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Chapter 1 

Quasi-selfadjoint Contractions Extension and Q-functions 

The main properties of such Q-functions are studied, in particular the underlying 
operator-theoretical aspects are considered by using some block representations of 
the contraction T and analytical characterizations for such functions 푄 (푧)	 are 
established. Also a reproducing kernel space model for 푄 (푧)	is constructed. In the 
special case where T is selfadjoint 푄 (푧)	coincides with the Q-function of the 
symmetric operator A ≔ T↾ (ℌ ⊖ 픑 ) and its selfadjoint extension T = T* in the 
usual sense. 

Sec(1.1)Closed Symmetric Contractions:-  

     The concept of a Q-function  was introduced by M.G. Krein for the case of 
adensely symmetric operator S in a Hilbert space ℌ	with equal defect number by 
means of a selfadjoint extension A of S, cf.    ,34,28],27[  and also      .32,31,39 . Such 
a function belong to the class N of Nevanlinna ( or Herglotz-Nevanlinna) function , 
i.e, NzQ )(  if it is holomorphic in the open upper and lower half – planes and 
satisfies the condition  ,0))((Im*)()~(  zQandzQzQ 	푧 ∈ ℂ ∪ ℂ , the Q- function 
plays an essential role in Krein’s resolvent formula, whih describes all (generalized   
resolvent of ) selfadjoint extensions of S.ln fsct,all generalized resolvents  

(canonical as well as exit space) were first described independently by . M . A. 
Naimark [42] and M .G. Krein[27]; see slso  31  for further historical remarks. A 
characteristic property of a Q-function Q  z  in the class of Nevanlinna functions is 
that lm Q  z is invertible (at some or equivalently at every point  푧 ∈ ℂ ∪ ℂ ): 
every Nevanlinna function with this propently is a Q –function of some simple 
symmetric operator S and a selfadjoint extension A of  S in a Hilbert space  . 
Moreover , the simple (completely non- selfadjoint) symmetric. operator S and its 
selfadjoint extension A are essentially unique in the sense that the Q- function of S 
determines S and A uniquely up to unitary equivalence . A nother approach for 
describing selfadjoint as well as non-selfadjoint intermediate extensions of a 
symmetric operator is via a boundary value spase and the corresponding Weyl 
function ,see[22],[20],[19] . 

Two specil subclasses of Q-functions, consisting of the so-called 푄 -  and 
QM –functions , which belong to the class N of Nevanlinna functions were defined 
and investigated by M.G Krein and I.E Ovcharenko in[33].Here the underlying 
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symmetric operator is a non – densely defined contraction .In a recent section[8] 
by contains also some extension of Q  - and QM – functions were introduced; in 
fact ,this section contains also some corrections to the result stated in [33]. some 
other type of Q-function associated to a non – densely defined symmetric 
contraction has been considered in[48], including the resolvent formulas for the 
selfadjoint (canonical and exit space) extensione. 

In this section a class of operator – valued Q – function associated with a 
non – densely defined symmetric contraction A and its, in general , non – 
selfadjoint contractive extensive T is introduced . By definition abounded operator 
T in the Hilpert space ℌ is a quasi – selfadjoint contraction or , for short , a qsc-
operator if dom T = ℌ, T   1 and ker (T – T*)  {0}. Let T be a qsc-operator-
valued function Q (z) as follows 

		푄(푧) = 푃픑(푇 − 푧퐼) ↾ 픑,			|푧| < 1.                                            (1) 

In what follows the function Q in(1) will be called aQ-function of T with 
respect to the subspace 픑 ⊂ ℌ.observe , that if T is selfadjoint then the function Q 
defined by (1) is an ordinary Q-function associated with T and the symmetric 
restriction A : = 푇 ↾ ℌ  of T , where ℌ = ℌ⊖픑 =. However , if T is not selfad-
joint this function in general is not a Nevanlinna function. A qsc-operator T may be 
considered as a contractive, in general, non-selfadjoint extension of the symmetric 
contraction= 푇 ↾ ℌ  which is also called a quasi-selfadjoint contractive extension 
of A; here A is symmetric due to ℌ   ker (T – T*). Such kind of extension were 
parametrized and investigated by M .G . krein [28]and by M . G . krein and I . E . 
Ovcharenko  33  . In particular , in[33] two special Q-functions of the Nevanlinna 
class for the symmertric contraction were defined and studied and the resolvent  
formulas for selfadjoint contractive extensions (sc-extensions) were established. 
These formulas were extended in[11]and[ 13]  for qsc-extensions . Aboundary 
value space approach for describing extensions of dual paris of  densely defined 
operators appeaers in[38] and for dual pairs of linear relations and their canonical 
and generalized resolvent in[40] [41] see also In[35] the approach can be seen as a 
non – selfadjoint counterpart of the Q- function approach developed and 
systematically used in the papers of M.G. Krein and H . Langer , cf., e.g, [ 39]-[32] 

     The contents of this Section will be briefly described. In some  preIiminary 
notions are introduced. The extension theory for closed symmetric contractions is 
developed . This includes a discussion of minimality of the underlying symmetric 
operator A and its contractive extensions. The Q-functions for intermediate 
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contractive extensions as in(1) are introduced. where also a number of associated 
nonnegative kernels will appear . A resolvent formula for qsc-extensions of a 
symmetric contraction A is derived . It involoves a Q- function of the form(1)  for 
a given qsc-extension T of A. a model for such Q-functions is constructed by 
means of a qsc-operator acting in a reproducing kernel Hilbert space and it is 
proved that two 픑 -minimal qsc-operators whose Q-functions in (1) coincide are 
unitary unitarily equivalent. This model is used to establish some characteristic 
properties of Q-functions of qsc-operators.linear fractional transformations of Q-
functions are considered . The results can be connected with and augmented by the 
study of a certain class of passive systems. In particular, the Q-functions of quasi-
selfadjoint operators investigated in the present section are in one-to-one 
correspondence with the transfer functions of so-called passive quasi-selfadjoint 
systems, which are introduced and investigated in[9] . 

    The class of all continuous linear operators defined on a complex Hilbert space 
ℌ1 and taking values in a complex Hilbert spase ℌ is denoted by L(ℌ1,	ℌ2)  and 
L(ℌ):= L (ℌ,ℌ ).The domain, the range,and the null-space of a linear operator 
Tare denoted by dom T , ran T,and ker T. For T L(ℌ ) the operators TR= ( T + T* 
)/2, TI = ( T – T* )/2i are said to be the real and the imaginary part of T. For a 
contraction T   L(ℌ1,	ℌ2)  the defect operator 퐷 	of T is defined by . 

                                           
퐷 : (1 − 푇∗푇) / 																																																																						(2)                      

It is a nonnegative contraction and satisfies the well-known commutation relation  

                                                  
푇퐷 = 퐷 ∗푇,																																																																						(3) 

Cf. [47]. The closure of the range ran TD is denoted by 픇 	and   stands for the 
set of all regular points of a closed operators T .if	푅 푎푛푑푅 푎푟푒 two nonnegative 
operators in 퐿(ℌ  ) and S0    퐿(ℌ  ) then the symbol B (푆 ,푅 ,푅 )  denotes the 
operator ball in 퐿(ℌ  ) wih the center S0 and the left and right radii 1R and rR

respectiveiy ,i.e.,the set of all operators in L(ℌ ) of the form 2/12/1
0  X rI RRST  , 

where X is a contrction from ran R r into ran rR It is well known , see [44], [45]. 
That a necessary and sufficient condition for T  L (ℌ  ) to B(푆 ,푅 ,푅 )  is the 
following :  

		 (푇 − 푆 )푓,푔 ≤ (푅 푓,푓)(푅 푔,푔)    for all	푓,푔 ∈ ℌ.															(4)		                      
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If	푅 = rR = R  the corresponding operator ball is denoted by  RSB ,0 .  

Recall that T   퐿(ℌ )  is a quasi-selfadjoint contraction ( a qsc-operator ) if  

dom T= ℌ,   T    1,  and ker ( T – T* )   0 . 

A qsc-operator T is said to be a quasi-selfadjoint contractive extension or qsc-
extnsion ot a closed symmetric contraction A if  

              Dom A   ker ( T- T* ) or equivalently  ran ( T –T* )   ( dom A )  , 

Cf [11],[13] .Clearly ,an operator T퐿(ℌ )is a qsc-extension of A if and only if  

                                         	퐴 ⊂ 푇	푎푛푑		퐴 ⊂ 푇∗ 

or, equivalently, if T is an intermediate extension of A. A qsc-operator T has 
always symmetric restrictions A for which T is a qsc-extension . Namely, with a 
subspace	픑  *TTran   define 

Dom A = ℌ⊖픑,				 A=푇 ↾ 푑표푚퐴.  

Then dom A   ker ( T – T* ) .A qsc-operator T is called completely non-
selfadjoint if there is no non-zero invariant subspace on which the resteiction of T 
is selfadjoint .  

Lemma(1.1.1)[1]:[16] A qsc-operator T is completely non-selfadjoint if and only 
if  

                                ,...1,0:*)( nTTranTspan n ℌ. 

Let  )2/,0   and denote by 푆(훼)the following sector of the complex plane:  

푆(훼) = {푧 ∈ ℂ: |푎푟푔	푧| ≤ 훼}. 

A Linear operator S, in general unbounded, in a Hilbert space ℌ is said to be 
sectorial with vertex at the origin and semiangle  , if its numerical range  

푊(푆)  domS,1:),S(  ffff  

is contained in the sector 푆(훼), cf. This condition is equivalent to  

S. dom allfor  ),Re()(tan)  , Im(  ffSfffS   

   If the resolvent set of S is not empty then S is called maximal sectorial. 
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   A bounded operator T on a Hilbert spase ℌ is said to belong to the class  

C   ,  ),2/,0(  if   

,1cossin  IiT                                                    (5) 

Cf.[4].Clearly, T belongs to C   if and only if T* belongs to C   .Moreover, it 
follows from(5)  that the operators belonging to C   are contractive. The 
condition(5)  is equivalent to each of following two conditions:  

2

2
tan),( fDffT TI

  for all f ℌ:                     (6) 

or 

the operator   TITI  *  is sectorial with                           (7) 

                                   vertex at the origin and semiangle ,  

Cf[5]. Note that the linear fractional transformation T = (I-S) (I+S) 1  of a maximal 
sectorial operator S with vertex at the origin and semiangle   is an operator of the 
class C   . Let  

  )}.2/,0[:{~   CC   

Some properties of the operators in the class C~  were studied in[4].[5]. In particular, 
in[4] ,it was proved that T  C~  implies that  

R
nn TTT ranDranDranD     , ,...,2,1n  

where RT  is the real part of T. Furthermore it was proved in [4] that the subspace 
픇 reduces the operator T, that the operator 푇 ↾ 픇  ker TD is selfadjoint and 
unitary, and that	푇 ↾ 픇  is a completely non-unitary contraction of the class ,00C

i.e.,  

0limlim  


ff n

n

n

n      
for all       푓 ∈ 픇 , 

   Let the Hilbert space ℌ be decomposed as ℌ = ℌ ⨁ℌ and decompose 푇 ∈ 퐿(ℌ) 
accordingly:   

                                   LT
TT
TT

T ij 







 ,

2221

1211 (ℌ ,ℌ ) .                                      (8) 
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Define the operator-valued functions  

       .,)( 11,2212
1

1121 TpzzVzIzWTTzITTzV TTT                   (9) 

By the Schur-Frobenius formula the resolvent   1 zT  of T can be rewritten the 
block form 

 

   
   

.
)(

)())(()(
11

1121
1

1
12

1
11

1
1121

1
12

1
11

















zWzITTzW
zWTzITzITTzWTIzIT

TT

TT

                        (10)
 

for    .11TTz   In particular ,                                                               

푃ℌ (푇 − 푧퐼)	 ↾ ℌ      .,)( 11
1 TTzzIzVT     .                                (11) 

    Let 픑 be a Hilbert space . An operator-valued   ,\, RCzzV  with values in 퐿(픑) 
is said to be a Nevanlinna function or an R-function,cf.[25]. if V  z  is holomorphic 
on C/R, V*   0z for all ./ RCz   The subclass of Nevanlinna functions V  z  
which are holomorphic on the domain Ext    1.1\:1,1  C  is denoted by 푁픑[−1,1] 
By the general theory of Nevanlinna functions,cf.[25],[16]every functionV(z) in 
푁픑[−1,1] has an integral representation of the form  

                                                
  ,)(1

1 zt
tdGzV


 



 

where  is a bounded selfadjoint operator on 픑 and the퐿(픑) -valued function G(t) 
is nondecreasing, nonnegative, normalized by G ( - 1 – 0 )=0, and has finite total 
variation concentrated on  .1,1 Clearly , V ( ) : =s - 

z
lim V   .z The next result 

is also well known, cf .[15]. 

Theorem(1.1.2)[1] Let 픑 be a Hilbert space and let V  z ∈ 푁픑[−1,1]  . Then then 
there erist a Hilbert space ℌ, a selfadjoint contraction B on ℌ, and FL (픑,ℌ), 
such that  

                         V         zFzIBFVz ,* 1 Ext ].1,1[                     (12) 

    In what follows the subclass of functions V  z ∈ 푁픑[−1,1] . which have the limit 
values V  1  in 퐿(픑) plays a central pole . ln this case Theorem(1.1.2) can be 
completed as follows.  

Theorem(1.1.3)[1]:  Let 픑	be a Hilbert space and let V  z ∈ 푁픑[−1,1]. If for all 
푓 ∈ 픑 the limit values  
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     ffxVffxV

xx
,lim,,lim

11 
 (13) 

are finite, then there exist a Hilbert space ℌ, a selfadjoint contraction B in ℌ and an 
operator G	∈ 퐿(픑,픇 ), such that  

                              1,1,12*   ExtzGzIBDGVzV B  .                           (14) 

Conversely , for every function V  z of the form (14) the limit values (13) exist for 
all f 	픑 and are finite .  

Proof. By Theorem (1.1.2 )V  z has the representation(12), where B is a selfadjoint 
contraction in a Hilbert space ℌ and F   퐿(픑,ℌ). Since the limits in (13) exist for 
all f 	픑, one concludes that .  

                                        .11 2/12/1 BranBranranF    

Consequently , ran F ran BD  and this implies that F= GDB  for some operator GL 
(픑,픇 ),cf .[24]. 

       Conversely, if 푉(푧) is of the form (14) then ran 퐷 ⊂ 푟푎푛(퐵 ± 퐼) / 	푎푛푑  

 this implies the existence of thse limit values (13) for all f 	픑, cf . [33].  

     It follows from Theorem (1.1.3)that  

                            


GBGVxVsV
x

1*lim:1
1

 퐿(픑),                 (15) 

                                
        


GBGVxVsV

x
1*lim:1

1
 퐿(픑), 

so that  

          .211,2211 ** GGVVBGGVVV                          (16) 

An operator-valued function K   :,z 퐿(픑),Ω ⊂ ℂ is said to be a 
nonnegative kernel[2 ],[14 ] ,[43  ] if  

                                                    
  0),,(

1,



nji

n

ji
ij ffwwk  

for every choice of points   
n
iiw 1  andvectors  n

iif 1 ⊂ 픑 with the kernel k  ,z is 
associated a reproducing kernel Hilbert space ℋ  it is the kernel  ,zk  is 
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associated a reproducing kernel Hilbert spaceℋ .It is the completion of the linear 
space of vectors of the form .  

                          
  ,

1
., i

n

i
i fwk



   ,11 
n
iiw       11

n
iif 	픑  , ,Nn  

with respect to the inner product . 

∑ K(. ,ω )f ,∑ K . ,μ g   = ∑ ∑ K μ ,ω f , g
픑

.	 

Then the Hilbert space ℋ consists of the 픑 -valued functions 푓(∙)such that for 
every	ℎ ∈ 픑 the reproducing property holds: 

(푓(. ),퐾(. ,휔)ℎ)ℋ =푓(휔, ℎ)픑, 휔 ∈ Ω. 

Observe that an L(픑) -valued function V  z belongs to the Nevanlinna class N(픑) 
if and only if the function.  

      ,\,,,
*

RCz
z

VzVzk 



 



  

is a nonnegative kernel. Also note that the kernel associated with generalized 
resolvents ( of selfadjoint exit space extensions ) in a Hilbert space is given by  

          ,,,
*





 

 VzV

z
VzVzk   RCz \,   

   An operator-valued function   :,zK 	퐿(픑),Ω ⊂ ℂ  is said to be an  -
sectorial kernel, if . 

                                ∑ (K ω ,ω f , f )픑, 		  S  

For every choice of points   
n
ii 1 and vectors    i

n
iif 1 	ℌ, [푖. 푒., 

Im∑ (K ω ,ω f , f )픑,
 

 Retan
 

Im∑ (K ω ,ω f , f )픑,
 

cf.[6].For 훼 = 0    the corresponding kernel is nonnegative. 

   Let A be a non- densely defined closed symmetric contraction in the Hilbert spase 
ℌ	with	the	domain	dom	퐴 =:ℌ 	푎푛푑	푙푒푡	픑: = ℌ⊖ 푑표푚	퐴. 푙푒푡	푃 	푎푛푑	푃픑 be the 
orthogonal projections in	ℌ onto ℌ and respectively . Then the operator A0 = 

P 	A	is contractive and self adjoint in the subspace	ℌ .Let	퐷 = (퐼 − 퐴 	)  be the 
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defect operator determined by A0. The operator	A  P픑	Ais also contractive. 
Moreover, it follows from   IAA * . That	퐴∗ 퐴 ≤ 퐷 .Therefore, the identity 

                                         fDK A00 = P픑 domfAf , A	 

defines a contractive operator 	k 	  from픇 	 ≔ ran퐷 into 	픑, 푐푓, [21	], [24].This 
gives the following decomposition for the symmetric contraction A 

A = A + K D =
A

K D
.																																																															(17) 

  Let the closed symmetric contraction A be defined on the subspace	ℌ = domA 
and decompose	A according to	ℌ =ℌ ⨁픑 as in(17 ).Let T be a qsc-extension of A, 
so that TA  and *TA  ,and decompose T=(Tij)also with respect to	ℌ=ℌ ⨁픑,cf.(8) 

.Then clearly 0021
*

12011 ADKTTAT  . The next result gives a parametrization of all 
qsc – extensions of A and some of its subclasses by means of block formulas cf. 
[15],[18],[46],and [11],[13]. For completeness a short, simple proof presented. 

Theorem(1.1.4)[1]:Let A be a closed symmetric contraction A in ℌ=ℌ ⨁픑 with  
dom	A = ℌ  and decompose A as in(17). Then: 
(i)the formula 

:
*
0

*
00

0
*
0000

*
00















KKA

A

XDDKAKDK
KDA

T

(

  ℌ
픑

	⟶ ℌ
픑

                                 (18) 

gives a one – to – one correspondence between all qsc – extensions T of the 
symmetric contraction	 000 ADKAA  and all contractions X in the subspace 픇 ∗ :=

;*
0

RDran K    

(ii)  T in(18) belong to the class	C(α)	if and only if X belongs to the class C(α),α ∈
						(0,π 2⁄ );  

(iii) T  is a selfadjoint contractive extension of A if and only if Xin (18) is a    

        selfadjoint contraction in	픇 ∗  

Proof: (i) Every operator 	T ∈ L(ℌ)  satisfying the conditions TA   and *TA   
admits the block matrix representation of the form 
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:

0

0

0

*
00













DDK
KDA

T
A

A ℌ
픑

⟶ ℌ
픑

                  

whereD ∈ L(픑) then I-T*T is  given in the block form 

                                   
















DDKAKDADDADK
DKDKDADKKDD

TTI
KAA

AAAAA

**
0

2
00

2
0

*
00

*
0

*
000

*
0

2

*
000

00000* .	 

Contractivity of T means that 

2

0

22*
00 0

*
00

0 DhfDKhDhKAfD AKA 
                    

        (19) 

for all 푓 ∈ ℌ and 	h ∈ 픑  .Since ran K∗ ⊂ 픇 	 and A 픇 	 ⊂  픇 	, there exists a 
sequence  {f } ⊂ 픇 	such that for a given   ℎ ∈ 픑   the equality 

hKAfD nAn

*
000

lim 
  

holds. Hence, it follows from(19) that	E = K A K∗ + D satisfies  

           
 hhDhEhDEh KK ,,

22*
22

*
0

*
0

	픑,                   (20) 

where the second inequality follows from the first one by taking into account that 
T* is a contraction, too. By the second inequality in (20) there exists a contraction
 Z 	픑(R,픇 ∗ 	) such the Z*

0
*
0 K

*
000K DKAKDi.e.,Z,DE   . 

By substituting this into (19) one obtains 

 fZhhDZhKhKAfD Kk ,)0 222*
0

*
00 *

00
ℌ ,			h ∈ 픑	                            (21) 

since by means of (3) one has 

                
2*

000

2
*
000 0

*
00

()( hKAfDKZhDhKAfDK AKA 
 

                                                 
)),(Re(2 *

0
*
000

2*
0

2

0
ZhKhKAfDDKZhKZh A   

Due to the inclusion rank Z ⊂ 픇 	, one	 can choose a sequence 	{f } ⊂
픇A0 such that for a given h∈픑 the equality 

ZhKADfDD KnAKn

*
00000

lim 


                               (22) 
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Holds. Now (21) shows that ‖Zh‖ ≤ D ∗h 	 for all h ∈ 픑 so that	Z = XD ∗ 	for 
some contraction X in *

0KD Therefore 

                                                 
*
0

*
0 KK XDDE  and 

*
0

*
0

*
000 KK XDDKAKD                            (23) 

Conversely, let D  be of the from (23) , where X is a contraction in	픇 ∗  .Then 

02 XD implies that T given by (18) satisfie 

 
  


























h
f

h
f

TT ,*1
    

  0
22

*
0

*
00 *

0
*
000

 hDDhXDKhKAfDD KXKAk .       (24) 

Thus, every contraction X in	픇 ∗  defines a qsc- extension T of A via (18)(ii). It 
follow from (18) and (24) that T satisfies (6) and only if  

   
  






 

22
*
0

*
00 *

0
*
0002

tan hDDhXDKhKAfDD KXKAK


                             (25) 

Holds for all  f ∈ ℌ , h ∈ 픑  in view of the condition (22) in equivalent to  

  2
1 2

tan, hDhhX X



                                        (26) 

For allh ∈ 픇 ∗   

(iii)The statement is clear since T in (18) in selfadjoint if and only if T is self                   
adjoint in픇 ∗    

    The class of all selfadjoint contractive (sc-) extensions of A in part (iii) of 
Theorem(1.1.4),forms an operator interval	 A , A . Using the block representation 
(18) the endpoints of A , A are given by  

            












 2*

0000

*
00

*
00

0

kA

A

DKAKDK
KDA

A                  (27) 

and 













 2*

0000

*
00

*
00

0

kA

A
M DKAKDK

KDA
A   .                      (28) 
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With
 
X = −I ↾ 픇 ∗

   
and	X = I ↾ 픇 ∗ respectively. From the formulas (27) and (28) 

it is seen that  

                                       


























2*

0000

*
00M

*
00

0

0
00

2
A

,
2

AA

K

M

A

A

D
A

KAKDK
KDA 

.
 

This means that all qsc – extensions in (18) of the symmetric contraction A from 
an operator ball 

                                                              







 
2

AA
,

2
AA

B  MM
 

with center 

                                                                        2AA M  

and equal left and right radii  

                                                              2/AARR 21
 Mrl  

The one – to – one correspondence between all qsc- extensions  of A  and all 
contractions  X  in Theorem (1.1.4) can be  reformulated also as follow 

                  

2121

2
AA

2
AA

2
AA

T 






 








 



  MMM

                     (29)  

where the parameters X are contractions in the subspace ran A −
Aμ,cf.[11],[12],[13].It is easy to see from (18 ),(27)and(28), that if T is a qsc- 
extension of A such tha T = (T − T∗)/2 = A (A then in fact T =
A A .Namely,

iR iXXX  satisfies 

















IXXXXXiXXX
IXXXXXiXXX

IRIIRR

IRIIRR
22

22

)(*0

)(*0
,                    (30) 

 so that IXX R  2
1

20 and here clearly IX R 
2 implies 01 X  

  The description of all contractive selfadjoint extensions of a symmetric 
contraction A as the operator interval MAA ,

is due to M.G. Krien[ 28]. In that 

section the notion of shorted operators was also introduced and used for instance to 
establish the following characterization for	A  and A : 
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21

AIran  픑 = {0},
								

  
21

MAIran  픑{0},																													(31)	  

cf.[8],[23].Block formulas for describing all contractive extensions of a duel pair 
appear in[15],[18],[46], a description in Crandall’s form in The one to one 
correspondence between all qsc- extensionsTof Athe class	C(α) and all operators X 
in 푟푎푛 퐴 − 퐴  belonging to the class	C(α)  by means of (29 ) was proved in a 
different way in another proof based on(18) was given in[39].  
According to[33] a closed symmetric contraction   A is said to be simple if there is 
no non- zero subspace in dom	A  which is invariant under A. Since A is 
symmetric simplicity of A is equivalent A being completey non- selfadjoint, 
i.e.,to A having no selfadjoint parts. 

Lemma(1.1.5)[1]: Let the closed symmetric contraction
000 ADKAA  in	ℌ	 =

		ℌ ⨁픑	,ℌ = domA		be decomposed as in (17) with K :픇 ⟶ 픑 .is simple if 
and only if the subspace 

ℌ  span: 	{(퐴 − 푧퐼) 퐾∗픑: 푧 ∈ 휌(퐴 )}    (32) 

                                                 = 푠푝푎푛		{퐴 퐾∗픑:푛 = 0,1, … } 

Coincides withℌ . In this case픇 = ℌ , K :ℌ → 픑,an ‖퐴 푓‖ < ‖푓‖ for al f  
ℌ /{0} 

Proof. Suppose that A is simple. Then clearly  0ker
0
AD or equivalently 

ffA 0 for  all f  ℌ /{0}	so that 픇 = ℌ and :0K ℌ → 픑	Observe that the 
subspace ℌ in(22) and therefore also ℌ ⊖ ℌ  is invariant under *

00 AA  Then the 
subspaceℌ ⊖ ℌ is also invariant under

0AD . Moreover, 

                        ℌ ⊖ ℌ∗ = {f ∈ ℌ : K A∗f = 0, n = 0,1, … }                         (33) 

Is follow that	K D f = 0for all   f ∈ ℌ ⊖ ℌ Hence, in view of (17)Af = A f 
for	f ∈  ℌ ⊖ ℌ all This means that the subspace  ℌ ⊖ ℌ is invariant under A

since A  is a simple, one concludes thatℌ = ℌ  

Conversely, assume thatℌ = ℌ . Since 
0

*
0 ADranK  and 

0AD is invariant underA , 
the definition of ℌ in (22) shows that	ℌ ⊂ 픇 . Hence, the assumption implies 
that ℌ = 픇

0AD  so that ker 
0AD ={0}.Now suppose that ℌ ⊂ ℌ  is a 
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subspace which is invariant under A  . Then for every f  ℌ one has 

000 ADKfAAf  f  ℌ so thatK D f = 0 for all f   ℌ  and . Hence
0AD ℌ  is 

invariant underA  and D  Moreover since  0
0
AD the image

0AD ℌ  is dense inℌ . 
This implies that 0K and since nA0 one has 0K ℌ ⊂ ℌ for all .,....,1,0 ein    

ℌ ⊂ {f ∈ ℌ : K 	A f = 0, n = 0,1, … }ℌ ⊖ ℌ  
c.f(33)Therefore A is simple. 

   Let T be a qsc- extension of A in the Hilbert space	ℌ = ℌ ⨁픑	with	ℌ domA .. 
It is evident that the subspace 

           	
ℌ = span{(T − zI) 픑}: |z| > 1 = span	{T 픑: n = 1,2, … },													(34)	

	                   
is invariant underT, and that the subspace 

																																				ℌ : = 		ℌ ⊖ ℌ ,                  (35) 

is invariant underT* . Since 픑	 ⊂ ℌ , one obtains 

                                                   ℌ ⊂ 픑  *)ker( TTdomA   

Therefore the restriction of *T to	ℌ is a selfadjoint operator in	ℌ 	The restriction⊂

T ↾ ℌ 	 = Pℌ 	 ↾ ℌ . is called the픑 −minimal par of T Moreover T is said to be 

픑 − minimal if the equality	ℌ = ℌ holds. If T be a qsc- extension of  A then its 
adjoint T is also a qsc extension of A  and one can associate with it the subspace  
ℌ and the corresponding	픑 − minimal part of *T . The next result shows the	픑 − 
minimal parts of T and	T∗ are qsc- extensions of the simple part A ↾ ℌ of A in the 
same subspaceℌ = ℌ ∗  

Proposition(1.1.6)[1]: let A be a symmetric contraction in ℌ = ℌ ⨁픑 with	ℌ =
domA. Let T be a qsc- extension of A  in	ℌ and letT* be its adjoint. Then the 
subspaces 	ℌ ,ℌ ∗andℌ  of ℌ = ℌ ⨁픑 as defined in (34) and (32) are connected 
by                                                                                   

(ℌ′ ≔)ℌ = ℌ ∗ = ℌ ⨁픑.																																																													(36) 

In particular, the symmetric contraction A is simple if and only if the qsc- 
extension T, or equivalently T*of A is  픑 − minimal. 
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Proof. It follows from the Schur – Frobenius formula (10) that 

  1 zT 픑 = −(A − z) D K∗

픑
, |z| > 1, 

 
which implies that 

                             span{(T − zI) 픑}: |z| > 1} 

                                            span  (A − zI) D K∗픑: z ∈ ρ(A ) ⨁픑 

                                            spanclosDA0
( (A − zI) D K∗픑: z ∈ ρ(A ) ⨁픑 

This shows that  

                                     ℌ = clos	D ℌ ⊕픑.                                                      
(37) 

Since 	 *
0K 픇  and픇 is invariant under 	A  one has ℌ ⊂ 픇 .In particular,ℌ
 0ker

0
AD which together with

0AD ℌ ⊂ ℌ  implies that 
0AD ℌ = ℌ . Hence, 

(37) implies the equality		ℌ = ℌ ⨁픑. It follows from 

                                           ,1,** 1111   zzITTTzITzITzIT  

	and	the	inclusion	ran	(T − T∗) 	⊂ 픑	that			  

  1*  zIT 	픑 ⊂   1 zIT 	픑 ⊂ ℌ ,					|z| > 1. 

Therefore ,ℌ′ ∗ ⊂ ℌ′ and the reverse inclusion follows by symmetry. This 
completes the proof of (36). 

     The last statement is clear from(36)  

     For selfadjoint extension of A the result in Proposition(1.1.6) has been given in  
the case of closed densely defined symmetric operators Athere is an equivalent 
criterion for the simplicity of A due to M.G. Krein based on the defect elements: 

   RCAspan  :*ker 	ℌ, 

cf. Lemma(1.1.5) .This characterization has been extended to non – densely 
defined symmetric operators in[37] 
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Sec(1.2) 

Quasi-Self adjoint Contractions 

   Let T be a qsc – operator in a separable Hilbert space	ℌ and let 픑 be subspace 
of	ℌ such that	픑 ⊃ ran(T − T∗). The operator – valued function 

                     Q (z) = P픑(T − zI) ↿ 픑,					|z| < 1,																									(38) 
where 	P픑 is the orthogonal projection in 	ℌ  onto 	ℌ  is said to be Q – function 
associated withTand the subspace 	픑  .Clearly, it has the limit value 		Q (∞) =
0	and the Q – function of T and T* in	픑 are connected by  

                    .1,*  zzQzQ TT          (39) 

If T is a selfadjoint contraction then Q – function (38) is a Nevanlinna function of 
the class N픑[-1,1]. The next result contains some basic properties for the Q –
function Q (z) of a qsc- operator T as defined in (38) 

Proposition(1.2.1)[1]: Let Q (z)	be a Q – function of a qsc – operator T as 
defined in (38)Then: 

(i)	Q (z) has the following asymptotic expansion: 

                      ,,1011
22 





 z

z
F

z
I

z
zQT                                          (40)                                          

       where   F = −P T ↾ 픑;  

(ii) Q (z) ∈ L(픑) for all	|z| > 1 ; 

(iii) Q (z)has strong limit valuesQ (±1): 
       ;lim1,lim1 1

1

11

1

1 xQQxQQ TzTTzT








   

(iv)for all 	f, g ∈ 픑	thefollowing inequality holds: 

         ((Q (−1) + Q (1))f, g  

≤ ((Q (−1) − Q (1))f, f)((Q (−1) − Q (1))g, g); 

(v)the function −Q (z) − F − zI	is an operator – valued Nevanlinna function: 

(vi) Q (z) ∈ N픑[−1,1]	ifand onlyif F=퐹∗ 
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Moreover, if T is decomposed as in (18) with	ℌ (ℌ⊖픑 ) andA= T ↾ ℌ , 푡ℎ푒푛                                                   

                                       ,*
0

*
0

*
000 KK XDDKAKF                                             (41)                                                   

                                  *
0

*
0

*
0

*
0

11,11 11
KKTKKT DXDQDXDQ                           (42)                                                                         

                                                       (43) 

Proof.(i) Clearly lim → 	 	zQ (z)h = lim
→

	z P픑     hzIT 1 P픑ℎ  for all ℎ ∈ 픑. 

Moreover, for all	h ∈ 픑 

   


hzzQz Tz
1lim

z
zPlim 픑     hzITT 1 P Th .                                   (44) 

Hence, Q (z) admits the asymptotic expansion (40) 

(ii)Let	|z| > 1, 푙푒푡	푓 ∈ 픑, and	letφ = (T,−zI) f. Then‖f‖ ≤ (1 + |z|)‖φ‖ 

and  

        zITffzITffzQT   ,,, 1

 

= |(φ, Tφ) − z‖φ‖ | ≥
|z| − 1

(|z| + 1) ‖f‖ . 

Since = |Q (z)f, f| = |(Q (z)∗f, f)|, this implies that 

                        ‖Q (z)f‖ ≥ | |
(| | )

‖f‖    Q (z)∗f ≥ | |
(| | )

‖f‖.     

Therefore	Q (z) ∈ L(픑) 푓표푟	푎푙푙	|푧| > 1.		  

(iii) Decompose	ℌ(ℌ 픑 ) and write T in block form as in(18) where	ℌ (ℌ⊖
픑,A= T|ℌ0,A0=P0A isa selfadjoint 
contractionℌ , D = (1 − A ) / , K ∈ L(픇 ,픑)  is a contraction and X is a 
contraction in the subspace	픇 ∗ 	픑.The formula (41) for F is immediate from (18). 
WriteQ (z) as in (11)  

1,)()(1  zzIzVzQ TT  

where  

     *
0

*
0

*
0

2
0

1
000 1)( KKT XDDKAzIAAKzV  

                                        (45) 

           0
1

0
2
00

1 K zI AAI K zI F z QT 
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This shows that the limit values	Q (±1) exist and that they are given by (42).  
(iv) It follows from (42)that 

*
0

*
02

)1()1( 11

KK
TT XDDQQ


 

 

*
00

2
11

1
2

)1()1(
*
0

KKDQQ
K

TT 
 

                                             (46) 

It remains to apply the criterion (4) with 푆  =0 and 2
1 8

0Kr DRR   . 

       (v) It follows from (41) and (45) that(43) holds. Clearly, the function in(43)  is 
a Nevanlinna function. 

     (vi) if Q (z) ∈ N픑[−1,1]then −Q (z) is a Nevanlinna function and now part 
(v) implies that *FF  .Conversely, if *FF  then the functionV (z)  in( 45)and   

    zIzVzQ TT  1
are Nevanlinna functions. ThereforeQ (z) ∈ N픑[−1,1].  

   Let T be a qsc – operator, let	Q (z)be defined by (38) and let F be defined 
by	F = −P픑 ↾ 픑. Associate withQ (z) the following kernels: 

                                 (47) 

M (z, ξ): I + zQ (z) + ξ̅Q (ξ)∗ + zξ̅G (z, ξ)																																																(48) 

                                            (49) 

and  

M (z, ξ) = L (z, ξ) + Q (z)(F − F∗)Q (ξ)∗,                             (50) 

with	z ≠ ξ̅, |z|, |ξ| < 1 . The insertion of the definition of	G (z, ξ) in	L (z, ξ)  
and	K (z, ξ)	leads to the identities  

												 z − ξ̅ L (z, ξ) = (1 − z )Q (z) − 1 − ξ̅ Q (ξ)∗ 

− 1 − zξ̅ Q (z)(F − F∗)Q (ξ)∗ − z − ξ̅ I, 

and 

												 z − ξ̅ L (z, ξ) = (1 − z )Q (z) − 1 − ξ̅ Q (ξ)∗ 

   ξξξ , ), (:, z Mz GzL TTT 

   
ξ 

ξξ ξ 
 

 
 



z
QQFFz Q Qz Q z G TTTT T

T 
)1( )(*)( )()(:, 

1
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−(1 + z) 1 − ξ̅ Q (z)(F − F∗)Q (ξ)∗ − z − ξ̅ I. 

Proposition(1.2.2)[1]: LetT be a qsc – operator, let	Q (z)be defined by(39), and 
let T be defined by	F = −P픑 ↾ 픑.Let the kernels associated with  zQT  be given by 
(47),(48),(49)and (50). Then the following equalities hold for every	z ≠ ξ̅, |z|, |ξ| >
1:   

  G (z, ξ) = P픑(T − zI) T∗ − ξ̅I ↾ 픑,																																												(51) 

M (z, ξ) = P픑(T − zI) TT∗ T∗ − ξ̅I 	 ↾ 픑,																																			(52) 

and                   

                         
L (z, ξ) = P픑(T − zI) (T−T∗)픑.																																																			(53) 

The operator- valued function 	G (z, ξ), M (z, ξ), and L (z, ξ) are nonnegative 
kernels. If in addition the operator T belongs to the class  C  then the function. 

              K (z, ξ)=P픑(T − zI) (1 + T)(1 − T∗)(T∗ − ξ̅I) ↾ 픑                (54) 

with|z|	, |ξ| > 1 is an	α −sectorial kernel. 

Proof. Note that	ran(T − T∗) ⊂ 픑 implies that	픑 ⊂ ker(T − T∗), and hence	T −
T∗=P픑(T − T∗)P픑. Therefore for every	푓,푔 ∈ 픑,  

       gfQzQ TT , (P픑(T − zI) f − P픑(T∗ − ξ̅I) f, g) 

= (P픑(T − zI) (T∗ − T)(T∗ − ξ̅I) f, g) 

                                     

																																												
+ z − ξ̅ (P픑(T − zI) (T∗ξ̅I) f, g) 

                                      =(Q (z)(F − F∗)Q (ξ)∗f, g) 

+ z − ξ̅ (P픑(T − zI) (T∗ − ξ̅I) f, g) 

Hence, it follows that 

Q (z) − Q∗ (ξ) =
	
Q (z)(F − F∗)Q∗ (ξ)+ z − ξ̅ (P픑(T − zI) (T∗ − ξ̅I) ↾ 픑, 

and this proves (51). The identity ( 52) follows now from 
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(T∗ T∗ − ξ̅I f, T∗(T∗ − zI) g) = f − ξ̅(T∗ − ξ̅I f, g + z(T∗ − zI) g) 
=	(f, g) + z(Q (z)f, g) + ξ̅Q∗ (ξ)f, g) + zξ̅(G (z, ξ)f, g)		f, g ∈ 	픑. 

 Subtracting (53) from (51) gives immediately the identity (53). 

            It is clear from the given formulas (51),(52),and(53), that the functions 
G (z, ξ), M (z, ξ),andL (z, ξ) are nonnegative kernels. 
   Since (T-T*)= P픑(T-T*)P픑, the definitions of Q (z) and F in (38),(44) show that 

−Q (z)(F − F∗)Q∗ (ξ) == (P픑(T − zI) (T∗ − T)(T∗ − ξ̅I) . 
Combining this identity with (53) leads to (54). 

      It is a consequence of(7) that +퐾 (z − ξ)	is an α −sectorial kernel. 

Proposition(1.2.3)[1]: Let T be a qsc – operator in a Hilbert space ℌ,픑 ⊂
ran(T − T∗). Suppose that T is	픑 −	minimal,i.e.,	ℌ = span{(T − z) 픑: |z| > 1}. 
Then the following conditions are equivalent; 

(i)	픑 = ℌ;  
(ii)       zQzQzzG TTT , for at least one (and equivalently for every): with	|z| 	> 1,                            

      where	Q (z)is Q- function of T defined by (38) and	Q (z, ξ)	is defined by (47), 

(iii) the operator- valued function     zIzQT 1
 is constant. 

Proof: (i) ⟹ (ii)& (iii)  if 픑 = ℌ  then 푄 (푧) = (푇 − 푇∗)  and the 
equality	       zQzQzzG TTT , 	푎푙푙	푧, |z| 	> 1,follows immediately from (51). Besides,

  TzIzQT 1 for 푎푙푙	푧, |z| 	> 1 

(ii) ⟹ (i) Now suppose that	푄 (푧, 푧) = 푄 (푧)푄 (푧)∗for some	z, |z| 	> 1.  
Then (38) and (51) yield  

‖(푇∗ − 푧̅퐼) 푓‖ = 푃픑‖(푇∗ − 푧̅퐼) 푓‖             
푓표푟	푒푣푒푟푦	푓 ∈ 픑. 

Therefore, (푇∗ − 푧̅퐼) 픑	  픑  which implies that the subspace 픑  is invariant 
underT*,and hence also under T, since ran( 푇 − 푇∗) ⊂ 	픑.  Because T is 	픑 − 
minimal, this leads	to픑 = ℌ. 

       (iii) ⟹  (ii) Suppose that 	   zIzQT 1
 is constant for |z| 	> 1.  According to 

Proposition(1.1.3) the function   FzIzQT  1 has a holomorphic continuation onto 



21 
 

Ext[-1,1]as a Nevanlinna function. Since   FzIzQT  1 is constant for |z| >
1,one has  

                                                          

it follows that 

                                            

and thus  

푄 (푧) −푄 (푧) + 푄 (푧) ∗ − (퐹 − 퐹∗) 푄 (푧)∗

푧 − 휉̅
= 푄 (푧)푄 (푧)∗,				|푧| > 1. 

  Therefore G (z,z)=	Q (z)Q (z)∗	for all z,|z|>1. 
  Observe, that equality (51) can be rewritten in the following two equivalent 
forms: 

         ( ) ( ( ) )∗

 

                              = 푄 (푧) 푃픑   1 zIT −푄 (휉)                                           (55)  

and 

            ( ) ( ( ) )∗   

                         		= 푄 (푧) 푃픑(T − 		푧퐼) 푇∗ − 휉̅퐼 푄 (휉) ∗	.																							(56) 

These formulas show that −Q (z) − F and−Q (z) − F − zI ideed are 
Nevalinna functions. In particular, the conditions (i) – (iii) in Proposition(1.2.3)are 
equivalent to the right side of (56) to vanish. 

Remark(1.2.4)[1]: The Q – function as defined in(38) can be interpreted as the 
Weyl function for a special kind of boundary value space of a duel pair of 
operators,cf [38],[40],[41]. To explain this. Let A=A0 =K0DA0 be a Hermitian 
contraction and let T be a qsc – extension of A,i.e., T is a contractive extension of a 
	dual	pair	{A, A}. let	A∗can	be	the	adjoint	linear	relation	of	A	in	the	Cartesian	 

      1, 1 
1

> 

 

z 
z z 

FFz Qz Q T T 


 

    1 , 01 >zFIz zQ zIz Q TT   
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product	ℌ × 	ℌ . Then A* can be represented as follows: 

A∗ = {f, Tf + φ}: f ∈ ℌ.		φ ∈ 픑 = {f, T∗f + ψ}: f ∈ ℌ,			ψ ∈ 픑 . 

De ine	the	following	bounded	linear	operators	acting	from
	
A∗	into	픑: 

Γ {푓, 푓′} = 푃픑푓, Γ {푓, 푓′} = 푃픑푇∗푓 − 푃픑푓 ′, Γ {푓, 푓′} = 푃픑푇푓 − 푃픑푓 ′ 

푤ℎ푒푟푒{푓,푓 ′} ∈ 퐴∗.푇ℎ푒푛	 픑, Γ , , Γ , , Γ 푓표푟푚푠	푎	푏표푢푛푑푎푟푦	푣푎푙푢푒	푠푝푎푐푒	푓표푟퐴∗	. 

퐼푛
	
푝푎푟푡푖푐푢푙푎푟, 푓표푟	푎푙푙      Agggfff ,ˆ,,ˆ the following identity holds 

       gfgfgfgf ˆ,ˆˆ,ˆ,, 0210   

and moreover ker
 

 T1
, ker T2

, and 

   hhAh :,ker 00  ℌ 0
       ,   픑}. 

The corresponding	γ −fields are the following operator functions 

 

   
   
   




















,
,

,

1
2

1
1

0
1

00 0






zITz
zITz

DKzIAz A

 

where	φ ∈ 픑 and	|푧| > 1.. It follows that    zzQT 20 	 is given by  

  zQ 푃픑(Τ − 푧퐼	) ↾ 픑,  

and that    zzQT 02
1    is given by  

−Q (z) = K [A + (A − zI) (I − A )]K∗ − D ∗XD ∗ + zI ↾ 픑, 

where T is decomposed as in (18) see also Proposition(1.1.7). In particular. this 
means that 	Q (z)can be interpreted as the Weyl function corresponding to the 
boundary value space{픑, Γ , Γ  ,	Γ }in the sense of [41],[42]. 

Let 	
000 ADKAA  be a closed symmetric contraction in 	ℌ   and let T be a qsc- 

extension of A given by the block matrix (18). If	 Q(z) = P픑(Τ − zI	) ↾ 픑	is	the 

Q- function of T, then by(46)the operator
( ) ( ) 	

is nonnegative on	픑 .Let 
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BB
TQ :        








 




2
11,

2
11 1111

TTTT QQQQ
                                                                          (57) 

be the operator ball 퐿(픑)in with center 

      

00
2/11 11

KKTT XDDQQ  

and equal left and right radii 

     211

0
2/11  

kTT DQQ  

Recall	that	it	is	the	set	of	all	operators	in	픑	of	the	form	
  

            2/1112/11111

2
11

2
11

2
11








 







 






TTTTTT QQYQQQQ

 

.1Ywhere    

Thearem(1.2.5)[1]:Let A be a closed symmetric operator in aHilbert space
	
ℌ.Then 

the formula 

         PBzQIBzITzITzIT T
1111 ~~~ 

 픑   1~ 
 zIT

																								(58) 

with	 |z| ≤ 1 gives a	 one – to – one correspondence between the resolvents of all 
qsc extensionsT~ of A and all operators B~ belonging to the operator ball B  in (57) 

Proof. By Theorem (1.1.4) every qsc – extension of A can be written in the 
block form 

                                       



















000

0 ~
~

0000

00

KKA

A

DYDKAKDK
KDA

T
                                (59)                                    

where	‖Y‖ ≤ 1. This together with(18) gives 

                          퐵 ≔ 푇 − 푇 ↾ 픑 =   

000

~
0 KKK DYDXDD                                  (60)                                              

which in view of (46) this means that	B ∈ B  it follow from 

                                푇	– 푧퐼 = 푇 − 푧퐼 + 퐵푃픑																																																																											(61) 

 

T~
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that 

(푇 − 푧
	
) = 푇	 − 푧 + (푇 − 푧

	
) 퐵푃픑 푇	 − 푧 ,						|푧| > 1, 

and	compression	to픑	lead	to 

       .~~~ zQBzQzQzQ   

SinceQ (z)and Q (z) are invertible by part (ii) of Proposition (1.1.7) one obtains  

              .~~~~ 1111   zQzQBIBzQIzQBzQzQ  

Therefore, the	operators	픑 

1 + Q(z)B		and			I + BQ(z),				|z| > 1 

are invertible in	픑, too. Furthermore, by	rewriting	 (61) in the form 

T − zI = I + BP픑(T − zI) (T − zI). 																						              

it is clear that  I + BP픑(T − zI) ∈ L(ℌ) for every |z|>1  and  

                       	 T − zI = (T − zI) I + BP픑(T − zI) 			, |z| 	> 1					(62) 

   It also follow from that  

T − zI − (T − zI) = − T − zI BP픑(T − zI) 																				(63) 

Now using the identities (61), (62) and  

                                 I + BP픑(T − zI) BP픑 = BP픑 I + P픑(T − zI) BP픑  

one obtains  

    11~ 
 zITzIT  

                                          ( 1 zIT BI ~ 푃픑	   B~ ) -11 zIT 	푃픑	    1 zIT  

                                           1 zIT BP픑(1 + 푃픑	   1 zIT BP픑 1)  P픑    1 zIT  

                                           1
T

1 ~QIB~ 
  BzzIT P픑    1 zIT , 

which gives the required identity (58) 
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 Conversely, assume that ,~
TQBB that B~is given by 

                          

            2/1112/11111

2
11~

2
11

2
11








 







 






TTTTTT QQYQQQQ

 

for some	 .1~ Y
  
By(46) one has	B = −D ∗XD ∗ + D ∗YD ∗ .Consider the qsc – 

extension T~  of A given by the block operator T~ of the form (59)which is 
determined by	Y. Then cleary	B = 	T − T ↾ 픑.As was shown above, the operator 
1+푄 (푧)	B is invertible for all|z| > 1and the resolvent ofT~ takes the form(58). 

    The one – to – one correspondence is clear from the given arguments. 

    Observe that the Q – function 	Q (z) of the operator 	T  in(58) and the Q-
functionQ (z)of T are connected via 

푄 (푧) = 푃픑(푇 − 푧퐼) ↿ 픑           11 ~~ 
 zQBIzQzQBzQI TTTT                 (64)

   11~  zQB T  

Let 픑 be a Hilbert space. An operator valued function Q(z)with values inL(픑)and 
holomorphic outside the unit disk  is said to belong to the class Q(픑) if:   

 (푖)	푄(푧)ℎ푎푠	푡ℎ푒	푒푥푝푎푛푠푖표푛 

                                               (65) 

(ii)theL(
	
픑) − valued	function                                                                                                                             

퐺(푧, 휉) =
	푄(푧) − 	푄(휉)∗	 − 	푄(푧)(퐹 − 퐹∗)푄(휉)∗	

푧 − 휉̅
,					푧 ≠ 휉̅, 

with
	
|z|, |ξ| > 1

	
is a nonnegative kernel; 

(iii)theL(
	
픑) − valued	function                                                                                                                             

퐿(푧, 휉)

=
	(1 − 푧 )푄(푧) − 1 − 휉̅ 	푄(휉)∗	 − 	 1 − 푧휉̅ 푄(푧)(퐹 − 퐹∗)푄(휉)∗	 − 푧 1 − 휉̅ 퐼

푧 − 휉̅
 

     with	푧 ≠ 휉 ̅, |z|, |휉| > 1	is a nonnegative kernel: 

  ;, 1011
22 





  z 

z
F

z 
I

z 
z Q



26 
 

(iv)there exit a complex number z0, |z0| > 1,and a vector f ∈ 픑 such that
      ., 0000 fzQzQfzzG           

    If T is a qsc- operator in the Hilbert space	ℌ	, 픑	is a subspace of ℌ such that	,픑 
ℌ and ran (T-T*)픑	and 푄 (푧)	is its Q- function defined by (38) then according 

to Propositions (1.1.7),(1.2.1) and (1.2.2) the function	푄(푧)belongs to the class (Q

	픑).푇ℎ푒	푐표푛푣푒푟푠푒		푠푡푎푡푒푚푒푛푡 	푖푠	푎푙푠표 	푡푟푢푒.  

Theorem(1.2.5)[1]: Let  zQ be a function of the class
		
푄(픑).	Then there exist a 

퐻푖푙푏푒푟푡	space	ℌ ⊃ 픑	,픑 ≠ ℌ,푎푛푑 	푎푛	
	
픑 − 푚푖푛푖푚푎푙   qsc- operator T in	ℌ such 

that 픑 ⊃ ran(T − T∗) and 

푄(푧) = 푃픑(푇 − 푧퐼) ↿ 픑   ,for all	|z| > 1                                    (66). 

If, in	addition, theL(
	
픑) − valued	function	                                                                                                                             

퐾(푧, 휉): 퐿(푧, 휉) − 푄(푧)(퐹 − 퐹∗)푄(휉)∗	 

=
	(1 − 푧 )푄(푧) − 1 − 휉̅ 	푄(휉)∗	 − 	(1 + 푧) 1 − 휉̅ 푄(푧)(퐹 − 퐹∗)푄(휉)∗	 − 푧 − 휉̅ 퐼

푧 − 휉̅  

with z ≠ ξ̅	, |z|, |ε| > 1	where F is given by(65),is an훼 −  sectorial kernel with
 2/,0    ,then the corresponding operator T belongs to the class  .C  

Proof. Step 1. Let	ℌ	the reproducing kernel Hilbert space associated with the 
nonnegative kernel   .,.,, eizG   ℌ	is the completion of 

푠푝푎푛{퐺(. ,휔): 푓 ∈ 픑, |휔| > 1} 

with respect to the norm determined by the inner product  

(
	
퐺(. ,휔)푓,퐺(. ,휇)푔)ℌ = (퐺(휇,휔)푓,푔)픑. 

For all
	
푓 ∈ 픑 and

	
|ω|, |μ| > 1 

        ‖		
휔퐺(. ,휔)푓, 휇̅퐺(. ,휇)푓‖ℌ = |휔| (퐺(휔,휔)푓,푓)픑|휇| (퐺(휇, 휇)푓, 푓)픑 

                                    −휇휔(퐺(휇,휔)푓, 푓)픑 	
− 휇휔(퐺(휇,휔)푓, 푓)픑.                     (67)                                      

In view of (65) one has
	
푄(푧) = (−1/푧)퐼 + °(1/푧)푎푠	푧 → ∞ , which implies that 

푙푖푚
휔 → ∞휔퐺

(푧,휔)푓 = −푄(푧)푓,			|푧| > 1,               (68) 
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          and moreover that                                                

휇
푙푖푚

,휔 → ∞휔퐺(푧,휔)푓 = 푓, 푓 ∈ 픑.                                       (69) 

(퐻푒푟푒 → 푠푡푎푛푑푠	푓표푟	푡ℎ푒	푛표푛푡푎푛푔푒푛푡푎푙 	푙푖푚푖푡 	푖푛	푎	푠푒푐푡표푟	|푎푟푔	(푧) − 휋/2| ≤
훼<휋2       

 Hence(67) and(69)imply that the following limit exists in
	
ℌ		  

  fzGKf 


,lim:


                                                                                          (70) 

and defines a linear operatorK:	픑 →
ℌfor which  

               ‖퐾푓‖ℌ = 푙푖푚 → ‖휔퐺(∙,휔)푓‖ℌ = 푙푖푚
→

|휔| (퐺(휔,휔)푓,푓)픑 = ‖푓‖픑    (71) 

Thus K is isometric. It follows from (68) that  

             (	
퐾푓,퐺(. , 휇)푔)ℌ  −		

푙푖푚
휔 → ∞휔(퐺(. ,휔)푓,푔)ℌ              

                                  
= −		

푙푖푚
휔 → ∞휔(퐺(휇,휔)푓,퐺(. , 휇)푔)픑 = (푄(휇)푓,푔)픑,              

which shows  that  

                                                  ggQgGK ,.,  픑                                 (72)          

Step 2.Define the linear relation S in	ℌ	b 

																																																																															 

							푆 = {∑ 퐺(. ,휔 )푓 + ∑ 푘푓 + ∑ 휔 퐺(. ,휔 )푓 }: 푓 ∈ 픑, |휔 | > 1 		        (73)       

퐵푦	푑푒푓푖푛푖푡푖표푛	푡ℎ푒	푑표푚푎푛	표푓푆	푖푠푑푒푛푠푒	푖푛ℌ푖푛	푓푎푐푡	푆	푖푠		푎	푐표푛푡푟푎푐푡푖푣푒	푙푖푛푒푎푟 

표푝푒푟푎푡표푟	푖푛	ℌ, 푠푖푛푐푒  

                    ‖∑ 퐺(. ,휔 )푓‖ℌ − ‖∑ 푘푓 + ∑ 휔 퐺(. ,휔 )푓‖ℌ 

 = ∑ (퐺 휔 ,휔 푓, ,푓 )픑 − ∑ (푓, , 푓 )픑 − ∑ 휔 (푄 휔
∗
푓 , 푓, )픑 

−∑ 휔 (푄 휔
∗
푓 , 푓, )픑 − ∑ 휔 휔 퐺 휔 ,휔 푓 , 푓, )픑 

 = ∑ (퐿 휔 ,휔 푓 ,푓, )픑 ≥ 0, 
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where (71) and (72) have been used. Therefore, the operator S has a unique 

contractive continuation which is defined everywhere on 
	
ℌ	and for which the same 

notation S is preserved. 

Step3. To calculate the imaginary part of S note that for 
	
ℎ		 = ∑ 퐺(. ,휔 )푓 	the 

the following identities holds 

                        

														
(푆ℎ, ℎ) = ∑ 푘푓 + ∑ 휔 퐺(. ,휔 )푓 + ∑ 퐺 . ,휔 푓

ℌ
 

                                        = ∑ (푄 휔 푓 + 휔 퐺 휔 ,휔 푓 ,푓, )픑. 

Similarly one obtains  

                                  (푆ℎ, ℎ) = ∑ (푄 휔
∗

, 푓 + 퐺 휔 ,휔 푓 ,푓 )픑 

Since
	
	푄 휔 − 푄 휔

∗
+ 휔 ,휔 퐺 휔 ,휔 = 푄 휔 (퐹 − 퐹∗) 휔

∗
,one obtain  

                           (푆 − 푆∗)(∑ 퐺(. ,휔 )푓 ),∑ 퐺 . ,휔 푓
ℌ 

                         
																											

= ∑ (푄 휔 (퐹 − 퐹∗)푄 휔
∗

, 푓 , 푓 )픑 

		= 	 ((퐹 − 퐹∗)퐾∗퐺(. ,휔 )
,

푓 ,퐾∗퐺(. ,휔 )푓 )픑																																					 

                     

																																	
= 퐾(퐹 − 퐹∗)퐾∗(∑ 퐺(. ,휔 )푓 ),∑ 퐺(. ,휔 )푓

ℌ
 

This implies that  

                              .  KFFKSS    (74)          

By the definition of (73)one has
	
	(푆 − 휔퐼)퐺(. ,휔 )푓 = 퐾푓, so that  

                                 																															(푆 − 휔퐼) 퐾푓 = 퐺(. ,휔)푓,								푓 ∈ 픑	,				|휔| > 1							         (75) 

Step4 . Since K is isometric ran K is closed. Let 			ℌ = 푘푒푟퐾∗	 and define  
	
ℌ ≔

ℌ0	
픑. Observe,that according to(72) 

	
ℎ		 = ∑ 퐺(. ,휔 )푓 belongs to the 

subspace	ℌ of	ℌif and only if 	∑ 푄 휔 ∗푓 = 0.	Now decompose	ℌ = ℌ ⨁ ran 
K and define the

 
operator	프:ℌℌ by 





29 
 

       
																								

 
	
프     xyKxyx ,  ℌ ,				푦 ∈ 푟푎푛		퐾.        

Then 프	 if maps 	ℌ onto H  and it is unitary. Hence, the operator T defined 
byT: 	프S∗프 -1 is  contractive in ℌ and(74) shows that   TTran, 	프  ranK

	픑.	Furthermore for gf , 픑and|z|>1 the identities (72)and(75) yield  

                              gfzT ,1 ℌ   1  zIS 	프-1 f ,	프-1	)ℌ 

                 
																					

  1  zIS 	 KgKf , )ℌ 

                                      1,(   IzSKf 	Kg )ℌ 

                                      = (퐾푓퐺(. , 푧)푔)ℌ 

                                     = (푄(푧)f, g)픑 

Thus  

                                   zQ 푃픑(Τ − 푧퐼	) ↾ 픑,				|푧| > 1         

Moreover, it follows from(75)that the operator T is 픑 −minimal. 

    Step 5.Finally it is shown that ℌ ≠ {0} . If 	ℌ = {0}  then 	픑 = 	ℌ  and by 
proposition (1.2.2) the equality     zQzQzzG ),(  holds for all |z|>1  . But this is 
impossible due to the condition (iv) of the definition of the class	푄(픑) 

Therefore ℌ ≠ 0,픑 ≠
	
ℌ	and	T	is	a	 qsc–operator whose Q– function  zQT  

coincides with  zQ  . 

 As to the last statement observe, that since	푄(z) is the form (66)the kernel	퐾(z, ξ) 
admits the operator representation(54) in Proposition (1.2.1) Since T is 	픑  –
minimal, it follows from(54)and that T ∈ 푄(α). 

     The qsc-operator T constructed in Theorem(1.2.6) is 
	
픑  -minimal. The next 

result shows that this model for functions  zQ belonging to the class 	푄(픑) is 

essentially unique. Namely, the 픑 -minimal part of a qsc–operator T(and hence 
also of T*) is up to unitary equivalence uniquely determined by its Q-function; 
afact which is well known in the selfadjoint case. 

Theorem(1.2.6)[1]: Let 	ℌ = ℌ ⨁픑	and	ℌ = ℌ ⨁픑	be two Hilbert spaces, 
and let T1 and T2 be qas-operators in	ℌ and	ℌ ,  respectively, such that ran(푇 −
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푇∗) ⊂ 픑 and (푇 − 푇∗) ⊂ 픑  if 푄 (푧) ⊂ 푄 (푧) in some neighborhood of infinity 
then the	픑 -minimal parts of T1 and T2 are unitarily equivalent. 

Proof. Assume that    zQzQ TT 21
 holds in some neighborhood of infinity, say, for 

|z|, r >1. Then these functions coincide everywhere outside the unit disk. It follows 
from(40)and  (44)that F1=F2  , while (51) implies that  

                       푃픑(푇∗ − 휉퐼)   1
1

 zIT ↾ 픑 = 푃픑(푇∗ − 휉퐼)   1
2

 zIT ↾ 픑   

for all
	
|푧|, |휉| > 1; 푐푓. (39).Hence,for all f,g

	
∈ 픑 

((푇 푧퐼) 푓, (푇 휉퐼) 푔) = (푇 푧퐼) 푓, (푇 휉퐼) 푔).								           (76)                                           

Now define the linear relation U from 	ℌ = {푠푝푎푛(푇 − 푧퐼) 픑: |푧| > 1} 
into	ℌ = {푠푝푎푛(푇 − 푧퐼) 픑: |푧| > 1} by the formula 

                              .,
1

1
2

1

1
1
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k
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k
kk fIzTfIzTU  

Then the identity(76) implies that U is a unitary operator from	ℌ ontoℌ 	.In 
addition, =f  for all f 픑,and 
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Therefore, the simple parts of TI and  T2 are unitarly equivalent. 

         The definition of the class	Q(픑)can be seen as an analytical characterization 
for Q-function of qas-operators T as defined in (38). Another characterization is 
established in the next theorem. 

Theorem(1.2.7)[1]: Let 	픑  be a Hilbert space. The following conditions are 
equivalent;  

(i)the function Q(픑)belongs to the classQ(픑); 

(ii) (a)	Q(푧) (L 픑 ) is holomporphic in the domain |z| > 1	and with 	퐹 ∈ 퐿(픑) 

        it has the esymptotic expansion 

Uf

   






n

k
kkk

n

k
k fIzTzf

1

1
1

1
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 z

z
F

z
I

z
zQ  

(b)the function 

  FzIzQ  1
 

      is not constant, it has holomorphic continuation onto Exit{-1,1} as a  

      bounded Nevanlinna function, and the strong limits	  11 Q  exist; 

(c)     011 11   QQ  and for all gf , 픑	the following inequality 

       holds: 

                               211 ,11 gfQQ    

                                         ggQQffQQ ,11,11 1111   . 

Proof.(i)   (ii)let the function 	  zQ  belong the class (Q 픑 ) .Then(a) holds by 

definition see (65). ByTheorem (1.2.5) the function  zQ  has the operator 
representation   zQ 푃픑(Τ − 푧퐼	) ↾ 픑, where T is a qas-operator in  a Hilbert 
space ℌ		픑	 such that   

11 TTran
	
픑 .Now(b)follows from parts(ii)and (v) of 

Proposition (1.2.7) and Proposition (1.2.3) see also the identity (50). The inequality 
in(c) is obtained from part (iv)Proposition(1.2.6). 

     (ii) (i)Now assume that the function  zQ has properties(a)-(c) . It follows from 
(a) and (c) that 

         zzGzGFzIzQ ,10,1
 

Here  zG 푁픑[−1,1] and   .0G Now it follows from Theorem(1.2.3)that  zG has 
the representation 

                                      OKAIzIAKzG 2
0

1
00  

where 0A is a selfadjoint contraction in some Hilbert space	ℌ 			andK ∈
L(ℌ ,픑).	Moreover, according to(15)  

        OKzAKFIQG 1
00

1 11  

      .11 1
00

1   OKzAKFIQG  
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This gives 

   

   





















.
2

11

,
2

11

000

11

00

11

FKAKQQ

KKIQQ

                                                         (77) 

 Now the assumption (c) implies that 000  KKI and  

    
 gffDfDgfFKAK

KK
,,,

00
000 	픑 

By (4)ther exists a contraction X in	픇 ∗suth that 

.0000
0


 XDDKAKF K

                                                           (78) 

Consider the Hilbert space ℌ = ℌ ⨁픑and let the operator T in	ℌ be given by the 
block form (18) .Then Tis a contraction and in fact,a qsc- extension of the closed 
symmetric contraction 퐴 = 퐴 + 퐾 퐷 defined on	ℌ . According to Schur –
Frobenius formula(see(7),(11))  

푃픑(Τ − 푧퐼	) ↾ 픑  zG( ,  |z|<1, 

i.e.,  zQ  is the Q-function of T. Therefore  zQ belongs to the class (Q 픑 ) . 

     The model establish in Theorem(1.2.5)yields the following simple 
characterizations of Q-function corresponding to the extreme selfadjoint 
contractive extensions	A and

 
A  of A within the class	푄(픑).  

. Proposition(1.2.8)[1]: Let  zQ  belong to the classQ(픑) and suppose that  

                            	    


forallfffxQ
x

,,inflim
1

픑\{0}                                        (79)             

   


forallfffxQ
x

,,inflim
1

픑\{0}
                                (80) 

Then푄(푧)s a Nevanlinna function in 푁픑[−1,1]and it can be represented in the 
form 	푄(푧) =  푃픑( zIA  ) ↾ 픑	표푟	푄(푧) =  푃픑(퐴 − 푧퐼) ↾ 픑, 푧 ∈ 퐸푥푡[−1,1], 
respectively, where	A and

 
A

 
are the left and right extreme sc-extension of some 

symmetric contraction A. 

 Proof.  According to Theorem (1.2.5)the function	푄(푧)has the operator 
representation  zQ 푃픑(Τ − 푧퐼	) ↾ 픑, where T  is a qsc – operator in a Hilbert 
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space	ℌ	픑, such that   TTran 픑. Moreover ,T is a qsc- entension of the closed 
symmetric contraction A defined by A = T ↾ domA with	domA = ℌ	 ⊖ 픑.	Let  

  2/ TTTR
and   2/1

 TTT  be the real and the imaginary part of T, 
respectively, so that  IR iTTT .Then for	|x| > 1 

        2/112/11   xITiBIxITxIT RR  

where  

    2/12/1   xITTxITB RIR  

Is a bounded selfadjoint operator. This shows that for all	 f 픑 

                                           ffxQ ,       fxITTfxITiBI RIR
2/12/11 ,    

Since   ,11  iBI one obtains 

   ffxQ ,   22/1, fxITTf RI
 2

 

Now the assumption (79) implies that 

             


2

1
inflim fxITRx

  for all      푓 ∈ 픑\{0}. 

This means that ran   
2/1

RTI  	픑 = {0},cf.,e.g.,[7].Since RT is a sc-extensions of A 
one concludes from the characterization in (31) that ATR   ,cf.[28],[8],[23].Now, 

in view (30) 01 T and AT  .The proof of the other statement is similar. 

     Some further characteristic properties of Q –functions in   the selfadjoint  case, 
in particular, of Q and functionsQM   corresponding to the sc- extensions A and

MA  have been estiablished in[8], including some corrections to result stated in[33] 

The Krein formula(58) and the discussion following it concerning the formulas 
in(64)  gives rise to a linear fractional transformation of Q- functions. 

Theorem (1.2.10)[1]. Let Q(z)belong to the classQ(픑). Then the function 

                                                 

belongs to the class Q(픑) if and only if  

    ,)(( 1 |Z| >1z BQIzQ 
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(81)                                            

 

Moreover,   1))((  zBQIzQ is a Nevanlinna function of the class N픑[−1,1]	if and 
only if B satisfies the conditions 

                            .01,01 11   QBQB                                 (82)                 

Proof. First observe that, if  퐵 ∈ 퐿(픑)	and	픑 1 + 퐵푄(푧) ∈ 퐿(픑)  for all	|푧| >
1, then it  follows from(65) that 

                                                                  

               

and clearly   .)(~ 11 BzQzQ  
 

      Now assume that푄(푧) ∈ 푄(픑).Then	푄(푧) ∈ 퐿(픑),for all |z| < 1, and since by 
Theorem(1.2.8).푄(푧) ,푄(푧) ∈ 퐿(픑), |푧| < 1 ,one has  1))((, zBQIB 퐿(픑) for 
all |z| > 1.Moreover, the limit values  1~ 1 Q exist and satisfy   

 

Now part(c) of Theorem (1.2.8)implies that 
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holds for all gf , 	픑	.Therefore, the condition (81) is satisfied. 

     Conversely. Let the operator 퐵 ∈ 퐿(픑)satisfy the condition (81). By 
assumption Q(z) belongs to 푄(픑)and Theorem (1.2.6) shows that  zQ P픑(Τ −
z	) ↾ 픑, where T is qsc- operator in some Hilbert space	ℌ	픑. Moreover,T is a 
qsc – extension of the symmetric contraction A=T ↾ ℌ 	,ℌ = ℌ⊖픑. Now by 
Theorem (1.2.4) the assumption (81) means that B defines a qsc- extensions T of A 
whose resolvent is given by (58)with BB ~  . According to (64) the Q- 
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function	Q (z) is of the form	Q(z) = Q(z) I + BQ(z) , |z| < 1  and as a Q- 
function belongs to the class	푄(픑); see the discussion preceding Theorem (1.2.6). 

    To prove the second part of the theorem, observe that in view of (42) 

      ,11
00

11
~   

KKT DIYDQBQ  

and  

      ,11
00

11
~   

KKT DIYDQBQ  

where Y is a contraction in the supspace	픇 ∗ = ran픇 ∗ .		By	Theorem (1.1.4)	T	is a 
selfadjoint contraction if and only if Y is a selfadjoint contraction in	픇 ∗  or 
equivalently ,B satisfies the conditions  (82). Now , if (82) holds then	T	is 

selfadjoint and Q(z) I + BQ(z) = Q (z) ∈ N픑[−1,1]. 

    Conversely,if	Q (z) ∈ N픑[−1,1]then by part(vi) of Proposition (1.1.7) one has
 FF ~~ and consequently .,.,~~ eiTT  the conditions (82) are satisfied. 
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Chapter 2 

Pure Point Spectrum of the Laplacian 

All eigenvalues have infinite multiplicity and a countable system of 
orthonormal eigenfunictions with compact support is complete in the 
corresponding Hilbert space. In fact the correct interpretation of ∆푓 2 is as a 
singular measure, a result due to Kusuoka; we give a new proof of this fact. The 
second is based on a dichotomy for the local behavior of a function in the domain 
of ∆. At a junction point x0 of the fractal: in the typical case (nonvanishing of the 
normal derivative) we have upper and lower bounds for |푓(x) – 푓(x0)| in terms of 
d(푥 , 푥 0)β for a certain value β, and in the nontypical case (vanishing normal 
derivative) we have an upper bound with an exponent greater than 2. This method 
allows us to show that general nonlinear functions do not operate on the domain of 
∆. 

Sec(2.1)  Fractal graphs  

      In the last decade, considerable attention has been paid by graph theorists to the 
study of spectra of the difference Laplacians infinite graphs. We refer separately of 
Mohar and Woess [61] Which is an excellent survey of this theory. Explicit 
computational results about the spectrum of the Laplacians are Known only when 
the graph under consideration satisfies certain kind of regularity property that leads 
to the existence of the absoulutely continuous spectrum ([see [61, 50]). 

     If we study fractal or disordered materials and the difference Laplacians are 
some discrete approximation, we should expect the spectrum to be pure point. 

     The first result of this type is the physics article [62] where the spectrum of the 
Laplacian on the Sierpinski lattice is considered. An application of the very 
interesting  Renormalization Group method to this case was given by Bellissard in 
[52]. 

     We study the spectrum of the Laplacians on so-called two-point self-similar 
fractal graphs (TPSG) (we mean the Laplacians which correspond to the adjacency 
matrix and the simple random walk).    A good example of such a kind of graphs is 
the modified Koch graph which can be considered as the discrete approximation of 
the fractal set, namely the modified Koch curve [58]. 
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     Roughly speaking, we will prove that if the TPSG has an infinite number of 
cycles and the length of these cycle approaches infinity, then the spectrum of  the 
Laplacians is pure point. 

     The problem of the description of the spectrum as a set in R is not trivial as 
shown by the example of the modified Koch graph. The spectrum for this graph is 
the union of two sets. The first set is the Julia set of the rational function. 

  R(z) = 9(푧 − 1) z	 − 	
	

z	 − 	
	
	 z − . 

 This is a Cantor set of  Lebesgue measure zero which may be obtained as a closure 
of a countable set of eigenvalues of the Laplacian with infinite multiplicity. The 
second set is a discrete countable set of eigenvalues with infinite multiplicity 
which has the limit points in the first set. 

     We note the new property of the eigenfunction of the Laplacians on TPSG: a 
countable system of orthonormal eigenfunction with compact support is complete 
in the Hilbert space where this operator is defined. 

     We consider in Theorem (2.1.5) the Anderson localization for the Schrodinger 
operator with Bernoulli potential on TPSG. It was proven that any eigenvalue of 
the Laplacian is an eigenvalue of infinite multiplicity of the Schrodinger operator 
for any coupling constant. Unfortunately, we cannot prove that the spectrum of 
such operator is pure point. However, we note that Aizenman and Molchanov [51] 
proved the localization of the spectrum in the standard Anderson model for 
suffiently large disorders on general graphs. 

      The two-point self-similar fractal graphs can be considered as nested pre-
fractals with two essential fixed points introduced by Lindestrom [57].We also 
note that some questions about the integrated density of states of the Laplacian on 
fractal graphs were studied in [59 ,54]. 

       Some special examples of TPSG were considered in physical models of the 
percolation theory (see [64, 53]). 

       Let G= (V,E) be a connected infinite locally finite graph, with vertex set V and 
edge set E. We suppose that the degree dx of all vertices x V is finite. 

       Let A=A(G) be the adjacency matrix of the graph G and P= P(G)= (pu.v)                
u,∈ 푉	be	the	transition	matrix, where 

Pu.r= au.v / du 
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and au.v is the number of edges between u and v. 

        Associated with each of the preceding two matrices are the difference 
Laplacians. 

A= D(G) – A(G)                                                (1) 

and 

p= I(G) – P(G),                                                        (2) 

where D(G) is the diagonal matrix of dx,  푥휖푉	and I(G)is the identity matrix over 
V. 

  Let us introduce the spaces of functions on V. 

l2(V)={ f(푥), 푥휖푣;  , ∑ |f(푥)| < ∞}                                             (3) 

with the inner product 

																																																(푔, 푓) = ∑ 푔(푥)푓̅(x)      

and 

                       푙⋕(V) = {f(x), x휖푉;∑ 푑 |f(x)|2< ∞}                 (4)   

with inner product 

 (푔, 푓) = 				∑ 푑 푔(푥)푓̅(x)     

 We note that if the function deg(x) = dx, x휖푉 is bounded, then the operators ∆ and 
∆ are self-adjoint bounded operators in l2 (v) and 푙⋕(V)), respectively. 

     Let us introduce so-called two point self-similar graphs. 

Suppose M= (VM, EM) and G0 = (V0, E0) are finite connected graphs and M is an 
odered graph. We fix some e0 ∈	EM, which is not aloop,and vertices 훼,	훽  ∈ VM, 
푎푛푑	훼0,훽0.	훼  훽, 훼0  훽0. 

     Informally speaking, the construction of a TPSG G is as fllows:to get	퐺  from 
M and	퐺 we replace every edge (a,b)	∈ EM ,a,b	∈ VM by a copy of G0  such that 훼0 

goes to a and 훽0 to b. Then we take 훼1 = 훼, 훽1 = 훽 and proceed by induction. If a 
graph Gn= (Vn, En) with fixed vertices 훼n, 훽n 휖 Vn is defined then the graph Gn+1 is 
obtained by replacement of every edge (a,b) of M by the copy of Gn such that 훼n 
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goes to a and 훽n goes to b. The vertices 훼n+1, 훽n+1 are the vertices 훼, 훽 after this 
replacement. 

We can assume that Gn  Gn+1 is the copy corresponding to e0 and define infinite 
graph G= ⋃ Gn. 

     Let us give a more formal definition. 

Definition(2.1.1)[49]:  A graph G is called TPSG with model graph M and initial 
graph G0 if the following holds: 

(i) There are finite subgraphs G0, G1, G2, … such that Gn  Gn+1, 푛 ≥ 0, and 
G= ⋃ 퐺 . 

(ii) For any 푛 ≥ 0and e  EM there is a graph homomorphism	ψ :Gn  Gn+1 
such that Gn+1= e 휖EM 	ψ  (Gn) and 	ψ  is the inclusion of Gn to Gn+1. 

(iii) For all n  0 there are two vertices 훼n , 훽n 휖 Vn such that 	ψ  restricted to 
Gn\{훼n, βn} is a one-to-one mapping  for every e 휖 EM. 
Moreover 	ψ  (Vn\ {훼n, 훽n}) 	ψ Vn\ {훼n, 훽n}) =  if e1  e2. 

(iv) For n  1, there is an injection Kn: VM  Vn such that 훼n = Kn(훼),n 훽n = 
Kn(훽) and for every edge e= (a,b) 휖 EM, 	ψ  (훼n-1)= Kn(a), 	ψ  (훽n-

1)= Kn(b). 

     We say that the vertices 훼n, 훽n are the boundary vertices of Gn , i.e., 휕Gn = 
{훼n , 훽n} and int Gn = Vn\{훼n , 훽n} are interior vertices of Gn. 

     Suppose M does not have loops and G0 is just two vertices and one edge. 
Then two point self-similar graphs are in one-to-one correspondence to so-
called post-critically finite (p.c.f) self-similar sets with the post-ciritical set 
consisting of two points. Namely the graphs Gn  are isomorphic to so-called pre-
fractals for such p.c.f. sets. However, G is not a p.c.f. set since the limiting 
procedures in these two cases are different. The definition of a p,c.f. set can be 
found in [55] or [56]. 

Definition (2.1.2)[49]:Two different vertices x and y of a graph  are 
equivalent if there is an automorphism 휑 of  such that 휑(x)= y, 휑(y)= x. 

     By induction it is easy to prove the following lemma. 

Lemma (2.1.3)[49]:  if the vertices 훼, 훽 휖 VM and 훼0, 훽0 휖 V0 are equivalent in 
M and G0 , respectively, then vertices 훼n, 훽n are equivalent in Gn for all n. 
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     Although our results are valid for nonsymmetric graphs (with some 
additional assumptions on the orientation of M) we do not consider such graphs 
for the sake of simplicity. 

     Let us introduce the graph  푀 (푉 , 퐸 ) which can be obtained in the same 
way as G1 if we take the graph M instead of G0 and the vertices 훼, 훽 play the 
role of 훼0, 훽0. 

     we define the graph 퐺n+2 by replacement of every edge of 푀 by the copy of 
Gn such that for every edge (a,b) 휖 퐸 ,	a, b휖푉  we say 훼n goes to a and 훽n to b. 

Lemma (2.1.4)[49]: .The graphs 퐺n+2 and Gn+2 are isomorphic. 

Proof. By definition 퐺n+2 can be written as 

퐺n+2 = ⋃ Ψ (Gn)																									∈ )	 																																							 (5) 

     where the maps Ψ  have the same properties as 	ψ inDefinition(2.2.1).The 
proof follows by induction .       

     Let us introduce the space l2(x) by 푙 (푋))= {푓 ∈ 푙 (푉):	푓(푥) =
0	푓표푟	푥 푉\	푋}, where X V. 푙∗(푋)is defined analogously. By ∆A(X), ∆p(X) 
we denote the restriction of ∆A, ∆p to 푙 (푋) 푙∗(푋)more precisely, ∆A.P(x)= P∆A.P 
P, where P is the orthogonal projector to l2(x) or 푙∗(푋)we will call these 
operators the Laplacians with zero boundary conditions on ∂Gn by ∆A(n) and 
∆p(n). 

     By Lemma(2.1.3) there is isomorphism φn: Gn→ Gn such that φn( n)= βn, 
φn(βn)=  n. this is isomorphism induces unitary maps  n : 푙 (퐺 ) → 푙 (퐺 ) 
and ∪∗ : 푙∗(퐺 ) → : 푙∗(퐺 ) by formula :∪∗ 푓= f휊φn.  
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Lemma (2.1.5)[49]:  Un(∪∗ ) commutes with		∆ (퐺 )푎푛푑	∆ (푛) (∆ (퐺 )and 
∆ (푛)) 

Proof of this lemma immediately follows from the definition of ∆A and ∆p. 

Let us consider the function deg(푥)= 푑 . It can occur that the function deg (.) is not 
bounded in general. Moreover, there can exit a point 푥0 V such that deg (푥 ) =∞. 
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The next Lemma should be more clear from the following examples (see Figs. 1 
and 2). 

     For an arbitrary graph 퐺let us denote by 푑  (퐺 ) the degree of the vertex 푥 in 퐺 

Lemma (2.1.6)[12]  : 

(i) 	푑 (Gn)=	푑 ((G0).(	푑 ((M))   = 푑  (Gn-1).	푑 (M). 
(ii) If 푥  int Gn ,then deg (푥)= 푑  (Gn)= 푑  (Gn+1)for every n≥ 1. 
(iii) The function deg(x) is bounded if and only if 푑  (M)=1. 
(iv) If 푥 V and 푥 ≠ 훼0 , 훽0 then deg (푥) < ∞. 
(v) Deg (훼 ) =∞ (deg (  0)= ∞) if and only if   is indicent to e0 and 푑  (M) 

≥ 2 (β is incident to e0 and dβ (M) ≥ 2). 

Proof. The first statement can be proved by induction. The second follows from 
(ii) and (iii) of Definition (2.1.1) Statement (iii) follow from (i) and 
equality	푚푎푥 ∈ 푑 (퐺 ) = 푚푎푥 푚푎푥 ∈ 푑 (퐺 ).푑 (퐺 )	푚푎푥 ∈ d (M)	 . 

(iv) There exists n0N such that xVn for every n ≥ n0. If x int Gn, the 
ststement follows from (ii). Otherwise, X∂Gn for every n≥ n0 and 
consequently x is equal to 훼0 or β0. 

(v) By (iv), it follows that 훼0∂Gn for any n ≥ n0, n0N. If   is not incident 
to e0, then 훼0 is an interior point of 퐺  for some n1. Let   be incident to 
e0 and 푑 (M) ≥ 2. Then statement (v) follows from (i). 

Definition (2.1.7)[49] . We denote by 

∂G={x, deg(x)= ∞} 

the boundary of the graph G. if ∂G=∅, we say that G is a graph without boundary. 

By Lemma (2.1.6) we obtain the following lemma. 

Lemma(2.1.8)[49]  (i) e0 = ( , β) and 푑 (M) ≥ 2, if and only if ∂G= {훼 , β0}. 

(ii) The boundary ∂G has only one point if and only if one of the points   or β is a 
vertex of  e0 and the degree of this vertex in M is not less than 2. 

(iii) If conditions (i), (ii) are not satisfied for the graph G then ∂G= ∅. 

     Let us introduce the main results of this section the operator. We consider the 
operator ∆p. if the graph G is without boundary, then the operator is self-adjoint 
because it is a linear symmetric bounded operator. 
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     If G has the boundary, we define the operator ∆p with zero boundary conditions, 
i.e. 

∆ : 푙# (V0) → 푙# (V0), 

where  

푙# (V0) {f푙# (V)  f(x)=0, x  G}. 

The ∆ 	is a self-adjoint bounded operator, too. 
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The simple example of a two-point self-similar graph such that the condition of 
Theorems(2.1.9),(2.1.10),(2.1.11),( 2.1.12 ), (2.1.13) are not satisfied is the lattice 
Z. it is well known that the spectrum of the Laplacian in this case is absolutely 
continuous. 

     Condition (iv) in Definition (2.1.1) defines the structure of eignfunctions of 
Laplacians. It is easy to see that condition (i) – (iii) of Definition (2.1.1) are 
satisfied for Sierpinsky lattic but Theorems(2.1.10),(2.1.12),(2.1.11) ,(2.1.13). are 
not true in this case. By [52] it follows that there are such eigenvalues that if a 
function φ is an eigenfunction corresponding to one of them, then φ cannot have a 
compact support. 

     The problem of describing the spectrum as a set in R is hard enough as shown 
by the example of the operator ∆p on the modified Koch graph in [58]. 

     Let us introduce functions W:V→ R which do not change the nature of the 
spectrum of  Laplacian ; i.e, the spectrum of the Schrodinger operator. 

                                          H= ∆ + W                                                                     (6) 

     will be pure point, too. Here we denote ∆A and ∆p by the same symbol ∆. 

     We note that periodic functions are potentials of this sort for the Schrodinger 
operator in l2(Z") but only in the case of absolutely continuous spectrum. 

     Suppose that W0: V푛 → R is a function such that W0(φ(x))= W0(x), where φ: 
Gn→ Gn is an automorphism of Gn, φ(xn)= βn, φ(βn)= αn. let us define the potential 
W:V→ R by induction. We denote by Wm+1 the restriction of W on V푛 +m+1 and 
we suppose Wm+1(x)= Wm(y), where x= 휓  (y), y푉 , eEM for every m ≥ 
0. 

Theorem (2.1.9)[49]: Let mN, δ >0 and c < ∞ be fixed numbers and for every 
n=1,2,…, there exists a linear operator Φn: ℋ  → ℋ  such that  ‖훷 ‖ ≤ c, (f, 
Φn(f)) ≥	훿||푓||

2 for any 푓   ℋ  and HΦn(푓)=	휆 Φn(푓)  for any 푓퐹    , i=1, …, 
K(n). 

     Then the following statements hold: 

(i) The operator H has only pure point spectrum. The set of eigenvalues is 
Un≥1 U1≤ I ≤K(n) f {휆 }. 

(ii) There is a countable set S   ℋ  of orthonormal eigenfunctions of the 
operator H which is complete in ℋ. 
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(iii) If Φn(f)   ℋ  for any nonzero 푓	  ℋ  and every n ≥ 1, then each 
eigenvalue of H has infinite multiplicity. 

(iv) H is a self-adjoint operator in	ℋ . 

 Proof.   At first we note from the definition of 퐻   that ℋ =  ( )퐹    . 

Let 

Sn= { f   ℋ   ;H f   ℋ  }. 

It is easy to see that Sn  Sn+1 for every n ≥1. 

     We introduce the set S by the formula 

S=⋃ ⋃ 퐹 ⋂푆( )  

and we note that the set Sn ∩ 퐹    is not empty for n≥m+1 because Φn(f)	ℋ   
for every f  ℋ  and 

     Hn+m Φn(f) 

   = Pn+ mΦn(푓)= Pn+m(휆   Φn(푓))=	휆  Φn(푓),	푓 ∈ 퐹 .																																(7)  

   One can see from the condition of theorem (2.1.10) and (7) that if 휆 ∈
휎(퐻 )	푡ℎ푒푛	휆	푖푠  an eigenvalue of H. That gives us the inclusion 

                                 Un≥1 U1≤i≤K(n){	휆 }  휎(H).                                         (8)             

 We will prove that the set S is complete in ℋ. Suppose that there exists 푓   ℋ  
such that (푓,g)= 0 for any g  S. 

     Let A be a subspace of ℋ and PA be the orthogonal projection to A. 

Then 

                             ||PA 푓|| ≥ 
|| ||

 |(g,	푓)|                                                         (9) 

for every gA, g≠0, and f   ℋ . This follows from the expression  

         | ||g||-1 (g, f)| = ||g||-1 |(PAg, f)| = ||g||-1 |P g, f)| 

= ||g||-1 (g, PA f)| ≤ ||g||-1 ||g|| ||PA f || ≤ ||PA f ||. 

Let us introduce the subspace An of	ℋn  by the formula 





46 
 

An= ( )(퐹 i
n ∩ Sn) 

and let Qn be the orthogonal projector to An. 

    If fn= Pnf, n=1,2,…, by (9)and the condition of Theorem (2.1.9) we have 

                                    ||Qn+m f n|| ≥ |(Φn (f n), f n| ||Φn(f n)||-1 

                                       ≥(c || f n||)-1 |(Φn(f n), f n)| ≥ c -1 ∂ || f n||.                            (10) 

Since An+m  Span S we obtain Qn+m f =0. Hence 

0=||Qn+m f || ≥ ||Qn+m f n|| - || f - f n|| ≥ c-1 ∂|| f n|| - || f - f n||. 

This implies f =0 since || f - f n|| → 0 as n→ ∞. Therefore S is complete in ℋ and (i), 
(ii) is proved. 

      (iii)  For arbitrary eigenvalue λ of H there exists a corresponding eigenfunction 
f S and consequently there are such n0, i that f   F  ∩ 푆  . 

We denote 푔  =Φ푛 (f) and gK+1 = Φ푛 +Km(gK). then {푔푘}  is alinearly 
independent sequence of eigenfunctions of the operator H because, by the 
definition of Φn, 푔 	∉ 	ℋ . 

(iv) It  is enough to prove that Ran (H ± i) are complete sets in ℋ (see [28]that 
follows from (ii) of our theorem. 

Theorem(2.1.10)[49] :  Suppose that the graph M has cycle and the edge e0 
belongs ro this cycle. Then the spectrum of the operator ∆p(∆ ) is pure point. 
Moreover, a countable set of orthonormal eugenfunctions of ∆p(∆ ) with compact 
support is complete in 푙#  (V)( 	푙#  (V0)) and every eigenvalue has infinite 
multiplicty. 

     If e0 does not belong to the cycle, we do not know the structure of the spectrum 
in general. However, there is the following theorem in a particular case. 

Theorem (2.1.11) [49]:Suppose all conditions for the graph G in Theorem (2.1.10)  
hold. Then: 

(i) The operator ∆A(∆ ) is self-adjoint. 
(ii) All statements of Theorem (2.1.10)  are true. 

Proof of Theorem (2.1.10) and Theorem (2.1.11)  
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By Theeorem (2.1.9)it is enough to construct the operaror Φn: ℋ → ℋn+m, m ≥1 
with required properties. We will prove Theorem (2.1.10) for the operator ∆p 
because the case of the ∆A is the same. 

     Let ℋn = l#2 (int Gn). We suppose that the cycle in M is defined bythe set of 

vertices {V } , viVm, v0=v1. 

              If l=2m, m∈N, we can introduce sets of edges 

E+= {(푣 , 푣 )}  ⊂ EM, 

E- = {(	푣 , )}  ⊂ EM 

We note that for any xψ  (Vn\δGn) there is a unque yVn\∂Gn such that x= 
ψ  (y), eEM. 

   The maps ψ , eE+ U E- can be chosen such that if different edges e1 and e2 
have a common vertex, then at least one of the following equalities holds 

Ψ ( n)= Ψ  ( n)  or  Ψ  (βn)= Ψ  (βn).                                     (11) 

let us define operators Ψ ,: ℋ  → ℋ  For any eEM as follows: 

ϕ (f)(x) =
0																if		x ∉ Ψ , (V \ ∂G )																																																											

	푓(y			)									if		x = 						Ψ , (y), y ∈ 	V \ ∂G 																																
 

Then we define the operator  

                                         Φn = ∑ Φ ,∈  - ∑ Φ ,∈  , 

which maps 	ℋ  into ℋ . we will verify that it satisfies the conditions of 
Theorem (2.1.9)  

     We note that if e1, e2EM, and e ≠ e  then Φ (푓) and Φ (푓) have disjoint 
supports. Thus Φ (푓) is orthogonal to Φ (푓) and the bound ||Φn|| ≤ c=1 is 
obtained. By condition (ii) of Definition (2.1.1) we have Φ (푓)  = f and 

(f, Φn(f)) = || f ||2 

for every f   ℋ . Now if f   퐹  then the equality 

-∆p Φn(f)= 휆 Φn(f) 
follows from the definition of the operator Φn. 
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Since Φn(f)  is an eigenfunction of the operator -∆p with compact support by the 
definition of the set S in the proof of Theorem (2.1.9) we find that S is a set of 
eigenfunctions with compact supports. 

      Let 퐼= 2푚	 + 1,푚	 ≥ 	1.The construction of the operator Φn in this case is 
more delicate. In graph 푀 (see Lemma (2.1.4) we have at least two cycles of length 
l, joining by a path, and e0 belongs to one of these cycles. 

      Say these cycles are	{푣 } , {푢 }  , 푣 = 푣 , 푢 = 푢  and they are joined 
by a path 푣 = x0, x1, …,xr = 푢 . 

      Let	E  = {(푣 ,푣 ), 퐾	푖푠	푒푣푒푛}, E  ={(푣 ,푣 ),퐾	푖푠	표푑푑}; 퐸 ,퐸 ,퐸 ,퐸  
are defined similarly. Also, we define operators Φ  analogously to Φ , using Ψ  
instead of Ψ  (see Lemma(2.1.4) 

Then 

   Φn= ∑ Φ∈ 	  - ∑ Φ∈ 	  - ∑ (Φ∈ + 	Φ  o U#)+ ∑ (Φ∈ + 	Φ 	 oU#)+ 

(-1)r+1 ( ∑ 	Φ∈ -∑ 	Φ∈ ). 

     We suppose that condition (11) is satisfied in this case, too. This construction is 
sketched in Diagram 1 if r is odd and on Diagram 2 if r is even. 

      We note that Φn: Gn→Gn+2 and this operator satisfies the conditions of 
Theorem (2.1.9)that can be proved analogously to case 1 using Lemmas (2.1.4)and 
(2.1.5) The theorem is proved. 
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Theorem (2.1.12) [49]: Suppose that the graph M has an odd cycle and there is an 
isomorphism φ: M→ M such that φ(α)= β, φ(β)= α, and φ(e0) ≠ e0. If : 

(i) the edge e0 belongs to a path joining α and β or. 

(ii) the edge e0 belongs to a path joining α (or β) with the cycle then the 
conclusions of Theorem(2.1.10) hold for ∆p and ∆ . 

     Let us know consider the operator ∆A. If the boundary of G is empty its action is 
well defined on all functions with compact support which form a dense subspace of 
l2(V). If ∂G ≠ . 

 we define ∆  as an operator with zero boundary conditions (see above definition 
for ∆ ). This operator is symmetric and thus closable. We will denote its closure 
by the same symbol ∆A(∆ ). 

Theorem (2.1.13)[49]: If all conditions of Theorem(2.1.10) are satisfied for the 
graph G, them the operator ∆A(∆ . 

     We note that the operator ∆A is not self-adjoint in general. An example of a 
locally finite graph with no unique self-adjoint extension of  ∆A was given in [26]. 

     The condition of the existence of a cycle in the graph M is not a necessary 
condition for the spectrum to be pure point. Moreover the graph G may be a tree in 
this case (see Fig.3). 

Proof of Theorem (2.1.12)and Theorem (2.2.13) 

   We will consider only operator ∆p because the case of ∆A is the same . 

Also we assume that  e0 does not belong to a cycle. Otherwise it is a special case of 
Theorem (2.1.10) 

     We define 
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                                       ℋ   = {f  푙# (Int Gn), ∆pf= ∆p(n)f or 푈# f= f } 

We have ℋ   ℋ . Let us show that ℋ= Un≥1ℋ  is complete in H = l푙# (V). 
For any f  H there is such n that ||f – fn||≤ ||f||, where fn is the restriction of f to Vn. 
Since φ(e0) ≠ e0 we have  

         |(f, fn + 푈# fn)| ≥ |(fn , fn + 푈# fn)| - ||f – fn|| . ||fn + 푈# fn)|| 

                                      ≥ ||fn||2 - √   ||fn||2≥  ||f||2 

 because ||fn|| ≥ ||f|| and ||fn + 푈# fn|| = √2 ||fn||.This implies that ℋis complete 

since f is arbitrary and  fn + 푈#  fn . ℋ. 

     Therefore we need only construct operator Φn which satisfies the conditions of 
Theorem (2.1.9) 

(i) One can see that the graph 푀	has two odd cycles joining by a path such that e0 
belongs to this path. In this case, Φn can be defined exactly the same way as in the 
proof of Theorem (2.1.11) for an odd cycle. 

(ii)If, for example,   is incident to e0, then there is a path 훼= x0, …., xr= u0 and an 
odd cycle {u }  , u0= uu, where e0= (x0, x1). Then Φn can be defined by 

 Φn= ∑ (∈ Φ  + Φ o 푈# ) - ∑ (∈ Φ + Φ o푈# ) +(-1)r (∑ Φ∈  - 
∑ Φ∈ ). 

where Φ ,	E , E , E , E  are defined the same way as in the proof of Theorem 
(2.1.10) 

     If 훼  is not include with e0 the proof is analogously (i). The theorem is proved. 

Theorem (2.1.14)[49] :Suppose there exit different vertices y0, y1, y2,  V(M) 
such that there are edges (y0, y1), (y1, y2)  E(M), e0= (푦 , y1), d푦  (M)=  d푦  (M)= 
1 and the set {y0,  y2} does not coincide with the set { α, β}. 

     The all result of Theorems (2.1.10) and (2.1.12) hold. 

Proof . At first we suppose that ∝, β are not from the set {y0, y2}. Without loss of 
generality we can assume that 푑  (Gn) < 푑 (Gn+1) and  Ψ ,  (βn) = βn. 
Let us define 
                                          ℋ  n = {f푙# (G): f(x)= 0 if xV \(Vn\ βn n)}. 
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The operator Φn: ℋ  n → ℋ  n+1 can be given by the formula 
                    f(x)         if xVn 

Φn(f)(x)=          -f(x)       if xΨ ,  (y), yGn                                         (11) 
 0            otherwise 
 
  If  = y0 the definition of the operator Φn is the same. 

Let ∝=y2. Then we have to consider the graph 푀( Lemma (2.1.4) instead of M 
which has the necessary properties to construct Φn by the formula (11).  

Theorem (2.1.15)[49] . if the function W is defined as above, then all results of 
Theorems (2.1.10) ,(2.1.11) ,(2.1.12),(2.1.13) (2.1.14)( hold for the Schrodinger 
operator [6]. 

     Let us consider the so-called Bernoulli potential {W(x), x V} made of a 
sequence of i.i.d. random variables taking only two values 0 and 1. 

We set 

P{W(x)= 0}= P{W(x)= 1} = ,   x V. 

We are interested in the random Schrodinger operator 

Hβ= ∆ + βW 

with a coupling constant β > 0. 

Proof .The proof is one –to-one to the proof Theorems(2.1.10),((2.1.11),(2.1.12) 
,(2.1.13) ,(2.1.14)   

Theorem(2.1.16)[49] :Let G satisfy conditions of one of the Theorems 
(2.1.10),(2.1.11) ,(2.1.12) ,(2.1.13), (2.1.14).Then for any β > 0 with probability 
one , every eigenvalue of ∆ is an eigenvalue of Hβ of infinite multiplicity. 

     Let	 ℋbe a Hilbert space with the inner product( , ) and ℋ  , n= 1, 2, …, be a 
sequence of ℋ such that ℋ   ℋ  and ℋ = ⋃ ℋ  is dense in ℋ  We 
suppose  that H is a closed symmetric operator on ℋ such that ℋ  belongs to the 
domain of definition of the operator H and H0 = PnHPn, where Pn is the orthogonal 
projector on ℋ . 

      Then Hn: ℋ  → ℋ  and Hn is symmetric, too. 
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      Let 휆  ,……휆 ( )be all distinct eigenvalues of the operator Hn (restricted to 
ℋ ). 

      Let 퐹  be the eigenspace corresponding to 휆  and let 퐹  be an orthnormal basis 
of 퐹 . 

Proof .It is easy to see that if ψ is an eigenfunction of the operator ∆ with compact 
support and supp ψ∩ supp W=    then the function ψ is an eigenfunction of the 
operator Hβ. 

     Let ⋀ be a set of all eigenvalue of the ∆ and let S a countable set of orthonormal 
eigenfunctions of the ∆ with copmact support. For every 휆 ∈ ⋀ there is an 
eigenfunction  f S and the integer n0 such that supp f 퐺 . 

     We note that graph G can be written as the union of copies 퐺 . With 
probability one there is an infinity set of disjoint copies of 퐺  where W is zero. 
Consequently λ is an eigenvalue of the operator Hβ of infinite multiplicity.  

 Sec(2.2) Sierpinski Gasket Type Fractals 

     There exists a well developed theory of  Laplacians on a class of fractals 
including the familiar Sierpinski gasket. This theory may be obtained indirectly 
through the construction of probabilistic processes analogous to Brownian motion 
[68, 73, 74, 75, 83], or directly by taking renormalized limits of graph Laplacians, 
as in the work of Kigami [66, 69]. See [66, 69, 71, 76, 77, 78, 79, 82, 84, 85, 86, 
87] for a sampling of works on this subject. 

     To define a Laplacian ∆ on a fractal F, we need a Dirichlet from ε (f , f ), which 
is the analog of ∫ |  f |2 dx, and a measure μ on F. The Dirichlet form determines 
the harmonic functions, which are minimizers of ε(f, f) subject to boundary 
conditions. The Laplacian is determined by the analog of 

                         ∫∇f . g dx= -∫푔∆f dx + boundary terms,                        (12)              

 with ε(f, g) playing the role of the left hand side, and dμ substituting for dx on the 
right side. It is possible to interpret ε(f, g) as the total mass of a signed  f, g defined 
by 

∫ ℎ푑푣 ,  =  ε(f h, g) + ε(f, gh) – ε(h, fg)                                        (13) 
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 for h in the domain of ε[70] ,but the energy measures 푣 , may be unrelated to the 
measure μ used to define the Laplacian. In fact, Kusuoka [81] proves they are 
singular for many fractals. We will give a new proof of this fact that is 
considerably shorter, and that works for a larger class of examples. There is no 
immediate interpretation of the energy measure 푣 , as an inner product of 
gradients. A theory of gradients is described in [85], but it is not clear yet if it can 
be related to energy measures. 

     The domain of the Laplacian is defined to be the set of continuous funictions f 
for which    ∆ f is defined as a continuous funiction. This domain is well behaved 
in that it is dense in the continuous funictions in the uniform norm, and forms a 
core for defining - ∆ as a self-adjoint positive definite operator on L2 (dμ) with a 
discrete spectrum. we wish to point out that the domain is rather peculiar, however, 
in that it fails to have properties one might expect it to have by analog with the 
usual theory of Laplacians.We will show that the domain is not closed under 
multiplication; in fact, if f is any nontrivial function in the domain, then 푓	  is not 
in the domain. We will also show that if we take a standard embedding of F into a 
Euclidean space, then the restriction to F of noncontant C∞ functions are not in the 
domain. 

     One way to understand our results is to begin with the identity. 

                                       ∆푓 − 2푓	∆푓|∇푓| ,																																																																(14) 

  which holds pointwise for the usual Laplacian. There is an analogous result 
holding for a graph Laplacian. In our case we show that the right side blows up in 
the limit. Since f ∆ f exits, this shows ∆ f 2cannot exist .in fact the identity(14) 
shows that nonexistence of ∆푓  is essentially equivalent to Kusuoka's singularity 
result for the energy measure  f, f  .Our proof shows in more detail the divergence 
of  ∆푓 at specific points. 

     Another approach is to study the behavior of funiction in the domain of ∆ in the 
neighborhood of a junction point on F (the junction points are the points in the 
graph approximations to F). We show that there is a dichotomy: either 

                                c1d(x, x0)β ≤ |f(x) – f(x0)| ≤ c2d(x, x0)훽                              (15) 

for a certain β < 1, or 

|f(x) – f(x0)| ≤ cd(x, x0)ylog d(x, x0)                                    (16) 
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 for a certain	훾 >2, with the first case holding if and only if the normal derivative of 
f at x0 is nonzero. (This result was proved for harmonic funictions on the Sierpinki 
gasket in [69]. It is then simple to see that when the first case holds for f at x0, 
neither case can hold for 푓  at x0. The argument is then completed by observing 
that the normal derivative can vanish at every junction point only for a constant 
function. The same reasoning leads to the conclusion that essentially any nonlinear 
function, not just the square, will fail to act on the domain of ∆. 

     What are we to make of these negative result? One point of view is that they 
indicate certain natural limitations of the theory. For example, one might be 
tempted to develop a distribution theory on fractals with the role of the space of 
test functions played by the domain of all powers of ∆. Such a theory would not 
allow multiplication of a distribution by a test function. 

     Another point of view is that we need to broaden the definition functions to 
measures in such way that it is possible to define a Laplacian mapping functions to 
measures in such a way that ∆푓 ∆f2 is well defined. The drawback of this approach 
is that the domain and range of this Laplacian are not the same, so natural objects 
like ∆2 would not be defined. Still another idea is that we need to pick the initial 
measure μ more carefully. In [75] a rather broad class of measures is allowed in the 
definition of ∆ (in fact the notation ∆μ is used there to indicate the independence of 
the Laplacian on the measure). In most detailed studies, however, the measure is 
assumed to be self-similar, and sometimes it is even required to be normalized 
Hausdorff measure (a specific self-similar measure). The rationale for this 
restriction is that all the energy measures  f, g are absolutely continuous with 
respect to v. This allows the definition of a carre du champs operator [67] Γ(f, g) 
via d f, g= Γ(f, g) dv. Thus if we use v in the definition of ∆, then all the problems 
disappear, and ∆푓 is well defined. Of course, one must be wary of changing the 
problem in order to overcome difficulties. In this case there are sufficient doubts 
that we really know what constitutes "the natural measure" to use on fractals, that it 
would certainly be interesting to explore the properties of the Laplacian defined 
with this measure. Although v is not self-similar in the strict sense, it does satisfy 
identities of a self-similar nature (involving some negative coefficients and 
overlaps) that could be used to facilitate computations. 

     We will present our results in detail for the case of the symmetric Laplacian on 
the planar Sierpinski gasket. In this case it is very easy to give all definitions 
explicitly.  The same arguments can be extended to many other examples of post 
critically finite (p.c.f.) self-similar fractals. 
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     The Sierpinski gasket SG is the attractor of the iterated funiction system (i.f.s.) 
in the plane 

Sj x = ( x – pj) + pj,     j=1,2,3, 

where p1, p2, p3 are vertices of a triangle T. We regard it as the limit of graph Gn, 
where G0 is just the triangle T, and 

                 Gn+1= ⋃ S 	G  

   

 

           G0                                      G1                                         G2 

                                 FIG.1. The graphs  G0, G1, G2. 

  with the identification of the three junction points where the images SjGn meet 
(see Fig. 1). The three vertices of T will be regarded as boundary points of each 
graph Gn and SG. Note that every nonboundary vertex of Gn has exactly 4 
neighboring vertices, so 

-∆n f (x)= f (x) -  ∑ 푓(푦)~                                                                (17) 
defines a symmetric graph Laplacian on Gn, and 

Κ (푓, 푓)= ∑ (푓(~ x) – 푓 (y))2                                                            (18) 
the associated energy form. The Dirichlet form on SG is defined to be 

ε(푓, 푓)= lim →  ε n(푓, 푓).                                                                 (19) 

The choice of the renormalization factor is dictated by the fact 

                         휀 (푓, 푓) ≥  휀  (푓, 푓),                                (20) 
 with  equality holding if and only if ∆n f(x)= 0 at each vertex in Gn that is not in 
Gn-1. Thus the limit in (19) always exists as an extended real number. 
     A function on Gn is called harmonic if ∆n f(x)= 0 at every nonboundary vertex x 
of Gn; equivalently, f minimizes εn (f, f) over all functions with the same boundary 
values. A function that is harmonic on Gn-1 has a unique extension to a harmonic 
function on Gn, given by the following harmonic algorithm, 

f(v 12)=  푓(v1) +  f(v2) + 푓(v3)                                               (21) 
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If v1, v2, v3 are the vertices of any small triangle in Gn-1, and v12 is the vertex in Gn 
between v1 and v2 (see Fig .2.2). A continuous function f on SG is called harmonic 
if its restriction to every Gn is harmonic. The space  
 
 

                                                                 V2 

                                                          V23        V12 

                                                        

                                                      V3       V31       V1 

                FIG 2. Labeling of vertices in Gn on a small tringle in Gn-1. 

Of  harmonic functions is 3-dimenional, and the values of f at the dense set of all 
junction points is determined by the boundary values f(pj) by successive 
applications of the harmonic algorithm. 

     We choose for the measure μ on SG the symmetric Bernoulli measure, which is 
the unique probability measure satisfying the self-similar identity 

  = μ ∘ S + μ ∘ S + μ ∘ S .                                            (22) 

This is simply the measure that assigns the weight  to each of the 3n small 

triangles in Gn (regarded as subsets of SG). With this choice of measure, the 
Laplacian on SG is just 

∆푓(x)= lim → (3/2)5n ∆n 푓(x).                                                    (23) 

This is interpreted in the following sense. Let f and g be continuos functions on 
SG. We say f belongs to the domain of ∆ and ∆ f = g provided limn→∞5n∆nf(x)= g(x) 
for every non boundary junction point x (of course ∆n f (x) is only defined for n 
large enough that x is a vertex of Gn). 

       The renormalization constant 5  is explained as 3 . , with 3ncoming from 

the reciprocal of the measure and  being the renormalization factor from the 

Dirichlet form. The definition is consistent with the definition of harmonic 
function, in that the harmonic functions are the solutions of ∆ f = 0.  
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We also need the notion of normal derivative at the boundary points. Each 
boundary point has exactly 2 neighboring vertices in each graph Gn, so we define 

                                  ( v)n 푓 (p)= 푓 (p) –  ∑ 푓	~	 (y)                                 (24) 

for the normal derivative in Gn, and 

 v 푓 (p)= limn→∞ ( )n (∂v)n (p)                                      (25) 

for the normal derivative on SG, if the limit exists. On Gn we have the Gauss-
Green formula 

εn (푓, g)= - ∑ g(x) ∆n 푓(x) + ∑ g(p)(휕v)n 푓(p)                        (26) 

(the x -sum is over non boundary points, and the p-sum over the 3 boundary 

points). Multiplying by  and taking the limit we obtain 

ε(푓, g)= - ∫ g∆	푓d   + ∑ g(p)  v 푓(p),                                       (27) 

The Gauss- Green formula on SG. This makes sense provided f and g are in the 
domain of the Dirichlet form and f is in the domain of the Laplacian, and this 
argument proves that the normal derivatives exist for functions in the domain of 
the Laplacian, For f and g in the domain of ∆ we can also obtain the symmetric 
variant 

∫(g∆푓 - 푓∆g)d  = ∑ (g(p) 휕 푓(p) – 푓(p) 휕 푔(p))                                        (28) 

 by subtraction. 

   Now let Tn= 푆 … 푆 T be any small triangle in Gn. For each vertex p of Tn we 
can define the outward normal derivative by 

∂v f(p)=	 lim
푛 → ∞ (	 푓(푝)	– 	 	∑ 푓	~	 (푦)),																			 

where the sum is over the 2 neghboring vertices of Gk that are in Tn. note that if we 
take the other triangle that has p as a vertex, the normal dertivative will change by 

a minus sign; and the normal derivative only depends on which side of p the 
triangle lies on. We then have the existence of normal derivatives at all junction 

points for functions in the domain of ∆, and the local Gauss-Green formula on Tn     

∫ (g	∆푓	– 	푓	∆g)	dμ = ∑ (g(p)  ∂v 푓 (p) – 푓 (p) 휕  g(p)).                (29) 
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Theorem (2.2.1) [65 ]: Let f be in the domain of ∆ on SG, and let x be any junction 
point where ∂v f(x)≠ 0. Then ∆f2(x) is undefined, and in fact the limit in (51) is + ∞. 

Proof. On Gn a simple computation yields  

∆n f 2(x) – 2 f (x) ∆n f (x)=  ∑ (	~	  f (x) – f (y))2.                          (30) 

We multiply by 5 and try to take the limit. Since 5n f (x) ∆n f (x)→ f (x) ∆푓 (x) it 
suffices to show 5   ∑ (	~	  f (x) – f (y))2→ + ∞. Now the assumption that ∂v f (x) 
≠0 implies that there exists a sequence of neighboring vertices yn in Gn (for large 
enough n) such that | f (x) – f (yn)|2 ≥ c(3/5)n, because otherwise ∂v f (x)= 0 by(53). 
Thus 5  ∑ (	~  f (x) – f (y))2 ≥ c((3/5))2 5)n which diverges because (3/5)2 . 5= 9/5 
>1. 

Lemma (2.2.2) [ 65]: Let f be a nonconstant function in the domain of ∆. Then 
there exists a junction point where ∂v f (x)≠ 0. 

Proof.    Apply the local Gauss-Green formula (57) with g ≡1, to obtain 

∫ ∆푓dμ = ∑ 휕 푓(푝) .                                              (31) 

If we had ∂v f (x)=0 at every junction point, this would imply that the integral of ∆푓 
vanishes on every triangle Tn. Since ∆푓 is continuous, this can only happen if f is 
harmonic. But it is easy to check that nonconstant harmonic functions have non-
zero normal derivative at least at one vertex of every small triangle. 

Corollary (2.2.3) [65]: if f is a nonconstant function in the domain of ∆, then f 2 is 
not in the domain of ∆. 

      Now we indicate how ∆푓  can be defined as a measure. First we observe that 
there is a positive energy measure v f obtained from the Dirichlet form. 

If A is any polygonal set bounded by edges from one of the graphs Gk, then we let 

									
			푣 (퐴)	f(A) = lim

푛 → ∞
5
3

	
1
4
								 			(풇(x)	– 	f(y)) 																				

																																																														푥 ∽ 푦																																																		
																																																											푥, 푦 ∈ 퐴⋂퐺 																																																

					(32) 

  The existence of the limit follows from the same argument that gives the limit 
in (19). It is clear that 푣  is finitely additive, and extends to a finite Borel measure 



59 
 

by the Caratheodory extension theorem. It is easy to see that  v f is non –atomic.In 
fact  푣 = 	 푣 , = defined by(14)  

      Now if we multiply (30) by (5/3)n and sum over all x in a polygonal set A, we 
can pass to the limit to obtain 

                         lim
푛 → ∞3 ∑ 5∈ ∩  ∆n 푓2(x)= 2∫A푓∆	푓푑휇 + 푣  (A).          (33) 

This suggests that we have 

∆푓2= 2푓	∆푓푑휇 + 푣                                                  (34) 

for f in the domain of ∆, with the following definition for a statement ∆F=p where 
F is a continuous function and p a finite Borel measure. 

Definition (2.2.4) [65].   We say a continuous function F is in the measure domain 
of ∆ and ∆F= p if there exists a finite Borel measure 휌 such that 

lim
푛 → ∞3-n ∑ 5∈ ∩

n ∆nF(x)= p(A)                                   (35) 

for all polygonal sets A.  

     This definition is consistent with the function definition: if F is in the domain of 
∆ with ∆F= g then F is in the measure domain with ∆F= g dμ.  

With this definition, (33) implies (34) . 

     We show next that vf is singular with respect to μ. Because of the net structure 
of the triangles in SG, the analog of the Lebesgue differentiation of the integral 
Theorem holds for triangular sets. Thus, to show that vf is singular with respect to 
μ, it suffices to show that for μ-a.e. x, 

                                         3n vf (Tn)→ 0                                                        (36) 

for Tn a sequence of triangles with μ(Tn)= 3-n converging to x. For simplicity 
assume f is harmonic. Then we have simply 

               vf (Tn)=  ((f(an) – f(bn))2+ f(bn) – f(cn))2 + (f(cn) – f(an))2) ,          (37) 

Where an, bn, cn are the vertices of Tn. The values f(an), f(bn), f(cn) are derived from 
the values of f at the boundary points by applying a product of matrices determined 
by the harmonic algorithm (49). depending on the mappings that send T to Tn. 
Since constants do not contribute to the energy (37).it is convenient to factor out by 
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the constants to obtain a 2-dimensional Hilbert space with energy norm. Taking n= 
0 for simplicity, we have an orthonormal basis of the two harmonic functions h1 
and h2 with boundary values (h1(a), h1(b), h1(c))= (0, √2, √2) and (h2(a), h2(b), 
h2(c))=(0, 2/3 - 2/3). With respect to this basis, the matrices have the form. 

M1= 3/5
0
					 0

1/5 ,      M2=  
3/10
√3/10

						√3/10
1/2

 

M3= 
3/10

−√3/10
								−√3/10

1/2
 . 

We can then invoke the theory of products of random matrices, and  

Furstenberg's theorem [70]: There exists an exponent   > √3/5 such that 

Log||M ... M || ~ n logα                                            (38) 

as n→∞ for a.e. choice of matrices. But this is exactly the same as μ-a.e. x in (36). 
To obtain the estimate (36).from (38).we need  <1/ √5. This inequality is proved 
in the next Theorem. 

     The next Theorem follows from a more general result proved by S.Kusuoka in 
[81]. Our proof seems to be shorter and more analytic in nature. Moreover, we 
show that our method can be applied to general finitely ramified fractals with 
fewer assumptions than are made in [81]. In the proof of Theorem (2.2.12) we 
avoid using Furstenberg's Theorem [72] although do use this Theorem in the proof 
of Theorem (2.2.5) in order to shorten the exposition.   

In what follows the domain of the Dirichlet form ε is denoted by	ℱ  

Theorem (2.2.5) [65 ]. For any f   ℱ the measure vf is singular with respect to 
μ.Moreover, there exists a measure v (singular to μ), such that all the energy 
measures are absolutely continuous with respect to v. 

     Proof.   For μ.a.e. point x we can define a unique sequence of matrices An(x)= 
푀  as above. Then Furstenberg's Theorem implies that 

lim
푛 → ∞ log ||An(x)… A1(x) v0||= logα 
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for μ.a.e. x. Here v 0 denotes the components of the harmonic function in the h1, h2 
basis (mod constants), and ||.|| is now just the Euclidean norm on R2. Since M  + 
M  + M = I, it follows that 

A∗ (	푥)A (푥)dμ(푥) =
1
5

I. 

Hence, by Jensen's inequality, for any nonzero vector  v we have 

∫ log‖A (푥)푣‖dμ(푥) <  log ∫T  〈푣,퐴∗ (	푥)	An(푥)	푣		〉 dμ(x)= log( ||v ||). 

Thus 

β= A∑ ∫ log||An(푥)	푣	||dμ(푥)		{ :‖ ‖ }  <  log .                          (39) 

Denote vn(x)= An(x) … A1(x)v0. The matrices An(x) are statistically independent 
with respect to μ, and so An(x) is statistically independent of v n-1(x). Hence 

∫ log푣 (푥)dμ(푥)= ∫ log 퐴 (푥) ( )
‖ ( )‖ dμ(푥) 

                                              +∫ log‖푣 (푥)‖dμ(푥) 

≤ β+ ∫ log‖푣 (푥)‖dμ(푥) 

By induction this implies log  ≤ β and so < 1/√5. Therefore vh is singular with 
respect to μ for any harmonic function h. 

      Suppose now that f ε. Then f can be approximated by a sequence of functions 
{ f m} that are continuous and piecewise harmonic on the triangles Tm[74, 75], The 
approximation is in energy norm, ε(f - f m- f n)→ 0 as m→∞, and also uniformly. 
Let v = 푣 + 푣 . Note that for any harmonic function h the measure	푣  has a 
bounded density with respect to v since 푣 ≤ 2(푐 푣 + 푐 푣 ). The same 
is true for the functions f m. We claim that the measures vf m from a Cauchy 
sequence in the space of measures. 

This will complete the proof that vf << v because L1(v) is already complete in the 
measure norm. 

     To see this we use the general estimate                       
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| vg(A)- vg' (A)|2 ≤ε(g+ g', g+ g') ε(g- g', g – g')                             (40) 

for any g,g'ℱand any polygonal subset A of SG. Taking g and g' to be f m and f K 
shows that | vf m(A) – vf K(A)| →0 uniformly in A as m, K→ ∞. This implies that { 
vf m} is a Cauchy sequence.     

   We prove (40). first in the case A= SG, when v g(SG)= ε(g, g) and v g'(SG)= ε(g', 
g'), so(40). is just 

            ε(g, g)2 + ε(g', g')2 - 2ε(g, g) ε(g', g') 

                 ≤(ε(g, g) + 2ε(g, g')+ ε(g', g'))(ε(g, g) - 2ε(g, g')+ ε(g', g')).      (41)                  

Multiplying out the right side of (41). and cancelling like terms reduces to 

0≤4ε(g, g) ε(g', g') - 4ε(g, g')2 

which is just the Cauchy- Schwartz inequality. The modification of the argument 
for general A is simple. We just restrict all energies to A, to obtain | vg(A) – vg'(A)|2 
≤ v g+g'(A). Since v g+g' and v g+g'are positive measures, (40). follows. 

     It is clear by polarization that the energy measures vfg are also absolutely 
continuous with respect to v.    

     The measure v is independent of the choice of orthonormal basis (h1, h2), 

and so it may be regarded as a natural measure associated to the Dirichlet form. 

It is easy to see that the map f →(d vf / d v) is a continuous quadratic map from the 
domain of ε to L1(v). 

Theorem   (2.2.6) [65 ].    For any f ℱ  the measure vf has no atoms. 

Proof. In view of Theorem (2.2.5). it suffices to prove this when f is harmonic. In 
fact we will show 

                                  vf (Tn)≤ (3/5)n ε(f, f)                                                     (42)                 

for any triangle of level n( Tn= 푆  ... 푆 T). A simple computation shows that for 
any harmonic function f, 

                                  vf (SjT) ≤(3/5) vf (T)                                                     (43)                        

and in fact constant 3/5 is attained when f(vK)= ∂jk. We then obtain (42) by iterating 
(43), and it is clear that (42) implies vf has no atoms. 
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     Let f belong to the domain of ∆ on SG, and let x be any nonboundary junction 
point. Let Tn and Tn' denote the 2 small triangles in Gn that have x as a vertex, and 
let an, bn and cn, dn denote the neighboring vertices to x in Tn and Tn'. We know 

         -∆f(x)= limn→∞ 5n (f (x) - ( f (an) + f (bn) + f (cn) + f (dn))).            (44)                      

 But what is the rate of convergence? To answer this question we first use the 
Gauss- Green formula to obtain an integral expression for the difference. Let hn 
denote the piecewise harmonic function supported on the union Tn ∪ T'n which 
takes the value 1 at x and 0 at an, bn, cn, dn. 

Lemma (2.2.7) [65].    We have 
                           5n (f(x)- f(an)+ f(bn)+f(cn)+ f(dn)))+ ∆f(x) 

                                       =(3/2)3n ∫ h (y) ∆f(x) −	∆푓(y) dμ(y).															⋃ (45)                          

Proof . Apply (21) to Tn and Tn' and sum to obtain 
∫Tn ∪ Tn hn∆f dμ= ∑ ℎn∂vf- f∂vhn+ ∑ ℎn∂vf- f∂vhn. 

Now the terms involving ∂v f  cancel , because hn  is 0 except at x where the values 
of ∂v f  differ by a minus sign. On the other hand we have of differ by a minus sign. 

On the other hand we have ∂vhn(x)=  and ∂vhn(y)= -  for y=an, dn, cn, dn 

for harmonic functions ∂v=( )n (∂v)n exactly). Thus we have 

                  ∫Tn ∪ Tn hn∆ f dμ= (f (x)- (f(an)+ f(bn)- f(cn)+ f(dn))) 

and we obtain (45) by combining this with the fact that 3n∫Tn ∪ Tn hn dμ= 2/3. 
     It follows that the convergence in(41) is uniform, with the rate depending on the 
modulus of continuity of  ∆f. If ∆f is Lipschitz, then the error is O(2-n). 
     For the next result we consider any small triangle in Gn-1 and label the vertices 
as in(21) We have the following extension of the harmonic algorithm: 
Theorem  (2.2.8) [ 65 ].   Let f be in the domain of ∆. Then  
                푓(v12)= 	푓 (v1)+ 	푓 (v2)+ 	푓 (v3) 

                                                    +   (  ∆f(v1)+ ∆	푓 (v2)+ ∆	푓 (v3))+ Rn ,    (46) 
where the remainder Rn satisfies 

                                            Rn= 0(5 )                                                      (47) 
uniformly depending only on the modulus of continuity of ∆f. Moreover, if ∆f is 
Lipschitz then 

                                          Rn=	0(10 )                                                      (48)        
Proof .   Let An= f (v 12)+ f (v 23)+ f (v 31), Bn= f (v 1)+ f (v 2)+ f (v 3) and  
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Cn= ∆ f (v 12)+ ∆ f (v 23)+ ∆ f (v 31). Apply (73) to each to the points v 12, v 21 and v 31 
to obtain 

         f (v 12)- ( f (v 1)+ f (v 2)+ f (v 31)+ f (v 23))= 5-n ∆ f (v 12)+ 0(5-n)       (49)       
and so forth, and add to obtain 

                                        An -  Bn= 5-n Cn+ 0(5-n).                                          (50)            
Now the left side of (49) is just 

 
 f (v 12)- ( f (v 1)+ f (v 2)+ An), 

And we can substitute (50) to eliminate An, so 
                            f (v 12)= ( f (v 1)+ f (v 2)+ Bn+ .5-n Cn 

                                + 0(5-n))+ 5-n(4/5) ∆ f (v 12)+ 0(5-n) 
              which is (46)                                                                                    
Theorem  (2.2.9) [65] .  Let f be the domain of ∆ and let x be any junction point 
(a)   If ∂v f (x) ≠ 0 then there exist positive constants c1, c2 such that 

                                c1(3/5)n≤| f (x) – f (an)| ≤ c2 (3/5)n                                     (51)             
(and the same for bn, cn, dn). 
(b)     If ∂v f (x)= 0 
 then 

| f (x)- f (an)| ≤ c2n5-n                                                (52) 
(and the same for bn, cn, dn). 
Proof.      In either case we have 
                          f (an)- f (bn)= ( f (an-1)- f (bn-1))+ O(5-n) 
by subtracting (46) and its analog. From this we obtain easily 
                                

| f (an)- f (bn)| ≤ cn5-n                                                  (53) 
 
(we can eliminate the factor n from (53) and (52) if we assume that ∆ f is Lipschitz 
continuous). 
   By applying (46) twice and adding we obtain 
푓(x)- (푓 (an)+ 푓 (bn))= (푓 (x)- (푓 (an-1)+ 푓 (bn-1)))+ O(5-n). 

if we write vn= ( )n (f (x)- ( f (an)+ f (bn))) this is just 
                                            v n= v n-1+ O(3-n),                                                        (54)                   
and since O(3-n) is a convergent geometric series it follows that v n is a Cauchy 
sequence, and the limit is a multiple of the normal derivative. In the case that the 
normal derivative is nonzero, we obtain c1 ≤ vn≤c2 which yields (51) when 
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combined with (53). On the other hand, if vn→0 then (54) implies vn= O(3-n), 
which yields (53). when combined with (54). 
Since d(x, an)= 2-n, we can express (51)as 

                           c1 d(x, y)훽 ≤ |f(x) – f(y)| ≤ c2 d(x, y)훽                                               (55)                
for β= log(5/3)/ log2 ≈ .7369655 and y equal to one of the points an, bn, cn, dn. By 
using similar arguments it is easy to extend (83) to all points y. Similarly (80) 
becomes 

                            |f(x) – f(y)| ≤ cd(x, y)y log d(x, y)                                        (56)               
for 훾 = log 5/log 2≈ 2.3219281. This dichotomy was established in [38] for 
harmonic functions (Theorem (2.2.9),without the logarithm term in (56). 
     It is easy to give another proof of Corollary (2.2.3) , using this dichotomy, 
although we do not obtain Theorem(2.2.1) since we need to assume that a function 
belongs to the domain of the Laplacian in order to obtain the dichotomy at a single 
point. On the other hand, the dichotomy shows how difficult it is for a function to 
belong to the domain of the Laplacian, and allows us to deduce more general 
negative results. 
Theorem (2.2.10) [65].  Let Φ: R→R be any C2 function such that Φn only has 
isolated zeroes. If f is any nonconstant function on SG in the domain of ∆, then 
Φ(f) is not in the domain of ∆. 
     Proof.      By  a simple extension of Lemma (2.2.2)we can find a junction point 
x0 where ∂vf(x 0) ≠0 and also f(x0) is not a zero of Φ. Consider the function g(x)= 
Φ(f (x)) – Φ'(f (x 0)) f(x). If Φ(f) were in the domain of ∆. 
      
                                             
 
                                               bn              Cn 

                                                                                                                       

 

                                      an              x                dn       

                                            FIGURE. 3. 

then g would be also.Theorem (2.2.8) would apply to g at x 0. But by Taylor's 
Theorem. 

 (57) 
 

                        200000 2
1 xfxfzxfxfxfxfxfxgxg  
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for z  between  0xf  and  xf . Since f is continuous, by taking x close enough to 
0

x  
we can make  z   close to   0xf   which is not zero .Since f satisfies (51) at 0x , 

we obtain from (57)         n
n

n lcagxglc 2
20

2
1 5353   for large enough n, so g 

satisfies neither (51) nor (52).  
Theorem(2.2.11)[65]   Let f be any C1 on R2 with non constant restriction to SG 
Then f is not in the domain of . . 
  Proof.  Suppose f were in the domain of∆ . By Lemma (2.2.2) there exists a 
junction point where   0 xfn . Then we are in part a) of Theorem (2.2.9), and 
(51) is inconsistent with f beingC1 . 
      We can also observe directly that  xf   is undefined at a junction point x  if f is 
differentiable at x and the directional derivative in the direction perpendicular to the 
line segment containing x is non-zero. For example, if x  lies on a horizontal line 
segment as in Fig. 4.1, then 
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 So if     ,0/ 2  xxf   xf     

is sundefined. 
  Let (K,S,{	푓 } ∈ )be a post critically finite self-similar structure and(D, r) be a 
harmonic structure as defined in [75]. Here K is a compact metric space, S=[1, 2, 
...,N],	푓 :K K are continuous injections and r=(r1, ...,rN) is a collection of positive 
numbers. The reader may find all the definitions in [75]. This harmonic structure 
defines a Dirichlet form   which satisfies a self-similarity relation 
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N
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                                         (58) 

 
where is a constant associated with (D,r). 
  The p. c .f. self-similar set K has a finite boundary ,0 KV  and the bound-ary ofK 
K    0.... .......

111
VFisFKFF

nnn   .The important feature of a p.c.f. structure is that the 
intersection of the sets 

nn
andKK  ........

11
 contained in the boundary of these sets 

unless .,...,1, niii    
 There are matricesM1, ...,MN such that the boundary values of harmonic function 
h on the boundary of

n
K  ....

1
are equal to 01

....  MM
n

where 0 is the vector of the 
boundary values of h. For all ,Kx  except a countable subset, there corresponds a 
unique sequence  1mm  such that  1 mx 

n
K  ....

1
. Then we denote  

n
MxAm        
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     Let  be a Bernoulli measure on K such that  
mm   ....K

11 .....  ,where  ii K 

. Then matrices  xAm are statistically independent with respect to  with Prob{
  im MxA  }= .i  

   For any f from the domain ℱ of we can define the measure f in the same way 

as it was done for the Sierpinski gasket. Then there is a matrix   2/1DQ   such that 
for any harmonic function h[75]. 

                                                          ,...
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where 0  is the vector of the boundary values of h 
   For the next Theorem we assume that 

.1

i
i r
 I                                                                            (60) 

    The same assumption is made in [75]. Note that we have constants 1321  rrr

and ,
3
1

321    the same as (60) up to a constant factor. 

 Theorem(2.2.12)[65]: Suppose that for any non constant harmonic function with 
boundary values 0 there exists m such that function     01.... xAxQAx m  is not 
constant.Then the measure f is singular with respect to   for any f ℱ 
Proof. By (57) we have that 
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                                       =      xdxAxQAm
K

 2
01.......                                        (61)                            

for  any m. This relation is the same as[75]. The assumption of the Theorem 
implies, similar to (39), that for some m 

                                
 
sup

1; 00  Q

                             (62)                                           

where  xvm     01....... xAxAm . 
   In this proof for the sake of simplicity we assume that for any nonconstant 
harmonic function   0xQvm  for all m and x. Otherwise one can change the 
expression under the integral in (62) to log(   xQVm ) If >0 is small then the 
inequality (62) still holds though with a larger . Then, by induction, 
                               xdxQvmn

K

   

    , log
2 
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m x d x QV m 

K 
  <
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if= 10 Qv . Moreover, one can see that for any sequence k ,....,.1 we have 
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This implies that (at least for a subsequence) 
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for ... xea  
  Inequality (62) follows from the fact that the sequence   




1
log

nmn nxQv  is a 
super martingale on the probability space (K,  ). To prove it in more elementary 
terms, define             
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 It is easy to see that  1nnh is a bounded orthogonal sequence in 2

L  and so
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 At the same time    .1 xfxg nn   that is                              

     .11 xhxfxf nnn    . 

Then the 2L -convergence implies that(at least for a subsequence) inequality (63) 
holds for 

... xea  
      Thus by (58),(59),(60),(61),(62).fo ea . . sequence ,..., 21   we hav 
for any harmonic function h. 

To define the measure ,  let  phh ,....,1  be an orthonormal basis of the 
nonconstant harmonic functions in .Q -norm. Then

phh  .....
1
 .However, if not all 

matricesM1, ...,MN are invertible, -measure of some open sets may not be positive. 
     The rest of the proof goes in the same way as in Theorem (2.2.6). 

  The singularity of the measures f was proved in [81]under the assumption that 
the matrices{M1, ...,MN}are invertible and strongly irreducible, and an additional 
assumption on a certain index  [81]. 
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  Theorem(2.2.13)[65]:Under the hypotheses of Theorem(2.2.12).,the measure f  
has no atoms,for any .Ff    
Proof .   we claim that there is a constant  휌	<1 and a positive integer n such that 
for any harmonic function ,f  
                                                      
                                                                                                                          (64)                             
 
for any choice of (  nww ,.....,1  Once we have (64), the proof is the same as 
Theorem (2.2.6), using (64) in place of (43). By a compactness argument. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   KK fwwf n
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Chapter 3 
m-Function and  Inverse Spectral Analysis 

 We show an extenstion of the theorem of Hochstadt (who proved the result 
in case n=N) that n eigenvalues of an N×N Jacobi matrix H can replace the first n 
matrix elements in determining H uniquely. We completely slove the inverse 
problem for (훿 ,(퐻 − 푧) 훿 ) in the case N<∞ 
 Sec(3.1)  Finite and Semi-Infinite Jacobi Matrices   

There is an enormous literature on inverse spectral problems for- 푑 /푑푥 +
푉(푥)(see[89,120,147-151,155], but considerably less for their discrete analog, the 
infinite and semi-infinite Jacobi matrices (see e.g.,[91,92,94-96,101-110,113,116-
119,121,123,128,129,133-135,141-143,152-154,157,158,160-162]) and even less 
for finite Jacobi matrices[97,98,112,115,130-132,136-139].Our in this section is to 
study the last two problems using one of the most powerful tools from  spectral 
theory of −푑 /푑푥 + 푉(푥)  , the m- finctions of Weyl.  
        Explicitly, we study finite N ×N matrices of the form 
 

                    

퐻 =



























 NN ba

aba
aba

ab

1

332

221

11

0....
.......
.......
...0
...0
...00

																																																													(1) 

and the semi-infinite analog H defined on  

휚 (ℕ) = 푢 = (푢(1), 푢(2), … )| |푢(푛)| < ∞  

Given by:  
(퐻푢)(푛) = 푎 푢(푛 + 1) + 푏 푢(푛) + 푎 푢(푛 − 1),						푛 ≥ 2,																							(2) 

   = 푎 푢(2) + 푏 푢(1), 
In both cases, the a’s and b’s are real numbers with an > 0 
To avoid inessential technical complication, we only consider the case where 
supn[|푎 | + |푏 |] < ∞, in which case H is a map from 휚  to 휚 ,  and defines a 
bounded self-adjoint operator. 
In the semi-infinite case, we set N= ∞ . At times , to have unified notation, we use 
something like 1 ≤ 푗 < 푁 + 1  to indicate  1 < 푗 < 푁 in the finite case and 
1 ≤ 푗 < ∞ in the semi-infinite case.  
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It will sometimes be useful to consider the b’s and a’s as a single sequence b1 , a1, 
b2, ….=c1,c2,… that is 

                  푐 = 	 푏 ,						푐 = 푎 					푛 = 1,2, ….																																					(3) 
    What makes Jacobi ,matrices special among all matrices is that the eigenvalue 
condition	퐻푢 =⋋ 푢 is a second- order difference equation. The case n =1 of(2) can 
be thought of as forcing the Dirichlet boundary condition u(0)=0 , Thus, any 
possible non- zero solution of  퐻푢 =⋋ 푢 must have 푢(1) ≠ 0, which implies . 
(i) Eigenvalues of H must be simple (otherwise, a linear combination  
would vanish at n=1). 
(ii) Eigenfunctions must be non- vanishing at n =1. 
Thus for 푁 < ∞,퐻 has eigenvalues 휆 < ⋯ < 휆  and associated orthonormal 
eignvectors 휑 , … .휑푁 with 휑 (1) ≠ 0.For N = ∞ , the proper way of 
encompassing (i), (ii) is that 훿 is a cyclic vector for 퐻(훿 is the vector in ℯ  with 
훿 (푛) = 1 (resp.0) if 푛 = 푗	(푟푒푠푝.푛 ≠ 푗)) 
The spectral measure 푑 푓표푟	푡ℎ푒	푝푎푖푟(퐻,훿 ) is defined by (훿 ,퐻ℯ훿 ) =
∫ 휆ℯ 푑푝(휆). 
Since our H’s are bounded , dp is a masure of bounded support . In case 푁 < ∞,  

푑푝(휆) = |휑 (1)| 훿 휆 − 휆 푑휆								 휑 ,휑 = 훿 , .																								(4) 

The central fact of the inverse theory is that dp  determines the a’s and b’s and any 
d.p can occur for a unique H.(If	푁 < ∞), 푑푝 has support at exactly N points. If 
푁 < ∞), 푑푝 must have infinite support). The usual proof of this central fact is via 
orthogonal polynomials and has been rediscovered by many people. For the 
readers convenience , we have a brief appendix presenting this approach.  
One purpose of this section to present a new approach to the central result based on 
m-function and trace formla.Given p one from 푚(푧) = ∫푑푝(휆)(휆 − 푧) .  The 
function	푚(푧)ℎ푎푠 an asymptotic expansion at infinity given by  

푚(푧) ∼ −
1
푧
−
푏
푧
−
푎 + 푏
푧

+ 푂(푧 ).																																				(5) 

Thus, one easily recovers 푏  and 푎 (recall 푎 > 0) from m(z) . Now define 푚 (푧) 
by.  

                          (−푚(푧)) = 푧 − 푏 + 푎 푚 (푧)																								(6) 
It turns out that 푚 (푧) is the spectral measure for the Jacobi matrix obtained by 
removing the top raw and left-most column of H. An obvious inductive procedure 
obtains b2,a2,… 
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The m-functions defined by this method , which we call m+(z,n) (so 
m(z):=m+(z,0),m1(z):=m+(z,1),etc),form the class of m-functions defined by 

                       푚 (푧, 푛) = 훿 퐻[ , ] − 푧) 훿 																								(7) 

where 퐻[ , ] is the matrix with the top n  rows and n left columns removed and 
thought of as acting on ℓ (푛 + 1, 푛 + 2, … ,푁) . There is a second m-function that 
plays a role.  

                       푚 (푧, 푛) = 훿 	퐻[ , ] − 푧) 훿 훿 																								(8) 

Where 퐻[ ]is the n x n upper left corner of H. 

     also related these m-functions to solutions of the second –order difference 
equation and obtains relations between	푚±(푧, 푛)		푎푛푑	푚±(푧, 푛 + 1) (of which (6) 
is a special case) . also contains some critical formulas expressing the diagonal 
Green’s functions G(z,n,n):= (훿 , (퐻 − 푧) 훿 ) in terms of m+(z) and m-(z) .  

   Also contains one of the most intriguing results of this section. In [139]Hochstadt 
proved the remarkable result that for a finite Jacobi matrix, a knowledge of all but 
the first N c’s and the N -eigenvalues, that is , of cN+1,cN+2,…,c2N-1 and 휆 , … , 휆 , 
determines H uniquely. We extend this by showing that  cN+1 ,…,c2N-1 and any n 
eigenvalues of H determine H uniquely for any n=1,2,…N,  

    After a brief interlude obtaining the straightforward analog of  Borg’s two-
spectra theorem[99](see also[100,145,146,148,150])  first considered in the Jacobi 
context by Hochstadt[137,138](see also[10,30,43,44,48,51,72])   we turn to the 
question of determining H from a diagonal Green’s function element 훿 , (퐻 −
푧) 훿 ) when푁 < ∞. If n = 1 or N, the central inverse spectral theory result says 
G(z, n, n) uniquely determines H. For other n, there are always at least 푁 − 1

푛 − 1  
different H’s compatible with a given G(z, n, n). Generically, there are precisely 
that many H’s. also has a complete analysis.  

Finally we present some results and conjectures about the inverse problem 
when 푎 ≡ 1. 

Let H be a finite or semi-infinite Jacobi matrix of the type described. We 
begin by defining some special functions of a complex variable z which we will 
call {푃(푧,푛)}푁 + 1

푛 = 1푎푛푑	{휓 + (푧, 푛)} 푁
푛 = 0	.  The P(z,n)’s are polynomials of degree n - 1 

defined by the pair of conditions  
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푎 푃(푧,푛 + 1) + 푏 푃(푧, 푛) + 푎 푃(푧, 푛 − 1) = 푧푃(푧,푛) 

1 ≤ 푛 < 푁 + 1,				푃(푧, 0) = 0,						푃(푧, 1) = 1																															(9) 
 
For convenience , we define  푎 ≔ 1	in order to define,P(z, N + 1) in case 푁 <
∞Cleary(9)define푝(푧,푛) that inductively as a polynomial of the claimed degrees 
again, inductively it is clear that: 
 

	푃(푧, 푗 + 1) = 	
,…,

푧 + lower degree in z.                         (10) 

As explained, the P’s are intimately related to the intimately related to the spectral 
measure for H. 

푃(푧, 푗 + 1) = (푎 … 푎 ) det(푧 − 퐻[ . ],									푗 ≥ 1,						(11) 
Where	퐻[ . ], is the 푗 × 푗 matrix in the upper left corner of H. 
Proof. By (10), 푎 …푎 푃(푧, 푗 + 1)and det퐻[ . ] are monic polynomials of degree j. 
Thus, it suffices to show they have the same zeros and multiplicities. But 푃(푧. 푗 +
1) if and only if there is a vector 푣 = (푣 = 푣 , … 푣 )1with푣 = 1so that (퐻[ . ] −
푧)푣 = 0. As explained, every eigenvector of (퐻[ . ]) has 푣 ≠ 0. , Thus , the zeros 
of 푃(푧, 푗 + 1) are precisely the eigenvalues of 퐻[ . ] Since the eigenvalues are 
simple, the multiplicities are all one. 
In case푁 < ∞,휓 (푧, 푛)is defined via 

푎 휓 (푧, 푛 + 1) + 푏 휓 (푧,푛) + 푎 휓 (푧, 푛 − 1) = 푧휓 (푧, 푛) 
푛 = 1, … . ,푁 − 1,				휓 (푧, 푛 + 1) 						= 0,																													(12) 

where again for convenience we define 푎 =1to enable us to define 

휓 (푧,푁 − 푗) =
1

푎 … 	푎
det 푧 − 퐻[ . , ] 																	(13) 

is a polynomial of degree j. 
 In case 푁 = ∞,휓 (푧,푛) initially is only defined in the region (푧) ≠ 0 by 
requiring (12) and. 

	휓 (푧, 0) = 1,					 |휓 (푧, 푛)| < ∞. 																														(14) 

 
It is a standard argument that when H is bounded and self-adjoint, there is a 
solution that is ℓ  at infinity unique up to constant multiples (and everywhere 
0nvanishing so one can normalize it by휓 (푧, 푛) = 1. 
 Given any two sequences푢(푛), 푣(푛), define the (modified) 
Wronskian푊(푢.푣)by 
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푊(푢,푣)(푛) = 푎 [푢(푛)푣(푛 + 1) − 푣(푛 + 1)푣(푛)] 

For any two solutions of (9), W is constant. The Green’s function is defined 
by(1 < 푚, 푛 < 푁 + 1)  

퐺(푧,푚, 푛) = (훿 , (퐻 − 푧) 훿 )                                (15) 
For Im(푧) ≠ 0.We will also sometimes use (푗 ≤ 푚, 푛 ≤ 푘) 
Proposition (3.1.2) [88 ]:  
퐺(푧,푚,푛) = [푊 푃(푧, . ),휓 (푧, . ) ] 푃(푧, min(푚, 푛))휓 (푧. max(푚,푛))								(16) 
Proof: 
One easily checks that if 휓 퐺(푧,푚, 푛)is defined by(16), then 

(퐻 , − 푧훿 , )퐺(푧, 푘, 푛) = 훿 ,  

    In the finite case, the choice of 푃,휓 ensures that the equation holds at the points 
where n or m equals lot N. In the infinite case, the choice of P ensures the equation 
holds at n or m equals 1, and the choice of휓  ensures that∑ 퐺(푧, 푘, 푛)푓 푖푠	ℓ in k 
for any finite support sequence{푓 }. In either case, it follows that is indeed the 
matrix of the resolvent. 
We can now define the most basic mfuncti0n (there will be more later), 

푚(푧) = (훿 , (퐻 − 푧) 훿 																																	(17) 
We have, by(16) 
Proposition(3.1.3)[ 88]:       

                            푚(푧) = 	− ( , )
( , ) 																																						(18) 

proof.푃(푧, 0) = 0,푃(푧, 1) = 1so (16) becomes 

퐺(푧, 1,1) =
휓 (푧, 1)

−푎 휓 (푧, 0)
 

In terms of the spectral measure dp, 
                                             

																									푚(푧) = 	 ∫ ( )
⋋

																																																																				(19) 
 
Theorem(3.1.4) [88 ]   If N is finite, then 

 푚(푧) = −	∏ℓ
( ( ℓ)
∏ ⋋

,																																																													(20) 

			 
where λ < ⋯ < λ  are the eigenvalues of H and v < ⋯ < v  
are the eigenvalue of H[ , ]. 

Proof. by (12) and (17)  
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푚(푧) = −
det	(푧 − 퐻[ , ))

det	(푧,퐻)
 

 This can be viewed as a cofactor formula for the matrix elements of 퐻 − 푧 				 

Corollary (3.1.5)[88 ]: If N isfinite,{λ }j = U{vℓ}ℓ uniquely determine H. 
Any set of real λ’ s and v’s are allowed as long as 

       휆 < 푣 < 휆 < 푣 < ⋯ < 휆                                           (21) 
Proof. By (19), the λ’ s and v’ s determine m(z), and then by (19), they 
determine dp the a's and b’ s. That any v’ s, λ’ s are allowed follows from the fact 
that if 

	푚(푧) =
푎
휆

 

then	푎 > 0 for all j is equivalent to(21)  
Definition (ퟑ.ퟏ.ퟔ)[ퟖퟖ]: 	푚 (푧,푛) = 훿 , (퐻[ , ] ,푛 = 0,1, … ,푁 −
1,	where퐻[ , ]is interpreted as 퐻[ , ] if N = ∞. 
Thus, m(z) := m+(z, 0), and by the same calculation that led to (17), 

            	−휓 (푧,푛 + 1)/ 푎 (푧, 푛) 푚 (푧, 푛) =																																																																	 	 (22) 
Equation (11) implies the following Ricatti equation (more precisely, an analog of 
what is a Ricatti equation in the continuum case), 

푎 푚 (푧, 푛) +
1

푚 (푧, 푛 − 1)
= 푏 − 푧																																													(23) 

It is also useful to have an analog of the m-function, but starting at 1 instead of at 
N or ∞. 
Definition(3.1.7) [88]: 푚 (푧, 푛) = (훿 , 퐻[ , ] , 푛 = 2,3 … ,푁 + 1 

We immediately have analogs of (22) and (2.15), viz., 
푚 (푧, 푛) = −푃(푧, 푛 − 1)/[푎 푃(푧,푛)]																						(24) 

푎 푚 (푧,푛) +
1

푚 (푧,푛 + 1)
= 푏 − 1															(25) 

The usefulness of having both m+(z) and m_(z) is that we can use them to express 
G( z, n, n). We claim 
Theorem (3.1.8) [88 ]: 

퐺(푧, 푛, 푛) =
−1

푎 푚 (푧,푛) + 푎 푚 (푧, 푛) + 푧 − 푏
								(26) 
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−1

푎 푚 (푧, 푛) − 1
푚 (푧, 푛 − 1)

																			(27) 

=
−1

푎 푚 (푧, 푛) − 1
푚 (푧, 푛 + 1)

, 푛 = 1,2, … 																											(28) 

Proof :It suffices to prove (26), for then (24) follows from (23) and then (27) 
follows from (24). 
To prove (26), use (15) evaluating the Wronskian at n - 1 to see that 

퐺(푧, 푛, 푛) =
−1

푎 푃(푧, 푛 − 1)
푃(푧, 푛) − 휓 (푧, 푛 − 1)

휓 (푧,푛)

 

=
1

−푎 푚 (푧,푛) + (푚 (푧, 푛 − 1)
 

By(21) and (23) 
Theorem(3.1.9)[88]:  .Let	N ∈ ℕ. At any eigenvalue λ of H we infer that 

m λ , n + 1 = [a m λ , n ] 				1 ≤ n ≤ N,										(29) 
where equality in (29) includes the case that both sides equal infinity. 
Proof.At first sight, this would seem to be a triviality. For G(z, n, n) has poles at 휆  
and thus the denominator in (29) must vanish. But there is a subtlety. It can happen 
that at an eigenvalue 휆  of H, P(휆 , n) = 휓 (휆 , n) = 0 and G(z, n, n) then also 
vanishes at 휆 . 

Thus we consider two cases: First 휑 ( ) ≠ 0(휑  the eigenvector of H 
associated with (휆 ). In that case G(z, n, n) has a pole as z⟶ 휆  and so by (28), 
(29) must hold (although both sides will be infinite if 휑 (n + 1) = 0). 

In the second case, 휑 (n) = 0. Then both sides of (29) are zero, and so 
(29)holds. (However, the denominator of (27) is ∞−∞ and happens to be ∞	so 
that G(z, n, n) vanishes, but (29) still holds.) 
   In this section, we will use m-functions to show how to recover a Jacobi matrix 
from the spectral function dp. The more usual approach via orthogonal 
polynomials is sketched. Our approach is new, although iterated m-functions are 
equivalent to a continued fraction expansion of m(z), and so the work of Masson 
and Repka [152]is not unrelated to our approach. We begin with 
Theorem(3.1.10)[88]:.Near z =∞ 

푚(푧) = −
푏
푧
−
푎 + 푏
푧

+ 푂(푧 )																	(30) 

First proof.By the basic definition of m(z) (see (16)) and the norm 
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convergent expansion (since H is bounded) 
(퐻 − 푧) = −푧 (1 − 푧 퐻)  

= −푧 − 푧 퐻 − 푧 퐻 + 푂(푧 ). 
We have 

푚(푧) − 푧 − 푧 (훿 ,퐻훿 ) − 푧 ||퐻훿 || + 푂(푧 ) 
Clearly,(훿 ,퐻훿 ) = 푏 		푎푛푑	‖퐻훿 ‖ = ‖푎 훿 + 푏 훿 ‖ = 푎 + 푏  
Second proof. By (23), 

푚(푧) =
1

푏 − 푧 − 푎 푚 (푧, 1)
 

But m+(z, 1) = -1/z + O(z-2). Thus, 

푚(푧) = −
1
푧

1 −
푏
푧
−
푎
푧

+ 푂(푧 )  

= − 1 −
푏
푧
−
푎
푧

+
푏
푧

+ 푂(푧  

In terms of the spectral measure dp, (30) becomes 

푏 = 휆	푑푝(휆),																																																		(31) 

푎 = 휆 푑푝(휆) − 휆	푑푝	(휆) 		,																	(32) 

formulas implicit in the orthogonal polynomial approach. 
In case N <∞, there is a direct way to interpret (30) as generating trace 

formulas: 
Theorem(3.1.11)[88]: Assume	푁 ∈ ℕ, and let λ , … , λ   be the eigenvalues of H 
and v , … , v the eigenvalues ofH[ , ]. Then 

푏 = 휆 − 		푣ℓ																																															(33)
ℓ

 

2푎 + 푏 = 휆 − 푣ℯ 																																							(34)
ℓ

 

Proof. Write (see (29)) 

푚(푧) = −
Πℯ (푧 − 푣ℓ)
Π 푧 − 휆

= − ℓ

ℓ	
1 −

휆 	

푧
 

= −
1
푧
−
훼
푧
−
훽
푧

+ 푂(푧 ) 

Where  
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훼 = 휆 − 푣ℓ																																																		(35)
ℓ

 

훽 = 휆 + 휆 휆 				 푣ℓ
ℓ

푣 − 휆 푣ℓ
ℓ

															(36) 

(35) is just (33), and using (34), (55) becomes 

훽 =
1
2

휆 −
1
2

+ 푣ℓ +
1
2
훼

ℓ

 

 
Thus, 

휆 − 푣ℓ = 2훽 − 훼 = 2푎 + 푏
ℓ

 

 
By (29) 

of course, (33), (34) have direct proofs in terms of traces since they just say 
that 

푇푟	(퐻) − 푇푟 퐻[ , ] = 푏 																																											(37) 
푇푟(퐻 ) − 푇푟 퐻 [ , ] = 2푎 	+ 푏 																							(38) 

and is one reason why (30) should be thought of as generating trace formulas. In 
the case of periodic Jacobi matrices, this strategy has been employedin[153]. 
 
There is another way to write (30) that doesn't require us to analyze m(z) for large 
z. Define the 휉 function [124] by 

휉(휆) = Arg	(푚(휆 + 푖0)) for   a.e 휆 ∈ ℝ                        (39) 
Then if supp (dp) = spec(퐻) ⊂ [푎.훽]	we infer that	휉(휆) = 0 for 휆<a and 휉(휆)= 1 
for 휆 ≥ 훽. We claim 
Theorem(3.1.12) [88]: 

푏 = 훼 + 	 1 − 휉(휆) 푑휆																																						(40) 

2푎 + 푏 = 훼 + 2휆(1 −휉(휆))푑휆																														(41) 

Proof. [124].By Theorem (3.1.10) , the function -zm(z) has the asymptotics near ∞ 

−푧푚(푧) = 1 +
푏
푧

+
푎 + 푏
푧

+ 푂(푧 ) 
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Using ln(1 + 퓍) = 푧 − 퓍 + 푂(퓍 )for |	퓍 |sufficiently small, we see that 
푄(푧) = 퐼푛(−푧푚)(푧)) 

has the asymptotics 

푄(푧) =
푏
푧

+
2푎 + 푏

2푧
+ 푂(푧 )					푎푠						푧 ⟶ ∞																							(42) 

     Notice that the right sides of (40), (41) are unchanged if 훽 is increased or 	훼 is 
decreased (since휉(휆) = 1		푖푓휆 > 푎)	and, so we can assume that 0 ∈ (푎,훽). Then 
Q(z) is analytic in ℂ/[훼,훽]and on (훼,훽): 

1
휋
퐼푚 푄(휆 + 푖0) = 휉(휆),					휆 < 0, 

휉(휆) − 1												휆 < 0.								 
By (42), for R sufficiently large, 

푏 =
1

2휋푖
푄(푧)푑푧) = − 퐼푚 푄(	휆 + 푖0) 푑	휆

| |
 

= − 푑	휆 + (1 − 휉(휆))푑휆 

which is expression (39), and 

2푎 + 푏 =
1

2휋푖
2푧푄(푧)푑푧 = −

| |

1
휋

2휆푖푚(푄(휆 + 푖0)푑휆

= − 2	휆푑	휆 + 2	휆(1 − 휉(휆))푑휆 

 
which is expression (31)  
Equations (31)-(34), (37), (38), (40), (41), etc., clearly underscore that one can 
derive an infinite sequence of such trace formulas which are precisely the well-
known invariants of the hierarchy of Toda lattices. A systematic approach to these 
trace formulas can be found, for instance[101,107,122,160]. 
    We can now describe the scheme for recovering H from dp, or equivalently,from 
m(z) =∫푑푝( 휆)(휆 − 푧) . 
(i) Use the trace formulas (via (30) or (40), (41)) to recover bl and	푎 . 
(ii) Use (23), viz.  

푚 (푧, 1) = 푎 푏 − 푧 − ( ) , 

to find m+(z, 1), which is the m-function for퐻[ , ] 
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(iii) Use the trace formulas to find 푏 ,푎 and then (22) to find m+(z, 2 ) , . . . , 
etc. 

This clearly shows a given dp can come from at most one H, since we have 
just described how to compute the bj and 푎 from dp. We want to prove existence 
via this method, that is, given any dp of compact support, this method yields an H 
which is bounded and whose spectral measure is precisely dp. 
Lemma(3.1.13)[88]:Suppose that m(z) = ∫ dp (λ)(λ − z) ,  where d 휌  is a 
probability measure on [-C, C] whose support contains more than one point. 
Define 

푏 = 휆 휆푑푝 (휆),							푎 휆 푑푝( 휆) − 푏 																									(43) 

(a 	is	always strictly positive by the support hypothesis on dp). Define m1(z) by 

푚 (푧) = 푎 푏 − 푧 −
1

푚(푧)
 

Then 

푚 (푧) =
푑푝 (휆)
휆 − 푧

																																													(44)			 

where dp1 is a probability measure also supported on [-C, C]. Moreover, 	휌  is 
supported on exactly N points if and only if p1 is supported on exactly ( N - 
1)points. 
Proof. By (42) and an expansion of a geometric series, (29) holds, so 

푚(푧) ≔ (−푚)푧)) = 푧 − 푏 −
푎
푧

+ 푂(푧 )																(45) 

Since m(z) has Im(m(z)) > 0 when Im (z) > 0 (we recall that m is a Herglotz. 
function), m(z) =(-m(z)) -1has the same property. Moreover, m(z)  is analytic 
onℂ\[C, C]since m(λ) > 0	for λ< -C and m(λ) < 0 for λ> C. Thus, by the Herglotz 
representation theorem, 

푚(푧) = 푐̂ + 푑푧 +
푑푝̂(휆)
휆 − 푧

 

for a measure푑푝̂ By (44), 푐̂ = −푏 , 푑 = 1 , and, ∫푑푝̂(휆) = 푎  
Thus, 

푚(푧) = 푐̂ + 푑푧 +
푑푝 (휆)
휆 − 푧

 

and푑푝 = 푎 	푑푝̂is also a probability measure. 
Since 푑푝is supported on N points if and only if m(z) is a ratio PN-1 (z)/QN(z) of 
polynomials with deg(PN-l(z)) = N - 1, deg(QN (z))= N, we obtain the last assertion. 
Theorem(3.1.14) [88]. Every N-point probability measure arises as the spectral 
measure of a unique N × N Jacobi matrix. Every probability measure of bounded 
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and infinite support arises as the spectral measure of a unique semi-infinite 
bounded Jacobi matrix. 
Proof. By iterating the 휌 → 휌 procedure of the lemma, we can find suitable  
푎 , 푏 inductively. If d휌 has N-point support, the process terminates after N – 1 
steps where dpN has a single point, and we define bNto be that point. If dphas 
infinite support, 	휌  the process continues indefinitely. Because sup (푑푝 ) ⊆
[−퐶,퐶], |푎 | and |푏 |are bounded by C, and so H is bounded. 

Let 푑휌̅	be the spectral measure for the H that has just been constructed. We 
will show 푑휌, thereby completing the proof. 
Let	푚(푧) = 휌 ∫ 푑푝̅(휆)(휆 − 푧) . Then by construction, 

푚(푧) =
−1

푧 − 푏 + 푎 −1
푧 − 푏 + 푎 …

 

That is, m and 푚 have identical partial fraction expansions although a priori 
theremainders could be different. This means that the Taylor series for 푚(푧) near z 
= ∞ agrees with that for m near z = ∞ so m(z) = 푚 (z), and hence d휌 =	푑휌 
   The continuum analog of the orthogonal polynomial approach of the Appendix is 
the Gel'fand-Levitan [120] inverse spectral theory which is a kind of continuum 
orthonormalization. It would be very interesting to find a continuum analog of the 
m-function approach to inverse problems that we discussed in this section. As an 
application of the m-function approach to inverse problems, we prove the 
following (which can also be obtained via orthogonal polynomials): 
Theorem(3.1.15)[88].[93,120]Fix N ∈ ℕ.Consider the following parametrizations 
of N × N 
Jacobi matrices." 
(i) {푎 } ⋃{푏 } (푎 ) > 0. 

(ii) 휆 ⋃{푣 } (휆 < 푣 < 휆 < ⋯푣 < 휆 ). 

(iii) 휆 ⋃ 훼 휆 < ⋯ < 휆 ,훼 < 0, ∑ 훼 = 1  

Here λ  are the eigenvalues of H, v  are the eigenvalues of H[ , ] and the α's are the 
residues of the poles in m so 
m(z)=∑ α ( λ − z) (or	dp(λ) = ∑α δ(λ − λ )dλ). 
 The maps between these parameters are real bianalytic diffeomorphisms. 
Proof.It is well known and elementary (the determinant of the Jacobian matrix is 
just ±Π (휆 − 휆 ) that the map from the N coefficients of amonic polynomial 
푃 (휆) of degree N to the roots 휆 , … 휆 of that polynomial is a bianalytic 
diffeomorphism in the region where the roots are all real and distinct. This 
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immediately implies that the map from (i) to (ii) is real analytic. The map from (ii) 
to (iii) is rational since 훼 = Πℓ (휆 − 푣ℓ)Π (휆 − 휆 ) . That means 
we need only show that the map from (iii) to (i) is real analytic. 

Since 푏 = ∑ 훼 휆 and 훼 = (∑ 훼 휆 ) − 푏 , those are analytic 
functions. Moreover, the 푣ℓ are the roots of the polynomial∑ 훼 Π (푧 −
휆푘)and so real analytic in (휆푗,훼푗) by the first sentence in this proof, m+(z, 1) has 
the form  ∑ 훽ℓ(푣ℓ − 푧) ,ℓ where훽ℓ = [푎 푚′(푣ℓ)] is clearly analytic in the 휆′푠 
and a's. Thus following the m-function reconstruction shows that the a's and b's are 
real analytic functions of the 휆's and a's. 
    In[139],Hochstadt proved the following remarkable theorem (see (3)) for the 
definition of cj): 
Theorem (3.1.16) [88 ].LetN ∈ ℕ. Suppose that c , … , c are known, as well 
as the eigenvalues λ , …,λ of H. Then c , … , c  are uniquely determined. 
  Hochstadt's proof is sketched in the appendix (but in 
"reflected"coordinates,푖. 푒. 푐 , … , 푐 are assumed to be known). Our goal in this 
section is to prove. 
Lemma(3.1.17)[88 ].[126,127,139,140]Suppose f1 = P1/Q1, f2 = P2/Q2, where 
deg(P1) = deg(P2)and deg(Q1) = deg(Q2), and d = deg(fi), 
(i) If f1 and f2 agree at d + 1 points in C, then f1 = f2. 
(ii) If  f1 and f2 are both monic and they agree at dpoints in C, then f1 = f2. 
Proof. If f1(z) = f2(z), then P1 (z)Q2(z)- P2(z)Q1(Z) = 0 (even if both values are 
infinite, since then Q1 =Q2 = 0). In case (i), PIQ2 - QIP2has degree d. In case (ii), 
the leading terms cancel and PxQ2 - Q1P2has degree d-1. The lemma follows from 
the fact that ifa polymonial Rdo of degree do vanishes at d0 +1 points,then Rdo ≡ 0. 
Theorme (3.1.18)[88]. Suppose that 1 ≤ j ≤ N	and c , … , c are known, as well 
as j of the eigenvalues. Then c , … , c  are uniquely determined. 
Proof. Suppose first that j is odd so j = 2n-1, andbl, . . . ,an-l, bu are unknown, but 
an, bn+l,..., bN are known, as well as j eigenvalues which we will denote 
휆 , … , 휆 By(28)  

−푚 − 휆 ,푛 + 1 + [−푎 푚 휆 , ] . 
By definition, m+(z, n) is determined by 퐻[ , ]and so by bn+l,an+l,..., bN. 
Thus, [−푎 푚 (휆 , 푛)] I are known numbers. 

By the analog of Theorem (3.1.4)(see also (23)), -m-(z,n + 1) is a ratioPn-

1(z)/Qn(z) of polynomials, where deg(Pn-l(z)) = n - 1 and deg(Qn(z)) = n, and each 
is monic. By part (ii) of Lemma (3.1.17) the values of such a monic rational 
function of degree 2n- 1 is determined by its values at the 2n- 1 points 휆 , … , 휆  
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Once we know m- (z, n + 1), bl, al,…,bn are determined by Corollary (3.1.5). 
Suppose next that j is even so j = 2n, and an moves from the known group to 

the unknown group. We can use 
−푎 푚 (휆 , 푛 + 1) = (−푚 (휆 , 푛)  

to conclude that we know f(z) := 푎 푚 (푛 + 1) at the 2n points 휆 , … , 휆 .The 
function f(z) is no longer monic, but it is of degree 2n - 1 and so its valuesat 2n 
points determine it uniquely by part (i) of Lemma (3.1.22). Once we 
know−푎 푚 (푧, 푛 + 1), we can obtain 푎 by 푎 lim| |→ [−푧푚 (푧푚 (푧, 푛 + 1) =
1and thenbl, al, …,bnby Corollary (3.1.5). 
Example(3.1.19) [88]. (j = 1) We use m (z. n) = (δ , H[ , ] − z) δ = (b −
z)  
Then 

푏 = 휆 + 푎 (휆 , 1) 
This has a solution as long as 푚 (휆 푚1) ≠ ∞.The only forbidden values for 휆 are 
the obvious ones, namely, the eigenvalues ve of 퐻[ , ]which we know must be 
unequal to the휆 푠. 
Example(3.1.20) [88]. (j = 2) We get 

푏 = 휆 + 푎 (휆 , 1)					푗 = 1,2 
푚 (휆 , 1) ≠ ∞is still required, but we also need that 

−
푚 (휆 , 1)푚 (휆 , 1)

휆 − 휆
 

which equals 푎 , must be positive. This avoids two eigenvalues between a single 
pair of eigenvalues of 퐻[ , ] but requires a lot more. There are severe restrictions in 
the휆 ′푠 for existence (see, e.g., the discussion in [112]). As j increases, these 
become more complicated. 
  Borg[99] proved a famous theorem that the spectra for two boundary conditions 
of a bounded interval regular Schrodinger operator uniquely determine the 
potential. Later refinements (see, e.g.,100,145,146,148,150]) imply that they even 
determine the two boundary conditions. 
      We consider analogs of this result for a finite Jacobi matrix. Such analogs were 
first considered by Hochstadt[137,138](see also[98,118,131,132,136,139]).In one 
sense, the fact that the eigenvalues of	퐻[ , ]and 퐻[ , ] determine H is such a two-
spectrum result and, indeed, it can be viewed as Theorem (3.1.28)below for 푏 =
∞. Our results are straightforward adaptations of known results for the continuum 
or the semi-infinite case, but the ability to determine parameters 
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by counting sheds light on facts like the one that the lowest eigenvalue in the Borg 
result is not needed under certain circumstances. 

Given H, an N × N Jacobi matrix, define H(b) to be the Jacobi matrix where 
all a's and b's are the same as H, except bl is replaced by bl + b, that is,  

퐻(푏) = 퐻 + 푏(훿 , . )훿 .																																														(46) 
Theorem(3.1.21) [88].The eigenvalues λ + λ of H, together with b and N – 1 
eigenvalues(λ(b) … , λ(b) ,of  H determine H uniquely. 
Proof.Choosing a0 = 1, we have 

푚(푧) = −휓 (푧, 1)/휓 (푧, 0) 
and 

휓 (푧, 0) + (푏 − 푧)휓 (푧, 1) + 푎 휓 (푧, 2) = 0 
It follows that z is an eigenvalue of H(b) if and only if 

휓 (푧, 0) = 푏휓 (푧, 1), 
that is, if and only if 

푚(푧) = −
1
푏

 

 (a standard result in the general theory of rank-one perturbations[156]). 
Write m(z) =−푃 (푧)/푄 (푧), where PN-I(Z) and QN(Z) are monic polynomials of 
degree N - 1 and N, respectively. QN(z) =	∏ 푧 − 휆  is known  
and 

푃 (휆(푏) ) = 푏 (휆 푏) − 휆 ,							1 ≤ 푘 ≤ 푁 − 1 

are also known. Since the values ofa monic polynomial Pd(z) of degree d at d 
points uniquely determine Pd(z) by Lagrange interpolation, 
휆(푏) , … , 휆(푏) uniquely determine PN-I(z). The solution of the inverse problem, 
given−푃 (푧)/푄 (푧),and hence m(z), then determines H uniquely. 
Theorem(3.1.22) [88].The eigenvalues λ , … , λ  of H, together with the N 
eigenvalues λ(b) , … , λ(b) of some H(b) (with b unknown), determine H and b. 
Proof. Following the proof of Theorem(3.1.22),we have a monic polynomial PN-

1(z), an unknown 훽 ≔1/b, and 

푃 (휆)(푏) ) = 훽 (휆)(푏) − 휆 . 

Let:  

푅 (푧) = 훽 푧 − 휆 −푃 	(푧)  
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Since 푅 (푧) = 훽푧 +lower-order terms and 푅 (휆)(푏) ) = 0,1≤ 푘 ≤ 푁we have 

푅 (푧) = 훽 푧 − 휆 + 1  

Since 푅 (푧)is monic of degree N - 1, 

푅 (푧) = 훽푧 − 훽 휆 + 1 푧 + ⋯  

on the one hand and 

푅 (푧) = 훽푧 − 훽 휆(푏) 푧 + ⋯ 

on the other. It follows that 

훽 =
1

∑ (휆(푏) − 휆 )
= 푏 .																																											(48) 

Once 훽  is known, RN(z) determines PN-I(z), and thus m(z) and H.(48)then 
determines b. 
   The basic inverse spectral theorems show that  (훿 , (퐻 − 푧) 훿 )determines H 
uniquely.We take 푁 ∈ ℕ, 1 ≤ 푛 ≤ 푁 , and ask whether (훿 , (퐻 −
푧)−1훿푛determines H uniquely. For notational convenience, we occasionally allude 
toG(z, n, n) as the nn Green's function in the remainder of this section. The n = 1 
result can be summarized via: 
Theorem(3.1.23)[88]: (δ , (H − z) δ ) has the form ∑ α (λ − z) with 
λ < ⋯ < λ ,∑ α = 1and each α >0. Every such sum arises as the11 Green”s 
function of an H and of exactly one such H. 
For general n, define fi =rain(n, N + 1 - n). Then we will prove the following 
theorems: 
Theorem(3.1.24)[88]:. 			(δ , (H − z) δ ) has the form ∑ α (λ − z) with k 
one of N, N - 1, . . ., N - n+ 1 and λ < ⋯ < λ ,∑ α = 1and each α > 0	. 
Every sum arises as the nn Green's function of at least one H. 
Theorem(3.1.25)[88]:.If k = N, then precisely N − 1

n− 1 H’s yield the given nn Green's  
function. 
Theorem(3.1.26)[88].if k < N, then infinitely many H's yield the given nn Green's 
function.Indeed,the inverse spectral family is a collection of 

N − 1
N − k

k − 1− N − k
n − 1 − N − k disjoint manifolds, each of dimension N - k and diffeomorphic 

to an (N - k)-dimensional open ball. 



86 
 

Proof. Consider first the case k = N (which is generic; k < N occurs in a 
set of Jacobi matrices of codimension 1). Let휇 < ⋯ < 휇 , be the zeros of 
퐺(푧.푛. 푛) ≔ ∑ 훼 (휆 − 푧) .Then.  

−G(z. n. n) = z − b +
βℓ

μℓ − z	
																												(49)

ℓ

 

where푏, 휇ℓ ∈ ℝ and 훽ℓ > 0 are determined by the a's and 휆's. By, 
−퐺(푧;푛, 푛) = 푧 − 푏 + 푎 푚 (푧,푛) + 푎 푚 (푧,푛)														(50) 

푚 (푧, 푛) = (훿 , (퐻[ ] − 푧) 훿 ) determines	퐻[ ]uniquely (by 
Theorem(3.1.15).and has the form 

푚 (푧, 푛) =
훾
푒

				, 훾 > 0,																																(51) 

 
where ∑ 훾 = 1	and the 푒 ′푠are the eigenvalues of 퐻[ ]. Similarly,m+(z,n	) =
(훿푛−1,(퐻푛−1−푧)−1훿푛−1) determines 퐻푛+1,푁 uniquely and has the form  

푚 (푧, 푛) =
푘
푓

		,							푘 > 0,																				(52) 

where∑ 푘 = 1	and the  푓 ′푠  are the eigenvalues of퐻[ , ]. Comparing (49)-

(52), we see that{휇ℓ}ℓ = 푒 ∪ 푓 . We can choose which 휇ℓare to be 푒  

in 푁 − 1
푛 − 1 ways. Once we make the choice, 

푎 = 훽ℓ
ℓ	 	 ℓ	 	 	

	푎푛푑			푎 = 	 훽ℓ
ℓ	 	 ℓ	 	 	

 

andm+(z, n) are determined. But 퐻[ , ], 퐻[ , ]and푎 , 푏 ,푎 , determine H. 
Thus for each choice, we can uniquely determine H. Moreover, since any sums of 
the form (51), (52) are legal for푚±(푧,푛), we have existence for each of the 푁 − 1

푛 − 1  
choices. 
k = N if and only if all the eigenfunctions 휑 (푛) are non-vanishing at 
n.Eigenfunctions obey the boundary conditions at both ends, so if 휑 (푛)vanishes, 
so do P(z,n) and휓 (푧,푛), which are polynomials of degree n - 1 and N -n;so at 
most min(n - 1, N - n) := 푛- 1 eigenvalues of H can fail to contribute to G(z, n, n), 
that is, at least N - 푛 + 1 eigenvalues must contribute, that is, k is one of	푁.푁 −
1	, … ,−푛 + 1 . Eigenvalues that don't contribute are zeros of G(z, n, n)and 
simultaneously eigenvalues of 퐻[ , ]and 퐻[ , ]. 



87 
 

Thus if k < N, the k- 1 poles of-G(z, n, n)-1 are in three sets. n0 := N- k are 
eigenvalues of both 퐻[ , ]and 퐻[ , ]푛 ≔ 푛 − 1 − (푁 − 푘), are eigenvalues 
of 퐻[ , ]alone, and n2 := (N - n) - (N - k) = k - n are eigenvalues of 퐻[ , ]alone. 
Notice that N > k ≥ N - 푛+ 1 implies 푛 > 0	,푛 ≥ 0, 푛 ≥ 0	and that 푛 + 	푛 +
	푛 = 푘 − 1,푛 + 	 푛 = 푁 − 푛 .To reconstruct 푚 (푧, 푛)given -G(z, n, n)-1 , we 
have to make two sets of choices: 
(i) Figure out which of휇 , … , 휇 lie in each of the three sets. This yields 

푘 − 1
푛

푘 − 1 − 푛
푛 =

(푘 − 1)!
푛 !푛 !푛 !

 

discrete choices. 
(ii) For each of the no 푛 휇ℓ′푠 in the set of common eigenvalues, we must pick a 
decomposition 

훽ℓ = 훽ℓ
( ) + 훽ℓ

( ),					훽ℓ
( ) < 0 

and then take 

푎 푚 (푧.푛) =
훽ℓ

휇 − 푧
ℓ	 	
	 	 	 	

[ , ] 	

훽ℓ
( )

휇 − 푧
ℓ	 	

	 	 	
	 	

 

and 

푎 푚 (푧,푛) =
훽ℓ

휇 − 푧
ℓ	 	
	 	 	 	

[ , ] 	

		+
훽ℓ

( )

휇 − 푧
ℓ	 	

	 	 	
	 	

 

  Every such choice yields an acceptable H. Since the map from poles and residues 
to matrices is a diffeomorphism (Theorem (3.1.15),the ( )!

! ! !
disjoint sets of poles 

and ×
푛 	ℓ 푠

(0,훽ℓ) residues lead to that number of manifolds diffeomorphic to the n0-
dimensional open ball.  
A Jacobi matrix with all an = 1 is called a discrete Schrrdinger operator. The 
inverse problem for such operators is open, that is, there are no effective conditions 
on a spectral measure dp that tell us that its associated Jacobi matrix has all an=1. 
(The isospectral manifold of general Jacobi matrices with 푎 ∈ ℝis discussed in 
[161], see also[111],[114],and[117].)  

Consider the finite case,푁휖ℕ. The number N of free parameters {푏 } equals 
exactly the number of eigenvalues. 휆  The natural inverse problem is from  λ's to 
b's. We do not have a complete solution, but have a number of conjectures and 
comments which we make in this section. 휆 < 휆 < ⋯ < 휆 are the eigenvalues 
of H. For any b = (bl,…bN)∈ ℝ, define ∧ (푏) = (휆 , … , 휆 )휖ℝ as the eigenvalues. 
Let SN= Ran (∧). 
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Conjecture(3.1.27) [88]: (Main Conjecture). SN is a closed set in ℝ whose interior 
푆 is dense in SN. For any 휆 ∈ 푆 ∧ (휆) contains N! points. For any, 	휆 ∈
휕푆 ,∧ (휆)contains fewer than N! points. 

Thus, we believe that ∧ [푆 ]is an N!-fold cover of	푆 , but it is likely 
anuninteresting one. 
Conjecture(3.1.28) [88]  Λ 푆 	is a union of N! disjoint sets. On each of them, 
∧is a diffeomorphism to	푆  
In the complex domain, things are more interesting. There is a small 
neighborhood,D, of ℝ 	푖푛	ℂ to which ∧  can be analytically continued and on 
which  휆 ≠ 휆 still holds. Introduce 
푆̅ = Λ	[퐷]			and   B = {휆 ∈ 푆̅ |Λ [휆]} has ordinality less than N!}. 
Conjecture(3.1.29)[88]. B has real codimension 2. IsΛ [푆̅ \퐵] connected and is 
an N!-cover of 푆̅ \퐵. 

Thus, Λ  is a ramified cover of 푆̅ . We begin with an analysis of the case 

N=2, so H = 푏 				1
1					푏  Then 

									Λ(b) = 	 − + 1, + + 1               (54) 

푇ℎ푢푠		푆 = {(휆 , 휆 ) ∈ ℝ |휆 ≥ 휆 + 2}.휕푆 = {(휆 , 휆 ) ∈ ℝ |휆 ≥ 휆 + 2}   

.Λ (훼 − 1,훼 + 1) = 훼			1
1			훼 , otherwise Λ (휆 , 휆 ) has two points 푥			1

1				푦 and 

푦			1
1				퓍 Λ (푆 ) has two connected components where bl> b2 and where b2> bl. 

If one continues into the complex domain, Λ [푆 \퐵] is connected. 
   Thus, our conjectures are true in the not quite trivial case N = 2. 
   At first sight, it may seem surprising that SNis closed. After all, the 
eigenvalueimage of all Jacobi matrices  {휆 ∈ 	ℝ |휆 < 휆 < ⋯ < 휆 }is open and 
notclosed. The existence of strict inequalities is a reflection of the condition an> 0. 
Once an≡ 1, they disappear. 
Theorem(3.1.30) [88].SN is closed. 
Proof. Let 휆 ∈ 푆 and pick푏 ∈ ℝ 	푠표	thatΛ	(푏 ) = 휆 . Suppose 휆 → 휆 ∈
ℝ .  as 푚 → ∞. Let H(b) be the N × N Schrodinger matrix with the components of 
b along the diagonal. Then 

|Λ(b)| = 푇푟(퐻(푏) ) = 	2(푁 − 1) + ||푏|| , 
so{푏 }is a bounded subset of	ℝ . Thus, we can find a subsequence 푚 such that 
푏 → 푏 .as 푝 → 푏 .By continuity of Λ,Λ(푏 ) = 휆 푡ℎ푎푡푖푠, 휆 ∈ 푆 . 
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This theorem implies that if‖푏‖ ≤ 푅,, then there is a minimum distance 
between eigenvalues. One might think there are global bounds on eigenvalue 
splittings (i.e., N-dependent but independent of R), but that is false if N	≥	3, as is 
seen by the following example motivated by tunneling considerations. Let H(훽) be 
the N x N Schrodinger matrix with bl= bN = 훽 and b2= ...  bN-1= 0. Then for훽 large, 
the two largest eigenvalues 퐸±(훽)satisfy 

퐸±(훽) = 훽 ± 푂(훽 ( )																																						(54) 
and if푁 ≥ 3, |퐸 (훽) − 퐸 − (훽) → 0 as 훽 → ∞ 

An important open question is finding some kind of effective description of 
SN. 
We note that if 

																							휑 =
√

, … ,
√

and휑 =
√

,
√

,
√

, … , ( )
√

, 

                then(휑 ,퐻휑 )− (휑 ,퐻휑 ) = 4(1/푁))so휆 − 휆 ≥ 4 1 − . 

   The N! in our main conjecture comes from the following 
Theorem(3.1.31)[88].For β large, λ ≔ (β, 2β, 3, … , Nβ) ∈ S and Λ (λ )hasN! 
points. 
Proof. Consider the N! Hamiltonians 

									퐻 (훽) = 훽
 

 N



0

01
 		 +



















010
1

1
010



 																																						(55) 

where 휋 is an arbitrary permutation on {1,..., N}. Then 퐴(훽) = 훽 퐻 (훽) at 훽= 0 
has N eigenvalues (1, 2 ,...,N) and it is easy to see that for훽 small, the Jacobian of	Λ 
is invertible. It follows by the inverse function theorem that for 훽. GESZTESY 
AND B. SIMON 
large, there is a unique 퐻 (훽) = 퐻 (훽) + 푂(훽) ) so that the eigenvalues of 
퐻 (훽)are precisely (훽, 2훽, …푁훽) 

A separate and easy argument shows that for 	훽  large, any Schrodinger 
matrix with eigenvalues (훽 ,..., N훽 ) must have bn =훽 (푛) + 푂(훽 )for some 
permutation,	휋 and so must be one of the퐻 (훽). 

The evidence for the strong forms of the conjectures here is not 
overwhelming.We make them as much to stimulate further research as because we 
are certain theyare true. 
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Sec (3.2) Inverse Problems on Jacobi Matrices: 

The study of inverse eigenvalue problems for Jacobi matrices is not purely of 
mathematical interest, actually, in aplications, it is related to vebariting systems 
see[169] and the classical moment problems see[164] of a jacobi matrix 

                                     ,


nJ                                                   (56) 

     can be iwed as a discretization of the one- dimensional Schrödinger equation 

                                                                                             (57)                                                                                     

where q(x) is acounuous function defined on(0,1).Hence, it is not surprising that 
there are several analogies between the inverse eigenvalue problems  for Jacobi 
matrices and the inverse  spectral problems for sturm- liouville equations. For 
example, for a given pair (h, H, q)  R2  c(0,1), let Qh.H(q) denote the spectrum of 
the equation 

                                                                                                            (58)                                                                                     

 with the boundary conditions 

           
   
   







011
000

Hyy
hyy

                                                                  (59)                                                         

where (h,H) is in R2.Borg  2  showed that if  2, qHh  and     11, qHh for some H
H1,then    xqxq 21   on  1,0 On the other hand, denote 

 12121 ,...,,;,...., nnn bbbaaaJ =





































nn

nnn

ab
bab

bab
bab

ba

1

112

331

221

11

0...000
............

..
.
.
.

....

.........
0...0.
0...00
0...000

 

          (60)                                                                                                     

Hochstart[170] proved that an irreducible Jacobi matrix. 

                                      1211211 ,...,,;,...,, nnn bbbaaaJ  

       , 100      x x y x p xy  

       , 100    xxyxqx y 
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Is uniquely determined by its eigenvalues( corresponding to the dirichelt- 
Neumann spectrum of (58) and the eigenvalues of its truncated matrix 

 221112111 ,...,,;,...,,  nnn bbbaaaJ  (corresponding to the dirichlet spectrum of(58) if we 

require  that bi  0 for I = 1, 2,….., n-1. In 1973, Hochstadt[171] showed that if 
   1 xqxq q for or x  in(0,1) then one spectrum set  h,H(q)can determine q( x ) 

uniquely; later , in 1974, a discretized version of the following theorem was also 
proved by him; he showed that the eigenvalues of an irreducible persymmetric 
Jacobi matrix 

                                           1211211 ,...,,;,...,, nnn bbbaaaJ      
 ,...,,,. 2212,111   nnnn bbaabbaaei determine this matrix uniquely with the 

requirement bi  0 for i= 1,2,……….. n-1 until 1978, Hochstadt and 
liberman[172]proved that. 

Theorem(3.2.1)[163]. let    xqxq   be two summable functions  in(0,1).Suppose 

that    xqxq   for all x 휖 (1/2,1) and  h,H( q ) =  h,H( q ) then q  ( x ) = q  (1-x) 
almost everywhere in (0,1). 

They named the pair ( q  ( x ))(1,1/2),  h,H( q ) with the term` mixed data, Afterwards,  
Hochstardt  [173] immediately proved that 

Theorem (3.2.2)[163].Let  1211211 ,...,,;,...,, nnn bbbaaaJ  be a Jacobi matrix with bi 

0  for i= 1,2,……..,n-1 suppose we are given its n distinct eigenvalues ,,...., 1211 n  
as well as the n-1 entries a1, a2,………..a(n/2), b1,b2,………….b   2/1n  then these 
data determine a unique Jacobi matrix. 

        So far, most of the theorems are concerned  with the , uniqueness, there are 
not many papers that discuss the existence  of the inverse eigenvalue  problems, In 
1984, Deift and Nanda[166] provided sufficient conditions for the solvability of 
theorem (3.2.1) they also gave a description for the solution set. Finally ,I have to 
mention one more result. 

Theorem (3.2.2)[163].fix c,d  with c  d and q L1   dc,  real –value let

 qdcS ;, denote the set of  eigenvalues - q
dx
d

2

2

 on L2   dc,   with the boundary 

conditions u( c) = u(d)= 0. Suppose q1,q2휖 L 1 ((0,1) are real –valued and there is 
some a (0,1) so that  
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(i)  1;1,0 qS =  2;1,0 qS ,  1;,0 qaS =  2;,0 qaS and  1;1, qaS =  2;1, qaS  

 (ii) the sets  1;1,0 qS  1;,0 qaS and  1;1, qaS are pairwisely dis joint. 

Then q1=q2 a.e. on ( 0,1). In particular, if a = 1/2 the condition(ii) can be dropped. 

This section was partially motivated by Theorems (3.2.1)and(3.2.3).We stady some 
inverse problems for Jacobi matrices. We give a brief introduction, some 
preliminary results.  

  We will review some connections among continued fractions, Mobius transforms 
and Jacobi matrices that play core roles for our main theorems, The readers  who 
are interested in this topic may refer to[174] 

   Let ( 0nna and  1nnb  be tow sequences of intigeres with a0 ∈ 핫, ai >  0, and bi > 

0 for I  1. Denote  

                        

n

n
n

n

n

a
ba

ba

ba

ba
Q
p









1

3
2

2
1

1
0

..

 

 

                          n

n

a
b

a
b

a
b

a



....2

2

1

1
0                                  ( 61)              

 

For example, 
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1
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0 a
Q
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                                   1
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b

a
Q
P 

  

                                  2

2
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1
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2

a
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bq
Q
P


 =
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022012

baa
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On the other hand, we denote 
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                   T0   
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1 00 a

z
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1 00 a
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Z
n

n  

then      

                ,
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1
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1
010 za

b
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bzazTT





     

                 zTzTT 210   
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2
1

1
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b
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                                  = 

z
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b
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b
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1
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2
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1
0




      

Hence we have  

                   
z

lim    zTzTT 210 
2

2

Q
P

 and 
z

lim    zTzTT 210 
1

1

Q
P

                    

                                                                                                                

In general, we have 

                n

n

Q
P

=
z

lim  ,.....10 zTTT n                                                           (62) 

                   1

1





n

n

Q
P

=
z

lim  ,.....10 zTTT n                                                         (63) 

Hence 

               zTTT n.........10   :   












1

1

nn

nn

qQ
PP                                                  (64) 

                                            = 
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0
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1

b
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0
1

k

k

b
a                           (65) 

Note that                                                                          
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holds with the initial conditions 
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QQ
PaP                                                        (67)                                                   

that is, 
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KkkkK

KkkKK

QbQaQ
PbPaP                                         (68) 

         The readers can refer to[174] for more details.Conversely, if we have the pair 
(pn, pn-1)( or the pair( nn QP , )), then we can reconstruct  n

kka 0  and  n
kjb

1
from pn 

andpn-1 by  

1

21

1 








n

nnnn

n
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P
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=
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                                              (69) 

      Let nJ denote an irreducible Jacobi matrix  1211211 ,...,,;,...,, nnn bbbaaaJ , i.e. b1  0 
for i = 1, …., n – 1, and 

                                       11;1, ,...,,....,  KJKJJKkj bbbaaJJ ,  

denote the (k –j + 1)  (k – j + 1) principal minor submatrix of   xPJ kn, the 
characteristic polynomial  of kJ ,1  and  xP kj ,  the characteristic polynomial of kJ ,1  
then we have  

 xPk =       ,,...,3,22
2

11 nkxPbxPakx kkk                     (70) 

with   11 axxP   and   10 xP , similarly, 
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 xP nk , =       .1,....,12
2

1,1   nkxPbxPax kknkk                          (71) 

 with   nnn axxP , and   1,1  xP nn By the recursive relation (84), formally, we can 
reconstruct nJ  from  xPn and  xPk 1  or(  xP n,1 and  xP n,2 Moreover, if we denote 

 xQ k the solution of(84) with initial condition 1Q  = 1, 0Q  = 0. Then we have 
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ax                      (72) 

Comparing with ( 61) – ( 68), we can build one corresponding relation between 
Jacobi matrices and products of 2	× 2 nonsingular matrices, more precisely , we 
denote 

         1211211 ,...,,;,...,, nnn bbbaaaJ  
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ax …. 
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b
ax              (73)                                                                                                                            

       One important result for the inverse problems of Jacobi matrices is the 
uniqueness theorem which is stated as follows: 

Theorem  (3.2.4)[163].  ( Hochstated [ 170]). For two given real sequences { i } n
j 1  

( the eigenvalues of nJ  ) and   1
1




n
jj ( the eigenvalues of 1,1 nJ with 

                              1,...,2,1,11   niii   

  Then { i } n
j 1 determine  1211211 ,...,,;,...,,  nnnn bbbaaaJJ uniquely if we require 

 ib  > 0 for i = 1,……….,n-1. 

     In other words,  xPn and  xPn 1 (or   xQ n determine a Jacobi matrix with 
positive off- diagonals uniquely. The readers can refer to [169] for more complete 
comprehension. Next, the author is going to provide an example  to show how 
Theorem (3.2.4) and( 74) work for the inverse problems of Jacobi matrices. 

  Theorem( 3.2.5)[163]. (Hochstadt [173]). Let  1211211 ,...,,;,...,,  nnn bbbaaaJJ  be a 

Jacobi matrix with all ai,bi real and bi positive. Suppose we are given n distinct real 
eigenvalues 

n ,.......,, 21
as well the 1n  entries     ,,.....,,,,.....,, 2/1212/21 nn bbbaaa  then 

these data determine a unique Jacobi matrix. 

Proof. We may treat the case for n beign even, the argument for n being odd is 
similar. Let n= 2k, k ∈ ℕ. 푠푢푝푝표푠푒	푡ℎ푎푡	푡ℎ푒푟푒	푎푟푒	푡푤표	퐽푎푐표푏푖	푚푎푡푟푖푥 
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                           12121112112 ,...,,,...,,;,,...,,  kkkkkkn bbbbbaaaaJJ   

and 

                      12121112112
~,...,~,,...,,;~,~,...,,~

 kkkkkkn bbbbbaaaaJJ   

Which satisfy the assumptions. Then we can write  
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Similary, 
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   Hence 

  xP k2
       xQxPbxPxP nkkkkk ,22

2
2    

 xP k2
~        xQxPbxPxP nkkkkk ,22

2
2

~~~
   

 By the assumption  xPk  xP k2
~  we have  

             xQbxQbxPxPxPxP nkkNkkknknkk ,2
2

,2
2

1,2,2
~~~
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Note that the zeros of  xP k2  and  xPk 1  are interlacing and that deg [  xQb Nkk ,2
2



 xQb nkk ,2
2 ~~

 ]  22  kkn  We conclude  that 

               xQb Nkk ,2
2

  xQb nkk ,2
2 ~~

  

 Moreover, both  xQ Nk ,2  and  xQ Nk ,2
~

 are monic and kb  and kb~  are positive,hence 

kb = kb~ ,  xQ Nk ,2 =  xQ Nk ,2
~

 and  xP nk ,2 )=  xP nk ,2
~

 this implies that nknk JJ ,2,2
~

  ,and 

2ka  = trace J trace KJ ,1  – trace  NKJ ,2,  = ..~
,1 eia k   

We are going to use( 87) to investigate some inverse problem for Jacobi matrices, 
including  existence and uniqueness.The next theorem concerns uniqueness of a 
mixed data problem. 

 Theorem(3.2.6)[163]. Denote 

 111 ,...,;,...,  nnn bbaaJJ  

and 

 111
~,...,~;~,...,~~

 nnn bbaaJJ  

    with	푏 > 0, 푏 > 0 >for i=1,2,...,n-1for two given natural numbers 0 < m1 < 
m2≤ n .Suppose that 

(i) nJnJ mm ,2~,2 11  4 where jiJ ,  and jiJ ,
~ are as defined. 

(ii) 11 mb = 1~
1 mb . Note that if m1+1 = m2 = n, this condition can be 

dropped. 
(iii) 휎 ( mjJ ,1 ) = 휎 ( mjJ ,1

~ ) for j = 1,2. 

    Then nn JJ ~
   

proof. For the case m2 = m1 +1, the theorem follows directly from 
theorem(3.2.4) hence we may assume that m2≥ m1 + 2. We write 

nJ 
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                                    nJ~ 
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On the other hand, denote 
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where  xPK   xQ K ),  xPK
~ and  xQ K

~ are is defined.Actually,  xPK is characteristic 
polynomial of kJ ,1 ,  xPK is the characteristic polynomial of j2,k and  xPK

~ ) is the 

characteristic polynomial of kJ ,2
~ , let. 
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and 
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Since            
푃 (푥) 푃 (푥)
푄 (푥) 푄 (푥) =

푃 (푥) 푃 (푥)
푄 (푥) 푃 (푥)

퐴 , (푥) 퐵 , (푥)
퐶 , (푥) 퐷 , (푥)  

    We have  

                    푃 (푥) = 푃 (푥) 퐴 , (푥) + (푥)퐶 , (푥)                    (77)                                                             

Similarly, 
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           푃 (푥) = 푃 (푥) 퐴 , (푥) + (푥)퐶 , (푥)                             (78) 

By our assumptions, we have 

              
퐴 , (푥) 퐵 , (푥)
퐶 , (푥) 퐷 , (푥) =

퐴 , (푥) 퐵 , (푥)
퐶 , (푥) 퐷 , (푥)

   

    푃 (푥) = 푃 (푥) and 푃 (푥) = 푃 (푥) hence 푃 (푥)  = 푃 (푥) Hence,by 
Theorem(3.2.4). 11,1 mJ

.= 11,1
~

mJ  .With assumption(i) again, nJ  = nJ~ . 

 By similar arguments, we have the conditions of existence for Theorem (3.2.5). 

corollary(3.2.7)[163]. Let m1and m2be tow natural numbers with 0< m1 < m2  < 
n, and [	휇1	< 휇2	<…  휇m1] and [1  <2  <… < be two sequences of real 
numbers corresponding to m1 and m2, respectively. For a given (n-m1-1)x(n-m1-1) 
Jacobi matrix 

           121;2111 ,...,....,  nmnmmn bbaaJT ,  

퐴 , (푥) 퐵 , (푥)
퐶 , (푥) 퐷 , (푥)

=
푥 − 푎 1
−푏 0

푥 − 푎 1
−푏 0

…
푥 − 푎 1
−푏 0  

				Suppose that 

(i)  xQ  is ammonic polynomial of degree m1+1. 

(ii)The zeros of  xQ are all real and simple ,say{ 1
~ …<   μ },which are 

interlacing with the set { 1
~ …<  μ }. 

Then we can reconstruct a unique n  n Jacobi matrix nJ
 with positive off-diagonal 

elements such that 휎 ( 1,1 mJ ) = { 121 .... m  }) =  { 21 ,.... m }  and J = T. 

Proof. Since J  the (m1+1,m1+2) entry of J  are pre-determent, it is sufficient to 
determine, J Suppose such a Jacobi matrix exists, denoted by  

                                      111 ,...,;,...,  nnnn bbaaJJ  

   then 

 2m
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                                J ,   푥 − 푎 1
1 0

푥 − 푎 1
−푏 0 …

푥 − 푎 1
−푏 0  

              
푃 (푥) 푃 (푥)
푄 (푥) 푄 (푥)

퐴 , (푥) 퐵 , (푥)
퐶 , (푥) 퐷 , (푥)  

Since 

                             
퐴 , (푥) 퐵 , (푥)
퐶 , (푥) 퐷 , (푥)  

 is pre- determined, 

         푃 (푥)(푥) = ∏ (푥 − 휇 ) − ∏ (푥 − 휇 ) 퐶 , (푥)/퐴 , (푥)  

Hence if 푃 (푥)satisfies assumption(i) and (ii), we can reconstruct 퐽 (푥)), 
henceforth, nJ (x) could be reconstructed as required. 

Example(3.2.8)[163]. There does not exist a 4 x 4 irreducible Jacobi matrix J= J4[ 

a1,a2,a3,a4: b1,b2,b3] with휎 (J1,2) = {2,4},휎 (J) ={1,3,5,6}, b3 =1 and a4 =2. Since in 
this case, A4,4( x ) =-1, hence 

Q  ( x ) = [ ( x -1) ( x -3)( x -5)( x -6) – ( x -2)( x -4)(-1)]/ ( x -2) 

=
2

981597815 234




x
xxxx  

cannot be reduced to a polynomial. 

Example(3.2.9)[163].  Reconstruct a 4 x4 Jacobi matrix J4 = J4[a1, a2, a3, a4: b1, b2, 
b3] with 휎(J1,2) = {1,3},휎(j4) = { 1-√3, 1, 1+√3,4}, j3,4 = J2[2,1:2] and bi  0, I = 
1,2,3. 

Solution. Letb2

3  = 4 and 

                        xQ  =[ ( x 2- 2 x -2)( x -1)( x -4)- ( x -1)( x -3)(-4)]/( x -2) 

                                 = x 3 -6 x 2 + 10 x  + 4. 

Then the zeros of Q(x) are 2- √2,2 and 2+ √2, more over we have 

																																					 ( )
( )( )

 = x-2-	  .  
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Hence, we can take 

                                         J4 = J4[2,2,2,1:1,1,2]. 

 With the same techniques given  above, we will provide an alternative approach to 
the existence theorem for an inverse  Jacobi matrix problem which was promoted 
by Deift and Nanda see[166] let nJ  be an n  n Jacobi matrix with positive off- 

diagonals ( nJ  is uniquely determined by 휎  nJ  = s2 and 휎 퐽 , (= s3), the 
question is, under what conditions can nJ  be completed to a 2n x2n Jacobi matrix 

nJ 2  with apre- given spectral set 휎 ( nJ 2 ) = s1? 

Lemma(3.2.10)[163]. let s1 = {휆 , 휆 , 휆 , . . , 휆 },s2 = { 휇1, 휇2, … ,휇n} and s3 = { 1 , 

2 , … , 1n  } 

Be three sets of real numbers with 

1 <  2 < 2  < 3 < 2 < 4 <… 22 n < 12 n < 
n < n2 ,,                       (79) 

and  

1 < 2 < 2 <…. < k  < k < 1k  < …< 1n < n .                            (80) 

Denote 

                 xP n2 =   


n

i ix2

1
 ,   xPn   


n

j jx
1

  xPn 1 =   




1

1

N

I Ix   

                       xC nn 2,1  be  a polynomial with deg  xC nn 2,1  1 n with 

                        innC 2,1 =    ,/ 12 inin PP   andnfori ,,...,2,1   

        Then              

                                ./2,1122,1 xPCxPxPxA nnnnnnn    

 
(i)  xC nn 2,1  is a polynomial of degree n-1 with negative                     
leading coefficient. 

               (ii)  xA nn 2,1 is a monic  polynomial of degree n. 
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Proof. By the assumption, we have
   
   111

122





inin

inin

PP
PP




<0, hence  xC nn 2,1 has a zero 

in(	μ ,μ + 1) for i= 1,2,3,…,n. since  xC nn 2,1 is a polynomial with deg  xC nn 2,1 < 
n-1 and  nnP 2 /  nnP 1 < 0,we conclude assertion(i). to show assertion(ii), we 
observe that 

          inP 2  -  inP 1   innC 2,1  inP 2  inP 1

 
 in

in

P
P




1

2



=0=  inP   

and deg[    xPxP nn 12   xC nn 2,1 ]= 2n and deg  xPn ) =n. These lead to assertion(ii ). 

Corollary (3.2.11)[163]. let S1,S2,S3,  xP n2 ,  xPn 1 An+1,2n(x) and  xC nn 2,1  be as 
given in Lemma (3.2.10) we denote by- a2 the leading coefficient of  xC nn 2,1

.suppose the zeros ( t1, t2,…,tn-1) of  xC nn 2,1 are interlacing with the zeros{ s1,s2,…, 
sn} of An+1,2n(x)  1,...,2,1,1,,  nforisitisiei are interlacing. Then An+1,2n(x) and 

 2/1   xC nn 2,1  determine a Jacobi matrix 

 1121
~,...,~;~...,~,~~

 nnnn bbaaaJJ  

with positive off –diagonal elements suth that the characteristic polynomial of nJ~  
is An+1,2n(x) and the characteristic polynomial of 

 1211211
~,...,~;~...,~,~~

  nnnn bbaaaJJ  

 is  xC nn 2,1  

Theorem(3.2.12)[163]. nN .let s1,s2,s3 and  xP n2 be as given in Lemma(3.2.10) 
Supp0se that  1121 ,...,;...,,  nnnn bbaaaJJ be an n n Irreducible Jacobi matrix with 
b1> 0 for i=1,2,..,n-1,  nJ  
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  xC nn 2,1  is the unique polynomial of degree n-1 with 

  innC 2,1  inP 2 /  01 inP                                       (81) 

for i=1,2,3,…,n, 

        ./2,1122,1 xPCxPxPxA nnnnnnn                             (82) 

 2/1 
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Suppose zeros of  xA nn 2,1  are interlacing with the zeros of   xC nn 2,1  ,J can be 
completed to a2nx2n Jacobi matrix  J2n with 

                                            nJ 2 = { n221 ,......,  } 

 Proof. By  the assumption and corollary (3.2.11).we can reconstruct an nxn Jacopi 
matrix  121121

~,...,~;~...,~,~~
 nnn bbaaaJJ by  xA nn 2,1   and  2/1   xC nn 2,1 0.We may writ  

  ~ J 
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with  nJ 2 = { n221 ,......,  }This completes the proof. 

Thorem(3.2.14)[163].  let                        
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                              111 ,...,;,...,  nnnn bbaaJJ  

and  

denote tow Jacobe matrices with b > 0, b > 0. for i=1,2,,n-1. Suppose that  

   
   JJ ~    

     kk JJ ,1,1
~     and    nknk JJ ,2,2

~
     for some   1< k n-2,k .N  

          
      ,2,1 nkk JandJJ    are pairwisely disjoint. 

Then J=ȷ̃ 

Proof. It is sufficient show that    1,11,1
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Hence 
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Chapter 4 

Completely Nonunitary Contractions  with Rank One Defect Operator 

 It shown that another functional model for contractions with rank one defect 
operators takes the form of the compression 푓(휁) → 푝 (휁푓(휁))  on the Hilbert 
space L2(T,d휇) with a prodbabilty measure 휇 onto the subspace 퐾 = 퐿 (핋, 푑휇)Θℂ. 
The relationship between characteristic functions of sub-matrices of the truncated 
CMV matrix with rank one defect operators and the corresponding Schur iterates is 
established. We develop direct and inverse spectral analysis for finite and semi-
infinite truncated CMV matrices. In particular, we study the problem of 
reconstruction of such matrices from their spectrum or the mixed. 

 Sec(4.1) Rank One Defects Operator and Corresponding is Unitarily 
Colligations 

  It is well known [176] that every self- adjoint or unitary operator with a 
simple spectrum acting on some separable Hilbert space is unitarily equivalent to 
the operator of multiplication by the independent variable on the Hilbert space

 or  respectively, where dμ is a probability measure on the real 
line R or on the until circle .The matrix representation of self – 

adjoint operators with sample spectrum was established for the first time by 
stone[176] , He proved that every self- adjoin operator with a simple spectrum is 
unitarily equivalent to certain Jacobi ( tri- diagonal) matrix of form 

                                     (1) 

where	푎 > 	0, and 푏  are real numbers for all k ∈ N.The non-self-adjoint version 
of the Stone theorem has been recently obtained in [178] for dissipative non-self-
adjoint operators with rank one imaginary part. It turned out that the matrix 
representation of such operators is a non-self-adjoint Jacobi matrix of the form (1) 
with only nonreal first entry	푏  satisfying Im푏 > 0. 
   The problem of the canonical matrix representation of a unitary operator with a 
simple spectrum has been recently solved by M. Cantero, L. Moral and L. 
Velázquez in [188]. 
 They introduced and studied five-diagonal unitary matrices of the form 
 

  

 dRL ,2  dTL ,2
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(2) 

Such matrix appears as a matrix representation of the unitary operator 
  in with respect to the orthonormal system {χn} obtained 

by orthonormalization of the sequence 
 

{1, ζ, ζ , ζ , ζ , … }. 
The so called Schur parameters or Verblunsky coefficients {αn}, |αn| < 1, arise 
in the Szeg˝o recurrence formula 
 

                                   ζϕ (ζ) = ϕ (ζ) + αζ ϕ (1/ζ̅),								n = 0,1, …		 

for monic orthogonal with respect to 푑휇 polynomials {훷 }, and .The 
matrices ({훷 })are called the CMV matrices. The spectral analysis of unitary CMV 
matrices has recently attracted much attention, and we refer on this matter to the 
[188,189,197,198,213-215] . 
   As pointed out by Simon in a recent section[215], the actual history of CMV 
matrices is more involved as it started in 1991 with Bunse-Gerstner and Elsner 
[187], and then with Watkins in 1993 [215], before Cantero, Moral, and Velázquez 
(CMV) re-discovered them in 2003. In a context different from orthogonal 
polynomials on the unit circle, Bourget, Howland, and Joye [183] introduced 
a set of doubly infinite matrices with three sets of parameters which for special 
choices of the parameters reduces to two-sided CMV matrices on . 
    The spectral theory of non-self-adjoint and nonunitary operators and their 
models is based on the concept of characteristic function of the corresponding 
operator or the operator colligation[180,185,186,203-210,216]. 
In this section we employ the Sz.-Nagy–Foias theory [216], and the Brodski˘ı–
Livšic unitary colligations approach [185] to the spectral analysis of contractions 
acting on Hilbert spaces. The corresponding characteristic function belongs to the 
Schur class of operator-valued functions holomorphic in the open unit disk D. By 
Sz.-Nagy–Foias theorem [216] each completely nonunitary contraction T with rank 
one defect operators  and     
(shortly, with rank one defects) is unitarily equivalent to the operator (functional 
model) of the form 
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                      ℌ = (H ⊕ closΔL (T)) ⊖ {Θu ⊕Δu: u ∈ H } 

                                    

  

																	

  픍
f
g = Pℌ ζ f

g ,															픍∗ f
g =

ζ̅(f − f(0))
ζ̅g

f
g ∈ ℌ                               

  

where	H  is the Hardy space. 

                                

is the characteristics function of  is the orthogonal projection 
onto	H in	L (T), and	pℌ is the orthogonal projection onto the model space	ℌ .             

We obtain a new functional model that complements the above mentioned Sz.-
Nage- Foias functional model, and show that every completely nonunitary 

contraction T with rank one defects is unitarily equivalent to the compression
on the Hilbert space  with a probability measure  onto 

subspace K = L ( , dμ) ⊖ C                               

We	study	the	so	called	truncated	CMV	matrix	T	obtained	from	the	“full”CMV	 

matrix  (82)by deleting the first row and first column. 

                          

 

In the semi- infinite case T takes on the block- matrix from 

                                                 

 

It turned out that the truncated CMV matrix	푇( )	({α }) is a contraction with 
rank one defects and the Sz.- Nagy- Foias characteristic function agrees with the 
Schur function which has	{α}  as its Schur parameters.Moreover, we show that the 
sub- matrix	 푇

( )	({α }) obtained from 푇	({α }) by deleting the first k rows and 
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columns is also a contraction with rank one defects, and characteristics function 
agrees with the well- known kth Schur iterate. 

                                    푓 (푧) = ( )
( ) ( ) 											푓 (푧) 

    This relation is an analog of the corresponding relation between the m- function 
of a Jacobi matrix and the m- function of its sub- matrix [298]. 

Our main result states that an arbitrary completely nonunitary contraction T with 
rank one  defects unitarily equivalent to any operator from the one- parameter 

family ,where  are the Schur parameters of the SZ- Nagy- Foias 
characteristic function of . We develop direct and inverse spectral analysis finite 
and semi- infinite truncated CMV matrices.  

It is shown that given an arbitrary set of N not necessarily distinct numbers 
from D there is a one- parameter family of unitarity equivalent N x N truncated 
CMV matrices having those numbers as the eigen values counting algebraic 

multiplicity. We prove the uniqueness of N x N truncated CMV matrix T with 

given not necessary distinct eigenvalues 	  , and given first 	  Schur 
parameters . This result on inverse spectral analysis of finite 

truncated CMV matrices is an analog of the Hochstadi [302] and Gesztesy- Simon 
[298] uniqueness Theorem for finite self-adjoint Jacobe matrices as well as for 
established in[178] uniqueness theorem for finite  non-self-adjiont jacobi matrices 
with rank one imaginary part. We obtain the existence of N×N truncated CMV 

matrix T when its eigenvalues  and the last Schur parameters 
are known. 

      Here is a summary of the rest  of the section. We discuss some basics from the 
Sz.- Nagy-Foias theory and the unitary colligations with the focus upon the 
characteristics function and its properties, we provides a brief overview of the 
theory of orthogonal polynomials on the unit circle and CMV matrices. The main 
results concerning truncated CMV matrices and the models of completely 
nonuitariy contractions with rank one defects are presented ,the inverse spectral 
analysis for truncated CMV matrices . 

       Let H be a separable Hilbert space with the inner product (.,.) Abounded linear 

operator T in H is called a contraction if  (for the basic properties of 
contractions see[217] ),if T is a contraction then the operators. 

 n
iteT   n

T

rzz .....1 1+r -N

 TT rN  ).....(0

mzz .....1    TT Nm  ......

1T
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are called the defect operators of T or, shortly, defects and the subspaces  
the defect subspaces of T  . The dimensions , 

are known as defect numbers of T. . Given a Pair of numbers , it is 

easy to construct a contraction with Eash contraction T 
acting on a finite. dimensional Hilbert space has equal defect numbers  

The defect operators satisfy the following intertwining relations. 

                                           (3) 

and the block- operators 

                    
 

are unitary operators in the corresponding orthogonal sums of the spaces it follows 
from(3) that 

⊂ 픇 ∗,T∗픇 ∗ ⊂ 픇   and 	T(	kerD ) = kerD ∗ , T∗	(kerD ∗  = kerD :  Moreover 
T ↾ kerD   and T∗ ↾ kerD ∗are isometric operators. It follows that T is a quasi- 
unitary extension [204] of the isometric operator	V = T ↾ kerD   

A contraction T is called completely nonuitary if there is no nontrivial reducing 
subspace of T, on which T generates a unitary operator. One of the fundamental 
results of the contractions theory[217]reads that, given a contraction T in H, these 
is acanonical orthogonal decomposition                   

                                          

where H0 and H1 reduce T,T0 is a completely nonuitary contraction and T1is a 
unitary operator. Moreover, 

so                             , 

                                   T is completely nounitary 

                                             (4) 
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Clearly 

                                                    
(5) 

                                      

Let V be an isometry in H.A subspace Ω	in  H is called wandering for V if 	 
푉 Ω ⊥ 푉 Ω	for	all	p. q ∈ Z , p ≠ q .SinceV  is an isometry, the latter is equivalent 
to  for all if	  then V is called a unilateral shift and  is 
called the generating subspace. The dimension of is called the multiplicity of the 
unilateral shift V. It is well known [216] that V is a unilateral shift if and only if 

. Clearly, if an isometry V is the unilateral shift in H,B then Ω =
H ⊖ VH is the generating subspace forV. 

    Given a contraction T in H and asubspace ℌ ⊂ H,	the unilateral shift V:ℌ → ℌ	is 

said to be contained in T if  ℌ is invariant forT, and.The subspaces   and 

are  invariant for T and T* respectively, and the operators V : T ↾
⋂ kerD  and V ∗: T∗ ↾ ⋂ kerD ∗ are unilateral shift Moreover V andV ∗are 
the maximal unilateral shifts contained in T and The multiplicities of the shifts 
V 	and V ∗ 	 do exceed the defect numbers dim픇 ∗anddim픇 ,respectively [192] if 
T is a completely nonunitary contraction with rank one 
defects.then(see[190],[192]). 

           Tdoes not contain the unilateral shift 

          Does not contain the unilateral shift 

                                                                                   (6) 

The function[217]. 

                                           

is known as the characteristic function of the Sz- Nager- Foias type of a 

contraction T. This function belong to the Schur class of  -valued 

holomorphic in the unit disk D operator- functions, i.e.,  for all 

. The characteristic function of T and   T∗ are connected by the relation  
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Two operator- valued functions and  are said to agree if 
there are two unitary operator and such that 

                                  

It is well known[217] that two completely nonunitary contractions T1and T2are 
unitarily equivalent if and only if their characteristic functionsΘ  and Θ  agree. 
Every operator- valued function from the Schur class has almost 
everywhere nontangential strong limit values . A function  is 

called inner if  for a.e., . A function  is called bi-
inner, if it is both inner and co- inner. A contraction T on a Hilbert spaceℌ  belong 
to the classes C0.(C.0),if  

                                       

respectively. By definition퐶 ≔ 퐶 .⋂퐶. . The completely nonunitary part of a 
contraction T belong  to the class or if and only its characteristics function

is inner. or bi- inner,respectively[217]. 

In the following statement[217] the spectrum of completely nonuitary contraction 
is described. 

Theorem (4.1.1)[175]: letT be a completely nonunitary contraction onH. Denote 
by the set of points  for which the operator is not boundedly 
invertible, together with those not lying on any of the open arcs of T on 
which is a unitary operator valued analytic function.Furthermore, denote by 
the set of points for which is not invertible at all. Then the spectrum 

of T agrees with ST,and the point spectrum  with . 

It T is completely nonunitary contraction with rank one defects, and if is an 
eigenvalue of T, then the geometric multiplicity of z0 is one, the algebraic 
multiplicity is finite, and the characteristic function admits the following 
factorization. 
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where is a finite nonnegative measure singular with 
respect to the Lebesgue measure, and are the eignvalues of T.In addition, if 

 ,and T is a completely noninitary contraction in H with defects, then 
its characteristic function is the linite Blaschhke product of order of the form 

푏(푧) = 푒
푧 − 푧

1− 푧̅푧 . 

where are distinct eigenvalues of Twith the algebraic multiplicityies 
respectively , and .Hence a finite- dimensional 

completely nonunitary contractionT with rank one defects belongs to the class , 
and it is easily seen from Theorem(4.1.1). that the point spectrum of a 
contractionT with rank one defects agrees with D  if and only if  . 

      Every contractionT acting on Hilbert space H can be included into the unitary 
operator colligation[11]1 

                                                  
△= S G

F T ;픐,픑, H , 

where and  are separable Hilbert spaces and 

U = S G
F T : 픐

H → 픑
H  

is a unitary operator.T is called the basic operator of the unitary colligation △. The 
spaces 픐 and 픑 are called the left outer space and right outer space, respesctively. 
The unitarly of means 

                                              
U∗U = I픐 0

0 I ,				UU∗ = I픑 0
0 I 	 

or equivalently,  

                     (7) 

                                   

The colligation 
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△= −T∗ D
D ∗ T ;픇 ,픇 ∗ , H ,         (8) 

provides an example of the unitary colligation with give basic operatorT 

Let△= S G
F T ;픐,픑, H ,be a unitary colligation. Define the following subspaces 

in H  

                                
{T∗F픐, n = 0,1, … },퐻( ) = span 

                                     span{T∗ G∗픑, n = 0,1, … }.  퐻
( ) =                                  (9) 

The subspaces and are called the controllable and the observable 
subspaces, respectively. Let 

                             (10) 

A unitary colligation  is called prime if . Clearly, the latter 
condition is equivalent to 

                                                         

From(7) and (10) we get 

 

                           (11) 

If follows now from (4) that the unitary colligation 

                                                              
△= S G

F T ;픐,픑, H , 

is prime if and only if T is a completely nonunitary operator.  

    Given a unitary colligation 

                                                             
△= S G

F T ;픐,픑, H , 

its characteristic functions2 [286] is defined by 
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This function belong to the Schur class	S(픐,픑) of ℒ(픐,픑) −valued holomorphic 
in the unit disk D  operator- functions. In particular, the characteristic function of 
the unitray colligation△  (8)  

Θ (z) = (−T∗ + zD (1 − zT) D ∗) ↾ 픇 ∗  

is in fact the Sz- Nagy- Fioas characteristic function of the operatorT∗
 

Two prime unitary colligations 

△ = S G
F T ;픐,픑, H and S G

F T ;픐,픑, H △ = 

Which have equal characteristic function are unitarily equivalent in the following 

sense [286] there exists a unitary operator such that 

                                                

                                                   
 

Besides givenΘ ∈ S(픐,픑) ,there exists a prime unitary colligation  

                                                                
△= S G

F T ;픐,픑, H  

such that  in D [286]. 

Theorem(4.1.2)[175 ] Let T be a contraction with finite defect numbers acting on 
Hilbert space H. Suppose that m and n are two given Hilbert space such that 
dim픑 = dim픒 ,and	dim픐 = dim픒 ∗ . Then all unitary colligation with the 
basic operator T and outer sunspaces	픐 and 픑 take the form. 

                                                                                                                              (12)
 

 

where and  are unitary operators, The characteristic function 
of	 is 

                                                       , 

i.e.,  agrees with the characteristic function of T∗
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proof. Let be a unitary colligation. From the relation  

it follows that  

                                                      

Hence, the operator K:픒 → 픑 defined by  

                                                              

is isometric, and 	ran	K = 픑.Similarly, the relation  yield than the 
operator K:픒 ∗ → 픐 given by the relation 

                                                               

Is isometric, and 	ran	N = 픐 soM = N∗:픐 → 픒 ∗ is unitary, and  . 

    From the relation  we get  Hence by. 

 As  and we have 

 

Observe also that  

                                              

                                              

                                                                   

                                        
 

                                                   

Thus, all conditions(7) are satisfied, i.e, the colligation is of the form(12). 

 Conversely,if  dim픑 = dim픒 < ∞,푑푖푚픐 = dim픒 ∗ < ∞, and	k:픒 →
픑and M:픐→픒T∗ are unitary operators, then one can easily see that 

                                    

















 Hnm

TF
GS

,,:

HTTGG 1** 

HffDGf T  .22

HfGffKDT  ,

HTTFF 1** 

HffFfNDT  ,**

MDF T *

0**  SGFT 0** *  SKDMDT TT

0**  SKMT *TDranM  T
* DranK  TT DTD *

MKTS *

KKDTKMMKTGGSS T
2***** 

TDMMKTTKMFFSS T ******* 

mMTTTTM 1*)11*(* 



   

 



 















H
픑

H
픐

TMD
KD MK

U
T 

T :
*

*

n k T∗TTTK 1*  )   1 1*(   

0 ** **   TKDT∗MMK TDFSTG T



117 
 

is a unitary operator , i.e, the relation(7) are satisfied. It follows that  

                                  

is a unitary colligation, where    

   For the characteristic function we obtain for all  

 

 

Corollary(4.1.3)[175]:Let T be a contraction with finite defect numbers, dim픑 =

dim픒 ,and	dim픐 = dim픒 ∗ . and let. 

                                                 
 

be a unitary colligation. Then all other unitary colligations with the operator T  and 
outer subspace m and n take the form 

                               

where  and  are unitary operators in n and m, respectively    

Proof. by Theorem (4.12) we have 

                                          

Where k :픒 → 픐	andM:픐 → 픒 ∗  are unitary operators. If

is some other unitary colligation then where

and are unitary operators let then  and are 
unitary operators in 픑 and 픐 respectively, and 
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Theorem (4.1.4)[175]. Each contraction T with rank one defects on the Hilbert 
space  can be included into the unitary colligation 

                                  

Let	퐼⃗ = ∈ 퐶⨁퐻 and let the subspace in be defined by(10). Then  

 

                                                        (13) 

And so the following conditions are equivalent: 

(i) the unitary colligation	 is primer; 

(ii) T is completely nonunitary contracting; 

(iii) is the cyclic vector for	 .    

All other unitary colligations with basic operatorT and the outer spacesC Care the 
form 

                            
     (14) 

where   

Proof. Since by Theorem (4.1.2) we can choose unitary 
colligation

 
of the form (12),i.e, and

are isometric operators. So, is the 

unitary operator . 

To prove (13), suppose that the vector is orthogonal to the subsp

. Then  so and .By using 

 . we get consequently 
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it follows from (11) that  .Conversely, if  then

. Similarly,  ,as 

needed. 

    We arrive at the following conlusion: 

         is a cyclic vectorfor    

          

          The unitary colligation is prime 

           The operator is completely nonunitary. 

By Corollary (4.1.3) all other unitary colligations with basic operatorT and the 
outer subspace C are given by (14) with		|c | = |c | = 1. 

    Let us give more precise expressions for the operatorsF,G, and S Let

 put 

                                               
φ = ‖ ‖ ,						φ = ‖ ‖.  

Then 

Kh = b (h,φ ),						h ∈ ran	D , 

M∗g = b (h,φ ),						g ∈ ran	D ∗ , 

where observe that and  where is a complex 
number from .It follows that 

                                         

Let . Since  the number  is a unique positive 

eigenvalue of . Next, 
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Hence Since we get 

                                                 

In the case  the operator  can be given by the   matrix with 
respect to some orthonormal basic we can chooseφ (respectively, φ )as one the 
nonzero columns of the matrix in addition. 

                                                 

Thus, if 

φ =

⎝

⎜
⎜
⎜
⎜
⎜
⎛
φ( )

φ( )

.

.

.
φ( )⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

then the column F takes the form 

                                                        

F = b ρ

⎝

⎜
⎜
⎜
⎜
⎜
⎛
φ( )

φ( )

.

.

.
φ( )⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

If 
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φ =

⎝

⎜
⎜
⎜
⎜
⎜
⎛
φ( )

φ( )

.

.

.
φ( )⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

then the row G take the form .Finally, the numbers S  is 

given by   

If dim H=N  and T is a completely nonunitary contraction with rank one defects 
then  is a finite Blaschke product 

 

Where the numbers are the eigenvalues of Since all other colligations are 
of the form (14), for the characteristic function we get 

and . 

      Let  be a unitary operator with a cyclic vector , acting on the Hilbert space
. The spectral measure associated with  and  provides the relation 

 

which the spectral Theorem for unitaries. For instance, 

                      
              (15)       

is the Caratheodory function(28) i.e.,F is holomorphic in the unit disc . Re
in D, and   

Theorem (4.1.5)[175]:Let T be a completely nonunitary contraction with rank one 
defects,  be the prime colligation, and be its characteristic 

function. Put 
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                                                  (16) 

where . Then 

                       
              (17) 

Proof.We use the well- known schur- Frobenius formula for the inverse of block 
operators(see[193,194]). Let ℌ  andℌ  be two Hilbert spaces, and  an operator in 
ℌ ⨁ ℌ given by the block operator matrix 

                                  
 

   Suppose thatD ∈ ℒ(ℌ )and(A − BD C) ∈ ℒ(ℌ )Then∅ ∈
ℒ(ℌ ⨁ℌ ,ℌ ⨁ℌ )and 

  

 

where   

Applying this formula for 

                                             

we get	 Therefore 

                                       
 

Let 

                                         

Clearly, the equality holds, which yield (17) 

 [191].It is well recognized now that the , theory of orthogonal Polynomials on the 
real plays an important role in the spectral theory of self- adjoint operators ( and 
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       zzzz nnnn
*

1
~   

close to such operators ) acting on Hilbert spaces. Likewise,the theory of 
orthogonal polynomials on the unit circle ( OPUC ) appears in the same fashion in 
the study of unitary operators and close to such operators. Here we recall some 
rudiments and advances of the OPUC theory. 

If is a nontrivial probability measure on T ( that is , not supposed on a finite set 
), the monic orthogonal polynomials   are uniquely determined by 

                 
                            (18)    

so on the Hilbert space .We also consider the 
orthonormal polynomials of the form  

In case when  is supported on a finite set, that is, 

,                                                           (19) 

a finite number of orthogonal polynomials can be defined in the same 
manner. 

Clearly, (18) and the fact that the space of polynomials of degree at most n has 
dimension n+1 imply 

                       (20) 

On the anti- unitary map  which depends on n) is naturally 
defined. The set of polynomials of degree at most n is left invariant: 

                                                 (21) 

(20) now implies 

                  (22) 

A key feature of the unit circle is that is that the multiplication in  is 
a unitary operator, So the difference is of degree and orthogonal 
to for  and by(22).  

                                                                          (23) 
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with some complex numbers  called the Verblunsky coefficients [214]. (23). 
is known as the Szego recurrences after its first occurrence in the celebrated book 
of   (20) at  imply 

                                                                                             (24)     

It is Known that for nontrivial measure  for all n=0,1,2,…. ,and for trivial 

measures(19)one has a finite set of Verblunsky coefficients with 

and . Since it arises often, define 

                                                   (25) 
          

The inverse Szego recurrences are also of interest[214]. 

                                                            (26) 
       

      Let be set of complex sequences with .The map S from

is a well- defined map from the set P of nontrivial probability 

measures onT to . It was S . Verblunsky who proved that S is a bijection. As a 
matter of fact,S is a homeomorphism, provided P  is equipped with the weak*- 
topology, and with the topology of component convergence. Moreover, it 

follows directly from (23) that for two measures and    

                                                   

                                                     

Conversely, by (26) 

                               

The orthogonal set does not necessarily form a basis in if 
is the normalized Lebesgue measure on  then and is orthogonal to all  
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A celebrated result of Szego- Komogorov- Krein reads that is basis in 
if and only if  where is the Radon- Nikodym derivative of with 
respect to . In addition, the following result holds true [215]. 

Theorem (4.1.6)[175]:For any nontrivial probability measure on the unit circle, 
the following are equivalent. 

(i)  

(ii)  

(iii)the system is the orthonormal basic in  

     Note that if and P is the orthogonal projection in  onto

then( see[214].) 

                                                        
                                  (27) 

Let us now turn to the basic properties of zero of OPUC. It is will 

known[215] that for all n and j. Moreover, a result of Geronimus[215] reads 

that given a monic polynomial of degree with all its zeros inside , there is a 
(nontrivial) probabiltity measure onT such that .Actually, there are 
infinitely many such measure, all of them have the same Verblunsky coefficients  
up to the order   ,and the same same moments up to the order n. Given a monic 
polynomial  with all its zeros inside the disk, let us call a monic polynomial
an extension of if there is a measure such that  

                                                 

To obtain all such extensions one just has to extend a sequence of Verblunsky 
coefficients which are completely determined by by a sequences

with are bitrary and then apply (23).  

     One of the most recent advances in the study of zeros of OPUC is the theorem 

of Simon and Totik [ 215 ]. Which claims that given a polynomial  as , and an 

arbitrary set of point in the unit disk, not necessarily distinct, there is an 
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extension of  such that  counting the multiplicity. The 
latter as usual means that 

                                    

The uniqueness of such extension is an open problem. A particular case
appeared earlier in [178]. Now is defined uniquely from (23) by 

                                        

     There is an important analytic aspect of the OPUC theory which was developed 
by Geronimus[195,196].  

Given a probability measure on . define the caratheodory function by 

                    (28) 

the moments of  is an analytic function in D which obeys . The 
Schur function is then defined by 

                                                                 (29) 

so it is an analytic function in with A one  - to – one correspondence 
can be easily set up between the three classes (probability measures, Caratheodory 
and Schur functions). Under this correspondence is trivial, that is, supported on a 
finite set, if an only if the associate Schur function is a finite Blaschke product. 
Moreover, this Blaschke product has order  for measures (19). 

   We proceed with the Schur algorithm. Given a Schur function	f = f Which is not 
a finite Blachke product, define inductively 

                               (30) 

It is clear that sequence{f }is an infinite sequence of Schur function ( called the nth 
Schur iterates) and neither of its terms is a finite Baschke product. The numbers 

are called the Schur parameters. 
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Is a finite Blaschke product of order N, the Schur algorithm terminates al the  

step. The sequence of Schur parameters is finite, for  and 

. 

     If a Schur function f is not a finite balaschke product, the connection between 

the nontangential limit values and its Schur parameters is given by the 
formula 

                                                       (31) 

(see[284])It follows that  

                                              

In addition, if one conditions 

(i)  

 (ii)  for each  but   

is fulfilled then f is the inner function(see[202],[212]). 

    We will make use of the following fundamental result of Suchur [ 213]: the set 
of all Schur function f with prescribed first Schur parameters Given by 
linner fractional transformation 

                                 (32) 

Where s is an arbitrary Schur function, and A,B are polynomials of degree at most 
n Moreover, 

                                                        

The pair (A,B),known as the Wall pair, is completely determined by 
.Specifically. 
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where  

                                                          
 

By conputing determinants, we see that 

                                                      

so A and B have no common zero in  C/{0}.In fact they have no common zero at 

all since B(0)=1. It is known also that	 in  , and both and are 
Schur functions. 

    A straightforward computation shows that  
	
푄  (and hence W) are j- inner 

matrix functions: 

                                            

                                           

with the signature matrix 

                                                             

For further properties of the Wall pairs see[202],[215]. 

A curious situation when the Schur parameters for a finite Blaschke product can be 

computed explicitly was found by Khrushchev[303].Let
	
휇  be a nontrivial 

probability measure (or measure of the form (19) with big enough )	with 
Verblunsky coefficients	n ,and be its montic orthogonal polynomial. 

Consider the following Blaschke produucet of order n: 

                                         

It is a matter of a simple compution based on (56) to make sure that  
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Hence the Schur parameters of b0 are of the form 

 .                                (33) 

Theorem(4.1.7)[175]:Let 
	
휇 be  nontrivial probability measure on Tand f its Schur 

with the Schur parameters	 then . For measures (19) the 
latter equality holds for   

     It is clear now why a minus and conjugate is taken in (23) 

Theorem (4.1.8)[175]:Given two sets and  of complex numbers 
in D and			γ ∈ T	 there exists a finite Blaschke products b of order such 
that  

(i)  

(ii)  	푐ounting multiplicity 

Proof. Denote	μ and construct a system monic 

Orthogonal polynomials by (23). The theorem of Simon Totik claims 
that there is a measure		μ with 

                        

counting the multiplicity. The first equality means that  
Finally , put  

                                                        
 

The result now follows from Khrushechev’s formula (33). 

Note that for m=1the Blaschke producet uniquely determined. 

Sec(4.2) Truncated CMV Matrices  

     One of the most interesting developments in the OPUC theory in recent years is 
the discovery by Cantero, Moral, and Velázquez [188,189] of à matrix realization 
for the operator of multiplication by 휁on 퐿 (핋, 푑휇)which is a unitary matrix of 
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finite band size (i.e.,  |〈휁휒 .휒 .〉| =0 if |m-n|<k for some k); in this case, k = 2 to be 
compared with k = I for the Jacobi matrices, which correspond to the real line case. 
The CMV basis (complete, orthonormal system) { 휒 .} is obtained by 
orthonormalizing the sequence 1,휁 , 휁 , 휁 , …. and the matrix, called the CMV 
matrix,  

퐶 = 퐶(푢) = ||푐 , || , ‖휁휒 .휒 ‖,			푚, 푛 ∈ 핫  
is five –diagonal. Remarkably, the	휒 ,푠 can be expressed in terms of 	∅,푠 and 	∅∗,푠:  

휒 (퓏) − 퓏 ∅∗ (퓏),												휒 + 1(퓏) = 퓏 ∅ (퓏),			푛 ∈ 핫  
and the matrix elements in terms of 		훼 ,푠  and		휌,푠  : 

퐶 = 퐶({푎 }) =































...

...
...

~

...

~

...
0

...
0

...
0

...0
...~~0

...00~

...00~

3434

2341212

23231212

01010

01010








																								(34) 

		훼 ,푠 are the Verblunsky coefficients and 		휌,푠  are given in (25). 
      It is not hard to write down a general formula for the matrix entries 
퐶 See[200]).Let2휖 ≔ 1 − (−1) .푚 ∈ 	핫 ,푎푛푑	휖 = 1, 푠표	{휖 } =
{0,1,0,1, … , }, 

휖 + 휖 = 0,				휖 휖 = 0		.		휖 − 휖 	= 	 (−1) . 
 
Then 

푐 = 	−훼 훼  
푐 + 2.푚 = 휌 휌 + 1휖 , 

푐 . = 휌 휌 휖 	,																																							(35) 
and  

푐 . + 훼 휌 1휖 , − 훼 휌 휖 , 
푐 . = 훼 휌 1휖 − 훼 휌 휖 .																														(36) 

 
It is clear (cf. [182]), that any semi-infinite CMV matrix C (34) can be written in 
the three-diagonal block-matrix form 

																																									퐶 =


















.......

..00

..00

..000

221

110

00

CBA
CBA

CB

																																															(37) 

 
With 
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퐵 = (훼 ),						퐶 = 	 (훼 휌 									휌 휌 ),			퐴 = 휌
0 ,					 

퐴 =
휌 휌 	

0
−휌 훼

0 ,				퐵 = 	
−훼 훼 	
훼 	

– 휌 훼
−훼 훼  

 

퐶 =
0

−훼
0

							휌 휌 ,					푛 = 1,2, … 																						(38) 

There is a nice multiplicative structure of the CMV matrices. In the semi-infinite 
case C is the product of two matrices: C = ℒM, where 

ℒ =	휓(푎 ) ⊕휓(푎 ) ⊕ …⊕휓 푎 ⊕ …, 
																				푀 = 1 × ⊕휓(푎 ) ⊕휓(푎 ) ⊕ …⊕휓 푎 ⊕ …,																		(39) 

and휓(훼) = 훼
휌		
			휌
		훼  The finite (N + 1) X (N + 1) CMV matrix C obeys 푎 ,푎 , …푎 ∈

픻. |푎 | = 1, and is also the product C = ℒM, where in this case 휓(푎 ) = (푎 ). 
      It is just natural to take the ordered set 1, 휁 , 휁, 휁 , 휁 , …instead of 
1, 휁 , , 휁 , 휁 , … 
that leads to the alternate CMV basis {휒 }and the alternate CMV matrix 

퐶 = ‖〈휁휒 , 휒 〉‖ =
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...
...

~

.........
0

...
0

...~~00
...0
...0~~~
...000

342323

34423

12120101

12120101

00









   

which turns out to be the transpose of C (see [215]). Furthermore ,ℒ= ℒ and  
푀 = 푀 imply 퐶 = 퐶 = 푀ℒ. 
    An important relation between CMV matrices and monic orthogonal 
polynomials is similar to the well-known property of orthogonal polynomials on 
the real line 

휙 (퓏) = det	(퓏퐼 − 퐶( )) 
 
holds, where 퐶( ) is the principal n x n block of C. 
 One of the most important results of Cantero, Moral, and Velázquez [138] 
states that each unitary operator U with the simple spectrum (i.e., having a cyclic 
vector e1) acting on some infinite-dimensional separable Hilbert space 
(respectively, finite-dimensional Hilbert space) is unitarily equivalent to a certain 
CMV matrix in ℓ (ℤ )(respectively, in ℂ )n). The corresponding a’s come up as 
the Verblunsky coefficients of the spectral measure 푑휇 of U associated withℓ . 
This is the analog of Stone’s self-adjoint cyclic model Theorem. To be more 
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precise, let us, following [216], call a cyclic unitary model a unitary operator U 
acting on a separable Hubert space ℋ with the distinguished cyclic unit vector vo. 
Two cyclic unitary models, (ℋ,푈, 푣 )and (ℋ,푈, 푣̅ ) are called equivalent if there 
is a unitary operator W from ℋ onto ℋ such thatWv0 = 푣̅ and 푊푈푊 = 푈. It is 
clear that 훿 = (1,0,0, … ) is cyclic for any CMV matrix C. 
Moreover, every class of equivalent unitary models contains exactly one CMV 
model (ℓ ,퐶,훿 ). 
Theorem(4.2.1)[175]  . Let T be a completely nonunitaty contraction with rank 
one defects. Then there exists a probability measure 휇 on핋 such that T is unitarily 
equivalent to the following operator 

픗ℎ(휉) = 푃ℌ 휉ℎ(휉) ,			ℎ ∈ 	ℌ ≔ 퐿 (핋, 푑휇) ⊝ℂ.																		(41) 
where푃ℌ is the orthogonal projection in 퐿 (핋, 푑휇)  ontoℌ  . The Schur function 
associated with휇	is exactly the characteristic function of 푇.. 
Proof. Include T into a prime unitary colligation 

∆= 푆			
퐹			

				퐺
			푇 :ℂ,ℂ,ℍ  

 
The characteristic function Θ agrees with the characteristic function of T*. By 
Theorem(4.1.4) the vector 1⃗ = 1

0 is cyclic for the unitary operator 푈 = 푆						
퐹				

퐺
푇 . 

 Let 퐸 (휁) be the resolution of identity for U. Define 	푑 (휁) ≔
(푑퐸 (휁)1⃗, 1⃗) and put 

푢푓(휁) = 휁푓(휁) 
the unitary multiplication operator in 퐿 (핋, 푑휇) . By the spectral Theorem for 
unitaries with cyclic vectors (cf. [215]) there exists a unitary operator 푊:ℂ⨁퐻 →
퐿2핋,푑휇such that 

푈 = 푊 풰푊and= 푊1⃗ = 1 
 
It follows that W takes the block-operator form 

푊 = 1				
0			

0
푣 : 퐶

퐻 → ℂ
ℌ  

where 	ℌ = 퐿 (핋,푑휇) ⊝ 	ℂ,푉:퐻 → 퐿 (핋, 푑휇) ⊝ 	ℂ  is a unitary operator. If 픗 is 
given by (41), 
then 

픗 ≔	푃ℌ풰	 ↾ ℌ = 푉푇푉  
i.e., T is unitarily equivalent to 픗. Clearly, 풰 has the block form 

풰 =
푃ℂ풰 ↾ ℂ														
푃ℌ풰 ↾ ℌ														

푃ℌ풰 ↾ ℌ
픗
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where푃ℂ  is the orthogonal projection in 퐿 (핋, 푑휇)  onto the subspace ℂ  of the 
constant functions in 퐿 (핋,푑휇). The unitary colligation ∆ t is unitarily equivalent 
to the unitary colligation 
 

푃ℂ풰 ↾ ℂ								
푃ℌ풰 ↾ ℌ						

푃ℌ풰 ↾ ℌ
픗

,ℂ,ℂ,ℌ	 	.																																				(42) 

 
Note that 

      푃ℂ(풰 ↾) = ∫ 휉푑휇.							핋 푃ℌ(풰 ↾) = 	휉 − ∫ 휉푑휇.				푃ℂ(풰∗1) = 휉̅ − ∫ 휉̅푑휇.							핋핋  

Le  퐹(풵) = ((푈 + 풵퐼)(푈 − 풵퐼) 1⃗, 1⃗) .Then 

                           퐹(풵) = (풰 + 푧퐼) 1,1) = ∫ 풵
풵

. 푑휇	(휉)핋  

i.e., F is the Caratherodory function associated with 휇. From Theorem (4.1.7) we 
conclude 
 

훩∆(풵̅) =
1
풵
퐹(풵) − 1
풵퐹(풵) + 1

 

and so by (38) 훩∆(풵̅) agrees with the Schur function associated with 휇. 
 Let {∅ }  be the system of monic polynomials orthogonal with respect to 
휇 , and let {훼 }  be the corresponding Verblunsky coefficients. By Geronimus’ 
theorem {훼 } are the Schur parameters of f. Let ℌ( ) be the controllable subspace 
of the unitary colligation (42). From (13) it follows that. 

(ℌ)( )) 퐿 (핋,푑휇) ⊖ 푠푝푎푛{휉 , 푛 = 0, … }ℌ 
 
If	휇 is a nontrivial measure, then in view of (27) we obtain 

푃(ℌ)( ))휉̅ = (1 − |푎 | ) /  

The latter is equivalent to 
 

푃(ℌ)( ) )푃ℂ(풰∗1) = (1 − |푎 | ) /  

Hence, from (12) and (8) we have the equivalence 

푠푝푎푛{픗 픇픗∗ , 푛 = 0,1, … } = ℌ ⇔ |푎 | =∞																																										(43) 
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Remark(4.2.2)[175]. By the construction of Theorem (4.1.5) the Schur function f 
associated with 휇	is exactly 훩∆(풵̅) .Another (unitary equivalent) models of T are 
connected with the operators 푈 = 휆̅

휆̅
푆					
퐹						

퐺
푇 ,where |	휆| = 1.The characteristic function 

of the unitary colligation 

∆ = 휆̅
휆̅
푆			
퐹				

퐺
푇 .ℂ,ℂ,퐻  

 
is	휆̅Θ∆.The model operator픗  takes the form 

ℌ = 퐿 (핋,푑휇) ⊖ 	ℂ,			픗 ℎ(휉) = 	 푃ℌ, 휉ℎ(휉) ,				ℎ(휉) ∈ 		ℌ  
The Schur function 푓  associated with 휇  is 푓 =	휆푓 .The connection between the 
Caratheodory functions	퐹 (풵) = ((푈 + 풵1)(푈 −풵1) 1⃗, 1⃗)  and F given by 

퐹 (푧)
(1 − 휆) + (1 + 휆)퐹(푧)
(1 + 휆) + (1 − 휆)퐹9푧)

 

The measures 휇 are known as the Aleksandrov measures associated with	휇 [215]. 
     Let 퐶 = 퐶({훼 })be the CMV matrix given by (34). Recall that 퐶({훼 })is the 
matrix representation of the unitary operator u of multiplication by 휁in 퐿 (핋, 푑휇), 
where	휇 is the probabilitymeasure with Verblunsky coefficients {훼 }. By the 
Geronimus Theorem the Schur parameters of the Schur function (29) associated 
with 휇 are {훼 }. 
   The matrix C determines the unitary operator in the space ℓ (핫 ) are 
(respectively ℂ in inthe case of (N + 1) x (N + 1) matrix). The vector S0 = 
(1,0,0, ...)1‘ is cyclic for C. Consider the matrix  

                              풯 = 풯	({훼 }) =
























...00

...

...

...00

3434

23231212

21231212

0101







        (44)                                                            

 
obtained from C by deleting the first row and the first column. It is clear from (37) 
that a semi-infinite 풯takes on the three-diagonal 2 x 2 block-matrix form 

풯	 =


















.......

..00

..00

..000

332

221

11

CBA
CBA

CB

 

 
Where퐴 	,퐵  and 퐶  are defined in (38). Henceforth 풯 is called a truncatedCMV 
matrix 풯  is the matrix of the operator 픗 = 푃ℌ풰 ↾ ℌ	,where 푃ℌ is the orthogonal 
projection in 퐿 (핋, 푑휇)onto the subspace  =ℌ퐿 (핋, 푑휇) ⊖ℂ. 
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    It is easy to see that given 풯(44), the values 훼  are uniquely determined. Indeed, 
from (4) and (14) entries we have by (25)|훼 | = |훼 훼 | + 휌 |훼 | , so |훼 |and 
휌 > 0 are known,and we find 훼 ,훼 from (2) and (3) entries of (44). From (3) and 
(4) entries we get휌 > 0, then, 훼 	,훼 etc. We call 훼 = 훼 (풯)the parameters of풯 
(44). 
         As it was mentioned inthis Section , ℒM, ℒ and M are defined in (39). Given 
a matrix A, we denote by Ar(Ac) the matrix obtained from A by deleting the first 
row (column). 
Clearly, Arc= (Ar)c. So we have풯 = 퐶 = ℒ ℳ ,ℳ . M is isometric with dim 
ran	(1 − 	ℳ ℳ∗) = 1, whereasℒ  is coisometric with dim ran.	(1 − ℒ∗ℒ ) = 1. 
 Let 푃 ↾be the orthogonal projection inℓ (핫 )(ℂ ) onto the subspace 
훿 ⊥≅ 	ℓ (ℕ(ℂ ) . Then the matrix 풯  determines on the Hilbert space 훿 the 
operator 풯 = 푃 퐶 ↾ 훿 ⊥  Let the operators (matrices) 푆:ℂ → 퐶,ℱ:ℂ → 훿 → ℂ 
be given by 
 

푆1 = 	 훼,ℱ1 =

⎝

⎜
⎛

휌
0
⋮
0
⋮ ⎠

⎟
⎞

,				풢

⎝

⎜
⎛
ℎ
ℎ
⋮
ℎ
⋮ ⎠

⎟
⎞

= 	 훼 휌 ℎ + 휌 ℎ  

Hence, the matrix C takes the block form 
 

퐶 = 	 푆 풢
ℱ 풯  

 
From (12) it follows that 
 
 

풢

⎝

⎜
⎛
ℎ
ℎ
⋮
ℎ
⋮ ⎠

⎟
⎞

= 퐷풯

⎝

⎜
⎛
ℎ
ℎ
⋮
ℎ
⋮ ⎠

⎟
⎞

= 휌 |훼 ℎ + 휌 ℎ | ,

픇풯 = {휆(훼 훿 + 휌 훿 ), 휆 ∈ ℂ} 

ℱ∗

⎝

⎜
⎛
ℎ
ℎ
⋮
ℎ
⋮ ⎠

⎟
⎞

= 퐷풯∗

⎝

⎜
⎛
ℎ
ℎ
⋮
ℎ
⋮ ⎠

⎟
⎞

= 휌 |훼 ℎ | , 픇풯∗ = {휆훿 , 휆 ∈ ℂ} 
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  퐷 ℎ = 휌 (ℎ,훼 훿 + 휌 훿 )(훼 훿 + 휌 훿 ). 											퐷 ∗ℎ = 휌 (ℎ, 훿 )훿 ,					ℎ ∈
       ℓ2( 푁푁퐶푁.           푇훼1훿1+휌1훿2=−훼1훿1.                                          45)                                      
  
Since  훿 is the cyclic vector for C, then by Theorem (4.1.5) the unitary colligation 
                              

∆ = 푆 풢
ℱ 풯 : 퐶,퐶, 훿 																																	(46)  

 
is prime, and	풯is a completely nonunitary operator with rank one defects on the 
Hilbert spacesℓ (푁)표푟퐶  
Let 

 

퐹(푧) = ((퐶 + 푧퐼)(퐶 − 푧퐼) 훿 ,훿 ), 푓(푧) = 	 ( )
( ) 																(47) 

 
Proposition(4.2.3)[175]. 

    (i)For a semi-infinite truncated CMV matrix		풯 = 풯({훼 })			the following     
statements are equivalent,  
    (a)	the matrix	풯does not contain a unilateral shift ; 
    (b) the matrix	풯∗does not contain a unilateral shift ; 
    (c)푠푝푎푛[풯 훿 , 푛 = 0,1, … ] = ℓ (푁); 
    (d)푠푝푎푛[풯∗ (훼 훿 + 훽 훿 ),푛 = 0,1, … ] = ℓ (푁); 
    (e)∑ |훼 | = ∞; 
   (f) ln(1-|푓(푒 )| ∉ 퐿 |−휋,휋|. 
   (ii) If	풯 is a semi-infinite truncated CMV matrix 
   (a) lim푠푢푝 → {훼 } = 1. 
   (b) l푖푚 → 훼 훼 = 0	푓표푟	푚 = 1.2, … 푏푢푡 
                             lim푠푢푝 → |훼 | > 0 
is fulfilled, then 
                               s-푙푖푚 → 풯 = s-푙푖푚 → 풯∗  
 
 (iii) If T is a finite truncated CMV matrix, then		푙푖푚 → ‖풯 ‖ =0 
 
Proof. 
(i) Since{αn}are the Schur parameters of the Schur function f associated with the 
full CMV matrix C	({훼 })		, and f agrees with the characteristic function 
of	풯({훼 })			, the equivalence of the statements (a)–(f) follows from (5), (6), (9), 
(11), (31), (45),(43), and Theorems (4.1.4) and (4.1.8) 
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(ii) Each condition (a) or (b) implies f is inner .Hence		풯	belongs to the class C00, 
i.e., s-푙푖푚 → 풯 = s-푙푖푚 → 풯∗ = 0 
 (iii) The function f is a finite Blaschke product and so inner. Since	풯 is finite-
dimensional,we get 푙푖푚 → ‖풯 ‖ = 0. 
Proposition(4.2.4)[275 ] 
.Let	풯({훼 })		, and	풯({훽 })	be truncated CMV matrices. Then 
풯({훼 })and	풯({훽 })are unitarily equivalent if and only if훽 = 푒 훼 for all n and 
t∈[0,2π).Moreover, if V is the diagonal unitary matrix of the form 
                     
                                                                                              

                      풱= diag(푒 ,1,	푒 ,1,…)                                                           (48) 
then 
 

                         풱풯({훼 })풱 = 풯 푒 훼 .                                              (49)                                    
 
Proof. 
Consider two CMV matricesC({훼 })푎푛푑퐶({훽 }) and associated with them Schur 
functions푓 and푓 . Since these functions agree with the characteristic functions 
of 	풯({훼 }) and 	풯({훽 }) , respectively, the operators 	풯({훼 }) and 	풯({훽 })  are 
unitarily equivalent if and only if푓 and푓 differ by a scalar unimodular factor, 
which in turn yields	훽 = 푒 훼 for all n and t∈[0,2π). 
  Equality (49 )wish풱 (48) can be verified by the direct calculation based on (35), 
(36).So	풯({훼 }) and 풯 푒 훼 .  are unitarily equivalent. 
      From (49) it follows that 

풯 푒 훼 = 푒 풯({훼 })푒 .																																								. 
where A is a self-adjoint diagonal matrixA= diag(1,0,1,0. . .).Hence the 
matrix	풯 푒 훼 satisfies the differential equation 
 

푑풯(푡)
푑풯

= 푖(퐴풯(푡) − 풯(푡)퐴),					푡 ∈ 푅 

 
and	풯(0) = 풯(|훼 |). 
     The next Theorem states that truncated CMV matrices are mode 
ls of completely nonunitary contractions with rank one defects. 
Theorem (4.2.5)[175 ]:Let	푇	be a completely nonunitary contraction with rank one 
defects acting on infinite-dimensional separable Hilbert space H 
(respectively,finite-dimensional Hilbert space).Then	풯is unitarily equivalent to the 
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operator acting on	ℓ (푁)(respectively, on 퐶 in the case dim H=N) determined by 
the truncated CMV matrix	풯=	풯({훼 }), where{훼 }are the Schur parameters of the 
characteristic function of	풯. In particular, every completely nonunitary contraction 
with rank one defects is a product of co-isometric and isometric operators with 
rank one defects. 
Proof.Include	풯into a prime unitary colligation  
 

                            ∆= 푆 퐺
퐹 푇 :퐶,퐶,퐻 . 

. By Theorem(4.1.4) the vector1 = 1
0 is a cyclic for the unitaryoperato	푈 = 푆 퐺

퐹 푇  . 

From the results of [188, 187] (see also [213, 214]) there exists a unique CMV 
matrixC such that 

푈 = 푊 CW,     훿 = 푊1, 
  where 	푊 is a unitary operator fromC⊕H onto 	ℓ (푍 )(퐶 ) and 훿 =
(1,0,0, … ) . It follows that the operatorW takes the block-operator form 
 

W= 1 0
0 휒 :	 퐶퐻 → 퐶

훿 . 

 
where 휒: H → δ 	is a unitary operator. Hence	풯 = 휒푇휒 , i.e., the operator T is 
unitarily equivalent to the operator in 푙 (푁) (퐶 ) given by the truncated CMV 
matrix 	풯 = 	풯({훼 }) .From representation (28) of 퐹(푧) = (푈 + 푧퐼)(푈 −
푧퐼−11,1.and Theorem (4.1.5) it follows that훼푛are the Schur parameters of the 
function	훩 (푧̅)		that agrees with the characteristic function of T. 
   Let Q be an arbitrary unitary operator in	훿 . SinceT=ℒ 푀 , we get 
 

풯 = 휒 푇휒 = 휒 ℒ 푀 휒 = 휒 ℒ 푄푄  
Where M=푄 푀 휒	is an isometric operator with rank one defect, and. L=휒 ℒ 푄 
is a co-isometric operator with rank one defect. 
    Note that the unitary colligation (46) is unitary equivalent to the unitary 
colligation (42). 
    Let V be an isometric operator acting on some Hilbert space H with the domain 
dom V and the range ranV. The numbers dim(H⊖domV) and dim(H⊖ ran V) are 
called the defect indices of V. The isometric operator V is called prime if there is 
no nontrivial subspace on which V is unitary. In [203, 204] M. Livˇsic developed 
the spectral theory of isometric operators with equal defect indices, and their quasi-
unitary extensions. A nonunitary operator S on H is called a quasi-unitary 
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extension of the isometric operator V with the defect indices (n, n),if S agrees  with 
V on dom V and maps H ⊖dom V into H⊖ranV. 
     Let 	푈⃑	be the bilateral shift in	ℓ (푍) , i.e.,	푈⃑ =훿 , 푘 ∈ 푍 , where{훿 = 	푘 ∈
푍}is the canonical orthonormal basis inℓ (푍).퐷푒푓푖푛푒,푉⃑ by 

푑표푚푉⃑ = 훿 ,			푉⃑ ↾ 푑표푚푉⃑  
Then ran 	푉⃑ = 훿 . Let the quasi-unitary extension 		푆⃑ 	of 		푉⃑ be given 푆⃑ 훿 =
0, 푆⃑ ↾ 푑표푚	푉⃑ = 푉⃑ . Then each point of D is the eigenvalue of	푆⃑ . So the spectrum 
of			푆⃑ 	agrees with D. The following result is essentially due to M. Livˇsic [203]. 
Theorem (4.2.6)[175].Let S be a quasi-unitary contractive extension of a prime 
isometric operator V with the defect indices(1). If the whole open disk D consists 
of the point spectrum of S, then V and S are unitarily equivalent to	푉⃑  and	푆⃑ , 
respectively. 
    Clearly, the rank of the defect operators (I − 푆⃑∗푆⃑ ) / and (I − 푆⃑ 푆⃑∗) /  
is equal to one.Since the point spectrum of		푆⃑ 	푖푠	퐷,the Sz.-Nagy–Foias 
characteristic function Θ of	푆⃑ 	is identically equal to zero. On the other hand, one 
can easily show (and it is well known) thata completely nonunitary contraction 
with rank one defects and zero characteristic function is unitarily equivalent to the  
operator S⊕푆∗, where S is the unilateral shift inℓ (푁). So the       
operators	푆⃑ 	and	S ⊕ 푆∗																																											 
are unitarily equivalent. Since all Schur parameters of the 
function Θ = 0 are zeros, the corresponding truncated CMV matrix 
	풯 =‖푡 (푖, 푗)‖	takes the form 
 

																																			풯 =



























.....................

...000100

...100000

...000001

...001000

...000000

 

 
i.e.,푡 (2푘, 2푘 + 2) = 푡 (2푘 + 1,2푘 − 2) = 푘 ≥ 1 , and the rest 	푡 ( i,j) = 0. The 
matrix 	풯 	Is a submatrix of the free CMV matrix	퐶 corresponding to zero Schur 
parameters. Each point z of D is the eigenvalue of 	풯 . The corresponding 
eigensubspace is 
 

픑 = {휆(0,1,0, 푧, 0, 푧 , 0, 푧 , … ), 휆 ∈ 퐶} 
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Hence, the spectrum of		풯 	is the closed unit disk	퐷. 
      Let	풱 	be the operator in	ℓ (푁).								 
 

dom풱 = ℓ (푁) ⊖ {푐훿 } = 푘푒푟퐷 , 풱 = 풯 ↾ dom풱 .                      (50) 
Then ran 	풱 = ℓ (푁) ⊖ {푐훿 } = 푘푒푟퐷 ∗ , and 풱 is isometric with the defect 
indices (1).The contraction풯 is the quasi-unitary extension of 	풱 with the zero 
characteristic function.Therefore, the truncated CMV matrix 풯 is unitarily 
equivalent to the operator푆⃑ , and by 
Livsic Theorem [204] the isometric operator풱 is unitarily equivalent to	푉⃑ . 
   All other quasi-unitary contractive extensions of		푉 are given by the truncated 
CMVmatrices 
	풯 = ‖푡(푖, 푗)‖ 
 
 

											풯 =

























 

.....................

...000100

...100000

...000001

...001000

...00000 ire

                                         (51) 

          
i.e.,푡(2푘, 2푘 + 2) = 푡(2푘 + 1,2푘 − 2) = 푘 ≥ 1, 푡(1,2) = −푟푒 , 푟 ∈ (0,1),휑  r is 
an arbitrary number from the interval [0,2π), and the restt(i, j) = 0. The 
characteristic function of	풯 is the constant function Θ =	푟푒 . The spectrum of 
each such matrix is the unit circle	풯. Because |훩 | =	푟 , each of such matrix is 
similar to unitary matrix [216]. 
      The matrices		풯 	푎푛푑		풯	contain the shift  
 
     dom풲 = 푠푝푎푛{훿 ,훿 , … . ,훿 , … },풲	(∑ ℎ 훿 ) = ∑ ℎ 훿  
 
The matrices푇∗and	푇contain the shift 
       
      dom풲∗ = 푠푝푎푛{훿 , 훿 , … . , 훿 , … },풲∗	(∑ ℎ 훿 ) = ∑ ℎ 훿  
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  Let T be a completely nonunitary contraction with rank one defects and the 
constant characteristic function Θ, 0<|Θ(z)|=r <1. Then by Theorem (4.2.5) T is 
unitarily equivalent to the truncated  CMV matrices (51). 
   Along with truncated CMV matrices 풯({훼 }) (44), we consider here truncated 
CMV matrices	풯({훼 })obtained from the alternate CMV matrix	퐶({훼 }) (40) by 
the same procedure. The matrix 	풯({훼 })is the transpose of	풯({훼 }) 

   	풯 = 





























...............

...0

...0

...0

...0

42323

342323

121201

021201







                                              (52) 

and 
                          	풯({훼 }) = 풯({훼 }) = (푀 )(ℒ )푀  
 It is not hard to show that	풯({훼 }) is a completely nonunitary contraction with 
rank one defects, and its characteristic function 	푓  agrees with the Schur 
functionassociated with Verblunsky coefficients (Schur parameters)	{훼 }. Indeed 
(cf. 47)) 

	퐶 + 푧퐼 	퐶 − 푧퐼 = (	퐶 + 푧퐼)(	퐶 − 푧퐼) = ((	퐶 + 푧퐼)(	퐶 + 푧퐼) )  
and so	퐹(푧) ≔ 퐶 + 푧퐼 퐶 − 푧퐼 훿 ,훿 = 퐹(푧), 	푓 = 푓.as claimed.So.the 

matrices	풯({훼 })	푎푛푑	풯({훼 }) are unitarily equivalent. 
   Denote by 	풯( ) 풯 	 the matrix obtained from 	풯 풯  by deleting the first k 
rows and columns. The following result provides the characteristic function 
of		풯( ). 
Theorem (4.2.7)[175]..Let 휇be a probability measure on  with Verblunsky 
coefficients	{훼 }	 ,푁 ≤ ∞, and let푓,퐶{훼 },퐶{훼 },풯({훼 }), 	풯({훼 }) be the 
corresponding Schur function, CMV and truncated CMV matrices, respectively. 
Then		풯( ),풯( )	are completely nonunitary contractions with rank one defects, and 
the following relations hold: 

풯( ) {훼 }	 = 풯({훼 }	 ), 
                     풯( ){훼 }	 = 풯 {훼 }	 ,									푚 = 1,2, …. 

  
So, the characteristic function of		풯( 	)agrees with the kth Schur iterate of		푓. 
 Proof. The relations 
      풯( ){훼 }	 = 풯 {훼 }	 .    풯( ){훼 }	 = 풯{훼 }	  
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follows directly from (44) and (52). The rest is a matter of simple induction and the 
definition of the kth Schur iterates. 
    The relation between characteristic functions of the sub-matrices	풯( )({훼 }	 ) 
and the kth Schur iterates established in the above Theorem is a complete analog of 
the result concerning the connections between m-functions of a Jacobimatrix and 
its sub-matrice [127] . 
Theorem (4.2.8)[175]..Let 	휇	be a probability measure on T with Verblunsky 
coefficients	{훼 }	 ,푁 ≤ ∞.  
Consider three subspaces in	퐿 (푇, 휇): 

ℋ = 푠푝푎푛{1, ζ, ζ̅, ζ , ζ̅ , … , ζ , ζ̅ }, 
ℋ = 푠푝푎푛{1, ζ, ζ̅, ζ , ζ̅ , … , ζ̅ , ζ̅ }, 
ℋ = 푠푝푎푛{1, ζ̅, ζ, ζ̅ , ζ , , … , ζ , ζ̅ }. 

    Denote byℌ ℌ ,ℌ their orthogonal complements in퐿 (푇,휇), and 
by 푃 푃 ,푃 the orthogonal projections onto ℌ ℌ ,ℌ , 
respectively. Then the operators 
 

픗 ℎ(ζ) = 푃 ζh(ζ) .					ℎ(ζ) ∈ ℌ	 .	                                     (53) 
             

	픗 ℎ(ζ) = 푃 ζh(ζ) .					ℎ(ζ) ∈ ℌ	 . 
 
are completely nonunitary contractions with rank one defects. The characteristic 
function of	픗 	agrees with the kth Schur iterate of the Schur function푓	(휇), the 
characteristic function	픗  agrees with (2m-1)th Schur iterate of	푓(휇). So, the 
operator	픗 is unitarily equivalent to the operator 
 
            ℎ(ζ) = 푃( ) ζh(ζ) .					h(ζ) ∈ 	퐿 (푇, 푑휇({훼 }	 )) ⊖퐶.				 (54) 
 
where	푃( )푖푠 the orthogonal projection onto	퐿 (푇, 푑휇({훼 }	 ))⊖퐶.			In addition	픗  
is unitarily equivalent to	픗  
Proof. Recall that CMV matrices퐶({훼 },퐶({훼 }) represent the unitary 
operator	Uh(ζ) = ζh(ζ)in퐿 (푇, 푑휇{훼 }))	with	respent to the complete 
orthonormal systems	{휒 }	and	{푥 }, reprectively.Moreove 
 

ℋ = 푠푝푎푛{휒 , 휒 , … , 휒 } = 푠푝푎푛{푥 , 푥 , … , 푥 } 
ℋ = 푠푝푎푛{휒 , 휒 , … , 휒 } 
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ℋ = 푠푝푎푛{푥 , 푥 , … , 푥 } 
 
Since 	풯({훼 }	 )(풯({훼 }	 )  is the matrix of 	픗  (41) with respect to the 
basis {휒 }	 , the operators 	픗 , 	픗 푎푛푑	픗 have the matrices 풯( ) , 
풯( )푎푛푑	풯( )	, respectively. From Theorem (4.2.8)it follows that 	픗 are 
completely nonunitary contractions with rank one defects for all k, and their 
characteristic functions agree with the kth Schur iterates of f. By Theorems 
(4.2.8)and (4.2.1) the operator	픗 is unitarily equivalent tothe operator given by 
(54). We also have 
                     풯( )({훼 }	 ) = 풯({훼 }	 ) 
  Therefore, the characteristic function of		픗 ({훼 }	 ) agrees with (2m-1)th 
iterate	푓 0푓	푓, and hence the operators	픗 ({훼 }	 )푎푛푑픗 ({훼 }	 ) 
are unitarily equivalent. 
  We complete the section with the general result from the contractions theory 
which is proved with the help of the truncated CMV model. 
Theorem (4.2.9)[175].Let T be a completely nonunitary contraction with rank one 
defects in a separable Hilbert space H, dimH ≥2, and let	푃	푘푒푟퐷 ∗ , 푃	푘푒푟퐷 	be the 
orthogonal projections onto 푘푒푟퐷 ∗  and 	푘푒푟퐷 in H, respectively. Then the 
operators 

푇 = 	푃 ∗푇 ↾ 	푘푒푟퐷 ∗ ,   푇 = 	 푃 푇 ↾ 	푘푒푟퐷  
 
are unitarily equivalent completely nonunitary contractions with rank one defects, 
and their characteristic functions agree with the function 
 

ℎ (푧) ≔
1
푧
ℎ(푧) − ℎ(0)

1 − ℎ(0)ℎ(푧)
 

 
where h is the characteristic function of T. 
Proof. By Theorem (4.2.5) the operator T is unitarily equivalent to the truncated 
CMV matrices 	풯 = 풯({훼 } ) and 	풯 = 풯({훼 } ) , where 	{훼 }  are the 
Schur parameters of h, N ≤ ∞. So, there exists a unitary operators 	푉,푉: 	훿 →
퐻	such that  

푉푇푉 = 푉푇푉 =푇 
It follows that 

푉퐷 ∗푉 = 퐷 ∗ ,			푉퐷 푉 =퐷  
and hence	푉 ∗ = 푘푒푟퐷 ∗ ,푉 = 푘푒푟퐷 . Due to (45) we have 
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픇 ∗		 = 픇 = 푠푝푎푛{훿 } 
and 
                풯( ) = 	 푃

풯∗
풯 ↾ 	푘푒푟퐷풯∗ ,  풯( ) = 	 푃 풯풯 ↾ 	푘푒푟퐷풯 

Hence 
푉풯( )푉 = 푇 ,									푉풯( )푉 =푇  

Now from Theorem (4.2.8) it follows that푇 푎푛푑	푇 are completely nonunitary 
contractions with rank one defects, and their characteristic functions agree with the 
first Schur iterate	ℎ 표푓	ℎ. Hence	푇 	푎푛푑	푇  are unitarily equivalent. 
Consider a N×N truncated CMV matrix 
 
                                   

풯 = 풯({훼 }) 	= 	

































121

1

231212

231232

0101

.........
............

0...
0...
0...0

NNNN

NN









																										(55) 

 
(for even N it looks a bit different). The problem under investigation in the present 
section in the reconstruction of the matrix  풯  (55) from either the complete set of 
its eigenvalues or from the mixed spectral data: the part of the spectrum and the 
part of the parameters	훼 (풯) 
Theorem(4.2.10)[175].Let	푧 , 푧 ,, … , 푧 	be not necessarily distinct numbers from 
the open unit disk. Then there exists a truncatedN×NCMV matrix	풯(55)which has 
eigenvalues 	푧 , 푧 ,, … , 푧 , counting their algebraic multiplicities. Such matrix is 
determined uniquely up to multiplication of its parameters 훼 (풯)  by the same 
unimodular factor. 
Proof.Let 

푏(푧) = 푒 ∏
̅

,			푧 ∈ 퐷,휑 ∈ ⌊0,2휋)																											(56) 

we want to show that b is the characteristic function of a truncated CMV 
matrixT(55).Put 
 

퐹(푧) =
1 + 푧푏(푧)
1 − 푧푏(푧) 

which is a rational function with N+ 1 distinct simple poles lying on , Re		퐹(푧) >
0,푍 ∈ , and 퐹(0) = 1. It follows that there exists a probability measure	푑휇	on the 
unit circle supported at those poles, so that 
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퐹(푧) =
휁 + 푧
휁 − 푧

푑휇(휁). 

 
Let {훼 , … . ,훼 ,훼 } be the Schur parameters of b, that is the same as the 
Verblunsky coefficients of	휇. Construct the (N+1) ×(N+1) unitary CMV matrix C 
of the form (34).Then 
                
        퐹(푧) = ((퐶 + 푧퐼)(퐶 − 푧퐼) 훿 , 훿 ), |푧| < 1, 
 
where	훿 (1,0, … ,0) ∈ 퐶 .Let	풯	푏푒	N×N be truncated CMV matrix of the form 
(55  ) C has the block form  

퐶 = 푆 풢
ℱ 풯  

Where 푆 = 훼 ,풢 =(훼 휌 , 휌 휌 , 0, … ,0),푎푛푑 
 

ℱ =

⎝

⎜
⎜
⎜
⎜
⎛휌

0
.
.
.
0 ⎠

⎟
⎟
⎟
⎟
⎞

 

 
Theorem(4.2.11)[175]. Let	푧 , … , 푧 	be distinct nonzero points in D	, 푙 , … , 푙 	be 
positive integers, and r=푙 , … , 푙 ≤ 푁 and. Let훼 , … . ,훼 ∈ 퐷. If there exists a 
N×N truncated CMV matrix	풯(55)such that	푧 , … , 푧 are eigenvalues of	풯with the 
algebraic multiplicities푙 , … , 푙 , and훼 (풯)=훼 , 푗 = 0, … ,푁 − 푟, then this matrix is 
unique. 
Proof.If the required	풯 exists then its characteristic functionΘ풯(z) is the Blaschke 
product of order N and of the form 

푏(푧) = 푒 ∏
̅

∏ ,			                                   (57) 

with the given first N−r+ 1 Schur parameters	훼 (푏	), … . ,훼 (푏	). Our goal is to 
prove the uniqueness of such function b. 
   According to the result of Schur [213] the set of all Schur functions 
b with given first N−r+ 1 Schur parameters is parametrized by 
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b(z)= ( ) ∗( ) ( )
( ) ∗( ) ( )                                                        (58) 

where	푠(푧) is an arbitrary Schur function, and A, B are polynomials of degree at 
most N-r Since b is the Blaschke product of order N, it is clear that so is	푠(푧), 
deg	푠(푧) = 푟 − 1, and 
 

푆푏 = {훼 , … . ,훼 ,훼 (푠), … . ,훼 (푠)} 
 
Let us solve (58) for s: 
 

s(z)= ( ) ( ) ( )
∗( ) ∗( ) ( ) 

 
so 	푠(푧)  satisfies the Nevanlinna-Pick interpolation problem(57), where 	푤( ) are 
completely determined from the given nonzero zk’s and	훼 ’s	. There is at most one 
such	푠(푧), and the uniqueness of b is proved. 
Remark(4.2.12)[175].. Suppose that	푧 , … , 푧 are distinct nonzero points in D, and 
푙 , … , 푙 =N ,so the only	훼 is prescribed. It is clear thatis completely determined by 
the choice of	푧 	and their multiplicities	푙 : 
 

          푏(푧) = 푒 ∏
̅

,			 훼 = 푏(0) = 푒 ∏ −푧 		 

 
So for all other 훼 	the inverse problem has no solution. 
    In the case when one of the eigenvalues is zero, all three possibilities (no 
solution, unique solution, and infinitely many solutions) may occur for the inverse 
problem in question. For instance, there is no solution at all as long as 	푧 =
0,	훼 ≠ 0. Assume next, that r =푙 = 1, 푧 = 0, and the points		훼 ,훼 , … . ,훼 	are 
taken in D, with the only restriction	훼 = 0,	훼 ≠ 0. The Blaschke products	푏 with 
the Schur parameters{	훼 ,훼 , … . ,훼 ; 훾} and arbitrary	훾 ∈ are of the form 
 

	푏 (푧) = 푒 푧
푧 − 푣
퐼 − 푣̅ 푧

,			 

 
and the corresponding N×N truncated CMV matrices 	풯 ,solve the problem.   
Finally, assume that except for the zero eigenvalue of multiplicity	푘(푧 = 푧 =
⋯ = 푧 = 0) , a few more nonzero (and not necessarily distinct) 
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eigenvalues	휆 , … . , 휆 are given, as well as the points	훼 = ⋯훼 = 0,훼 in D. 
If the solution of the corresponding mixed inverse problem 풯  exists, its 
characteristic function takes the form 
  

푏(푧) = 푒 푧
푧 − 휆
퐼 − 휆̅ 푧

푔(푧). 

 
Where g is the Blaschke product of order N-k-1,	푔(0) ≠ 0., and the first N-k-
1	+1Schur parameters of	ℎ = 푧 푏 are given numbers	훼 = ⋯훼 . Clearly ,h is 
exactly the kth Schur iterate of b. If the required truncated CMV matrix		풯exists, 
then by Theorem(4.2.7) the characteristic function of		풯( )agrees with h. It follows 
now from Theorem (4.2.11)that	풯( )is unique, and since	훼 	풯 = 0, … . , 푘 − 1, the 
matrix		풯 is unique as well. The situation changes dramatically if we assume that 
the last parameters of	풯 (55) are known. In this case we can prove the existence, 
but not the uniqueness of the solution. 
Theorem (4.2.13)[175]. Let 푧 , … , 푧 and 훼 , … . ,훼 be two collections of 
arbitrary complex numbers from the open unit disk, and let	훼 ∈ . Then there 
exists a N x N truncated CMVmatrix	풯of the form(55) such that: 
(i)	푧 , … , 푧 	are eigenvalues of	풯, counting the algebraic multiplicity, 
(ii)		훼 (풯) = 	훼 , 푛 = 푚,푚 + 1, … ,푁.= 
Proof. 
By Theorem (4.1.8)there exists a Blaschke product 	푏(푧)  of order N such 
that	푏(푧 ) = 0, 푘 = 1, … . ,푚, with the Schur parameters 
 
 	훼 (푏) = 	훼 ,					푛 = 푚,푚 + 1 … . .푁. 
 
Take now the matrix 		풯 (55) with 	훼 (풯) = 	훼 ,푛 = 0,1, … ,푁 . By Theorem 
(4.2.14) the characteristic function of 	(풯)  agrees with 	푏(푧) , that completes the 
proof. 
Theorem (4.2.13)  thereby says that a N×N truncated CMV matrix 풯  can be 
reconstructed from its m eigenvalues and the lower principal block of order N−m. 
The latter is either the truncated CMV matrix		풯, ({훼 } ) or its transpose	풯 
   In this section we   consider the criterion when given complex numbers	푧 =
, 푛 = 1,2, …from D are the eigenvalues counting algebraic multiplicity of some 
semi-infinite truncated  CMV matrix. 
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Proposition (4.2.14)[175]..Given complex numbers 	푧 =, 푛 = 1,2, … are 
eigenvalues counting algebraic multiplicity of some semi-infinite truncated CMV 
matrix if and only if 
 
 ∑ (1 − |	푧 |) < ∞ 
. 
Proof. 
The convergence of the sum is equivalent to the convergence of the Blaschke 
product 
 
  

푏(푧) =
푧̅
푧

푧 − 푧
푧 − 푧̅ 푧

,			 

 
Let	{훼 }	be the Schur parameters of b. The characteristic function of the truncated 
CMV matrix	풯({훼 } agrees with b. Hence the eigenvalues of		풯({훼 } are precisely 
the complex numbers{푧 }. 
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Chapter 5 

Harmonic Cooridinates and Products of Random Matrices 

We show that if Kigami’s resistance form satisfies certain assumptions, then 
there exists a waek Riemannian metric such that the energy can be expressed  as 
the integral of the norm squared of a weak gradient with respect to an energy 
measure. Furthermore, we show that if such a set can be homeomorphically 
represented in harmonic coordinates, then for smooth functions the weak gradient 
can be replaced by the usual gradient. We also show a simple formula for the 
energy measure Laplacian in harmonic coordinates.We apply our results to extend 
the geography is desting principle to these cases, and lso obtain results on the 
pointwise behavior of local eccentricities on the sierpinski gasket, previously 
studied by Oberg, stricharta and Yingst, and the authors. We also establish the 
relation of the derivatives to the tangents and gradients previously studied by 
strichartz and the authors. Our main tool is the Furstenberg-Kesten theory of 
products of random matrices. 

Sec(5.1)Fractals with Finitely Ramified Cell Structure     

      There is a well developed theory of Dirichlet (energy, resistance) forms, and 
corresponding random processes, on the class of post-critically finite (p.c.f. for 
short) self-similar sets, which are finitely ramified [220, 237,240, 255, 258].     
Also, many piecewise and stochastically self-similar fractals have been considered 
[225, 229, 230, 256]. The general non self-similar energy forms on the Sierpinski 
gasket were studied in [253]. In all the mentioned works the fractals considered 
have finitely ramified cell structure. We will extend some aspects of this theory for 
a class of space, which may have no self-similarity in any sense, and may have 
infinitely many cells connected at every junction point.Throughout this section  we 
extensively and substantially use the general theory of resistance forms developed 
in [241]. The existence of such forms is a delicate question even in the self-similar 
p.c.f. case [231, 241, 251] and references therein]. To prove our results we use 
some methods introduced in [260]. We give the basic background information, and 
the reader may find all the details in [241, 260]. 

      We give the definition of a resistance form in the sense of Kigami [241]. We 
define sets with finitely ramified cell structures. Examples of such fractals are 
p.c.f. self-similar sets introduced by Kigami in [237, 240]. Fractafolds introduced 
by Strichartz in [257], random fractals [225, 229, 230] and references therein, and 
non self-similar Sierpinski gaskets [253, 261]. The key topological assumption is 
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that there is a cell structure such that every cell has finite boundary, but we do not 
assume any self-similarity. 

     The terminology we use can be explained as follows. The term ''post-critically 
infinte'', means that every junction point can be an intersection of countably 
infinite number of cells with pairwise disjoint interior, that is every cell can be 
linked to countably many other cells. The term ''finitely ramified'' means that every 
cell is joined with its complement in a finite number of points. A good example of 
an infinitely ramified fractal is the Sierpinski carpet. There exists a self-similar 
diffusion and corresponding Dirichlet form on the Sierpinski carpet [221, 222, 223, 
249], but its uniqueness has not been proved. 

     We prove that Kigami's resistance form is a local regular Dirichlet form under 
appropriate conditions. We prove that if the resistance form satisfies certain non 
degeneracy assumptions, then there exists a weak Riemannian metric,defined 
almost everywhere such that the energy can be expressed as the integral of the 
norm of weak gradient with respect to an energy measure. This generalizes earlier 
results by Kusuoka [248] and the author [260].  We prove that if the finitely 
ramified fractal can be homemorphically represented in harmonic coordinates, then 
the weak gradient can be replaced by the usual gradient for smooth functions, 
which generalizes an earlier result by Kigamiin[238]. We prove a simple formula 
for the energy measure Laplacian in harmonic coordinates. This formula was 
announced, in the case of the standard energy form on the Sierpinski gasket, in 
[261] without a proof. In a sense, the generalized . Riemannian metric. In the case 
of the standard energy form on the Sierpinski gasket, it is proved by Kusuoka in 
[247] that this generalized Rimannian metric has rank one almost everywhere. This 
can be interpreted as that in harmonic coordinates on the Sierpinski gasket the 
energy Laplacian is the one dimensional second derivative in the tangential 
direction. We conjecture that this is the case for any finitely ramified fractal 
considered. The main tool we use in this Theorem is approximating the finitely 
ramified fractal by a sequence of so called quantum graphs [245, 246]. We discuss 
self-similar finitely ramified fractals, and existence of self-similar resistance forms 
in particular. We give several examples of finitely ramified fractals for which our 
theory can be applied . Among them are factor-spaces of p.c.f. self-similar sets, 
and post-critically infinite analogs of the Sierpinski gasket. 

     In the case of the standard energy form on the Sierpinski gasket, it is proved by 
Kigami in [244] that the heat Kernel with respect to the energy measure has 
Gaussian asymptotics in harmonic coordinates (a weaker version was obtain in 
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[252]. Recently a powerful  machinery was developed to obtain heat Kernel 
estimates on various ''rough'' spaces, including many fractals [224,243]. It is not 
unlikely that this theory is applicable to many, if not all, finitely ramified fractals 
in harmonic coordinates. Also, some results about the singularity of the energy 
measure with respect to product measures [226, 232, 233] are valid in the case of 
finitely ramified self-similar fractals under suitable extra assumptions. 

Definitions(5.1.1) 218]. A pair (ε,Dom ε) is called a resistance form on a 
countable set 푉∗	if it satisfies the following conditions. 

(i) Dom ε is a linear subspace of ℓ(V*) containing constants, ε is a 
nonnegative symmetric quadratic form on Dom ε, and ε (u, u)= 0 if and 
only if u is constant on  푉∗ 

(ii) Let ~ be the equivalence relation on Dom ε defined by u ~ v if and only if 
u   – v is constant on V*. Then (ε /~, Dom ε)  is a Hilbert space. 

(iii) For any finite subset V  V* and for any υ ℓ(V) there exists u   Dom ε                  
 such that u|v= v. 

     (iv) For any p, q   V* 

                     Sup 


 ( ) 	 ( )

( , )
 : u ∈ Dom ε, ε(u, u) > 0} < ∞.              

           This supremum is denoted by R(p, q) and called the  resistance between p                                      

           and q.   

   (iiv) for any u   Dom ε we have the ε(u-, u-) ≤ ε(u, u), where 

                    pu =            
1 if	u(p) ≥ 1,

u(p) if	0 < 푢(p) < 1,
0 if	u(p) ≤ 1.

                             

Property (iiv) is called the Markov property. 

      Note that the effective resistance R is a metric on V*, and that any function in 
Dom ε is R-continuous. Let Ω be the R-completion of V*. Then any u Dom ε  
has a unique R-continuous extension to Ω. 

      For any finite subset U  V* the finite dimensional Dirichlet form εU on U is 
defined by 
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                                ε U(f, f)= inf{ε(g, g): g   Dom ε, g|U= ƒ},               

which exists by [84], and moreover there is a unique g for which the inf is attained. 

The Dirichlet form εU is called the trace of ε on U, and denoted. By the definition, 
if U1 ⊂ U2 then ℰ  is the trace of ℰ  on U1, that is ℰ = TraceU1(ℰ ). 

Theorem(5.1.2)[218] . (Kigami [241]). Suppose that Vn are finite subsets of V* 
and that ∪  Vn is R-dense in V*. Then 

                                         ℰ(ƒ, ƒ)= 
n

lim  ℰVn(ƒ, ƒ)                            

for any ƒ   Dom ℰ , where the limit is actually non-decreasing. Is particular, ℰ  is 
uniquely defined by the sequence of its finite dimensional traces ℰ  on Vn. 

Theorem(5.1.3)[218] . (Kigami[241]). Suppose that Vn are finite sets, for each n 
there is a resistance form ℰ on 푉  , and this sequence of finite dimensional forms 
is compatible in the sense that each ℰ  is the trace of ℰ on 푉 ,푤푒푟푒	푛 =
0,1,2, … 푡ℎ푒푛	푡ℎ푒푟푒	푒푥푖푠푡푠	푎	푟푒푠푖푠푡푎푛푐푒	푓표푟푚		ℰ	표푛	푉∗ = 푈  Vn such that 

                                         ℰ(f, f)= 
n

lim ℰ  (f, f)                                     

for any f   Dom ℰ, and the limit is actually non-decreasing. 

Definition(5.1.4)[218] .  A finitely ramified fractal F is a compact metric space 
with a cell structure ℱ={Fα}αA and a boundary (vertex) structure ν= {Vα}αA 
such that the following conditions hold. 

(i) A is a countable index set; 

(ii) each Fα is a distinct compact connected subset of F; 

(iii) each Vα is a finite subset of Fα with at least two elements; 

(iv) if Fα =⋃ 퐹 ; then Vα  ∪ 푉 ; 

(iiv) there exists a filtration {퐴푛}  such that 

(a) An are finite subsets of A, A0= {0}, and F0= F; 
(b) An   Am =   if n ≠ m; 
(c) For any α   An there are α1, …, αk   An+1 such that Fα= ⋃ 퐹 ; 
(d) 퐹  '   퐹  = 푉   Vα for any two distinct α, α'   An; 
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(e) for any strictly decreasing infinite cell sequence 퐹    퐹   … there exists x 
  F such that  n≥1 퐹  = {x}. 

If these conditions are satisfied, then 

                                 (F, ℱ , ν)= (F, {Fα}αA, {Vα}αA)                        

Is called a finitely ramified cell structure. 

Notation(5.1.5)[73] .   We denote Vn= ⋃ ∈ Vα. Note that Vn Vn+1 for all n ≥ 0 
by Definition(5.2.4). We say that Fα is an n-cell if α   An. 

Proposition(5.1.5)[218]:[237],[239],[240]. For any 푥    F there is a strictly 
decreasing infinite sequence of cells satisfying condition (G) of the definition. The 
diameter of cells in any such sequence tend to zero. 

Proof. Suppose	푥   F is given. We choose 퐹  = F. Then, if 퐹  is chosen, we 
choose 퐹 to be a proper sub-cell of 퐹  which contains x. Suppose for a moment 
that the diameter of cells in such a sequence does not tend to zero. Then for each n 
there is 푥    퐹  such that lim infn→∞훼  d((푥 , 푥) = ε > 0. By compactness there is 
y    n≥1퐹  such that d((푦, 푥) ≥ ε. This is a contradiction with the property (G) of 
Definition (5.1.4) 

Proposition(5.1.6)[218] .  The toplogical boundary of Fα is contained in Vα for any 
α A. 

Proof. For any closed set A we have ∂A= A ∩ Closure (Ac), where Ac is the 
complement of A. If A= Fα is an n-cell, then Closure (Ac) is the union of all n-cells 
except Fα. Then the proof follows from property (F) of Definition (5.1.4) 

Proposition(5.1.7)[218].The set V*=  α A Vα is countably infinite, and F is 
uncountable. 

Proof. The set V* is a countable union of finite sets, and every cell is a union of at 
least two smaller sub-cells. Then each cell is uncountable by properties (B) and (C) 
of Definition (5.1.4) 

Proposition(5.1.8)[218]. For any distinct 푥, y   F there is n(x, y) such that if m ≥ 
n (x, y) then any m-cell can not contain both 푥 and y. 

Proof. Let Bm (푥, y) be the collection of all m-cells that contain both 푥 and y. By 
definition any cell in Bm+1(x, y) is contained in a cell which belongs to Bm(푥, y). 
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Therefore, if there are infinitely many nonempty collections Bm(푥, y), then there is 
an infinite decreasing sequence of cells that contains both 푥 and y .  

Proposition (5.1.9)[218]. For any 푥   F and n ≥ 0, let Un(푥) denote the union of 
all n-cells that contain	푥. Then the collection of open sets 풰 ={ Un(푥)0}xF, n≥0 is a 
countable fundamental sequence of neighborhoods. Here B0 denotes the 
topological interior of a set B. 

     Moreover, for any	푥   F and open neighborhood U of 푥 there exist y   V* and 
n such that 푥   Un(푥)   Un(y) U. In particular, the smaller collection of open 
sets	풰′= {푈푛(푥) } ∈ ∗,  is a countable fundamental sequence of neighborhoods. 

Proof. Note that the collection 풰′  is countable because V* is countable by 
Propostion (5.1.16). The collection	풰 is countable because if 푥 and y belong to the 
interior of the same n-cell, then Un(푥) = Un(y). 

     First , suppose 푥   V*. Then we have to show that for any open neighborhood U 
of x there exists n ≥ 0 such that Un(푥) U. Suppose for a moment that such n does 
not exist. Then for any n the set Un(푥) \ U is a nonempty compact set. 

Moreover, the sequence of sets {Un(푥)\ U}n≥0 is decreasing and so has a nonempty 
intersection. Then we can choose z⋂ Un(x)\U. and for any n there is an n-cell 
that contains bothbx and y. This is a contradiction with Proposition (5.1.12) 

      Now suppose 푥   V*. Then for any n > 0 there exists yn  Vn such that x 
Un(yn)  Un-1(x). Moreover, we can assume also that Un(yn)   Un-1(yn-1) for any n 
>1. Then we have to show that any open neighborhood U of x there  exist n > 0 
such that Un(yn)  U. Suppose for a moment that such n does not exist. Then the 
set Un (yn)\ U is a nonempty compact set. Moreover, the sequence of sets 
{Un(yn)\U}n≥1is decreasing and so has a nonempty intersection. Then we can 
choose z  n≥1 Un(yn)\U, and for any n >1 there is an (n-1) – cell that contains 
both x and z. This is a contradiction with Proposition (5.1.12). 

     We assume that there is a resistance form on V* in the sense of Kigami [76, 84]. 
See Definition (5.1.1)For convenience we will denote ℰn(ƒ, ƒ) = ℰvn(ƒ, ƒ). Recall 
that ℰ(ƒ, ƒ)= limn	ℰ →	ℰn(ƒ, ƒ) for any ƒ   Dom ℰ , where the limit is actually non-
decreasing. 

Definition(5.1.10)[218]. A function is harmonic if it minimizes the energy for the 
given set of boundary values. 
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     Note that any harmonic function is uniquely defined by its restriction to V0. 
Moreover, any function on V0 has a unique continuation to a harmonic function. 
For any harmonic function h we have	ℰ 휀(h, h)= ℰn(h, h) for all n by [84]. Also 
note that for any function g   Dom ε we have ℰ0(g, g) ≤ ℰε(g, g), and a function h 
is harmonic if and only if ℰ 0 (h, h) =	ℰ(h, h). 

      Let ℰα (ƒ, ƒ) = (ℰα)vα(ƒ, ƒ), where ℰα is the restriction of ℰ to Fn. Then 

ℰn = 
 nA

V



  

Lemma(5.1.11)[218]. If h is harmonic and continuous then 

n
lim 

 FxAn ,,
ℰα(ℎ|  , ℎ| ) = 0 

Proof. Let ℰ(h, h) = e >0. It is easy to see that the limit under consideration is 
decreasing and so it exists. Suppose for a moment this limit is equal to c > 0. 

     Without loss of generality we can assume that h(푥)= 0 and that |h(y)| ≥1 for any 
y   V0\ { 푥 }. By Proposition (5.1.5) for any ε > 0 there are cells 퐹  , …, 퐹  such 
that |h(푥) – h(y)| < ε for any y   U  퐹  , and U  퐹  contains a neighborhood 
of 푥. Without loss of generality we can assume that V0   (U 퐹 \ { 푥 }) = ∅. 

      Let V' = U  푉 j and consider the trace of the resistance form on V0   V'. 
Obviously if ε is small then there is a uniform bound for conductances between 
point in V0\ {	푥 } and V'. Then consider changing the values of h on V' to zero. 
Inside of U  퐹 the energy will be reduced  by at least C, since the function is 
now constant there. On the other hand, outside of U 퐹 the energy increase will 
be bounded by a constant times εe. So the total energy will decrease if ε is small 
enough. This is a contradiction with the definition of a harmonic function, and so 
c=0. 

    Note that the proof works even if V' is an infinite set and so it is applicable to 
connected spaces with cell structure, such as the Sierpinski carpet, which is not a 
finitely ramified fractal. 

Corollary(5.1.12)[218]. If h is harmonic and continuous then there is a unique 
continuous energy measure 푣h on F defined by 푣h(Fα)= ℰα(ℎ| , ℎ| ) for all α   
A. 
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Definition(5.1.13)[218].  We fix a complete, up to constant functions, energy 
orthonormal  set of harmonic functions h1, …, hk= |V0| - 1, and define the Kusuoka 
energy measure by 

푣 = 푣 . + … + 푣 . 

   If Fα'  Fα , then 

Mα, α' : ℓ(Vα) → ℓ(Vα') 

is the linear map which is define as follows. If ƒα is a function on Vα then let ℎ  be 
the unique harmonic function on Fα that coincides with fα on Vα . Then we define 

Mα, α' ƒ α = ℎ |Vα' . 

Thus Mα, α' transforms the (vertex) boundary values of a harmonic function on  Fα 
into the values of this harmonic function on Vα' .We denote Mα = M0, α.. We denote 
Dα the matrix of the Dirichlet form ℰα on Vα. By elementary linear algebra we have 
the following Lemma (see [260] and also [237, 240, 247]. 

Lemma(5.1.14)[218]: If Fα = U퐹  then 

Dα = ∑M ,
∗ D M  

and 

v(Fα) = Tr M∗D M .  

In particular y is defined uniquely in the sense that it does not denend on the 
choice. 

We denote                                    Zα = 
∗

( )
 

 

if 푣(Fα) ≠ 0. Then we define matrix valued functions 

Zn(푥) = Zα 

If 푣(Fα) ≠ 0, α   An and x   Fα\ Vα. Note that Tr Zn(푥) = 1 by definition. 

Theorem(5.1.15)[73]. For  푣 -almost all 푥 there is a limit 

Z(푥) = limn→∞ Zn(푥). 
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Proof. One can see, following the original Kusuoka's idea [95, 94], that Zn is a 
bounded v-martingale. 

     One can see that the energy measures vh are the same as the energy measures in 
the general theory of Dirichlet forms [100, 106]. One can also define the matrix Z 
as the matrix whose cntrics are the densities 

푍  = dv

dv
ji hh ,

 

Using the general theory of Dirichlet forms in [227, 228]. However we give a 
different description because the pointwise approximation using the cell structure 
is important in this Theorem. 

Definition(5.1.16)[218]. A function is n-harmonic if it minimizes the energy for 
the given set of values on Vn. 

   Note that any n-harmonic function is uniquely defined by its restriction to Vn. 

Moreover, any function on Vn has a unique  continuation to an n-harmonic 
function. Also note that for any function g   Domℰ we have ℰn(g, g) ≤ ℰ(g, g), and 
a function f is n-harmonic if and only if ℰn(ƒ, ƒ) = ℰ (ƒ, ƒ). 

     Recall that R is the effective resistance metric on V*, and that any function in 
Dom ℰ is R-continuous. Let Ω be the R-completion of V*Then any u   Dom	ℰ  
has a unique R-continuous extension to Ω. The next Theorem generalizes [240]for 
possibly non self-similar finitely ramified fractals. 

Theorem(5.1.17)[218]. Suppose that all n-harmonic functions are conditions. Then 
any continuous function is R-continuous, and any R-Cauchy sequence converges in 
the topology of  F. Also, there is a continuous injective map θ: Ω → F which is the 
identity on V*. 

Proof. It is easy to see from the maximum principle that any continuous function 
can be uniformly approximated by n-harmonic functions, which implies that any 
continuous. Suppose for a moment that {xk} is an R-Cauchy sequence in V* which 
does not converge. By compactness, it must have a limit point say x . There is n 
and two disigint of {xk},say {yk}. 

Theorem(5.1. 18)[218]. Suppose that all n-harmonic functions are continuous. 
Then 	ℰ	 is a local regular Dirichlet form on Ω (with respect any measure that 
charges every nonempty open set). 
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Proof. The regularity of ℰ  is proved in [241]. In particular, Dom ℰ mod 
(constants)is a Hilbert space in the energy norm. Note that the set of n-harmonic 
functions is a core of ε in both the original and R-topologies. Also note that if a set 
is R-compact then it is compact in the original topology of ƒ by Theorem (5.1.17) 
Suppose now ƒ  and g are two functions in Dom ℰ with disjoint compact supports. 
Then, there is n and a finite number of n-cells Fα1, …, Fαk such that ⋃ F  
contains the support of ƒ but is disjoint with the support of g. Then it is easy to see 
that for any m ≥ n we have ℰm(ƒ, g) = 0 and so ℰ(ƒ, g) = 0. 

Definition (5.1.19)[218]. We say that ƒ   Dom ℰ is n- piecewise harmonic if for 
any α   An there is a (globally) harmonic function hα that coincides with ƒ on Fα. 

      Note that, by definition, the notion of n-piecewise harmonic functions in 
general is more restrictive than the more commonly used notion of n-harmonic 
functions defined in the pervious section. 

Definition(5.1.20)[218]. We  say that the resistance form on a finitely ramified 
fractal is weakly non degenerate if the space of piecewise harmonic functions is 
dense in Dom ε. 

     The notion of weakly nondegenerate harmonic structures was studied in [87] in 
the case of p.c.f. self-similar sets. 

Assumption (WN). In what follows we assume that the resistance form is weakly 
nondegenerate. 

Proposition (5.1.21)[218]: The (WN) assumption implies supp(v) = F. 

Proof. Our definitions imply that for any cell Fα there is a function of finite energy 
with support in this cell. If it can be approximated by piecewise harmonic 
functions, then v(Fα) > 0. 

Theorem(5.1.22)[218]. Let Fv be the factor-space (quotient) of F obtained by 
collapsing all cells of zero v-measure. Then Fv is a finitely ramified fractal with the 
cell and vertex structures naturally inherited from F. 

Proof. The only nontrivial condition to verify is that any cell of Fv has at least two 
boundary points. The maximum principle implies that a cell Fα has a positive v-
measure if and only if there is a harmonic function which is non constant on Vα. 

Definition(5.1.23)[218]. If f  is n-piecewise harmonic then we define its tangent 
Tanα f for α   An as the unique element of ℓ(V0) that satisfies two conditions: 
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(i) if hα, Tan is the harmonic function with boundary values Tanαf then hα,Tan 
coincides with f on Fα; 

(ii)hα, Tan has the smallest energy among all harmonic functions hα such that hα 
coincides with f on Fα. 

      We define L  as the Hilbert space of ℓ(V0)-valued functions on F with the norm 
defined by 

‖u‖  = ∫ 〈푢,푍푢〉dv. 

Definition(5.1.24) )[218]. If 푓 is n-piecewise harmonic then we define its gradient 
Grad f as the element of L  if 푥   Fα and α   An. 

 Lemma(5.1.25) )[218]  . If	푓 is n-piecewise harmonic then ℰ(f, f) – |‖Grad	푓‖  . 

Proof. Follows from Lemma (4.1.14). 

Theorem(5.2.26 )[218]  . Under the (WN) assumption Grad can be extended from 
the space of piecewise harmonic functions to an isometry 

Grad: Dom ℰ → ℒ , 

which is called the weak gradient. 

Proof. The statement follows from Lemma (4.1.25).and the (WN) assumption. 

Corollary(2.1.27) )[218]. Under the (WN) assumption we have 

푣  << 푣 

for any 푓   Dom ℰ. 

Proof. The statement follows from Theorem (5.2.26 ).It can be obtained directly 
from the (WN) assumption, or the general theory of Dirichlet forms [100, 106]. 

Conjecture(5.1.28 )[218]  . We conjecture that the assumption supp (v) = F is 
equivalent to the (WN) assumption for all finitely ramified fractals. 

Conjecture(5.1.29) )[218]  . We conjecture that for any finitely ramified fractal t 
all x. 

     The next Proposition follows easily from our definitions. It means, in particular, 
that Conjecture (5.1.29) ) implies Conjecture (5.1.28).  
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Proposition(5.1.30) )[218]  . If supp(v) = F and rank Z(x) = 1 for v-almost all x 
then the To define harmonic coordinates one needs to chose a complete, up to 
constant functions, set of harmonic functions h1, …, hk and define the coordinate 
map 	휓: F → Rk by 휓(푥)= (h1(푥), …, hk(x)). A particular choice of harmonic 
coordinates is not important since they are equivalent up to a linear change of 
variables. Below we fix the most standard coordinares which make the 
computations simpler. 

Definition(5.1.31)[218]. Let V0 = {v1,…, vm} and let hj be the unique harmonic 
function with boundary values hj(vi) = δi, j. Kigami's harmonic coordinate map ψ:F 
→Rm is defined by ψ(x) = (h1(x), …, hm(x)). 

Lemma(5.1.32)[218].   

(i) Any set 휓(Fα) is contained in the conver hull of 휓(V0).      
(ii) A set 휓(Fα) has at least two points if and only if 휓(Vα) has at least two 

points.                                                
(iii)  (iii) If on FH = 휓(F) we define a cell structure that consists of all sets 

ψ(Fα) that have at least two points, then conditions (A) (E) and (G) of 
Definition (5.1.4) are satisfied. 

   (iV)   If for all n and for any two distinct α, α'   A we have 

휓(Fα')   휓(Fα) = 휓(Vα')   휓(Vα), 

  then FH = ψ(F) is a finitely ramified fractal with the cell  structure defined in Item 
(iii) of this Lemma. 

Proof. The maximum principle implies that ψ(Fα) is contained in the convex hull 
of ψ(Vα), which implies the other statements. 

Theorem(5.1.40)[218] . 휓: F → FH = 휓(F) is a homeomorphism if and only if for 
any α   A the map ψ|Vα is an injection, and 

휓(Fα'   Fα) = 휓(Fα')   휓(Fα) 

for all α, α' A. 

Assumption (HC). In what follows we assume that ψ: F → FH = ψ(F) is a 
homeomorphism. 

Proposition(5.1.33)[218]. The (HC) assumption implies the (WN) assumption. 
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Proof. It is easy to see that under the (HC) assumption any cell has positive 
measure, and that any continuous function can be uniformly approximated by 
piecewise harmonic functions. The latter is true because all harmonic functions are 
linear in harmonic coordinates, and the maximum principle implies that ψ(Fα) is 
contained in the convex hull of ψ(Vα). 

Theorem(5.1.34)[218]. Under the (HC) assumption we have that if ƒ is the 
restriction to F of a C1(Rm) function then ƒ   Dom	ℰ , and such functions are dense 
in Dom ℰ . 

Moreover, if ƒ   C1 (Rm) then 

in the sense of the Hilbert space L . In particular we have the Kigami formula 

ℰ(ƒ, ƒ) ‖∇푓‖  = = ∫F 〈∇푓, 푧∇푓〉 dv 

for any ƒ   C1 (Rm). 

Proof. In fact, we will prove this result for a somewhat larger space of functions. 

We  say that f is a piecewise C1 – function if for some n and for all α ∈ An there is 
ƒ α   C1 (Rm) such that ƒ α|Fα = ƒ |Fα . In particular, a piecewise harmonic function is 
piecewise C1. 

     If g is a linear function in Rm then g|V0 = g since we identify ℓ(V0) with Rm in 
the natural way. Therefore for any piecewise harmonic function ƒ we have Grad ƒ 
= ƒ in the sense of the Hilbert space L . 

      Any C1- function is a piecewise C1- function, and any piecewise C1-function 
can be approximated by piecewise harmonic (that is, piecewise linear) functions in 
C1 norm. Thus, to complete the proof we need an estimate of the energy of a 
function in terms of its C1 norm, provided by the next simple Lemma (5.2.44) 

Lemma(5.1.35)[218]. If f is the restriction to F of a C1(Rm) function then 

ℰn(ƒ, ƒ) ≤ v(F)‖푓‖ (ℝ )                                        (1) 

and the same estimate holds for |ε(ƒ, ƒ)|. 

Proof. By Definition [237, 240] of ℰn we have that 

ℰn(ƒ, ƒ ) = ∑ 퐶, ∈ n, x, y(ƒ (x) – ƒ (y))2 ≤ 

‖푓‖ (ℝ ) ∑ 퐶, ∈ n, x, y|x – y|2 - ‖푓‖ (ℝ )v(ƒ) .               (2) 
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  [227].[228]   The energy measure Laplacian can be defined as follows. We say 
that ƒ   Dom ∆v if there exists a function ∆v ƒ   L  such that 

                                               ℰ(ƒ, g) = - ∫F g∆vƒdv                                         (3) 

for any function g   Dom ℰ vanishing on the boundary V0. By [84]. The Laplacian 
∆v is a uniquely defined linear operator with Dom ∆v  Dom ε. In fact Dom ∆v is ℰ 
-dense in Dom ε, and is also dense in L  . The Laplacian ∆v is self-adjoint with, 
say, Dirichlet or Neumann boundary conditions. Formula (3) is often called the 
Geuss-Green formula Extensive information on the relation of a Dirichlet form. 

Theorem(5.1.36)[218].. Under the (HC) assumption we have that if ƒ is the 
restriction to F of a C2 (Rm) function then ƒ   Dom ∆v, and such functions are ℰ - 
dense in Dom ∆v. Moreover, v-almost everywhere 

∆ ƒ = Tr (ZD2ƒ) 

where D2ƒ is the matrix of  the second derivatives of ƒ. 

Proof. We start with defining a different sequence of approximating energy forms. 

In various situations these forms are associated with so called quantum graphs, 
photonic crystals and cable systems. If ƒ   C1 (Rm) then we define 

ℰ  ( ƒ, g) = ∑ 퐶, 	∈ n, x, y ℰ ,  (ƒ, ƒ) 

where 

ℰ , (ƒ, ƒ) = ∫ ( ƒ	(x(1	– 	t) 	+ 	ty)) dt 

is the integral of the square of the derivative 

 ƒ (x(1 – t) + ty) = 〈∇	푓	(푥(1 − 푡) + 	푡푦), 푦 − 푥〉 

0f ƒ along the straight line segment connecting x and y. Thus ℰ , ( ƒ, ƒ) is the 
usual one dimensional energy of a function on a straight line segment. If f is linear 
then  ℰ , ( ƒ, ƒ) = (ƒ (x) – ƒ (y))2. Therefore if ƒ is piecewise harmonic then ℰ ,  ( 

ƒ, ƒ) = ℰ ,  ( ƒ, ƒ) for all large enough n. Also	ℰ ,  satisfies estimate (1) Therefore 
for any C1(Rm) – function we have 

lim
→

ℰ , (	ƒ, ƒ	) 	= 	ℰ(	ƒ, ƒ	) 
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by Theorem (5.2.34) 

     It is easy to see that if g is a C1(Rm) – function vanishing on V0 and f is a C2(Rm) 
– function then 

ε ,  (f, g) = ∑ 퐶, 	∈ 	 n, x, y ∫
1
0 g(x(1-t) + ty) (  f(x(1-t) + ty)) dt 

because after integration by parts all the boundary terms are canceled. Then if    
An then  

∑ 퐶, 	∈ 	 n, x, y  ƒ (x(1-t) + ty) = 

∑ 퐶, 	∈ 	 n, x, y ∑ D 	, ƒ (x(1 – t) + ty)(yi – xi)(yj - xj) 

                                                    =Tr(M∗Dα Mα(D2 ƒ (xα) + Rn(x, y, t, ƒ, α, xα))) 

where xα   Vα and 

lim
→

|Rn(x, y, t, ƒ, α, xα)| = 0 

Uniformly in α   An, x, y, xα   Fα  and t   [0, 1], which completes the proof. Note 
also that one can obtain an estimate similar to (1). as in Corollary (5.1.37) 

Corollary(5.1.37)[218]. Under the (HC) assumption, ∆v ƒ   L∞(F) for any ƒ   C2 
(Rm). 

Corollary (5.1.38)[218]. If ƒ is the restriction to F of a C2(Rm) function, and g is 
the restriction to F of a C1 (Rm) function vanishing on the boundary, then 

|εn(ƒ, g)| ≤ v(F)||g||C(Rm)||푓|| (ℝm) 

And the same estimate holds for |ε(ƒ, g)|. 

Proof. This estimate follows from the proof  of Theorem (5.2.46) 

Definition(5.1.39)[218].[234],[235],237],240]. A compact connected metric space 
F is called a finitely ramified self-similar set if there are injective contraction maps 

Ψ1. …, ψm: F → F 

and a finite set V0   F such that 

F =  
m

i
i F

1
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and for any n and for any two distinct words w, w'   Wn = {1, …, m}n we have 

Fω   Fω' = Vω  Vω' , 

where Fω = ψ(F) and Vω = ψω (V0). Here for a finite word ω = ω 1 … ω n   Wn we 
denote 

ψω= ψ o … o ψ  

The set V0 is called the vertex boundary of F. 

Proposition(5.1.40)[218]. A finitely ramified self-similar set is a finitely ramified 
fractal provided V0 has at least two elements. 

     We have An = Wn for n ≥ 1 and A = {0}   W*, where W* =  n≥1 Wn. 

Proof. All items in Definition (5.1.4) are self-evident. Note that item (B) holds 
because each cell is connected and has at least two elements, and the intersection 
of two cells is finite. Item (G) holds because ψi are contractions. 

Definition(5.1.41)[218]: A resistance form ε on V*, is self-similar with energy 
renormalization factors ρ= (ρ1, …, ρm) if for any ƒ   Dom ε we have 

                                             ℰ(ƒ, ƒ) = ∑ 휌iε(ƒi, ƒi).                                           (4) 

Here we use the notation ƒω = ƒo ψω for any ω   W*. 

       The energy renormalization factors, or weights, ρ = (ρ1, …, ρm) are often also 
called conductance scaling factors because of the relation of resistance forms and 
electrical networks. They are reciprocals of the resistance scaling factors rj =  . 

Definition  (5.1.42)[218] . For a set of energy renormalization factors ρ = (ρ1, …, 
ρm) and any resistance form ε0 on V0 define the resistance form Ψρ(ε0) on V1 by 

Ψp (ε0) (f, f) = ∑ 푝i ε0(gi, gi), 

where 

gi =  ∫ | ( ) 푂휓 . 

Then A(ε0) is defined as the trace of Ψp(ε0) on V0 : 

A(ε0) = TracV0 Ψρ(ε0). 

     The next two Propositions are essentially proved in [76, 84, 86]. 
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Proposition(5.1.43)[218]. If ε is self-similar then ε0 = A(ε0). 

Proposition(5.1.44)[218]. If  ε0 is such that ε0 = A(ε0) then there is a self- similar 
resistance form ε such that ε0 is the Trace of ε on V0. 

Theorem(5.1.45) [218]. On any self-similar finitely ramified fractal with a self-
similar continuous. Since all ψi are contractions, there is n such that any n-cell 
contains for any ω   Wn and any harmonic function h we have 

max	h(푥)
푥 ∈ 퐹

– 	min	 h(푥)
푥 ∈ 퐹

 ≥ (1- ε) max	 h(푥)
푥 ∈ 퐹 – 	min	 h(푥)

푥 ∈ 퐹  

Then for any positive integer m and any w   Wmn we have 

max	h(푥)
푥 ∈ 퐹

– 	min	 h(푥)
푥 ∈ 퐹

 ≥ (1 − 	휀)	 max	 h(푥)
푥 ∈ 퐹 – 	min	 h(푥)

푥 ∈ 퐹  

We conjecture that the many other results of [76, 84] on the topology and analysis 
on p.c.f. self-similar set hold for finitely ramified self-similar sets as well. The next 
Theorem is one of these results. Following [75, 84], we say that the self-similar 
resistance form is regular if	휌  > 1 for all i. 

Theorem(5.1.46)[218].If a self-similar resistance form on a self-similar finitely 
ramified. 

Proof. If diam R(.) denotes the diameter of a set in the effective resistive metric R, 
and  휌 = 휌 …휌  for any finite word 푤3= 푤1 …	푤n Wn then 

diam R(F) ≥ 휌 diam  R(F ω) 

by the self-similarity of the resistance form and the Definition of the metric R. 

Definition(5.1.47)[73]. The group G is said to act on a finitely ramified fractal F if 
each g   G is a homeomorphism of  F such that g(Vn) = Vn for all n ≥ 0. 

Proposition    (5.1.48)[73] . If a group G acts on a finitely ramified fractal F then 
for each g ∈ G and each n-cell Fα, g(Fα) is an n-cell. 

Proof. We have that n-cells are connected, have pair wise disjoint interiors, and 
their topological boundaries are contained in Vn, which is preserved by g by 
definition. 

Theorem(5.1.49)[218]. Suppose a group G acts on a self-similar finitely ramified 
fractal F and G restricted to V0 is the whole permulation group of V0. Then there 
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exists a unique, up to a constant, G-invariant self-similar resistance form ε with 
equal energy renormalization weights and 

                      ℰ0 (푓, 푓) = ∑ (, 	∈ 	푓 (x) – 푓 (y))2.                                           (5) 

Proof. It is easy to see that, up to a constant, E0 is the only G-invariant resistance 
form on V0. Let ρ1 = (1, …, 1). Then A(ε0) is also G-invariant and so ε0 = cTrace V0 
Ψρ1 (ε0) for some c. Then the result holds for ρ= cρ1 by Proposition (5.1.43) and 
Proposition (5.1.44) 

       An n-cell is called a boundary cell if it intersects V0. Other wise it is called an 
interior cell. We say that F has connected interior if the set of interior 1-cell is 
connected, any boundary 1-cell contains exactly one point of V0, and the 
intersection of two different boundary 1-cells is contained in an interior 1-cell. The 
following theorem is proved in [85] for the p.c.f. case, but the proof applies for 
self-similar finitely ramified fractal without any changes. 

Theorem(5.1.50)[73]. [231]. Suppose that F has connected interior, and a group G 
avts on a self-similar finitely ramified fractal F such that its action on V0 is 
transitive. Then there exists a G-invariant self-similar resistance form ε. 

        Other results in [231] also apply for self-similar finitely ramified fractal. 

Example(5.1.51)[218]. (Unit interval). The usual unit interval is a finitely ramified 
fractal. In this case V* can be countable dense subset of {0, 1}. The usual energy 
form 

ε(ƒ, ƒ) = ∫10 | ƒ' (t)|2 dt 

satisfies all the assumptions of our paper. The energy measure is the Lebesgue. 

Example (5.1.52)[218] . (Quantum graphs). A quantum graph, a collection of 
finite number of point in Rm joined by weighted straight line segments (see [245, 
246] and also the proof of Theorem (5.1.36) is a finitely ramified fractal. The usual 
energy form on a quantum graph, which is the sum of weighted standard one 
dimensional forms on each segment, satisfies all the assumptions of our Section. 
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FIGURE 1. Sierpinski gasket in the standard harmonic coordinateski 

Example (5.1.53)[73].(Sierpinski gasket). The Sierpinski gasket is a finitely 
ramified fractal. The standard energy form [236, 237, 240] on the Sierpinski gasket 
satisfies all the assumptions of our section. The Sierpinski gasket in harmonic 
coordinates, see Figure 1, was first considered in [238], where the statement of 
Theorem (5.1.34) was proved in this case. The statement of Theorem (5.1.36) was 
announced in [261]. without a proof. In the case of the standard energy form in the 
Sierpinski gasket Conjecture (5.1.29) was proved in [247]. The fact that the energy 
measure is singular with respect to any product (Bernoulli) measure was proved in 
[247, 226, 232, 233]. 
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FIGURE 2. The residue set of the Apollonian packing 

Example(5.1.54)[218] . (The residue set of the Apollonian packing). It was proved 
in [261] that the residue set of the Apollonian packing, see Figure 2. is the 
Sierpinski gasket in harmonic coordinates defined by a non self-similar resistance 
form. This resistance form satisfies all the assumptions of our section, including 
the (HC) assumption. 

Example(5.1.55)[218] . (Random Sierpinski gasket). In [253] a family of random 
Sierpinski gasket was described using harmonic coordinates. Naturally, the results 
of this section apply to these random gaskets, and the (HC) assumption is satisfied 
due to the way in which these gaskets are constructed. Also, many examples of 
random fractals in [80, 81] satisfy the (HC) assumption, although the harmonic 
coordinates were not considered explicitly. 

Example(5.1.56)[218]  (Hexagasket). According to [260], the Hexagasket satisfies 
the (WN) assumption but not the (HC) assumption. However, by small 
perturbations of the harmonic coordinates one can construct two functions of finite 
energy which map the hexagasket into R2 homeomorphically. Then the conclusion 
of Theorems (5.1.15) and (5.1.34)will hold because of the general theory of 
Dirichlet forms in [227, 228] However Theorem (5.1.36)will not hold unless these 
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coordinates are in the domain of the domain of the energy Laplacian, which is 
difficult to verify. 

Example(5.1.57)[218].  (Quotients of p.c.f. fractals). If we consider quotient of a 
p.c.f. fractal defined by its space of harmonic functions, and conditions of Theorem 
(5.1.32) are satisfied (see also Theorem (5.1.18)then we have a finitely ramified 
fractal which satisfies the (HC) assumption by Definition.Note that this set is not 
self-affine. In harmonic coordinates the Hexagasket is represented as a union of a 
Cantor set and a disjoint union of countably many closed straight line intervals. 
One can show that the energy measure of this Cantor set is zero, and in fact the 
energy measure is proportional to the Lebesque measure an each segment. Note 
that in the limit no two intervals graph. In this case a three point boundary, see 
[258, is chosen so that the resulting fractal can be embedded in R2. For a different 
choice of the boundary the local structure of the fractal in harmonic coordinates is 
the same. 

Example(5.1.58)[218] . (Vicsek set). Vicsek set (see, for instance, [89] is a finitely 
ramified fractal which does not satisfy the (WN) and (HC) assumptions. In 
harmonic coordinates it is represented by four straight line segments graph with 
five vertices and four edges, which is not homeomorphic to the Vicsek set. 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. A regular post-critically infinite fractal and its first approximation. 
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Example(5.1.59)[218] . (Post-critically infinite Sierpinnski gasket). The post-
critically infinite Sierpunski gasket, but is not a p.c.f. self-similar set. More 
exactly, its post-critical set defined in [237, 241] is countably infinite, and each 
vertex  v   V* is an intersection of countably many cells with pairwise disjoint 
interior. This fractal satisfies Definition (5.1.39) and can be constructed as a self-
affine fractal in R2 using nine contractions, we also sketch the first approximation 
to it in harmonic coordinates. In particular, shows the values of a symmetric and a 
skew-symmetric harmonic functions. By Theorem (5.1.49) one can easily construct 
a resistance form such that for any n the resistance are equal to (50/ 53)n in each 
triangle with vertices in Vn. The energy renormalization factor is 53/ 50 = ρ1 = … = 
ρ9. The fact that this factor is larger than one is significant because it implies that 
the harmonic structure is regular by Theorem (5.1.46), that is Ω = F. By Theorem 
(5.1.32),   this resistance form satisfies all the assumptions, including the (HC) 
assumption. 

Example(5.1.60)[218]. In the end we describe two more examples of post-
critically infinite finitely ramified fractals, which are shown in Figures 3 and 4. In 
these examples for any n there are n-cells which are joined in two points. Both 
fractals satisfy Definition (5.1.39).And can be constructed as a self-affine fractal in 
R2 using six contractions. In particular, one can see the values of symmetric and 
skew-symmetric harmonic functions on each fractal. By Theorem (5.1.49) one can 
easily construct resistance forms such that Fg is given by  52 By Theorem (5.1.32),   
these re an elementary shows that the common energy renormalization factor in 
 51  is 5/4, and so the resistance form is regular. In the case of the fractal in Figure 
4., the calculation shows that the common energy renormalization factor in  51 is 
4/5, and so the resistance form is non regular. 
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FIGURE 4. A non regular post-critically infinite fractal and its first approximation. 

Sec(5.2) Derivatives on p.c.f Fractals  

     For the last twenty years a theory of analysis on fractals has evolved, with the 
construction of Laplacians and Dirichlet forms as cornerstones. There is both a 
probabilistic approach, where the Laplacian is constructed as an infinitesimal 
generator of a diffiusion process, and an analytic approach where the Laplacian can 
be defined as a limit of difference operators. In this section we will work in the 
context of post critically finite (p.c.f.) fractals, for which Kigami laid the 
foundations of an analytic theory[236,237,238,239]. 

     We consider one of the most fundamental topics in analysis; the local  structure 
of smooth functions.This is not only an interesting matterbas such, it also shed 
light on an important phenomenon that does not occur when the underlying set is 
smooth. 

     In classical analysis any two points in the interior of the considered set have 
homeomorphic neighborhoods. This is not the case in analysis on fractals. Some 
points, called junction points, are boundary points of several copies of the self-
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similar set and neighborhoods of such points are different from those at 
nonjunction points that have a canonical basis of neighborhoods consisting of 
copies of the self-similar set. However, although two nonjunction points 푥, 푥 ' have 
bases of homeomorphic neighborhoods, the homeomorphisms do not in general 
map x onto 푥′ .  

     It turns out that, as a consequence of the above, the local behavior of functions 
depend on the point under consideration. This geography is destiny principle, that 
has no analog whatsoever in analysis on smooth sets, were proven for harmonic 
functions on the Sierpinki gasket by Oberg, Strichartz and Yingst in [267]. 
Restriction to the canonical neighborhoods will, for most harmonic functions, line 
up in the same direction, a direction that depends on the point, or rather the 
neighborhood. This property follows from theorems on products of random 
matrices since the restrictions to the canonical neighborhoods are given by linear 
mappings. 

     We will show that the geography is destiny principle extends to order fractals 
and to larger classes of functions with certain smoothness properties. 

     Generally speaking, the notion of smoothness of function addresses the degree 
of differentiability of the function and its derivatives. Since the basic differential 
operator in analysis on fractals is the Laplacian, the term smooth has mostly been 
used for a function ƒ in the domain of the Laplacian, It has also been used to refer 
to those ƒ for which ∆Kf is continuous for some or all k. 

     On the other hand, in the classical calculus a differentiable function locally 
behaves like an affine linear mapping. In fractal analysis the analogs of such 
mappings are the harmonic functions, and from this point of view we make a 
natural definition of a derivative, and thus a concept of differentiability, of a 
functions with respect to a harmonic function. This gives us wider classes of 
functions with some degree of smoothness for which we can prove geography is 
destiny. We also relate this derivative to the gradient defined by the second author 
[260]. 

     Our results concerns generic, with respect to a self-similar measure, properties 
of the local behavior of smooth functions at nonjunction points. It would be 
interesting to know if the same properties hold generically with respect to the 
Kusuoka energy measure [247, 260]. Local behavior at junction points were 
studied in [256]. 
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     It is likely that our results can be extended to the category of self-similar finitely 
ramified fractals in [218]. 

     We need to fix some notation, and at the same time recall some of the basic 
results of  the  theory. We refer to the books by Kigami [240] and Strichartz [258] 
for the whole story. 

     Positive constants in estimates will be denoted by C. The value of C might thus 
change from to line. 

     F will denote a, p.c.f. self-similar fractal, or post critically finite self-similar set, 
as defined in [240]. By is a compact connected metric space and there are 
contractions 휓 ,…,휓 :퐹 → 퐹	푠uch that 

                                 F=⋃ 휓 (퐹),                                                               (6) 

and  a finite set V0 ⊂ F such that for any n and for any two distinct words 푤,푤′ ∈ 
Wn= {1,…, m}n we have 

                                    퐹  ⋂퐹 푉  ⋂푉                                                          (7) 

Where 퐹  = 휓 (퐹) and	푉 = 휓퓌(V0). Here for a finite word	푤 =  푤  …	푤 ∈Wn  

We denote 

                                           휓 = 휓 Ο…휓  =                                       (8) 

We call 퐹 ,푤 ∈ W   a cell of level n. If ƒ is any function defined on F we use 
notation 푓 = ƒ ο 휓 for its restriction to퐹 . 

     The set V0 is called the boundary of F and consequently points in V0 are 
referred to as boundary points. The fractal F is p.c.f. self- similar fractal if every 
boundary point is contained in only one 1-cell. We denote the number of boundary 
points by Nο and will assume that Nο ≥ 2. A point 푥 ϵ F is called a junction point if 
푥 ϵ	퐹 ∩ ϵ	퐹 '  for two distinct 푤, 푤 ' ϵ Wn. 

     Define Vn= ⋃ 푉	 	  V*= ⋃n≥1 Vn and 푊∗ =⋃n≥1 Wn. If 푤 = 푤 …푤  ϵ  푊∗. 
we say that 	|푤| = K is the length of w. It is easy to see that V* is dense in F. Note 
that, by definition, each ψi maps V* into itself injectively. 

      Let Ω= {1, …m}N be the space of infinite sequences 푤 = 푤 푤 … and Wn= {1, 
…, m}n the set of finite words in letters 퓌∈ W1= {1, …, m}. For any 푤 ∈ Ω let 



174 
 

[푤]n= 푤 …푤 ∈ wn and [w]n, K=푤 n+1… 푤 K ∈ WK-n , K > n, These notations will be 
used also for 푤 ∈W* and K<n ≤| 푤 |. 

     There is a natural continuous projection π: Ω⟶ F defined by 

                                              휋(w)= ⋂n≥0 F[w]n ,                                           (9) 

and π-1{	푥 } is finite for any	푥 by the p.c.f. assumption. Moreover, π-1{x} consists 
of more than one element if and only if 푥 is a junction point . In case 푥 is not a 
junction point we can therefore define = {푥}  [w]n and [푥]n,K = [w]n,K if 푥 = π(w). 

In particular, {푥} 	is well defined for any 푥 ∉ V*. 

     We assume that a harmonic structure, as defined in [12], is fixed on the p.c.f. 
self-similar structure. This will give rise to a self-similar Dirichlet (resistance, 
energy) form 

                      ε(ƒ)= ∑ 푝iε(ƒ, ƒ)= ∑ 푝∈ wε(ƒw, ƒw).                            (10) 

Here pw= 푝 , …, 푝 where p= (p1, … ,pm) are the energy renormalization factors. 
The energy renormalization factors, or weights, are often called conductance 
scaling factors because of the relation of resistance forms and electrical networks. 
They are reciprocals of the resistance scaling factors rj= 1/pj. We will always 
assume that the resistance form is regular, i.e. pj >1, j=1, …, m. 

The domain, Dom ε, of ε consists of continuous functions such the energy, ε(ƒ)=  
ε (ƒ, ƒ )  < ∞.                                                                                                                                                                            

       A function on F is harmonic if it minimizes the energy for the given set of 
boundary values. 

     Harmonic functions are uniquely defined by their restrictions to V0 and we 
often, for convenience, identify the space of harmonic functions with the N0-
dimensional space l(V0) of functions on V0. 

     The restrictions of a harmonic function to cells of level 1 give rise to linear 
mappings Ai, i= 1, …, m on l(V0) through Aih= hi  ο ψi. The restrictions to smaller 
cells are given by products of these matrices since hw= h ο ψw= Awh, where Aw= 
퐴  … 퐴  for w∈Wn. 

     Constant functions are harmonic so constant functions on l(V0) will be 
eigenvectors of all the mappings Ai, i= 1, …, m with the corresponding eigen value 
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equal to 1. To study the local behavior of harmonic functions it is therefore useful 
to factor out the constant functions. Denote by ℋ the space of harmonic functions 
such that ∑ ℎ(푞)∈  =0 and define operators A'I, i= 1, …, m on ℋ by A'i= 
PℋAiP Pℋ∗  , where Pℋ is the projection of l(V0) onto ℋ given by Pℋh= h- 
∑ ℎ(푞). Note that each Aj commutes with Pℋ . 

     We will from now on assume that the matrices Ai are invertible, which implies 
that A'I are invertible. This is an underlying assumption in the theory of product of 
random matrices that we will use. It is equivalent to that the restriction of a 
nonconstant harmonic function to any cell is itself nonconstant. Harmonic 
structures with this property are called nondegenerate. To see what the local 
behavior of harmonic functions on a degenerate harmonic structure might be like, 
there is an interesting study in [267] on the case of the hexagasket. 

     For any function ƒ defined on Fwe will denote by Hƒ the unique harmonic 
function that coincides with ƒ on the boundary. 

     Given a finite nonatomic measure μ on F with the property that μ(O) >0 for any 
nonempty open set O there is a Laplacian ∆μ, that is an unbounded operator defined 
on a dense set of continuous functions by 

                                               ε(u, v)= - ∫F u∆μvdμ                                        (11)    

for any μ ∈ Dom ε with u|v0= 0. In this section we will always assume that ∆μv ∈ 
L∞(F). Functions with this property is denoted Dom L∞∆μ but we will in what 
follows omit the index L∞. We will also always assume that μ is self-similar, i.e. 
that there are real numbers μi , i= 1, …, m such that μ(Fw)=1. 

      Harmonic functions are exactly those for which ∆μh= 0. It should be noted that 
even though the Laplacian depends on the measure μ, the set of harmonic functions 
only depend on the harmonic structure. 

     There is a Green's operator 

                                     Gu(푥)= ∫F g(푥, y)u(y)du(y)                                     (12) 

acting on L∞(F) such that -∆Gu= u, and Gu|V0= 0. Thus, any function ƒ∈ 
Dom∆ can be written ƒ = Hƒ – Gu. The Green's function g(푥, y) is continuous for 
regular harmonic structures. 

     We next define some regularity classes of functions on F. 
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Definition(5.2.1)[262].  We say that ƒ ∈CK(ℋ) if there are harmonic functions h1, 
…, hl∈ℋ and u ∈CK(Rl) such that ƒ = u(h1, …, hl). We say that ƒ ∈CK(Dom	∆ ), if 
there are g1, …,gl ∈ Dom	∆ and u∈CK(Rl) such that ƒ = u(g1, …., gi). 

     Note that whereas CK(Dom 	∆ ) and CK(ℋ) are multiplication domains, in 
general Dom	∆ is not by [264, 232, 233] . Also note that by definition CK(ℋ)⋃ 
Dom	∆ ⊂ CK(Dom	∆ ). 

     There are several approaches to define derivatives on a p.c.f. fractal F. A weak 
gradient was studied by KusuoKa in [247, 248]. A stronger notion of gradients and 
tangents was considered in [256, 260] by Strichartz and the second author. In this 
section we introduce the following definition. 

Definition  (5.2.2)[262 ]. Let ƒ and h be real valued functions on a p.c.f. fractal F, 
and suppose h is continuous at 푥 ∈ F. For S ⊆ F let Oscsh= sup , ∈ |h(y)- h(푥)|. 

Then we say that f is differentiable with respect to h at a nonjunction point x if 
there is a real number (푥) such that 

           ƒ(y)= ƒ (푥) + (푥)(h(y) – h(푥)) + o푠푐 [ ] ℎ																																															 (13) 

where n is such that y ∈ F[x]n, and at a junction point 푥 if 

         ƒ(y)= ƒ (푥) + (푥)(h(y) – h(푥)) + o푠푐 ( )(ℎ) y→ x	 ,                             (14) 

where Un(푥) is a canonical basis of neighborhoods and n is such that y ∈ Un(푥). 
Naturally, (푥) is called the derivative of f at 푥 with respect to h. 

     It is easy to show usual properties of the derivative df
dh(푥), such as sum, product, 

ratio and chain rules. Also if f is differentiable with respect to h at 푥, then f is 
continuous at x. For later use we formulate the following version of the chain rule. 

Proposition (5.2.3)[262 ]. Suppose 푓j: F → R, j= 1, …, l are differentiable with 
respect to h at x and that g: Ri → R is in C1(Ri). then g(푓1, …, 푓i) is differentiable 
with respect to h at x and 

                    ( ( ,…, )) (푥)= ∑  푓 1, …, 푓 i) (푥).                                  (15) 
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We will only use Definition(5.2.2) for h harmonic. Harmonic functions are 
the natural choice with respect to which one should differentiate since they are, in a 
sense, the analogues of linear functions on the interval. In fact, we will only 
differentiate with respect to h ∈ ℋ since 

( )
 =  for any constant c. The 

maximum and minimum of a harmonic function is always attained on the boundary 
and we can therefore replace  o푠푐 [ ] ℎ[ ]  by ||A′[ ] h|| in(13) 

We state the results on products of random matrices that will be used 
subsequently and we formulate a condition on the harmonic structure that is 
necessary to apply most of these results. We also state two main assumptions, a 
weak and a strong, on the self-similar measure. Each of these is precisely the 
condition, the weak one for the derivative and the strong one for the gradient, that 
allows one to say that on sufficiently small cells the influence of H푓[ ] dominates 
the term from the Green's function μ a.e. . This is the basis of essentially all of the 
results that do not follow directly of the theory on products of random matrices. 

     We prove that a function	푓 ∈ C1(ℋ) is differentiable with respect to arbitrary 
nonconstant harmonic functions μ. a.e. (see Theorem (5.2.23)  Then, according to 
Definition (5.2.2) the function	푓 behaves as a function of one variable up to smaller 
order terms. This means, in a sense, that the space F is essentially one dimensional. 
We then prove, under the weak main assumption, the same result for any 
function 	푓  ∈C1(Dom ∆u) in Theorem (5.2.24)   We also prove an analog of 
Fermat's theorem on stationary points and discuss the relationship between our 
derivative and local derivatives defined at periodic points in [263, 265]. 

     We prove the “geography is destiny” principle for smooth functions on the set 
where the derivative is different from zero and then use this to prove a result on the 
local behavior of the eccentricity for functions defined on fractals with three 
boundary points. The concept of eccentricity was introduced and studied for 
harmonic functions on the Sierpinski gasket in [267] and were studied for larger 
classes of functions in [254]. 

     We relate the derivative to the gradient defined in [256, 260] under the strong 
main assumption. Using this relation and technical results from the theory of 
products of random matrices we are also able to show geography is destiny on the 
set where the gradient is different from zero. 
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     Since our aim is to describe the local behavior of functions with certain 
smoothness properties with that of harmonic functions it is essential to understand 
their local structure. 

     If 푥 ∈ F is a nonjunction point it is contained in a unique sequence of cell F	푥 |n, 
and the local behavior of harmonic functions at 푥 is given by the properties of the 
products 퐴′[ ] |	. The generic local behavior of harmonic functions with respect to 
a self-similar measure μ will thus be governed by the product of i.i.d. random 
matrices. We define random matrices. 

Mn(푥)= 퐴′[ ]  

on the probability space (F, μ) with the Borel sigma-field. Note that we have 

[Mn= 퐴′ ] = 휇 , 

and the random matrices Mn are products of i.i.d. random matrices with a common 
Bernoulli distribution given by 

[M1= A'i]= μi , i=1, … ,m.                                          (16) 

     In the 60s and 70s a theory of products of random matrices, as a natural 
generalization of the classical limit theorems to products of i.i.d. invertible 
matrices, was developed by Furstenberg, Kesten, Guivarch, le page, Raugi, 
Osseledec et al. 

In this section results and concepts from this theory that we will rely upon are 
summarized. They can all be found in [266], where the reader will find references 
to the original sources. However, we start by introducing the following notation. 

     The next Lemma collects some properties of the notion ∅(an). As the proof is 
elementary we omit it. 

Lemma (5.2.4)[ 262]. Suppose Cn= ∅(an) and dn= ∅(bn). Then the following 
properties hold. 

(i) 1/cn= ∅((1/a)n) 

(ii) cndn= ∅((ab)n) 

(iii) ∑ 푐n is ∅(aN) if a>1, O(1) if a<1 and ∅(1) if a=1. 
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(iv) ∑ 푐n= ∅(aN) if a<1. 

Moreover, cn=∅(an) if and only if cn= o((a+	휖)n= o((a-	휖)n = o(cn) for any 휖>0 but 
Cn= ∅(an) is not equivalent to Cn= O(an). 

     Throughout the rest of this section Yn∈ Gl(R, d), n≥1, will be any sequence of 
i.i.d. invertible d x d random matrices with common distribution M and Sn= Yn … 
Y1.We also suppose the support of M is finite since this obviously holds for Mn 
with distribution given by (16 ). It should be noted that the results we present do 
not depend on the particular norms chosen on Rd and Gl(R, d). 

Theorem(5.2.5)[262  ]: [266] Let a1(n) ≥ a2(n) ≥… ≥ ad(n) >0 be the square roots 
of the eigenvalues of (Yn … Y1)* (Yn … Y1). 

Then there are numbers α+= α1 ≥ α2 ≥ …≥ αd = α- >0 such that with probability one 

                                       ap(n)= ∅(α  ), p= 1, …, d                                      (17) 

and moreover 

                                       ||Sn||= ||Yn … Y1||= ∅(α )                                     (18) 

Definition(5.2.6)[262 ]: Let α+= α1 ≥ α2 ≥ … ≥ αd = α- >0  be as in Theorem (5.3.5 
).The numbers log αp, p=1, …, d are called the Lyapunov exponents associated to 
Yn. The upper, respectively lower, Lyapunov exponents are log α+ respectively log 
α- . 

     It is clear that the Lyapunov exponents of y  are – log αd-1 ≥ … ≥  -log α+. It 
should also be remarked that in general some Lyapunov exponents can be - ∞, 
however this possibility is excluded by the assumption that M has finite support. 

     Our interest lies in ℎ[ ] , i.e. in the long term behavior of Snv, v∈ d and to 
apply the results on products of random matrices it is then necessary to make 
additional assumption M, i.e. on the matrices A'i in the fractal setting. We need the 
following definition, with are[266 ].   

Definition(5.2.7)[262]:  A subset S of Gl(d, R) is strongly irreducible if there does 
not exist a finite family {L1, …, LK} of proper linear subspaces of d such that 

M(L1 ∪ L2 ∪ … ∪LK)= L1 ∪L2 ∪ …∪LK ,                               (19) 

For any M ∈ S. 
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Definition(5.2.8)[ 262] :The index of a subset T of Gl(d,R) is the least integer p 
such that there exists a sequence Mn in T for which		‖푀‖  Mn converges to a rank 
p matrix. T is contracting if its index is one. 

     Denote by TM the smallest closed semigroup that contains the support of M. 

Theorem(5.2.9)[ 262 ]:  Suppose Tm is strong irreducible, then for any v ∈ Rd, v ≠ 
0, with probability one 

                                            ||Snv|| = ∅(α ).                                                (20) 

Moreover, if Tm also is contracting then the two first Lyapunov exponents are 
distinct, i.e., 

α+ > α2.                                                    (21) 

     For ν ∈ Rd, ν ≠0, denote by ν ' the corresponding element in the real projective 
space P(Rd), and let δ be the natural angular distance in P(Rd). For Y ∈ Gl(R, d) let 
Y . v = Yv ∈ P( d). 

Theorem(5.2.10)[262]:[266].Suppose TM is strongly irreducible and contracting. 
Then, there is a random direction Z' (depending on Sn), such that for anyv, w ∈

( d) 

S  . 휈̅  → 푍̅ ,                                                 (22) 

with probability one. If 휈̅  is not orthogonal to	푍̅, then 

||Sn ν || = ∅(α ),                                              (23) 

And if 휈̅  is orthogonal to 푍̅  then 

lim sup  log ||Sn ν || ≤ log α2                                             (24) 

Moreover, for any nonzero ν ∈ Rd the probability that ν is orthogonal to 푍̅ is zero. 

     The next theorem formulates the contraction property that is the basis for the 
Geography is destiny principle. 

Theorem(5.2.11)[ 262  ]:[266].Suppose Tm is strongly irreducible and contracting. 
Then for any	휈̅.푤   ∈ P(Rd), 
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                          ( . 			 . )
( 	,. )

  = ∅((α2/ α+)n),                                         (25) 

With probability one. 

     In section 6 we will make use of the following. 

Theorem(5.2.12)[262]:[266].Suppose TM is strongly irreducible and contracting. 
For any unit vector v ∈ Rd there is α > 0 so that 

(log ||Sn	ν || - n log α+)2 – na                                           (26) 

Converges to a finite limit. Moreover, there exists b > 0 such that for any ε >0 

                        푙푖푚	푠푢푝푛 → ∞   log [|log||Sn|| - n log α+| > nε] < - b,                       (27) 

 where E denotes expectation and P probability. 

     Definition(5.2.13)[262 ]:We say that F satisfies the SC- assumption if the 
semigroup generated by the Ai' , i= 1, … , m is strongly irreducible and 
contracting. 

     The index of a set is in general difficult to determine, however in the case of 
semigroups there is a useful result in [266].Recall that an eigenvalue λ of a matrix 
M is a simple if Ker (M- λId) has dimension one and equals Ker (M- λId)2 and it is 
dominating if |λ| >|λ'| for any other eigenvalue λ'. 

Proposition(5.2.14)[262 ]: A semigroup T in Gl(d, R) which contains a matrix 
with a simple dominating eigenvalue is contracting. 

     Suppose a matrix M ∈ Gl (2, R) has two distinct real eigenvalues. A finite union 
of lines invariant under M consists of either one or both of the eigenspaces, so we 
have the following. 

Proposition(5.2.15)[262 ]:  If the boundary V0 consists of there points, then F 
satisfies the SC-assumption if there is some Mv with a simple dominating 
eigenvalue and there are two matrices Mw , Mw' both with two distinct real 
eigenvalues and no eigenvector in common. 

     It is readily verified that for instance the standard harmonic structures on the 
Sierpinski gasket, as noted in [267, 256] and the level 3 Sierpinski gasket satisfies 
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the SC- assumption. In fact, any nondegenerate structure with D3 symmetry 
considered in[268] satisfies the SC-assumption satisfies if α ≠ b where 

 
		1																			0						0

1	– 	푎	 − 	푏						푎						푏
1	 − 		푎	– 	푏					푏						푎

                     (28) 

is the matrix corresponding to the restriction to a level 1 cell containing one of the 
boundary points. 

      With the SC- assumption one can obtain differentiability results for C1(ℋ). For 
the same results on C1(Dom ∆μ) an additional assumption on the measure μ is 
needed. we will use another, stronger, assumption on μ to have a.e. existence of the 
gradient. To this end, we define γ by 

                                          log γ = ∑ 휇j log(rj μj).                              (29) 

Then 

 r[ ] μ[ ] n = ∅(γn)                                        (30) 

for μ a.e. 푥, essentially because the probability of occurrence of the scaling factor rj 
μj. One can see that log γ is the analog of the Lyapunov exponent for the Laplacian 
scaling factor 	r[ ]  μ[ ] , which in turn is the product of energy and measure 
scaling factors. 

Definition(5.2.16)[262]: We will say that (F, μ) satisfies the weak main 
assumption respectively the strong main assumption if  F satisfies the SC-
assumption and                                                                                                                                                                     

                                γ < α+ .                                                           (31) 

respectively 

                                        γ < α- .                                                          (32) 

     Essentially the weak main assumption says that, μ, a.e. , restrictions of 
harmonic functions to small cells scale to zero exponentially more slowly than the 
Laplacian scale, while the strong main assumption says that extensions of 
harmonic functions from smaller to larger cells scale to infinity exponentially 
faster than the Laplacian scales. 
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     It is Known that the Sierpinski gasket with the standard harmonic structure and 
uniform self-similar measure satisfies the weak main assumption. It also holds for 
the level 3 Sierpinski gasket with the uniform self-similar measure and standard 
harmonic structure, which is discussed in detail in [256, 258]. In this case γ= 7/90 
and of the six restriction matrices three have determinant 7/152 and three have 
determinant 8/152. It is Known that if all determinants equal one, then α+>1. It 

follows that for the level 3 Sierpinski gasket α+ >		√  > γ. 

     It has been shown [ 270,256] that the Sierpinski gasket with standard harmonic 
structure and uniform self-similar measure satisfies the inequality, 

                                               γα+ < α                                                    (33) 

which is even stronger than (32) 

      for the standard harmonic structure on the Sierpinski gasket the resistance 
scaling factors are all 3/5. Sabot showed in [268] that for small perturbations of 
these factors there is a unique harmonic structure on the Sierpinski gasket, see also 
[18]. Since the harmonic restriction mappings depend continuously on the 
resistances, (33) implies that for small enough perturbations of the harmonic 
structure the Sierpinski gasket, with a self-similar measure not far from being 
uniform, will still satisfy the strong main assumption. 

        The following propositions are interpretations of Theorems (5.2.5)-(5.3.10) in 
terms of analysis on fractals. 

Proposition(5.2.17)[262 ]: For μ, a.e. nonjunction point 푥, 

                                푀[ ] ℎ = ∅(α ).                                                      (34) 

                                                                                                                                                                                                                             
Proposition(5.3.18)[262]:   Suppose F satisfies the SC-assumption and h ∈ℋ, h ≠ 
0. Then α+ >α2 and 

                                     ℎ[ ] = 푀[ ] ℎ =∅(α ),                                     (35) 

For μ, a.e. nonjunction point 푥. 

Proposition (5.2.19)[262] ; For μ, a.e. non junction point 푥 there exists a subspace 
ℋ ⊂ ℋ of condimension one such that 
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ℎ[ ] =∅(α αn
+),                                                   (36) 

for h ∉ ℋ  , and 

                         lim supn→∞ log 푀[ ] ℎ ≤ α2 ,                                      (37) 

for h- ∈ ℋ  . For any non zero h ∈ ℋ, h ∉ ℋ  , μ, a. e. . 

     The subspace ℋ푥 corresponds to the orthogonal complement of Z' in Theorem 
(5.2.10) we will denote by ℋ푥 the orthogonal complement of ℋ  and by P  and 
P  the orthogonal projections onto ℋ  and ℋ  respectively. Also denote by	h  
	h  and element of ℋ of norm one. The property in Proposition (5.2.19)is what 
we will use to prove differentiability so we make the following definition. 

Definition(5.2.20) [262]: We say that 푥 ∈ F is weakly generic if there is a subspace 
ℋ
−
푥  ⊂ ℋ of co-dimension one such that 

                               푀[ ] ℎ =o||푀[ ] ||n→∞                                                       (38) 

for any h- ∈ ℋ  

Proposition(5.2.21)[262] :  푥  ∈ F is weakly generic if and only if there is a 
subspace ℋ  ⊂ ℋ of co-dimension one such that 

                                푀[ ] ℎ =o푀[ ] ||n→∞                                                       (39) 

For any h- ∈ ℋ
−
푥  and h ∉ ℋ

−
푥 . 

Proof. Necessarily ||푀[ ] h+
푥 || = O||푀[ ] ||n→∞ , since if not 푀[ ] ℎ =o(||푀[ ] ]n||) 

for any h ∈ ℋ. The proposition follows immediately since if h ∉ ℋ  then P   h ≠ 
0. 

     Clearly μ. a.e. 푥 is weakly generic if F satisfies the SC-assumption. 

Proposition (5.3.22)[262 ]: If 푥 ∈ F is weakly generic and f = u(h1, …, hi) ∈ 

C1(ℋ) then  exists for any h ∉ ℋ   with 

                                 = ∑  .                                              (40) 
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If h' ∈ ℋ then 

                         = , 	
, 		

,                                                 (41) 

And in particular h'∈ ℋ    if and only if  = 0. 

Proof. Because of Proposition (5.2.3) it is enough to show that  exists foe any h' 
∈ ℋ. Write h'= 	푎 ℎ + ℎ  with  h- ∈ℋ   . Then since 

(h'(y) – h'(푥))|F[ ]  = a	푥 (h(y) – h(푥)) +(푀[ ] ℎ ψ[ ] y) – 푀[ ] ℎ  (ψ[ ] 	푥))   (42) 

it is clear from Proposition (5.3.22)that (푥) = ax= 
,

 and (41)) follows. 

 Theorem (5.2.23)[262] Suppose F satisfies the SC-assumption. Then for any 

nonzero h ∈ ℋ and any 푓 = u(h1,… , hl) ∈ C1(ℋ) we have that (푥) exists for μ. 
a.e. 푥 and is given by (40) 

Proof. This follows immediately from Proposition (5.3.20) since μ. a.e. 푥  is 
weakly generic. 

Lemma(5.2.24)[262]:    Suppose u ∈L∞(F) has support in a cell Fw. Then 

                              	푂푠푐퐹[ ]   Gu ≤ C(K+1)[ ] ||μ||∞  ,                                   (43) 

for k= 0, 1, …, n= |w|. 

Proof . It will be enough to show that 

                      |Gu(푥) – Gu(푥 0)| ≤ C(k +1)	푟[ ] μw ||μ||∞                                (44) 

for 푥 ∈ 	퐹[ ] and 푥0 ∈ 	푉[ ]  , This can be done by using properties of the Green's 
function 

      g(푥, y)= ∑ 푟∈∅⋃ ∗ v Ψ(ψ (푥),ψ (y)).                      (45) 

For the exact definition of Ψ, see [240]. We only need that it is continuous and 
harmonic on 1-cells. 

      Since we consider points in 	퐹[ ] and u has support in Fw we are only 
concerned about x and y in 	퐹[ ] , For those, Ψ(ψ  (푥), ψ  (y))= 0 in case |v| ≥ k 
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and [v]k ≠ [w]k , and in case |v| < k and |w|[v] ≠ v. The properties of Ψ also makes 
Ψ(ψ  (푥0), ψ y))= 0 for all |v| ≥ k. In all 

|g(x0, y) – g(푥, y)| ≤∑ 푟[w]m|Ψ(ψ[ ] x0), ψ[ ] y)) – Ψ(ψ[ ] 푥),     ψ[ ]  (y))| 
+ |∑ 푟∈∅∪ ∗ vr[W]k Ψ(ψ  (푥), ψ  (y))|.                                    (46) 

The difference in the first term is, by the definition of Ψ, bounded by a constant 
times the difference of the value of 1-harmonic functions at ψ[ ] (x )the points 
푎푛푑	ψ[ ] (x) .Both points lie in the cell 	퐹[ ] , , and the difference is thus 
bounded by a constant times r푟[ ] ,  [W]m,k since the largest eigenvalue of A'I is less 
or equal to ri , see [240], and the first term is bounded by CKr[w] . The second 
term is 	푟[ ] g(ψ[ ]  푥, ψ[ ] y) ≤ 	푟[ ] ||g||∞ and we conclude that 

                           |Gu(푥) – Gu(푥 0)| ≤ ∫F|g(푥, y) – g(푥 0, y)||u(y)|du(y)   

                 ≤C(k+1)r[w]k ∫Fw|u(y)| du(y) ≤ C(k+1)		푟[ ] μw||u||∞.                  (47) 

Lemma(5.2.25)[262] .  Suppose F satisfies the SC-assumption. Given any non 
constant h. h' ∈ ℋ, we have for μ, a.e. 푥 ∈ F that 

∈ [ ] 	 |h'(y) – h'(푥) – (푥)(h(y) – h(푥))| ≤ cn,	푥 
| | | |

| , |
 ,                            (48) 

where 

                          lim sup  log Cn,x ≤ log α2 .                                                       (49) 

Proof. Let 푥 be such that h ∉ ℋ
−
푥 . This holds for μ, a.e. 푥. Since, in the proof of  

Proposition (5.2.22) h- = P
−
x h' - 

,

,
 P
−
푥  h, it follows from[94] that for y ∈ 푓[ ]   

                   |h'(y) – h'(푥) – (h(y) – h(푥))| ≤ ||푀[ ]  h-||                                     (50) 

≤ 
| | | |

| , |
 (

| [ ] 	 |
| ,, |

 + 
| [ ] 	 |

|| ||
 ). 

Now, by Proposition (5.2.19) 

                            Limn sup  log||푀[ ]  h-|| ≤ log α2                            (51) 
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for any h- ∈ ℋ
−
푥  . Thus 

                                cn,x= 2 
푠푢푝

ℎ ∈ ℋ  
|| [ ] 	 ||

|| ||
                                    (52) 

satisfies (49) and (48) follows from (50) 

Theorem(5.2.26) [262]:  Suppose (F, μ) satisfies the weak main assumption and h 

is a nonconstant harmonic function. Then for μ-almost every 푥 the derivative (푥) 
exists for any function 푓 = u(g1, …, gl) ∈ C1(Dom ∆u) and is given by  

                           = ∑                                                  (53)   

Moreover, there exists C such that if f ∈ Dom ∆u, then for u, a.e. 푥 

| | ≤ | ( . )| + c ||∆ ||

| ,
 ∑ (n+1)r[푥]n 휇[ ] ‖M‖[ ] * h ||.     (54) 

Proof. In view of Proposition (5.2.3)it is enough to suppose f ∈ Dom ∆μ. It is clear 
from Theorem (5.2.23) that we can suppose f = Gu. We also assume 푥  ∈ F is 

weakly generic, 푟[ ] μ[ ] = ∅(γn) and h∉ℋ
−
푥  with ||푀[ ] h||= ∅(αn

+). 

     Denote 퐵[ ] = 퐹[ ] \ 퐹[ ]  and let 푢[ ]푛 be the restriction of u to 퐵[ ]  so that 

                                   푓 = ∑ 퐺푢[ ]푛.                                                              (55) 

Since u[ ] = 0 on 퐹[ ] , Gu[X]n is harmonic on퐹[ ] ,  and thus ( [ ] ) exists and 
our aim is to show that 

              = ∑ ( [ ] ) .                                                                (56) 

     To prove convergence of the right hand side of (56) we show that 

           | ( [ ] ) = ∅((γ/α+)n)                                                                (57) 

Which is enough by Lemma (5.2.4) Let 푣 [ ]푛  be the function in ℋ that 
corresponds to (퐺푢[ ] )[ ]  and note that 



188 
 

             ( [ ] ) (푥) = ( [ ] )
( [ ] 	 )

[푥]  (휓[ ]  (푥)) = 
〈 [ ] ,	

[ ] ( )
〉

[ ] 	,
( [ ] 	( ))	

 ,               (58) 

Where the last equality follows from (41) According to Lemma(5.2.4)we obtain 
(57) by showing that the denominator of the right hand side of (58) is ∅(훼 ) and 
that the absolute value of the numerator is ∅(γn). 

     From Theorem (5.2.10)it follows that there is ℎ∈ℋ such that 

                               ℎ  = limn→∞

∗
[ ]

||
∗

[ ] ||
                                                        (59) 

and 

ℎ ( )= limn→∞

∗
[ ] 	

||
∗

[ ] 		
                                                                           (60) 

consequently 

   ℎ
[ ]

(푥) = 
∗

[ ] 			

|| ∗
[ ] 		

                                                            (61) 

     Note that 

||	M−1 ∗
[푥] 	h+

푥 || = sup||h||=1 < h, M−1 ∗
[푥] h+

푥  >= sup||k||=1<
[ ] , .	

|| [ ] 	 ||
, M−1 ∗

[푥]n   h+
푥> 

                        = sup||k||=1 
	 ,

|| [ ] 	 ||
  = 

,

|| [ ] 	 ||
                           (62) 

for some K ∉ ℋ
−
푥 . Since ||푀[ ] || = ∅(α ) it then follows by Lemma (5.2.4)that 

                               ‖푀‖[ ]
∗ℎ || = ∅((1/α+)n).                                (63) 

and 

                   |〈푀[ ] ℎ, ℎ
[ ]

(푥)〉| = | , |

| ∗
[ ] 	 	 |

 = ∅(αn
+).                     (64) 

The numerator has the bound 
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|< v[ ] , ℎ
[ ] ( ) >| ≤ C Osc(v[ ] ) ≤ C(n+1)	푟[ ] 휇[ ] ||μ||∞= ∅(γn),                 (65)  

where the last inequality follows from Lemma (5.2.24)and the last equality follows 
from Lemma( 5.2.4) Thus, the right hand side of (56) converges and (44) follows 
from (64) and (65) as soon as we have shown (56) 

     For y ∈ F[x]n we must show 

| Gu(y) – Gu(푥)- ∑ ( [ ] ) (h(y) – h(푥))| = 0(||푀[ ] h||).                       (66) 

We write 

                           | Gu(y) – Gu(푥)- ∑ ( [ ] ) (h(y) – h(푥))| 

                                ≤ |∑ (풌
풏 ퟏ 	푮풖[풙]풏(y) – 푮풖[풙]풏 (풙)) – ∑ 풅( [ ] )

풅풉
풌
풏 ퟏ (h(y) – h(풙))| 

                                + | ∑ (풏 풌 ퟏ 	퐺푢[ ]푛y) – 퐺푢[ ]푛풙)) | 

       + | ∑ 풅( [ ] )
풅풉풏 풌 ퟏ  (h(y) – h(풙)) |                                            (67) 

Lemma( 5.2.26)  and Lemma ( 5.2.5) implies that the second term is estimated 
from above by 

C(k+1)	풓[풙]풌 = ∅(γk) = o(||푴[풙]풌h||).                                     (68) 

The third term is ∅(γk) = 0(||푴[풙]풏h|| since |h(y) – h(풙)| = ∅(α퐤+) and 

∑ 퐝( [ ]

퐝퐡풏 풌 ퟏ  = ∅((γ/α+)k) 

By lemma (5.2.5) and (57) Remains the first term which we write 

             | ∑ 퐺푢[ ]푛(푦)풌
풏 ퟏ  – 퐺푢[ ]푛(푥)- 퐝

[ ]

퐝퐡
 (h(y) – h(풙))|                          (69)              

     Suppose that we fix a (large) constant M, which is to be chosen later, and that 
the integers from 1 to k are divided into M subintervals [jK/M, (j+1)k/M]. From 
the arguments below it is evident that without loss of generality we can assume 
that k is an integer multiple of M, say k= Mm. So we write the sum in (69) as M 
sums of m= k/M addends each, and have to show that for each j=1, …, M we have 
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|∑ 푮풖[풙] (퐲)–	풋풎
풏 풎(풋 ퟏ) ퟏ

[푮풖[풙]  (풙)– 퐝(푮풖[풙] )
퐝퐡

(h(y)– h(풙))| = 0(||푀[ ]      (70) 

If we denote 

                                        hj = ∑ 푮풖[풙] (퐲)		풋풎
풏 풎(풋 ퟏ) ퟏ   .                          (71)                 

then we have to show 

     | ∑ 풉풋풎
풏 풎(풋 ퟏ) ퟏ j(y) – ℎ (풙) - 

퐝퐡퐣
퐝퐡

 (h(y) – h(풙))| = o(||푴[풙]풌풉||).             (72) 

Note that hj is harmonic on F[x]jm. By Lemma (5.3.24) we have ||hj||= ∅(γm(j-1)) and 
Lemma (5.2.25)then implies that the left hand side of (72) is bounded by ∅(γm(j-

1)αm(M-j)). Let 휶 = max {γ, α2} and ε= ퟏ
ퟐ
(α+ - 휶) > 0. If we have that 

                                          M >	 퐥퐨퐠후
퐥퐨퐠훂 퐨퐠(훂 	훆)

                                           (73) 

then 

                       γj-1 α2
M-j ≤ 훂Mγ-1 < (훂 + ε)M = (α+ - ε)M                           (74) 

which implies 

                                 ∅(γm(j-1) α2
m(M-j) ) = 0((α+ - ε)K)k→∞                        (75) 

and this completes the proof. 

     Corollary(5.2.27) [262 ]:  Suppose (F, μ) satisfies the weak main assumption. 
Then for any nonconstant harmonic function h there exists a set F' of full μ- 
measure such that if f= u(g1, …, gi) ∈ C1(Dom	Δ ) has a local maximum at x ∈ F' , 

then 퐝퐟
퐝퐡

(x)= 0. 

Proof. Let F'' be the set of full μ-measure such that, according to Theorem (5.2.25) 

the derivative 퐝퐟
퐝퐡

(x) exists for any f ∈ C1(Dom	Δ )). There exists w ∈ W* such that 
the cell Fw does not contain any boundary points. We define F' as the set of all x 
such that x ∈ F'' and there are infinitely many n such that [x]n, n+k= w, |w|= k. 
Obviously F' is a set of full μ-measure. 

    Non-negative harmonic functions satisfy a harmonic inequality [240], on Fw, 
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풎풂풙
풚 ∈ 푭풘h(y) ≤ c 풎풊풏풚 ∈ 푭풘

h(y),                                        (76) 

for some c >1. Suppose h is a harmonic function with a zero in Fw. Applying (76) 
on m푎푥 	h – h and h- 푚푖푛  h gives 

                                풎풂풙푭  h ≥ ퟏ
퐜 ퟏ

 OscFw(h)                                               (77) 

and 

                                     풎풊풏푭  h ≤ ퟏ
퐜 ퟏ

 OscFw(h)                                            (78) 

Suppose f ∈ C1(Dom ∆u) has a local maximum at x ∈ F'. Since x ∈ F' we can 
choose a subsequence n1 for which [x]ni, ni+k = w. Then, for l large enough, we have 
for y ∈ F[X]ni that 

          F(y) – f(x)= 퐝퐟
퐝퐡

(x)(h(y) – (h(x)) + 0 (||푀[ ] h||) ≤0                         (79) 

Using (77) on ℎ[ ]  (y) – h(x) we get 

maxy∈F[x]ni(h(y)- h(x))= maxy∈F(h[x]ni(y)-h(x)) ≥ ퟏ
퐜 ퟏ

 Osc (h[x]ni) 

           = ퟏ
퐜 ퟏ

Osc (ℎ) ≥ C|| ℎ|| ≥ 퐜

| 퐌 ퟏ
퐰 |

 ||푀[ ]  ℎ||.               (80) 

So that by (79) we must have 퐝퐟
퐝퐡

(x) ≤0. In the same way (78) implies 

                     푚푖푛푦 ∈ [ ]  (h(y) – h(x)) ≤ - 퐜

| 퐦 ퟏ
퐰 |

 ||푀[ ]  ℎ||.          (81) 

which together with (79)implies 퐝퐟
퐝퐡

(x) ≥ 0. 

     For the next theorem recall that a point x ∈ F is called periodic if it is a fixed 
point of some ψw, w ∈ W*. 

Theorem(5.2.28)[262 ] :  Let 푥 = 휓 (푥) ∈ 퐹 be a periodic point. Suppose Mw has 
a dominating eigenvalue λ and the corresponding eigenvector is denoted by hλ. If 
|λ| >rwμw then the local derivative 퐝퐟

퐝퐡훌
(x) exists for any f ∈ C1(Dom ∆μ). In 

particular, if x is a boundary fixed point then the normal derivative ∂Nf(x) exists for 
any f ∈ C1(Dom ∆μ). 
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Proof. In order to prove this one can adapt the proof of Theorem (5.2.24)defining 

퐵풘풏 = 퐹풘풏 ퟏ\퐹풘풏 , where 푤n= 	
풘…풘
푛	푡푖푚푒푠

and use 

푓 = ∑ 푮풖풘풏
풏 ퟏ .                                            (82) 

The condition |λ| > rwμw is necessary to have convergence of ∑ 풅(푮풖풘풏)
풅풉흀풏 ퟏ .  

Corollary(5.2.29)[262]: If x is a non-boundary periodic point, the assumptions of 
Theorem (5.2.28) hold, and f = u(g1,…, gl)∈ C1(Dom ∆μ) has a local maximum at 
x, then 퐝퐟

퐝풉흀
(x)= 0. 

Proof. The proof is the same as that of Corollary (5.2.27) and uses Theorem 
(5.2.24) and Theorem (5.2.28). 

     The result of Theorem (5.2.28) .partially improves in [265] where it was shown 
in the case of the Sierpinki gasket that ∂2f and ∂3f exist for any f ∈ Dom∆. 

Namely, under the assumption that Mw has two real eigenvalues λ2 > λ3, two local 
derivatives at periodic points of the Sierpinki gasket were defined in [265]. If h2, h3 
∈ ℋ are any harmonic functions corresponding to these eigenvalues and 

H	푓[ ] = α1n + α2n	ℎ ,[ ] + α3nℎ ,[ ]                           (83) 

then 

                  ∂2 f(x) = limn→∞α2n and ∂3f(x) = limn→∞ α3n                    (84) 

If the limit exists. Note that the notation λ2 for the loading eigenvalue is used in 
[265] because λ1=1 denotes the leading eigenvalue of the matrix Aw. 

     For arbitrary p.c.f. fractals. Local derivatives ∂2, …, ∂∂푵ퟎ  can be defined 
analogously to (84) at any periodic point x= ψw(x) such that Mw has distinct real 
eigenvalues |λ2| > … > |휆 | with corresponding harmonic functions h2, …, ℎ . 

Periodic points of this type are weakly generic and ℋ   is spanned by h3, …,ℎ ., 

but the rate of decrease for h ∉ℋ  is ||푀[ ]  ℎ||=∅(σn) for σ= λ | |⁄ | instead of 
∅(α ).	 
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    It should be noted that if x= ψi(x) is a boundary point then ∂2 equals, for an 
appropriate choice of h2, the normal derivative ∂N. For the Sierpinki gasket, ∂3 
equals the tangential derivative ∂T, for an appropriate choice of h3. For periodic 
points on the Sierpinki gasket where Mw  has two complex conjugate eigenvalues 
local derivatives ∂+ and ∂- were defined in [263] using the eigenvectors. It was also 
shown that there are infinitely many periodic points with this property.Such 
periodic points are not weakly generic. Actually for any nonconstant h ∈ ℋ, 
||M[x]nh||= O(( √ퟑ /5)n) and h is only differentiable with respect to harmonic 
functions that are proportional to h. The local behavior at such points is thus truly 
different from the generic behavior. 

 In this section we prove the geography is destiny principle for large classes of 
functions and use it to obtain a result on the pointwise behavior of the principle . It 
was formulated for the first time in [264] for harmonic functions on the Sierpinski 
gasket. For harmonic functions it holds under the SC-assumption. 

 For any h∈ l(V0), h ≠0 we define the direction Dirh as the element in the 
projective space P(ℋ) corresponding to Pℋh. This definition extends to any 
function f defined on F, and nonconstant on the boundary, through Dir f = Dir f|V0. 
P(ℋ). 

Proposition(5.2.30)[262 ]   Suppose F satisfies the SC-assumption. Then for any 
nonconstant harmonic functions h1, h2 ∈ ℋ 

                         limn→∞	휌 (퐷푖푟ℎ | [ ] 	, 퐷푖푟ℎ | [ ] 	 )= 0                          (85) 

for μ, a.e. x. 

Proof. This follows from Theorem(5.2.11)  

     In fact, the convergence in (85) is even exponential by (25). 

     If f is differentiabe with respect to h with nonzero derivative at a point x, then 
the difference in direction of 푓[ ] = and 푓[ ] = will tend to zero. Note that by 

definition of the derivative, Dir 푓[ ] = exists for n large enough if 퐝퐟
퐝퐡

(x) ≠ 0. 

Proposition (5.2.31)[262 ]: Suppose 퐝퐟
퐝퐡

(x) exists and is different from zero. Then 

limn→∞	휌 (Dir 푓[ ]  , Dir ℎ[ ] ) = 0                              (86) 
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Proof. This is clear since f(y) – f(x)= c(h(y) – h(x))+o (||푀[ ]  ℎ||)implies 

휌(Dir 푓[ ] , Dir ℎ[ ] )= 휌 (Dir(푐ℎ[ ] +0((||푀[ ]  ℎ||))Dir ℎ[ ] )→0    (87) 

The above Proposition together with Theorem (5.2.25) immediately gives the 
following broad extension of the geography is destiny principle. 

Theorem(5.2.32)[262]:   Suppose (F, μ) satisfies the weak main assumption and 
that f ∈ C1 (Dom ∆u) and h ∈ ℋ is a non constant harmonic function. Then 

limn→∞p(Dir 푓[ ] , Dir ℎ[ ] )= 0                                  (88) 

for u, a.e. x outside the set where 퐝퐟
퐝퐡

 (x)=0. 

                    {x : 퐝
퐝퐡

(x)= 0} ⊂ {x : | < Hf, ℎ  >| < C'ε}                      (89) 

for any f = H f + G∆f with ||∆ f||∞ < ε and ||h||= 1. Note that 

μ{x : < H 푓, ℎ  >= 0} = 0 

and so informally one can write μ{x : 퐝퐟
퐝퐡

(x)= 0}→0 as ||∆ 푓 ||∞→0. This can be 
restated as follows. Given any H 푓 ≠ 0 and ε > 0, there is 훿(ε) >0 with limε→0	훿(ε)= 
0, such that 

μ{x : 퐝퐟
퐝퐡

(x) = 0} < 훿(ε) 

for any f = H f + G ∆ f with ||∆ f||∞ < ε and ||h||= 1. 

     In [267] the eccentricity e(h) of a nonconstant harmonic function h on the 
Sierpinski gasket were defined as 

        e(h)= 퐡(퐪ퟏ) 	퐡(퐪ퟎ)
퐡(퐪ퟐ) 	퐡(퐪ퟎ)

,                                                            (90) 

where qi, i= 0, 1, 2 are the boundary points labeled so that h(q0) ≤ h(q2). 

Note that the eccentricity is the same for harmonic functions corresponding to the 
same element in ℋ. The concept of eccentricity F and nonconstant on the 
boundary. 

     It was shown in [267] that there is a measure on [0,1] such that for any 
nonconstant harmonic function, the distribution of eccentricities of the restrictions 



195 
 

hw to cells of a fixed level |w|= n converges in the Wasserstein metric to this 
measure. This result was extended to functions with Holder continuous Laplacian 
in [254]. 

     If, instead of the global distribution of local eccentricities, we look at the 
behavior of the eccentricities on neighborhoods of a point, the geography is destiny 
principle applies. Since e(-f)= 1-e(f) we define an equivalence relation on [0, 1] by 
풆	~ e' if and only if e= e' or e=1-e'. We denote by e- the equivalence class of e and 
let d(e-, e-')= minx~e, x

,
~e

,|x- x'| be the natural distance on [0, 1]/~. 

Corollary(5.2.33)[262 ]:If F satisfies the SC-assumption then for any nonconstant 
harmonic functions h, h' 

                          limn→∞ d(풆(ℎ[ ] n),풆[ ] ))= 0,                                           (91) 

for 휇  a.e. x. If (F, u) satisfies the weak main assumption then for any 푓 , 푓 ' ∈ 
C1(Dom ∆μ) and nonconstant h ∈ ℋ we have 

                  limn→∞ d(풆 (푓[ ] ), 풆(푓′[ ] ))= 0                                      (92) 

for μ, a.e. x outside the set where 퐝퐟
퐝퐡

 or 퐝퐟
퐝퐡

 are zero. 

Proof. Since 푒̅  depends continuously on the direction these results follow 
immediately from Theorem(5.2.32). 

     We clarify the relation between the derivative and the gradient of a function on 
F defined in [260]. We will restrict attention to cases where (F, μ) satisfies the 
strong main assumption. 

     For a nonjunction point x ∈ F, let Grad[ ] = = 푀[ ] PℋH푓[ ] . The gradient of f 
at x is defined as 

Gradxf= limn→∞	Grad[ ] 푓,                            (93) 

If the limit exists. In [260] the gradient was defined for sequences w ∈Ω, so at 
junction points there are several “directional”gradients defined, but for nonjunction 
points Gradxf is defined unambiguously. 

    Immediately from the definition we have. 

Proposition(5.2.34)[262]. If h ∈ ℋ then Gradxh exists for all x and Gradxh= h. 
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In [260] the following estimate was proved for any harmonic structure on a, p.c.f. 
fractal. 

       퐺푟푎푑[ ] 푓−퐺푟푎푑[ ]  ≤ C||∆푓||∞푟[ ] 휇[ ] 푀[ ] .             (94) 

     It implies the following theorem. 

Theorem(5.2.35)[262 ].There exists a constant C such that for any 푓 ∈ Dom∆ with 
||∆푓||∞<∞ and any x ∈ F\V* with 

∑ 풓[ ]풏 ퟏ 흁[ ] 푀[ ]  < ∞,                                            (95) 

Gradx푓 exists and 

                         ||PℋH푓 – Gradx푓|| ≤ C||∆푓||∞ ∑ 푟[ ]풏 ퟏ ), 휇[ ] 푀[ ] .            (96) 

Also, for any n> 0 

                    ||PℋH푓 – Gradx푓|| ≤ C||∆푓||∞ ∑ 푟[ ]
풏
풌 ퟏ  휇[ ] 푀[ ]  .               (97)   

     From Theorem (5.2.35)we can immediately deuce the following Lemma. 

Lemma (5.2.36)[262 ]   If(F, μ) satisfies the strong main assumption, then for any 
function 푓	∈ Dom ∆μ, Gradx푓  exists for μ-almost all x ∈ F. 

Proof. The upper Lyapunov exponent of the matrices M-1
j with respect to the 

measure 휇  is 1/α – and so the series (95) converges exponentially 휇  -almost 
everywhere. 

     The next Lemma uses the central limit Theorem and large deviations results for 
products of random matrices. We will use it to show that Gradxf is the unique 
function in ℋ that best approximates  f in neighborhoods of x. 

Lemma(5.2.37)[262 ]:   Suppose (F,	휇) satisfies the strong main assumption. Then 
for any 휀> 0. 

                       ∑ 푟[ ] 	휇[ ] 푀[ ] ,
= 	σ((γ + ε) ) → 																											   (98)  

For μ, a.e. x. 

Proof. By the Borel-Cantelli Lemma this follows if for any 훿 > 0 
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            ∑ 휇풏 ퟏ {x: (γ + ε)-n ∑ 풓[ ]푲 풏  휇[ ] 푀[ ] ,
 > 훿} < ∞.          (99)  

Since 푟[ ] 휇[ ] = ∅(γn) for	휇 , a.e. x it is then enough, by Lemma (5.2.5) (i):   to 
show that 

                    ∑ 휇 푥:	( 	 /
	

)푛	 ∑ 푟[ ] 	휇[ ] 푀[ ] ,
	> 	훿  

                  = ∑ 흁풏 ퟏ {x: (후 	훆/ퟐ
후 	훆

)n∑ 푟[ ]푲 ퟏ  휇[ ] 푀[ ]  > 훿}                  (100)                              

         =∑ 흁풏 ퟏ  {x: ∑ 푟[ ]푲 ퟏ 푀[ ] ,
> ∂ ( 후 	훆

후 	훆/ퟐ
 )n (ퟏ 	훃

훃
) ∑ 휷푲 ퟏ

K } < ∞, 

where the first equality follows from self-similarity and 1 > β > 후
훂

 is a fixed 
number. Thus, it is enough to show that 

∑ ∑ 흁푲 ퟏ풏 ퟏ  푥:	푟[ ] 	휇[ ] 	 푀[ ] 	> 	훿	( 휸 	휺
휸 	휺/ퟐ

	) 	(ퟏ 	휷
휷

)	훽퐾  

= ∑ ∑ 흁푲 ퟏ풏 ퟏ x:	log	(푟[ ] 	휇[ ] 푀[ ] 	)– k	log	( 후
훂

) > c + 	nc + kc 	 < ∞,                
(101) 

where c1, c2 > 0. Assuming 1- β > β - 후
훂

 we have c0+ kc2 >0 and the last inner sum 
can then be estimated from above by 

ퟏ
퐜ퟏ

 ∫BKbk(x) dμ(x) ≤ ퟏ
퐜ퟏ

 휇(퐵k) ||푏 (푥)||                                (102) 

where 

Bk(x)= log( 푟[ ] 	휇[ ]  푀[ ] ) – k log( 후
훂

)                         (103) 

and 

Bk= {x: bk(x) > c0+ kc2}.                                   (104) 

By Theorem (5.2.12) the 퐿 - norm of bk(x) grows polynomially while μ(Bk) 
decreases exponentially, which completes the proof. 
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Theorem(5.2.38)[262]: Suppose (F, μ) satisfies the strong main assumption and f 
∈ Dom ∆μ. Then for any ε > 0 and μ. a.e. x 

                     	푓(y)= 푓(x)+ Gradx푓(y) – Gradx푓(x) + 휎((γ + ε)n)y→x ,       (105) 

where y ∈ 퐹[ ] . 

Proof. The proof follows the same ideas as the proof of Theorem (5.2.24) but is 
actually simpler. We assume that f = Gu and let un be u multiplied by the indicator 
function of 퐹[ ] . For y ∈ 퐹[ ]  we have that 

G(u- un)(y)- G(u- un)(x)- (Gradx G(u-un)(y) – GradxG(u- un)(x))= 0        (106) 

since G(u- un) is harmonic on 퐹[ ] . Thus, we have to show that, for y ∈ 퐹[ ] , 

      G un(y)- Gun(x) – (GradxGun (y)- Gradx Gun(x))= 휎((γ + ε)n).           (107) 

Lemma (5.2.24)implies 

                      ||Gun (y) – Gun (x)||퐿 퐹[ ]  = 휎((γ + ε)n),                           (108) 

and it follows that 

  ||퐺푟푎푑[ ] 	Gun(y) – 퐺푟푎푑[ ] 	 Gun(x)||	퐿 퐹[ ] ) = 휎((γ+ ε)n)            (109) 

by the maximum principle applied to the harmonic function (퐺푟푎푑[ ] 	 (	Gu )[ ] , 
because its boundary values coincide with those of (	Gu )[ ] . Hence it suffices to 
bound 

||	Grad[ ] Gun(y) – Grad[ ]  Gun(x) – (Grad x Gun(y) – Grad x Gun(x))||	퐿 퐹[ ] ) ≤ 
2||Grad[ ] Gun – Grad x Gun||L∞퐹[ ] ) 

                   ≤ 2∑ ||푲 풏 Grad[ ]  Gun – Grad[ ] Gu ||퐿 (퐹[ ] ) 

= 2∑ ||풌 풏 Grad[ ] , (Gu푛)[ ]  – Grad[ ] , (	Gu )[ ] ||퐿 (퐹) 

                   ≤ C ∑ ||푲 풏 ∆(Gun)[x]n||∞푟[퐱] 휇[퐱] [X]n.k 푀[ ] ,
) 

≤ C||u||∞ ∑ 푟[퐱]푲 풏 휇[퐱] 푟[퐱] , 휇[퐱] , 푀[ ] ,
= 휎((γ+ ε)n), 



199 
 

where we used that (Grad[ ]  Gu )[ ] = Grad[ ] ,  Gu )[ ] , the estimate (94) and 
Lemma (5.2.37).  

     As an immediate consequence we obtain the following Corollary, which makes 
it straightforward to prove μ, a.e. differentiability at points where Gradx푓 exists. 

Corollary(5.2.39)[262 ]: Suppose (F, μ) satisfies the strong main assumption and f 
∈ Dom ∆μ . Then for μ, a.e. x 

   f(y)= f(x) + Grad xf(y) – Grad xf(x) + 휎(||푀[ ] h||)y→x ,              (110) 

for any nonconstant h ∈ ℋ. 

      The same result for Grad xf, or rather the tangent T1(f), on the Sierpinski gasket 
was proved in[281] under the stronger assumption (33). 

      We can now state the relations between the derivative and the gradient. 

Proposition(5.2.40)[262]: Suppose (F, μ) satisfies the strong main assumption, f ∈ 
Dom ∆μ and h is a nonconstant harmonic function. Then the following assertions 
hold. 

(i) For μ, a.e. x such that Grad x f = 0, we have that 퐝퐟
퐝퐡

(x)= 0. 

(ii) For μ, a.e. x such that Grad x f ≠0, we have that 퐝퐟
퐝퐆퐫퐚퐝퐱퐟

 (x)= 1. 

(iii) For μ. A.e. x  

                                          퐝퐟
퐝퐡

 (x) = 퐆퐫퐚퐝퐱퐟,풉풙
풉,풉풙

 .                                   (111) 

               In particular for μ, a.e. x we have   

                            퐝퐟
퐝퐡퐱

 (x) = < Grad x f,	풉풙>,                                            (112) 

  		풅풇
풅풉

(푥)  = ‖푷풙 	퐆퐫퐚퐝퐱퐟‖
푷풙 	퐡

                                                            (113) 

          and  퐝퐟
퐝퐡

(x) = 0 if and only if Grad x f ∈ ℋ풙  . 



200 
 

Proof. The first two statements are obvious Corollary(5.2.39) for the third, we 
Know h ∉  ℋ풙  for μ, a.e. x, and in that case 

F(y) – f(x)= Grad x f(y) – Grad x f(x) + 휎(||푀[ ] h||)y→x 

= 퐆퐫퐚퐝퐱퐟,풉풙
풉,풉풙

  (h(y) – h(x)) + 휎(||푀[ ]  h ||)y→x.                                              (114) 

     As formulated, Theorem(5.2.32)on geography is destiny, raises the question 
about where the derivative is different from zero. Our next results relates this to the 
same question on the gradient. 

Lemma(5.2.41)[262]:Suppose (F, μ) satisfies the strong assumption. Then for any 
ε > 0 there is 훿(ε) >0 with limε→0 훿(ε)= 0 such that if 

||∆퐟||
||퐏퓗퐇퐟||

 < ε ,                                                                      (115) 

Then 

μ{x: Grad x f ∈ ℋ풙 } < 훿(ε).                                       (116) 

In particular, μ {x: Grad x f ≠ 0} > 1- 훿(ε). 

Proof. For simplicity assume ||PℋHf|| = 1 and ||∆f||∞ < ε < ퟏ
ퟒ
 . Define 

Fε = {x: C ∑ 푟[퐱]풏 ퟏ  휇[퐱] 푀[ ] = < 휀  },                                (117) 

where C is the constant in the estimate (93). Note that limε→0 μ(Fε)= 1 by the strong 
main assumption. From (96) we have for any x ∈ Fε that 

       ||Pℋ H f – Grad x f|| ≤ √휺 ,                                              (118) 

So Grad x f ≠ 0 and  

ρ(Dir Pℋ H f, Dir Grad x f) < 2√휺                                                (119) 

for all x ∈ Fε. Let V ⊂ P(ℋ) be the set of directions orthogonal to PℋH f, and let Vε 
= {v0 ∈ P(ℋ): infv∈V ρ(v0, v) < ε}. If x ∈ Fε and Grad x f ∈ ℋ  then by (118) we 
see that ρ(Dir ℎ , v) < 2√휺 for all v∈ V. It follows that 

      μ{x: Grad x 푓 ∈ ℋ } ≤ μ{x ∈ F ε: Grad x f ∈ ℋ } + 1 – μ(Fε) 
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                            ≤ μ{x: Dir ℎ ∈ 푉 √휺} + 1- μ(Fε)                               (120) 

                                                            =v (푉 √휺 ) + 1 – μ(Fε) 

where the measure v is a μ-invariant measure on P(ℋ), which means that 

푣(A)= ∑ ∫ 1A(Dir(A h))	dv(Dir	h),																																					(ℋ)
풎
풊 ퟏ  (121) 

for any Borel set A in P(ℋ). A theorem of product of random matrices says that if 
μ is supported on a strongly irreducible semigroup such measure v has the property 
that hyperplanes have zero v-measure [266]. Thus limε→0 v(푉 √휺} v(V)= 0. 

Theorem(5.2.42)[262]:   If(F, μ) satisfies the strong main assumption, then for any 
f ∈ Dom ∆μ, 

     Gradxf ∉ ℋ }                                                (122) 

for μ, a.e. x with Gradx f ≠0. 

Proof. For simplicity assume ||∆f||∞ < 1. Define 

    Fε= {x: ||Gradx f|| > ε}                                                  (123) 

and 

    Fn,e= {x: ||푔푟푎푑[ ] f|| > ε and 푟[퐱] 휇[퐱] M[퐱]퐧 < ε2}.                (124) 

Clearly 

     limn→∞ μ(Fε\ Fn.ε)= 0                                                           (125) 

and 

                                            limε→0 μ(F0\ Fε)= 0                             (126) 

Then for any 푥 ∈ 퐹 ,  we have 

  
∆ [퐱]

| 퐏퓗퐇 [퐱] |
 =  [퐱]퐧 ∆ [퐱]

[퐱]퐧 [퐱] 	 [퐱] 	
  ≤ [퐱] [퐱] 	 [퐱]퐧

[퐱]
 < ε.                   (127) 

Here we can use Lemma (5.2.41) for each푓[퐱]  together with  

												Grad [퐱] 푓 = 푀[퐱]  퐺푟푎푑 [퐱] ( )	푓 
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and M[퐱]퐧ℋ  ℋ [퐱] ( ), to obtain that 

훿(ε) > μ{푥: Grad [퐱] 푓 ∈ ℋ  } 

= μ{x: M[X]n Grad휓[퐱]  (x) f ∈ ℋ  } 

= μ{x: Grad휓[퐱]  (x) f ∈ M[퐱]퐧ℋ  } 

= μ{x: Grad휓[퐱]  (x) f ∈ ℋ [퐱] ( ), 

                                   = μ  μ{y ∈ Fw: Grady f ∈ ℋ }.                               (128) 

Therefore, 

μ {x ∈ Fn.e: Gradxf ∈ ℋ  }                                          (129) 

       = ∑흁{ x ∈ Fw: Gradx f ∈ ℋ  } < ∑흁w훿(ε)= μ(Fn, ε)훿(ε), 

where the sum is over all 푤	∈ Wn such that Fw ⊂ Fn,ε. Thus, 

Μ{x ∈ Fε: Gradx f ∈ ℋ  } < limsup μ(Fε\Fn,ε) + μ(Fn,ε)∂(ε) < ∂(ε)   \                (130) 

and 

μ{x ∈ F0: Gradx f ∈ ℋ  }= 0.                                                        (131) 

     We can now formulate geography is destiny with conditions on the gradient. 

Corollary(5.2.43)[262]:   Suppose (F, μ) satisfies the strong main assumption, f ∈ 
Dom ∆μ and h is a nonconstant harmonic function. Then 

limn→∞ ρ(Dir 푓[ ] , Dir ℎ[ ] )= 0                          (132) 

for μ, a.e. x where Gradx f ≠ 0 

Proof . Theorem (5.2.42)  Proposition (5.2.40)  and Theorem (5.2.32)     

     The next corollary is one more analog of Fermat’s Theorem. 

Corollary(5.2.44)[262]. Suppose (F, μ) satisfies the strong main assumption. Then 
there exists a set F' of full μ-measure such that if f= u(g1, …, gl) ∈ C1 (Dom ∆μ) has 
a local maximum at x ∈ F', then Gradxf= 0. 
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Proof. The proof is the same as that of Corollary (5.2.27) and uses Theorem 
(5.2.38). 

     Similarly to Corollary (5.2.29) we can obtain an analogous corollary for 
nonboundary periodic points under the assumption rw μw||푀 || < 1. The existence 
of the gradient in such a case is guaranteed by Theorem (5.2.35).  
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Chapter 6 

Composition Operator and Norm of the Hilbert Matrix 

     We find an upper bound for the norm of the induced operators. We compute the 
exact value of the norm of the Hilbert matrix. Using a new technique, we 
determine the norm of the Hilbert matrix on a wide range of Bergman spaces. 

Sec (6-1) The Hilbert Matrix and Composition Operator 

The classical Hilbert inequality 
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                           (1) 

is valid for sequences a={푎 } in the sequence spaces pL for	1 < 푝 < ∞, and the 
constant 휋/푠푖푛(휋/푝) is best possible[275] Thus the Hilbert matrix  

                   H=   
1

1
 ji

             i,j=1,2,... 

acting by multiplication on sequences induces a bounded linear operator 

                   ℋa =b             


 


0 1k

a

kn
kb  

on the pL   space with norm‖퐻‖ → = 휋/푠푖푛(휋/푝)		for 1 < 푝 < ∞. 

 The Hilbert matrix also induces an operator ℋon Hardy spaces	퐻 as explained 
below ,by its action on Taylor coefficients. In this article we prove an analogue of 
the inequality(1) on hardy space . More precisely we show 

Theorem(6.1.1)[271]: (i)  pIf 2  then	 

pp HH
fH

p

fH )(
sin

)(














 

for each pHf         

(ii)  if 1< p < 2 then 
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fH )(
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)(














 

for each pHf    with 0)0( f .      

   The proof will be given and involves an expression of ℋin terms of weighted 
composition operators of which we can estimate the Hardy space norms . 

   Recall that the Hardy space  pH p 1,  of the unite disc D is the Banach space 
of analytic function CDf :  for which  

                      ,
2

)(sup
1
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                                          (2) 

for finite ,p  and .)(sup zff Dz
  For  qp1  we have  HHHH qp1  

and pH is embedded as a closed subspace in )(TLp
, the Lebesgue space on the unit 

circle ,by identifying pH with the closure of analytic polynomials in ).(TLp  
Additional properties of Hardy space can be found in [273]. 

To study the effect of Hilbert matrix on Hardy space let 
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belong to 1H  Hardy’s inequality says. 
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  and it follow that the power series  
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has bounded coefficients hence its radius of convergence is .1  In this way we 
obtain a well defined analytic function )( fHF   on the disc for each .1Hf   A 
calculation shows that we can write 

ℋ  


1

0

.
1

1)1())(( dt
tz

fzf                                     (3) 
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where the convergence of the integral is guaranteed by the Fejer –Riesz inequality 
[273]and the fact that )1/(1 tz  is bounded in t for each Dz   .              

 The correspondence )( fHf   is clearly linear and we consider the 
restriction of this mapping to the space pH  for .1p  For ,2p  the isometric 
identification of 2H  with 2L  gives. 

||ℋ|| ..22 
HH  

On the other hand ℋ  is not bounded on the space 1H  and H . For H  this is 
because the constant function 1 is mapped to 

                              
ℋ

zz
z




1
1log1))(1(  

which is not a bounded function. For 1H , let 휺 > ퟎ and let 
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1
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a function which belongs to 1H [273]and is positive on  ]1,0[ .We assert that the 
analytic function ℋ )( f  does not belong to 1H  for small values of  . Indeed 
using(3) we find  

ℋ  
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nn zdttftzf   

and if we assume ℋ 1)( Hf     then Hardy’s inequality implies that the quantity 
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is finite. For 1  this is a contradiction . 
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   The operator ℋ is however bounded on pH  for all  p1 .  This is known and 
a quick way to see this is to view ℋ as a Hankel operator. In fact ℋ is a prototype 
for Hankel operators see[276]. We will not pursue this aspect further expect to note 
that a Hankel operator is bounded on 2H  if and only if it is bounded on each pH
for  p1  see[272]. The results of[272] also imply that ℋ is not bounded on 1H  
a fact that we obtained by a direct argument above. 

we indicate how ℋ can be written as an average of certain weighted composition 
operators. 

  Every analytic function DD : induces a bounded composition operator  

                                           ffC :  

on pH for  p1  see[273]. In addition if )(z  is a bounded analytic function 
then the weighted composition operator. 

                                       ))(()())((, zfzzfC    

is bounded on each pH  More information about these operator can be found 
in[274]or[277]. We will not need here any of their properties expect from the fact 
that they are bounded.  

   The connection of the Hilbert matrix with composition operator comes as follow. 
For 1Hf   the Fejer – Riesz theorem, which guarantees convergence , along with 
analyticity shows that the integral in (3) is independent of the path of integration. 
For z D we can choose the path.  

                               
,

1)1(
1)()(




z
z t

tt         10  t        (4) 

i.e.a circular are in D  joining 0 to 1. The change of variable in (3)gives  

                    
ℋ   


1

0
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1))(( dt

zt
t

zt
zf         (5) 

   This expression says that the transformation ℋis an average 

                                 ℋ 
1

0
))(())(( dtzfTzf t   

of the weighted composition operators  
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                                   ))(()())(( zfzzfT ttt  .        (6) 

where 

                  1)1(
1)(




zt
zt   and   

1)1(
)(




zt
tzt  

It is easy to see that t  is a self map of the disc hence tff   is bounded on pH , 
and that for each ퟎ < 풕 < ퟏ, )(zt  is a bounded analytic function. Thus 

 pHHT pp
t 1,: , is bounded for .10  t  

Proof. 

   We first obtain estimates for the norms  of the weighted composition operator tT . 

The estimates are achieved by transferring tT to operators tT~ acting on Hardy spaces 
of the right half plane, which are isometric to Hardy spaces of the disc. The form 
of tT~ permits estimates of its norm, there by estimate the for the norm of tT follows.  

Lemma(6.1.2)[271] if 2p , then. 
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. .10  t                         (7) 

for each pHf  . 

Proof. The Hardy space )(pH of the right half plane }0)(:{  zRz consists of 
analytic function Cf : such that   
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These are Banach space for  p1 .  

Let zzz  1/1)(  be the conformal map of D  onto  with inverse
zzz  1/1)(1 and let.  
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It can be checked that this map is a Linear isometry from  IIH p onto H1
 with 

inverse given by  
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Let )()(:~
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t HHT  be the operators defined by  

VTVT tt
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and suppose )( pHh . A calculation shows that tT~  are weighted composition 
operators given by 
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is an analytic function mapping  into itself. By an elementary argument we see 
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The conclusion follows. 

   For the final step of the proof we will need some classical identities about the 
Gamma and Beta functions, see for example[278]. The Beta function is defined by  

    
1

0

11 )1(, dxxxtsB ts  

for each ts,  with 0)( sR , .0)( tR  The value  tsB ,  can be expressed in terms of the 

Gamma function as 
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tstsB . We are also going to the functional equation 

for the Gamma function 
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which is valid for non-integer complex z   
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( by the continuous version of Minkowski’s inequality) 
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and this give the assertion for 2p .  

Suppose now 21  p  and  pHf   with 0)0( f . Then )()( 0 zzfzf   with 

pp HH
ff 01  . Writing ℋin the integral from (5) we see that                   
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where tT  are the weighted composition operators  
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We now follow the proof (with same notation ) of Lemma (6.2.2) to estimate the 

norms of tT letting )()(:1
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for each )( pHh .Because 022 
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 for ,1p  the rest of the calculation in 

Lemma(6.1.2) goes through and we conclude  
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for each )( pHg . Using this norm estimate we can repeat the final step of the 
proof of the case 2p  to obtain 
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and this finishes the proof of the theorem . 

 

Sec(6.2)  Bergman Spaces and Hilbert Matrix 

     The Hilbert matrix H with entries 1
1

, 


ji
a ji for		푖 and	j	positive integers 

induces an operator by multiplication on sequences. 
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For 1 < 푝 < ∞ , Hilbert’s inequality[275]  

a
n + k + 1 ≤

π

sin(πP)
|a | 																																																	(11) 

implies that H induces a bounded operator  푙 spaces of 푃 -summable 
sequences. Moreover, the constant

(훑퐩)
 is best-possible and the norm of His 

‖H‖ 	→ ≤
π

sin 훑
퐩

													1 < 푝 < ∞ 

The Hilbert matrix also induces a transformation 
	
ℋon spaces of analytic functions 

by its action on Taylor coefficients defined by 
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Converge.  
    The operatorHhas been studied on Hardy spaces. [271] proved that 	H	is a 
bounded operator on the Hardy spaces H , p > 1  , and for 1 < 푝 ≤ ∞ we 
found the following upper bound for its norm see: 

‖ℋ‖퐇퐩→퐇퐩 ≤
π

sin(πp)
																																																									(12) 

where    /1)( dxdyzdm  is the normalized Lebesgue measure on unite disc. We 
also.We also proved that for function s such that f(0)=0 the same estimate holds 
for 1< p < 2.       

In this article we prove that	ℋ is a bounded operator on the Bergman 

spaces  pA p 2, , of analytic function f on the disc for which  
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disc We also provide norm estimates on those spaces . More precisely we show:  

Theorem(6.2.1)[279]:The operator	H	is bounded on Bergman spaces
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   The proof of this result will given, involves the representation, of
	
ℋ used in[271] 

to prove(12), in terms of weighted composition operators for which we can 

estimate the Bergman space norms. It uses a representation similar to one 

developed by A . G. Siskakis to prove that the Cesaro operator is bounded on the 

Hardy and Bergman spaces’ respectively[285],[286] p. Galanopoulos 

[281]exploited the same representation to prove that the Cesaro operator is 

bounded on Dirichlet spaces. 

 We consider the operator  
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pA

p

f
z

zf

2

21
1)(
















       (14) 

for 2p and pAf  and hence 








pA

p

f
z

dt
tzfs

1
)1(

1

))((

1

0
2

 

Now given 





0

)(
n

n
n zazf in 

pA   let  


N

n
n

nN zazf
0

)( . We see that  




  


0 0 1
))((

n

N

k

nk
N z

kn
azfH  



215 
 




 


0 0

1

0
n

N

k

n
K

kn zdtat  







0

))((
n

n
N dttztf  

))(( zfS N . 

so
	
ℋ well defined on polynomials. Also, for Dz   and 2p we see that  

z

dttftf
z

kn
azfS

N

n

N

k

n
k













  1

)()(

1
))((

1

0

0 0
 

pAN

p

ff
z

dt
t 




1

)1(

11

0 2

 

Thus, as N ,the series 




  0 0 1n

N

k

nk z
kn

a
 

converge and defines an analytic function  

ℋ  
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which is in the Bergman spaces .2, pA p
 

    We derive the expression of	ℋ in terms of weighted, composition operators 

mentioned above. Also , we prove that ℋ	is bounded on Bergman spaces  

A 	for P > 2and we give norm estimate Finally using the natural isometric 

isomorphism between A  and Dirichlet space  D, we prove that	ℋ is not 

bounded on A . 
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      We show how Hcan be written as an average of certain weighted 

composition operators. 

Every analytic function DD : induces abounded composition 

operator  ffC :
 
on pA  for  p1 ; the norm of this operator satisfies 

[244]. 
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In addition, if )(z is a bounded analytic function , then the weighted 

composition operator  
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is bounded on each pA . This is the property of this operator that we will use. 

The connection between the Hilbert matrix and composition operators arises as 
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The above estimates give  
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For p >2 the right – hand side of the latter inequality is an integrable function of s 

.By Lebesgue’s dominated convergence theorem we conclude that  
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It is easy to see that t is a bounded function for 0 < t < 1, and that t is a self – 

map of the disc.Thus the operator  pAAT pp
t 1,: Bounded on A  

forevery .10  t  

   We first obtain estimates for the norms of the weighted composition 

operators tT  

Lemma (6.2.2)[276 ].Let  p2 . Then : 

(i)  pIf 4 and pAf  , then 

‖T (f)‖ ≤
t /

(1 − t) / ‖f‖  

(ii)if	2 < 푝 < +∞and pAf  , then 

‖T (f)‖ ≤
2

9(p − 2)
+ 2

/ t /

(1 − t) / ‖f‖  

Proof. We can easily check that 

ω (z) =
1

t(1 − t)ϕ′
(풛) 

Let 	f ∈ A 	, p > ퟐ. Using the last equation we obtain  

‖푇 (푓)‖ = ∫ |ω (z)| |푓 ∅( )(푧) | dm(푧)  

                                        = ∫ |ω (z)| |ω (z)| |푓 ∅ (푧) | dm(푧) 

                                        =
( ( )) ∫ |ω (z)| |f ∅( )(z) | dm(z)
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= ( ) ∫ |ω∅ ∅ (z) | |푓(푧)| dm(푧)

 

                                           =I. 

We now consider two cases.  

         First suppose that. p ≥ 4.  We compute  

∅ (z) =
퐳 − t

(ퟏ − t)퐳 

and  

ω ∅ (z) =
ퟏ

(t − ퟏ)∅퐭 ퟏ(퐳) + ퟏ
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퐳
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Hence 
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t (1 − t) . 

Next assume that 2 < 푝 < 4. then        
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The last integral is well defend near the origin since  
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											 |ω| dm(휔) =
2

푝 − 2
< ∞,					p > ퟐ. 

We write  
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We conclude that for	ퟐ < 풑 < ퟒ, 
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which is the desired result.  
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  For the proof of the Theorem we need some classical identities for the Beta and 

Gamma function see. For example[278].The Beta function is defined 

by 

퐵(푢, 푣) =
푥

(푥 + 1) 푑푥 푠 (1 − 푠) 푑푠 

For vu , such that     .0,0  u The value ),( vuB can be  expressed in terms of 
Gamma function as  

     
  .

,
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Moreover , the Gamma function satisfies the function equation  
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For non-integral complex numbers z. 

Now we can complexthe proof of the Theorem(6.2.1). Let	f ∈ A . We have from 

the continuous version of Minkowski’s inequality  

‖ℋ(f)‖ = |ℋ(f)(z)| 	dm(z)

/

 

= 푇 (푓)(푧)푑푡 	푑푚(푧)

/
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≤ |푇 (푓)(푧)| 	푑푚(푧)

/

푑푡
 

= ‖푇 (푓)‖ 푑푡. 

Using Lemma(6.2.2) for p ≥ 4 we conclude  

‖ℋ(푓)‖ ≤ 푡 / (1 − 푡) / 푑푡‖푓‖  

= 퐵
2
푝

, 1 −
2
푝
‖푓‖  

= Γ
2
푝
Γ 1 −

2
푝
‖푓‖  

   

=
π

sin(2π/p) ‖푓‖  

Analogously, 2 < 푝 < 4,   and f ∈ A  we have 

‖ℋ(푓)‖ ≤
2

9(푝 − 2) + 2
/ 푡 /

(1 − 푡) / 	푑푡‖푓‖
 

=
2

9(푝 − 2) + 2
/ π

sin(2π/p) ‖푓‖  

Now, consider f ∈ A  , 2 < 푝 < 4 with f(0)=0 and write  )()( zzfzf  . 

The function fo is a Bergman space function and satisfies 

‖푓 ‖ ≤
p
2

+ 1
/
‖푓‖  
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Indeed, this estimate is a special case of a result on A  -inner function  

[281].However, it is also possible to give an elementary proof  

Lemma(6.2.3)[279 ].   For every analytic function퐟, 

                               ∫ |푓(푧)| 푑푚(푧) ≤ + 1 ∫ |푧푓(푧)| 푑푚(푧). 

Proof. Let  c >1. We compute. 

             ∫ |푓(푧)| 푑푚 − 퐶 ∫ |푧푓(푧)| 푑푚(푧) = ∫ (1 − 퐶푟 )∫ 푓 푟푒 푑휃푑푟 

		= 	 (퐶푟 )푀 	 (푓, 푟)푑푟. 

                                           =D. 

The real function  σ(r) = (r) − C(r)  is positive for r ∈ 0, C / and negative 

for r ∈ 퐂 ퟏ/퐩, 퐈 . In addition, it is well known that 	M 	
	(f, r) is a nondecreasing 

functionof	r [283]. Hence in order for D to be ≤ 0, it is enough to choose C such 

that the following inequality holds: 

                           −∫ (푟 − 퐶(r) )/ 푑푟 ≥ ∫ r − Cr
/

푑푟 

or equivalently,  

                                  ∫ r − Cr 푑푟 ≤ 0. 

From the last inequality we get the condition C≥ 퐩
ퟐ

+ ퟏ. 

    Now we compute  

                             ℋ(푓)(푧) = ∫ ( ) 푓 ( ) 푑푡 
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                                             = ∫ ( ) 푓 ( ) 푑푡 

                                          = ∫ 푓휙 (푧) 푓 휙 (푧) 푑푡 

                                           = ∫ 푆 푓 (푧)푑푡, 

where  

푆 (푔)(푧) =
1
푡
휙 (푧) 푔 휙 (푧) ,									푔 ∈ 퐴 ,

 

and ϕ (z) = t/(t − 1)z + 1).An easy computation show that  

ϕ (z) =
t

1 − t
∅ (z),			z ∈ D, 0 < 푡 < 1. 

It follows that         

                    ‖푆 (푔)‖ = ∫ |휙 (푧)| 푔 휙 (푧) 푑푚(푧) 

                                      = ∫ |휙 (푧)| 휙 (푧) 푔 휙 (푧) 푑푚(푧) 

                                      ≤ ( ) ∫ |휙 (푧)| 푔 휙 (푧) ∅′ (푧) 푑푚(푧) 

                                    = ( ) ∫ |휔|( ) |푔(휔)| 푑푚(휔) 

                                   ≤ ( ) ∫ |푔(휔)| 푑푚(휔)( )  

                                     ≤ ( ) ∫ |푔(휔)| 푑푚(휔) 

                                    = ( ) ∫ ‖푔‖ . 

Hence  
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                                  ‖푆 (푔)‖ ≤
/

( ) / ‖푔‖  

For the norm of ℋ we compute  

                                  ‖ℋ(푓)‖ ≤ ∫
/

( ) / 	푑푡 ‖푓 ‖  

                                                    =
	 ( / )

‖푓 ‖  

                                                  
= + 1

/

( / )
‖푓‖ ,

 

     Let D be the usual Dirichlet space of analytic function on the unit disc with 

square summable derivative. The following result is well known . 

Lemma(6.2.4)[279].Each bounded linear functional on the Bergman A can be 

associated to a function g ∈ D ( by the pairing	〈f, g〉 = ∑ a (2 + ϵ) ) and  the 
association is an isometric isomorphism of the spaces.  

    This yields the following result  

Proposition(6.2.5)[279].There is no bounded linear operator 22: AAT   satisfying.  

  ,...2,1,0,
1

1)0( 


 n
n

T n  

Where ξ (z) = z . 

Proof. Suppose to the contrary. that there exists such an operator T. Using 
pairing that defines an isometric isomorphism between	(A )∗ and 
풟,we	 ind	that	the	adjoint	operatorT∗:풟 → 풟	 

〈T(푓), g〉 = 〈푓, T∗(g)〉                                                                      (17) 
for every f ∈ A , g ∈ 풟. We choose g ≡ 1 and write  

T∗(1)(z) = C z  

as the Taylor series ofT∗(1) ∈ 풟.Using (7) for푓 = ξ   and g ≡ 1  we have  

                                                   = T(ξ )(0) 
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= 〈T(ξ ), 1〉 
			= 〈ξ , T∗(1)〉

 
                                                               nc  
 For every n=0,1,2,….Hence                      

                                                      T
∗(1)(z) = ∑ z  

but this function is not in	풟. 
    Now we consider the integral  

                                                  	ℋ(f) = ∫ 푓(t) d(t). 
This integral is well defined for polynomials are dense in A 	. It is not known if 
the last integral is well defined for all f ∈ A .In any case, from Proposition 
(6.2.5) we obtain: 
Corollary(6.2.6)[279].	ℋ is not bounded on A . 
Proof .We apply Proposition (6.2.5)  and note that  

,...2,1,0
1

1)0)(( 


 n
n

H n  
Lemma(6.2.7)[297].Let 0 ≤ ϵ < +∞	. Then  

(i)if 0 ≤ ϵ < +∞	 and 	푓 ∈ A then 

                                  T (푓) ≤ ( ) ‖푓‖  

(ii) if 0 < 휖 < 2 and 푓 ∈ A ,then 

			 T (푓) ≤
8

9ϵ
+ 1 2

(1 − ϵ )

(	휖 )
‖푓‖  

 
Proof. We can easily check that 

훚ퟏ 훜ퟑ(퐳)ퟐ =
1

(1 − ϵ )ϵ
∅( )(푧) 

Let 푓 ∈ A 	, ϵ > 0. using the last equation we obtain  
                                           

푇 (푓) = ∫ |ω (z)| |푓 ∅( )(푧) | dm(푧) 

                            = ∫ |ω (z)| |ω (z)| |푓 ∅( )(푧) | dm(푧) 

                         		= 	( )∫ |ω (z)| |푓 ∅( )(z) | ∅ dm(z) 

                           = 	( )∫ |ω∅( )
∅ (z) | |푓(푧)| dm(푧) 
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                        =I.             
We now consider two cases.  
First,suppose that ϵ ≥ 0.  We compute 
                                              ∅ퟏ 훜ퟑ

ퟏ (퐳) = 퐳 훜ퟑ ퟏ
훜ퟑ퐳

 

and  

                        훚ퟏ 훜ퟑ ∅ퟏ 훜ퟑ
ퟏ (퐳) = ퟏ

훜ퟑ∅ퟏ 훜ퟑ
ퟏ (퐳) = 퐳

ퟏ 훜ퟑ 
Hence 

                                                  퐈 ≤
‖풇‖

퐀ퟒ 훜
ퟒ 훜

(ퟏ 훜ퟑ)ퟐ 훜. 
Next, assume that ퟎ < 흐 < ퟐ. Then  

                      I = 	( ) ∫ |ω∅( )( ) ∅ (ω) | |푓(휔)| dm(휔) 

                       = 	( ) ∫∅( )( ) | |푓(휔)| dm(휔) 

                         = 	( ) ∫ |ω|∅( )( ) |푓(휔)| dm(휔) 

                        ≤ 	( ) ∫ |ω| |푓(휔)| dm(휔). 

The last integral is well defend near the origin, since  

                        ∫ |ω| dm(휔) = ퟐ
흐

< ∞,				훜 > 0. 
We write  

           ∫ |ω| |푓(휔)| dm(휔) = 		 ∫ + 	∫ |ω|| || | |푓(휔)| dm(휔) 
and we estimate  

         ∫ |ω|| | |푓(휔)| dm(휔) ≤ ∫
| |

( | | )| | dm(휔)‖푓‖  

                                   ≤
ퟏ

ퟏ ퟏ
ퟐ

ퟐ ퟐ ∫ |ω|| | dm(휔)‖푓‖  

                                  = ‖푓‖  
and  

         ∫ |ω| |푓(휔)| dm(휔) ≤| |
ퟏ
ퟐ ∫ |푓(휔)| dm(휔)| |  

                                                             ≤ 2 ∫ |푓(ω)| dm(휔)  
             = 2 ‖푓‖  . 

We conclude that forퟎ < 흐 < ퟐ, 
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 I < + 1 2 (ퟏ 흐ퟑ) 흐

흐ퟑ
ퟐ ‖푓‖  

 
Theorem(6.2.8)[297].The operatorℋ is bounded on Bergman spaces 
A 	0 < 휖 < ∞,  and satisfies:  
(i)if	0 ≤ ϵ < ∞	and	f ∈ A , then 

‖ℋ(푓)‖ ≤
π

sin( 2π
4 + ϵ)

‖푓‖  

(ii)if	0 < 휖 < 2	and	푓 ∈ A , then						 

‖ℋ(푓)‖ ≤
8

9ϵ
+ 1 2

π

sin( 2π
2 + ϵ)

‖푓‖  

(iii)if	0 < 휖 < 2	and	푓 ∈ A , then						 

                                       ‖ℋ(푓)‖ ≤
( )

‖푓‖  

Proof. 

we need some classical identities for the Beta and Gamma function see. For 
example [283]. The Beta function is defined 
by 

                         
퐵(푢,푣) = ∫ ( ) 푑푥 ∫ (1 − 휖 ) (휖 ) 푑(1 − 휖 )

    
 asfunction  Gamma 

of in terms expressed becan  v)B(u,  valueThe.0,0such that  vu,for  u  

     
  .

,
,




u
uuB



  

Moreover , the Gamma function satisfies the function equation  

    ,
sin

1
z

zz



  
for non-integral complex numbers z. 
   Now we can complexthe proof of the Theorem(6.2.8) (see[13]). Let	푓 ∈ A . 
We have from the continuous version of Minkowski’s inequality  

                         ‖ℋ(푓)‖ = ∫ |ℋ(푓)(푧)| 	푑푚(푧)  

                                              = ∫ ∫ 푇 (푓)(푧) 푑(1 − 휖 ) 푑푚(푧)  
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                                               ≤ ∫ ∫ 푇 (푓)(푧) 푑푚(푧) 푑(1 − 휖 ) 

                                            = ∫ 푇 (푓) 푑(1 − 휖 ). 
Using Corollary(6.2.7) forϵ ≥ 0we conclude 

                                  ‖ℋ(푓)‖ ≤ ∫ (1 − 휖 ) 휖 푑(1 − 휖 )‖푓‖  

                                                        = 퐵 , ‖푓‖  

                                                        = Γ Γ ‖푓‖ 					(Γ(1) = 1) 

                                                        = ‖푓‖  

Analogously, ퟎ < 흐 < ퟐ,   and 풇 ∈ 퐀ퟐ 훜 we have 

      ‖ℋ(푓)‖ ≤ + 1 2 ∫
( ) 	푑(1 − 휖 )‖푓‖  

                                    = + 1 2 ‖푓‖  

consider  Now, 푓 ∈ 퐴 , 0 < 휖 < 2    zzfzf 0   writeand 0=f(0)with  .The 
function	푓 is a Bergman space function and satisfies 

‖푓 ‖ ≤
4 + ϵ

2
‖푓‖  

Indeed, this estimate is a special case of a result on A  -inner function  
[282].However, it is also possible to give an elementary proof . 
Lemma(6.2.9)[297].For every analytic function푓, 

                                 ∫ |푓(푧)| 푑푚(푧) ≤ ∫ |푧푓(푧)| 푑푚(푧). 
Proof. Let C >1.  we compute 

         ∫ |푓(푧)| 푑푚(푧) − 퐶 ∫ |푧푓(푧)| 푑푚(푧) 

                        = ∫ (1 − 휖 ) − 퐶(1 − 휖 ) ∫ 푓(1 − 휖 )푒 푑휃푑(1 − 휖 ) 

                       = 	 ∫ (1 − 휖 ) − 퐶(1 − 휖 ) 푀 	 (푓, 1 − 휖 )푑(1 − 휖 ). 
                                     =D  
The real function σ(1 − ϵ ) = (1 − ϵ ) − C(1 − ϵ )  is positivefor 

(ퟏ − 훜ퟏ) ∈ ퟎ,퐶 and negative for (1 − ϵ ) ∈ 퐶 , I  in addition, it is well 

known that	M 	
	(f, 1 − ϵ )is a non decreasing functionof(ퟏ − 훜ퟏ) [3]. Hence 
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in order for D to be ≤ ퟎ, it is enough to choose C such that the following 
inequality holds: 
                     −∫ (1 − 휖 − 퐶(1 − 휖 ) )푑(1 − 휖 ) ≥ 

                                                            ∫ (1 − 휖 − 퐶(1 − 휖 ) )푑(1 − 휖 ) ≥ 
or equivalently , 

                                  ∫ (1 − 휖 − 퐶(1 − 휖 ) )푑(1 − 휖 ) ≤ 0. 
From the last inequality we get the condition C≥  . 
   Now we compute  
                                  ℋ(푓)(푧) = ∫ 푓 푑(1 − 휖 ) 

                                                    = ∫ 푓 푑(1 − 휖 ) 

                                                  = ∫ 푓휙( )(푧) 푓 휙( )(푧) 푑(1 − 휖 ) 

                                                 = ∫ 푆( )푓 (푧)푑(1 − 휖 ), 
where  

푆 ( )( ) ( )( ) ( )( ) ,									 ∈  
and ϕ( )(z) =

)
.An easy computationshowthat  

                                 ϕ( )(z) = ∅ (z),			z ∈ D, 0 < ϵ < 1. 

It follows that 

			
푆 (푔) = ( ) ∫ 휙( )(푧) 푔 휙( )(푧) 푑푚(푧) 

                = ( ) ∫ 휙( )(푧) 휙( )(푧) 푔 휙( )(푧) 푑푚(푧) 

                ≤
( )

∫ 휙( )(푧) 푔 휙( )(푧) ∅( )(z) 푑푚(푧) 

               =
( )

∫ |휔|
( )( ) |푔(휔)| 푑푚(휔) 

                ≤
(ퟏ 흐ퟑ) 흐

∫ |푔(휔)| 푑푚(휔)
( )( )  

                ≤
( )

∫ |푔(휔)| 푑푚(휔) 

                 =
( ) ‖푔‖ . 

Hence  

                      푆 (푔) ≤ (1 − 휖 ) 휖 ‖푔‖  
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For the norm of ℋ we compute  

                         ‖ℋ(푓)‖ ≤ ∫ (1 − 휖 ) 휖 	푑(1 − 휖 ) ‖푓 ‖  

                                                 = ‖푓 ‖  

                                                = ‖푓‖ , 

Corollary(6.2.10)[297].  let 0 < 휖 < ∞. Then  
(i) If 0 ≤ ϵ < ∞ and 푓 ∈ 퐴  then  

 

   푇 (푓) ≤ ( ) ‖푓‖ . 

(ii) If  0 < 휖 < 2 and 푓 ∈ 퐴  then  

푇 (푓) ≤
8

9휖
+ 1 2

(1 − ϵ )

ϵ
‖푓‖ . 

Proposition(6.2.11)[297].There is no bounded linear operator 22: AAT   

satisfying.  

  ,...2,1,0,
1

1)0( 


 n
n

T n  

Where ξ (z) = z . 

Proof. Suppose to the contrary. that there exists such an operator T. Using 
pairing that defines an isometric isomorphism between	(A )∗ and 
풟,we	 ind	that	the	adjoint	operatorT∗:풟 → 풟	 

〈T(푓), g〉 = 〈푓, T∗(g)〉 
for every f ∈ A , g ∈ 풟. We choose g ≡ 1 and write  

T∗(1)(z) = C z  

as the Taylor series of	T∗(1) ∈ 풟.Using (7) for푓 = ξ   and g ≡ 1  we have  

                                                   = T(ξ )(0) 
= 〈T(ξ ), 1〉 
			= 〈ξ , T∗(1)〉
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                                                               nc  
 For every n=0,1,2,….Hence                      

                                                      T
∗(1)(z) = ∑ z  

but this function is not in	풟. 
    Now we consider the integral  

	ℋ(f) = 푓(1 − ϵ )
1

ϵ z
d(1 − ϵ ). 

This integral is well defined for polynomials are dense in A 	. It is not known if 
the last integral is well defined for all f ∈ A .In any case, from Proposition 
(6.2.11) we obtain: 
 
Sec (6-3)  Bergman and  Hardy Spaces with a theorem of Nehari type 

A Hankel operator on the space 
	
푙 of all square –summable complex sequences in 

an
 
 operator defined by a matrix whose entries

	
		a ,  depend  only on the sum of the 

coordinates 

	
a , = c  some sequence 

	
(C ) .  Hankel operator on different 

spaces are related to many areas such as the theory of moment sequence, 

orthogonal polynomials , Toeplitz operators ,or analytic Besov spaces . 

    Nehari’s classical theorem states that every Hankel operator S on 푙 can be 

represented by an essentially bounded function g on the circle T, in the sense 

that )(ˆ ngc n   for all	n ≥ 0	;moreover ,a function g  can always be chosen so 

that ‖g‖	 ( )	 = ‖S‖ →  see[295] ,[298]  or[299]. A typical Hankel operator 

is the Hilbert matrix H whose entries are 0,,)1( 1
,   knkna kn . It is 

relevant in many fields ranging from number theory or linear algebra to numerical 

analysis and operator theory. For this operator, the following choice: g(t) =

ie (π − t), 0 ≤ t < 2휋  in Nehari’s theorem yields ‖g‖
	 ( )	 = π =

‖H‖ → .	Several interesting facts about the Hilbert matrix are described 

in[290] and[293] problems  and further results about the spectrum of H  can 

be found in[298] .
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   The Hilbert matrix can be viewed as an operator on other spaces and it is a basic 

question to determine its operator norm.One from of Hilbert’s classical 

inequality[271],[275]. 

 

                                    

p

n

p
k

p

n k

k a
pkn

a 1

00 0 sin1





















  










 


 

can be used to compute the norm of H on the space 	푙  all p- summable sequences: 

                                           
‖H‖ → = ( / ), ,  p1  

The Toylor coefficients of the function in the Hardy spaces 	H 		are  closely related 
to 	푙 		spaces. Thus , it is natural to consider the Hilbert matrix as an operator 
defined on		H 	by its action on the coefficients: 

  

                                                              
:

1
)(ˆ

)(ˆ
0




 k kn
kfnf 

 

 that is , by defining 

             H푓(푧) = ∑ ∑ ( ) 푧 ,										푓 ∈ 퐻 , 푧 ∈ 퐷.																(18)            

It is possible to write
	
퐻푓 ,

	
푓 ∈ 퐻  in other forms which are convenient for 

analyzing this operator see[271] for example : 

Dzdr
rz
rfzHf 


 

1

0

.
1

)()(
                       (19) 

The equality of the expressions in(18) and (19) can be verified in a straightforward 
way from the Toylor series expansion of f . 

 The most basic question is:on which Hardy spaces is H bounded? Diamantopoulos 
and Siskakis [271] showed its boundedness on any 	H 	with 1< P <∞. By  
establishing  another useful representation of H as an average of weighted 
composition operator and integrating over semi-circular paths, they obtained the 
following upper bound:  
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‖H‖ → ≤ ( / ) ,										2 ≤ P < ∞. 

In view of Nehari’s 	l 		 Theorem,this result is sharp when  P=2. 

In the case 1< P <	∞. it was also shown in[271] that the above estimate continues 
to hold for the restricition of the operator to the subspace  {	f ∈ H 	: f(0) 	= 0}.  
Two natural question come to mind: 

(a) Can the above norm estimate for  H  be extended to the case 1< P <	∞. without 
restrictions? 

(b)What is the actual value of the norm of H  as an 	H 	 operator  p1 ?  

We give a more general answer to the above question (a) by deducing the 

following Nehari-type result: an arbitrary Hankel operator H 	associated with a 

function 	g ∈ L 	(T) is bounded  	H 	, 1 < 	푃	 < 	∞: 

                                                                   p
g

H pp HHg sin



  

The key point is that every Hankel operator on 		H 	   has representations as a 
composition of a (non-analytic)  isometru and a multiplication . followed by the 
Rizez(szego) projection P+ from 	L 	(T) onto its closed subspace 		H 	. It is well 
know that this projection is bounded for 1 < 	푃	 < 	∞.  In 1968 Gohberg and 
Krupnik[262] showed that  

                                   p
p

p pp HTL
1,

)sin(
1
  

and conjectured that equality should hold . Hollenbeck and Verbitsky [267]proved 
this conjecture  in 2000. Their result allows us to deduce the estimate for H  
above.  

   Using some Hardy spaces techniques and splitting H into a difference of two 
operators we also get a lower bound which yields 

                                                     



p

p
H pp HH

1,
)sin(



,
 

thus answering the above question (b) for all admissible values of p.  
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  The behavior of the Hilbert matrix as an operator defined by (18) turns out to be 
similar in the classical Bergman spaces 		A 	  of functions P-integral in D with 
respect to the area measure. Diamantopoulos [258] recenntly proved that H is 
bounded on 		A 	 if and only  P > 2. In the case  

4 ≤ 	푃	 < 	∞  he obtained the estimate  

)2sin( p
H pp AA 





,
 

 (This  is what one may expect by the “rule of thumb” that say for many operators 
and functionals defined on both 		H 	 and 		A 	 their norm when acting on 		A 	 
is obtained by doubling an appropriate quantity in the norm when acting on 

		H 	. ) A less precise estimate for the norm of H on 		A 	
when  2< P < 4  was also 

obtained in[279] . 

We optain a lower bound valid for all P > 2 which coincides with the upper bound 
from [279] when P ≤ 4,  thus yielding the exact value of the norm for these 
exponents: 

                                          



p

p
H pp AA

4,
)2sin( 


 

In the case 2 < p < 4 although we are currently not able to identify the exact value 
of the norm, we do improve the bound obtained in[279]. We also  point out that the 
Hilbert matrix has an integral representation with respect to the area measure with 
a kernel rather different from the usual Bergman space kernels. 

D = {z ∈ C: |z| < 1} Will denote the unit disk in the complex plane C and H(D) 
will signify the algebra of holomorphic functions in D. For f in H(D)  and 10  r , 
the integral means Mp(r,f )  are defined by  

                                                     
 

p
pi

p dreffrM
1

2

02
1),( 








 


 

  

and are increasing with r. The Hardy space 	H 	(0 < 	푃	 < 	∞) is the space of all f 
in H(D) for which 	‖f‖ = lim → −M (r, f) < ∞	,	and 		H 	 is the space of all 
bounded f in H(D) we will denote by T the unit circle . The standard Lebesgue 
space LP(T) of the circle is to be considered with respect to the normalized measure 
dm(z)=	(	2π) dt where z=eit ,	0 ≤ 	푡	 < 	2π .It is a well known fact that the space 
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pH  is the closed subspace of LP(T) consisting of all function whose fourier 
coefficient with the negative index vanish. The Riesz (szego) projection p+ from  
LP(T) onto pH  is defined by  
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For more details , the reader is referred to [290] among other sources . 

One can define Hankel operator on any space 	H 	, 1 < 	P	 < 	∞.   Given an 
arbitrary 	g ∈ L 	(T),consider its Fourier coefficients with non- negative indices : 
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We can formally define the associated Hankel operator H  by  
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foran analytic function f with the Taylor series f(z) = ∑ f	(n)z in	D.  In 
particular,when g(t) = ie (π − t), 0 ≤ t < 2휋,  a straightforward calculation 
shows that  
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hence  H = H ,  the Hilbert matrix . This is well known; see[280],[295],or[298].  

   We will compute the norm of Hilbert matrix H as an 	H 	 operator,1 < 	P	 < 	∞  
as a consequence of an upper bound for the norm valid for an arbitrary operator	H  
as above. To this end , we consider the isometric conjugation operator (also called 
the flip operator) for the function on the unit circle T as	C	f(e ) 	= 	f(e ). It is 
obvious that C is an isometry from 	H 	   into 	L 	(T). Next, let Mg denote the 
operator of multiplication by the essentially bounded function 푔: M u = gu;  this is 
clearly bounded by  ‖푔‖퐿  as an operator acting on 	L 	(T) We will now establish 
an equality 	퐻 = 푝 M C  which is known to hold in 	푙 	  context(see[295], thus 
obtaining a Nehari – type theorem for Hankel operators on Hardy spaces . 
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Theorem(6-3-1)[289]: let 1 < 	P	 < 	∞  and 	g ∈ L 	(0,2π)  The  operator 
H defined as in (21) is bounded on 	H 	  the equality  퐻 = 푝 M C  holds and 
consequently,  
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In particular, when	g(t) = 	ie (π − t), 0 ≤ t < 2휋	,  we get HHg  and  
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Proof. Given 	f ∈ H 	, denote by fm its mth Taylor polynomial  
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the following result[293] will be useful: if 1 < 	푃	 < 	∞  and then 0pHm ff as 

m . 

  Given 	f ∈ H 	, we first verify that the power series for  퐻 푓 converges in D.To 
this end, it suffices to show that        
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For 푓  instead of f , this follows immediately by recalling that C is an isometry of 
	H 	  into	L 	(T)  and applying Holders inequality: 

A similar argument applied to the difference f − f   shows that (∑ g	(n +
kf (k))m=0∞is a Cauchy sequence uniformly in n , so it is legitimate to let m→∞  
obtain (23) 

We will now establish the formula H f = p M Cf  for all f in 	H 	, 1 < 푝 < ∞. By 
the theorem of Hollenbeck and Verbitsky this will immediately imply that H  
bounded and, moreover,(22) holds: 
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Given  푓 ∈ H  we get the identity H f = p M Cf    and the bound  
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for the  mth  Toylor polynomial 푓 of		푓  by an easy computation involving 
(21)and(20):  
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The interchange of the series and the integral is justified by uniform convergence 

of the geometric series  


0k

nz  on compact sets in D. 

    To extend the identity H f = p M Cf   and(24) for arbitrary f in	H 	,  note 

that H f 	 is a Cauchy sequence in 	H 	 in view of  
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so the standard 	H 	piontwise estimate 푓(z) ≤ 1 − ‖z‖ / f	 		[280] implies 
uniform convergence of  H f  on compact sets. Next our earlier observation that  
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is a Cauchy sequence uniformly in n and standard estimates for the  nth  Toylor 
coefficients based on the Cauchy integral formula allow us to conclude that 
actually H f → H f uniformly on compact sets. Finally . the statement follow by 
Falou’s Lemma after taking the limit as n → ∞  in the inequality(24). 

    The main theorem of this section gives the Lower bound for the norm. 

Theorem(6-3-2)[289]; Let as 1 < 푝 < ∞  . Then the norm of the Hilbert matrix as 
an operator acting on  pH satisfies the Lower estimate  

p
H pp HH 
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Proof .We break up the argument into four key steps.  

Step1. We begin by selecting a family of test functions. Let ε be fixed 0 < 휀 < 1 
and choose an arbitrary γ such that ε < 훾 < 1.  It is a standard exercise to check 
that the function 푓 (z) ≤ (1 − z) / belongs to	H 	 it is also easy to see that  
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Step 2 . set f = f   in the representation formula(19). The change of variable 
xr 1  yields 
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Now define  
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so that obviously  

)()()( zRzgzHf                                              (28) 

where each of the three function in(28) makes sense almost everywhere on T thus 
we can consider their 	L 	(t)  norms.    

Step3. Note that 	z / g(z)  can be defined as an analytic function in the complex 
plane minus two slits : One along the positive part of the real axis from 1  to  and 
another along the negative part of the real axis from 0  to These value of z  will 
always avoid the real value(1-x)-1.  

Now, whenever  z  is a real number such that 0 < z < 1 , after the change of 
variable  xz/(1-z)=u we get  
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by a well – know identity for the Gamma function[273,268],270].Hence  
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holds throughout the silt disk D\(-1,0].  Both sides are defined almost everywhere 
on T, hence their 	L 	(t)  norms make sense and  
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whenever ε < 훾 < 1.   

Step4. We now obtain an upper bound for the 	L 	(t) -norm of the remaining 
integral R in(27). Note that R can be defined as analytic function in the plane 
minus a slit from 0 to	∞ along the negative part of the real axis , so it also makes 
sense almost everywhere on T it follows from the definition of the operator norm 
and by(28), the triangle inequality, and(29) that  
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Minkowski’s inequality in its integral from (see[280,275], followed by a change of 
variable x-1=u and some simple estimate yields  
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where	ε was the number fixed in the first step of the proof . 

    An easy modification of a standard lemma:  pp
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[280],Both from below and from above, justifies the convergence of the integral  
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This shows that ‖R‖	 	( )		is bounded by a constant independent of our choice of 
)1,(  .Now by(26) we get ‖R‖	 	( )		/ f

	
→ 0 as γ ↗ 1  and taking the limit 

in(30) ,we finally obtain(25). 

Corollary(6-3-3)[289]: Let 1 < 푝 < ∞.  The norm of the Hilbert matrix as an 
operator acting on	H  equals 
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For	g ∈ L (0,2π), let H be the operator defined by i.e. 
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and A : 	H → 푙  be the coefficient multiplier operator defined by  
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We refer the reader to[260]for a detailed account of the theory of coefficient 
multipliers on Hardy spaces. 

   Hedlund[294] showed that if g(n) ≥ 0 whenever n ≥ 0, then the norm of the 
operator H  viewed as an	푙  operator (which is equivalent to begin an H2 operator) 
equals the norm of the coefficient multiplier operator A  from	H  to the space	푙   
of absolutely summable sequences .  

This is implicit in the proof of Theorem (6.3.1) [294]. Thus.  
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The standard choice g(t) = ie (π − t), 0 ≤ t < 2휋 yield as a corollary Hardy’s 
classical inequality see[290]or[264]:  
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There is a slight improvement which is also sharp and canbe found 

  in[182]:  

                                             

             for every  f ∈ H .                              (33) 

 This result can also be obtained from our Theorem(6.3.1) and by(31) choosing 

g(t) = πe , 0 ≤ t < 2휋. Since‖g‖ = π, a  straightforward calculation shows 
that. 
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and (33) follow. It is interesting to notice that the constant	π	is best possible in both 
inequalities (32) and(33)  even though this may look paradoxical at a first glance. 

   Let	A(z) = π dxdy = π rdrdt denote the normalized Lebesgue  area measure 
on D. z = x + yi = re .  Recall that the Bergman space A is the set of all	f in H(D) 
for which 

 






0

121

ˆ

k
H

f
k

kf




244 
 

  







 

D

p

A
zdAzff p )(  

   It is known that H ⊂ A . Actually , the function in Bergman spaces exhibit a 
behavior some-what similar to that Hardy spaces functions but often a bit more 
complicated For more about these spaces, the reader may consult[291]or[282]. 

It was shown in[258]that in that the Hilbert matrix operator is unbounded on 
A .The situation is actually even worse : there exist a function	푓 in A  such that not 
only Hf ∉ A  but even the series defining	H푓(0) is divergent. Indeed, consider the 

function
	
푓 defined by  

푓(z) = ∑
( ) z . 

Then 푓 ∈ A  since  
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It is well known that there exists a constant such that C > 0 such that 

                                                         






0 1

)(ˆ

K
A pfC

k

kf
 

for every 	  




0
ˆ)(

k
kzkfzf  that belongs to 	A , 2 < 푝 < ∞.  This is a result of 

Nakamura Ohya, and Watanabe[269]; a proof can also be found in [291]. 
Therefore if 푓	belongs to 	A , 2 < 푝 < ∞, and  
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has bounded coefficients, hence its radius of convergence is	≥ 1. in this way 
we obtain a well defined analytic function Hf on D for each  pAf p 2,  .It 
actually turns out as was proved in[279] that H maps 	A into itself in a bounded 
fashion whenever	2 < 푝 < ∞. In order to show this, Diamantopoulos again used 
formula(19) in which the convergence of the integral is guaranteed by the poinwise 
estimates on	A  function and by the fact that  rz11  abounded function of f for 
each, 퐳 ∈ D  (see[279].    



245 
 

The following formula shows that the Hilbert matrix operator has a different 
integral representation on the Bergman space. The representation below should be 
compared with our Theorem (6.3.1)for  퐻  applied to the Hilbert matrix for the 
Hardy spaces in order to appreciate the difference between the two situations. 

Theorem(6-3-4)[289]. Let 2 < 푝 < ∞.  Then the operator H can be written as 
follows: 
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for any 푓 ∈ 퐴 . 

Proof. writing  
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and recalling that 
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The interchange of integrals and sums is again easily justified by a geometric series 
argument.  

   It should be observed that the representing kernel lacks the usual “symmetry” in 
two variables. 

  Our next result is analogous to Theorem(6.3.2)The key idea of the approach 
below is again the observation that our function 	f  are “ not far from begin 
eigenvectors’’ of the Hilbert matrix H.  The proof below can also be adapted to the 
Hardy space case while the earlier proof of Theorem(6.3.2)with its typical “ Hardy 
space flavor ” cannot be made to work for 	A  spaces.  
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Theorem(6.3.5)[290]:Let	2 < 푝 < ∞. Then the norm of the Hilbert matrix as an 
operator acting on 	A  satisfies the lower estimate 
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Proof : We use the same function f  as in the proof of Theorem(6.3.2). Note that
pAf   if and only if 2  ;this is well known and will be quantified below. 

Aplying H to f  and making the change of variable )1/()1( rrz  , a direct 
computation shows that   fHf  , where for every z in D we define 
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Here is how the above formula should be understood. As r traverses the interval 
[0,1), the point	휔 runs long a ray Lz from 1 to the point at infinity. This ray is 
contained entirely in the half- plane to the right of the point 1 since 
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It is also important to observe that the integration in(35) can always be performed 
over the ray[1,∞) of the positive real semi-axis instead of over

  10:)1/(1  rrrzLz , Since for anys fixed z in D the integrals over the two 
paths coincide. This can be seen by a typical argument involving the Cauchy 
integral theorem and integrating over the triangle with the vertices )1/()1(,1 rrz 

	and )1/()1Re( rrz  and Letting 1r . Namely, writing ,yixz   we see that on the 
vertical line segment Sz from )1/()1()1/()1Re( rrxrrz  to )1/()1( rryirx  every 
휔	point satisfies 
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 By letting	푟 ↗ 1 it follow that  
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Knowing that in the definition (35)of the function	∅  we can take to be a real 
numbers ≥ 1, it is immediate that	∅   belongs the disk algebra wheneve 	γ ≤ 2r   
since p >2 now ( the case γ = 2 will also be useful to us although 

pAf 2 ). Indeed 
	∅   is clearly well defined as an analytic function of z for all	z ∈ D\{1}as 
1 − γ/p > 0.The inequality The s − 1 ≤ |s − z| obviously holds for 1s  and all 
z in D, hence the function	∅   attains its maximum modulus a t z=1  and 
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whenever γ ≤ 2 < 푝.    

Set	 pA
fC   	 .By integrating in polar coordinates centered at z=1 rather than at 

the origin, one easily chechs that 
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as 	γ ↗ 2.  Defining  Cfg  ,it is clear that   gHg  	 and the family of 

functions g (z) : 0 ≤ γ ≤ 2, z ∈ D  has all the properties of an approximate 
identity: 
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Using the usual procedure of splitting the disk into two domains 	D =
{z ∈ D: |z − 1| < 휀} and	D/D  and estimatinsg the difference  
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separately over each one the two regions, we see that difference tends to zero 
as	γ → 2 because the function )(z is continuous on the compact set     2,0, Dz 

and is, hence, uniformly continuous there. It is also uniformly bounded on  2,0D

,a fact used also in one of the two estimates. This allows us to conclude that 
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Which gives the desired lower bound for the norm of H on A   

By combining Theorem(6.3.5).  with the upper bound proved in[279]	푓표푟	4 ≤ 푝 <
∞. we get the following consequence. 

Corollary(6.3.6)[289]. Where 	 ,4  p   the norm of the Hilbert matrix as an 
operator acting on A   equals 
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It should be remarked that the assumption 04 p   is fundamental in obtaining the 
upper bound by Diamantopoulos’ method[279].Let us new recall his estimates 
when 42  p .One is as follows: 
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where  C → ∞ as p → 2  The other is: 
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whenever  pAf    and 0)0( f    (again,2 < p< 4). Although the present time we are 
not able to extend Corollary(6.3.6) to the entire range ,2  p we do have a 
reasonable improvement of the upper bound(36) and our result is also closer to the 
estimate for 4p . 
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Theorem(6.3.7)[289]. Let 42  p  then there exists an absolute constant C      
independent of  Cp 1,   such that  
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    The exact computation norm of the Hilbert matrix as an operator on Ap by the 
methods employed here might be a more difficult problem than its Hardy space 

counterpart perhaps because integral of H is more involved.The case  42  p   
well reguire a further stady. 
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List of Symbols 

Symbol Page 
⊝            :direct deference 1 
Im : Imaginary  1 
Ker            : Kernel 2 
dom            : Domain 4 
ran : range 4 
arg : argument 4 
Re : Real  4 
⊕              : orthogonal Sum 5 
Ext : Exterior 6 
clos : closure 15 
qsc : quasi self adjont contraction 29 
TPSG : tow-point self-similar fractal graph 36 
p.c.f : post- critical finite 39 
deg : degree 41 
max : maximum 42 
supp            : Support 52 
SG : Sierpinski Gaskef 55 
i.f.s : iterated function system 55 
a. e : Almost Everywhere  60 
퐿푝               : lebesgue measure on the real line 61 
Prob : probability 67 
sup            : Supremum 68 
det : determinant 73 
min           : Minimum 74 
Tr : Trace 78 
Spec : spectrum 78 
퐿2    : Hilbert Space 91 
CMV : Contero Moral and Velázquez 107 
ℓ2    : Hilbert Space 107 
퐴2     : Hardy spaces 108 
dim            : Dimension 110 
OPUC : Orthogonal Pelynomials on the Unit Circle 123 
diag : diagonal 137 
WN : weakly non degenerate 158 
HC : harmonic coordinates 166 
OSC : Oscillation 176 
퐻푝      : Hardy spaces 204 
퐴푝     : Bergman Space 213 
ℓ푝  : all sequence –summable complex 233 
퐻∞      : Essential Hardy spaces 236 
퐿∞  : Essential lebesgue spaces 237 
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