Order information

HDLC3: ACN 435

<table>
<thead>
<tr>
<th>Item</th>
<th>Cat. No.</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDL-Cholesterol plus 3rd generation</td>
<td>04399803</td>
<td>200 tests</td>
</tr>
<tr>
<td>Calibrator f.a.s. Lipids (3 x 1 mL)</td>
<td>12172623</td>
<td>122</td>
</tr>
<tr>
<td>Calibrator f.a.s. Lipids (3 x 1 mL, for USA)</td>
<td>12172623</td>
<td>160</td>
</tr>
<tr>
<td>Precinorm L (4 x 3 mL)</td>
<td>10781827</td>
<td>122</td>
</tr>
<tr>
<td>Precipath HDL/LDL-C (4 x 3 mL)</td>
<td>11778552</td>
<td>122</td>
</tr>
<tr>
<td>Diluent NaCl 9 % (50 mL)</td>
<td>04489357</td>
<td>190</td>
</tr>
</tbody>
</table>

System information

HDLC3: ACN 435

Intended use

In vitro diagnostic test for the quantitative determination of the HDL-cholesterol concentration in human serum and plasma on Roche/Hitachi cobas c systems.

Summary

High density lipoproteins (HDL) are responsible for the reverse transport of cholesterol from the peripheral cells to the liver. Here, cholesterol is transformed to bile acids which are excreted into the intestine via the biliary tract. Monitoring of HDL-cholesterol in serum is of clinical importance since an inverse correlation exists between serum HDL-cholesterol concentrations and the risk of atherosclerotic disease. Elevated HDL-cholesterol concentrations are protective against coronary heart disease, while reduced HDL-cholesterol concentrations, particularly in conjunction with elevated triglycerides, increase the cardiovascular risk. Strategies have emerged to increase the level of HDL-cholesterol to treat cardiovascular disease.

A variety of methods are available to determine HDL-cholesterol, including ultra centrifugation, electrophoresis, HPLC, precipitation-based methods and direct methods. Of these, the direct methods are used routinely. Several approaches for direct measurement of HDL-cholesterol in serum have been proposed, including the use of magnetically responsive particles as polyvalent-metal combinations and the use of polyethylene glycol (PEG) with anti-apoptope B and anti-apoptope CII antibodies. This automated method for direct determination of HDL-cholesterol in serum and plasma uses PEG-modified enzymes and dextran sulfate. When cholesterol esterase and cholesterol oxidase enzymes are modified by PEG, they show selective catalytic activities toward lipoprotein fractions, with the reactivity increasing in the order:

LDL < VLDL = chylomicrons < HDL

Non-fasting sample results are slightly lower than fasting results. Comparable non-fasting results were observed with the beta quantification method. The Roche direct HDL-cholesterol assay meets the 1998 National Institutes of Health (NIH) / National Cholesterol Education Program (NCEP) goals for acceptable performance.

Test principle

Homogeneous enzymatic colorimetric test.

In the presence of magnesium ions, dextran sulfate selectively forms water-soluble complexes with LDL, VLDL and chylomicrons which are resistant to PEG-modified enzymes.

The cholesterol concentration of HDL-cholesterol is determined enzymatically by cholesterol esterase and cholesterol oxidase coupled with PEG to the amino groups (approx. 40%).

Cholesterol esters are broken down quantitatively into free cholesterol and fatty acids by cholesterol esterase.

In the presence of oxygen, cholesterol is oxidized by cholesterol oxidase to Δ4-cholestenone and hydrogen peroxide.

HDL-cholesterol + O₂ → PEG-cholesterol oxidase → Δ4-cholestenone + H₂O₂

2 H₂O₂ + 4-amino-antipyrine + HSDA⁺ + H⁺ + H₂O → purple-blue pigment + 5 H₂O

Reagents - working solutions

R1 HEPES buffer: 10.07 mmol/L; CHES 96.95 mmol/L; pH 7.4; dextran sulfate: 1.5 g/L; magnesium nitrate hexahydrate: > 11.7 mmol/L; HSDA: 0.96 mmol/L; ascorbate oxidase (Eupenicilium sp., recombinant) > 50 μkat/L; peroxidase (horseradish): > 16.7 μkat/L; preservative

R2 HEPES buffer: 10.07 mmol/L; pH 7.0; PEG-cholesterol esterase (Pseudomonas spec.): > 3.33 μkat/L; PEG-cholesterol oxidase (Streptomyces sp., recombinant): > 127 μkat/L; peroxidase (horseradish): > 333 μkat/L; 4-amino-antipyrine: 2.46 mmol/L; preservative

Precautions and warnings

For in vitro diagnostic use. Exercise the normal precautions required for handling all laboratory reagents. Safety data sheet available for professional user on request.

Reagent handling

Ready for use. The intrinsic pink color of the cholesterol reagent does not interfere with the test.

Storage and stability

HDLC3

Shelf life at 2-8 °C: See expiration date on cobas c pack label.

On-board in use and refrigerated on the analyzer: 12 weeks

Diluent NaCl 9 %

Shelf life at 2-8 °C: See expiration date on cobas c pack label.

On-board in use and refrigerated on the analyzer: 12 weeks
HDL-Cholesterol plus 3rd generation

Specimen collection and preparation
For specimen collection and preparation, only use suitable tubes or collection containers.
Only the specimens listed below were tested and found acceptable.
Serum.
Plasma: Li-heparin and K₂-EDTA plasma
EDTA plasma causes decreased results. ¹¹ (See note in NCEP guideline section.)
Fasting and non-fasting samples can be used. ¹² Collect blood by using an evacuated tube or syringe. Samples should preferably be analyzed on the day of collection.
The sample types listed were tested with a selection of sample collection tubes that were commercially available at the time of testing, i.e. not all available tubes of all manufacturers were tested. Sample collection systems from various manufacturers may contain differing materials which could affect the test results in some cases. When processing samples in primary tubes (sample collection systems), follow the instructions of the tube manufacturer.
Centrifuge samples containing precipitates before performing the assay.

Materials provided
See "Reagents - working solutions" section for reagents.

Materials required (but not provided)
See "Order information" section.
Distilled water
General laboratory equipment

Assay
For optimum performance of the assay, follow the directions given in this document for the analyzer concerned. Refer to the appropriate operator's manual for analyzer-specific assay instructions.
The performance of applications not validated by Roche is not warranted and must be defined by the user.

Application for serum and plasma

cobas c 311 test definition

<table>
<thead>
<tr>
<th>Assay type</th>
<th>2 Point End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction time / Assay points</td>
<td>10/6-33</td>
</tr>
<tr>
<td>Wavelength (sub/main)</td>
<td>790/600 nm</td>
</tr>
<tr>
<td>Reaction direction</td>
<td>Increase</td>
</tr>
<tr>
<td>Units</td>
<td>mmol/L (mg/dL, g/L)</td>
</tr>
<tr>
<td>Reagent pipetting</td>
<td>Diluent (H₂O)</td>
</tr>
<tr>
<td>R1</td>
<td>150 µL</td>
</tr>
<tr>
<td>R2</td>
<td>50 µL</td>
</tr>
<tr>
<td>Sample volumes</td>
<td>Sample dilution</td>
</tr>
<tr>
<td>Normal</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>2.5 µL</td>
</tr>
<tr>
<td>Decreased</td>
<td>15 µL</td>
</tr>
<tr>
<td></td>
<td>12.5 µL</td>
</tr>
<tr>
<td>Increased</td>
<td>135 µL</td>
</tr>
<tr>
<td></td>
<td>5.0 µL</td>
</tr>
</tbody>
</table>

cobas c 501 test definition

<table>
<thead>
<tr>
<th>Assay type</th>
<th>2 Point End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction time / Assay points</td>
<td>10/10-47</td>
</tr>
<tr>
<td>Wavelength (sub/main)</td>
<td>700/600 nm</td>
</tr>
<tr>
<td>Reaction direction</td>
<td>Increase</td>
</tr>
<tr>
<td>Units</td>
<td>mmol/L (mg/dL, g/L)</td>
</tr>
<tr>
<td>Reagent pipetting</td>
<td>Diluent (H₂O)</td>
</tr>
<tr>
<td>R1</td>
<td>150 µL</td>
</tr>
<tr>
<td>R2</td>
<td>50 µL</td>
</tr>
<tr>
<td>Sample volumes</td>
<td>Sample dilution</td>
</tr>
<tr>
<td>Normal</td>
<td>Sample</td>
</tr>
<tr>
<td></td>
<td>2.5 µL</td>
</tr>
<tr>
<td>Decreased</td>
<td>15 µL</td>
</tr>
<tr>
<td></td>
<td>12.5 µL</td>
</tr>
<tr>
<td>Increased</td>
<td>135 µL</td>
</tr>
<tr>
<td></td>
<td>5.0 µL</td>
</tr>
</tbody>
</table>

Calibration
Calibrators
S1: H₂O
S2: C.f.a.s. Lipids
Calibration mode
Linear
Calibration frequency
2-point calibration
- after reagent lot change
- and as required following quality control procedures

Traceability:¹³ This method has been standardized against the designated CDC reference method (designated comparison method).¹⁴ The standardization meets the requirements of the "HDL Cholesterol Method Evaluation Protocol for Manufacturers" of the US National Reference System for Cholesterol, CRM LN (Cholesterol Reference Method Laboratory Network), November 1994.

Quality control
For quality control, use control materials as listed in the "Order information" section.
Other suitable control material can be used in addition.
The control intervals and limits should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined limits. Each laboratory should establish corrective measures to be taken if values fall outside the limits.
Quality control materials are intended for use only as monitors of accuracy and precision. The Laboratory Standardization Panel (LSP) of the National Cholesterol Education Program in the United States recommends two levels of controls, one in the normal range (0.9-1.7 mmol/L or 35-65 mg/dL) and one near the concentration for decision making (< 0.9 mmol/L or < 35 mg/dL).
Follow the applicable government regulations and local guidelines for quality control.

Calculation
Roche/Hitachi cobas c systems automatically calculate the analyte concentration of each sample.
Conversion factors: mmol/L x 38.66 = mg/dL
mg/dL x 0.3866 = g/L
mg/dL x 0.02959 = mmol/L

Limitations - interference²²⁻²⁴
Criterion: Recovery within ± 10 % of initial value at a HDL-cholesterol concentration of 1 mmol/L (38.7 mg/dL).
- Icterus: No significant interference up to an I index of 30 for conjugated and 60 for unconjugated bilirubin (approximate conjugated bilirubin concentration: 513 µmol/L (30 mg/dL) and approximate unconjugated bilirubin concentration: 1026 µmol/L (60 mg/dL)).
- Hemolysis: No significant interference up to an H index of 1200 (approximate hemoglobin concentration: 745 µmol/L (1200 mg/dL)).
- Lipemia (Intralipid): No significant interference up to an L index of 1800. No significant interference from native triglycerides up to 13.7 mmol/L (1200 mg/dL). There is poor correlation between the L index (corresponds to turbidity) and triglycerides concentration.
- Other: Elevated concentrations of free fatty acids and denatured proteins may cause falsely elevated HDL-cholesterol results.
In rare cases, elevated immunoglobulin concentrations can lead to artificially increased HDL-cholesterol results.

Ascorbic acid up to 2.84 mmol/L (50 mg/dL) does not interfere.

Abnormal liver function affects lipid metabolism; consequently, HDL and LDL results are of limited diagnostic value. In some patients with abnormal liver function, the HDL-cholesterol result may significantly differ from the DCM (designated comparison method) result.

Drugs: No interference was found at therapeutic concentrations using common drug panels.25,26

In very rare cases gammapathy, in particular type IgM (Waldenström's macroglobulinemia), may cause unreliable results.

For diagnostic purposes, the results should always be assessed in conjunction with the patient's medical history, clinical examination and other findings.

ACTION REQUIRED

Special Wash Programming: The use of special wash steps is mandatory when certain test combinations are run together on Roche/Hitachi cobas c systems. Refer to the latest version of the Carry over evasion list found with the NaOHD/SMS/Multiclean/SCCS Method Sheet and the operator manual for further instructions.

Where required, special wash/carry over evasion programming must be implemented prior to reporting results with this test.

Measuring range

0.08-3.10 mmol/L (3-120 mg/dL)

Determination

Samples having higher concentrations via the rerun function. Dilution of samples via the rerun function is a 1:2 dilution. Results from samples diluted by the rerun function are automatically multiplied by a factor of 2.

Lower detection limit

0.08 mmol/L (3 mg/dL)

The lower detection limit represents the lowest measurable analyte level that can be distinguished from zero. It is calculated as the value lying three standard deviations above that of the lowest standard (standard 1 + 3 SD, within-run precision, n = 21).

Expected values

<table>
<thead>
<tr>
<th></th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(27,28,29)</td>
<td>(27,28,29)</td>
</tr>
<tr>
<td>No risk</td>
<td>> 1.68 mmol/L</td>
<td>> 1.45 mmol/L</td>
</tr>
<tr>
<td>Moderate risk</td>
<td>1.15-1.68 mmol/L</td>
<td>0.90-1.45 mmol/L</td>
</tr>
<tr>
<td>High risk</td>
<td>< 1.15 mmol/L</td>
<td>< 0.90 mmol/L</td>
</tr>
<tr>
<td></td>
<td>(45-65 mg/dL)</td>
<td>(35-55 mg/dL)</td>
</tr>
</tbody>
</table>

National Cholesterol Education Program (NCEP) guidelines:

- **< 40 mg/dL:** HDL-cholesterol (major risk factor for CHD)
- **≥ 60 mg/dL:** High HDL-cholesterol (“negative” risk factor for CHD)

HDL-cholesterol is affected by a number of factors, e.g. smoking, exercise, hormones, sex and age.

Each laboratory should investigate the transferability of the expected values to its own patient population and if necessary determine its own reference ranges.

The National Cholesterol Education Program (NCEP) guidelines are based on serum values, and when classifying patients, serum or serum equivalent values should be used. Therefore the NCEP recommends a factor of 1.03 to convert EDTA plasma values to serum values. However, our own investigations revealed that a factor of 1.06 should be used for the HDL-C reagent. To comply with the 1998 NCEP goal of a < 5 % bias we recommend that each laboratory validate this conversion factor and enter it into the test parameters for HDL-C.

Specific performance data

Representative performance data on the analyzers are given below. Results obtained in individual laboratories may differ.

Precision

Reproducibility was determined using human samples and controls in an internal protocol (within-run n = 21, total n = 63).

The following results were obtained:

<table>
<thead>
<tr>
<th></th>
<th>Mean mmol/L (mg/dL)</th>
<th>SD mmol/L (mg/dL)</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preinom L</td>
<td>1.38 (53.4)</td>
<td>0.01 (0.4)</td>
<td>0.4</td>
</tr>
<tr>
<td>Precipitn LDL/LDL-C</td>
<td>0.89 (34.4)</td>
<td>0.01 (0.4)</td>
<td>1.0</td>
</tr>
<tr>
<td>Human serum 1</td>
<td>1.20 (46.4)</td>
<td>0.01 (0.4)</td>
<td>0.6</td>
</tr>
<tr>
<td>Human serum 2</td>
<td>2.08 (80.4)</td>
<td>0.01 (0.4)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th></th>
<th>Mean mmol/L (mg/dL)</th>
<th>SD mmol/L (mg/dL)</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preinom L</td>
<td>1.34 (51.8)</td>
<td>0.01 (0.4)</td>
<td>0.9</td>
</tr>
<tr>
<td>Precipitn LDL/LDL-C</td>
<td>0.88 (34.0)</td>
<td>0.01 (0.4)</td>
<td>1.5</td>
</tr>
<tr>
<td>Human serum 1</td>
<td>1.17 (45.2)</td>
<td>0.01 (0.4)</td>
<td>0.9</td>
</tr>
<tr>
<td>Human serum 4</td>
<td>2.03 (78.5)</td>
<td>0.02 (0.8)</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Method comparison

HDL-cholesterol values for human serum and plasma samples obtained on a Roche/Hitachi cobas c 501 analyzer (y) were compared with those determined using the same reagent on a Roche/Hitachi MODULAR P analyzer (x).

Sample size (n) = 75

<table>
<thead>
<tr>
<th></th>
<th>Linear regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 1.000 x + 0.000 mmol/L</td>
<td>y = 1.001 x + 0.000 mmol/L</td>
</tr>
<tr>
<td>t = 0.984</td>
<td>r = 0.999</td>
</tr>
</tbody>
</table>

The sample concentrations were between 0.32 and 2.95 mmol/L (12.4 and 114 mg/dL).

References

8. AVP Fettstoffwechselstörungen, Therapieempfehlungen 1, 1st ed. 1998:2-16.

19. Data on file at Roche Diagnostics.

28. Assmann G. At what levels of total low- or high-density lipoprotein cholesterol should diet/drug therapy be initiated? European guidelines. Amer J Cardiol 1990;65:11F.

FOR US CUSTOMERS ONLY: LIMITED WARRANTY
Roche Diagnostics warrants that this product will meet the specifications stated in the labeling when used in accordance with such labeling and will be free from defects in material and workmanship until the expiration date printed on the label. THIS LIMITED WARRANTY IS IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE. IN NO EVENT SHALL ROCHE DIAGNOSTICS BE LIABLE FOR INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES.