Dedication

To my parents

To my sisters and brothers

To my friends

Acknowledgment

I would like to express my deep gratitude to **Dr. Abdelslam Abdella Dafaella** for his suggestion, guidance and supervision of the research.

Also my thanks to Dr. Omer Gibla, Dr. Mohammed Adam Abo and all the staff in the department of chemistry, Sudan university of science and technology for their invaluable help during the course of this research.

Abstract

Iron compound drugs (ferrous sulphate tablets, ferrous gluconate tablets and ferric hydroxide poly maltose syrup) have been chosen to follow up the changes in concentration of iron during storage in different conditions (0°C, Sun light, 60°C), for certain periods. The study was carried out by titration with cerium sulphate, atomic absorption and infra red spectroscopy methods.

Titration of cerium sulphate showed that the percentage of iron(II) in ferrous sulphate tablet at room temperature is 20.083%. There are no changes after 3, 10 and 15 days of storage at 0° C, a continuous decrease in concentration occurred after storage for 10and 25 days at sun light where the percentage dropped to 19.6% and 19.04% respectively. Few significant changes after storage for 15 and 25 days at 60° C were observed.

The percentage of iron(II) in ferrous gluconate tablet at room temperature is 5.559%. No change in concentration was observed after 3, 10 and 15 days storage at 0°C. Then a continuous decrease occurred after storage for 10,20 and 30 days at sun light where the percentage was 5.551% ,5.53% and 5.17% respectively. Few significant changes were detected after storage for 10, 15 and 25 days at 60°C.

In ferric hydroxide poly maltose syrup, iron was quantified by atomic absorption. The quantity of iron(III) in 1ml of ferric hydroxide poly maltose syrup was 8.582mg and there are no changes in quantity after storage at 0^{0} C, sun light and 60^{0} C for 30 days.

المستخلص

أخذت عينات من ادوية مركبات الحديد وهي حبوب كبريتات الحديد(II) وجلوكونات الحديد(II) وشراب هيدروكسيد الحديد(III) بولى مالتوز لدراسة التغيرات التي تحدث للحديد اثناء تخزينها تحت ظروف مختلفة وهذه الظروف هي درجة الصفر درجة مئوية، ضوء الشمس المباشر و درجة 0 60 وذلك لفترة زمنية مختلفة، هذه الدراسة أجريت عن طريق معايرة الحديد مع كبريتات السيريوم ، طريقة الامتصاص الذري والاشعة تحت الحمراء.

أوضحت نتائج طريقة المعايره أن النسبة المئوية للحديد(II) في حبوب كبريتات الحديد(II) عند درجة حرارة الغرفة هي 20.083% وأنه لا يوجد اي تغيير في هذه النسبة عند تخزينها لمدة 3،10 و 15 يوم في درجة الصفر درجة مئوية، بينما كان هنالك انخفاض في نسبة الحديد الى 19.6% عند تخزينها في ضوء الشمس المباشر لمدة 10 ايام و 19.04% لمدة 25 يوم.

أوضح التخزين عند $^{0}60$ م انخفاض مستمر في النسبة المئوية للحديد(II) الى $^{0}20$ بعد15يوم ثم $^{0}20.71$ بعد25 يوم.

أما بالنسبه لحبوب جلوكونات الحديد (II) فقد وجد أن النسبة المئوية للحديد عند درجة حرارة الغرفة 5.559% وانه لايوجد أي تغيير في هذه النسبة بعد بعد تخزينها لمدة 3 00و 15يوم في درجة الصفر درجة مئوية، بينما كان هنالك انخفاض طفيف في نسبة الحديد (II) الي 5.551% عند التخزين في ضوء الشمس المباشر لمدة 10 يوم، 5.55% لمدة 20 يوم و 5.17 لمدة 30 يوم.

أوضح التخزين عند $^{0}60$ م انخفاض مستمر في النسبة المئوية للحديد(II) الي5.54% بعد10يوم، 5.35% بعد10يوم، 5.35% بعد1035 بعد1036 بعد

أستخدمت تقنية الامتصاص الزرى لتحديد تركيز الحديد(III) في شراب هيدروكسيد الحديد(III) بولى مالتوز ووجد ان تركيز الحديد(III) في 1مل 8.582ملجرام وأنه لا يوجد اى تغيير في هذه الكمية عند تخزين الشراب لمدة 30 يوم في درجة الصفر، ضوء الشمس المباشر و 60م.

وقد أجريت مطيافية الاشعة تحت الحمراء لمركبى كبريتات الحديد(II) و جلوكونات الحديد(II).

Content

	Page
Dedication	I
Acknowledgment	II
Abstract (English)	III
Abstract (Arabic)	IV
List of figures	XI
List of tables	XIII
Chapter one	
1. Introduction	1
1.2. Objectives of research	2
1.3 Reaction of Iron Fe(II) & Fe(III)	3
1.3.1. Reaction of iron(II) ions	4
1.3.1.1. Sodium hydroxide solution	4
1.3.1.2. Ammonia solution	5
1.3.1.3. Hydrogen sulphide	5
1.3.1.4. Ammonium sulphide solution	5
1.3.1.5. Potassium cyanide solution (poison)	6
1.3.1.6. Potassium hexacyanoferrate(II) solution	6
1.3.1.7. Potassium hexacyanoferrate(III) solution	7
1.3.1.8. Ammonium thiocyanate solution	7
1.3.1.9.α,α-Dipyridyl reagent	7

1.3.1.10. Dimethylglyoxime reagent	8
1.3.1.11. O-phenanthroline reagent	8
1.3.2. Reaction of iron(III)	8
1.3.2.1. Ammonia solution	8
1.3.2.2. Sodium hydroxide solution	9
1.3.2.3. Hydrogen sulphide gas	9
1.3.2.4. Ammonium sulphide solution	10
1.3.2.5. Potassium cyanide (poison)	10
1.3.2.6. Potassium hexacyanoferrate(II) solution	11
1.3.2.7. Potassium hexacyanoferrate(III)	12
1.3.2.8. Disodium hydrogen phosphate solution	12
1.3.2.9. Sodium acetate solution	12
1.3.2.10. Cupferron reagent, the ammonium salt of	
Nitrosophenylhydroxylamine	13
1.3.2.11. Ammonium thiocyanate solution	13
1.3.2.12. 7-Iodo-8-hydroxyquinoline-5-sulphonic acid	
(or ferron reagent)	14
1.3.2.13. Reduction of iron(III) to iron(II) ions	15
1.3.2.14. Oxidation of iron(II) ions to iron(III)	16
1.3.2.15. Distinctive tests for iron(II) and iron(III) ions	16
1.4. Important of iron in biological system	17
1.4.1. Iron Absorption	18

1.5. Iron deficiency	-	18
1.5.1. Definition		18
1.5.2. The signs of iron deficiency anemia		19
1.5.3. Iron deficiency in women	20	
1.5.4. Iron deficiency in pregnancy	20	
1.5.5. Iron deficiency in children	21	
1.5.5.1. Prevention of Iron Deficiency in childr	22	
1.5.5.2. Treatment of iron deficiency in children	22	
1.5.6. Dietary treatment of iron deficiency	23	
1.5.7. The side effect of iron supplementation	24	
1.6. Iron over load	25	
1.6.1 The symptoms	25	
1.6.2. Diagnosed and treated	25	
1.7. Iron compound	27	
1.7.1. Ferrous fumarate	27	
1.7.2. Ferrous gluconate	28	
1.7.3. Ferrous sulphate	28	
1.7.4. Dried ferrous sulphate	29	
1.7.5. Ferrous Ascorbate	30	
1.7.6. Ferrous aspartate	30	
1.7.7. Ferrous chloride	31	

1.7.8. Ferrous oxalate	31
1.7.9. Ferrous succinate	32
1.7.10. Ferrous Tartrate	32
1.7.11. Ferric hydroxide polymaltose	33
1.7.12. Ferric ammonium citrate	33
1.8. The stability of drugs	34
1.8.1. Chemical Stability of Drug Substances	34
1.8.1.1. Pathways of Chemical Degradation	34
1.8.1.2. Factors Affecting Chemical Stability	35
1.8.1.2.1. Temperature	35
1.8.1.2.2. Stability in Frozen Solutions	35
1.8.1.2.3. Oxygen	36
1.8.1.2.4. Light	36
1.8.1.2.5. Effect of Moisture and Humidity on	
Solid and semisolid Drugs	36
1.8.1.2.6. Excipients	37
1.8.2. Physical Stability of Drug Substances	37
1.9. Method of determination iron	38
1.9.1. Titration	38
1.9.2. Atomic absorption spectrometry	39
Chapter two	
2. Experimental	41

2.1. Apparatus	
2.2. Reagents	41
2.3. Determination of iron(II) by titration method	41
2.3.1. Determination of iron(II) in ferrous	
gluconate tablets	41
2.3.2. Determination of iron(II) in ferrous	
sulphate tablets	41
2.4. Determination of iron(II) and iron (III) by	
Atomic absorption spectrometry	42
2.5. Infra red spectroscopy	42
Chapter three	
3. Result and discussion	43
3.1. Determination of iron(II) in ferrous Sulphate	
tablet by titermetric method at room temperature	43
3.2. Determination of iron(II) in ferrous	
sulphate tablet by titermetric method at 0°C	43
3.3. Determination of iron(II) in ferrous	
sulphate tablet by titermetric method at sun light	45
3.4. Determination of iron(II) in ferrous	
sulphate tablet by titermetric method at 60°C	47
3.5. Determination of iron(II) in ferrous Gluconate	
tablet by titermetric method at Room temperature	50
3.6. Determination of iron(II) in ferrous	
gluconate tablet by titermetric method in at 0^{0} C	50

3.7. Determination of iron(II) in ferrous	
gluconate tablet by titermetric method at sun light	52
3.8. Determination of iron(II) in ferrous	
gluconate tablet by titermetric method at 60° C	53
3.9. Determination of iron(II) in ferrous	
sulphate tablet by atomic absorption spectroscopy	58
3.10. Determination of iron(II) in ferrous	
gluconate tablet by atomic absorption	59
3.11. Determination of iron(III) in	
ferric hydroxide Poly maltose syrup by atomic	
absorption spectroscopy at room temperature	61
3.12. Determination of iron(III) in	
ferric hydroxide poly maltose syrup by atomic	
absorption spectroscopy at 0°C	62
3.13. Determination of iron(III) in	
ferric hydroxide poly maltose syrup by atomic	
absorption spectroscopy at sun light	64
3.14. Determination of iron(III) in	
ferric hydroxide poly maltose syrup by atomic	
absorption spectroscopy at 60°C	65
3.15. Infrared data of ferrous sulphate	
and ferrous gluconate	67
3.16. Discussion	70
3.17. Conclusion	73
3.18. Recommendation	74
Reference	75

List of figures

No	figure	page
(1-1)	α,α-Dipyridyl reagent	7
(1-2)	O-phenanthroline reagent	8
(1-3)	7-Iodo-8-hydroxyquinoline-5-sulphonic	
	acid (or ferron reagent)	14
(1-4)	Atomic absorption spectrometry device	39
(3-1)	The percentage of iron(II) in	
	Ferrous sulphate tablet at 0°C	45
(3-2)	The percentage of iron(II) in	
	Ferrous sulphate tablet under sun light	46
(3-3)	The percentage of iron(II) in	
	Ferrous sulphate tablet at 60°C	48
(3-4)	The percentage of iron(II) in	
	Ferrous gluconate tablet at 0°C	52
(3-5)	The percentage of iron(II) in	
	Ferrous gluconate tablet under sun light	54
(3-6)	The percentage of iron(II) in	
	Ferrous gluconate tablet at 60° C	56
(3-7)	Standard calibration curve used to	
	determine Fe ⁺² in ferrous sulphate tablet	58
(3-8)	Standard calibration curve used to	7 0
	determine Fe ⁺² in ferrous gluconate tablet	59

(3-9)	Standard calibration curve used to	
	determine Fe ⁺³ at room temperature	61
(3-10)	Standard calibration curve used to	63
	determine Fe ⁺³ at 0 ⁰ C	
(3-11)	Standard calibration curve used to	
	determine Fe ⁺³ at sun light	64
(3-12)	Standard calibration curve used to	
	determine Fe ⁺³ at 60 ⁰ C	66
(3-13)	Infrared spectrum of ferrous sulphate (room temperature)	68
(3-14)	Infra red spectrum of ferrous sulphate (sun light)	68
(3-15)	Infra red spectrum of ferrous gluconate (room temperature)	69
(3-16)	Infra red spectrum of ferrous gluconate (sun light)	69

List of tables

No	Table	Page (1-1)
Averag	ge human Fe distribution 17	
(3-1)	The percentage of Fe ⁺² in ferrous sulphate	
	tablet at different condition	49
(3-2)	The percentage of Fe ⁺² in ferrous gluconate	
	tablet at different condition	57
(3-3)	The concentration and absorption of standard	
	Solution to determine Fe ⁺² in ferrous sulphate	58
(3-4)	The concentration and absorption of standard	
	Solution to determine Fe ⁺² in ferrous gluconate	59
(3-5)	Comparison of flame atomic absorption spectro	metry
	and cerimetric method for the determination of	
	the percentage of Fe ⁺² in ferrous sulfate and	
	ferrous gluconate tablets.	60
(3-6)	The concentration and absorption of standard	
	solution to determine Fe ⁺³ at room temperature	e 61
(3-7)	The concentration and absorption of standard	
	Solution to determine Fe ⁺³ at 0 ⁰ C	62
(3-8)	The concentration and absorption of standard	
	solution to determine Fe ⁺³ at sun light	64
(3-9)	The concentration and absorption of standard	
	solution to determine Fe ⁺³ at 60 ^o C	65
(3-10)	The quantity of Fe ⁺³ in ferric hydroxide poly	

	Maltose syrup at different condition	66
(3-11)	Infrared data of ferrous sulphate	67
(3-12)	Infrared data of ferrous gluconate	67