ordered with Z, = Z. In addition, in all
cases we have written the middle group in such a way that the map from K, (1) to
Ko(C*(E)) is [x] » [(x,0)], and the map from K,(C*(E)) to K,(C*(E)/I) is
[(x,y)]7 = [v]. Note that in all but the first case, the order structure of the middle
K,-groups is irrelevant and need not be computed.
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Section (1.2): Stability of Ideals
Theorem (1.2.1) [1]:

Let E and E' be graphs each with two vertices such that
C*(E) and C*(E") each have exactly one proper nontrivial ideal, and write the

vertex matrix of E as [8 Z] and the vertex matrix of E’ as [% Z,] Then

C*(E) QK = C*(E) @ K

if and only if the following three conditions hold:
(i) a=ad
(i) d =4d'
(iii) If a € {2,...} then
a) Ifd € {0, o} then [b] = [z][b'] In Z,_, fOraunit [z] € Za — 1
b) Ifd € {2,...} then [z,][b] = [z ][b] iN Zgcd(a—1,a-1) foraunit
[31] € Zy_, and a unit [z,] € Z,_,.
Proof:

Suppose C*(E) ® K = C*(E") @ K. Then K,(I)K,(I") as ordered groups and
Ko(C*(E)/DKy(C*(E")/1") as ordered groups. From a consideration of the
invariants in the above table, this implies that a = a',d = d’, and the invariants for
C*(E) and C*(E") both fall into the same case (i.e. the same row) of the table. Thus
we need only consider the two cases described in (iii)(a) and (iii)(b).

Casel:a € {2,...}and d € {0, oo}.

In this case there are isomorphisms «, 8, and y such that

0 Z coker([a E 1]) — Zy —0
al gl yi
0 Z ,coker(ab_, D—>Za_1—>0

commutes. Since the only automorphisms on Z are +Id, we have that a(x) = +x.
Also, since the only automorphisms on Z,_, are multiplication by a unit, y([x]) =
[z][x] for some unit [z] € Z,_;. By the commutativity of the left square
B([1,0]) = [(£1,0)]. Also, by the commutativity of the right square, 5([0,1]) =
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([y,z]) for some y € Z. It follows from the Z -linearity of B that B[(r,s)] =
[(£r + sy, sz)], so B is equal to left multiplication by the matrix [iol 3;] We
must have B[(b,a—1)]=[(0,0)], and thus [(+b + (a — 1)y, (a — 1)z)] = [(0,0)] in

coker ( ali 1]) Hence +b + (a — 1)y = b't and (a — 1)z = (a — 1)t for some
t € Z. It follows that z =t and +b + (a — 1)y = b'z, s0 b = +z mod(a — 1).
Since [tz] is a unit for Z,_, it follows that [b] = [3][b] in Z,_, for a unit

[z] € Z,_1. Thus the condition in (a) holds.

Case ll: a € {2,...}and d € {2,...}. In this case there are isomorphisms «, 8, and
y such that

00— Z4_4 —>coker([d61 aﬁl])—>Za_1 —0
al gl Y
bl

) I A

0 —— Zy_; — coker ([d 6 1
commutes. Since the only automorphisms on Z,_, are multiplication by a unit, we
have that a([x]) = [z1][x] for some unit [z,] € Z4_4. Likewise, y([x]) = [z,][x]
for some unit [z,] € Za — 1. By the commutativity of the left square £([1,0]) =
[(z1,0)]. Also, by the commutativity of the right square, £([0,1]) = ([y, z,]) for
some y € Z. It follows from the Z-linearity of g that 8[(r,s)] = [(z17 + Vs, 325)],

so B is equal to left multiplication by the matrix [Zol zyz] . Since
d—1 b 1[01_1 b _ _

[ 0 a— 1] [1] ll P 1], we must have S[(b,a—1)] =[(0,0)], and thus
[(z1b +y(a - 1), z2(a— )] = [0,0)] in coker(|” N 1 a’i 1]). Hence
z:b+y(l@a—1)=(d—-1)s+b'tand z,(a — 1) = (a — 1)t for some s,t € Z. It
follows that 3, =t and z;b + y(a—1) = (d — 1)s + b'z,.Writing (d — 1)s —
y(a—1) = kged(a—1,d —1) we obtain z,b — z,b" = kgcd(a—1,d — 1) so
that z,b = z,b'modgcd(a — 1,d — 1) and [3z,][b] = [22][b'] IN Zgeqa-1,a-1)-
Thus the condition in (b) holds.

For the converse, we assume that the conditions in (i)—(iii) hold. Consider the
following three cases.
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Case I: a =0 or a = oo. In this case, by considering the invariants listed in the
above table, we see that we may use the identity maps for the three vertical
Isomorphisms to obtain a commutative diagram. Thus the six-term exact sequences
are isomorphic, and it follows from Theorem (1.1.13) that C*(F) K =
C*(E" ® K.

Case Il: a€{2,...} and [b] = [5][b] in Z,_, for a unit [z] € Z,_;. Then
b = zb'mod (a —1). Hence zb’'—b =(a—1)y for some y € Z. Consider

[(1) g] ZDZ—-ZDZ. It is straightforward to check that this matrix takes
: b 1.. . b’ o : .
im [a_ 1]_lnto im [a . 1]. Thus multiplication by this matrix induces a map

,B:coker([a f 1]) - coker([ali 1]). In addition, if we let « =1d and let y be

multiplication by [z], then it is straightforward to verify that the diagram

0 Z coker([a E 1]) ——Zyg1 ——0
al gl Yl
0 Z >coker(ab_, ])—>Za_1—>0

commutes. Since a and y are isomorphisms, an application of the five lemma
implies that £ is an isomorphism. It follows from Theorem (1.1.13) that C*(E) ®
K= C*(E) @ K.

Case Ill: Suppose that [z,][b] = [22][b'] IN Zgca(q—1,a-1) TOr a unit [z,] € Zy_4
and a unit [z,] € Z,_;. Then z,b — z,b" = kgcd (a —1,d — 1) for some k € Z.
Furthermore, we may write k gcd(a —1,d — 1) = s(d — 1) — y(a — 1) for some
s,y € Z. Consider [201 zyz] ZDZ—-7ZPZ. It is straightforward to check that

b

this matrix takes im [d a 1 S

] into im [d 8 1 ab_ 1]. Thus multiplication

by this matrix induces a map ,B:Coker([d 8 1 . f 1]) - coker([db_, 1] O0a —

1). In addition, if we let « be multiplication by [z;] and and let y be multiplication
by [z,], then it is straightforward to verify that the diagram

19



0 Z coker([dg1 afl])—>za_1—>0
al gl Y

0 yA ‘coker([dal alill

) 0

commutes. Since a and y are isomorphisms, an application of the five lemma
implies that B is an isomorphism. It follows from Theorem (1.1.13) that C*(F) &®
K=C*(E) QK

Example (1.2.2) [1]:

Consider the three graphs

S g5 =" gy

which all have graph C* -algebras with precisely one proper nontrivial ideal. By
Theorem (1.2.1) the C* -algebras of the two first graphs are stably isomorphic to
each other, but not to the C* -algebra of the third graph.

Using the Kirchberg-Phillips Classification Theorem and our results in
Theorem (1.2.1) we are able to give a complete classification of the stable
isomorphism classes of C* -algebras of graphs satisfying Condition (K) with
exactly two vertices. We state this result in the following theorem. As one can see,
there are a variety of cases and possible ideal structures for these stable
isomorphism classes.

Theorem (1.2.3) [1]:

Let E and E' be graphs satisfying Condition (K) that each have exactly two
vertices. Let AE and AE' be the vertex matrices of E and E’, respectively, and
order the vertices of each sothatc < band ¢’ < b". Then C*(E) K= C*(E") ®
K if and only if one of the following five cases occurs.

0 4= Z] andAE=[‘Cl,' Z:] with
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and

(b#0 andc#0) or (a=00<b<oo,c=0 andd = 2)
and
(b'#0 andc"#0) or (' =0,0<b' <oo,c'=0 andd' = 2)
and if By is the E° X Ef, subbmatrix of Az —1I and By is the (E")° x
(E")Peq submatrix of Ay, — I then

coker(Bg: 7Breg ZEO) = coker(Bg: 7(EReg _ Z(E’)O)

ker(Bg: ZPres — ZF°) = ker(Bgr: ZF s — 7(ED°)
In this case C*(E) and C*(E") are purely infinite and simple.
(i) Ag = 8 g]andAE/— 0 b]wutho<b<ooando<b’<oo In

this case C*(E) = Mb+1(C) and C*(E") = M, ,(C), so that both C*-
algebras are simple and finite-dimensional.

_la b _ a b ; !
(iii) AE—[O d]andAE'_[o d,]wnhb;&Oandb * 0,
a=0 =b=0o and b= = (a=0 or a= ),
and
a=0=b'=w and b’ =0= (a'=0 or a = ),

and the conditions (i)—(iii) of Theorem (1.2.1) hold. In this case C*(F) and
C*(E") each have exactly one proper nontrivial ideal and have ideal structure
of the form

(iv) AE—[O d] and Ap —[0 d,] with a€{23,..} and a' €
{2,3,...}, and with a = a’ and d = d'. In this case C*(E) and C*(E")
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each have exactly two proper nontrivial ideals and have ideal structure

of the form
A
|
I
|
J
|
, {0}.
v 4= 2] andAE,=[‘(‘) C‘l)] with

(a=a" and d=d") or (a=d and d=a’).

0, ifa=>?2
C ifa=0

and each C*-algebra has exactly two proper nontrivial ideals and

I/ | \]
N\

In this case C*(E) = C*(E") = I®], where 1:= {

C ifd=0
ideal structure of the form

and | :=

Remark (1.2.4) [1]:

We are not able to classify C* -algebras of graphs with exactly two vertices that
do not satisfy Condition (K). For example if E and E’ are graphs with vertex

1 b _ 1 b, * * !
0 1] and Agp = [0 1],then C*(E) and C*(E") each have

uncountably many ideals, and are extensions of C(T) by C(T @ K). Using
existing techniques, it is unclear when C*(E) and C*(E") will be stably isomorphic.

matrices Agp = [
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We conclude this section with an example showing an application of Theorem
(1.1.14) to C* -algebras with multiple proper ideals.

Example (1.2.5) [1]:

Consider the two graphs

o
ﬂ_\w U\?;:::E |

The ideal I: = I{v,w} in C*(E) is a largest proper ideal that is an AF-algebra, and
the six-term exact sequence corresponding to

0->1->C"(E)-C*(E)/I->0

1
0->ZBZ - coker([l]) -0
1

where the middle map is [(x,¥)] — [(x, y, 0)]. Likewise, the ideal I": = I, i
C*(E") is a largest proper ideal that is an AF-algebra, and the six-term exact
sequence corresponding to

0-1'"->C*(E")->C(E)/I' >0

2
0->ZDPZ - coker([ZD -0
1
1

where the middle map is [(x,y)] » [(x,y,0)]. If we define [)’:coker([l
1

)ﬁ

2
coker (H) by Bl(x,y,2)] = [(x + 3,y + 3,%)], then we see that the diagram
1
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1
0 — ZBZ — coker ([1]) —>0
1
Id!l Bl

2
0 — ZBZ — coker ([2]) —0
1

commutes. An application of the five lemma shows that g is an isomorphism. It
follows from Theorem (1.1.14) that C*(EF) K = C*(E') Q K.

In the examples above, both connecting maps in the six-term exact sequences
vanish. Since all C*-algebras considered (and, more generally, all graph

C*-algebras satisfying Condition (K)) have real rank zero, the exponential map

d:K, G) — K, (I) is always zero. However, the index map 9: K; ([71) — K,(I) does

not necessarily vanish and may carry important information. In forthcoming work,
the authors and Carlsen explain how to compute this map for graph
C*-algebras.

In this section we prove that if A is a graph C* -algebra that is not an AF-algebra,
and if A contains a unique proper nontrivial ideal , then I is stable.

Definition (1.2.6) [1]:
If v is a vertex in a graph E we define
L(v) := {w € E®:there is a path from w to v}.
We say that v is left infinite if L(v) contains infinitely many elements.
Definition (1.2.7) [1]:

If E = (E° EY,r,s) is a graph, then a graph trace on E is a function g: E® -
[0, o) with the following two properties:

(i) Foranyv € G°with 0 < [s™(v)| < oo we have g(v) = Y(e)=» 8(1(e))
(ii)For any infinite emitter v € G° and any finite set of edges ey,...,e, €
s~1(v) we have g(v) = XL, g(r(e)).
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We define the norm of a graph trace g to be the (possibly infinite) quantity
llgll == X.,ego g(v), and we say a graph trace g is bounded if ||g|| < oo,

Lemma (1.2.8) [1]:

Let E be a graph such that C*(E) is simple. If there exists v € E° such that v is
left infinite, then C*(F) is stable.

Proposition (1.2.9) [1]:

Let E be a graph such that C*(E) contains a unique proper nontrivial ideal I,
and let {E° H, @} be the saturated hereditary subsets of E. Then there are two
possibilities:

(i) The ideal I is stable; or
(i) The graph C*-algebra C*(E) is a nonunital AF-algebra, and H is infinite.

Proof:

By Lemma (1.1.1), we see that E contains a unique saturated hereditary subset
H not equal to either E° or @, and also I = I;. In addition, it follows that I is
isomorphic to the graph C*-algebra C*(yEy), Where 4Ey is the graph described. In
particular, if we let

Fy:={a€E":s(a) ¢ Hr(a) €EH, and r(a;) € H for i <|a|}
then
wEg =HUFy and yEz:={e € E':s(e) e H}U{a:a € Fy}

where s(a) = a,r(a) = r(a), and the range and source of the other edges is the
same as in E. Note that since I is the unique proper nontrivial ideal in C*(E), we
have that I = C*(yE,) is simple.

Consider three cases.
Case I: H is finite.
Choose a vertex v € E®\H. By Lemma (1.1.3) v is not a sink in E, and thus

there exists an edges e; € E! with s(e;) =v and r(e;) € H. Continuing
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inductively, we may produce an infinite path e,e,es... with r(e;) € H for all i.
(Note that the vertices of this infinite path need not be distinct.) We shall show that
for each i there is a path from r(e;) to a vertex in H. Fix i, and let

X :={w € E° : thereis a path from r(e;) to w}.

Then X is a nonempty hereditary subset, and by Lemma (1.1.3) it follows that
X N H # @. Thus there is a path from r(e;) to a vertex in H. Since this is true for
all i, it must be the case that Fy,; is infinite. In the graph ,E; there is an edge from
each element of Fy, to an element in H. Since H is finite, this implies that there is a
vertex in H € HEg that is reached by infinitely many vertices, and hence is left
infinite. It follows from Lemma (1.1.7) that I = C*(4E}) is stable. Thus we are in
the situation described in (i).

Case Il: H is infinite, and E contains a cycle.

Let @« = a;...a, be a cycle in E. Since H is hereditary, the vertices of @ must
either all lie outside of H or all lie inside of H. If the vertices all lie in H, then the
graph yE;, contains a cycle, and since C*(,Ey) is simple, the dichotomy for simple
graph C*-algebras implies that C*(yEy) is purely infinite. Since H is infinite, it
follows that 4EJ is infinite and C*(;Ey) is nonunital. Because C*(,Ep) is a
simple, separable, purely infinite, and nonunital C*-algebra, Zhang’s Theorem
implies that I = C*(HEQ) is stable. Thus we are in the situation described in (i).

If the vertices of a all lie outside H, then the set
X:= {w € E°: there is a path from r(a,,) to w}

Is @ nonempty hereditary set. It follows from Lemma (1.1.3) that X N H # @. Thus
there exists a vertex v € H and a path g from r(a,) to v with r(B;) € H for
i < |B|. Consequently there are infinitely many paths in Fy that end at
(viz.B, af, aaf, aaaf,...). Hence there are infinitely many vertices in ,E; that
can reach v, and v is a left infinite vertex in ,E;. It follows from Lemma (1.2.8)

that I = C*(4Ey) is stable. Thus we are in the situation described in (i).

Case IllI: H is infinite, and E does not contain a cycle.
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Since E does not contain a cycle, it follows that C*(E) is an AF-algebra. In
addition, since H is infinite it follows that E° is infinite and C*(E) is nonunital.
Thus we are in the situation described in (ii).

Corollary (1.2.10) [1]:

If E is a graph with a finite number of vertices and such that C*(E) contains a
unique proper nontrivial ideal I, then I is stable. Furthermore, if {E°, H, @} are the
saturated hereditary subsets of E, then C*(Ey) is a unital C*-algebra and [ =
C*(En) Q X.

Proof:

Since E° is finite it is the case that C*(E) is unital, and it follows from
Proposition (1.2.9) that I is stable. Furthermore, since I = I, it follows that I is
Morita equivalent to C*(Ey). Since I and C*(Ey) are separable, it follows that I
and C*(Ey) are stably isomorphic. Thus I = I Q@ X C*(Ey) ® K. Finally, since
EY = H < E is finite, C*(Ey) is unital.
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Chapter 2
C*-algebras With Finite and Infinite Subquotients
Section (2.1): KK Factor and Classification

Just like a finite group, any C*-algebra 2 with finitely many ideals has a
decomposition series

0=(70<l(.71<'"<(7n=91

in such a way that all subguotients are simple. As in the group case, the simple
subquotients are unique up to permutation of isomorphism classes, but far from
determine the isomorphism class of L.

If we further assert that all simple subquotients are classifiable by algebraic
invariants such as K-theory we are naturally led to the pertinent question of which
algebraic invariants, if any, classify all of 2. This question has previously been
studied, leading to a complete solution when all subquotients are AF, and a partial
solution when all are purely infinite, but in the case when some are of one type
and some of another, only sporadic results have been found. It is the purpose of
this section to provide a general framework in which classification of C*-algebras
can be proved for a large class of C*-algebras of mixed type.

We are able to do so by combining several recent important developments in
classification theory, notably:

(i) Kirchberg’s isomorphism result ;
(i1) The Corona factorization property;
(iii) The universal coefficient theorem of Meyer and Nest;

A graph C*-algebra has the property that all simple subquotients are either AF
or purely infinite, and examples of mixed type occur even for very small graphs.
For instance, consider the graphs {E, },,en given below

0O 0 O
n 3 0

1 1 3
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QO U

Forany n > 0, C*(E,,) decomposes into a linear lattice with simple subquotients
K, 0; @ K, 0.

The results presented have show that C*(E,) @ K = C*(E,;4) ® K and that
there are three stable isomorphism classes

[C*(ED] = [C7(E2)] [CT(E3)] [CF(EW].

The technical focal point in this work is the general question of when one can
deduce from the fact that 2L and B in the extension

08B —o>C—>UA—0

are classifiable by K-theory, that the same is true for €. We shall fix a finite (not
necessarily Hausdorff) T, topological space X with a non-trivial open subset
U < X and require that € is a C*-algebra over X—associating ideals in € with open
subsets of X— in such a way that € is the C*-algebra corresponding to U. Assuming
then that & and B are KK-strongly classifiable by their filtered and ordered
K-theories over X\U and U, respectively, we supply conditions on the extension
securing that also € is classifiable by filtered and ordered K-theory. Our key
technical result to this effect, Theorem (2.1.16) below, provides stable
isomorphism in this context under, among other things, the provision of fullness
of the extension and KK-liftability of morphisms of filtered K-theory. KK-
liftability follows in many cases by the UCT of Meyer and Nest as generalized by
Bentmann and Kohler.

Although we are confident that Theorem (2.1.16) will apply in other settings as
well, we restrict ourselves to demonstrating how the results lead to classification of
certain graph C*-algebras up to stable isomorphism.

Let X be a topological space and let O(X) be the set of open subsets of X,
partially ordered by set inclusion €. A subset Y of X is called locally closed if
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Y = U\V where U,V € O(X) and V € U. The set of all locally closed subsets of X
will be denoted by LC(X) . The set of all connected, non-empty locally closed
subsets of X will be denoted by LC(X)".

The partially ordered set (0(X), S) is a complete lattice, that is, any subset S
of O(X) has both an infimum A S and a supremum V S. More precisely, for any

subset S of O(X),
/\U= (ﬂU) and \/U = UU.

UES UeS UES Ues

For a C*-algebra 2, let I(A) be the set of closed ideals of 2, partially ordered by
C. The partially ordered set (I(2), <) is a complete lattice. More precisely, for any

subset S of (),
No=(7 = \a-3a

JES JES JES JES
Definition (2.1.1) [2]:

Let 2 be a C*-algebra. Let Prim(2l) denote the primitive ideal space of I,
equipped with the usual hull-kernel topology, also called the Jacobson topology.

Let X be a topological space. A C*-algebra over X is a pair (2, ) consisting of
a C*-algebra A and a continuous map Y : Prim(A) - X. A C*-algebra over X,
(A, ), is separable if A is a separable C*-algebra. We say that (21, ) is tight if ¢
Is @ homeomorphism.

We always identify O(Prim(20)) and 1(20) using the lattice isomorphism
Uw— ﬂ p.
PEPrim(A)\U

Let (A,yp) be a Cr-algebra over X. Then we get a map
Y 0OX) - O(Prim()) = I(Y) defined by

U — {p € Prim(A): Y(p) € U}.
Using the isomorphism Q(Prim(20)) = I(A), we get a map from O(X) to 1(2A) by
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U— ﬂ{p € Prim(): Y(p) € U}.

Denote this ideal by L(U). For Y = U\V € LC(X), set A(Y) = AU)/AV). By a
Lemma, A(Y) does not depend on U and V.

We have the following examples:
Example (2.1.2) [2]:

For any C*-algebra 2, the pair (2,idprime) IS a tight C*-algebra over
Prim(20). For each U € O(Prim(2)), the ideal A(U) equals N p € Prim(A)\U p.

Example (2.1.3) [2]:

Let X,, ={1,2,...,n} partially ordered with . Equip X,, with the Alexandrov
topology, so the non-empty open subsets are

[a,n] ={x € X:a < x <n}

for all a € X,;; the non-empty closed subsets are [1, b] with b € X,,, and the non-
empty locally closed subsets are those of the form [a, b] with a,b € X,, and a < b.
Let (U, ¢) be a C*-algebra over X,,. We will use the following notation.,

Alk] = A{k}), Ula,b] = A([a, b]), and A, ] = Ali + 1,/].
Using the above notation we have ideals 2€[a, n] such that
[0] 2 AN]2AN—-1,n] Q- 2A[2,n] 2[1,n] =A.
Definition (2.1.4) [2]:

Let & and B be C*-algebras over X. A homomorphism ¢ : A - B is X-
equivariant if ¢(AU)) € B(U) for all U € O(X). Hence, for every Y = U\V, ¢
induces a homomorphism ¢Y:A(Y) - B(Y). Let €*-alg(X) be the category
whose objects are C*-algebras over X and whose morphisms are X-equivariant
homomorphisms.
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Remark (2.1.5) [2]:

Suppose A and B are tight C*-algebras over X,,. Then it is clear that a * -
homomorphism ¢ : A — B is an isomorphism if and only if ¢ is an X,,-equivariant
isomorphism.

Remark (2.1.6) [2]:

Lete;: 0 - B; - €, = A; — 0 be an extension for i = 1,2. Note that €; can
be considered as a C*-algebra over X, = {1,2} by sending ¢ to the zero ideal, {2}
to the image of B; in €;, and {1,2} to €;. Hence, there exists a one-to-one
correspondence between X,-equivariant homomorphisms ¢ : €, - €, and
homomorphisms from e; and e,.

Definition (2.1.7) [2]:

Let X be a T, topological space and let 2« be a C*-algebra over X. For open
SUbSetS Uli Uz, U3 Of X Wlth U1 c UZ c U3, set Yl = UZ\U11 YZ = U3\U1,
Y; = U3\U, € LC(X). Then we have a six-term exact sequence

KO(QI(Yl)) L’ Ko(m(yz)) L’ KO(QI(Y3))
d. 1 T 0. (1)
KO(?I(Y3)) — KO(QI(YZ)) ‘T Ko(m(yﬂ)

The filtered K-theory FKy () of 2 is the collection of all K-groups thus occurring
and the natural transformations {,,m,, d,}. The filtered, ordered K-theory FK3 ()
of A is FKy () of A together with K, (A(Y )),+ forall Y € LC(X).

Let A and B be C*-algebras over X. An isomorphism a : FKy (W) = FKyx(B) is
a collection of group isomorphisms

ay,. : K.(AY)) - K.(BX))

for each Y € LC(X) preserving all natural transformations. An isomorphism
a : FKy () — FKy(B) is an isomorphism a : FK3 (A) — FKF (V) which satisfies
that ay , is an order isomorphism for all Y € LC(X).
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If Y € LC(X) such that Y =Y, [[Y, with two disjoint relatively open subsets
Y, Y, € O(Y) € LC(X), then A(Y) = A(Y;) x A(Y,) for any C*-algebra over X.
Moreover, there is a natural isomorphism from K,(A(Y)) to K.A(Y;)) @
K, (A(Y3)) which is a positive isomorphism from K,(2(Y)) to K,(A(Y;)) D
Ko (A(Y,)). If X is finite, any locally closed subset is a disjoint union of its
connected components. Therefore, we lose no information when we replace LC(X)
by the subset LC(X)".

Let a be an element of a C*-algebra 2A. We say that a is norm-full in 2 if a is
not contained in any norm-closed proper ideal of 2. The word “full” is also widely
used, but since we will often work in multiplier algebras, we emphasize that it is
the norm topology we are using, rather than the strict topology. We say that a sub-
C*-algebra B of a C*-algebra U is norm-full if the norm-closed ideal generated by
Bis A,

Definition (2.1.8) [2]:

An extension e is said to be full if the associated Busby invariant t, has the
property that 7.(a) is a norm-full element of Q(B) = M (B)/B for every
a € A\{0}.

Let X and Y be T, topological spaces. For every continuous function f : X - Y
we have a functor

f € —alg(X) » € —alg(Y), (Ay)— (A f°9)

(i) Define gk : X - X; by g% (x) = 1. Then g% is continuous. Note that the
induced functor g3 : €* — alg(X) —» €* — alg(X,) is the forgetful functor.
(ii)Let U be an open subset of X. Define gf x: X = X, by g x(x) =1if x ¢ U
and gf y(x) =2 if x € U. Then g x is continuous. Thus the induced

functor

ghx : € —alg(X) > € —alg(X,)
is just specifying the extension 0 - AU) - A - A/AU) - 0.

(ili) We can generalize (ii) to finitely many ideals. Let U; € U, €---C U, = X
be open subsets of X. Define gy y, v, i X 2> Xp(x)=n—-k+1 if
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x € Up\Uk—1. Then gff y,..u, is continuous. Therefore, any C*-algebra
withideals0 =2 J, 2 7, =2 --- 2 J,, = U can be made into a C*-algebra over
X,,.

(iv) For all Y € LC(X), 7y : €* —alg(X) » C* —alg(Y) is the restriction
functor.

Let RSK(X) be the category whose objects are separable C*-algebras over X and
the set of morphisms is KK (X; 2, B). By these functors induce functors from
KK(X) to KK(Z), where Z =Y, X, X,,.

The proof of the following lemma is straightforward and is left to the reader.
Lemma (2.1.9) [2]:

Let U be an open set of X and Y = X\U. Then

2 1
nloghy=ghory and nloghy =ghory (2)

from €* —alg(X) to € —alg(X;). Consequently, the induced functors from
KK(X) to KK(X,) will be equal.

We have the following theorem.
Theorem (2.1.10) [2]:

Let A, and A, be separable, nuclear C*-algebras over X,. Suppose e;: 0 —
U [2] - U, - A [1] - 0 is an essential extension for i=12. If x¢€
KK (X,; U,,2U,), then
r}g] (x) X [Tez] = [rel] X r)g] (%)
in KK1(A,[1], U, [2D).
Proof:

Let €*-alg,,.(X,) be the category whose objects are nuclear, separable  C*-
algebras over X, and morphisms are X,-equivariant homomorphisms. Let
KK ,uc(X,) be the category whose objects are nuclear, separable C*-algebras over
X, and the morphisms from 2 to B are the elements of KK (X,; U, B). Let KK, ¢
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be the category whose objects are nuclear, separable C*-algebras and the
morphisms from 2 to B are the elements of KK (U, B).

Let A be in €*-alg,,,.(X,) and let g be the natural projection from A to A[1].
Let iy : SUA = Cror and jo : A[2] - Cp,, be the natural embeddings, where

Coy =1{(a, f) € UD Co((0,1],A1]): Ty (a) = (1)}

is the mapping cone of my. Recall that KK (jy) is invertible in KK (A[2], Cr, ).

Then the isomorphism from KK (A[1], B[2]) to KK (SU[1], B[2]) sends the class
induced by

0->AR2]->A->A[1] >0

to KK(iy) X KK(jy)™. Using this isomorphism from KK([1],B[2]) to
KK (SU[1],B[2]), the equation

r)g] (x) X [Tez] = [rel] X rg] (x)
in KK1(A,[1],U,[2]) becomes
Sl (o) x KK (iar,) X KK (jor,) = KK (iag,) X KK (j,) ™ % 12 (x)

in KK(SU[1],B[2]), where S is the natural isomorphism from KK(2,B) to
KK(S%,SB).

Letm = 1 or 2. Define F,, : € —alg,nc = KKquc DY

_(YU[2], m=2, ({2}, m=2
Fm(m‘{sm[u m=1 nd Fm(¢)‘{5¢{1}, m=1.

We claim that n: F, - F, given by ny = KK(iy) X KK(jy)~! is a natural
transformation between the functors F; and F,. Let 2 and B be in €* — alg,,.(X,)
and let ¢ be an X,-equivariant homomorphism. By the definition of the mapping
cone sequence, there exists a homomorphism  : Co — Cr Such that the
diagrams
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0 — suf] 3 Gy — A — 0

YOI ) l ¢
B

and
0 — w2 B € — A — 0
L ¢ \RT) 1 Co
0_)23[2]j—>%Cn%—>C5B—>0

are commutative. Thus,
F1(¢) x KK (i) X KK(jg) ™ = KK(S¢pr1;) X KK (i) X KK (jg) ™*
= KK (iy) X KK(¥) x KK (jg) ™
= KK (iy) X KK (jo) ™ X KK ((2})

= KK (i) X KK (jg) ™ X F5 ().
Hence, n : F; — F, is a natural transformation.

Since F,;, F, are stable, split exact, and homotopy invariant functors, by the
universal property of KK, we have that E,, induces a functor E,, : RK,,c(X3) =
KK ,uc and n induces a natural transformation n : F; — F,. In particular, for each
x € KK(X,; U, U,), we have that

. . N1 . . N1
St () x KK (iar,) X KK (jur,)” = KK (iar,) X KK (o)™ X 10 (%)
By the comments made in the second paragraph of the proof, we have that
r)gzl} (x) % [Tez] X [Tel] X rg}(x)
in KK~1(A, [1], 24, [2D).

In this section we prove general classification results for several classes of
extension algebras.
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Definition (2.1.11) [2]:

For a T,, topological space X, we will consider classes Cy of separable, nuclear
C*-algebras in V" such that

(i)  Anyelementin Cy isa C*-algebra over X; and

(i) If A and B are in Cy and there exists an invertible element « in
KK(X;%, B) which induces an isomorphism from FK$ () to FK(B),
then there exists an isomorphism ¢ : % - B such that KK(¢) = gx(a).

We concentrate on the following two classes satisfying (i)-(ii) above:
Example (2.1.12) [2]:

Let 2L and B be separable, nuclear, stable, O -absorbing tight C*-algebras over
X. Let a be an invertible element in KK (X; %, B). By Kirchberg, there exists an
iIsomorphism p:UA->B such that KK(X; ) = a. Hence,
KK(¢) = gx(KK(X; ¢)) = gk(a). Thus, if Cy is the class of all stable, separable,
nuclear C*-algebras over X which are O0-absorbing in V', then Cy satisfies the
properties of Definition (2.1.11).

Example (2.1.13) [2]:

Let A and B be stable AF algebras. Let a be an invertible element in
KK(X;;%,B) = KK(U,B) which induces an isomorphism from FKj (%) =
(Ko (), Ko (W) to FKE (B) = (Ko(B), Ko (B)4). Then by the classification of
AF algebras, there exists an isomorphism ¢ : A - B such that K,(¢) = Ky(a).
Since KK (¥, B) = Hom(K, (), Ky(B)), we have that KK (¢) = a. Thus, if Cy,
is the class of all stable, AF algebras, then Cy, satisfies the properties of Definition
(2.1.112).

Remark (2.1.14) [2]:
The condition

ii’. If A and B are in Cx and there exists an isomorphism g from FK3 ()
to FKE(B), then there exists an isomorphism ¢ : A - B such that

¢ =p
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Is more closely suited to our purposes, and (i),(ii") is true in general in Example
(2.1.13), but not always in Example (2.1.12). In fact, there exists a space X with
four points such that (ii") fails in Example (2.1.12).

Lemma (2.1.15) [2]:

For i=12, let ¢:0—-7;, - C; - A, - 0 be a non-unital full extension.
Suppose J; is a stable C*-algebra satisfying the Corona factorization property. If
there exist an isomorphism ¢, : J; — J, and an isomorphism ¢, : A, — 2, such
that KK () X [Te,] = [Te,] X KK (o), then €, is isomorphic to €,.

Proof:

Note that e; = e, - ¢, and e, = ¢, - e,, Where e, - ¢, is the push-out of e,
along ¢, and ¢, - e, is the pull-back of e, along ¢,. Since [z, - ¢¢] = [¢,] ¥
KK (¢o) = KK(¢2) X [1,] = [Tp,e,] I KK'(Yy,7,), we have that [z, - ¢o] =
[T,-e,]. SiNCE T, s and 74,.., are non-unital full extensions and J, satisfies the
Corona factorization property, there exists a unitary u in M (J,) such that
Ad(mt(w)) o 7., - o = Ty, - €2. Hence, (Ad(u),Ad(u),idy,) is an isomorphism
between e; - ¢, and ¢, - e,. Thus, €, is isomorphic to €,.

We will apply the theorem below to a certain class of C*-algebras arising from
graphs. See Proposition (2.2.9), Corollary (2.2.10), Proposition (2.2.11), and
Theorem (2.2.13).

Theorem (2.1.16) [2]:

Let X be a finite topological space and let U € O(X). Set Y = X\U € LC(X).
For i = 1,2, let 2A; be a C*-algebra over X such that ; is a stable, separable,
nuclear C*-algebra and every simple subquotient of 2; is in V.

Let C;y and Cyy be classes of C*-algebras that satisfy the properties of
Definition (2.1.11). Suppose U;(U) is a C*-algebra in C;;, and satisfying the
Corona factorization property, and U;(Y) is a C*-algebra in Cyy . Suppose for
i=12

e, : 0> U (V)->UA > AU(Y) > 0
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are full extensions. If there exists an isomorphism a : FK(2,) - FK¥ () such
that ay, : FK{ (U, (U)) - FK{ (A, (U)) and ay : FKF (A, (Y)) = FK{ (AL (Y)) are
iIsomorphisms, and « lifts to an invertible element in KK(X;U,,2,), then A, =
As.

Proof:

Suppose there exists an isomorphism « : FKy(2,) —» FK4x(2,) such that
ay : FK{ (U (V) - FKH(A,(U)) and  ay : FKy (U (V) - FKY (A (Y)) are
isomorphisms, and « lifts to an invertible element in KK(X;U;,U,). Let x €
KK(X;U,,%,) be this lifting. Then rJ(x) is an invertible element in
KK(U; A, (U),U,(U)) and rf(x) is an invertible element in
KK(Y; U, (Y), U,(Y)). Since A, (U) and A, (U) are in C; ; and A (V) and A, (V)
are in Cyy , there exists an isomorphism ¢, : U; (U) - A, (U) which induces
¢ (x) and there exists an isomorphism ¢, : U, (Y) - A, (Y) which induces ¥ (x).
By Theorem (2.1.10) and by Lemma (2.1.9)

KK(¢,) x [te,] = (8F o ¥ (1)) X [7¢,] = (738 Vo gﬁ,x(x)) X | 7e,]

= [Tel] X (T)g} ° g%},x) (x) = [Tel] X (g%] ° 7”}?(95)) = [Tel] X KK (¢o)

in KK1(UA,(Y), A, (U)). Since e; and e, are full non-unital extensions and UA; (U)
has the Corona factorization property, by Lemma (2.1.15) we have that 2, = U,.
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Section (2.2): Extensions and Applications to Graph C*-algebras

In this section, we prove that certain extensions arising from graph C*algebras
are necessarily full, allowing one to use the results.

Let 7 be an ideal of a C*-algebra B. Set
M(B;J) ={x e M(B):xB < J}.
It is easy to check that M (B; 7) is a (norm-closed, two-sided) ideal of M (B).
Definition (2.2.1) [2]:

Let {f,,} be an approximate identity consisting of projections for K, where
fo=0 and f, — f,—1 is a projection of dimension one. Let A be a unital
C*-algebra and set e, = 19 @ f,,. Note that {e,,} is an approximate identity of
A @ K consisting of projections.

We call an element X € M (A Q K) diagonal with respect to {e,} if there
exists a strictly increasing sequence {a(n)} of integers with «(0) = 0 such that

X(eam) = €atn-1) ~ (€atn) — €a(n-1))X =0

for all n € N. We write X = diag(x4, x5,...), where

Xn =X ((ea(n) B ea(n—l)))'

Conversely, if {x,} is a bounded sequence with x, € M, (), then upon
identifying M, () with

(ea(n) - ea(n—l))(QI ® K) (ea(n) - ea(n—l))

for an appropriate a(n), we have that X = diag(x,,x,,...) for some X e (A QK
K).

Lete > 0. Define f. : R, —» R, by

0, ift <e.
f:(t) =3e Y (t—€), ife<t<2e (3)
1, ift > e.
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Theorem (2.2.2) [2]:

Let B, be a unital, O, -absorbing C*-algebra. Suppose B =B, @ K has a
largest proper non-trivial ideal 1. If x € M (8B) such that x is not an element of
M(B;T) + B, then I(x) = M (B), where I(x) is the norm-closed ideal of M (B)
generated by x.

Consequently, M (B;J) + B is the largest proper ideal of M (B) and
(M(B;T) + B)/B isthe largest proper ideal of 9(B).

Proof:

We first show that if J is an ideal of M (8B) such that J + B = M (B), then
J =M (B). Since 1,,(B) is a projection and J + B = M (B), there exist y € J
and b € B such that 1,,@) =y + b. Since B is stable, there exists an isometry
S € M (B) such that ||S*bS|| < 1. Hence,

| 1rcey — S*vS|| = IS*bSII < 1.

Hence, S*yS is invertible in M (B) which implies that 7 = M (B). Note that the
claim also proves that M (B; 7) + B is a proper ideal of M (B) since 1,,(B) is not
an element of M (B; 7).

Suppose x € M (B) such that x is not an element of M (B; 7) + B. Then there
exists a diagonal element y € M (®B) with respect to {e,} such that I(x) + B =
I1(y) + B, where diagonal with respect to {e,} we mean there exists a strictly
increasing sequence of integers {a(n)} with «a(0) =0 such that y = Y., v,
where vy € (eq) — €ak-1))B(€ak) — €ak-1)) and the sum converges in the
strict topology.

Note that y is not an element of M (B; 1) + B since I(x) + B =1(y) + B and
x is not an element of M (B; I) + B. Note that we have an exact sequence

0->WM(B;7)+3B)/B - Q2(B) > A(B/T) = 0.

Since B/J is a o -unital, purely infinite simple C*-algebra, Q(B/7) is simple.
Since the image of y in Q(B/7) is non-zero and Q(B/7)) is simple, there exists
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& > 0 such that for all m € N, there exists m’ = m such that Z’,?:'m fs(yi) is not
an element of (ey(m'y — €am-1))T(€am’y — €a(m-1))-

Let m € N. By the above paragraph, there exists m’' >m such that
;cnszS(yk) is not an element of (ea(m’)_ea(m—l))j(ea(m’)_ea’(m—l))-

Therefore, Y., fs(7x) is norm-full in (ey oy — €am-1))B(€qm’y — €a(m-1))-
And there exists z € (eq(m’y — €am-1))B(€q(m’)y — €a(m-1)) SUCh that

m’
(ea(m’) - ea(m—l)) = Z z fsk) |27
k=m

Therefore,

ml
1, < (eqmm’y — €atm-1)) =2 Z fs(w) |Z"

k=m

We can find I(y) = M (B) which implies that I(x) + B =1(y) + B = M (B).
By the above claim, we have that I (x) = M (B).

Corollary (2.2.3) [2]:

Let B, be a unital, O, -absorbing C*-algebra. Suppose B =B, @ K has a
largest proper non-trivial ideal 7. Suppose B is an ideal of U such that e : 0 —
B/T->U/T > A/B - 0 is an essential extension. Then the extension e : 0 -
B - A->A/B - 0is a full extension.

Proof:

Note that the canonical projection from U to 2A/J is an X,-equivariant
homomorphism. Therefore, by the diagram

A/B —s Q(B)

T,/

Q(B/7)



IS commutative.

Since B/7 is a stable purely infinite simple C*-algebra, then we have Q(B/7) is
simple. Since e’ is an essential extension, we have that e’ is a full extension. Let
a € A/B be a non-zero element. Then the ideal generated by z,/(a) in Q(B/T) is

Q(B/7).
Since
0> M(B;7)+3B)/B->0(B)->9(B/T)-0

IS an exact sequence, by the above commutative diagram, z.(a) is not an element
of (M (%B;7) + B)/B. Hence, by Theorem (2.2.2), t.(a) is norm-full in Q($B).

Proposition (2.2.4) [2]:

Let A be a C*-algebra and let 7 and D be ideals of A with 7 € D. Suppose D/J
Is an essential ideal of 2A/J. Thene; : 0 -7 - A - A/T — 0 is a full extension
ifandonlyife,: 0 -7 - D - D/J - 0isa full extension.

Proof:

Note that the natural embedding (p:D—->UA is an X,-equivariant
homomorphism with ¢; = id;. Hence, the following diagram

0 J > D > D/ ——0
lp/g
0 J A A/T——0

Is commutative. Therefore, the diagram
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IS commutative.

Suppose e; is a full extension. Then it is clear from the above diagram that e,
Is a full extension. Suppose that e, is a full extension. Let a € A/J be a non-zero
element. Let 7 be the ideal generated by a in /7. Since D/7 is an essential ideal
of A/7J, there exists a non-zero b € D/7 such that 15,55y € I . Hence, t,,(b) =
(e, © tn/7)(b) is norm-full in Q(7). Since (7., ° tp/7)(b) is in the ideal generated
by 7., (a) in Q(7), we have that 7, (a) is norm-full in Q(J). Thus, e, is a full
extension.

Proposition (2.2.5) [2]:

Let A be a graph C*-algebra satisfying Condition (K). Suppose 7, 27, U
such that 7, is an AF algebra, 7, is the largest proper ideal of 7,,7,/7; is purely
infinite. Thene: 0 -7, ® K-> 7, @ K- 7,/7; Q K — 0 is a full extension.

Proof:

We can show that, A Q K= C*(F) ® K, where E is a graph satisfying
Condition (K) and has no breaking vertices. Hence, 7, @ K is isomorphic to a
C*(E;) ® K where E; has no breaking vertices and satisfies Condition (K). Note
that C*(E;) has a largest proper ideal D, that C* (E;)/®D; is purely infinite, D, is
an AF algebra, and D; ® K = 7; @ K. Thus, there exists a projection p € C*(E;)
such that pC*(E D)p @ K=C(E;)®K and pD;p is stable. Since
pC*(Ey) p/pD;p is a unital simple C*-algebra and

0 - pDip - pC*(Ep - pC*(Ey) p/pD1p - 0

Is a unital essential extension, the extension is full. Since p®,p is stable, implies
that the extension

0->pDp @K->pC(EDp @ K- (pC*(E) p/pD1p) K -0

is full. The proposition now follows since the isomorphism between pC*(Ey)p ®
K and C*(E;) ® K maps the ideal pD,p @ K onto the ideal D; @ K by Brown’s.

Corollary (2.2.6) [2]:
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Let A be a graph C*-algebra satisfying Condition (K). Suppose that 7 is an AF
algebra such that 7 is an ideal of 2, for all ideals J of 2 we have that J S 7 or
J<c J,and A/T is Oy-absorbing. Thene: 0 > I RQ K-> UARK - A/TRK K —
0 is a full extension.

Proof:

Let {C,,:n € N} be the set of all minimal ideals of 2/J and let 2, be an ideal
of A suchthat7 € A, and A, /T = C,,.

Let J be an ideal of A,,. Then 7 is an ideal of 2A. Hence, J S J or 7 € J.
Suppose 7 € J butJ = J. Then, J/7 = A, /A = €, since E,, is simple. Hence, 7
Is the largest proper ideal of 2,,, 7 is an AF algebra, and 2,,/7 is purely infinite.
Therefore, by Proposition (2.25),0 s I QK-> U, K-> C, K- 0isa full
extension.

Let© =), U,. Then D is an ideal of A such that D/7 is an essential ideal
of A/J. Since €; NC; = {0} for i #j , we have that 0 > TR K->DR K —
D/7 Q K = 0 is a full extension. The corollary now follows from Proposition
(2.2.4).

Recall our definition of X,, from Example (2.1.3) above. We now classify a
certain class of graph C*-algebras that are tight C*-algebras over X,,.

Proposition (2.2.7) [2]:

Suppose A is a C*-algebra with finitely many ideals. If every simple
subquotient of A @ K satisfies the Corona factorization property, then A Q K
satisfies the Corona factorization property. Consequently, any graph C*-algebra
with finitely many ideals has the Corona factorization property.

Proof:

We will prove the result of the proposition by induction. If 2 is simple, then by
our assumption, A @ K has the Corona factorization property. Suppose that the
proposition is true for any C*-algebra B with at most n ideals such that any simple
subquotient of B ® K satisfies the Corona factorization property.
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Let 2 be a C*-algebra with n + 1 ideals such that every simple subquotient of
A Q K satisfies the Corona factorization property. Let 7 be a proper non-trivial
ideal of A ® K. Then 7 and A/J are C*-algebras with at most n ideals such that
every simple subquotient of 7 @ K and A /7 @ K satisfies the Corona factorization
property. Hence, 7 ® K and /7 @ K satisfy the Corona factorization property.
Therefore, A @ K satisfies the Corona factorization property.

Theorem (2.2.8) [2]:

(See Meyer and Nest.) For the topological space X,,, if 2 and B are separable,
nuclear C*-algebras over X, such that A[k] and B[k] are in N, then any
isomorphism a : FKy () - FKyx (B) lifts to an invertible element in

KK(X,; %, B).
Proposition (2.2.9) [2]:

Let A, and 2, be separable, nuclear C*-algebras over X,,. Suppose 2;[1] is an
AF algebra and 2;[2,n] is a tight stable O,-absorbing C*-algebra over [2,n], and
A;[2] is an essential ideal of 2A;[1,2]. Then A; K= A, ® K if and only if
there exists an isomorphism a : FKy () — FKy (%B;) such that a{1} is an order
isomorphism.

Proof:

Since U;[2,n] is a tight C*-algebra over [2,n], there exists a norm-full
projection p in 2A;[2,n]. By Brown’s, p¥;[2,n]p @ K = UA;[2,n] ® K. Since
A;[2,n] is an O.-absorbing C*-algebra, pU;[2,n]p is an O.-absorbing C*-
algebra. By Corollary (2.2.3),

0-U->2iI]|K->U QK-> U[1]| K- 0

is a full extension for n > 3. Suppose n = 2. Then U;[2,2] is a purely infinite
simple C*-algebra, hence, Q(2;[2,2] ® K) is a simple C*-algebra. Thus,

is a full extension. By Proposition (2.2.7), 2U;[2,n] has the Corona factorization
property. The theorem now follows from Theorem (2.2.8) and Theorem (2.1.16).
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Corollary (2.2.10) [2]:

Let A, and A, be graph C*-algebras satisfying Condition (K) and 2, and A,
are C*-algebras over X,. Suppose U;[2] is O-absorbing, A;[2] is the smallest
non-zero ideal of A;, and A;[1] is an AF algebra. Then 2, ¥ K = A, ® K if and
only if there exists an isomorphism « : FKy (U;) — FKy () such that a{1} is
an order isomorphism.

Proposition (2.2.11) [2]:

Let A, and A, be graph C*-algebras satisfying Condition (K). Suppose ; is a
C*-algebra over X,, such that 2;[n] is an AF algebra, and for every ideal 7 of ¥;
we have that 7 € U;[n] or U;[n] € 7, and A;[1,n — 1] is a tight, O -absorbing
C*-algebra over [1,n —1]. Then U; ® K = A, Q K if and only if there exists an
isomorphism a : FKy (U;) — FKx () such that a{n} is an order isomorphism.

Proof:

By Corollary (2.2.6),0 > A n]| K-> A, QK-> A [1,n—1]®K—=>0isa
full extension. Then U;[n] ® K satisfies the Corona factorization property. The
result now follows from Theorem (2.2.8) and Theorem (2.1.16).

Definition (2.2.12) [2]:

For each n € N, we define a class €, of graph C*-algebras as follows: 2L is in
C, if

(i) A is a graph C*-algebra;

(i) is a tight C*-algebra over X,,; and

(iii) There exists U € O(X,,) such that either 2(U) is an AF algebra and
A(X,,\U) is O -absorbing or A(U) is O4-absorbing and A(X\U) is an AF
algebra.

Note that if C*(E) is an element in €,,, then E satisfies Condition (K).
Theorem (2.2.13) [2]:

Let E; and E, be graphs such that C*(E;) and C*(E,) are in €, for some
n € N. Then the following are equivalent:
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(i) C*(E) Q K = C7(E,) ®K;
(i) There exists an isomorphism a : FKy (C*(E;)) — FK¥ (C*(E3))

Proof:

Suppose there exists an isomorphism a : FK} (C*(E;)) — FK} (C*(E)).
Note that by Cuntz, if € is an O.-absorbing C*-algebra with a norm-full
projection, then K,(A) = K,(A),. Since K,(B) = K,(B), for any AF algebra,
there is no order isomorphism from the K,-group of an AF algebra to the K,-group
of an 0,,-absorbing C*-algebra with a norm-full projection.

With the above observation, one of the following four cases must happen:

(i) C*(E,) and C*(E,) are AF algebras;

(i))C*(E,) and C*(E,) are O -absorbing;

(iii) There exists 2 < k <n such that C*(E;)[k,n] is an AF algebra and
C*(E)|[1,k — 1] is O,-absorbing for i = 1,2;

(iv) There exists 2 <k <n such that C*(E;)[k,n] is O.-absorbing and
C*(E)[1,k — 1] isan AF algebra for i = 1,2.

Case (i) follows from the classification of AF algebras. Case (ii) also follows. Case
(iii) follows from Proposition (2.2.11) and Case (iv) follows from Proposition
(2.2.9).

Examples (2.2.14) [2]:
Case (I):

Fix a prime p and consider the class of graph C*-algebras given by adjacency
matrices

0 0 0
lz p+1 0
y X p+1

for y,z > 0. Theorem (2.2.13) applies directly as the resulting graph C*-algebra
has a finite linear ideal lattice 0 < J; < J, < A with subquotients J; = K,7,/7;, =
Op+1 ® K, and A/T, = Op44. All K;-groups in the filtered K-theory vanish,
and the K,-groups and the natural transformations
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Ko(71) — Ko(3,) — Ko (3,/7,)

v N

Ko (Ty) ——> Ko () —— Ko (/)

v

v

Ko(U/T2) =———= Ko (U/72)

may be computed as

z —— cok [;] — > cok[p]

Z y
X
z—cok|pP X —>cok[0
0 p J p

with all maps induced by the canonical maps from z" into z* for suitably chosen r
and s.

Checking when two such filtered K-theories are isomorphic is not easy. Of
course it would be necessary that

plx © plx’, plz © p|z’

but depending upon the invertibility of x and z in Z/p we get varying conditions on

y. The work explains how to reduce this task to checking isomorphism only in the
part of the invariant enclosed in dashed lines. With this, it is easy to conclude:
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Example (2.2.15) [2]:

With graphs E and E' given by matrices

0 0 0 0 0 0
lz p+1 0 z' p+1 0
y X p+1l Iy’ x' p+1

respectively, we have C*(E) @ K = C*(E") @ K precisely when

(i) p]x © p|x', and
(il)p|z © p|z’', and
(iii) a. ply © ply’ when p|x and p|z,
b. plly —x z/p] © plly’ —x'z'/p] when p + x and p|z.

Case (I1):
We now consider graphs given by

0 0 0 0
x p+1 0 0
y 0 p+1 0
Z 0 0 p+1

with x,y,z > 0. The resulting ideal lattice is not linear; in fact we have an

extension

0 > K—>UA—>0,41 ®O0pr1 — 0pyqg —0

showing that the ideal lattice is precisely of the type demonstrated by Meyer and
Nest to not generally allow a UCT for filtered K-theory. But since our C*-algebras
have real rank zero, we may appeal to see that isomorphisms of the filtered K-

theory, which in this case has the form
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Xy
cok —>cok P 0 cok|[p
X y z
Z —» cok ] cok p 0 _ ycokl|P 00 cok[p]
P 0 p 0 —>COXIP
0 0 p

\ok [p]}»é P 0 \‘Cok[p]

lift to invertible elements of KK, so since the ideal 7, = K is a least ideal with
A/J, absorbing O, we may apply Theorem (2.1.16). Further, as explained it
suffices to check the existence of isomorphisms on the part of the invariant
enclosed in dashed lines, and then it is straightforward to determine when the
filtered K-theory for two such matrices are the same; indeed this amounts to

rlx & plx’, ply e ply', plz < plz’
Taking into account the homeomorphism of Prim(2) we arrive at
Example (2.2.16) [2]:

With graphs E and E’ given by matrices

0 0 0 0 0 0 0 0
x p+1 0 0 x' p+1 0 0
y 0 p+1 0 I |y 0 p+1 0
z 0 0 p+1 7 0 0 p+1

respectively, we have C*(E) ® KC*(E") ® K if and only if the number of entries
in (x, y, z) which are multiples of p agrees with the number of entries in (x',y’,z")
which are multiples of p.

51



Chapter 3

C*-algebras with Closed Unitary and Similarity Orbits of Normal
Operators

Section (3.1): Normal Operators and Closed Unitary

Significant research has been performed in determining when two normal
operators in a unital C*-algebra are approximately unitarily equivalent. For
example the Weyl-von Neumann-Berg Theorem determines when two normal
operators in the bounded linear maps on a complex, separable, infinite dimensional
Hilbert space are approximately unitarily equivalent and a famous work due to
Brown, Douglas, and Fillmore can be used to determine when two normal
operators in the Calkin algebra are approximately unitarily equivalent. More
recently completely determines when two normal operators in a von Neumann
algebra of an arbitrary single type are approximately unitarily equivalent.

Given a normal operator N in a unital C*-algebra U, the Continuous
Functional Calculus for Normal Operators provides a unital, injective x-
homomorphism from the continuous functions on the spectrum of N into U
sending the identity function to N. It is easy to see that two normal operators are
approximately unitarily equivalent in U if and only if the corresponding unital,
injective * -homomorphism are approximately unitarily equivalent. Thus it is of
interest to determine when two unital, injective * -homomorphisms from an abelian
C*-algebra to a fixed unital C*-algebra are approximately unitarily equivalent. In
particular, when U is a unital, simple, purely infinite C*-algebra, several
preliminary results were developed and a complete classification was given.

Theorem (3.1.1) [3]:

Let X be a compact metric space, let U be a unital, simple, purely infinite C*-
algebra, and let ¢,y : C (X) - U be two unital, injective *-homomorphisms.
Then ¢ and vy are approximately unitarily equivalent if and only if [[¢]] = [[¥]]
in KL(C(X),W).
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As a specific case, if X € C is compact it is a corollary of the Universal
Coefficient Theorem for C*-algebras, the definition of KL(C(X),U), and the fact
that K, (C (X)) is a free abelian group that

KL(C(X), 1) = KK(C(X),2) = Hom (K. (C(X)), K. (WD)

where Hom(K, (C (X)), K.(U)) is the set of all homomorphisms from K, (C(X)) to
K,.(U). Thus implies that for a unital, simple, purely infinite C*-algebra 1 and a
compact subset X of C, two unital, injective * -homomorphisms ¢,y : C(X) - U
are approximately unitarily equivalent if and only if ¢* = y* where ¢* and y* are
the group homomorphisms from K,(C(X)) to K.(A) induced by ¢ and y
respectively. Thus a complete classification of when two normal operator with the
same spectrum in a unital, simple, purely infinite C*-algebra is obtained.

The proof of Dadarlat’s result greatly varies from the traditional proof of when
two normal operators on a complex, infinite dimensional, separable Hilbert space
are approximately unitarily equivalent. We shall use previously known techniques
based on to provide a simple proof of the classification of when two normal
operators are approximately unitarily equivalent in a unital, simple, purely infinite
C*-algebra with trivial K;-group. Although this proof is less powerful than, the
techniques used enables the study of additional operator theoretic problems on
these C*-algebras.

One particularly interesting problem is the study of the distance between
unitary orbits of operators. Significant progress has been made in determining the
distance between two unitary orbits of bounded operators on a complex, infinite
dimensional Hilbert space. In terms of determining the distance between unitary
orbits of normal operators inside other C*-algebras, makes significant progress for
the Calkin algebra (which is a unital, simple, purely infinite C*-algebra) and
makes significant progress for semifinite factors.

For the discussions, U will denote a unital C*-algebra, U(W) will denote the
unitary group of I, =1 will denote the group of invertible elements of U, and U5?
will denote the connected component of the identity in U~1. For a fixed unital C*-
algebra U and an operator A € U, let 6(A) denote the spectrum of A in U, let

UCA) :={UAU* e 0| U e UQ)}. (1)
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and let
S(A):={vAav~t eu |V eut} (2)

The set U(A) is called the unitary orbit of A in U and S(A) is called the similarity
orbit of A in L.

Notice if B € U then B € U(A) ifand only if A € U(B) and B € S(4) if and
only if A € S(B). We will denote B € U(A) by A~,B and we will denote B €
S(A) by A~B. Clearly ~,, and ~ are equivalence relations.

We will use U(A) and S(A) to denote the norm closures in I of the unitary and
similarity orbits of A respectively. Note if B € U(A) then A € U(B) and B €
S(4). If BeU(A) we will say that A and B are approximately unitarily
equivalent in U and will write A~,,B. Clearly ~,, is an equivalence relation.
Furthermore if A is a normal operator and A~ 4, B then B is a normal operator. If
B € S(A) then it is not necessary that A € S(B) and B need not be normal if A is
normal. However if B € S(A) and C € S(B) then C € S(A).

It is an easy application of the semicontinuity of the spectrum to show that if
A,B € A are such that B € S(4) then ¢(4) € o(B) and o(A) intersects every
connected component of o(B). Thus ¢(A) = o(B) whenever A,B €A are
approximately unitarily equivalent.

Definition (3.1.2) [3]:

Let U be a unital C*-algebra and let N € U be a normal operator. By the
Continuous Functional Calculus for Normal Operators, there exists a canonical
unital, injective * -homomorphism ¢N : C(c(N)) — U such that ¢ N(z) = N. As
@N is unital and injective, this induces a group homomorphism
I'(N):K;(C(a (N))) = K;(U). The group homomorphism I'(N) is called the
index function of N. To simplify notation, we will write I'(N)(4) to denote
[Aly — N]; in U,

In the case that U is a unital, simple, purely infinite C*-algebra, K;(U) is
canonically isomorphic to U=t /U5t. Thus if N € U is a normal operator such that
I'(N) is trivial then Ay — N € Ug?! for all A ¢ o(N). Furthermore if N € Ais a
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normal operator and A € o(N) then I'(N)(A) describes the connected component
of Aly — NinUu™1,

The reason for examining the index function in the context of approximately
unitarily equivalent normal operators is seen by the following necessary condition.

Lemma (3.1.3) [3]:

Let U be a unital and let N;, N, € U be normal operators such that N; € S(N,).
Then

(i) If ALy — N € U;! for some A & o(N,) then Al — N; € U1, and
(i) If U is a unital, simple, purely infinite C*-algebra then I'(N;)(A) =
I'(N,)(A) forall 1 € a(N,).

Proof:

Suppose N; € S(N,) and A € o(N;). Then a(N,) € o(N;) and there exists a
sequence of invertible elements V,, € U such that

lim ||N; = VoN, Vi Hl = 0.
n—oo

Thus it is clear that

Tim | (A = Ny) = Vo(Aly — NV 2| = 0.

Therefore, if Al — N, € Uyt then V(AL — N,)V,; 1 € Ut for all n € N and thus
first result trivially follows.

In the case U is a unital, simple, purely infinite C*-algebra, the above implies
that Al — N; and V,, (Al — N,)V,; ! are in the same connected component of U2
for sufficiently large n. Therefore

[Mu — Nily = [Vi(Aly — Nz)Vo_lh
= [Vn]1[ﬂu - N2]1[Vn_1]1
= [Aly — N;];.

Hence I'(N;) (A1) = I'(N,)(A).
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The main tools for our alternate proof are the K-theory of unital, simple, purely
infinite C*-algebras along with the following result due to Lin.

Theorem (3.1.4) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N € U be a normal
operator. Then N can be approximated by normal operators with finite spectra if
and only if I'(N) is trivial.

Using Lin’s result and the following trivial technical detail, we can easily
provide a simple proof for unital, simple, purely infinite C*-algebras with trivial
K,-group and normal operators with trivial index function.

Lemma (3.1.5) [3]:

Let U be a C*-algebra, let N € U be a normal operator, let U be an open subset
of C such that U n a(N) = ¢, and let (N,,),,=1 be a sequence of normal operators
from U such that N = lim,,_,,, N,,. Then there exists a k € N such that a(N,,) N
U =¢foralln > k.

Proposition (3.1.6) [3]:

Let U be a unital, simple, purely infinite C*-algebra such that K, () is trivial.
Let N;, N, € U be normal operators such that I'(N;) and I'(N,) are trivial. Then
N1~auN2 |f and Only |f J(Nl) == J(Nz).

Proof:

By previous discussions it is clear that o(N;) = o(N,) if N;~,,N,. Suppose
o(N,) = a(N;). Since K, (&) = {0}, all non-trivial projections are Murray-von
Neumann equivalent. Thus any two normal operators with the same finite
spectrum are unitarily equivalent.

By the assumption that I'(N;) and I'(N,) are trivial, N; and N, can be
approximated by normal operators with finite spectrum. By small perturbations
using Lemma (3.1.5) and the semicontinuity of the spectrum, we can assume that
N; and N, can be approximated arbitrarily well by normal operators with the same
finite spectrum. Thus the result follows.
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Note the condition ‘I'(N;) and I'(N,) are trivial’ holds when Uyl = U~ or
equivalently when K; (U) is trivial.

If O, is the Cuntz algebra generated by two isometries, K,(0,) and K;(0,) are
trivial. Thus Proposition (3.1.6) completely classifies when two normal operators
in O, are approximately unitarily equivalent.

Corollary (3.1.7) [3]:
Let N,M € O, be normal operators. Then N~,,,M if and only if ¢(N) = o(M).

Note that the proof of Proposition (3.1.6) is easily modified to a more general
setting. To see this, we recall the following definitions.

Definition (3.1.8) [3]:

Let U be a unital C* -algebra. We say that U has the finite normal property
(property (FN)) if every normal operator in U is the limit of normal operators from
U with finite spectrum. We say that U has the weak finite normal property
(property weak (FN)) if every normal operator N € U such that Aly — N € Uy? for
all 1 € a(N) is the limit of normal operators from U with finite spectrum.

Corollary (3.1.9) [3]:

Let U be a unital C*-algebra such that 1l has property weak (FN) and any two
non-zero projections in U are Murray—von Neumann equivalent. If N;, N, € Ul are
two normal operators such that Al — N, € Ug" for all 2 ¢ o(N,) and q €
{1,2} then N;~,,, N, if and only if ¢(N;) = o(N,).

Corollary (3.1.10) [3]:

Let U be a unital C*-algebra such that U has property (FN) and any two non-
zero projections in U are Murray-von Neumann equivalent. If N;, N, € U are two
normal operators then N; ~,, N, if and only if a(N;) = a(N,).

Corollary (3.1.11) [3]:

Let M be a type (Ill) factor with separable predual and let N;,N, € M be
normal operators. Then N;~,, N, if and only if (N;) = o(N,).
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Lemma (3.1.12) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;, N, € U be
normal operators. Suppose that I'(N;) and I'(N,) are trivial, o(N;) = a(N,), and
o(N,) is connected. Then Ny~ N,.

Proof:

We shall begin with the case that o(N;) = d(N,) = [0,1] and then modify the
proof for the general case.

Suppose o(N;) = [0,1] =  (N,). Let € > 0 and choose n € N such that i <

€. By (or the fact that unital, simple, purely infinite C*-algebras have real rank
zero), by Lemma (3.1.5), by the semicontinuity of the spectrum, and by perturbing
eigenvalues, there exists two collections of non-zero, pairwise orthogonal
projections

{ij};‘:o and {6(2)}j:0

in U such that

n n
Z Pj(q) = Iy and [|N, zi < 2e
n

j=0 j=0

for all g € {1 2}. The idea of the proof is to apply a ‘back and forth’ argument to
produce a unitary that intertwines the approximations of N; and N,.

Since U is a unital, simple, purely infinite C*-algebra, Po(l) IS Murray-von
Neumann equivalent to a proper subprojection of PO(Z). Thus we can write
P® = 0P + R where 0 and R$? are non-zero orthogonal projections in
such that Q% and P are Murray-von Neumann equivalent. Furthermore R is
Murray-von Neumann equivalent to a proper subprojection of Pl(l). Thus we can
write P = 0 + R™ where @ and R are non-zero orthogonal projections
in 2 such that Q™ and R(® are Murray-von Neumann equivalent.
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For notional purposes, let Q" := 0,R{" := P, := p® and R := 0.

By repeating this procedure (using Rgl) in place of Pocl)), we obtain sets of non-
zero, pairwise orthogonal projections

{Q(l) R(l)}

such that PP = Q(Q) R].(Q) for all j € {0, ...,n} and q € {1,2}, Rj(z) is Murray-

and {QJ(.Z), RJ.(Z)}n_l

j=1 j=0

von Neumann equivalent to Q](i)l forall j € {0,...,n— 1}, and Rj(l) is Murray-von

Neumann equivalent to QJ(.Z) forall j € {0, ...,n — 1}. Since

n n

N @ @ _ N @ 4 p@

—ZQJ- + R _zoj +R?. 3)
=0 j=0

we note that

[R,(ll)]o = [Iy]o — z [QJ('l)]O B z [Rf(l)]o
j=0 Jj=0
z %], - z |57,
7=0

[Q(Z) _

Hence RS and Q% are Murray-von Neumann equivalent.

Let {V;}}_o U {W} be partial isometries in U such that V;'V; = R.(l) and

v =Q? for all j €{0,..,n}, and Wy'W; = QY and wjw; =R for all
j €{0,...,n — 1}. Hence (3) implies that
-1

n
U=V W,

j=0 0

S

—.
Il
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IS a unitary operator in 1. Moreover

n n—1
DR LEEDRT
j=0 j=0
Hence, since
n n n
T LEONLE
j=0 j=0 j=0
we obtain that
I[N, — U*N,U|| < 5e. 4)

Since € > 0 was arbitrary, Ny~ Ns.

To complete the general case, we will use a technique similar to that used
before. To begin, let N; and N, be as in the statement of the lemma. Fix € > 0 and
for each (n,m) € Z? let

By m = (en—E en+2]+l(

€ €] ¢ .
> —,em+z]_(C. (5)

2

Thus the sets B,, ,,, partition the complex plane into a grid with side-lengths e.

For each (n,m) € Z* we label the box B, ,, relevant if o(N;) N B, = ¢ and
we will say two boxes are adjacent if their union is connected. Since a(N;) is
connected, the union of the relevant boxes is connected.

We can approximate N; and N, within by normal operators M; and M, in 2
with finite spectrum. By Lemma (3.1.5), by the semicontinuity of the spectrum,
and by perturbing eigenvalues, we can assume that o(M,) is precisely the centres

of the relevant boxes and | N, — M, || < 2e forall g € {1,2}.
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We claim that there exists a unitary U € U such that ||M; — U*M,U|| < V2e.
Consider a tree 7 in C whose vertices are the centres of the relevant boxes and
whose edges are straight lines that connect vertices in adjacent relevant boxes.
Consider a leaf of 7. We can identify this leaf with the spectral projections of M,
and M, corresponding to the eigenvalue defined by the vertex. We can then apply
the ‘back and forth’ technique illustrated above to embed the spectral projection of
M; under the corresponding spectral projection of M, and the remaining spectral
projection of M, under a spectral projection of M; corresponding to the adjacent
vertex of the leaf (which is within v/2). By considering 7 with the above leaf
removed, we then have a smaller tree. By continually repeating this ‘back and
forth’-crossing technique, we are eventually left with the trivial tree. As before, K-
theory implies the remaining projections are Murray-von Neumann equivalent. It is
then possible to use the partial isometries from the ‘back and forth’ construction to
create a unitary with the desired properties.

Our next goal is to remove the condition ‘g(N;) is connected’ from Lemma
(3.1.12). Unfortunately, two normal operators having equal spectrum is not
enough to guarantee that the normal operators are approximately unitarily
equivalent (even in the case that K; () is trivial). The technicality is the same as
why two projections in B(H) are not always approximately unitarily equivalent.
To see this, we note the following lemmas.

Lemma (3.1.13) [3]:
Let U be a unital C*-algebra and let P,Q € U be projections. If there exists an
element IV € U such that

1
lo—vPr=i <

then P and Q are Murray-von Neumann equivalent.
Proof:

Let Py := VPV~ € Uand let Z := P,Q + (Iy — P)(Iy — Q) € U. Hence P, is
an idempotent and it is clear that

1Z — Iyl = ||(Po@ + (Iy — P)) Uy — Q) — (@ + (I — Q)|
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< N1(Po = R QI + || (Chy = Po) = hy) (ly = Q)|
= 1Py — Q)QI + || ((x = Po) = Uy — @) Uy — Q)
<||Po— QI +11Q — Poll < 1.

Hence Z € U~L. Therefore, if U is the partial isometry in the polar decomposition
of Z,Z = U|Z| and U is a unitary element of .

We claim that UQU* = P,. To see this, we notice that U = Z|Z|™%,ZQ =
PoQ = POZ1 and

Z"Z = QPyQ + (Iy — Q) — Po) Iy — Q).

Thus QZ*Z = QP,Q = Z*ZQ so Q commutes with Z*Z. Hence Q commutes with
C*(Z*Z) and thus Q commutes with |Z|~1. Thus

UQU* = Z[Z]"1Q[Z]"1z*
=zQ[z]*z"
= PyZ[Z]72Z* = P,
as claimed.

Therefore Q = (U*V )P(U*V)~1 where U*V € UL, It is standard to verify that
if W is the partial isometry in the polar decomposition of U*V then W is a
unitary such that Q = WP W*. Therefore P~,,Q and thus P and Q are Murray-
von Neumann equivalent.

Lemma (3.1.14) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let P and Q be
projections in U. Then P~,,Q if and only if P~,Q if and only if Q € S(P) only if
P and @ are Murray-von Neumann equivalent. If P # Iy and Q = Iy, then P~,,Q
whenever P and Q are Murray-von Neumann equivalent.

Proof:

The above shows that if U is a unital, simple, purely infinite C*-algebra with
K,(U) being non-trivial, there exists two projections P,Q € U with o(P) =
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o(Q) = {0} that are not approximately unitarily equivalent. Thus knowledge of
the spectrum is not enough to complete our classification.

To avoid the above technicality, we will describe an additional condition for
two normal operators to be approximately unitarily equivalent in a unital
C*-algebra. The construction of this conditions makes use of the analytical
functional calculus.

Lemma (3.1.15) [3]:

Let U be a unital C*-algebra, let A,B € U, and let f : C — C be a function that
Is analytic on an open neighbourhood U of a(A) Uao(B). If A€ S(B) then
f(A) € S(f (B)). Similarly if A~,,B then f(A)~,.f (B).

Proof:
Let (V,),»1 be a sequence of invertible elements in U such that
lim ||A — V,BV, || = 0.
n—0oo
Let ¥ be any compact, rectifiable curve inside U such that (O'(A) U O'(B)) Ny =

¢,Ind,(2) € {0,1} for all z € C\y,Ind,(z) =1 for all z € d(4) Uo(B), and
{z € C| Ind, (2) # 0} € U. Then

1

FA) =V B = o [ £y = A7 = ol — BY ) d
Y

1
= [ Gl = )7 = Gl = B ) dz
Y

= o [ Pt = 7 A = YBY ) et — VBV s
Y

Hence ||f(4) — V,,f(B)V,;7 || is at most

length (V)||A — VBV, 1| _ in—
o ——sup|f (@)|ll(zly — A" DI (zly — V, BV D 7.
z€yY
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Provided ||4 — V, BV, Y||||(zly — A)~|| < 1 forall € y , the second resolvent
equation can be used to show that

< Izl = )72
= 1= 14— VBV, MGl — A

|(zly — V;,BV,; 1)

for all z € y . Since lim,_||4 — V,,BV, || = 0, y is compact, and the resolvent
function of an operator is continuous on the resolvent, ||f(4) — V,,f (B)V, 1] is at
most

length (y)|lA — V,BV, | Izl — A)7MI?

Su Z
on U T By G — o)

for sufficiently large n. Since the resolvent function is a continuous function on the
resolvent of an operator and y is compact, the above supremum is finite and tends
to

sup|f (D)l (zhy — A)~HI?

ZEY
asn — oo. Thus, as

lim ||A -V, BV, || = 0

n—>00

and length(y) is finite, f(A) € S(f(B)).

The proof that A~ ,,, B implies f(A)~,.f (B) follows directly by replacing the
invertible elements 1}, with unitary operators.

If UL in Lemma (3.1.15) were a unital, simple, purely infinite C*-algebra, if A
and B were normal operators, and if f took values in {0,1} with f(A) and f(B)
being non-trivial, then Lemma (3.1.14) would imply that the projections f(A) and
f(B) are Murray-von Neumann equivalent in . Thus, to simplify notation, we
make the following definition.

Definition (3.1.16) [3]:

Let U be a unital C*-algebra and let N;, N, € A be normal operators. We say
that N; and N, have equivalent common spectral projections if for every function
f : € - C that is analytic on an open neighbourhood U of a(N;) U a(N,) with
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f (U) € {0,1}, the projections f(N;) and f(N,) are Murray-von Neumann
equivalent.

If U is a unital, simple, purely infinite C*-algebra and o(N;) = a(N,), it is
elementary to show that N, and N, have equivalent spectral projections if and only
if they induce the same group homomorphisms from K,(a(N;)) to K,(U) via the
Continuous Functional Calculus of Normal Operators.

Finally, we have for planar compact sets in the case that K; (1) is trivial.
Theorem (3.1.17) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;, N, € U be
normal operators. Suppose

(i) a(N;) = a(Na),
(it) '(N,) and I"'(N,) are trivial, and
(iii) Ny and N, have equivalent common spectral projections.

Then N;~,,,N,.
Proof:

Fix € > 0 and consider the e-grid used in Lemma (3.1.12). We label the box
B, m relevant if B, , N o(N;) = ¢. Let K be the union of the relevant boxes.
Since a(N;) is compact, K has finitely many connected components. Let Ly, ..., Ly
be the connected components of K.

By construction dist(L;,L;) =€ for all #j . Therefore, if f; is the
characteristic function of L;, the third assumptions of the theorem implies f;(N;)
and f;(N,) are Murray-von Neumann equivalent for each i € {1, ..., k}.

Note the second assumption of the theorem implies that there exists normal
operators M; and M, in U with finite spectrum such that ||N, — M, || < e for all

q € {1,2}. By an application of Lemma (3.1.5), by the semicontinuity of the
spectrum, and by small perturbations, we can assume that M, has spectrum

contained in K and o(M,) N B, ., # ¢ for all relevant boxes B, ,,, and q € {1,2}.
Furthermore, since each f; extends to a continuous function on an open
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neighbourhood of K, we can assume that ||f;(N,) — f;(M,)|| <% for all i €

{1,..,k} and q € {1,2} by properties of the continuous functional calculus.
Therefore, for each i € {1, ...,k} and q € {1,2}, f;(N, ) and f;(M,) can be assumed
to be Murray-von Neumann equivalent by Lemma (3.1.13). Since f;(N;) and
fi(N,) are Murray-von Neumann equivalent for each i € {1, ...,k}, f;(M;) and
f:(M,) are Murray-von Neumann equivalent for each i € {1, ..., k}. By perturbing
the spectrum of M; and M, inside each L;, we can assume that o (M,) is precisely

the centres of the relevant boxes for all g € {1,2}, f;(M,) and f;(M,) are Murray-
von Neumann equivalent for each i € {1,...,k}, and ||N, — M,|| < 2¢ for all

q € {1,2}.

Next we apply the ‘back and forth’ argument of Lemma (3.1.12) to the
spectrum of M; and M, in each L; separately. This process can be applied to each
L; separately as in Lemma (3.1.12) due to the fact that f;(M;) and f;(M,) are

Murray-von Neumann equivalent so the final step of the construction (that is, R,(,l)

and Q,(lz) are Murray-von Neumann equivalent) can be completed. Thus, for each
i €{1,...,k}, the ‘back and forth’ process produces a partial isometry V; € U such

that V;'V; = fi(M),ViVi = fi(M;), and |[Myf;(M;) — V"M, f;(M)V;|| < V2e.
Therefore, if U :=Y¥ , V; then U € A is a unitary as

iﬁ(M1) =Ly = zk:fz(Mz)

are sums of orthogonal projections. Moreover, a trivial computation shows
M, — U*M,U|| < 2e
SO
IN, — U"N,U|| < (4 +V2)e

completing the proof.
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Corollary (3.1.18) [3]:

Let U be a unital, simple, purely infinite C*-algebra such that K; (4) is trivial
and let N;, N, € U be normal operators. Then N;~,,, N, if and only if

(i) o(Ny) = (N) and
(i) N, and N, have equivalent common spectral projections.

Proof:

One direction is follows from Theorem (3.1.17) and the fact that K; () is

trivial implies =1 = U5, The other direction follows from Lemmas (3.1.15) and
(3.1.14).
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Section (3.2): Distamce between Unitary and Closed Similarity
Orbits of Normal Opertors

In this section we will make use of the techniques given to provide some
bounds for the distance between the unitary orbits of two normal operator in
unital, simple, purely infinite C*-algebras. In particular, Corollary (3.2.7) can be
used to deduce Theorem (3.1.17). These results along with others will provide
information about the distance between unitary orbits of normal operators with
non-trivial index function.

We begin with the following definition that is common in the discussion of the
distance between unitary orbits.

Definition (3.2.1) [3]:
Let X and Y be subsets of C. The Hausdorff distance between X and Y, denoted
dy(X,Y),is

dy(X,Y) := max {sup dist(x,Y), sup dist(y, X)}.

x€X yeY

Davidson developed the following notation for the Calkin algebra that will be of
particular use to us.

Definition (3.2.2) [3]:

Let U be a unital, simple, purely infinite C*-algebra. For normal operators
Ny, N, € Ulet p(N,, N,) denote the maximum of d, (o(N;),o(N,)) and

sup{dist(2, a(N,)) + dist(2, a(N;))| 2 & o(Ny) U a(N;), T(N)(A) = T'(N) (D)}
We begin by noting the following.
Proposition (3.2.3) [3]:
Let U be a unital C*-algebra and let N;, N, € U be normal operators. Then
dist(U(Ny), U(N3)) = dy(a(Ny), a(No)).

If U is a unital, simple, purely infinite C*-algebra then
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dist(U(Ny), U(N;)) = p(Ny, Ny).

For our discussions of the distance between unitary orbits of normal operators
in unital, simple, purely infinite C*-algebras, we shall begin with the case our
normal operators have trivial index function so that p(Ny, N,) =
dy(a(N,),a(N,)) and we may apply the techniques given. We first turn our
attention to the Cuntz algebra 0,. As K,(0,) and K;(0,) are trivial, we are led to
the following generalization whose proof is identical to the one given below.

Proposition (3.2.4) [3]:

Let U be a unital C*-algebra such that U has property weak (FN), any two non-
zero projections in U are Murray-von Neumann equivalent, and every non-zero
projection in U is properly infinite. Let Ny, N, € U be normal operators such that
I'(N;) and I'(N,) are trivial. Then

dist(U(Ny), U(N3)) = dy(a(Ny), a(No)).
Proof:

One inequality follows from Proposition (3.2.3). Let € > 0. Since U has weak
(FN), the conditions on N; and N, imply that there exists two normal operators
My, M, € U with finite spectrum such that ||N, — M,|| < e for all q € {1,2}. By

Lemma (3.2.4), by the semicontinuity of the spectrum, and by applying small
perturbations, we may assume that o(M,) € o(N,) and o(M,) is an -net for

o(Ny) forall g € {1,2}.
Let X be the set of all ordered pairs (1, u) € a(M,) X (M,) such that either
A —u| = dist(/l,J(Mz)) or |[A—u|= dist()l,J(Ml)).

Foreach A € o(M,) and u € o (My), let n, := |{(A,¢) € X}| and m,, := |[{({,u) €
X}|. Clearly ny =1 for all A€o0(M,),m, =21 for all pu€o(M,), and

YoM M = Xuco(m,) My

Since every projection in U is properly infinite, we can write
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ny my
M, = z ZAPM{ and z Z‘HQ””"’

Aea(My) k=1 ueos(2) k=1
n) m
where {{P and K
{{ A'k}kzl},—lea(Ml) {{Qﬂ'k}k:].}y_eo'(Mz)
projections in U each of which sums to the identity. Since all projections in U are
Murray-von Neumann equivalent, using X we can pair off the projections in these
finite sums to obtain a unitary U € U (that is a sum of partial isometries) such that

are sets of non-zero orthogonal

1My — UM,U* | < sup{I2 — pl| (4, ) € X} = dy(0(My), 0(My)).
Hence
dist(U(N,), U(N,)) < 2€ + dy(0(My), 0(My)).
Since g (M,) is an e-net for a(N;), and o(M,) is an e-net for a(N,),
dH(a(Ml),a(Mz)) < dH(a(Nl),a(Nz)) +€
completing the proof.

Unfortunately Proposition (3.2.4) does not completely generalize to unital,
simple, purely infinite C*-algebras with non-trivial K,-group. The following uses
the ideas given to obtain a preliminary result.

Lemma (3.2.5) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;,N,,€ U be
normal operators such that I'(N;) and I'(N,) are trivial. If ¢(N;) is connected then

dist(U(Ny), U(N3)) = dy(a(Ny), a(No)).
Proof:

One inequality follows from Proposition (3.2.3). The proof of the other
inequality is a more complicated ‘back and forth’ argument. Fix € > 0 and let
B, be as in Lemma (3.1.12). For each g € {1,2}, we will say that By, ,,, is N,-
relevant if B,,, N o(N,) # ¢. There exists normal operators M;, M, € U with

finite spectrum such that ||N, — M,|| < e for all ¢ = {1,2}. By Lemma (3.1.5), by
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the semicontinuity of the spectrum, and by a small perturbation, we can assume
that o(M,) is precisely the centres of the N -relevant boxes and ||N, — M,|| < e.

For each g € {1,2} and A € o(M,) let PA(‘” be the non-zero spectral projection of
M, corresponding to A.

To begin our ‘back and forth’ argument, we will construct a bipartite graph, g,
using o(M,) and a(M,) as vertices (where we have two vertices for A if 1 €
o(M;) no(M,)). The process for constructing the edges in G is as follows: for
each i,j € {1,2} with i # j and each A € a(M,), for every u € o(M;) such that

1A — ul < 2v2e + dy(a(Ny), a(N,))

add edges to G from u to A and the centre of any N;-relevant box adjacent
(including diagonally adjacent) to the N;-relevant box A describes.

Clearly G is a bipartite graph and, by construction, if A € 6(M;) and u € a(M,)
are connected by an edge of G then |1 — u| < 2v2e + dy(a(Ny), o(N,)). We
claim that G is connected. To see this, we note that since G is bipartite and every
vertex is the endpoint of at least one edge, it suffices to show that for each pair
A, u € a(M,;) there exists a path from A to u. Fix a pair A, u € a(M;). Since a(N,)
Is connected, the union of the N;-relevant boxes is connected so there exists a
finite sequence A = Ay, 44, ..., 4, = u where 1,_, and A are centres of adjacent N; -
relevant boxes for all ¢ € {1, ...,k}. However A1,_; and A are connected in G (via
an element of ¢ (M,)) by construction. Hence the claim follows.

Now that G is constructed, we will progressively remove vertices and edges

from G and modify the non-zero projections {P(") in a specific

manner to construct partial isometries in U that will enable us to create a unitary
U € U such that

M, — UM, U|| < 2v2¢€ + dy (a0 (Ny), a(N,)).

Since G is a connected graph, there exists a j € {1,2} and a vertex 4 € o(M;) in §
whose removal (along with all edges with A as an endpoint) does not disconnect G.
Choose any vertex p in G connected to 4 by an edge. By the construction of
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GIA — | < 2v2e + dy(o(N,),a(N,)) and u € o(M;) where i € {1,2\{j}. Since
U is a unital, simple, purely infinite C*-algebra and Pu(i) IS non-zero, there exists

@
U

Neumann equivalent and P,fi) = ,(P +Rff). To complete our recursive step,

non-zero projections @, and R,Si) in U such that PA(D and Qg) are Murray-von
remove A from G (so G will still be a connected, bipartite graph), remove 13/1(1')

from our list of projections, and replace Pu(i) with Rl(f) in our list of projections.

Continue the recursive process in the above paragraph until two vertices are
left in G that must be connected by an edge. Since G is bipartite, one of these two
remaining vertices is a non-zero subprojection of a spectral projection of M, and
the other is a non-zero subprojection of a spectral projection of M,. These two
projections are Murray-von Neumann equivalent by the same K-theory argument
used in Lemma (3.1.12).

By the same arguments as Lemma (3.1.12), the Murray-von Neumann
equivalence of the projections created in the above process allows us to create
partial isometries and thus, by taking a sum, a unitary U € U with the claimed
property. Hence

IN, — U*N,U|| < (4 + 2V2)e + dy(a(Ny), o (N,)).
As e > 0 was arbitrary, the result follows.
The above proof can be modified to show the following results.

Corollary (3.2.6) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;, N, € U be
normal operators such that I'(N;) and I'(N,) are trivial. Suppose for each q €
{1,2} that o(N,) = UL, Kl(‘” Is a disjoint union of compact sets with Ki(l)
connected for all i € {1,...,n}. Let Xi(") be the characteristic function of Ki(q) for

all g € {1,2}and i € {1,...,n}. If x"V(N,) and ) (N,) are Murray-von Neumann
equivalent for all i € {1, ...,n} then

. D) @
< , .
dlst(U(Nl),U(Nz))_ier{rllflu)'(n}dH (Kl K, )
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Proof:

Fix €>0. The condition that ‘¥V(N;) and x*(N,) are Murray-von
Neumann equivalent’ allows the arguments of Lemma (3.2.5) to be applied on

each pair (K\",K® to produce a partial isometry V; € i such that V;'V; =
X2 (N), and

[ Mo ) = VN P ()

1) ()
<e+dy (K KP).
If U := ¥¥ . V; € Wthen U is a unitary operator such that

e 1) @
IV, = U*NU | < €+ max dy (Kl. K, )

Hence the result follows.
Corollary (3.2.7) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;, N, € U be
normal operators such that I'(N,) and I'(N,) are trivial. If N; and N, have
equivalent common spectral projections then

dist(U(Ny), U(N3)) = dy(a(Ny), a(No)).
Proof:

Let e > 0 and let M, and M, be the normal operators as constructed in Lemma
(3.2.5). Notice we can apply the same technique as in Theorem (3.1.17) to assume
for each q € {1,2} that y, (N,) and xx(M,) are Murray-von Neumann equivalent

whenever K is a connected component of the union of the N,-relevant boxes.

Construct the bipartite graph G as in the proof of Lemma (3.2.5). The only
caveat remaining in the proof of Lemma (3.2.5) is that we required G to be
connected. Let G, be a connected component of G. If K is the union of the N;- and
N,-relevant boxes with vertices in G, then the distance from K to any other N,-
relevant box is at least . Hence the characteristic function y, of K is a continuous
function on o(N,) and a(N,). Since N; and N, have equivalent common spectral
projections, yx(N;) and yx(N,) are Murray-von Neumann equivalent and thus,
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by our additional assumptions on M; and M,, yx(M;) and xx(M,) are Murray-
von Neumann equivalent. Hence we can apply the proof of Lemma (3.2.5) to each
of the finite number of connected component of G separately and combine the
resulting partial isometries as in Corollary (3.2.6) to obtain a unitary U such that

IN, — U"N,U|| < (4 + 2V2)e + dy (a(Ny), o (N)).
Hence the result follows.

To illustrate the necessity of these assumptions, we note the following
example.

Example (3.2.8) [3]:

Let P and Q be non-trivial projections in O3 with [P], # [Q], then o(P) =
o(Q) yetdist(U(P), U(Q)) =1 or else P and Q would be Murray-von Neumann
equivalent.

In particular we have the following quantitative version of the above example.

Proposition (3.2.9) [3]:

Let U be a unital C*-algebra, let N;, N, € U be normal operators, and let
f : €C—> C be a function that is analytic on an open neighbourhood U of o(N;) U
o(N,) with f (U) € {0,1}. Let y be a compact, rectifiable curve inside U with
(c(Ny)Ua(Ny)) Ny = ¢, Ind,(2) € {0,1} for all z € C\y, Ind,(z) =1 forall
z € 0(N;) Ua(N,), and {z € C |Ind, (z) = 0} € U. If f(N;) and f(N,) are not
Murray-von Neumann equivalent then

2T
— N Izl — N) 7|

where [, (y) is the length of y in the regions where f(z) = 1.

dist(U(N;), U(N;)) =
( ( 1) ( 2)) lo Supzey”(ZIu

Proof:

By the proof of Lemma (3.1.15), we know that ||f(N,;) — Uf(N,)U*|| is at
most
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Lo (IIN; — UNU”| ] _
o supl|(zly — N) "Ml (zhy — Np) 7|
T ZEy

for all unitaries U in U. Since f(N;) and f(N,) are not Murray-von Neumann
equivalent, f(N;) and Uf(N,)U* are not Murray-von Neumann equivalent so

1< [lf(Ny) — UfF(N)U™|
Hence the result follows.

Next we desire to examine the distance between unitary orbits of normal
operators with nontrivial index function. Unfortunately, as this problem is not
complete even for the Calkin algebra and due to the technical restraints illustrated
above, a complete description of the distance between unitary orbits will not be
given.

We will need a notion of direct sums inside unital, simple, purely infinite C*-
algebras. This leads us to the following construction.

Lemma (3.2.10) [3]:

Let U be a unital, simple, purely infinite C*-algebra, let V € U be a non-unitary
isometry, and let P := VV™. Then there exists a unital embedding of the 2*-UHF
C*-algebra B := Upsq M,:(C) into (Iy — P)U(ly — P) such that [Q]o =0 in U
for every projection Q € B.

Proof:

Let Py := Iy — P . Since U is a unital, simple, purely infinite C*-algebra, there
exists a projection P, € U such that P, and P, are Murray-von Neumann
equivalentand 0 < P, < P,. Let P, := P, — P, which is a non-trivial projection.
Note [Py]o = 0 in U. Hence

[P1]0=[Po]o:0=[P1+P2]0=[P1]0+[P2]0=[Pz]o-

Thus P; and P, are Murray-von Neumann equivalent in . Thus, since P;, P, <
P,, P, and P, are Murray-von Neumann equivalent in P,UP,,.

For q € {1,2} let V, € PyUP, be an isometry such that VqV;" = F,. Then it is
not difficult to see for each ¢ € N that
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B, :=+ —alg ({VilVi VLV iy, iy e g fisfar orfio € {1,2}})

Is a C*-subalgebra of PyUP, containing P, that is isomorphic to M,.(C).
Moreover, it is clear that B, € B,,, forall £ € N and

{VilViz VG VE ViV iy gy ey Loy ity o e o € {1,2}}

are matrix units for B, in such a way that 8B := U, B, is the 2*-UHF
C*-algebra. Notice every rank one projection in 8B is Murray-von Neumann
equivalent in B (and thus in P,UP,) to the rank one matrix unit (V;)*(V;)? which
is Murray-von Neumann equivalent in U to P,,.

Therefore [Q]y = [Po]o = 0 in U for every rank one projection Q € B. Hence
[@]o = 0 in U for every non-zero projection Q € B. However, if Q € B isa non-
zero projection, it is easy to see that there exists an £ € N and a non-zero

projection Q, € B such that [|Q — Qyll < % Hence Q and Q, are Murray-von
Neumann equivalent in & by Lemma (3.1.13). Thus [Q], = [Qo]o = 0 as desired.

We will need the following two well-known results.

Lemma (3.2.11) [3]:

Let B := Uypsq M,¢(C) bethe 2®°-UHF C*-algebra. If X € C is compact, there
exists a normal operator N € 8B such that ¢(N) = X.

Lemma (3.2.12) [3]:

Let U be a unital, simple, purely infinite C*-algebra, let V € U be an isometry,
and let U € U be aunitary. Then [U]; = [VUV* + (Iyy — VV™)],.

Using the above lemmas we obtain the following extension of Corollary (3.2.7)
to a normal operators with non-trivial index functions provided certain
assumptions apply.

Lemma (3.2.13) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N, M € U be normal
operators such that
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(i) o(M) S a(N),
(i)F(M)(A) =T (N)(A) forall A ¢ o(N), and
(iii) N and M have equivalent common spectral projections.

Then
dist(U(N), U(M)) = dy(a(N), a(M)).
Proof:

One inequality follows from Proposition (3.2.3). Since U is a unital, simple,
purely infinite C*-algebra, there exists a non-unitary isometry V € U. Let P :=
Vv*, let C:= (Iy — P)U(ly — P), and let B be the unital copy of the 2*-UHF
C*-algebra in C given by Lemma (3.2.10). By Lemma (3.2.11) there exists normal
operators Ny, M, € B such that 6(N,) = o(N) and a(M,) = o (M).

Let N':=VMV*+ N, and let M':=VMV* + M, which are clearly normal
operators as V is an isometry. We will demonstrate that N’ € U(N) and M’ €
U(M). Notice that o(N')=ad(M)Uac(N,) =0c(N) as V is an isometry.
Furthermore if f : C — C is a function that is analytic on an open neighbourhood
U of a(N) with f(U) < {0,1} then

fINY) = fF(VMV') + f(No) = VF(M)V™ + f(No).

If f(M)=20 then f(N)=0 as f(M) and f(N) are Murray-von Neumann
equivalent. This implies f is zero on a(N) and thus f(N') = f(N,) = 0 = f(N).
If f(M) #+ 0then f(N") # 0 and

[F(IND]o = VMV ]o + [f (No)]o = [f (M)]o + [f (M)]o

as f(Ny) € B and as every projection in B is trivial in the K,-group of U by
Lemma (3.2.10). In any case f(N') and f(N) are Murray-von Neumann
equivalent. Furthermore, since B! = B! as B is a UHF C*-algebra, we notice
forany A ¢ o(N) that AL, — N' is in the same component of U~ as

V(A — M)V* + (Aly — P)

which is in the same connected component of U~ tas Al — M by Lemma (3.2.12).
Therefore, since I'(M)(1) = I'(N)(4) for all A € o(N) by assumption, we obtain
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that '(N) = I'(N). Therefore N and N’ are approximately unitarily equivalent in
U. Similarly M and M'are approximately unitarily equivalent in 1.

Hence it is easy to see for any unitary U € € that
dist(U(N), U(M)) < |[(P+ U)N'(P + U)* — M'|| = ||lUN,U* — MyI.

However, since C is a unital, simple, purely infinite C*-algebra and N,, M, € C are
in the unital inclusion of the UHF C*-algebra B in €, it is easy to see that I'(N,)
and I'(M,) are trivial (when viewed as elements of €). Since any two non-zero
projections in B < € are Murray-von Neumann equivalent, the hypotheses of
Corollary (3.2.7) are satisfied for N, and M, in C. Hence for any € > 0 there exists
a unitary U € € such that

IUN U™ — Myl < € + dy(o(Np), (M) = € + dy(a(N), a(M)).
Hence
(UN), UM)) < dy(a(N), a(M)).
as desired.
Lemma (3.2.14) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let X € C be a compact
subset. Suppose X is a union of finitely many compact, connected components
{K;}iz; and C\X is the union of finitely many connected components {€;}7L,
where Q, is the unbounded component. Let {g;}i-; S K,(U) be such that

i=18i = [lulo and let {h;}72; < K;(U). Then there exists a normal operator
N € U such that o(N) = X, [xx,(N)]o = g; forall i € {1, ...,n} (where yg, is the
characteristic function of K;), and [Aly — N], = h; whenever A € U; for all
je{1,..,m}. That is, for any element y € Hom(K,(C(X)), K.(U)) =
KK(C(X),U) there exists a normal operator in U whose continuous functional
calculus realizes y.
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Proof:

We may assume without loss of generality that if 1 < j; <j, <m then (; is
contained in the unbounded component of C\Q;,. Since U is a unital, simple,
purely infinite C*-algebra, K; (W) is canonically isomorphic to U~ /U, Choose a
unitary U; € U such that [U;]; = h,. By the Continuous Functional Calculus for
Normal Operators there exists a normal operator T; € U such that ¢(T;) is a
simple closed curve contained in X such that [Alyy — T;]; = h, forall 1 € Q. If Q,
Is contained the unbounded component of C\o(T;), we can repeat the above
procedure to obtain a normal operator T, € U such that ¢(T,) is a simple closed
curve contained in X and in the unbounded component of C\o(T;) such that
[Aly — T,]; = h, for all 1 € Q,. If Q, is contained the bounded component of
C\o(T;), we can repeat the above procedure to obtain a normal operator T, € U
such that o(T,) is a simple closed curve contained in X and in the bounded
component of C\a(T;) such that [Aly — T,]; = h, — h, for all 1 € Q,. Due to the
ordering of {£2;}7Z,, we can find normal operators {T;}}Z, such that each o(T;) is a
simple closed curve contained in X with the property that if J; € {1, ...,m} is the
set of all indices ¢ € {1,...,m} such that (; is contained in the bounded

component of C\o(Ty) then X,y [Ah —T;] =h;for all 2€Q; and j€
{1, ..., m}. Hence

m
Z[/“u ~Tl, =l
j=1

forallA € Q; andall ¢ €{1,..,m}.

Since U is a unital, simple, purely infinite C*-algebra, implies there exists m
isometries {V;}7L; such that Q :=X7L,V;V;" <Ly Imply that there exists
orthogonal projections {Q;}7=; such that 7' Q; <ILy—Q and [Q;]o+

§'n=1[XKi(Tj)]O =g; for all ie€{1,..,n—1} (where y, is the characteristic
function of K; ). Let



Foreachi € {1, ...,n} choose u; € K and let

m n
M= ) VTV + )

j=1 i=1

Clearly M is a normal operator with (M) € X. Suppose A € Q; for some
jo €{1,...,m}. Then

i Vi(Aly — T;)V}' +Z(,1 1;)Q;.

Since clearly [Q + X1-,(4 — ;)Q;]; = 0, by writing Aly —M as a product of
unitaries and by applying Lemma (3.2.12) we clearly obtain that

[ALy — M], = Z[/Uu T]

Furthermore

m n
Ko D = D Vit TV + ) i, 0
j=1 i=1

forall iy € {1, ...,n}. Hence

[, D) = [, (1], + 10010 = g,
j=1

for all iy € {1,..,n — 1}. Since X7, [xk, (M)] [Iy]o, by our assumption that

?=1gi=[1u]o we clearly obtain [y, (M)]o =g,. Thus M satisfies the

conclusions of the lemma except for the fact that o (M) may be strictly contained in
X.

Since U is a unital, simple, purely infinite C*-algebra, there exists a non-unitary
isometry V € U. Let P:=VV", let C:= (Iy — P)U(Iy — P), and let B be the
unital copy of the 2°-UHF C*-algebra in C given by Lemma (3.2.10). By Lemma
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(3.2.11) there exists normal operator N, € B such that ¢(N,) = X. Let N :=
VMV* 4+ N, € U. Then it is clear that N is a normal operator with o(N) = X.
Furthermore the proof of Lemma (3.2.13) implies that N has the desired
properties.

Before generalizing Lemma (3.2.13), we note we may use Lemmas (3.2.13) and
(3.2.14) to prove the following corollary.

Corollary (3.2.15) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let X < C be compact.
For each bounded, connected component Q of C\X let hy € K; (U). Let I be the set
of closed subsets K of X such that the characteristic function y, of K is a
continuous  function on X. Suppose there exists {gxl}xe; € Ko(U) such that
gx = [Iy] and gk, + gk, = 8k, U 8k, Whenever Ky, K, € I are disjoint. Then there
exists a normal operator N € U such that [yx(N)], =gk for all K €I and
[Aly — N]; = hq Whenever 4 € Q and Q is a bounded component of C\X. That is,
for any element y € Hom(K, (C (X)), K.(W)) = KK(C(X),U) there exists a normal
operator in U whose continuous functional calculus realizes y.

Proof:

For eachn € N let
] 1
X, = {z € C|dist(z,X) < 2_”}

Note X,, satisfies the conditions of the compact subset in Lemma (3.2.14) and if K
Is a connected component of X,, then K n X € I. Thus Lemma (3.2.14) implies
there exists normal elements {M, },-; S U such that ¢(M,)) = X,,, if K is a
connected component of X,, then [xx(M,)] = gx , and if 1 € (C\X) N Q where
Q1 € C\X is a bounded, connected component then [Aly, — M]; = hy,.

Let N, :=M,. Since o(M,) € o(N,), since N, and N; have equivalent
common projections by the assumptions on the set {gx }xe;, and since I'(M,) () =
I'(N;)(A) whenever 1 & ag(N), Lemma (3.2.13) implies there exists a unitary

U, € U such that ||N; — U,M, U, || S% . Let N, := U,M,U; . By repeating this
process there exists a sequence (N,),s; S U such that each N, is a normal
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operator with the same conditions as M,, listed in the above paragraph and such
that ||N,, — N,,11|| < zin . Hence (N,,),,»1 IS @ Cauchy sequence and thus converges
to a normal operator N € U. Clearly ¢(N) = X by the semicontinuity of the
spectrum and by Lemma (3.1.5). Furthermore N has the desired properties by

Lemma (3.1.13) and since the connected components of U~ are open and
completely determine the K, -group element.

Theorem (3.2.16) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;, N, € U be
normal operators such that

(i) '(N;)(A) =T'(N,)(A) forall A ¢ o(N,) U a(N,), and
(i) N; and N, have equivalent common spectral projections.

Then
dist(U(N,), U(N,)) = dy(a(Ny), o (N,)).
Proof:

Let € > 0. For each q € {1,2} Lemma (3.2,14) implies there exists a normal
operator M, such that

o(M,) = {z € C| dist (z,a(Nq)) < e}.

My )(A) =T'(Ng)(4) for all A& o(M,), and M, and N, have equivalent
common spectral projections. Hence Lemma (3.2.13) implies that
dist(U(N,)UM,)) < € forall g € {1,2}. We claim there exists a normal operator
M € U such that o(M) = o(M;) N o(M,), M and M, have equivalent common
spectral projections for all g € {1,2}, and I'(M)(4) = I'(M,)(A) forall A & o(M,)
and q € {1,2}. The claim will follow from Lemma (3.2.14) provided a(M;) N
o(M,) is non-empty, we can choose the correct K;-elements for the bounded,
connected components of C\a (M), and we can construct the correct K,-elements
for the connected components of o(M). Since N; and N, have equivalent common
spectral projections, it is clear that c(M;) N a(M,) is non-empty.
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If Q is a bounded, connected component of the complement of C\o(M) then
either Q intersects both or exactly one of C\a(M;) and C\o(M,). If Q intersects
both C\o(M,;) and C\o(M,), the condition that I'(N;)(1) = I'(N,)(4) for all
A & a(N;) Uao(N,) implies we can select a single element of K; (W) for I'(M)(A)
to take for all A € Q such that I'(M)(1) = I'(My)(4) for all A € 2\a(M,) for

q € {1,2}. If 2 intersects C\o(M,) but not the other complement, we define
r(M)(A) =IrMgy)(A) forall 1 € 2 € C\a(M,).

To construct M such that M and M, have equivalent common spectral
projections for all g € {1,2}, we need to define the K,-elements that should be
taken by the spectral projections of the finite number of connected components of
o(M) in such a way that if K is a connected component of o(M,), the sum of

K,-element of the spectral projections of o(M) corresponding to components
contained in K is the same as the K,-element of the spectral projection of M,

corresponding to K. Since, by construction, M; and M, have equivalent common
spectral projections and o(M;) Uco(M,) has a finite number of connected
components, we may assume for the purposes of this argument that o(M;) U
o (M,) is connected. Construct a connected, bipartite graph G whose vertices
correspond to the connected components of ¢(M;) and a(M,) and where we
connect two vertices with n edges provided the intersection of the corresponding
connected components has n connected components. Thus we can view the edges
of G as the connected components of a(M;) N o(M,). Thinking of each vertex
being labelled with the K,-element of the spectral projection of the corresponding
connected component, it suffices to label the edges of G with K,-elements in such a
way that the K,-element at any vertex is the sum of the K,-elements of the adjacent
edges. This can be done by selecting a subgraph T of G that is a tree, selecting a
root for T, labelling all edges not in 77 to have the trivial K,-element, starting at
the vertices farthest from the root (which must be leaves) and labelling the one
adjacent edge to each vertex to be the correct K,-element, and by recursively
labelling the remaining edges of the vertices farthest from the root that have a
unlabelled edges to be such that the K,-element of the vertex is the sum of the
K,-elements of the adjacent vertices. This process is well-defined (that is, we will
always have an edge remaining to label so we can have the correct K,-element at
each vertex we consider), will terminate, and give such a labelling since M; and
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M, have equivalent common spectral projections so the same K-theory using in
Lemma (3.1.12) will imply the last step (which is labelling a single edge between
the root and another vertex) is correct. Hence the claim is complete.

Since U is a unital, simple, purely infinite C*-algebra, there exists a non-unitary
isometry V € U. Let P:=VV", let C:= (Iy — P)U(ly — P), and let B be the
unital copy of the 2*-UHF C*-algebra in C given by Lemma (3.2.10). By Lemma
(3.2.11) there exists normal operators M, , € B such that a(M, ) = o(M,) for all

q € {1,2}. For each q € {1,2} let Mg:=VMV* + M, ,. The proof of Lemma
(3.1.13) then demonstrates that M, € U(M,;) for all g € {1,2},

dist(UM,), UM,)) < inf [UM; 0U" = M|,

and thus

dist(U(M,), UMy)) = dy(o(My),0(M)) < 2€ + dy(a(Ny), o(N,))
by Corollary (3.2.7). Hence dist (’U(Nq),‘u(Mq)) < e for g € {1,2} implies that

dist(U(N), U(NR)) < dy(a(Ny), a(Ny)) + 4e.
As € > 0, the result follows.
We have the following results.
Proposition (3.2.17) [3]:

Let U be a unital, simple, purely infinite C*-algebra with trivial K,-group. If
N,, N, € U are normal operators then

dist(U(N), U(N,)) < 2p(Ny, N7)
where p(N;, N,) is as defined in Definition (3.2.2).
Proof:

Since U is a unital, simple, purely infinite C*-algebra, there exists a non-unitary
isometry V e U. Let P:=VV*, let € := (Iy — P)U(ly — P), and let B be the
unital copy of the 2*-UHF C*-algebra in C given by Lemma (3.2.10).
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Let
X:=0(N)Uo(N) U{A € CIA & a(N;) U a(Nz) - I'(Np)(A) # I'(N2) (D)}

By Lemma (3.2.11) there exists a normal operator N' € B such that o(N) = X.
Therefore, if

M :=VN,V*+ N’

then M is a normal operator in U such that (M) = X and '(M)(A) =T'(N;)(A) =
I'(N,)(4) for all A ¢ X (alternatively we could have used Lemma (3.2.14) to
construct M). Therefore it suffices to show for any q € {1,2} that

dist (u(Nq),u(M)) < p(Ny, Ny).
By the definition of p we see that

p(Ng, M) = dy (a(Ng), (M) < p(Ny, Ny).

Furthermore, by applying Lemma (3.2.11), there exists normal operators N,, M, €
B such that a(Ny) = a(N,) and o(M,) = g(M). As in the proof of Lemma

(3.213), we see that VN,V* + N, € U(N,) and VN,V* + M, € U(M). Hence it is
easy to see that for any unitary U € C that

dist (U(Ng), UM)) < [|(P + U)(VNGV™ + No)(P + U)* = (VNGV* + My )|

= ||UN0U* - Mo”-

Thus, as in the proof of Lemma (3.2.13), for any € > 0 there existsa U € € such
that

IUNoU* = Myl < € + dy(o(Ny),a(M)) < € + p(Ny, Ny).
Hence the result follows.
Proposition (3.2.18) [3]:

Let U be a unital, simple, purely infinite C*-algebra. If N;, N, € U are normal
operators with equivalent common spectral projections then
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dist(U(Ny), U(N,)) < 2p(Ny, Ny).
Theorem (3.2.19) [3]:

Let N and M be normal operators in the Calkin algebra. Then N € S(M) if and
only if

() 0.(M) & o.(N),

(i) Each component of o, (N) intersects g, (M),

(iii) The Fredholm index of AI — M and AI — N agree for all A € o.(N), and

(iv) If A€ a,(N) is not isolated in og,(N), the component of A in o,(N)
contains some nonisolated point of o, (M).

Theorem (3.2.20) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N, M € U be normal
operators. Then N € S(M) if and only if

(i) o(M) € a(N),

(i) Each component of o(N) intersects a(M),

(iii) F'(NY(A) =T (M)(A) forall 2 € a(N),

(iv) If 1 € a(N) is not isolated in a(N), the component of A in o(N) contains
some non-isolated point of ¢(M), and

(v) N and M have equivalent common spectral projections.

Proof:

Let N and M satisfy the five conditions of Theorem (3.2.20). By applying
Lemma (3.2.26) recursively a finite number of times, we can find a normal
operator M such that M € S(M),a(M") is o(M) unioned with a finite number of
connected components of o(N), and N and M’ satisfy the five conditions of
Theorem (3.2.20).

Fix € > 0. Since o(N) is compact, a(N) has a finite e-net. Thus the normal
operator M in the above paragraph can be selected with the additional requirement
that dist(l,o(M'))<e for all A€od(N). By Lemma (3.2.13)
dist(U(N), U(M")) < e so dist(N,S(M)) < € as desired.
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Theorem (3.2.21) [3]:
Let U be a unital C*-algebra with the following properties:

(i) U has property weak (FN),
(if) Every non-zero projection in U is properly infinite, and
(iif) Any two non-zero projections in U are Murray-von Neumann equivalent.

(For example, O, and every type (I11) factor with separable predual).

Let N,M € U be normal operators such that A, — M € Uy for all A ¢ o(M).
Then N € S(M) if and only if

(i) o(M) € a(N),

(i) Each component of a(N) intersects o (M),

(ili) ALy — N e Uforall A ¢ o(N), and

(iv) If A2 € o(N) is notisolated in o(N), the component of A in o(N) contains
some non-isolated point of o(M).

To see that the fourth conclusion is necessary, let K; be the connected
component of a(N) containing 2. We note that if K, is not isolated in o(N) (that
is, every open neighbourhood of K; intersects a different connected component of
o(N)) then the first two conditions imply that (M) N K, contains a cluster point
of o(M). Otherwise if K; is isolated in ¢(N), the characteristic function yK;, of K;
can be extended to an analytic function on a neighbourhood of a(N). Thus Lemma
(3.1.15) implies yK;(N) € S(xK;(M)). If o(M) n K, does not contain a cluster
point of a(M) then yK;(M) must have finite spectrum. Hence there exists a non-
zero polynomial p such that p(yK;(M)) = 0. Clearly this implies p(T) = 0 for all
T € S(xK,,(M)) so p(xK,(N)) = 0. Since K; is a connected, compact subset of
o(N) that is not a singleton, this is impossible. Hence the fourth condition is
necessary. An alternative proof of the necessity of the fourth condition may be
obtained by considering the separable C*-algebra generated by N,M, and a
countable number of invertible elements, by taking an infinite direct sum of a
faithful representation of this C*-algebra on a separable Hilbert space.

We have the following results.
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Corollary (3.2.22) [3]:

Let U be a unital, simple, purely infinite C*-algebra and let N;, N, € U be
normal operators. If N; € S(N,) and N, € S(N,) then N;~,,,N,.

Lemma (3.2.23) [3]:

Let U be a unital C*-algebra, let P € A be a non-trivial projection, let Z € (I, —
P)U(Iy —P), and let X € X be such that PX(Iy—P)=X. If 1 & a(ly—
PYU(ly — P)(Z) then

AP+ X +7Z~AP + Z.
Proof:
Note that if Y := X(A(Iy — P) — Z)~ ! then
T:i=I+Y
Is invertible with
T-1=1I,-Y.
A trivial computation shows
TAP+X+Z)T 1=2P+Z.
Corollary (3.2.24) [3]:

Let U be a unital C*-algebra, let n € N, let 44, ...,14,, be distinct complex
scalars, let {Pj};lzl C U be a set of non-trivial orthogonal projections with

7=1Pj = Iu, and Iet {Ai’j}:;,lj:l cu be SUCh that Al] =0 |f [ 2] and PiAi,ij ==
A;jforall i <j. Then

n n n
IRLADRTORL
j=1 j=1

j=1



Proof:

By applying Lemma (3.2.23) with P := P;,Z := ¥7_; AP, + ¥, Ay (it s
elementary to show that o(lyy — P)U(ly — P)(Z) = {A,,...,A,} SO A, €& a(Z) by
assumption), and X := }7_, A,;, we obtain that

n n n n
D J~ Qo D
The result then proceeds by recursion by considering the unital C*-algebra
(ly — P)U(Iy — P).
Lemma (3.2.25) [3]:

Let U be a unital, simple, purely infinite C*-algebra, let M € U be a normal
operator, let V € U be a non-unitary isometry, let P :=VV*, and let B:=
Uys1 M, (C) be the unital copy of the 2*°-UHF C*-algebra in € given by Lemma
(3.2.10). Suppose u is a cluster point of a(M) and Q € M,/ (C) € B is a nilpotent
matrix for some £ € N. Then VMV* + u(ly — P) + Q € S(M).

Proof:

Since Q € M',/(C) € B is a nilpotent matrix, Q is unitarily equivalent to a
strictly upper triangular matrix. Thus we can assume Q is strictly upper triangular.
By our assumptions on u there exists a sequence (u;);»; Of distinct scalars
contained in o(M) that converges to u. For each g € N let

T, = diag(uq,uqH, ...,,qu+2{’_1) EM,(C)CSB
be the diagonal matrix with pg, ..., i, ,,¢_4 along the diagonal.

Let M, :=VMV* + T, € U. As in the proof of Lemma (3.2.13), it is easy to
see that M, is approximately unitarily equivalent to M for each q € N. Hence

M~ My~VMV* + (T, + Q)

by Lemma (3.2.24). Since lim,_,, T, + Q@ = u(ly — P) + Q, the result follows.
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Subsequently we have our next stepping-stone.
Lemma (3.2.26) [3]:

Let U be a unital, simple, purely infinite C*-algebra. Let N,M € U be normal
operators and write o(N) = K; U K, where K; and K, are disjoint compact sets
with K;connected. Suppose

(i) (M) = K, U 2 where K{ € Kj,
(i) T(N)(A) =T'(M)(A) forall A ¢ o(N), and
(iii) N and M have equivalent common spectral projections.

If K contains a cluster point of a(M) then N € S(M).
Proof:

If K;1 is a singleton, K; = K as K{ is non-empty. Thus (M) = g(N) so
Theorem (3.1.17) implies N and M are approximately unitarily equivalent.

Otherwise K; is not a singleton. Fix a non-unitary isometry V € U and € > 0.
Let P :=VV* and let B := U,s; M, (C) be the unital copy of the 2°-UHF C*-
algebra in (I — P)U(Iy — P) given by Lemma (3.2.10). There exists a normal
operator T € B with

o(T) ={z€C||z| <€}

such that T is a norm limit of nilpotent matrices from U,»; M,/ (C) € B < U. Let
U € K] be any cluster point of o(M). Lemma (3.2.25) implies that

VMV* 4+ u(ly — P) + Q € S(M)
for every nilpotent matrix Q € Uys; M,/(C) € B. Since T is a norm limit of
nilpotent matrices from U,»; M, (C), we obtain that

VMV* + u(ly — P) + T € S(M)

Let M; :=VMV* + u(ly — P)+ T . As in the proof of Lemma (3.2.13), it is
easy to see that M, is a normal operator such that I'(M;)(A) =T'(M)(A) =
r'(N)(A) for all A ¢ o(M;)Uo(N) and M; and N have equivalent common
spectral projections.
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Since K; is connected and o(M;) contains an open neighbourhood around
U € K;, we can repeat the above argument a finite number of times to obtain a
normal operator M, € S(M) such that 6(M,) = K;" U K, where K{' is connected,
K, S K/,

K|' € {z € C| dist(z,K;) < €},

I'(Mg)(A) =T'(N)(A) forall A € o(M;)Ua (N), and My, and N have equivalent
common spectral projections. Therefore Lemma (3.2.13) implies

dist(U(N), U(My)) = dy(a(N),a(My)) < €
so dist(N,S(M)) < €. Thus, as € > 0 was arbitrary, the result follows.
Definition (3.2.27) [3]:

Let U be a unital C*-algebra. An operator A € U is said to be a scalar matrix in
U if there exists a finite dimensional C*-algebra B and a unital, injective
* homomorphism « : 8 — U such that A € 7 (B).

Proposition (3.2.28) [3]:

Let U be a unital C*-algebra with the three properties listed in Theorem
(3.2.21). If N € U is a normal operator with the closed unit disk as spectrum then
N isa norm limit of nilpotent scalar matrices from 1I.

Using the ideas contained in the proof of Lemma (3.2.25), it is possible to
prove the following.

Lemma (3.2.29) [3]:
Let U be a unital C*-algebra such that

(i) There exists a unital, injective * -homomorphismz : U@ U - U, and
(i) If Ny, N, € U are normal operators with Al — N, € Ug" for all 2 ¢ o(N,)
and q € {1,2}, Ny~ N, ifand only if 6(N;) = a(N,).

Let M € U be a normal operator with ALy — M € Uyt for all 1 ¢ o(M), let
u € a(M) be a cluster point of o(M), and let Q € U be a nilpotent scalar matrix.
Then (M @ (ul + Q)) € S(M).
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By using similar ideas to the proof of Theorem (3.2.20) and by using the
following lemma, the proof of Theorem (3.2.21) is also complete.

Lemma (3.2.30) [3]:

Let U be a unital C*-algebra with the three properties listed in Theorem
(3.2.21). Let N,M € U be normal operators with AL, — N € U,* for all 1 & a(N)
and ALy — M € Uyt for all A ¢ o(M). Let {K;}, be the connected components of
o(N). Suppose

o(M) = U K, | UK,
AeA\{Ao}

where K, < K, . If K, contains a cluster point of o(M) then N € S(M).

With the proofs of Theorems (3.2.20) and (3.2.21) complete, we will use said
theorems to classify when a normal operator is a limit of nilpotents in these C*-
algebras.

Corollary (3.2.31) [3]:

Let U be a unital, simple, purely infinite C*-algebra. A normal operator N € U
iIs a norm limits of nilpotent operators from U if and only if 0 € ¢(N), a(N) is
connected, and I"'(N) is trivial.

Proof:

The requirements that o(N) is connected and contains zero was shown. The
condition that I'(N) is trivial.

Suppose N € U is a normal operator such that 0 € o(N), o(N) is connected,
and I'(N) is trivial. Let e > 0 and fix a non-unitary isometry V. € U. Let P :=VV”*

and let B := Ups; M, (C) be the unital copy of the 2*°-UHF C*-algebra in
(Iy — P)U(Iy — P) given by Lemma (3.2.10). There exists a normal operator
T € B with

o(T) ={zeC||z| <€}
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such that T is a norm limit of nilpotent matrices from U,s; M,/ (C) € B < U.

Let M:=VNV*+ T € U. Clearly M is a normal operator such that o(M) =
o(N) U o(T), M and N have equivalent common spectral projections, and I'(M) is
trivial as in the proof of Lemma (3.2.13). Therefore Corollary (3.2.7) implies that

dist(U(N), U(M)) < e.

However, we note that I'(T) is trivial when we view T as a normal element in .
Moreover, as o(N) is connected and contains zero, o(M) is connected and
contains a(T). Thus Theorem (3.2.20) (where conditions (iv) and (v) are easily
satisfied) implies that M € S(T) so

dist(N,S(T)) < e.

However, as T is a norm limit of nilpotent operators from B < U, the above
inequality implies N is within 2e of a nilpotent operator from . Thus the proof is
complete.

Corollary (3.2.32) [3]:

Let U be a unital, separable C*-algebra with the three properties listed in
Theorem (3.2.21). A normal operator N € U is a norm limits of nilpotent operators
from U if and only if 0 € o(N), o(N) is connected, and ALy — N € Uy* for all
A& o(N).

Proof:

The proof of this result follows the proof of Corollary (3.2.31) by using direct
sums instead of non-unitary isometries (as in Lemma (3.2.27)), Proposition (3.2.4)
instead of Corollary (3.2.7), Theorem (3.2.21) instead of Theorem (3.2.20), and
Proposition (3.2.28).

To conclude this paper we will briefly discuss closed similarity orbits of normal
operators in von Neumann algebras. We recall that completely classifies when two
normal operators are approximately unitarily equivalent in von Neumann algebras.
Furthermore Theorem (3.2.21) completely determines when one normal operator
Is in the closed similarity orbit of another normal operator in type (l111) factors with
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separable predual. Thus it is natural to ask whether a generalization of Theorem
(3.2.21) to type Il factors may be obtained.

Unfortunately the existence of a faithful, normal, tracial state on type (II;)
factors inhibits when a normal operator can be in the closed similarity orbit of
another normal operator. Indeed suppose 9t is a type (II,) factor and let t be the
faithful, normal, tracial state on 9. If N,M € M are such that N € S(M), it is
trivial to verify that 7(p(N)) = 7(p(M)) for all polynomials p in one variable. In
particular if N,M € 9t are self-adjoint and N € S(M) we obtain that (f(N)) =
T(f(M)) for all continuous functions on o(N) U o(N) and, as t is faithful and
normal, this implies that N and M must have the same spectral distribution.
Therefore, if N,M € I are self-adjoint operators, a(M) = [0,%], and o(N) =

[0,1], then, unlike in B(H), N & S(M). Combining the above arguments we have
the following result.

Proposition (3.2.33) [3]:

Let M be a type (II,) factor. If N,M € M are self-adjoint operators and
N € S(M), then N~ , M.
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Chapter 4
Von Neumann algebras and Ultraproducts

Section (4.1): Ultraproduct of von Neumann algebras

The purpose of this section is to study several notions of ultraproducts and
central sequence algebras of von Neumann algebras which are not necessarily of
finite type. Since it does not seem to be well-known that there are various notions
of ultraproducts, let us start from an overview of the history.

The notions of central sequences and ultraproducts play a central role in the
study of operator algebras and their automorphisms. The importance of central
sequences was already recognized as early as in Murray—von Neumann’s work on
rings of operators. After establishing the uniqueness of the hyperfinite type Il,
factor R, they tried to prove the existence of non-isomorphic type I, factors. In

(R, 1) = ®N(M2(«:),%Tr) (Tr denotes the usual trace on M,(C)), consider a
sequence

0 1

un=1®n®(1 0

) ®1®-neN. 1)
{u, }n=, satisfies

(i) suppllugll < co.
(i)  u,a—au, — 0strongly forany a € R.
(i) t(u,) =O0foralln € Nand ||u,l|, » 0.

A sequence of operators {x,},—; in a finite von Neumann algebra M is called a
central sequence if it satisfies (i) and (ii), and it is called nontrivial if in addition it
satisfies (iii). A type Il; factor with non-trivial central sequence is said to have
property Gamma. Using the so-called 14¢ argument, they showed that the group
von Neumann algebra L(IF,) of the free group [F, on two generators does not have
property Gamma while R does, whence R % L(IF,). Central sequences were then
used to show the existence of uncountably many type Il; (type Il,) factors.
Variants of the property Gamma, such as property L of Pukanszky were also
studied to provide examples of type Il, factors without non-trivial central
sequences. On the other hand, the study of the quotient of a finite (A)W *-algebra
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by its maximal ideals gave rise to the concept of tracial ultraproducts. The study of
such quotient algebras was carried out by Wright. He showed that the quotient of
an (A)W™-algebra of type Il with a trace by its maximal ideal is an (A)W *-factor
of type II, and quotient of finite (A)W *-algebra of type | by its maximal ideals are
generically (A)W *-factors of type Il;. Sakai showed that the quotient of a finite
W*-algebra M by a maximal ideal I, = {x € M; (x*x)*(w) = 0} is a finite W*-
factor. Here, #: M — Z(M) = C(R2) is the center valued trace and ® is a point in
the Gelfand spectrum Q of the center Z(M). When M = &yM,,(C), we have
N = BN and M/I, is what is now called the tracial ultraproduct of {M,,(C)};=;.
More generally, the tracial ultraproduct (M, t,)® of a sequence of finite von
Neumann algebras with faithful tracial states {M,, t,}n=,; along a free ultrafilter
w € FN\N is defined as the quotient algebra (M,,, 7,,)*: = €, (N, M,) /1, (N, M,,),
where ¢,(N,M,) is the C*-algebra of all bounded sequences of []yM,, and
1, (N, M,,) is the ideal of ¢ (N, M,,) consisting of those sequences (x,,), Which
satisfy t,,(x;x,,) — 0 along w. For the case of constant sequence M,, = M, t,, =
T,(M,, t,)® is written as M® and called the ultrapower of M. Few years later after
Sakai’s work, McDuff revealed the importance of the tracial ultrapower and central
sequences. Viewing M as a subalgebra of M* by diagonal embedding, central
sequences form a von Neumann subalgebra M, = M' n M“. Among other things,
she proved that for a type Il; factor M, M, is either abelian or of type Il;, and the
latter case occurs if and only if M absorbs R tensorially: M = M @ R (such a
factor M is now called McDuff ).

The definition of the central sequence algebra M,, is generalized for arbitrary
von Neumann algebras by Connes. It is defined as M,: = M, (N,M) /I, (N, M),
where M, (N, M) is the set of all (x,,),, € £, (N, M) satisfying ||x, ¥ — Yx,|| = 0
along o for all y € M, (here in I,,(N, M), convergence is with respect to strong”
topology). M is called the asymptotic centralizer of M. On the other hand, the
generalization of Mw is more involved. If M is not of finite type, then I,(N, M) is
not an ideal of ¢, (N, M). Therefore one has to modify the definition of M* for
infinite type von Neumann algebras. The right definition of M® was given by
Ocneanu in order to generalize Connes’ automorphism analysis approach for
general injective von Neumann algebras. It is defined as M“:= M*(NN, M)/
1,(N,M), where M“(N,M) is the two-sided normalizer of I,(N,M). That is,
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M?(N, M) consists of those (x;,)y € £ (N, M) which satisfy (x,,),I,(N,M) c
I,(N,M)and I,(N, M)(x,,),, < 1,(N,M). We call M® the Ocneanu ultrapower of
M. As same as tracial ultraproducts, any projection p (resp. unitary u) in M® is
represented by a sequence of projections (p,), (resp. unitaries (u,),) of M. A
decade before Ocneanu’s definition of M, another generalization of M' n M for
a general factor M with separable predual was proposed by Golodets. It is defined
as follows: let ¢ be a normal faithful state on M. Consider the GNS representation
of M associated with ¢, so that ¢ = (- &, £,) with a cyclic and separating vector

¢, on a Hilbert space H. Consider the following (non-normal) state ¢ on £, =
Lo (N, M):

P((xp)n):= rlll—r}c}) ©(xn), (Xn)n € LN, M). (2)

Let mgop: £ — B(Hgo) be the GNS representation of @ with a cyclic vector &
satisfying @ = (- &, €). Let e,, be the projection of Hg,; 0nt0 1501 (£e0)' €. Define
R= e, Tgo1(£) "€ € B(eyHgor)-

Let M, be the subspace of #*(N,M) consisting of constant sequences
(x,x,...)n,x € M. Then the asymptotic algebra C5; of M is defined by

Cl\(:l) =220 7-[Gol(lvld), c B(e,Hgol)-

Moreover, ¢ induces a normal faithful state ¢ on R, whence a state ¢: = @[ on
Cy;. He then proved the following interesting property: let

N! =X E €°°(N,M);nGol(f)ew,nGol(f*)ew EH

Then &= ng, (N)e,,, and we have

of (o1 (D)) = ol (0 (n))) €0, % = (t)n € N, ER. (3)

Based on the above, he proved that both (the isomorphism class of) C; and ¢ were
independent of the choice of ¢, and its point spectra characterized Araki’s property
L';:M ® R, = M. Moreover, Golodets and Nessonov proved that its centralizer
(Cy) e is isomorphic to M,,. It seems that these works have not been widely
recognized, possibly because most of their works were written in Russian. It is not
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clear from his definition if &2 or Cj; is related to Ocneanu’s constructions. We
show that Golodets’ construction is equivalent to Ocneanu’s one.

On the other hand, the development of non-commutative integration theory for
von Neumann algebras suggests to seek for a notion of “ultraproduct M®” of M so
that the Banach space ultraproduct (LP(M)),, of non-commutative LP-space for M
is isometrically isomorphic to LP(M®)(1 < p < ). In that viewpoint, it is not the
Ocneanu ultraproduct M® that plays the role. For example, if one uses the Ocneanu
ultraproduct, B(H)® = B(H) holds, while L'(B(H)),, = (B(H).),, is much larger
than B(H), if dim(H) = c. The right definition of the ultraproduct M® in this
context was given by Groh and Raynaud. More precisely, Groh showed that the
ultraproduct of the predual M, of a von Neumann algebra M can be regarded as the
predual of some huge von Neumann algebra M®: consider the Banach space
ultrapower (M,),(resp.(M),) of the predual M, (resp.M), and define a map

Jo: (M) = (M))" by
xJo(B)i= limnCe),  x = (oo € M= W)y € M) ()

Then it holds that J; is an isometric embedding and its range J;((M,),) is a
translation-invariant subspace of ((M),,)*, whence there exists a central projection
z € (M),)*™ such that J;((M,),) = ((M),)*z. Therefore J;((M,),) can be
regarded as the predual of the W*-algebra ((M),)**z. Then almost two decades
later, a more handy construction was given by Raynaud: fix a representation m of
M on a Hilbert space H so that each ¢ € M, is represented as a vector functional.
Consider the Banach space ultrapower (M), and regard it as a C*-subalgebra of
B(H),,. Define J: B(H), = B(H,) (H, is the ultrapower Hilbert space of H) by

JrR(X)E: = (xnén) o) X =(xn)ew € B(H)y ¢ = (§n)w € Hy- (5)

Then it holds that (M,), is isometrically isomorphic to the predual of the von
Neumann algebra M® generated by Jz((M),,). We write M, as [J*M (where we
choose the standard representation) and call it the Groh—Raynaud ultrapower of M.
Raynaud also showed that [[*M has such nice behaviors as L? (M), = LP([[*M)
completely isometrically, and [[*M = ([[M)’. The Groh—-Raynaud ultrapower
was effectively used in e.g., Junge’s work on Fubini’s Theorem. On the other hand
the Groh—Raynaud ultrapower has drawbacks too. In general, even if M has
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separable predual, [[“M is not even o-finite (there is no faithful normal state),
while M® is always o-finite when M is. Moreover, the center of J[[M can be
much larger than M<“: for example, Raynaud showed that [[¥B(H)(dim(H) =
), is not semifinite for a free ultrafilter U on a suitable index set I. It seems that
there has been no attempts to consider the relationships among the Ocneanu
ultraproducts, the Groh—Raynaud ultraproducts and Golodets’ asymptotic algebras.

We show that all these ultraproducts are closely related, and the study of one
helps that of the other in an essential way. Using the connection, we show some
interesting phenomena of the Ocneanu ultraproducts of type Il factors which do
not appear in the tracial case.

Question (4.1.1) [4]:
Does M, = C imply M'n M® = C?

We give (Theorem (4.3.3)) an affirmative answer to the question for separable
predual case. Moreover, we show that for a o-finite type Ill, factor M, M, = M N
M® holds (Proposition (4.3.4)).

We consider the following questions:
Question (4.1.2) [4]:
Let (), be a sequence of normal faithful states on a o-finite factor M.

(i) Are M® and []®M factor too? If so, what are their types?
(it) Does (M, ¢,)® depend on the choice of (¢,),?

(iii) Is (M, @,,)® (semi-) finite if M is (semi-) finite?

(iv) Is (M, @,,)® of type llI if M is of type 111?

For (i), if M is of finite type, it is well-known that Mw is also a finite type
factor. Also, it is known that M® is a type I, (resp. type Il,,) factor if so is M
(Proposition (4.3.5)). However, the situation for the Groh—Raynaud ultrapower is
different: we show that [J*R is not semifinite (and not a factor), where R is the
hyperfinite type II; factor (Theorem (4.3.8)). Type Ill case is more interesting: we
show that if M is a o-finite type I11;(0 < A < 1) factor, then both M and [[“M
are type I11, factors (Theorem (4.3.13)). On the other hand, if M is of type 111,
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then M is not a factor (Theorem (4.3.25)). Moreover, [[“M has a semifinite
component and is not a factor (Remark (4.3.21)). As for (ii), we show that if M is
of type III; (0 < A < 1), then (M, ,)® = M® and therefore (M, ¢,,)® does not
depend on (¢,), (Theorem (4.3.13)). However, regarding (iii), (iv), there exists
(¢n)n such that (R, ¢,)® is not semifinite (Proposition (4.3.7)). Also, if M is of
type I11,, then there exists (¢,), such that (M, ¢,)* = (M, ) is of finite type
(Theorem (4.3.18)). Finally, let us remark that our ultraproduct analysis has been
used for the recent study of QWEP von Neumann algebras and Effros—Maréchal
topology on the space of von Neumann algebras.

First we fix a notation and recall basics facts about ultraproducts. Throughout
the paper, w denotes the fixed free ultrafilter on N (in fact, many of the results and
proofs are the same for free ultrafilters on any set). For a von Neumann algebra M
on a Hilbert space H,Z(M) denotes the center of M, and S,(M) (resp. S,¢(M))
denotes the space of normal (resp. normal faithful) states on M. As usual, we

define two seminorms ||-||,, || |I%, for ¢ € S, (M) by
1 1
Ixlly:=o(x*x)z,  llxllb:=pGx'x +xx7)z,  x €M. (6)

If M is o-finite and ¢ is faithful, |[-||, (resp. ||-||ﬁ,) defines the strong (resp.
strong*) topology on the unit ball of M. The support projection of a normal state ¢
Is written as supp(). For a projection p € M, zy(p) denotes the central support
of p in M. U(M) is the group of unitaries in M. vN(H) denotes the space of all von
Neumann algebras acting on H. Ball(M) is the closed unit ball of M. For a self-
adjoint operator A on H, dom(A) is the domain of definition of A,c(A) (resp.
op(A)) denotes the spectra (resp. point spectra) of A. The range (resp. the domain)
of A is written as ran(A) (resp.dom(A)). G(A) = {(§, A%); € € dom(A)} is the graph
of A. We denote the sequence of elements of a set like {a,}a=,. However, we also
use the notation (a,), when we think of the sequence as an element in an algebra
such as ¢, (N,BB(H)). For a unit vector € € H, the corresponding vector state is
denoted as w¢.

Let (E,), be a sequence of Banach spaces, and let ¢, (N, E,,) be the Banach
space of all sequences (x,,)y € [In=1E, With sup,sqllx,|| < oo with the norm
l(a;)nll = suppsillanll, (@), € €°N,E,). The Banach space ultraproduct
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(E,) 1s defined as the quotient £ (N, E,),./J.., Where J,, is the closed subspace
of all (x,,), € £ (N, E,;) which satisfy lim,,_,,, ||x,|| = 0. An element of (E,),
represented by (x,),, € ©o(N,E) is written as (x,;),. One has ||[(x;).ll =
lim, llxnll, (%) 0 € (En)w- I (Hy), is a sequence of Hilbert spaces, then
(H,),, Is again a Hilbert space with the inner product given by

(Ener o) = 1M (E D), e () € (Hado ™

For a sequence (4,,), of C*-algebras, (4,,), is again a C*-algebra when equipped
with the pointwise multiplication and involution of sequences. However, the
Banach space ultraproduct of von Neumann algebras is not a von Neumann algebra
in general.

We make a brief summary of modular theory needed for our purpose. In
particular we omit the modular theory for weights/Hilbert algebras, which will be
used only for Proposition (4.2.24) and Theorem (4.3.25). Let M be a o-finite von
Neumann algebra, and let ¢ €S,(M). Using GNS representation
(M, 1y, H,&,), @ is represented as a vector state we,, and ¢, € H is a cyclic and

separating vector for M (we identify x € M with m,(x)). Then the following
operator S2,

dom(S9): = M¢,, Sox€,=x",, X EM, (8)
is a densely defined anti-linear operator on H. Since 5(2 is closable, we may

consider the polar decomposition S, = ](,,Af; of its closure. It can be shown that J,,
is an anti-linear involution and A, is a positive, invertible self-adjoint operator on
H. Furthermore, J,&, = 4,¢, =&, and J,4,], = A;} hold. J, (resp. Ay) is
called the modular conjugation operator (resp. modular operator) of ¢. Tomita’s
fundamental Theorem states that

JoMJ, =M',  ALMAL"Y =M forallt € R 9
Therefore

ol (x):= AL xA,,  xeM,teR, (10)
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defines a one parameter automorphism group of M, called the modular
automorphism group of .

Next we recall Arveson—Connes’ spectral theory for automorphism groups.
Since we apply the theory only to modular automorphism group, we present the
case of oneparameter automorphism group only. In the sequel we identify the dual
group R of the additive group R with itself. For f € L*(R), we define the Fourier

transform f by

f): = Jei“f(t) dt, AeR=R (11)
R

We also define af(p (x):= [ f(®)af (x)dt(x € M).
(i). ForxeM, Sp_o () is defined by
{/1 € R; () = 0 forall f € L'(R) with o (x) = o}.
(if). The Arveson spectrum of o?, denoted by Sp(a?) is the set
{1€R;f(2) = 0 forall f € L*(R) with 5 = 0},

It is shown that Sp(c¢) = log(a(A,)\{0}).
(iii). For asubset E of R, the spectral subspace of ¢ corresponding to E is given
by
M(c?,E):={x € M;Sp,¢(x) C E}
The fixed point subalgebra M (o ?,{0}) is called the centralizer of ¢, and is written

as M¢. It is known that M, = {x € M; p(xy) = ¢(yx),y € M}, and it is always a
finite von Neumann algebra with a normal faithful trace <p|M¢. The spectral

subspaces have the following properties:

(i) (M(c®,E)* = M(c%,—E).
(i'M(c®, EYM(c?,F) c M(6?,E + F).
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(iii) A € Sp(a?)ifandonly if M(a®, E) + {0} for any closed
neighborhood E of A.
(iv). The Connes spectrum of o, denoted by I'(a?), is given by

I['(c?) = ﬂ Sp (a%e).
e€Proj(M,)

Here, for e € Proj(M,,),a? is the restricted action of o to the reduced algebra
Me, which coincides with the modular automorphism group of Py, - It holds that

ren= [ spe”,

OieEProj(Z(M(p))
whence I'(6®) = Sp(a?) if M, is a factor.

(v). Let M be a o-finite factor. The Connes S-invariant is defined by

s =[] o@,).

PESHF(M)

It is shown that S(M)\{0} is a closed multiplicative subgroup of R} = (0, o), and
I'(c?®) =log(S(M)\{0}). A o-finite type Il factor M is called of

(i) typelll, if S(M) ={0,1}.
(i) type Il if S(M) ={A"; n€ Z}U {0}(0 <A< 1).
(iii) type 11, if S(M) = [0, ).

For general factors, one needs to use normal faithful semifinite weights to define
the S-invariant. However, the above classification of type III factors will not be
affected by this change.

We first introduce the Ocneanu ultraproduct of a family of von Neumann
algebras along ®, with respect to a sequence of their states. This is a slight
generalization of the construction of Ocneanu for a single algebra with a single
state, and of the construction for tracial states; both generalize classical notions
studied by Sakai [44] and McDuff.
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Specifically, let (M,,),, be a sequence of g-finite von Neumann algebras, and let ¢,
be a normal faithful state on M,, for each n € N. With a slight abuse of notation,
put

2 (N, M) = {(xn)n HMn,supllxnll < 00} (12)
neN
Lo (M, @) = { Gen) € €2 (N, My); lim [l 1, = 0}, (13)

and also, with the abbreviated notation 1, for I ,(M,, ¢,,), let
ML My, @n): = (xp)n € L2 (N, My); (xp)nly, € Iy, and I, (xy)p € 1. (14)

It is then apparent that M “(M,,, ¢@,,) is a C*-algebra (with pointwise operations
and supremum norm) in which I,,(M,, ¢,,) is a closed ideal. We then define

My, 9n)?: = MY (My, 91) /10, (M, @) (15)
Proposition (4.1.3) [4]:
With the above notation, (M,,, ¢,,)® is a W *-algebra.

We remark that Proposition (4.1.17) below gives an alternative proof of
Proposition (4.3.1):

We denote the image of (x,,), € M*(M,, @,) in (M,, p,)® as (x,)*. Then
we have the following.

Proposition (4.1.4) [4]:
The following defines a normal faithful state (¢,,)® on (M,,, @,,)®:

(Pn)?(C6)®):= 1M @ (), () € (M, 91)°. (16)

The special case considered by Ocneanu is the following: all M,, are equal to a
fixed von Neumann algebra M, and all ¢,, are equal to a fixed normal faithful state
@ on M. In this case, we denote (M,,, ¢,,)® by M®, since the latter algebra does not
depend on ¢ (in fact, 1,(M,, ¢,,) determines the same set of bounded sequences
for different state ¢); we also denote (¢,,)® by ¢@®.
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In this section, we define Groh—Raynaud’s ultraproduct of a sequence of von
Neumann algebras, which is in a rather direct way related to the ultraproduct of C*-
algebras and Hilbert spaces.

Let (H,,), be a sequence of Hilbert spaces, and let H,,: = (H,,) . Let (B(H,))
be the Banach space ultraproduct of (B(H,,)).

Definition (4.1.5) [4]:
Define ,,: (B(H,)),, — B(H,) by
Tw((@)w) §)w: = (@n)w,  (a)n € £Z(N,B(H,)), ($n)w € Hy
It is easy to check that 7, ((a,,),,) IS a well-defined *-homomorphism, and since
7o ((@n) W)l = limppllanll = (@)l (an)w € BH))w,  (17)
T, IS injective.
Lemma (4.1.6) [4]:
,((B(H,)),,) is strongly dense in B(H,,).
Proof:

Let ¢ = (&), € H, and let p,, € B(H,,) be the projection onto span(¢,,) c
H,. Then p:=mn,((p,)e) IS the projection onto span(§) € H,, as for any
n=me € H, and { = ({,),, € H,, We have:

{pn, $) = lim((pn)n, $n) = 1im (pu1py, $n)
= Lim(nn, $ X8, ) = (0, XS, 0)
={(n,$)¢,0). (18)

This shows that any rank one projection in B(H,,) is contained in the subalgebra
n,(B(H,),). Therefore m,((B(H,)),) generates B(H,) as a von Neumann
algebra.

Definition (4.1.7) [4]:

Let (M,,),, be a sequence of W *-algebras.
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(i) Let M,, € B(H,,) be a fixed faithful representation of M,, on a Hilbert space
H,,. The abstract ultraproduct of the sequence (M,,, H,),, is defined as the
strong operator closure of =, ,((M,),) in B(H,), and is denoted as

[1% (My, Hy).

(i) The Groh—Raynaud ultraproduct of (M,,),,, denoted simply as [[“M,, is
defined as [[“M,:=]]*(M,, H,), where we choose the standard
representation of M,,.

From Lemma (4.1.6), it follows that

[ [®a. 1) = B,
However, note that the Groh—Raynaud ultraproduct [[*B(H,,) is not equal to
B(He)-
Remark (4.1.8) [4]:

Let H be a separable infinite-dimensional Hilbert space. We remark that
although r,(B(H),,) is strongly dense in B(H,,), T, IS not surjective.

To see this, using the weak compactness of the unit ball of H,, define P €
B(H,) by

P(n)w:= (€)ws §:= weak — rlzl—r>r(}) $ny (€n)w € Hy,.
P is well-defined and is bounded, because for each n € N we have

1P w P& wl = 1€,¢E1 = %%%%lfkignl

< 1GEn)wll®. (19)

Therefore P € B(H,,). It is easy to see that P2 = P holds. We show that P ¢
n(B(H),). Assume by contradiction that there is a bounded sequence (p,), €
£ (N, B(H)) such that 7 ,((p,),) = P holds. This means that if a bounded
sequence (&), in H converges weakly to & € H, then ||p,,&, — &l = 0(n = w).
In particular, p,, = 1(n = w) strongly.
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Step 1. We first show that P = P*, hence P is a projection (onto the closed
subspace H of H,). Let (&) Mp)n € ©o(N,H) and let & = weak —
lim,,, &, n = weak—lim,,,1n, . We have

(P(fn)w: (nn)w> = }J_{g(‘f:nn) = (5.77)

= lim (&) = (G POIm)), (20)
whence P = P* holds.

Step 2. There exists a sequence (n,), Of unit vectors in H such that {n €
N;n, €ran(p,)} € wandn, = 0(n = w) weakly.

To see this, fix an orthonormal base (en)n of H. Since lim,,_,, |lp,e; —e1ll =
0, we have

1 1
e lpe —ell <3lcfren b -allzg}=hew @
Define [, :=max{1< j < n; ||pnej|| > %} for each n € I;. We then define
(Mn)n DY

pneln

M= § [P, |
€1 (n € I).

(nel),

Next, suppose i = 1 and € > 0 are given. Let
L:=n €N; |lppe; — el < €/2 € w.
Since lim,,_,, p,, = 1 strongly, the set I5 defined by
L:={n €eN; , > i}

belongs to ® as well. Then foreachn € I :=1; NI, N I3 € w, we have

17, &l S—|{|ezn»Pnei — e| + |e, e} (22)

IPrev, |

< 2ppe; — e; < €.
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This shows that lim,,_,, n,,,€; = 0. Since i € N is arbitrary, we obtain the claim.
Step 3. We get a contradiction.

Since P = n((p,),,) IS @ projection, we may choose pn to be a projection for all
n € N. By Step 2, there exists a sequence of unit vectors (n,,),, such that J: = {n €
N; 7, € ran(p,)} € w and weak — lim,,_,, n,, = 0. Then, by definition, we have
P(M,), = 0. However, for n € J, we have ||p,n.ll = lIn.ll = 1, hence p,n,, does
not tend to 0 along w. This is a contradiction. Hence P is not in the range of r.

As we have seen, there are two notions of ultraproducts for von Neumann
algebras. The following theorem explains the relation between the Ocneanu
ultraproduct and the Groh—Raynaud ultraproduct:

Theorem (4.1.9) [4]:

Let (M,), be a sequence of o-finite von Neumann algebras and let a normal
faithful state ¢, on M, be given for each n € N. Assume that each M, acts
standardly on H, = L*(M,, ¢,), so that [[*M, c B((H,),). Also let M® =
(M, @0)®, @ = (), and define w: L*(M®, ) - (Hy), by

W(xn)ws;(p“’ = (xn€¢”)w'(xn)w € M®. (23)
Then w is an isometry, and w*([[*M,,)w = M®.

To ease notation, let N = []“M,, in the sequel. That w is indeed an isometry is
seen by direct calculation. To show the identity w*Nw = M®, we need to study the
following subsets of [],,eny M,, (for which we use the indicated short notation):

¥ {OO(N,Mn),
Lot = {Godn € €7 1im @y (k) = 0}, £t = (63 (K € Lo
M®: = J\/[“’(Mn;<l’n); l,:= Iw(Mniqon)'
Proof:

First, observe that for (x,),, € M* and (y,,)® € M, we have
Ty ((xn)w)w(yn)wg(p‘“ = (xnyng(pn)w = W(xnyn)wf(p“’ = W(xn)w(yn)wf(pw ’

108



SO o (%) )W = w(x,,)®. Hence M® c w*Nw. To prove w*Nw c M?, it is
enough toshow that w*r, ((x,),)w € M® for (x,), € £*. Let (x,)), € £*. By
Proposition (4.1.16), we have that (x,,), € M* + L, + L;,. Furthermore, by the
above, w*m, ((x,) )W € M ?if (x,,),, € M. Therefore it suffices to show that
w*, (%) )W € M® when (x,), € £L,. But if (x,),, € L, and (y,),, € M?,
we have (x,y,), € L, by Lemma (4.1.13)(i), and so
T[w((xn)w)w(yn)w‘f(p“’ = (xnyn‘fq)n)w =0,

sow ', (X)), )Ww=w"-0=0€ M*.

In this section, we will show (Proposition (4.1.30)) that ww* = q, where

q = D0Jwblw, and wMw* = q([[“M,)q. Here, ], is the ultraproduct of (J, )n.
The following result will be used later.

Lemma (4.1.10) [4]:
L, is aclosed left ideal of #*,and I, = L, N L},.
Proof:

It is easy to see that £, is a closed subspace of ¢#. Let (x,), € £, and

(a,), € €. Then we have @(x;aa,x,) < |la,|l?¢(x;:x,) % 0. Therefore
(anx,)n € L, and L, is a closed left ideal of £°. The last claim is obvious.

Before going further, we prove a result about hereditary C*-subalgebras. Recall
the following

Theorem (4.1.11) [4]:

Let A be a C*-algebra. If L is a closed left ideal in A, then L n L* is a hereditary
C*-subalgebra of A. The map L — B(L):= L N L" is a bijection from the set of
closed left ideals of A onto the set of hereditary C*-subalgebras of A. The inverse
of the map is given by B —» L(B), where B is ahereditary C*-subalgebra of A and

L(B):={a € A;a"a € B}.
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Lemma (4.1.12) [4]:

Let A be a C*-algebra, and let L be a closed left ideal of A. Let B =L N L* be
the corresponding hereditary C*-subalgebra of A, and let M be the two-sided
multiplier of B:

M:={a € A;aB c B,Ba c B}.
Then we have
(i) LM c L,ML* c L.
(i'Mn (L+ L") =B.
Proof:

It is easy to see that M is a C*-subalgebra of A.

(i) LetaeLandx € M. Thena*a € L'L c LNL" = B. Therefore x*a*ax €
B. By Theorem (4.1.11), L = L(B) implies that ax € L. Therefore LM c L.
Taking the adjoint,we obtain ML* c L*.

(i) We show the claim in two steps.

Step(): MNL=MnNL =B.

Since M and B are self-adjoint, it suffices to show that M N L. = B. Since B is a
C*-algebra, it is clear that B € M n L. Conversely, suppose x € M N L. Then
x* € L* holds, and hence x*x € 'L ¢ L n L* = B. On the other hand, as x € M, we

have x(x * x)x *€ B, which implies that xx* = {x(x*x)x*}% € B. Then by Theorem
(4.1.11), again, x* € L = L(B) © x € L" holds. Hence x € (L n L*) = B.

Step(2:Mn(L+L")=B8.

By Step (1), it suffices to showthat M N (L+ L") =M NL)+ (M NL"). Itis
clear that (M NnL)+ (MnL)c Mn(L+L"). Conversely, suppose x € M N
(L+L"). Thenthere is y € L,z € L* such that x = y + z holds. We show that
y,z € M. Let b € B. Then yb € L. Furthermore, yb = xb — zb is in L*, because
b € B,x € M implies that xb € B =L N L* and z € L*. Therefore yB c B. On the
other hand, by e LN L = (since y € L,b € L ) holds. Therefore By c B. This
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shows that y € M. Similarly, we have z € M. Therefore M N (L+ L") = (M N
L) + (M N L*) holds. This finishes the proof.

Corollary (4.1.13) [4]:
We have

(i) L,M® C L, ML, C LL,.
()M N (L, + L5 =1,

Proof:

By Lemma (4.1.10), we can apply Lemma (4.1.12) to A =#¢*,L =L, M =
M®,B=1,.

Now, let&,: = (4, )w € (Hp), and let
Vo ()= (x4, $00), x €N.
Then ¢, is a normal state on N.
Definition (4.1.14) [4]:

We denote by p the support projection of ¢, which is the projection onto
(T1*My) §0-

For simplicity, we shall mostly write m(x) as just x in the following (for
X € (Mp)w)-

Lemma (4.1.15) [4]:

Foral | x € N, there is (x,), € oo such that

(1) x$ = (Xn)wée and x*§ = (Xp) wéw-
(ix — pJ_pr_ = (n)w — pl(xn)wpl-

Proof:

Consider the following subset of (H,),, @ (H,):

B:= {0 ufor (10)ufus Cdn € £, supllal < 1},

nz1
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We claim that E is a closed subset of (H,)., © (H,),,. Indeed, let (n,0) be in
the closure of E, and choose a sequence {(xX),}iz; < £ such that supps, ||xX|| <
1 for all k € N, and such that

|G wéo — 1l < 27 and [[(e)oén — Tl <277
for all k € N. Then in particular we have, for all k € N:
||(xlrf+1)w€w - (xﬁ)a)fa)” < 2_k and ”(xlrf-'_l):ofa) - (x’rf)*wgw ” < Z_k;
so that if we define
Foi={neN; |xk*t1¢, — xk&, || <27%and ||(xft)*E,, — ()¢, || < 27F},
then we have F, € w for all k € N. Hence with
k
Ge:=1{kk +1,...}] |F,
=1

J

we have G, € w for all k € N because ® is free, and (G,), IS a decreasing
sequence with empty intersection. In particular,

N = (N\G,)LI ]_[(Gj \Gjs1)
j=1

(disjoint union). Now, define a sequence (x,,),, € £* by

{ xi (n € N\ Gy),
Xpi=1
" (n € Gi\ Gipy).

Then supps|[x, |l <1. Fix k € N. If n € G, then as G, = LUj2,(G)\Gj4q), We

may choose j = k such that n € G;\Gj,4, so that x,, = x,]l and asn € G; € Gy, C
E,, forevery m < j, we therefore have

||xn€(Pn o xrlff‘pn” = ||x7]l€(Pn — xrlif(Pn”
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~.
|
[y

= ||er+1 S — Xn' qun“

1

-1
2—m < 2—k+1 )
k

IA

3
I

for every n € Gy. It follows that ||(x,)wéw — (X)) ué0|| < 2752, so that

1) wéo — 1l <TG wéo — G I+ 1) wée — nll < 2741 4 27K,

As k € N may be chosen to be arbitrarily big, we conclude that (x,).,¢, = n. The
proof that (x;,) ¢, = ¢ issimilar. Hence E is closed, as claimed.

We are now ready to prove (i). It clearly suffices to consider x € N with
x|l < 1. By the definition of the Groh—Raynaud ultraproduct, and Kaplansky’s
Theorem, we may choose a net {(x3),}, € €% such that sup,s; x5 < 1 for every
a and such that lim,(x%), = x in the strong =*-topology on N. But then
(x€,,,x*&,) is in the closure of E, hence in E by the previous paragraph, and (i)
follows.

Finally, (ii) follows from (i): with x and (x,), from there, we have for all
y €N":
XY = YX$0 = Y(n)wée = (Xn)wYéw

S0 xp = (x,),p, and similarly x*p = (x;,),p. Conjugating the latter identity,
px = p(x,), holds. Now (ii) follows easily.

Proposition (4.1.16) [4]:
There is a vector space isomorphism
p:€*/l, > pNp @ pNp* @ p*Np

such that p~* (pNp) = M /1, p~ (pNp*) = L, /14, and p~*(p* N p) = L;,/1,,.
In particular, we have

£° = M+ L, + L)
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Proof:
Observe first that for (x,,), € €<, we have
(tn € Lo © l(xn)woll =0 € (), € N p™.
Hence (x,), € £, © (x,), € ptN, so by Lemma (4.1.10),
(x)n€l,=L,NL, & (x,), €EPNpt.
Hence by letting
Pt dn/lw):= (e — PH(Xn)wb™

we obtain a well-defined injective linear map from £* /I, into pNp @ pNp* &
piN p, and it is in fact surjective by Lemma (4.1.15).

By definition and the above, we have for all (x,),, € £*:
p((x)n/lw) € PN © (X)) — P () wp™ = D(Xp)wP™
& (xn)e € Np*
< (xn)n E L(J)'
and from this,
p((x)n/ly) EP™Np & (x;)n € L, & (Xp)n € L;,.
Therefore we have
-1 13\ — -1 1 .
p~*(pNp*) = L,/l,,  p *(p~™Np) = L, /1,. (24)
Finally, if p((x,),/1,) € pNp, and (y,),, € I,,, we have (y,),, € p*Npt, and so
p((xn:Vn)n/Iw) = (xn)w(yn)w - pl(xn)w(yn)wpl
= ((xn)w - pl(xn)wpl)(yn)w
= p((xn)n/la))(yn)a) =0,

114



and therefore (x,,y,,)n € I,. Similarly (y,x,)n € I, SO (X)), € M. This shows
p~1(pNp) c M“/I,. On the other hand, by Eq. (24) and by Corollary
(4.1.13)(ii), we have

M® /1, N p~ (pNp* @ p*Np) = [M®n (L, + L;)]/1
= {0},
whence we have p~1(pNp) = M?/I,.

In particular, ¢</1, = MM*/1,+ L,/1, + L;,/],, and the last claim is then
obvious.

Proposition (4.1.17) [4]:

Let (x,), € . Then (x,),, € M® if and only if p(x,), = (x,),p holds.
Moreover, p|yw: M = pNp, (x,)n/1, = (X5) P IS a*-isomorphism. Therefore,
the Ocneanu ultraproduct is isomorphic to a reduction of the Groh—Raynaud
ultraproduct by the support projection p of ¢, € N,.

Proof:

By Proposition (4.1.16), (x,)./l, € M“/I, holds if and only if p((x;,)n/
I,) =p(xn)wp +P(n)op™ + 0 (X1)wp € pNp, if and only if p(x,),p* =
pt(x,),.p =0. The last condition is equivalent to (x,),» = p(x,),. Since
place: M® — pNp is linear andbijective, to prove the last assertion it is enough to
show that p|Mw is a *-homomorphism.Let (a,);,, (by)n € M®. Then as
(an) w, (by), cOmmute with p, we have

p((anbn)n/1y) = (@nbn)wP = (an)wP(bn) WP,
= p((an)n/1w)p((bu)n/1u),
p((a)n/lw) = (@n)wp = (P(an)w)” = ((an)wp)”
= p((an)n/lw)"

whence p|r IS a*-isomorphism.
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Corollary (4.1.18) [4]:

For any (a,), € €%, there exist (b,), € M, (c)n € Ly, and (dx,),, € L,
such that

(i) a,=b,+c,+d, forn€eN.
(i) | (bp) [ limy, [l @r |-

Proof:

Since (x,), € €®, by Proposition (4.1.16), there exist (b,)), € M'?, (¢cy)n €
L,,and (d,), € £L;, such that a,, = b,, + ¢, + d,. (b,), IS unique modulo I, and
since p|yro: M® — pNp is a*-isomorphism (Proposition (4.1.17)), we have

1Nl = llp™"P(an)wpll = lIp(a)wpll < lim flay]|.

Our next step is to show (Theorem (4.1.20) below) that the Groh—Raynaud
ultraproduct of a sequence of standard von Neumann algebras is again standard, in
such a way that the standard form of the ultraproduct algebra is obtained as an
ultraproduct of the standard forms of the sequence.

Definition (4.1.19) [4]:

Let (M,H,]J,P) be a quadruple, where M is a von Neumann algebra, H is a
Hilbert space on which M acts, J is an antilinear isometry on H with J2 = 1, and
P c H is a closed convex cone which is self-dual, i.e., P = P°, where

P%:={¢ € H;{¢,n) =2 0,n € P}.
Then (M, H, ], P) is called a standard form if the following conditions are satisfied:

(i) JM]=M.

(i) & =¢,$eP.

(iii) xJxJ(P) c P,x € M.
(iv) Jx] = x*,x € Z(M).

Theorem (4.1.20) [4]:

Let (M,,, H,,, ]., B,),, be a sequence of standard forms. Let H,,: = (H,,),, let J,
be defined on H;, by
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Jo(n)ew = Unénd)w En)w € Hy,

and let

P,:={()e €EHy; &, €P, foralln € N}

Then the quadruple

(ﬁ My, Hy,, ]y Pw>

Is again a standard form.

Conditions (ii) and (iii) can be easily verified. For (i), we have to show the
Raynaud Theorem that (J]“M,)" = []“M,, (Theorem (4.1.24) below). It might
look obvious that (iv) holds. However, we will see that Z(J[*M,,) is different from
[1°Z(M,,) in general. Therefore it is not obvious that the equality J, x/, = x*
holds for x € Z(J][*M,,). However, this can be fixed by showing that condition (iv)
Is redundant.

Proof:

It is clear that P, is a closed convex cone. We prove self-duality as follows:
assume that & = (¢,,),, € P2. For each n € N, there are n;f ,n;, ,{t, ¢, € P, such
that m7 L1, 0n L 3p and &, = ny —na +i({7 —3). Then by § € P, we
have

lim (&, 77) = — lim || |2 + & im(Cy — &5, 7))
n-w n-w n-w
> 0.

Therefore (n,, )w = 0. We also have
. . i 2
lim (&, ¢} = lim(nf, &) + ]| G|
n-w n-w
> 0.

Therefore ({¥), =0, and (&)y = M), € Py, SO PO = P,. By Theorem
(4.1.24), it follows that (i) in Definition (4.1.19) holds for the quadruple
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(I1“m,,,H,,]., P,), and the properties (ii)—(iii) in Definition (4.1.19) are easily
checked. By Lemma (4.1.21), the claim follows.

Lemma (4.1.21) [4]:

Let (M,H,],P) be a quadruple satisfying, conditions (i)—(iii) in Definition
(4.1.19). Then (M, H, J, P) satisfies condition (iv), whence it is a standard form.

We use the following Araki’s characterization of the modular conjugation
operator.

Proof of Lemma (4.1.21):

The proof is in three steps. Throughout, conditions (i)—(iii). in Definition
(4.1.19) are assumed to hold.

Step 1: Assume first that M has a cyclic and separating vector ¢ € P. Then by
Theorem (4.1.22), J is the modular involution associated with &. But then (iv) is
immediate from Tomita—Takesaki theory.

Step 2: Assume now the slightly more general situation where we have ¢ € P
such that MM'Eé = H. Let e and e be the projections onto M'E and M§,
respectively. If f is a central projection in M, and f > e, then we have, for all
xEMandx' € M':

fxx'§ = xfx'€ = xx¢,

and so f = 1; it follows that the central support of e is 1, and similarly, it follows
that the central support of e’ is 1. Moreover, as

JM'E = JM']§ = Mg,
we have that Je] = €',

Now, let f:=ee. Then Jf] =]JeJe]? =e'e=¢ee' =f, it follows that
(fMSf, f(H), ] sy, f (P)) does also satisfy the conditions (i)—(iii) But as

fMf§ = ee’M§ = ee'(H) = f(H),
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and similarly fM'f& = f(H), we see that ¢ is a separating and cyclic vector for
fMf, acting on f(H). Hence by Step 1, we have

Jran@ | gy = d* for all central element d of fMf. But as e and e have central

support 1, the map ¢ » fcf is a*-isomorphism from the center of M onto the
center of fMf. We now prove that 4. holds in the case under consideration: let
ceMnM thenjcJ —c*eMnM' soas]f] = f, we get from the above:

0 = Jlranf cf Jleany - (f cf)”
= Ufe) = fe P
= fUd = flran
hence JcJ = c¢* holds by the injectivity of ¢ = fcf.

Step 3. We now consider the general case. Let (&,), < P\{0} be a maximal
familywith respect to the property that (MM'¢,), forms an orthogonal family of

subspacesof H. Let qa be a projection onto MM'&,. The projections (q,), are
clearly central, and as

JMM'§, = GMDHUM'))]Eq = M'ME, = MM'E,,

one has also Jq, = q,J for all «. Hence with p:=1— ), q,, We have Jp] = p.
Now,assume that p # 0. As P spans H, we may then choose n € P such that
pn # 0. Let & = pn. Then

§ =pn =p’n=np/p/n €P,

andas ¢ L MM'¢,, for all a, it is easy to see that MM'¢é 1L MM'&,, for all a. But this
contradicts the maximality of (¢,),, so that p = 0 and hence )., q, = 1. Now,
each of the quadruples

(an' da (H)']lqa(H)r da (P))

satisfies (i)—(iii) and the condition considered in Step 2, since q,(H) = MM'¢,;
hence 4.holds for the above quadruple, i.e.,

Jga@nCallqu@n = Calqaemn
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whenever c,, is a central element of g, M.

Now, let c € M N M'. Then qoc is a central element of g, M, and so

JeJ =] (Z qacqa>l = Z!qacqa]qa
) zjlq“(H)Cq“”CIa(H)qa = z C"qq

a

*

=C.

Next we show that the Groh—Raynaud ultraproduct preserves commutant. This
result was obtained by Raynaud in the case of a constant sequence of algebras.

Theorem (4.1.22) [4]:

Let & be a cyclic and separating vector for a von Neumann algebra M on a
Hilbert space H. Then a conjugate-linear involution J is the modular conjugation
operator associated with the state w; =(-¢&,¢) if and only if J satisfies the
following conditions.

(i) JM] =M.

(i) Jj§ = ¢.

(iii) (¢,aJaJ¢é) = 0 for all a € M, and equality holds if and only if a = 0.
Lemma (4.1.23) [4]:

Let (H,), be a sequence of Hilbert spaces, and let M, € vN(H,,) for each
n €N. Let H, = (H,),, and M =[]®(M,, H,) and N = [[®(M,, H,). For any
¢ € H,anda' € M, there exists a € N such that a& = a’€ and ||a|| < [|a']l.

Proof:

Let ¢ = (&), € H, and let a’ € M'; to prove the lemma, we may and do
assume that ||a’|| = 1. Letn =a'¢é = (n,), and put

Eni = Sup{(xﬂn' 7771) - (xfn' 571); x€M,,0< x< 1},71 € N.
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Then &, = 0(n € N), and by weak-compactness of Ball (M,,) n M, there is
()70 € [lnenM, suchthat0 < x, <1and

én = (XN Mn) = (Xnén Snd,
for all n € N. In particular, 7, (x) € M, where x = (x,,),,. Also, we have
lim &, = (xn,m) = (6, §) = (xa'§ ,@'§) = (x£,6) <0,
and hence lim,,_,, €, = 0. Moreover, by the definition of (&,,),,, we have
a)nn(x) < wé,(x) + ¢, XEM,0<x<1,neN,

SO

(||i||) WSn (|| ||) t&,  x€MI\{0}, nEN,

and hence, there exists (1) € [InenHy such that [|n, —n',ll < &2 and wn’, <
wé,, for each n € N. In particular, (n,,), = (1'1) . since lim,,_, , &, = 0. We then
get (a'n)n € [InenMy such that [[a’y]l <1 and a'n&, =71, (n €N). Let a:=
m,((a'y),) - Thena € N, and

a§ = (a'nén)w = e = (M)w =1 =a’s.
Also
lall = lim [la’u]l < 1 = lla'].
Theorem (4.1.24) [4]:
Let (M, Hy, ], Py)y be as in Theorem (4.1.20). Then one has

([T:) =TT
Proof:

Let A=(M,), and B = (M',), and identify these with their images under
nw.Then B c A’ is clear, so it suffices to prove that A’ c B”. Let ' € A’ and
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¢, € Hy(m € N). Let F be the type I,,,-factor, acting on K = C™. Using
the matrix picture of M,, @ F, itis clear that

M,®F),=AQF on H, K
(as *-algebras) and hence
((Mn X F)w), =A'"® (1,

as von Neumann algebras. Thus ' ® 1 € ([[*(M,, ® F,H,, ® K))', and so by
Lemma (4.1.23), there is

a@1e]| (e men=]|[mec

with ||a|| < ||a’|| and

@@ D 6m) = (@ @ (&0 $m)s

hence a¢; = a’¢;(j = 1,...,m). This means that B meets any so-neighborhood of
a'. As a’ € A" was arbitrary, we conclude that A" ¢ B”, as desired.

Theorem (4.1.25) [4]:

Let (M,), be a sequence of standard von Neumann algebras. Then ([[*M,,). is
Banach space isomorphic to the Banach space ultraproduct ((M,,).),, In such a
way that a normal functional on [][®M,, is implemented by the ultraproduct vectors
corresponding to the isomorphic image in ((M,,).),-

Proof:

Let (¢,)e € (My).),. As each M, is standard, we have sequences
)n (M) € [NnenHy such that

<Pn(X) = (xfn' 7771)» x € My, n €N,

and [lg,ll = 1€a]1* = lInnlI*(n € N). In particular, both (£,), and (7,) are
bounded. Define &,:= (&), and n,:= (M) IN (Hn)w. Then define ¢, €

(I1°M). by
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Vo (x) = (xEu, M), x € [[“M,,

and  |lg,ll = limg, llenll.  Hence  @:((My).)w = (II°My). defined by
P((Pn)w): = @, Is isometric. Note also that for (x,),, € £ (N, M,,), we have

(p(((pn)w)(nw((xn)w)) = Tlli_r)ral)<xn€n' Nn)
= 1lll_r)ral) n(xn). (25)

Since m,(£*(N,M,)) is strongly dense in []*M,,®((¢,),) IS uniquely
determined by Eq. (25) and is independent of the choice of (&,,),, (1,)n- It is clear
that @ (A1(¢,) ) = A2 ((¢n),) for A € C and (¢,,),, € (M,).),- Note also that if

(D) e Wn)w € (My).)w, then by Eq. (48), for (x,), € (N, M, ) we have

P ((pn + wn)w)(nw((xn)w)) = 1lll_r>ral)(§0n + ) (x,)
- rlll—r>rc;1) on(x) + Tlll_r)r(}) U (%)

= [@(@n)w + P((Pn) )] (0 ((n) o).

Therefore by the strong density of m,(#*(N,M,)), ((¢n +VYn)w) =
D((Pn)w) + 2((W,),) holds. Hence @ is linear. Surjectivity of @ follows from
Theorem (4.1.20) by reversing the above argument. Therefore @ is an isometric
isomorphism.

In the following, (M,,),, is a sequence of standard von Neumann algebras, and we
identify (¢,). € ((M,).), With its image ¢,, in (J[*M,,)..

Corollary (4.1.26) [4]:

Let ¢ be a normal state on [[“M,,. Then there are normal states ¢,, € (M,,).
such that ¢ = (¢,,),. If all M,, are o-finite, then we may choose the states ¢,, such
that they are also faithful.

Proof:

Since [[*M, is standard (Theorem (4.1.20)), there exists ¢, € P,, such that
¢ = wg,. By definition, , has a representative (¢,,),, where &, € B, for all n €
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N. As 1= |l¢]| = ||.$(p||2 = lim,,_, ||€,]|?, we may choose each &, to be a unit
vector. Then ¢@,,: = we, € S,(M,), and ¢ = (¢,,),. Now suppose each M, (n €
N) is o-finite and take y,, € S,,¢(M,))(n € N). Let

<pn:=<1—1><pn +11/Jn, n € N.
n n
Then ¢',, is a normal faithful state on M,, foreachn € N, and (¢',)), = (¥) 0 =
Q.
Recall that
Lemma (4.1.27) [4]:

Let (M,H,],P) be a standard form, p a projection in M, and q = p/pJ. Then
(gMq,q(H),q ] q,q(P)) is standard, and pMp 3 pxp » gqxq € qMq is an
isomorphism.

Therefore by Proposition (4.1.17), Theorem (4.1.20) and Lemmay (4.1.27), we
have

Corollary (4.1.28) [4]:

Let M® = (My, 9)*, ¢ = (9)*, N =[1"My,q = pJ,pJ, and H(p“’ =
L*(M®,®). Then (M®,H y0,] ,0, P o) is isomorphic to (qNq, qH,, q/,q, 9P.)
as a standard form.

Corollary (4.1.29) [4]:

Under the same notation as in Theorem (4.1.9), the following hold.
(i) ww* =q =pJyD]w-
(i) wMw* = q(I1”Mn)q.
Proof:

Let &, = (§4,)w- Then consider the GNS representation m,« of M with

respect to @®. Recall also by Proposition (4.1.17) that py:= p|ye : M® 3
() » () wp €Ep(IYM,)p is a*-isomorphism, so we have another
representation A of M on q(L*(M,, ¢,,),,) given by 1((x,)®):= qpo((x,)?)q =
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q(x)%q, (x,)® € M. Since &, is cyclic for q([[*M,,)q, it is cyclic for A(M®),
and for (x,,))® € M®,

(A((xn)w)fcmfcl) = <q(xn)wq$;w' Sza))
= Tlli_r)ral)<xn€(pn: S;(pn)

= @®((xn)*).

Therefore by the proof of the uniqueness of GNS representation, there is a unitary
w: L2(M?, p®) - q(L*(M,,, ¢,,)),, determined by

Wit yo((Xn)*)§po = ()0, (x)” €M,

which implements the unitary equivalence of m,~ and A. But by Proposition
(4.1.17), for (x,)® € M®, (x,)q = q(x,), holds, whence

V’T/n(pw((xn)‘”)f(pw = Q(xn)w‘fw = (xn)wga)
= Whyo (xn)w'

and w = w holds. Therefore ww* = q. (2) By Theorem (4.1.9), it holds that
wM®w = ww*([[*M,)ww* = q(J[*M,,)q.

The next corollary shows that every normal faithful state on the Ocneanu
ultraproduct is the ultraproduct state for some sequence of normal faithful states.

Corollary (4.1.30) [4]:

Under the same notation as in Theorem (4.1.9), let ¥ be a normal faithful state
on M® = (M,,@,)®. Then there exist ¥, € Sy s(M,)(n € N) such that

(M, lpn)w = M® and Y = (lpn)w
Proof:

Let N: = [[®M,,. Define the isometry w:L2(M®, p®) - (L*(M,, ¢,,)),, as in
Theorem (4.1.9). Let 1 be a normal state on N given by

P(x):=yp(waxw), x€N.
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Note that w*([[*M,),, = (M,,, $,)® by Theorem (4.1.9). Then supp(y) is
p = supp((¢,),)- By Corollary (4.1.26), we may choose normal faithful states

Y, on each M,, such that ¥ = (i,,),,. Now by (the proof of) Proposition (4.1.16),
for (x,), € £*N, M,,) we have

(Xn)n € I,(My, ¢,) © (x,), € p*Np*

A (xn)n € I(I.)(MTU lpn)r

so I,(M,, ¢,) =1,(M,, ), which implies that (M,,, $,,)® = (M,,,,))*. Recall
(Corollary (4.1.29)) also that &:(M,,¥,)*x - wxw* € qNq (gives a*-
isomorphism such that (Yn)w|gng © @ = (Y,)*. Therefore for x € (M, ,)* =

(M,,, p,)®, we have

W) (x) = pwxw*) = pWwxw*w) = P(x).

In this section, we describe Golodets’ construction of the asymptotic algebra
Cy; from our viewpoint. Let M be a o-finite von Neumann algebra, and let
@ € S,¢(M). Consider the GNS representation of M associated with ¢, so that
P = we, with a cyclic and separating vector &, on a Hilbert space H. Consider the

following state ¢ on £ = £*(N, M):
P((xn)n): = rlLl—rLl) ®(xn), (Xp)n € £7(N, M).

Let g €” — B(Hg,) be the GNS representation of @ with cyclic vector &
satisfying ¢ = wg. Let eo be the projection of Hg,) ONto Mol (%) E. Define

A= ey o1 (£7)" ey, © B(ewHgol)-

Let N be the set of all x= (x,), € £* for which mg,(X)e, €.~ and
Tgo1(X*)e, €.~hold. Then N is a C =-subalgebra of £°. Moreover,

I:= {x = (%), €N; lim @(x}x,) = 0}
n-w

is a closed two-sided ideal in N, and mgo(N)e, = »= N/I. Let M; be the
subspace of £*(N, M) consisting of constant sequences (x,x,...),,x € M. The
asymptotic algebra Cy; of M is defined by
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CI\(jI): =.7N 7TGOI(IVId), C ]B(ewHGol)-
We show that Golodets’ construction is equivalent to Ocneanu’s construction.
Lemma (4.1.31) [4]:

Let x = (x,,), € (N, M), and let g = pJ,pJ,- Then x € M* if and only if
q(xXn)w = (n)wq-

Proof:

If xeM®, then p(x,), = (Xu),p holds by Proposition (4.1.17). Since
P, (Xp) e (€ [I*M) commute with |, p].,, we have (x,),q = q(Xn)- Conversely,
suppose that (x,),, = q(x,), holds. This implies that

(x:l)wpl]wp]w :]wp]wpl(x;)w- (26)

Let (x,), €1,. We have to show that (x,a,), € £, and (a,x,), € £L,. By
(a,x,)n € %, Eq. (26) and (a}),, = (a}),p*, we have

(@anxn)wéo = JoPlw(@nxn) wéew = ]wp]w(a;)wpl(x;)wgw
= (a:z)w]wp]wpl(x;)wfw
= (a;)a)(x:z)w]wp]wplfw =0,

hence  (anxp)n € L, - (apx,)n € L, IS proved similarly.  Therefore
(xXna)n (anxy)y belong to I, and (x,,),, € M holds.

Theorem (4.1.32) [4]:
N =M% R=M®andCy =M nM® hold.

Let H,, be the ultrapower of H, and let m,: ¢#* — B(H,) be the ultrapower
map (a,), = (a,), (we identify (a,), with its image in B(H,,) as before), and
let &,:=(§p)w € H,. Let J =], be the modular conjugation and J, be its
ultrapower. For x € £, we have

p(x) = }li_r)ral)(xnfgor fqo) = ((*n) wéw $w)-
Therefore by the uniqueness of GNS representation, we may identify
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Heol = 1, %80, E_ = S Tgo1 (%) = T, (x)lHGol (x € £%).

Recall that we defined a projection p of H,, onto (J[*M)’¢,, (see Definition
(4.1.14)). Then J ,p],, is the projection of H,, onto (J[*M)¢&,,. We use such
abbreviationas M'?, 1, L, given.

Proof:

Let e’ be the projection of H,, onto H;,,. By Lemma (4.1.15)(ii), we have

Therefore €', = J,pJ- Furthermore, as ngo) = 7, |y ,,, We have

ewHgol = Tgo1(£%) '€, = €'goiTe, (£%) €' o160
= e/Goiy ()" = J,pJwpH,,
=qH,.
Therefore it holds.

R= eyl (£7)" "% = qm, (£%)"q

=q(ﬁM>q = M@,

We now show that N = M'®,
Suppose x € M®. Then by Lemma (4.1.31),
T[Gol(f)ea) = T[a)(f)q = qn’w(f) EZ

Similarly mgo(x*)e, €27 holds, and x € N. Conversely, suppose ¥ € N. Then
Tgo1(X)e, €EZ4 SO

TGol (f) €w = €uTlGol (f)r

whence m,(x)q = qr,(x). By Lemma (4.1.31), x € M“ holds. Therefore
N = M®. Note that by Corollary (4.1.13), this also shows that
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I=NnLy,=M“nL,=1I,.

Finally, as the constant sequence M in M® is mapped to mgo(My) under the
isomorphism M®q([]®M)q, we see that Cy; = M’ n M®. This finishes the proof.
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Section (4.2): Theory of Ultraproduct

In this section we show that the ultraproduct action of the modular
automorphism group on the Ocneanu ultraproduct is still continuous. This is the
key result for all the subsequent analysis. In the case of constant algebras, similar
results were obtained by Golodets for his auxiliary algebra &2 and by Raynaud for
the corner p(J]“M)p which corresponds to M (see Proposition (4.1.17). Here, p
Is the support projection of (¢,,),, as in Definition (4.1.14)).

We prove next the corresponding result for a general sequence of o-finite von
Neumann algebras with normal faithful states.

Lemma (4.2.1) [4]:

Let (ay)n € [lnenB(Hy)sq With spectra satisfying o(a,) < [0,1] and 0,1 &
o,(ay),n € N. Then a(a,), € B(H,) satisfies 0 < a < 1. Moreover, if K c H,
Is a closed subspace invariant under a, and with

K NnKer(a) = {0} = K nKer(1 —a), (27)
then for every bounded continuous function g on (0,1), we have:

(i) K isinvariant under (g(a,);

(i) (g@@))elx = glalk).

From the assumption and Eq. (27), o(alx) < [0,1] and 0,1 € o,,(alk), SO
g(alg) is well-defined.

Proof:

From the identification a = 7, ((a,),), it is straightforward that 0 < a < 1,
also that

fl(@n)o) = f(a) (28)

for every polynomial f on [0,1], hence (by Weierstrass’ Theorem) for every
continuous function on [0,1].

Now, let p denote the projection of H,, onto K. As a(K) c K, p commutes with
a, hence with all spectral projections of a. In particular, K is perpendicular to both

130



Ker(a) and Ker(1—a), so K < 1 1y(a)(H,), where 15 denotes the indicator
function of X € R. Hence K = V0<g<%Kg, where K, = 1(1-¢(a)(H,) N K.

Fix now € € (0,%) and fix a continuous function f; on [0,1] with

I ([0%] U [1 - ; 1]) =0}, fi(e1-— €] =1}

Also, fix & = (&), € K, and a continuous function g on (0,1). Choose a
continuous function h on [0,1] such that g(t) = h(t) whenever gs t<1 —2.

Also, let &,: = f.(a,)&,,n € N. Then
(En)w = (fz(an)én)w = fe(a)é =¢, (29)

where we used Eq. (28) in the second last equality, and in the last equality that
§ € Lig1-g(@)(Hy) and fo1(o 1) = 1(1-¢). Because g = h on the support of f,
we have

g(an)én = h(an)én,  neEN. (30)
Also, as p commutes with 1, ;_y(a), and g = hon (¢,1 — €), one has
gal)$ = glalg)lei-e(@)ps
= g(alk)lg1-¢ (alx)ps
= h(alK)§,
but as h is continuous on [0,1] (hence bounded) and ¢ € K, this entails
g(alg)$ = h(a)s. (31)
Now we get, by Egs., (30), (29), (28) and (31) respectively:
9(an)wé = (9(an)én)w = (h(an)én)e
= (h(an)) & = h(@)¢ = galK)E .

AsK =0 < & < 12Ke, we now get (i) and (ii).
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Lemma (4.2.2) [4]:

For each n € N, let 4An be a positive self-adjoint (possibly unbounded) operator
on H,, such that 0 ¢ 0,,(4,). Leta = (1 +4,)™"), € B(H,),and letK c H,
be a closed subspace which is invariant under a. If 4 is a positive self-adjoint
operator on K with 0 € 0,,(4) and with

@+ 07" = alg,
then
(4F) |k = 4%,  teR
Proof:
Let a,:= (1 + 4An)~ %, n € N. Define

ge(x):=(x"t— 1%  x€(0,1),teR

As 0,1 ¢ o, (alg) = 0,((1+4)™1), Lemma (4.2.2) gives
(ge(@n))wlk = g:(alk), t e R
This shows the claim, as
gi(ay) = 4%,  neNteR,

and

ge(alg) = g.((1 + D™ =4%, teR
Lemma (4.2.3) [4]:

Let e, f be projections on a real Hilbert space such that e Af + et Af = f.
Then ef = fe holds.

Proof:

Note that e A f = f(e A f)f < fef and similarly et A f < felf. Moreover,
fef+fetf=f. Hence eAf+elt Af=f implies that eAf = fef and
et Af = felf. It follows that efe is a positive self-adjoint operator whose square
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(efe)? = efefe = fef is the projection e A f, whence efe itself is the projection
e A f. It then holds that

(ef —fe)'(ef —fe) = fef —efef — fefe +efe
—eANf—e(enf)—(eAfle+eAf
=0,
whence ef = fe holds.
Theorem (4.2.4) [4]:

Let {(M,,, d,)}n=1 be a sequence of von Neumann algebras with faithful normal
states. Let M® = (M, ), “ = (¢,,)®. Then

w w
ol () =(a7"(xp)  t ER, (x,)® € M®.
In particular, t ~ (at(p”)‘” is a continuous flow on (M,,, ¢,,)®.

This is not an obvious result as it might look for the first sight. Indeed, it is
known that the ultrapower of a continuous action of a topological group on a von
Neumann algebra M is often discontinuous on M®.

To prove Theorem (4.2.4), we need preparations. Consider a sequence (H,, =
L*(M,, $,,)),, of standard Hilbert spaces, let H, = (H,,),, and as before we

identify (a,), with 7, ((a,),) € B(H,) for every (a,), € (B(H,)) -

Proof:

Consider for each n € N the standard representation of M, on H, =
L*(M,,®,), and write N =[[®M, for simplicity. Define H,:= (H,), and

Joi= (](pn)w- Let @,:= (Pu)w € ((My).)e =N, and let p:=supp(g,) €
[[®M,, (see Theorem (4.1.25)). By Proposition (4.1.30), we have M® = qNq =
wM®w* with q: = pJ,p/,, and with this identification, we have

L*(M?,@®) = qH,,  Jpo = qJuwq = PJub-

Let S, (resp. F, ) be the closure of the closable (conjugate-linear) operator Sq?,n
(resp. Fp ) on H, defined by
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dom(sfgn) = MnE(Pn’ S((l)’nx";(l’n: = x*";@n(x € Mn)’

dom(Fan) = M,nf(pn’ F‘I(’)ny";‘l’n: = y*E‘Pn(y € M,n)’

Since F,,_is the adjoint of S, , they are the adjoint of each other with respect to the

real Hilbert space structure of H,,. Therefore, we have the following decomposition
as a real Hilbert space:

Hy o4t = 6(S5,) 0,VG(Fy,),  meEN,

where V = ((1) _01) and G(T) is the graph of a closed operator T. Taking the
ultraproduct (as a real Hilbert space), we obtain

ool = (660)), 0% (65), G2

where V,, = (V). Let @y:= @ulqng € (qNg), be the image of ¢ under the
isomorphism M® = qNq. Let x € gNgq. Then by Lemma (4.1.15)(i) and
Proposition (4.1.17), there exists (x,), € M such that x = (x,) 09 = 9(X1) w-
Therefore it holds that

S?pwxfw = S?ﬁw(xn)wfw
= (xr*L)a)(E(pn)w

= (Sp, XnS o) w

which shows that (x¢,,S5,%¢,) € qH,, @ qHy N (G(Sy,)),- Doing similar
computationsfor F_, we obtain

G(Sp,) © (G(S(pn))w N (qH, @, qHo), (33)

VoG (Fp ) CV, (G(F%))w N (qHey @, qHo)- (34)
Similarly, using Fz, = (Sz,,)", we have

G(S3,,) opVwlG(Fg,) = qH, @,qH,,- (35)
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Let E be the real orthogonal projection of H, g H, onto (G(S,. )),, and let
F:=q @ q. By Eq. (32), E* is the real orthogonal projection onto VoG (F3,,). By
Egs. (33), (34) and (35), we have

ran(E AF) D G(S%),
ran(EX AF) D V,G(Fp,),
ran(F) = qH, ¢,qH,-

Let P,Q be real orthogonal projections from H, g H, onto G(Sz ) and
VoG (Fp, ), respectively. Then P < EAF,Q < E*+ AF. On the other hand, by Eq.
(35) we have

P+Q=F>EAF +E'F.

Therefore it follows that P=EAF,Q =E*AF and EAF+E'AF=F.
Therefore by Lemma (4.2.3), E and F commute. Let E, be the real orthogonal
projection of H, g H, onto G(S,_)(n € N). Then E is the ultraproduct of (Ey,)n,
and we know that

1 1

(1+4,,)7" Jo, (42, +4,2)7
En - 1 Y 1 Y on on (Tl € N)'

Jou (4% +4,)70 (A+4,)7"
1 i
Let  ap:=(1+4,) " bn:=Jp, (45, +4,2) €B(H,), and let a,:=
(an)w bn:= (by), € B(H,) (b, b, are regarded as real linear operators). Then it

holds that
_(a, by,
E _(bw aw>'

q
0

a,-invariant. Therefore we see that EF is the projection of H, g H, onto
G(S3,,), which is of the following form:

. : 0 : :
Since E = (E,), commutes with F = ( q)’a“’ commutes with g and gH,, is
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1 1
(1+45,)7'q I3, (Azzpw + Agpi)_lq

EF =EAF = ) ) (n€eN)
Jp, @5 +42)7 g (L+45,)7'q
This shows that
aw qH,,
=(1+ A%)‘l. (36)
Now by Lemma (4.2.4), we have
(A% )Vl =A%, tER (37)

From this equality, we have that (at‘p")‘” = at""*’ for all t € R because ¢@¢
corresponds to §,, under the identification M“ = gNgq.

Example (4.2.5) [4]:

Let 0 <A< 1and Ry = ®;-,(M,(C),t;) be the Powers factor of type III,,
A1
142 144
@ = @, 1T, IS given by ®$L°=1Jt”, where

T a b _ a )‘,itb
o, <(c d)> = </1‘itc P ) , a,b,c,d € C, t eR.

where t; = Tr(p; *), py = diag( ). The modular automorphism group of

Define

Xy = ((1) (1))®n®1®1m€ R, n € N.

It is clear that (x,,) € £ (N, R;). We see that

2
o 2 0 Ait ®n_ 0 1 ®n
”JL_ (%) _xn“(p = ||(/1—it O> (1 0) ®n

2

)it 0 Qn it 0 Qn
(0 A*J +(0 MJ

_ X
—Z_TAn

||
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/1it+1 +/1—it n A_it-l-l +Ait n
= 2_<1—+/1> ‘(T) -

2

It follows that since

Ait+1 + ﬂ._it 2

1+21

A+ 272
- ‘1—+/1

_ A%+ 2Acos(2tlog 1) + 1
- 22 +21+1

the second term tends to zero as n — oo whenever [t| is small but nonzero, say
0 < |t|m/(6|logA]|). The same happens for the third term, and we see that

lim,, |07 (x,) — xn||(p = +/2 for small enough |t| # 0. This shows that

lim lim ||at(p(xn) — xn”(p =V2 #0.

t->0n-w

We state few immediate useful consequences.
Corollary (4.2.6) [4]:

Let (M,,, ¢,)), be a sequence of pairs of o-finite von Neumann algebras and
normal faithful states. Let (x,),, € M “(M,, ¢,,) and put ¢® = (@,)*.

i) A%% (%6, )0 = (A2 x,8, ), forall t € R.
)] Pn Pn Pn

(i) 820(nép)o = (A% Xnép,)w-
(iii) 1M, =M, ¢, = ¢p(n € N) for afixed M and ¢, then a(A,») = a(4,).

Proof:
By Theorem (4.2.4), we have
it p? @ ® w it
A(p“’ (xn)wf<p“’ = (Jt (xn)) €<Pw = (Jt n(xn)) fqu = (AEannf(Pn)w'

Therefore (i) follows. For (ii), by the proof of Theorem (4.2.4), we have G(S,«) =
(G(Ss(pn))w N (qH, @,qH,). Thisimplies that
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N[

A(pw (xnfq))w = ]go“’ S(p“’(xnffp)w = ]w(S(pnanq))w = <Afon xn&p)w-

To prove (iii), note that Ag,w|;2( ) = Ay, SO 0(4,) € 0(A,0) and a((1+
Ap)™) co((1+ Aye )™h). On the other hand, by Eq. (36), we have

(6(1 + 2,0 )™ c (a((1+2,)D)°) = a((1 +2,)7Y),
because (1 + A(p)‘1 iIs bounded and a(a®) = a(a) holds for a bounded operator

a.Therefore o((1 + Apo )_1) =0 ((1 + A(p)_l), whence (A0 ) = a(4,)
holds.

Therefore A,» behaves like the ultrapower of A,. Let us remark a subtle
difference between the ultrapower of bounded operators and A, . It is easy to see
that for a bounded self-adjoint operator a,o(a”) = o,(a®) holds. However, the
analogous result for A, does not hold.

Proposition (4.2.7) [4]:

Let M be a type II; factor. There exists ¢ € Sy¢(M) for which g,(A,» ) S
o(Ape )\{0} holds.
Proof:

Let 7 be the unique tracial state on M and consider the standard representation
of M. Let h € M, be such that o(h) = [%, 2] and that the distribution measure u,

corresponding to h with respect to T has absolutely continuous spectra in [%, 1] and
purely atomic spectra in (1,2]. Here, ph is determined by moments

[ e = @) e

R
Define ¢ € Sy¢(M) by ¢(x): = t(hx)/t(h),x € M. Then A,= h(J hJ)~". Since M
is afactor, > x;y; » X % Qy; (x; € M,y; € M") induces a*-isomorphism
between the *-algebra generated by M and M’ and the algebraic tensor product
M® M. Therefore C*(M,M") =M @, M' for a C*-tensor norm ||-||, , and since
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C*(h),C*(J hJ) are abelian hence nuclear, we have C*(h,Jh)) =C*(h) ®
C*(Jh]). Consequently, it holds that (see Corollary (4.2.6)(iii))

S 1
o(Bge) = 0(8,) = {Lis € o)t €0 W)} = [Z + 4].

Let h be the image of h under the canonical embedding M c M®. Let u, be
thedistribution measure of h with respect to 7. Since 7 (h?) = 7(hP) holds for
all p € N and both h, h are bounded, u;, = uz holds. Now we show that

0p(Ape ) N (E%] V] [2,4]) = Q.

Suppose there were A € [2,4] N g, (A, ). Then by Takesaki’s result, there exists
u € M® such that up® = Ap®u holds. By taking the polar decomposition, we
may assume that u is a partial isometry. Since ¢ =t®(h-), this implies that
uh = Ahu. Moreover, as u*u and uu* belong to (M®),« , they commute with h.
It follows that

u(ﬁu*u)u* = (Ah)uu*.

This shows that both K = u*ulL?(M®,7%) and L = uu*L?>(M®,t®) are h-invariant
subspaces, and u induces an isometry of K onto L. In particular, k|, and (1h)|, are
unitarily equivalent operators, whence o(h|x) = o(2h|,) holds. On the other
hand, we know that

o(hlx) c E,l], o(ah],) c [%,2/1].

Since 1 € [2,4], this shows that o(hlx) = o(AR|,) € [%,2] However, uz|x

restricted to [1,2] is discrete, while p,5|, restricted to [%, 2] € [1,2] is absolutely
continuous,a contradiction. Therefore o,(Ay« ) N [2,4] = @.0,(Ape ) N [i,%] =
@ can be shown similarly. This proves that g, (A, ) & 0 (A4« )\{0}.
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Remark (4.2.8) [4]:

Proposition (4.2.7) states in particular that for 0 < A € o(4,)\0,(A,«), there
is no bounded sequence (x,,), of M with ||x,&,|| = 1(n € N) satisfying

1

1
lim |[AZ xnép — A2xp,|| = 0. (38)

n—oo

For if there were such sequence, Corollary (4.2.6) would imply that (x,,),, defines
a nonzero element (x,,)® € M® satisfying Afpw(xn)w.f(pw = A2(x,)“& 0, Whence
1 € 0, (A ). Onthe other hand, as M(a, [log A —~,logA +—]) # {0} for each

n € N, there existsa (necessarily unbounded) sequence (x,,), € M with ||x,&,|| =
1(n € N) satisfying Eq. (38).

Next, we show that elements of M'“ are characterized by the spectral condition
for (¢%n),,.

Proposition (4.2.9) [4]:

Let (M, ¢,,),, be a sequence of o-finite von Neumann algebras and normal
faithful states. Then for (x,,), € #*(N,M,), the following conditions are
equivalent.

(1) Cxn)n € MMy, @)
(I1) Forevery ¢ > 0, there exista > 0 and (y,),, € M “(M,, ¢,,) such that

(D) limpollX, = yallh <e

(i) y, € M,,(6%",[—a,a]),n € N.
In this case, (v,,),, can be chosen to satisfy || (v, < 1) 2]l
We need preparations. Recall two summability kernels on R.

Proof:

() = (I): Let (x,),, € M“ (M, ¢,) and put x: = (x,,)®. Also, define
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Xa+= 0'1?*2 (x) € (My, 9p)*(a > 0).

Then we have lim,_|lx, —xlliw = 0. Indeed, since ®&:t+— ”x —
0© o _
o, (x)|| » 1S continuou and bounded, we have
P

#

lxq — xllf =

J E,(t) (Jt(pw(x) — x) dt

R

w

< JFa(t) | - a;”“’(x)”iw dt
R

R e0) = 0,

whence the claim follows. Therefore there exists a > 0 such that y: = a}’;w(x)
satisfies ||y — x|[[,0 < e. We have [ly|| < ||F,|lix = x, and by Lemma (4.2.12),
y = (y,,)?, where y,, = alff; "(x,)(n € N). Therefore (y,,),, satisfies all conditions
in (11). Note that we also have ||y, || < ||x,|l(n € N).

(1) = (1): Suppose (x,), € £ (N, M,,) satisfies the conditions in (Il). Let
> 0.

Then by Lemma (4.2.11) and by assumption, there is (x',,),, € M'® such that
limy,, [, — X' p 115 < e. Let (3)n € I, With sup,,q [, ||. Then we see that

lim || (e yn)* N, < Um{llysllllg, — G Nl + Iy Gy, )
n-w n-ow
<e&.

Since £ > 0 is arbitrary, we have lim,,_,,||(x,yn)"|l,, = 0. Similarly, we also
have lim,,_,, [[y,xy |, = 0. This proves that (x,,),, € M“.

As an application of the Groh—Raynaud ultraproduct, we prove that it provides
examples of von Neumann algebras for which all normal faithful states are
unitarily equivalent. We also prove that this property is only possible for von
Neumann algebras with nonseparable preduals (besides C).
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Definition (4.2.10) [4]:
The Fejér kernel F;: R = R(a > 0) is defined by

1 — cos(at)

Fo(t): = {—natz (t+0),
a/2m (t = 0).

Its Fourier transform is

" 1 A (A = @)
F, (D) = { a -
0 (1 > a).

It holds that 0 < F, and ||F,||; = E,(0) = 1. Moreover, we have
im [ E0G)ds =60, HmllE < = Il =0,
R

for all continuous bounded function ¢ on R and f € L'(R). The de la Vallée
Poussin kernel D,: R = R is given by

cos(at) — cos(2at)
D,(t) = 2F,,(t) — E,(t) = { — (t #0),
3a/2m (t = 0).

Its Fourier transform is

1 (1 = ),

— A

D,(1) =42 —% (a < 1| < 2a),
0 (1] > 2a).

Lemma (4.2.11) [4]:

Let (x,), € (N, M,,). If there exists a > 0 such that x,, € M,,(a%,[—a, a])
holds for all n € N, then (x,,),, € M (M,, ¢,,).
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Proof:

We show that the map t — a;p "(x,) is extended to an entire analytic M,,-valued
function satisfying

lofm )|l < Cazllxall,  z€C,

where C, , is a constant depending only on q, z. Since x,, € M,,(6%",[—a, a]) and
the de la Vallée Poussin kernel satisfies D, =1 on [—a,a], we have x, =
ap™ (xn). Therefore for ¢ € R, we have

6" () = j Do(s)07" (x) ds
R

= f D,(s — t)a™(x,) ds.
R

By the explicit form, D, = 2F,, — F, has an analytic continuation to C. We have

lea(s +it)| ds < e¥tI(t € R).
R

Therefore for z € C,s > D,(s — z) is in LY(R), and ¢t - o, (x,) has an Mn-
valued analytic extension:

o ™ (x,) = J Dy(s —2)ol"(x,)ds, z€C.
R

Then we have
o™ )| < j IDe(s — D)1 [[0f" G |ds < Callxall
R

where C, ,: = 2e24m®@I 4 gallmzl ) et (y,), € I,,. It follows that

1

I (xnyn)* “(pn = ||yn ](pnAénan@n
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= ](pny;lk ](pno-:pi'n (xn)f(pn
2

< |[e¥7 (xn)
2

) ” ]<Pn:y:l< jﬁonfﬁon”

< Ca,_i/zllxn” ' ||)7n”<Pn

n-w
— 0.

Similarly, [|y,x,ll, = 0(n - w). Hence (x,),, € M.
Lemma (4.2.12) [4]:
Let f € L'(R), and ((xp)n € M (Mp, ¢p). Then (a7 (x))n € M (M, pr)
and g NEARE (o™ (xn))® holds.
Proof of Lemma (4.2.14):

We first prove

Claim. (a7} (xn))n € M (My, ¢,) and ol ((n)®) = (a7,%, (xa))® holds.

Since  supp(f * F,) c supp(Fp) = [~a,a], we have of} ()€
M,(c%n,[—a,a]) for all n€N. Therefore by Lemma (4.2.11), we have
(Uf*p (X)) € M®(M,, ;). Next, consider a bounded continuous function

Q,:(0,1) - Cgiven by

Qu(®):= (F=F)(og(t™t—1)), te(O1).

Then we have

Q1+ =(f*F)(ogt), teR
By Lemma (4.2.4) and Theorem (4.2.4), we have

0 (1 +85) ™) = (@ ((1+26,)7)) latr
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It then follows that

afﬁia((xn)w)ap‘“ = f/*\Fa(logAtp“’)(xn)w'f(p“’ = Qq ((1 + A(p“’)_l) (xn)wap“’

- (Qa ((1 + Acpn)_l))w (xnf<p)w = (f/*\Fa(IOgA‘Pn)x"E"’)w

( f*F (xn)‘f(pn) = ( f*Fa(xTL)) $po -

Since épw is separating for (M,,, ¢,,)®, we have af*F ((x)®) = (Uf*p (xx))®.

Now we prove that (a‘”n(xn))nemw(zwn,gon) and of “(x)?)

(o™ (xn))® holds. Since [|f * F, — £l 7% 0, we have

sup [| " Ge) = 2, G| < sup j £ = *F)OI- |lof" ()| dt
nz n<
a—>oo
= supllxall - IIf =  * Fyll, = 0.
nz

By the Claim, ( 7, (Xn))n € M® (M, @,,). Therefore as M (M, ¢,,) iS norm-

closed, we have (af‘p"(xn))n € M*(M,, ¢,,). Finally, suppose € > 0 is given. By
similar arguments as above, there exists a > 0 such that

” of., ((6)”) = 0f ((xn)w)” <g ”( Of.F, (xn)) (af‘p"(xn))w” <e.
Then by the Claim, we see that

o ) — (o)
< [lo" (@) = o (G|
+[/(of,00)” = (o7"0e) | < 2

Since € > 0 is arbitrary, the lemma is proved.
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Remark (4.2.13) [4]:

One might think that this is a direct consequence of at‘pw((xn)‘”)=
(at“’ "(x,))® (Theorem (4.2.4)). However, we must show that

| 1@ (o) de = ( | f(t)a,fp"(xn)dt) ,
R R

I.e., the order of integration and ultralimit can be changed.
Definition (4.2.14) [4]:
Let M be a o-finite von Neumann algebra. Then S,¢(M) is said to be

e homogeneous, if for any ¢,y € S,¢(M) and any € > 0, there is u € U(M)
such that ||lupu™ — yY|| < &;
e strictly homogeneous, if for any ¢,y € S,¢(M) there is u € U(M) such that

upu* =.
We have the following
Theorem (4.2.15) [4]:

Let M be a o-finite von Neumann algebra. The following are equivalent:

(i) M is a factor of type I, or type III;.
(if) S,e(M) is homogeneous.

Lemma (4.2.16) [4]:

Let M be a o-finite factor not isomorphic to C with strictly homogeneous state
space. Then

(i) M is a type III; factor.
(i)For @,y € S,(M), there exists a partial isometry u € M such that

u*u = supp(e), uu* = supp(¥), and Y = upu”.
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Proof.:

(i) We have to show that M has state space diameter 0. But since S,;(M) is
norm-dense in S, (M), this is the consequence of the strict homogeneity of S,,¢(M).

(if) By (i), M is a type III factor. Hence there is a partial isometry v € M such
that v*v = supp(¢),vv* = supp(y) holds. Put yY':=v*ypv. We see that

supp(¥") = v*supp(¥)v = supp(¢). Since M is of type III, Mg pppy) = M has
strictly homogeneousstate space. Therefore regarding ¢, Y’ € Spe(Mgupp(p)) We

may find w € Mg pp ) With w*w = ww™ = supp(¢) such that )’ = wow™. Then

u: = vw satisfies
u'u = w'supp(@)w = supp(¢),
uu* = v supp(@)v* = vv* = supp(¥y),
upu® = vwew v = vpv* = Y.

By the homogeneity, the Ocneanu ultraproduct of a type II1, factor does not
depend on the choice of a sequence of normal faithful states.

Corollary (4.2.17) [4]:

Let M be a o-finite factor of type III; and (,,),, € Spe(M). Then (M, P,)® =
M®,

Proof:

Let y € S,s(M) and choose (by the Connes—Stegrmer transitivity, see Theorem
(4.2.15)) a sequence (u,), of unitaries in M such that

1
”l/) - unlpnu;klll < E, n € N.

Then ¢, = (u,¥nur), and so M® = (M, P)® = (M, y,,)® by Theorem (4.1.9)
(see also the remark after Proposition (4.1.4)).
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Theorem (4.2.18) [4]:

Let M be a o-finite factor of type II1;, let M,, = M(n € N), and let N = [[“ M,,.
Then N is not o-finite, but for any o-finite projection p € N, one hasthat pNp has
strictly homogeneous state space. In particular, N and M® are factors of type I111.

Proof:

Let ¢,y be normal states in N. By Corollary (4.1.26), there are sequences of
normal states (@,)n (Wn)n € M, such that ¢ = (¢,), and Y = (,),. By
Theorem (4.2.15), there is (u,), € U(M) such that ||u,@,u; — Y, || < % for all
n € N. Now, let u: = (u,), € U(N). Then upu* = . Hence all normal states of

N are unitarily equivalent; in particular, N is not o-finite (there can be no faithful
normal states in this situation).

If p € N is a o-finite projection, let ¢,y be normal faithful states on pNp. Then
@: = pop and Y: = pyp define normal states on N with support p. By the above,
we maychoose u € U(N) such that u@u* =1. Then upu* =p and hence
v:=up € U(pNp). Also vpv* = upu* =1p =1 on elements of pNp. Hence
Sns(pNp) is strictly homogeneous.

We remark that no von Neumann algebra with separable predual has strictly
homogeneous state space:

Lemma (4.2.19) [4]:

Let M be a o-finite factor not isomorphic to C with strictly homogeneous state
space, and let ¢ € S,¢(M). Then for any 4 € (0,1), there is a projection p € M,,

such that ¢ (p) = 1 holds.

Proof:

Put M:=M @ M,(C), 6:= (l(;p (1 _0/1)90> ,and q: = ((1) 8)

It holds that q € My, and 6(q) = A. Since M is of type III, there is an
isomorphism ®: M > M. Then P:=0o0d Lp'i=d(q) satisfies p’' € My, and
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Y(p") = A. Choose, by strict homogeneity of S,¢(M),u € U(M) such that
uypu* = @. Then p: = up'u* works.

Proposition (4.2.20) [4]:

Let M be a o-finite factor not isomorphic to C with strictly homogeneous state
space. Then M, is not separable.

Proof:

Choose 0 < 4 < 1. By Lemma (4.2.19), there is a projection p € M, such that
o(p) = A Puty: = %p(p. By Lemma (4.2.16)(ii), there is a partial isometry v € M
such that v*v = supp(¢) = 1,vv* = supp(¥) = p, and Y = vev*. We see that

vp = (Vv v =Yv =PV )

1 1 1
= ;pso(v ) = Ico(v-p) = Tp(pv )

_ 1
—I(pU.

Therefore, o’ (v) = A%v holds for all t € R, which is equivalent to A €
0,(A,). Since A € (0,1) is arbitrary, A, has uncountably many eigenvalues. This
shows that L2 (M, ¢) is not separable, whence M, is not separable.

Proposition (4.2.21) [4]:

Let M be a o-finite factor not isomorphic to C with strictly homogeneous state
space. Then for any ¢ € S,¢(M), M,, is a factor of type II;.

Proof:

It is clear that M,, is a finite von Neumann algebra. If M, were not a factor,
choose a projection p € Z(M,)\{0,1}. We may assume that 0 < s:= @(p) < %
Then @(pt) =1—5s = s = @(p). Since M is of type III, (1 —p)M(1 —p) = M.
Hence by Lemma (4.2.19) applied to i(pm(l_p), there is a projection g € M,,

such that g <1 —p and ¢(q) = s. Since %pq) and %ng are normal states on M
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with support p and q, respectively. By Lemma (4.2.16), there is a partial isometry
v € M such that v*v = p,vv* = q and v(p@)v* = q¢. Since p, q € M,,, we have

pv=¢p-)=9p(u-)=9pl-q)
= qov = (UpV*)v = VpPp = VPP
e ‘U(p’

whence v € M,,. This shows that p ~ q in M,,. However, as ¢ < 1 — p, we know
that Zum,, (@) L Zum,, (p) = p. Therefore p ~ g in M¢ cannot be the case. This shows
that M, is a factor. Then by Lemma (4.2.19), M,, is a 11, factor.

Let Wyt (M) be the set of all normal faithful semifinite weights on a o-finite
von Neumann algebra M, and let E: M® 3 (x,,)® = wot — lim,,_,, x,, € M be the
canonical normal faithful conditional expectation.

Definition (4.2.22) [4]:
We define ¢® € Wy (M) by
PP:=@oE, ¢ € Wy(M).

Since both ¢ and E are normal and faithful, and since ¢ is semifinite, ¢® €
W5 (M®) holds. Note that this definition is in agreement with the definition of the
ultra power state @® when ¢ € S,«(M). We then have a following partial
generalization of Theorem (4.2.4).

Lemma (4.2.23) [4]:
Let M be a o-finite von Neumann algebra, and let ¢ € W, (M). Then we have
of () = (0f ()", (ea)® EM®, tER.
Proof:

Let Y € Spe(M), and let ut:= (De®: DY), (t € R). Since ¢® = @ o E and
Y® = Yo E, by Theorem (4.2.4), we have for x = (x,,)® € M® and t € R that

o (1)) = ua?” (Gen))ug

150



= (D(@ o E):D(h o E))t (J;p(xn))w (D(poE):D( o E))Z
= ((D(p: D)oy (x,) (Do: Dl/J)Z)w

w
= (o) (%)) -
This proves the lemma.
Recall that a normal faithful semifinite weight ¢ on a von Neumann algebra M is

called lacunary if 1 is isolated in o (4,). The next result will be important for the
analysis of the Ocneanu ultraproduct of type 111, factors.

Proposition (4.2.24) [4]:

Let M be a o-finite von Neumann algebra, and let ¢ € W, (M) be lacunary.
Then (M®) ,0 = (M,)® holds.

Proof:

We first prove that (M,)® c (M®),« . Since ¢ is lacunary, it is strictly
semifinite and therefore there exists a normal faithful ¢-preserving conditional
expectation E:M — M,. Therefore we may regard (M,)® c M®. Let x =
(x)® € (M,)®. Then by Lemma (4.2.23), we have at‘pw(x) = (6 (xp))® =
x(t € R), whence x € (M®),» holds. Let 0 <A <1 be such that o(A,) N
(1, A7H = {1}.

Step 1. We next prove (M?),o c (M,)“ for the case where ¢(1) < oo. Let
x = (x,)® € (M®) 0 With ||x&,0|| = 1. Then by Corollary (4.2.6)(ii), we have

Let p:= 1(43(4,) be the spectral projection of A, corresponding to the
eigenvalue 1. Then by assumption, we have

1
Aéxnap - xnf(p

1
A?pPanE@ - plxn&p
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> min (1 — /1%,/1_% — 1) ||plxn€<p||
= (1-2) Ip*xd |
Therefore we have
Jim [y = prac || = 0

Let f € L'(R), be such that supp(f) < (log 4, —loga) and [, f(¢) dt = 1. Let
Yy = o'f(p(xn) = Jf(t)at‘p(xn) dt, n = 1.
R

Since
O-f(p (xn)€<p = f(log A(p)xn€<p:

we have Spge(y,) C SPo, () N (log 4, —logA) = {0} and y, € M,,. It is clear
that supps1[|¥nll < [If1l1 suppzq x|l < co. We have

pxn’f(p = f(logAw)xnftp = ynf(p' n=1.

This implies that ||x,&, — ¥.&,|| = (n > ). Since Aje x*€ 0 = x*E, 0 also

holds, we have also ||x;&, — :&,|| = 0. Since M,, is a finite von Neumann
algebra, (), defines an element in (M,)®, and x = (3,)® holds. Therefore
(M®)go © (My)®.

Step 2. Finally, we prove (M®),. c (M,)* for a general lacunary ¢ €
Whes(M). Take 2 > 0 as in Step 1. Since the restriction of ¢ to M, is a semifinite
trace, there exists an increasing net {p;};c; of projections in M, such that {p;};¢,
converges strongly to 1, and ¢(p;) <o for all i €1. Let x € (M), 0 . FiX
arbitrary i € I. ldentifying p;M“p; with (p;Mp;)®*, we may regard p;xp; €
(piMp;)®. Furthermore, as p; € M, and ¢“ (p;) = ¢(p;) < o, the restriction ¢,
of p® to (p;Mp;)® is a normal faithful positive linear functional, and p;M®p; N
(M®)po = ((p:M pi)“’)%)i. It also holds that ¢y is the ultrapower of ¢, . Since
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B, = Bolpisypis iz gy WE have o(B8y,) N (4, A cod,) N @A) =13,
and hence ¢, is lacunary on p;Mp;. Therefore by Step 1, we have
((0:Mp)*©) e = ((0:Mpi)e, )” holds. Therefore pyxp; € (0:M pig, ) <
(M,)®. Since i € [ is arbitrary, and p;xp; — x strongly, we have that x € (M,,)®.
Therefore (M“),0 © (M,)?.

We reinterpret the main result of Golodets” work on the asymptotic algebra
from our viewpoint. Let M be a factor with separable predual, and consider the
asymptotic algebra Cj; induced by ¢ € S,;(M). ¢ naturally induces a normal
faithful state @ = @| z on #= e, m;,(£*)"e,, hence a normal faithful state
¢ = @|cg@. The main results of Golodets” work were

(i) to generalize the central sequence algebra M' n M* for type III factors and
give a characterization of Araki’s property L} (0 <A< 1):M = M ® R, if
and only if A is the eigenvalue of A,,.

(ii)to show that the centralizer (Cp;), plays the similar role as Connes’

asymptotic centralizer Mw (see Definition (4.2.29) below), namely M is
McDuff if and only if (C37),, is noncommutative.

Regarding (ii), Golodets and Nessonov later showed that (Cp)g is indeed
isomorphic to M, for a factor M with separable predual.

We start from the following observation:
Proposition (4.2.25) [4]:

Let M be a o-finite von Neumann algebra, and let ¢,y € S,;(M) such that
Olzamy = Ylzny- Then @y, =y, Where @0 = @ minme, Yoi: = Y minme - In
particular, if M is a o-finite factor, then ¢, does not depend on ¢.

Proof:

Recall that M® 3 (x,,)® » wot — lim,,_,, x,, € M defines a normal faithful
conditional expectation E. It is easy to see that E((x,,)®) € Z(M) if (x,,)® € M'n
M®. Since p® = @ o E,x0® =1 o E, and since ¢ and y agree on Z(M), we have

@ =P Elyiame =Y o Elynme = 1/%-
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Definition (4.2.26) [4]:

Let M be a o-finite von Neumann algebra, and let ¢ € S ¢(M). We call
P = ©°|mame the Golodets state associated with ¢.

The next theorem corresponds to Golodets’ work (i) mentioned above.
Lemma (4.2.27) [4]:

Let 0<A<1 and let M be a o-finite factor of type III. The following
conditions are equivalent.

(i) M =M Q Rj.
(i)For any ne€ N,e >0 and ¢,..., ¢, € S,s(M), there exists nonzero
x € M such that

1 1
2 —

Theorem (4.2.28) [4]: (Golodets).

2 n

<e¢ z @;(x*x).
j=1

Let M be a o-finite factor of type III. Then M = M & R; holds if and only if
A € 0,(A,w) for some (hence any) ¢ € Spe(M).

To prove the theorem we use the following characterization of the condition
M=MQR,.

Proof:

(1) Assume A € 0, (Ap«), and suppose € > 0,n € N and @4, ..., ¢, € Sy(M)
are given. Define ¢: = Y-, ¢; € M, . By assumption, there exists y € M' n M?
with ||y||¢ = 1 satisfying

al*(y) =2y, teR

Take a representative (y,,), of y. By Proposition (4.2.25), ¢; = ¥, (= ¢,,) holds
for j = 1,2,...,n. Note that since [0, (x), y] = [x, Uipt(Y)]i(x,y € M), M' 0 M©
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is a,fpw -invariant thanks to Theorem (4.2.4). Therefore we have at‘p"‘“ =

6.7 [yomo(t € R,1 < j < n). This implies that
1

1 1
A;?,yf(p;p =A2yp0 (1<j<mn).

This means that (Corollary (4.2.6)(ii))

=0 (1<j<n).

1
AZ
llm (p

1
yk‘f(p] AzykS;(pj

Choose k € N such that the following inequalities hold:

1 1
N, Yibp, = M2y, || S e(l—e)  (1<j<m),

llyilly — 1] <e.

It follows that for each 1 < j < n and for x = y;,, we have

1 1 =
Aéjxf(pj — 2x§, || < ellx|ly, = ez @; (x*x).
i=1

By Lemma (4.2.27), we have M = M @ R,.

Conversely, assume M =M @ R, holds. Fix ¥ € S,¢(M) and put N:=
M ® R,.Letg; = ®yTr(p, ) andlet x,: = n~1(1 ® u,) € M, where

0 1

U= 1% ® (0 1

)®1-€R, neN,

and 7r: M > N is a*-isomorphism. Then it holds that (x,,),, € M “(M). Indeed, it is
clear that ||, || = 1,n > 1, and hence (x,,), € ¢*(N,M) LetLy,:M @ R; > R;
be a left-slice map given as the extension of the map L‘,}, defined on the algebraic
tensor product M(®R; by
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L?/) (z a; ® b; ) z l/)(al)bl ) a; € M, bi € Rl'

Ly is a normal conditional expectation. Let (by), € I,(N). Using u,@; =
A 1p,u,, we have

16 o) @, =% @ a((1 ® up)bpb, (1 @ un))
= 02 (Ly (1 @ w)biby (1 @ 1))

= @2 (unLy (biabn)un) = 17105 (wnttiLy (bubi))

<A 1||L¢(b bn)” |unun”<p)L

1
< 27 @a(Ly (brbp)?)|? (Ly is a conditional expectation),

and since (b;,b;))n=1 € 1,(N), we have

(02(LyBibn)?)) = ¥ ® 92((B3b)D) = IIbiballgy,

n-w
— 0.

Therefore (b,,m(x;,))n=1 € L,(N). Since (b,m(x,))n=1 € L;,(N) automatically,
we have (b,m(xn))s=, € I,(N) Similarly, we have (m(x,)b,), € L;,(N) and
thus (m(x,)b,)n € 1,(N), which shows that (m(x,)), € M“(N), and hence
(xp)n € M®(M). It is then easy to show that (x,,))® € M' n M“. It also holds that

a;’@‘“(n(xn)) = A¥*n(x,) for each t € R, where ¢, is the Powers state and 1 is
a normal faithful state on M. Therefore ¢:= (Y @ ¢@;) o € S (M) satisfies

a?° ((x)®) = At (x,)®. Therefore 1 € g, (4, ) holds.
Now recall the definition of Connes’ asymptotic centralizer.
Definition (4.2.29) [4]:

The asymptotic centralizer M, of M is defined as the quotient C*algebra
M,(N,M)/I,(N, M), where
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My (N, M): = { () € €2 (N, M); lim 1) — x| = 0,V € M. .

M, is a finite von Neumann algebra for any M.

Regarding Golodets’ and Golodets—Nessonov’s work (2) above, we prove next
that (Cj7)p is nothing but M,, when we identify Cy; with M" n M“. Note that we

do not need the factoriality of M or the separability of the predual.
Lemma (4.2.30) [4]:

Let (M, ¢,,),, be a sequence of pairs of o-finite von Neumann algebras and
normal faithful states. Let (x,,),,, ) € M “(M,,, ¢,). Then we have

”(xn)w(gon)w - (Qon)w(yn)w” = Tlli_r)r(})llxn(pn_ Qonyn”

In particular, (x,)* € ((My, ®,)*)y, holds if and only if lim,_,|x,@, —
@nXn|| = 0 holds.

Proof:

We use abbreviated notation as ¢, M“,L,,1,. Put C; := [|(x,)?(@)* —
(D)l and Cy:=lim,_ 4 llxp 00 — @uynll. Let € >0, and choose a €
Ball((M,,, ¢,,)®) such that

|<a: (xn)w((pn)w - (‘pn)w(yn)wH > Cl — &

Since (M,,, ¢,,)® is a quotient of M'®, we may find (a,),, € M® with a = (an)w,
such that [[(an)nll = supps1llanll < 1.

Therefore we have
Cl — &< lim |(an: XnPn — (pnyn>| < lim ”xn(Pn - (pnyn”-
n-w n-w
Since € > 0 is arbitrary, we have C; < C,.

To prove C; < C,, let a,, € Ball(M,,)(n € N) be such that

|(an' Xn®Pn — <pnyn)| > ”xn(Pn - (Pnyn” - E (39)
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By Proposition (4.1.18), there exist (b,,),, € M'?, (¢,)n € L,,, and (d,), € L;,
such that a,, = b, + ¢, + d,(n € N) and ||(b,)?||lim,,_,lla,]] < 1. It follows
that

(an; XnPn — (pnyn>
= (bn; XnPn — (pnyn> + (Cnxn'ipn' '>;<pn) - <Cn€<pn; y;:E(pn)
+ (xnffpn; d;l€¢n> - (E(pn’ d:ly;:E(pn) (40)

Since (¢,), € L, and (d,),, € L;,, the third and the fourth terms in the right hand
side of Eq. (40) will vanishasn — w. Also, as (x,), € M?, Corollary (4.1.13)(i)
implies that (c,x,,)n € £, and (dy,yn)n € £L,, Whence the second and the fifth
terms will vanish as n - w. Therefore we have

lim |<ani Xn®Pn — <pnYn>| = lim |<bn: Xn®Pn — Qonyn”- (41)
n-w n-w
Then by Egs. (39) and (41), we have

lim |[x, 0, — @uyull < lim |by, X, @00 — @Y
n->w n-w

= ((bn)w: (xn)w((/)n)w - (Qon)w(Yn)w)
< 1Ce) (@) — (@) ()l

whence C, < C;. This finishes the proof.
Proposition (4.2.31) [4]:

Let M be a o-finite von Neumann algebra. Let ¢ € S,,¢(M). Then the centralizer
of the Golodets state ¢® is M,,.

Note that Proposition (4.2.31) gives an alternative proof of the fact that M, is a
(finite) von Neumann algebra.

Proof:

For M, ¢ (M'n M%), ,let (x,)® € M,,. Then for (,)* € M®, we have

|(ynxn - xnyn)l = |[xn' qo]()’n)l < “yn” ) ”xw 90”

n-w
— 0.
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Hence (x,,)® € (M®),0 N (M'NM®) € (M' N M®),w holds.

For M,> M NM®)40, let (x,)® €M NM?®),0. Since o =

at"’w|M,nMw (t € R) (see the proof of Theorem (4.2.32)), we have at"’w((xn)‘”) =
(x,)®(t € R). Therefore by Lemma (4.2.30), we have

()@ = 9®(xn)” & lim |l — x|l = 0.
Then, (x,))® € M, holds.

Note that the equivalence (x,)“¢p® = % (x,)* < lim,_,||x,0 — x|l =0
can be seen using Corollary (4.2.6)(ii).
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Section (4.3):

Let M be a o-finite von Neumann algebra. Connes defined the asymptotic
centralizer M, (see Definition (4.2.29)) as a generalization of M' N M® for the
case of type II, factor.It is known that if M is o-finite, and if (x,)® € M'n M®
satisfies  lim,,_,,||x,¢ — @x,]| =0 for one ¢ € S (M), then (x,)® € M,,.
Therefore the existence of a normal faithful tracial state shows that M' N M® =
M, for a finite von Neumann algebra. The same is true for type II, factors.
However, for type III factors, it is often the case that M, € M' n M®.

Example (4.3.1) [4]:

The following example has been known to experts. We add it for convenience.
Let (Ry, ) = ®,,en(M,(C), Tr(py +)) be the Powers factor of type I1IA(0 < 1 <

1), where p; = diag(>, ). Let
0 1
U= 1% ® (0 0) ®1®-€R;, n=>1.

Then (u,), € M“(Ry) and (u,)® € R’y N Ry . On the other hand, we have
ou, = Au,@, n€N.

Therefore [|lu,@ — ou,|| = (1—-21) #0(n € N), and hence (u,)® € (R3),-
Moreover, R'; N Ry is a type III; factor. To see this, (Ry),, is a type II; factor.
Therefore by Proposition (4.2.31), the centralizer of the Golodets state ¢, =
®olrinr,« 1S a factor, whence by Corollary (4.2.6)(iii), we have

I'(0%2) = Sp(a?«) = log(o(Ap,)\{0})
c log(J(A¢w){0}) = log(a(Aq,){O})
= (log A)Z.

On the other hand, we have (logl)Z c Sp(c®“). Therefore as I'(c®?“) =
log(S(R'; N RY)H\{0}), we have

SR’y NRY) ={A";neZ}u{0}.
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This proves that R, n Ry’ is a type 111, factor.

In spite of the above example, Ueda asked whether M, = C implies M’ n
M® = C. We prove that the answer to his question is affirmative when M has
separable predual.

Lemma (4.3.2) [4]:

Let M be a von Neumann algebra, ¢ be a normal faithful state on M with
M, = C. Then M is either C or a factor of type III;.

Proof:

Let H be a Hilbert space on which M acts. Since Z(M) c M, =C,M is a
factor. Suppose M is semifinite with a normal faithful semifinite trace 7. Then there
exists a positive self-adjoint operator h € L'(M,t) with t(h) =1 such that
@ = 7(h ) holds. It is well known that this implies o,”\(x) = h®*xh™ for every
x €M and t € R. Let A be the abelian von Neumann algebra generated by all
spectral projections of h. Then for x € M, x € M, holds if and only if x commutes
with k¥ for all t € R, which is equivalent to the condition x € A", hence M, =

A'nM =C. Since Ac A'nM = C,h must be a multiple of 1 and 7 is a tracial
state. This implies that ¢ = 7, and

M, =M, =M =C.

Suppose next that M is of type III;(A # 1). Then (0 <A< 1 case) and (1 =0
case) of Connes, there exists a maximal abelian subalgebra A of M, which is

maximal abelian in M. This in particular means that M,, cannot be C. This finishes
the proof.

Theorem (4.3.3) [4]:

Let M be a von Neumann algebra with a separable predual for which M, = C
holds. Then M' n M® = C holds.

The following lemma is well-known.
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Proof:

Put N:= M' n M®. Take an arbitrary ¢ € S,¢(M). Since Z(M) c M, = C,M is
a factor. By Proposition (4.2.25), the Golodets state ¢,,:= @“|y € S,r(N) does
not depend on the choice of ¢. By Proposition (4.2.31), N,» = C. Then by Lemma

(4.3.2), N is either C or a factor of type III;. Suppose N is a type 1111 factor and we
shall get a contradiction. Fix 0 < A < 1. Since N is of type IIl, there exists an
automorphism a: N - N @ M,(C). Define y € S ¢(N) by

Y:=[¢, Q@ Tr(p; )] e a,

where p;: = diag (1% ﬁ) Let £ >0 be given. By the Connes—Stgrmer

transitivity (note that the transitivity holds without any assumption on the predual),
there exists u € U(N) such that

P — uppu™|| <e. (42)
Define a 2 X 2 matrix unit {f; ;}7 ij=1 1NN by
fir=uwa'(1®e)u, 1<ij<2,

where {e; ;37 ;-, is the standard matrix unit in M, (C). For x € N, write a(x) =
(x11 X12

Xpy xzz), where x;; € N. By a straightforward computation, we have

[Ya™ (1 ® e;)](x) = Ppla™' (1 @ ey)x)

= g0 @ Tro (D 2

A
= m%u (x21),
(@ (1 ® eI = [0 @ Trios N (g 1)
1
1+/1(Pa)( X21)-

Doing similar computations, we have the following equalities:
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Ya i (1Qe) =a'(1Qe)y  (i=12), (43)
Ya (1 ®ep) = a1 ® en)Y, (44)
Pa (1 ®ey) =A1a (1 Q ey (45)
Using Eq. (42) and Eqgs. (43)—(45), it follows that

90 fiz = Af12Pull = llPou"a™ (1 @ ex)u — Au"a™ (1 @ e1z)ug, |l

= lugou'a™ (1 ® e2) —Aa™ (1 ® ex)ud 'l

< [[(ugou” —Pla (1 Qe )l + 1 da™ (1 ® e12) @) — ugu)ll

<1 + Me.

Doing similar computations, we obtain

lpowfii — fidull <2 (I =1,2), (46)
l@wfiz — Af1200ll < (1 + e, (47)
I9wfor = A= 1f10,ll < (1 + 27 Ve (48)

Let {a, }n—, be a ||-||$-dense sequence of the unit ball of M.

. . (n) C . e
Claim 1. For each n € N there exist fij" € M(i,j = 1,2) satisfying the
following conditions:
(i) (m”<1@]—12)
i) |or™ - £ <26 =12).
Giiy |of3’ - W¢”<_

iv) |less” - <”)<p|| -
v (£ - mw L, =12).
(vi) | fij A amfl(n)” %(1 <m<nij=12).
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vii) || £ - ,kﬁ(”‘)” < (i) kl=12).

(viii) [|AS” + (")—1”231.

n

By Eqgs. (46)—(48), there exists a matrix unit (f;; ﬁjzl € M' n M satisfying the
following conditions.

. ; 1
lpofii — fidull < %(l = 1,2),
) . 1
lPewfiz — 1200l < P

. e po ]
lfwfor = 2 for ol < 5.

Since M' N M?® is o w-invariant, by Takesaki’s Theorem, there exists a normal
faithful conditional expectation E:M® - M'n M® with ¢® = ¢, o E. Since
fij € M'n M, we have E(f;;) = f;; . Therefore for every a € M, we have

(p“fi — fup®) (@) = o®(fua — afyi) = ¢, © E(fya — afy;)
= @ (fiiE(a) —E(a)fi) = (Pufii — fiifpw)(E(a)),
and hence [[@®fi;i — fi@® |l < 9w fii — fi®oll- Since o fi; — fue®ll =
lpwfii — fiiPwll, we have
1
lo®fii — fu@®ll = |9ufii — fidull < o™ (i=1.2).

Similarly, we have

1
— < —
||<P fiz — Af120? | < o

1
w _ /’l w < S
lo® f21 f210%1l o
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Choose (fl(k)) € M®(i,j = 1,2) such that f;; = (fl(k)) . They can be chosen to

satisfy ” fig.k) ” < 1. By the definition of fij and the matrix unit property, together
with Lemma (4.2.30), we have

(i) lim,._,,, ”(pfl(k) (k)go” —(i=12).

(i)« limy, || 0 = 265 00| < 2

k k
o0 — 2<1>g0| <L

(iv)*limy,_,, -

W« limi |05 <P = 06 = 1.2)

(vi)* limy_,, |fi§.k)a amf(k)” =0(m=1,i,j = 1,2).

(vii)s limy, || £99 18 — ,zf(")|| = 0(i,j, I, m = 1,2).

m

(viii)* lim_,,, || f; ” e +f(k) ||z = 0.

For fixed n, there are only finitely many conditions. Therefore there exists
k = k(n) € N such that £ satisfies all the conditions (i)—(viii) in the claim.

2
Claim 2. If (fl.g.’”) € M satisfies conditions (i)—(viii) in Claim 1 for all n > 1,
ij=1

then (f(")) € M holds fori,j = 1,2.
n

By (i), (f(’”) € £°(N, M) holds. Let (b,)2, € I, With sup,sq|b, ]l < 1.

Then (f(n)b ) € L, holds automatically. On the other hand we have

o (770 (770n) ) = o (£ 00i {(77) = 1Pl + o (75 bubif)
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< [l (52) 1, NG =182, + (o = cnsio) (bubicsi”)
+ c(i, ]) |<p (b bnf]’}fl("))l

< [bylI? - 1+— 1Ball? + (i Dlbubilly || £ (n)”

3 L. . n-w
= % + C(l;])”bnbn”qo — 0,
where

1 =,
c(i,j:=4A (i=1j=2),
AT (i=2j=1)
This shows that (f§">bn) € L;,, and hence (f.{Vb,) € I, = £, N £;,. Similarly,

we have ( f(")) € I,,. This proves that (f(”)) e M fori,j=1,2.
n

w
Therefore by Claim 1 and Claim 2, we see that (gl])l] _1, Where g;;: = (flgn))

is a well-defined matrix unit in M’ n M®, and using conditions (i)—(viii) in Claim
1, we have

9iPw = Pugi(i =1,2),
Vw912 = 191290,
P21 = /1_1.921¢w-

In particular, g; € Ny, (i = 1,2) holds and 4 is in the point spectrum of A,
Then we have

D (g11) = 96 (g12921) = (92190)(G12)
= M@0 921)(912) = 19, (g21912)
= A9y (g22),
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and hence ¢,(911) = 1/+1_,1 which is neither 0 nor 1. Therefore g,; € N;,_ is a

nontrivial projection. This implies dim(N,_) = 2, a contradiction. Hence N must
be C.

Finally, we remark that there is no difference between M, and M’ N M® when
M is of type III,.

Proposition (4.3.4) [4]:

If M is a o-finite type 111, factor, then M' N M® is a finite von Neumann algebra
and M' n M® = M, holds.

Proof:

Let ¢ € S,;(M). By Proposition (4.2.25), the Golodets state ¢, = @®|ynpe
does not depend on ¢. Hence by Corollary (4.2.6)(iii), we have

o(8p,)= [ o@p)c (] o)
YESns (M) YESns (M)

= (] e@p=son=pu
PESnt (M)

whence a(4,,) = {1} because 0 ¢ g,,(4,, ). This shows that ¢, is a normal

faithfultrace on M'n M®. Since M, is the centralizer of ¢, by Proposition
(4.2.31), we see that M' N M“w = M, holds.

We study the factoriality and the Murray—von Neumann—Connes type of the
ultraproduct of factors.

The answers to factoriality/type questions for the Ocneanu ultrapower M of a
semifinite factor M has been known. In fact, it has been known to experts that for a
von Neumann algebra M with separable predual, (M ® B(H))® = M® ® B(H)
and (M ® B(H)),, = M, ® C holds, where H is a separable Hilbert space. The
proof can be found. On the other hand, it is well-known that M® is a type I1, factor
if so is M. This shows the following folklore result:
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Proposition (4.3.5) [4]:

Let M be a semifinite factor with separable predual. Then M is a factor. If M is
of type I,,(n € N U {o0}),II; or I, S0 is M®.

On the other hand, the situation for the factoriality of the Groh—Raynaud
ultraproduct is very different. Based on the local reflexivity principle for Banach
spaces and the fact that B(H)** is not semifinite, Raynaud showed that [J“B(H) is
not semifinite (for a free ultrafilter U on a suitable index set I and infinite-

dimensional H). We prove that [[R is not semifinite, where R is the hyperfinite
type II; factor. For a fixed 4 € (0,1), put p; = diag (m m) € M,(C) +, and let
R; = Qy(M,(C), Tr(p, ) be the Powers factor of type III;. Define ¢,, € S,,¢(R)

by

®Tr(p,1)® ® Tr, n>1.

—n+1
Proposition (4.3.6) [4]:

There exists a normal injective *-homomorphism m:R; — (R, ¢,,)* whose
range is a normal faithful conditional expectation &: (Rg,)“ = m(Ry).

This shows that
Proof:

Put4,,:= ®;-,M,(C) ® CQ C ®--- considered as a subalgebra of R;, and let
A, be the same algebra now considered as a subalgebra of R. Moreover, put

For x € A, let & denote the corresponding element in A. Define now a *-
monomorphism my: A = £°(N,R) by my(x) = (X),,,x € A (constant sequence).
Note that for x € A4,,, (im € N fixed), we have

Pn(X) = @y (x), Jt(pn(x) = Gt(p’l(x), n = m.
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Since a(Atr(p,y) = 0(pa) - 0(py ") = {4, 1,271}, we have

m
o ) Brrony | = G am1,.. 4y
k=1

Therefore it holds that
A,, € R(c%", [mlog A, —mlog 1])

for all nm. Thus by Lemma (4.2.11), my(4,,) € M (R, ¢,) holds for all m € N
and hence also ny(4) € M“(R, ¢,) holds. Let m;: A - M®:= (R, ¢,)“ be m,
composed with the quotient map from M*(R,¢,) onto M® = M“(R,¢,)/
1,(R, @,;). Then it is elementary to check that

®(m () = p2(x), x€A

where ¢“: = (¢,,)®. Using Theorem (4.2.4), we also have
Jt('ow(nl(x)) = my (0. *(x)), x €EAtER.

Therefore m; extends to a normal *-monomorphism m of R, = A%°¢ onto a von

Neumann subalgebra w(R;) of M®, which is invariant under at"’w (t € R), whence
there is a normal faithful conditional ¢@®-preserving expectation of M® onto
7T(R/1).

Let M be a o-finite type 111, (0 < A < 1) factor. We show that [[*M, as well as
(M, @,)®, is again a type IlII; factor, and the isomorphism class of (M, ¢,,)® does
not depend on the choice of (¢,,), € S,s(M). To do this, we first recall the state
space diameter of factors. Let M be a von Neumann algebra. Then an equivalence
relation ~ on S,(M) is defined by ¢ ~ ¢ if they are approximately unitarily
equivalent, i.e., there is a sequence of unitaries (u,), € U(M) such that
lim,, .|l — u,pu;|| = 0. Denote by [¢] the equivalence class in S,(M)
represented by ¢ € S,(M). Then S,(M)/~ is a metric space by

d([el. [¥D == inf |l —uypu’|l, [e]l[y] € Sy(M)/~.

ueuU(M)
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Proposition (4.3.7) [4]:

(R, ¢,,)? is not semifinite.

Therefore, we have
Theorem (4.3.8) [4]:

[1*R is not semifinite, and not a factor.
Definition (4.3.9) [4]:

The state space diameter of M, denoted as d(M) is defined by
d(M) := sup d([e],[yD.

P PESL(M)

It holds that d(M) < 2, and d(M) = 2 if M is not a factor. By the result of
Connes Stgrmer, Connes—Haagerup—Stermer, and Haagerup—Starmer, the explicit
form of d(M) is given as follows.

Theorem (4.3.10) [4]:

Let M be a factor. Then the d(M) is

(i) 2(1—1)if Misof type I, (n € N U {eo}).
(if) 2 if M is of type II.
(iiil) 2 222 if M is of type 11, (0 < 1 < 1).

1+A2

Let (M,,, H,),, be a sequence of standard von Neumann algebras, and define
the Groh—Raynaud ultraproduct N = [[“M,,. We will show the diameter formula
d(N) = lim,,_,, d(M,,).

Lemma (4.3.11) [4]:

Let (@n)n (Wn)n € [TnenSn(M) and let ¢ = (¢,), and ¥ = (), be the
corresponding normal states on N (see Theorem (4.1.25)). Then

d(lo], [¥]) = lim d([p], [D).
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Proof:

For each n € N, choose a unitary u,, € M,, such that

1
lpn — unpntnll < d([pnl [bnD) +—,
then with u := (u,,), € N we have
lo —wpu™|| = lim [l@, — upppupll < lim d([@,], [Yn D).
n-w n-w

Hence d([¢], [¥]) lim,,_,, d([@n], [¥n]).

For the converse inequality, we use that the unitary group of m,((M,),) is
Strongly = -dense in the unitary group of N by the Kaplansky density Theorem (cf.
Definition (4.1.7)). Hence given € > 0, we may choose a unitary u,, € M,, for each
n € N, such that with u := (u,),,, we have

lo —upu’|| < d([e], [¥D) +&.
But then
lim d([on], [n]) < limllop — uppninll = llo —upu’ll < d(le], [Y]) + &
Since € > 0 was arbitrary, we obtain d([¢], [¥]) = lim,,,, d([@,], [¥.]).
Lemma (4.3.12) [4]:
With the above notation, d(N) = lim,,_,, d(M,,).
Proof:

For all ¢,¢ € S,(N) we may, by Corollary (4.1.26), choose normal states
(@n), W) TnenSn (V) such that ¢ = (¢,), and ¥ = (YPy,),. By Lemma (4.3.11),

d([@n], [n]) = lim d((@,], [n]) < lim d(M,).
Hence d(N) < lim,_,, d(M,,).

Conversely, we may for each n € N choose ¢,,, ¥,, € S,,(M,,) such that
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1
d([gon]' [d)n]) = d(Mn) - %» n € N.

Let ¢ := (¢,), and Y := (Y,,),. By Lemma (4.3.11), we get (taking the limit of
the inequalities above): d([¢], [¥]) = lim,_,d(M,). Hence d(N) =
lim,,_,,, d(M,,).

Theorem (4.3.13) [4]:

Let M be a o-finite factor of type III;(A # 0). Then [[“M is a type III; factor.
Moreover, for any sequence (¢,,),, € S,s(M), (M, @,))® = M® isalso a factor of

type 111,

Proof:

Let p :=supp(e,), Where ¢, = (¢,), € M,),. Then by Proposition
(4.1.17), we have

w
(M, @,))® = pNp, N := HM.
By Theorem (4.3.10), the state space diameter of N is
1
1—- 12

T
1+ A2

d(N) =limd(M) = 2
n-w
Hence N is a type III, factor, so is its corner pNp. Since all o-finite projections in
a type III factor are equivalent, all (M, ¢,,)®’s are mutually isomorphic.
Remark (4.3.14) [4]:

Let M be a o-finite factor of type I1I[;(0 < A < 1). Then the factoriality of M®
can be shown using Theorem (4.2.4).

Proof:

Let x € Z(M®). Let ¢ € S,¢(M) be such that g’ = id, where T = —2m/log 1 .
By Proposition (4.2.24), we have
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X € Z(M®) € (M®) o = (M,,)”.

Then by Takesaki’s Theorem for periodic state, M, is a type II; factor and
o(A,) = {A";n € Z} U {0}, whence (M,,)® is also a type II; factor by a standard
argument. This shows that

xe(M,)" nm®y cz((M,)") =C
Therefore M“ is a factor, and since (M®) ,« is a factor, we have
S(M®) = o(Aye) = a(b,) = {2 n € Z} U {0}.
This shows that M is a type III, factor.

As we have seen, in the case of type III[;(4 # 0) factor, the Ocneanu
ultraproduct (M, ¢,,)® does not depend on the choice of (¢,,),,. In this section we
see that the situation is different for the case of type 111, factors. Moreover, we will
show that M® is not a factor.

Lemma (4.3.15) [4]:

Let a be a continuous action of a locally compact abelian group G on a factor
M. Denote by G the Pontrjagin dual of G. Then the family F of subsets of G of
the form {Sp(a®) + K}, where e is a non-zero projection in M% and K is a
compact neighborhood of 0 in G, forms a directed set with intersection I' («).

Lemma (4.3.16) [4]:

Let o be a continuous action of R on a factor M, and assume there is ¢ > 0
such that

Sp(o) N {[=2c] U [¢, 2c]} = ¢,

where we identify R = R . Then there exists h € M?,—c/2 < h < c¢/2 such that
the action ¢’ of R defined by

ol (x) := e g, (x)e!", x € M,t € R,

satisfies Sp(¢') N (—c, c) = {0}.
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Lemma (4.3.17) [4]:

Let M be a o-finite factor of type IIl,. Then for each n € N, there exists
@, € Spe(M) such that Sp(a®r) N (—logn,logn) = {0}.

Proof:

For ne N and € > 0, define I, :=[-2logn,—logn] U [logn,2logn] and
K. := [—¢,€]. Assume that there is n > 2 such that Sp(e¥) NI, # ¢ for every
Y E Spe(M). Fix 3 € 5p¢(M). Let e € Proj(M,)\{0}. Since M = eMe, the
assumption implies that Sp(c¥e) N I, = ¢. Now given finitely many e;,..., ey €
Proj(My)\{0} and &;,...,ey > 0. By Lemma (4.3.15), there is e € Proj(M,,)\{0}
and € > 0 such that

N
® = I 0 {5p(0¥) + K} < I n [ |{Sp(o¥*) + Ko}

i=1
Therefore by the compactness of In and by Lemma (4.3.15), we have

¢ *1,N ﬂ {Sp(o¥¢) + K.}

0¢e€M¢,s>0
=1, nT(c¥%) = I, nlog(S(M)\{0})

=I,N {0} = ¢,
which is a contradiction. Therefore for each n € N, there is ¥,, € S,(M) such that

Sp(a¥n) NI, = ¢. Then choose h,, € My, , —%logn <h, < %logn as in Lemma
1

(4.3.19) for .. Then set @, := P (hy, ), hy, = (hy +7logn +1) . Then we
have ¢, € S (M) and Sp(c¥n) N (—logn,logn) = ¢.

Theorem (4.3.18) [4]:

Let M be a o-finite type III, factor. Then there exists a sequence {¢, }n=; Of
normal faithful states on M such that (M, ¢,,)® is isomorphic to the finite von
Neumann algebra (M, ,7,)® where t,,: = @,|M,, .
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Proof:

By Lemma (4.3.17), for each n € N there exists ¢, € S,s(M) such that
Sp(a?n) N (—logn,logn) = {0}. Let x = (x,)® € (M, p,)®. By Proposition
(4.2.11), x can be approximated strongly by elements of the form (y,)®, where
(Y satisfies y,, € M(c%n,[—a,a]) for each n for a fixed a > 0. Fix one such
(y,) and a> 0. Let n, € N be such that a log n,. Then by Sp(a®r)n
(—logn,logn) = {0}, for n > n, we have

M(o%, [—a,a]) € M(a®, [—logng,logng]) = M, ,

whence  (y,)? € (M,, ,7,)®, where T, := @,|(M,), . Since (x)® is
approximated by these elements, (x,)* € (M,, ,7,)“ holds too. This finishes the
proof.

Lemma (4.3.19) [4]:

Let A =L"(X, ) be a (possibly non-separable) diffuse abelian von Neumann
algebra, where (X, ) is a probability space without atoms. Let T be an ergodic
transformation on (X,u). Let oa(f(w):=f(T lw) be the corresponding
automorphism of A. Then a® € Aut(A®) is not ergodic.

Proof:

By Lemma (4.3.22), we can find measurable sets B c X(n € N) with
u(B, ATB),) S%. Then put p := (1B,)® € A®. By assumption, p is an a®-
invariant projection in A“\{0,1}. Hence a® is not ergodic.

We next show that for type III, factors, discrete decomposition is preserved
under the Ocneanu ultrapower.

Let M be a type III, factor. There is a normal faithful lacunary weight ¢ on M
such that M, is of type Il with diffuse center, and let 7 := (le(p. There is
0<Ay<land U € M(c?,(—oo,logl,]) such that 8 = Ad(U)|M(p € Aut(M,,) is
a centrally ergodic automorphism satisfying 7 o« 8 < A,7 . In this setting, we have
M = M, %, Z and ¢ = 1 (dual weight of ) under this isomorphism. We call this a
discrete decomposition of M. Similar decompositions are possible for type
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III;(0 <A< 1) factors, in which case we have 108 =4, and UE€
M(c?,{logA}).

Remark (4.3.20) [4]:

Schmidt showed that if (X, u) is a standard nonatomic probability space, there
exist measurable sets {B,}n—; € X which are non-trivial asymptotically T-
invariant sets. That is, it satisfies

lim u(TB, AB,) =0, lim infu(B,)u(1 —B,) > 0.
n—oo n—>0oo

Therefore p := (1B,)® is a non-trivial projection in (A®)*“, and Lemma (4.3.19)
follows. Since we could not check if his proof works for non-separable space
(X, u), we add a proof of Schmidt’s result for non-separable space below (Lemma
(4.3.22)).

We need a slight modification of Rokhlin’s Theorem from due to Kawahigashi
Sutherland-Takesaki. We include a proof for reader’s convenience.

Lemma (4.3.21) [4]:

Let (Q,u) be a non-atomic probability space, T:X — X be a non-singular
ergodic transformation. Then for each n € N and € > 0 there exists a measurable
subset E < X such that

(i) E,T(E), ..., T"1(E) are mutually disjoint.
(i) u(X — U T'E) < e

(i) u(E) < %
Proof:

Let v, := Z}‘;Olyon. Then v is absolutely continuous with respect to pu.
Therefore given € > 0, there is § = §(n, €) > 0 such that

uF)<é = v, (F)<e

holds. This implies that u(T/F) <& 0<j<n-—1. By the Rokhlin tower
Theorem, there exists a measurable set F ¢ X such that F,TF,...,T" 1F are
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mutually disjoint, and G := X — U723 T/F has u(G) < 8(n, €). In particular, we
have u(T’G) <e0<j<n-1. Since Y'-gu(T’F)<1, we may choose
k €{01,...,n — 1} with u(T*F) <~ Put E:=T*F. Then E,TE,...,T""'E are
mutually disjoint, and

n-1 n-1
X—UTJ’E=T’< X—UTfE = Tk@.
j=0 j=0

whence u(X — UTZg T/E) < &, and u(E) <

S|r

Lemma (4.3.22) [4]:

Let (X,u) be a non-atomic probability space, T:X — X be a non-singular
ergodic transformation. For each n > 2, there exists a measurable set B,, € X with

u(B,) = %such that u(TB, A B,,) < % holds.
Proof:

Put e = %and choose E c X as in Lemma (4.3.21). Since u has no atoms, there

exists a family {G(t)}.e[o1; Of measurable subsets of X with the  following
properties:

(i) G(0) = ¢,G(1) = E.
i0<t<s<1=G(t) cG(s).

(i) u(G()) = tu(E),0 <t < 1.
Put

n-—1
B(t) := UTJ'G(t), 0<t<l1.
j=0

We see that B(0) = ¢,B(1) = UTZy T/E, so that u(B(1)) >1- % > % Since
t = u(B(t)) =Xiou (TfG(t)) is continuous by the choice of {G(t)}e[o,17, We
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can find ¢, €[0,1] with u(B(to))=%. Then put B,:= B(t,). Since
E,TE,...,T" 1E are disjoint, we see that

B,ATB, cT"EUE Cc GUE,

where G :=X — U}‘;OleE (the last inclusion is true modulo null sets, since
w(T"ENT/E) =0 for 1 <j <n— 1). Therefore we have

4(B, ATE,) < () + u(E) <

Lemma (4.3.23) [4]:

Let N be a von Neumann subalgebra of M, and let 8 € Aut(N) be such that
p(6%) = 0 for all k = 0. Suppose N satisfies

(i) NNnM c N.

(if) There is a normal faithful conditional expectation E from M onto N.
(iii) There is U € U(M) such that UxU* = 8(x) forall x € N.

(iv) M is generated by {U} U N as a von Neumann algebra.

Then there is a *-isomorphism ®:M — N x4 Z sending U (resp. N) to the
canonical implementing unitary of 8 (resp. the canonical image of N) in the
crossed product.

Proposition (4.3.24) [4]:
Let M be a o-finite factor of type IIl, with discrete decomposition M =

M, %9 Z (¢ is chosen as above). Then M* = (Mq,)w X go Z.

Recall that for a von Neumann algebra M and 8 € Aut(M), p(8) is the greatest
projection e € M9 for which 6|y, is an inner automorphism.

Proof:

We have to verify (i)—(iv) in Lemma (4.329) for (M,,)” = M® and 6. Let U

be the implementing unitary of 8 in the discrete decomposition. Then we have
UeM(c?, (—oo,logly]) for some 0<Ay,<1, and ¢ =7 € Wy (M) IS
lacunary. Also, T 0 8 < A,47.
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Since ¢ is strictly semifinite, there is a normal faithful conditional expectation
E:M — M,. By Proposition (4.2.24), we have (M), = (M,)“, so that the
normal faithful ¢®-preserving conditional expectation coincides with E“: M® —
(M,)“. So (i), (iii) are clearly satisfied. Regarding p((6“)*), note that ¢ :=
(p“’|(M ) is a normal faithful semifinite trace satisfying ¢ o 8“ < A,t®. This

0]

implies, that p((8¢)*) = 0 for all k # 0.

Next, we show (iv): M® is generated by (M,,)“ and U (canonical image of U
in M®). Let {p;};; be a net of projections in M, such that 7(p;) < o(i € I) and
p; 7 1 strongly. Then put p; := V=1 8™ (p;). Then it holds that

0

) < ) 1(6mwD) < ) ) < oo,

n=1

and 6(p;) < p;,p; 7 1 strongly. Now fix one of such finite projection p = p; in
M, and we prove that p(M®)p is generated by pQp, where

Q := span ((M@“’ U ,Q(M"’)w U Uk ,Q(U*)k (M(p)w)

By construction, each x € M = M,, X4 Z has a formal expansion

(0.0]

x~x(0) + Z{x(k)uk + (U*x(=k)3,

k=1
where x(k) € M, (k € Z) is uniquely determined by
x(k) = E((UD"), x€(-k)=EU*x) (k=0)

(the order of U* and x(k) is a matter of convention). Let x € M®, and put
y :=pxp € (M?), (here we used p(M®), =(M*®)®. Since p € (M®),0 =
(M,,)”, we may consider ¢ as a faithful normal positive functional on (M®),.
Let € > 0 be given. By Proposition (4.2.9), we may find a > 0 and z = (z,)® €
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(M?), with z, € My(c¥?,[-a,a]) (n € N) such that ||y —z|ly,e <e, and
lIz|]| < [ly]l. Consider the expansion of z, (in M):

2,~2,(0) + E{Zn(k)Uk + (Ukz,(=k)}, n€EN.
k=1

LetV := Up. Then by UpU* = 6(p) < p, we have
V2 = UpUp = Up(UpU*U = UB(p)U
= U?p.
Similar computations show that
vk =U*p, (V9% k=>1.

We see that for k > 0,

zn (k) = E(2,(U")*) = E(2,p(UM)*) = E(2,(V)"),

zn(—k) = E(U"pz,) = E(V¥z,).

In particular, we have z, (k) € pM(pH"(p),zn(—k) € Bk(p)M(pp and

zn(R)U* = 2, (R)VE, (U")*z,(—k) = (V) z, (k).

Therefore the expansion of z,, can be rewritten as

2,~2,(0) + z{zn(k)Vk + (V)2 (=k)}, n € N.
k=1

Since U € M(a?, (—,log 44]), we have
Vkz, € M,(a%,(—0,klog i, + al), z,(V*)* € M,([—klog Ay — a, o))

for each k>1. Let K:=[a/(—logdy)]+ 1€ A, and consider the GNS
representation of ((pp, (Mq,)p).E induces ¢,,-preserving conditional expectation

E,: M, - (M(p)p. Then for k > K, we have
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klogly +a <0< —klogl, — a.

Hence
Zn(k)f(pp = Ep(Zn(V*)k)'S(pp = 1{1} (A<pp) (Zn(V*)k$<pp) =0,

Zn(_k)f(pp = Ep(Van)ffpp = 1{1}(A<pn) (szn'app) = 0.

Since fq,pis separating for M,,, we have z, (k) = 0, |k| = K. Therefore we have

K—-1
2, = 2,(0) + Z{zn(k)Vk + (V)kz,(—K)}, nEN.
k=1

Now, since (M¢)p is a finite von Neumann algebra, each (zn(k))n(lkl <K-1)
Isin M® (N, M(pp), and we have

K-1

2= (22()” + ) {(2a00) V¥ + W (za(-0))"} € pOP.

k=1
Since € > 0 is arbitrary, y = pxp can be approximated strongly by elements from
pQp. Hence pM®p = pQp*°t. Since i is arbitrary (recall that p = p;), this implies
that x is in Q3°t as well. This proves the claim.

Namely, let x € ((M(p)w)’ N M®. Then by the above, x has a formal expansion
by x~x(0) + iy (x()U* + (U"*x(=k)) (x(k) € (M,)”). Since ax = xa
for a € (M(p)w, this implies that ax(k) = x(k)0*(a), 6% (a)x(=k) = x(=k)a
for all a € (Mq,)w and k > 0. Then by p((6°)¥) =0(k #0) and we have
x(k) =0,k # 0 and hence x = x(0) € (M,)”. This proves that ((M(p)w)’ n
M® c (Mq,)w.

Now we are ready to prove the non-factoriality of the Ocneanu ultrapower for
type III, factors.
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Theorem (4.3.25) [4]:

Let M be a o-finite factor of type III,. Then M is not a factor.

Proof:

Now we show that M® is not a factor. By Claim 1, M is generated by (M,,)"
and U®, which implements 6“. Representing the center of M, as L* (X, ) where
(X,u) is a diffuse probability space, implies that the center of (Mq,)w IS

L*(X,uw)®. By Lemma (4.3.19), 8¢ is not centrally ergodic. This implies that there

is a nontrivial element x € (L* (X, ©)®)?“, whence a nontrivial element in Z(M®).
Therefore M is not a factor.
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