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Chapter two 
Micro-electromechanical systems & particle swarm optimization overview 

2.1. Literature Review: 
A number of robust optimization methods have been applied to design MEMS 

devices. Robust optimizations for MEMS have been reported as: 

 Gyroscopes:[10]They made robust optimal design of shape and size is 

formulated for vibratory microgyroscopes that can reduce the effect of 

variations from uncertainties in micro-electromechanical systems 

fabrication, [11] it discusses a simple and effective robust optimization 

formulation and illustrates its application to MicroElectroMechanical 

Systems (MEMS) devices by minimizing a gradient index (GI)  and 

[12]They focus in reduce the influence of microfabrication errors on the 

design performance of a tuning fork vibratory micromachined gyroscope, 

and to enhance the performance robustness in the volume production 

environment. 

 Accelerometer: [13]It reports on the optimization and robust design of a 

MEMS accelerometer using the genetic algorithm technique and [14]it 

studies a robust optimization approach for a MEMS accelerometer to 

minimize the effects of temperature variations. 

 Quartz crystal microbalance:[15] it presents method for the design of 

quartz crystal microbalance (QCM) by using the finite element analysis 

(FEA) software. 

 Resonator: [16]itprovides a stability analysis and design method for 

MEMS resonators for the single material and multi-layer structures. 

 Cantilever:[17] it take design considerations into mechanical as well as the 

electrical properties of a unimorph piezoelectric cantilever. 
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 Micro-mirror: [18]it discusses the applicability of a reliability- and 

performance-based multi-criteria robust design optimization technique for 

micro-electromechanical systems with example of the optimization carried 

out for micro-mirror by finite element model. 

 Filters:[19]it discuss optimal structure for MEMS in the field of 

telecommunication. 

 Magnetometers: [20] it discuss Optimal design of a resonating MEMS 

magnetometer for a multi-physics model for a beam subject to current flow 

in a magnetic field proposed which takes into account thermal and non-

linear geometrical effects applied to the study Lorentz-force in MEMS 

magnetometer and[21]discuss optimization with a new z-axis Lorentz force 

microelectromechanical systems magnetometer design and optimized for 

sensors. 

 Electrostatic actuator: [22] it discusses structure optimizationand 

modeling technique for electroststic micro devices by genetic algorithm. 

 Electrothermal actuator:[2]it discuss optimal design using entropy for v-

beam micro actuator by finite element modeling and[3] it proposes a 

method to optimize the fillet radius of the electrothermal V-beam 

microactuatorsdueto bent beam connected with electrical pad by genetic 

algorithm combines with the finite element. 

 

This research proposes optimal method PSO (particle swarm optimization) to 

design fillet shape of electrothermal V-beam microactuator by decreasing beam 

entropy generation rate and simulation the results by MATLAB and investigated 

parameters do not achieve in the past designs developing more effective optimizer 

with accurate results agree with calculations.   
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2.2. MEMS definition: 

Micro-electromechanical systems (MEMS) are a process technology used to create 

tiny integrated devices or systems that combine mechanical and electrical 

components. They are fabricated using integrated circuit (IC) batch processing 

techniques and can range in size from a few micrometers to millimeters. These 

devices (or systems) have the ability to sense,Control and actuate on the micro 

scale, and generate effects on the macro scale[1]. 

While the device electronics are fabricated using ‘computer chip’ IC technology, 

the micromechanical components are fabricated by sophisticated manipulations of 

silicon and other substrates using micromachining processes. Processes such as 

bulk and surface micromachining, as well as high-aspect-ratio micromachining 

(HARM) selectively remove parts of the silicon or add additional structural layers 

to form the mechanical and electromechanical components. While integrated 

circuits are designed to exploit the electrical properties of silicon, MEMS takes 

advantage of either silicon’s mechanical properties or both its electrical and 

mechanical properties[1]. 

In the most general form, MEMS consist of mechanical microstructures, 

microsensors,Microactuators and microelectronics, all integrated onto the same 

silicon chip. Microsensors detect changes in the system’s environment by 

measuring mechanical, thermal, magnetic, chemical or electromagnetic 

information or phenomena. Microelectronics processes this information and signals 

the microactuators to react and create some form of changes to the environment. 

MEMS devices are very small; their components are usually microscopic. Levers, 

gears,pistons, as well as motors and even steam engines have all been fabricated by 

MEMS Figure (2.1). However, MEMS is not just about the miniaturization of 
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mechanical components ormaking things out of silicon (in fact, the term MEMS is 

actually misleading as manymicromachined devices are not mechanical in any 

sense). MEMS is a manufacturingtechnology; a paradigm for designing and 

creating complex mechanical devices and systemsas well as their integrated 

electronics using batch fabrication techniques[1]. 

 

 
 

Figure (2.1) (a) A MEMS silicon motor together with a strand of human hair [23], 

and (b)the legs of a spider mite standing on gears from a micro-engine [24] 

 

MEMS have several distinct advantages as a manufacturing technology. In the first 

place, theInterdisciplinary nature of MEMS technology and its micromachining 

techniques, as well asits diversity of applications has resulted in an unprecedented 

range of devices and synergiesacross previously unrelated fields (for example 

biology and microelectronics). Secondly,MEMS with its batch fabrication 

techniques enables components and devices to be manufactured with increased 

performance and reliability, combined with the obviousadvantages of reduced 

physical size, volume, weight and cost. Thirdly, MEMS provides thebasis for the 

manufacture of products that cannot be made by other methods. These factorsmake 
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MEMS potentially a far more pervasive technology than integrated circuit 

microchips.However, there are many challenges and technological obstacles 

associated withminiaturization that need to be addressed and overcome before 

MEMS can realize itsoverwhelming potential[1]. 

2.2.1. MEMS Classifications: 

Figure (2.2) illustrates the classifications of microsystems technology (MST). 

Although MEMSis also referred to as MST, strictly speaking, MEMS is a process 

technology used to createthese tiny mechanical devices or systems, and as a result, 

it is a subset of MST. 

 

Figure (2.2)Classifications of microsystems technology [25]. 

Micro-optoelectromechanical systems (MOEMS) is also a subset of MST and 

together withMEMS forms the specialized technology fields using miniaturized 

combinations of optics,electronics and mechanics. Both their microsystems 

incorporate the use of microelectronicsbatch processing techniques for their design 

and fabrication. There are considerable overlapsbetween fields in terms of their 

integrating technology and their applications and hence it isextremely difficult to 

categories MEMS devices in terms of sensing domain and/or theirsubset of MST. 

The real difference between MEMS and MST is that MEMS tends to 

usesemiconductor processes to create a mechanical part. In contrast, the deposition 
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of a materialon silicon for example, does not constitute MEMS but is an 

application of MST. 

 

2.2.1.1. Transducer 

A transducer is a device that transforms one form of signal or energy into another 

form. Theterm transducer can therefore be used to include both sensors and 

actuators and is the mostgeneric and widely used term in MEMS. 

2.2.1.2.Sensor  

A sensor is a device that measures information from a surrounding environment 

and providesan electrical output signal in response to the parameter it measured. 

Over the years, thisinformation (or phenomenon) has been categorized in terms of 

the type of energy domains but MEMS devices generally overlap several domains 

or do not even belong in any one category. These energy domains include: 

 Mechanical - force, pressure, velocity, acceleration, position. 

 Thermal - temperature, entropy, heat, heat flow. 

 Chemical - concentration, composition, reaction rate. 

 Radiant - electromagnetic wave intensity, phase, wavelength, polarization, 

reflectance, refractive index, transmittance. 

 Magnetic - field intensity, flux density, magnetic moment, permeability. 

 Electrical - voltage, current, charge, resistance, capacitance, polarization 

[26,27, 28, 29]. 

2.2.1.3. Actuator 

An actuator is a device that converts an electrical signal into an action. It can create 

a force tomanipulate itself, other mechanical devices, or the surrounding 

environment to perform someuseful function. 

2.2.1.3.1. Electrothermal Actuator: 
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The actuator is deflect according to thermal expansion caused by omhic heating 

caused in microstructure when the current pass through anchors . 

The electrothermal actuators have been known as their large displacement and high 

force output (DeVoe 2002)The V-beam actuator (Gianchandani and Najafi 1996; 

Que et al. 2001) and U-shaped actuator (Pan and Hsu 1997; Huang and Lee 1999) 

are the two most cited and characterized electrothermal actuators, while two new 

sorts of electrothermal actuators, i.e., X-shaped and H-shaped electrothermal 

actuators, have been reported recently (Lee and Yeh 2005; Lee 2006a)[2]. 

2.2. 2. MEMS Applications: 

Today, high volume MEMS can be found in a diversity of applications across 

multiplemarkets .Table (2.1). 

Table (2.1) Applications of MEMS [30]. 
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2.2.3.Established MEMS Applications [1]:  

2.2.3.1. Automotive airbag sensor: 

Automotive airbag sensors were one of the first commercial devices using MEMS. 

They arein widespread use today in the form of a single chip containing a smart 

sensor, oraccelerometer, which measures the rapid deceleration of a vehicle on 

hitting an object. Thedeceleration is sensed by a change in voltage. An electronic 

control unit subsequently sends asignal to trigger and explosively fill the airbag. 

 

Figure (2.3) (a) the first commercial accelerometer from AnalogDevices (1990); its 

size is less than 1 cm2 (left) [31], and (b)capacitive sense plates, 60 microns deep 

(right) [32]. 

2.2.3.2. Medical pressure sensor: 

Another example of an extremely successful MEMS application is the miniature 

disposable pressure sensor used to monitor blood pressure in hospitals. These 

sensors connect to a patient’s intravenous (IV) line and monitor the blood pressure 

through the IV solution. 
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Figure (2.4) (a) Disposable blood pressure sensor connected to an IV line [33], 

(b) disposable blood pressure sensors (as shipped) [34], and (c) 

intracardialcatheter-tip sensors for monitoring blood pressure during 

cardiaccatheterisation, shown on the head of a pin [32]. 

2.2.3.3. Inkjet printer head: 

One of the most successful MEMS applications is the inkjet printer head, 

superseding evenautomotive and medical pressure sensors. Inkjet printers use a 

series of nozzles to spray drops of ink directly on to a printing medium. Depending 

on the type of inkjet printer the droplets of ink are formed in different ways; 

thermally or piezoelectrically. 

 

Figure (2.5)Thermal inkjet print technology [35] 
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2.3. Optimization Techniques: 

The aim of optimization is to determine the best-suited solution to a problem under 

a given set of constraints. Several researchers over the decades have come up with 

different solutions to linear and non-linear optimization problems. Mathematically 

an optimization problem involves a fitness function describing the problem, under 

a set of constraints representing the solution space for the problem. 

 Unfortunately, most of the traditional optimization techniques are centered around 

evaluating the first derivatives to locate the optima on a given constrained surface. 

Because of the difficulties in evaluating the first derivatives, to locate the optima 

for many rough and discontinuous optimization surfaces, in recent times, several 

derivative free optimization algorithms have emerged. 

 The optimization problem, now-a-days, is represented as an intelligent search 

problem, where one or more agents are employed to determine the optima on a 

search landscape, representing the constrained surface for the optimization 

problem [36].An optimization problem is made up of the following basic 

components[7]: 

 The quantity to be optimized (maximized or minimized), termed the 

objective function. 

 The parameters that may be changed in the search for the optimum, called 

design parameters. 

 The restrictions on allowed parameter values, known as constraints. 

 

 

 



15 
 

The optimization process finds the values (design parameters) that minimize or 

maximize (optimize) the objective function while satisfying constraints. Thus, the 

general optimization problem may be stated mathematically as: 

minmize      f(x),   x = (x , x … , x )  

 

subject to    c (x) = 0    i = 1,2, … , m  

 

c (x) ≥ 0, i = m + 1, … , m 

 

Where f(x) is the objective function, x is the column vector of n independent 

design parameters, and c (x) is the set of constraint functions. Constraint equations 

of the formc (x) = 0 are termed equality constraints, and those of the form 

c (x) ≥ 0 are inequality constraints. 

Generally, optimization techniques or algorithms can be broadly classified into 

deterministic, such as the steepest descent method, and stochastic, such as the local 

search method [37]. A deterministic algorithm progresses toward the solution by 

making deterministic decisions. On the other hand, stochastic algorithms make 

random decisions in their search for a solution. Therefore, deterministic algorithms 

produce the same solution for a given problem instance, whereas this is not the 

case for stochastic algorithms. 

Evolutionary algorithms (EA) are search methods that take their inspiration from 

natural selection and survival of the fittest in the biological world. EA differ from 

more traditional optimization techniques in that they involve a search from a 

“population” of solutions, not from a single point. Each iteration of an EA involves 

a competitive selection that removes poor solutions. Evolutionary computation 
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(EC), evolution strategies (ES), Particle Swarm Optimization (PSO), and genetic 

algorithms (GA) may be considered as EAs [38]. 

EAs and other stochastic search techniques seem to be a promising alternative to 

traditional or deterministic techniques. First, EA do not rely on analytic 

assumptions such as differentiability or continuity. Second, they are capable of 

handling problems with nonlinear constraints, multiple objectives, and time-

varying components. Third, they have shown superior performance in a variety of 

real-world applications[7]. 

2.3.1. Particle Swarm Optimization (PSO): 

PSO is a population-based stochastic optimization technique developed by 

Kennedy and Eberhart[5,6], and it has been inspired by the behavior of schools of 

fish and flocks of birds. Unlike other heuristic techniques of optimization, PSO has 

a flexible and well-balanced mechanism to enhance and adapt to the global and 

local exploration abilities. PSO has its roots primarily in two methodologies. 

Perhaps more obvious are its ties to artificial life (A-life) and the behavior of 

flocks of birds, schools of fish, and swarms in particular. It is also related to 

evolutionary computation and has ties to genetic algorithms and evolutionary 

strategies [39]. 

In general, PSO is based on a relatively simple concept and can be implemented in 

a few lines of computer code. It requires only simple mathematical operators and is 

computationally inexpensive in terms of both memory requirement and speed. It 

exhibits some evolutionary computation attributes; for example, it is initialized 

with a population of random solutions, it searches for optima by updating 

generations, and updating is based on the previous generations[7]. 

PSO has also been proved to perform well in test functions used in EA and may be 

used to solve many problems similar to those in EA. It appears to be a promising 
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approach, and early testing has found the implementation to be effective with 

complex practical problems. However, PSO does not suffer from some of the 

difficulties of EAs. For example, a PS system has memory, which the genetic 

algorithms (GA) do not have. In PSO, individuals who fly past optima are pulled to 

return toward them, and knowledge of good solutions is retained by all particles 

[40]. Whereas a GA can handle combinatorial optimization problems, PSO was 

initially used to handle continuous optimization problems. Subsequently, PSO has 

been expanded to handle combinatorial optimization problems and those involving 

both discrete and continuous parameters as well. Efficient treatment of mixed-

integer nonlinear optimization problems (MINLP) is a rather difficult issue in the 

optimization field. Unlike other EC techniques, PSO can be realized using only a 

short program in MINLP. This feature of PSO is one of its main advantages when 

compared with other optimization techniques [41]. 

2.3.1.1. The Structure of PSO: 

The PSO algorithm consists of the following basic components [39, 40, and 42]: 

• Particle position vector X: This vector contains the current location of the 

solution for each particle in the search space. 

• Particle velocity vector V: It represents the amount by which vector (both 

vectors have consistent units) will change in magnitude and direction in the next 

iteration. The velocity is the step size, the amount by which the changing of the 

values changes the particle direction through the search space; that is, it causes the 

particle to make a turn. The velocity vector is used to control the range and 

resolution of the search. 

• Inertia weight w (t): This is a control parameter that is used to control the 

impact of the previous velocities on the current velocity. Hence, it influences the 

trade-off between the global and local exploration abilities of particles. 
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• Best solution pbest: This is the best solution of the objective function that has 

been discovered thus far by a particular particle. 

• Best global solution gbest: This is the best global solution of the objective 

function that has been discovered by all particles of the population. 

PSO can be expressed mathematically for a given problem of D-dimensions i.e., D-

design parameters for each particle i and each channel d = [1… D], using: 

V = W ∗ V + σ ∗ rand [P − X  ] + σ rand [g − X  ]    (2.1) 

X = X  + V             (2.2) 

W = 푊 −
푊 −푊
푖푡푒푟푎푡푖표푛

 × 푖푡푒푟푎푡푖표푛          (2.3) 

 

Where 

• W is the inertia factor 

• V  is the value of channel d in the velocity vector for particle i 

• σ  is the cognitive learning rate 

• σ  is the social learning rate 

• rand1 and rand2 are random values in the range of [0–1] (accelerating), giving the 

current position of particle i along dimension d. 

2.3.1.2. The Trajectory of a Particle 

The heart of the PSO algorithm is the process by which is modified in Equation 

(2.1), forcing the particles to search through the most promising areas of the 

solution space again and again adding its velocity vector to its location vector to 

obtain a new location. Without modifying the values in, the particle would simply 

take uniform steps in a straight line through the search space and beyond. In each 

iteration, the previous values of constitute the momentum of a particle.  
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The momentum is essential, as it is this feature of PSO that allows particles to 

escape local optima. The velocities of the particles in each dimension are clamped 

to a maximum velocity Vmax, which is an important parameter. It determines the 

fineness or the objective function value with which the regions between the present 

position and the best target position thus far are searched. If Vmax is too high, the 

particles might fly past good solutions. On the other hand, if Vmax is too small, the 

particles might not explore sufficiently beyond locally good regions. In fact, they 

could become trapped in local optima, unable to move far enough to reach a better 

position in the problem space[7].The acceleration constants σ  and σ  in Equation 

(2.1) represent the weighting factors of the stochastic acceleration terms that direct 

each particle toward the pbest and gbest positions. Early experience with PSO has 

led to setting both the acceleration constants σ  and σ  to 2.0 for almost all 

applications[7].Vmax is thus the only parameter to be adjusted by the user, and it is 

often set to a value of about 10 to 20% of the dynamic range of the parameter in 

each dimension [43]. 

The selected population size is problem-dependent, and a population size of 20–50 

is quite common. It was found early on that smaller populations that were common 

for other EAs (such as GAs and evolutionary programming) were optimal for PSO 

in terms of minimizing the total number of evaluations (population size times the 

number of generations) needed to obtain a sufficient solution [44]. A flowchart for 

the PSO optimization process is given in Figure (2.6). 
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Figure (2.6) PSO flow chart [7] 
 

 

 


