Sudan University of Science and Technology

g ﬁ

College of Graduate Studies

Contraction with Defect Operators and Derivatives of Fractals
with Norm of Hilbert Matrix on Bergman and Hardy Spaces

Gl A8 shian mlil e cladlall ClBESE) 5 il jadY) ClEpe ae ALY
35 haa pu Clglad o

A Thesis Submitted in Fulfillment Requirements for the Degree of
Ph. D in Mathematics

By

Ehssan Mohammed Ahmed Abd Elrahim

Supervisor

Prof Dr: Shawgy Hussein Abd Alla

June - 2015



e i

Sudan University of Science & Technology

Loy Scly o5t 013t

College of Graduate Studies

el Lol AU

Ul ity LI
| Approval Page

Name of Candidate: . £. h.}' @i .. [\/Lé/{/w. m.—m.ml. : M’U}’lg@f g A’fx:f El mﬁ.,{tzm

4

Thesistitle:..C@%:‘Z{‘xmﬁjagm..Lu:tf'.tt....D%E@.cﬁ.é. v’aj(ﬂ.'gqxg'
..&w&....IDe.v.Eur&j:Q.‘w&..be..EH&.&?@%---L@},% W&{jq
....... lwa‘( f s g\/l‘@.f AT B = @'“"”"W I C)./VLCJ? % ‘H" av dﬁ

................................................................................................

...................................................................................................

Approved by:

1. External Examiner

2. Internal Examiner

Name: .H.Cﬂ!lif.ﬂ'l‘?é‘.—j[.f\:.A)ﬂﬂf.ﬁrf..gik}iéz% .....................................

Signature: HUJU'{ Aﬂ‘;zﬂﬂ%mt’j .tftu?@ate: .fé.—....é.ﬁ.m.{.ﬂ—.-. ...........
NDi# etz

3. Supervisor




oy

I__J Sudan University of Science and Technology

~ College of Graduate Studies

Declaration

the signing herc-under, declare that I’'m the sole authnr of the Ph.D. thesis

............... ﬁmgb

hich is. an original intellcctual work. Willingly, I assign the copy-right of this work to
ie College of Graduate Studieds (CGS), Sudan University of Science & Technology
ST). Accordingly, SUST has all the rights to publish this work for scientific purposes.

ndidate’s signature: ... G- = .. Date:.. g2/ \0. (. 2alf
55_3};/9 E‘Q \_,u_\Lﬂ-bJ 251 4.:__9.1.:.5ab_;ﬁﬂ'ldlu.t_)_,_m‘;ﬂuﬂj.a.ﬂu_?h_,aloLJ!c_‘;ALLﬂ
APV RPN N LR R Caa US| B RS b SR =R TA

?JMul..\}a-J“Mhbb.eluwaLlMﬁuq:_lﬂ..\b_)u_!‘_gtbu}huj:y' Jlddlg d.v.aiL;_,&iciuu.&J
Lathual_p‘deaﬂH.bﬁwmwuwihzd}SJ

................................................ ?‘Ci )\M}ﬁ N ot ‘iJ Mo ] sl el
@) SN \Q—J——rﬁﬂtwlﬂl b5



Dedication

To my parents
husband

Brothers and sisters.



Acknowledgments

1 would like to express my profound gratitude to my
supervisor Prof Dr. Shawgy Hussein Abdalla for his helpful and
encouragement during the preparation of this thesis.

Finally, full thanks are due to Mohammed Khalid Also
Center for his efficient typing.



Abstract

The Q-function of quaSI -selfadjoint contracuons extension of
closed symmetric contractions are considered. We show the pure
noint spectrum of the Laplacians on Fractal graphs and what is not
n the domain of the Laplacian on Sierpinski gasket type fractalé.
We study the m-function and some inverse problems and spectral
analysis for finite and semi-infinite Jacobi matrices.The completely
characterizations of nonunitary contracﬂdns with rank one defects
operators and corresponding unitary coi[igation-s with truncated
CMV matrices are discusséd. The harmonic coordinates on
Fractals with finitely ramified cell structure with the products of
random matrices and methods of derivatives on p.cf are
established. Composition operators and Hilbert matrix on Bergman
. spaces are investigated. We give the norm of the Hilbert matrix on

Bergman and Hardy spaces with a theorem of Nehari type.

H




LAl

4 Blad il sl A @8 el — 4pd il yaal Q — A L
& ond sales LAl Ul e LD ) 20 Cada Lian ol ¢ Adadll
s msm = Jsall bapy s (S 3l g g Slaile oo Gud D) Jl

A — dudy Lgiial) Sl i ghiad ikl Jiladl y ulSail Sl
11 e < Jige pe doal e LD 4l claal 4 p s
i a5 CMV st e gL e ALE Zoal gl) cillasall 5 a0 ]
G e Al dnpiiall LAY 288 e SllR) e 481 50 il
ol el s 38 paef e CEERY] Gk L sl Ol iian
e Syl dghoas alii plhel . Claa g cleliad o &yl 48 ghan

SN s A e g (53l 5 Olen ym Seliad



. Introduction:

A bounded everywhere defined operator 7 in a Hilbert space $ is said to
be a quasi-selfadjoint contraction or (for short) a gsc-operator, if T is a
contraction and ker (7 — T%) # {0}. For a closed linear subspace of
containing ran (7 — 7*) the operator-valued function Qr(z)= P (T — zI) '
9 . |z| >1, where Py, is the orthogonal projector from $ onto Jt , is said to be

a O-function of T acting on the subspace Jt .

We establish the pure point spectrum of the Laplacians on two point
self-similar fractal graphs . We consider the analog of the Laplacian on the
Sierpinski gasket and related fractals, constructed by Kigami. A function f is
said to belong to the domain of A if f is continuous and Af is defined as
continuous function. We show that if fis a nonconstant function in the
domain of A, then f2 is not in the domain of A. We give two proof of this
fact. The first is based on the analog of the pointwise identity Af 2.__2f Af=
WVf|’, where we show that [Vf I does not exist as a continuous function. We
study inverse spectral analysis for finite and semi-infinite Jacobi matrices H.
Our results include a new proof of the central result of the inverse theory
(that the spectral measure determines H).We use a relation between products
of matrices on M*(R[x] )and Jacobi matrices to study some inverse problems

on Jacobi matrices, including uniqueness and existence theorerms.

The new models for completely nonunitary countractions with rank
one defect operators acting on some Hilbert space of dimension N < oo,
These models complement nicyely the well known models of Livsic and Sz.-
Nagy-Foias. We show that each such operator actin on some finite-
midmensional (respectively, separable infinite-dimensional Hilbert space- is

v



unitarily equivalent to some finite (respectively semi-infinite- truncated
MCYV matrix obtained from the “full” CMV matrix by deleting the first row
and the first column and acting in CV (respectively £2(N)). This result can
be viewd as a nonunitary version of the famous characterization of unitary

operalors with a simple spectrum due to Cantero, Moral and Velazques, as

well as an analog for contraction operators .

We define sets with finitely reamified cell structure, which are
generalizations of P.c.f. self- similar sets introduced by Kigami and of
fractafolds introduced by Strichartz. In general, we do not assume even local
self-similarity, and allow countably many cells connected at each junction

point. In particular, we consider post —critically infinite fractals.

We define and study intrinsic first oreder derivatives on post critically
finite fractals and show differentiability almost everywhere with respect to

self-similar measures for certain classes of [ractals and functions.

We find an upper bound for the norm of the induced operator. The
Hilbert matrix induces a bounded operator on most Hardy and Bergman
spaces, as was shown by Diamantopulos and SiSKaKis. We generalize this

for any Hankel operator on Hardy spaces by using a result of Hollenbeck
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Chapter 1

Quasi-selfadjoint Contractions Extension and Q-functions

The main properties of such Q-functions are studied, in particular the underlying
operator-theoretical aspects are considered by using some block representations of
the contraction T and analytical characterizations for such functions Q;(z) are
established. Also a reproducing kernel space model for Q;(z) is constructed. In the
special case where T is selfadjoint Q;(z) coincides with the Q-function of the
symmetric operator A := Tl (H © ) and its selfadjoint extension T = T* in the
usual sense.

Sec(1.1)Closed Symmetric Contractions:-

The concept of a Q-function was introduced by M.G. Krein for the case of
adensely symmetric operator S in a Hilbert space $ with equal defect number by
means of a selfadjoint extension A of S, cf. [27],[28] [34], and also [39][31],[32] . Such
a function belong to the class N of Nevanlinna ( or Herglotz-Nevanlinna) function,
I.e, Q(z) e N if it is holomorphic in the open upper and lower half — planes and

satisfies the condition Q(Z)=Q(z)*and(ImQ(z))>=0, z € C, U C_, the Q- function
plays an essential role in Krein’s resolvent formula, whih describes all (generalized
resolvent of ) selfadjoint extensions of S.In fsct,all generalized resolvents

(canonical as well as exit space) were first described independently by . M . A,
Naimark [42] and M .G. Krein[27]; see slso [31] for further historical remarks. A
characteristic property of a Q-function Q (z) in the class of Nevanlinna functions is
that Im Q (,)is invertible (at some or equivalently at every point z € C, U C_):
every Nevanlinna function with this propently is a Q —function of some simple
symmetric operator S and a selfadjoint extension A of S in a Hilbert space 7.
Moreover , the simple (completely non- selfadjoint) symmetric. operator S and its
selfadjoint extension A are essentially unique in the sense that the Q- function of S
determines S and A uniquely up to unitary equivalence . A nother approach for
describing selfadjoint as well as non-selfadjoint intermediate extensions of a
symmetric operator is via a boundary value spase and the corresponding Weyl
function ,see[22],[20],[19] .

Two specil subclasses of Q-functions, consisting of the so-called Q,- and

Qwm —functions , which belong to the class N of Nevanlinna functions were defined
and investigated by M.G Krein and I.E Ovcharenko in[33].Here the underlying
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symmetric operator is a non — densely defined contraction .In a recent section[8]
by contains also some extension of Q - and Qy — functions were introduced; in
fact ,this section contains also some corrections to the result stated in [33]. some
other type of Q-function associated to a non — densely defined symmetric
contraction has been considered in[48], including the resolvent formulas for the
selfadjoint (canonical and exit space) extensione.

In this section a class of operator — valued Q — function associated with a
non — densely defined symmetric contraction A and its, in general , non —
selfadjoint contractive extensive T is introduced . By definition abounded operator
T in the Hilpert space $ is a quasi — selfadjoint contraction or , for short , a gsc-
operator ifdom T = $, |[T| <1andker (T-T*) # {0}. Let T be a gsc-operator-

valued function Q (z) as follows

Q) =Pup(T—2z)"' IR, |z| <1 (1)

In what follows the function Q in(1) will be called aQ-function of T with
respect to the subspace 9t c $.observe , that if T is selfadjoint then the function Q
defined by (1) is an ordinary Q-function associated with T and the symmetric
restriction A: =T I , of T, where Ho = H © N =. However , if T is not selfad-
joint this function in general is not a Nevanlinna function. A gsc-operator T may be
considered as a contractive, in general, non-selfadjoint extension of the symmetric
contraction=T T £, which is also called a quasi-selfadjoint contractive extension
of A; here A is symmetric due to $,< ker (T — T*). Such kind of extension were
parametrized and investigated by M .G . krein [28]and by M . G . kreinand | . E .
Ovcharenko [33] . In particular , in[33] two special Q-functions of the Nevanlinna
class for the symmertric contraction were defined and studied and the resolvent
formulas for selfadjoint contractive extensions (sc-extensions) were established.
These formulas were extended in[11]and[ 13] for gsc-extensions . Aboundary
value space approach for describing extensions of dual paris of densely defined
operators appeaers in[38] and for dual pairs of linear relations and their canonical
and generalized resolvent in[40] [41] see also In[35] the approach can be seen as a
non — selfadjoint counterpart of the Q- function approach developed and
systematically used in the papers of M.G. Kreinand H . Langer , cf., e.g, [ 39]-[32]

The contents of this Section will be briefly described. In some preliminary
notions are introduced. The extension theory for closed symmetric contractions is
developed . This includes a discussion of minimality of the underlying symmetric

operator A and its contractive extensions. The Q-functions for intermediate
2



contractive extensions as in(1) are introduced. where also a number of associated
nonnegative kernels will appear . A resolvent formula for gsc-extensions of a
symmetric contraction A is derived . It involoves a Q- function of the form(1) for
a given gsc-extension T of A. a model for such Q-functions is constructed by
means of a gsc-operator acting in a reproducing kernel Hilbert space and it is
proved that two 9t -minimal gsc-operators whose Q-functions in (1) coincide are
unitary unitarily equivalent. This model is used to establish some characteristic
properties of Q-functions of gsc-operators.linear fractional transformations of Q-
functions are considered . The results can be connected with and augmented by the
study of a certain class of passive systems. In particular, the Q-functions of quasi-
selfadjoint operators investigated in the present section are in one-to-one
correspondence with the transfer functions of so-called passive quasi-selfadjoint
systems, which are introduced and investigated in[9] .

The class of all continuous linear operators defined on a complex Hilbert space
$1 and taking values in a complex Hilbert spase $,is denoted by L($: $.) and
L(9)= L (9,9).The domain, the range,and the null-space of a linear operator
Tare denoted by dom T, ran T,and ker T. For T €L($) the operators Tg=( T + T*
)2, Ty = (T —T*)/2i are said to be the real and the imaginary part of T. For a
contraction T € L(91 $,) the defect operator Dy of T is defined by .

Dy (1 —T*T)V? (2)

It is a nonnegative contraction and satisfies the well-known commutation relation

TDT — DT*T, (3)

Cf. [47]. The closure of the range ran D, is denoted by Dt and p(T)stands for the

set of all regular points of a closed operators T .if R;andR,.are two nonnegative
operators in L($ ) and Sp€ L($ ) then the symbol B(Sy, R,, R,)) denotes the
operator ball in L(9 ) wih the center Sy and the left and right radii R and R,

respectiveiy ,i.e.,the set of all operators in L($) of the form T=S,+R;/’XR}'?,

where X is a contrction from ran Rrinto ran R_It is well known , see [44], [45].

That a necessary and sufficient condition for Te L ($) to B(Sy,R,,R,) is the
following :

((T = $)f 9)|” < Ref. f)(Rig.g) Tforallf,g €. (4)

3



If R,=R. =R the corresponding operator ball is denoted by B(s, Rr).

Recall that T € L($) is a quasi-selfadjoint contraction ( a gsc-operator ) if
domT=9, [T| <1, andker(T-T*) = {o}.

A gsc-operator T is said to be a quasi-selfadjoint contractive extension or gsc-
extnsion ot a closed symmetric contraction A if

Dom A < ker (T- T*) or equivalently ran (T-T*) < (domA)*
Cf [11],[13] .Clearly ,an operator T <€ L($ )is a gsc-extension of A if and only if
AcTand AcCT”

or, equivalently, if T is an intermediate extension of A. A qgsc-operator T has
always symmetric restrictions A for which T is a gsc-extension . Namely, with a
subspace 9t > ran(T —T *) define

DomA=96 %N, A=T [ domA.

Then dom A < ker ( T — T* ) .A qgsc-operator T is called completely non-
selfadjoint if there is no non-zero invariant subspace on which the resteiction of T
Is selfadjoint .

Lemma(1.1.1)[1]:[16] A qgsc-operator T is completely non-selfadjoint if and only
if

span {ranT"(T-T*):n=01.. }=$.
Let « <[0,7/2)and denote by S(a)the following sector of the complex plane:
S(a) ={z€C:larg z| < a}.

A Linear operator S, in general unbounded, in a Hilbert space & is said to be
sectorial with vertex at the origin and semiangle « , if its numerical range

W(S)={sf, f):|f|=1f edoms |

Is contained in the sector S(a), cf. This condition is equivalent to

‘Im(S f, f) |£(tana)Re(Sf, f) forall f edomsS.

If the resolvent set of S is not empty then S is called maximal sectorial.
4



A bounded operator T on a Hilbert spase $ is said to belong to the class

C (@), a €(0,712),if
[Tsina +icosal |<1, (5)

Cf.[4].Clearly, T belongs to C(«)if and only if T* belongs to C(«).Moreover, it
follows from(5) that the operators belonging to C(«)are contractive. The
condition(5) is equivalent to each of following two conditions:

1, 1)< o, £ forall £ e: (6)
or
the operator (1 —T *)1 +T) is sectorial with (7)

vertex at the origin and semiangle «,

Cf[5]. Note that the linear fractional transformation T = (I-S) (I+S) * of a maximal
sectorial operator S with vertex at the origin and semiangle « is an operator of the
class C (a). Let

C =U{C(a): @ €[0,7/2)}.

Some properties of the operators in the class C were studied in[4].[5]. In particular,
in[4] ,it was proved that Te C implies that

ranD , =ranD.., =ranD;, ,n=12,.,

where T, is the real part of T. Furthermore it was proved in [4] that the subspace
Dy reduces the operator T, that the operator T [ D, ker D, is selfadjoint and
unitary, and that T I Dy is a completely non-unitary contraction of the class c
le.,

limT"f =limT"f=0 forall f € D,

n—oo n—oo

Let the Hilbert space $ be decomposed as $ = $,D$H,and decompose T € L(H)
accordingly:

Tz[Tll I“j, T, e L(D:59)) - (8)

TZl 22

5



Define the operator-valued functions
Vs (Z):T21(T11 _Z|)71T12 _Tzz, W (Z):_ZI -V (Z), Ze p(Tll)' (9)

By the Schur-Frobenius formula the resolvent (r - z)™ of T can be rewritten the
block form

((rll -1zl )_l(l +T12WT (Z)_lTZl(rll -1zl )_l) - (rll -1zl )_llewT_l(z)J

_WT_l(Z)TZl(rll - ZI)_l WT_l(Z) (10)
for ze p(T)N p(T,,). In particular ,
Po,(T —2I) ' 1 $,——(v;(2)+21)",  zep(T)Np(T,) - (11)

Let 9 be a Hilbert space . An operator-valued V(z),z e C \ R, with values in L(9t)
is said to be a Nevanlinna function or an R-function,cf.[25]. if V/(z) is holomorphic
on C/R, V* (z)>0for all zeC/R. The subclass of Nevanlinna functions V (z)
which are holomorphic on the domain Ext [-11]:= C \[-1.1] is denoted by Ng[—1,1]
By the general theory of Nevanlinna functions,cf.[25],[16]every functionV(z) in
Ng[—1,1] has an integral representation of the form

v@)=r+ | %0,

where T'is a bounded selfadjoint operator on 9t and theL(9t) -valued function G(t)
IS nondecreasing, nonnegative, normalized by G ( - 1 — 0 )=0, and has finite total
variation concentrated on [-11] Clearly , V () : =s - lim V (z)=T.The next result

is also well known, cf .[15].

Theorem(1.1.2)[1] Let 9t be a Hilbert space and let V (z) € N;[—1,1] . Then then

there erist a Hilbert space $, a selfadjoint contraction B on &, and FeL (91, 9),
such that

V(z)=V(w)+F*(B-2)"F, z e EXt [-11]. (12)

In what follows the subclass of functions V (z) € Ny [—1,1] . which have the limit
values V (x1) in L(M) plays a central pole . In this case Theorem(1.1.2) can be
completed as follows.

Theorem(1.1.3)[1]: Let 9t be a Hilbert space and let V(z) € Ny [—1,1]. If for all
f € 9t the limit values



lim(V(x)f, f),  limV(x)f, f) (13)

xT-1 x41

are finite, then there exist a Hilbert space £, a selfadjoint contraction B in § and an
operator G € L(9, Dp), such that

V(z)=V(0)+G'DZ(B -1 )'G, ze Ext[-11] . (14)

Conversely , for every function V (z)of the form (14) the limit values (13) exist for
all f e 9t and are finite .

Proof. By Theorem (1.1.2 )V (z) has the representation(12), where B is a selfadjoint

contraction in a Hilbert space $ and F € L(9t, $). Since the limits in (13) exist for
all f e 9t, one concludes that .

ranF c ran(l-B)'* Nran(l+ B)".

Consequently , ran Fcran D, and this implies that F=D,G for some operator GeL
(R, Dp),cf [24].

Conversely, if V(z) is of the form (14) then ran Dy c ran(B = 1)Y? and
this implies the existence of thse limit values (13) for all f € 9t, cf. [33].
It follows from Theorem (1.1.3)that

V(-1)=s- |Xiva(x)=v(oo)+G *(1-B)G e L(M), (15)

V(-1):=s~limV(x)=V(»)+G*{1-B)G e L(I),
so that
V(-1)+V (@)= 2V(x)-2G'BG, V(-1)-V(1)=2G'G. (16)

An operator-valued function K(z,&):QxQ — L(3t),Q c C is said to be a
nonnegative kernel[2 ],[14 ] ,[43 ] if

Zn:(k(wjfwi)fi, f;), >0

i,j=1

for every choice of points {w,)", = o andvectors {f,}, c 3t with the kernel k(z,¢)is
associated a reproducing kernel Hilbert space Hy it is the kernel k(z,&) is



associated a reproducing kernel Hilbert spaceHy.It is the completion of the linear
space of vectors of the form .

SkCw), fuk,-1c {f),-1c R e,

i=1

with respect to the inner product .
(Z?=1 K(-,(Di)fi,z]nﬂ K(- ’ Hj)gi) = ?:1 Z?=1(K(“j’wi)fi’gi)m-

Then the Hilbert space #{xconsists of the 9t -valued functions f(-)such that for
every h € 9t the reproducing property holds:

() K, w)h)yx=f (0, W)y, w € Q.

Observe that an L(9t) -valued function V (z)belongs to the Nevanlinna class N(t)
if and only if the function.

k(z,g)z%\gﬁ,z,gecm,

Is a nonnegative kernel. Also note that the kernel associated with generalized
resolvents ( of selfadjoint exit space extensions ) in a Hilbert space is given by

k(z,ﬁ):%—v(z),v(g)*, 1 £cC\R

An operator-valued function K(z,&):QxQ— L(M),Q c Cis said to be an « -
sectorial kernel, if .

ij:1(K((Dj, w)fi.f)e es(a)
For every choice of points {»,}', c o and vectors {f,}!, < $,[i.e.,
||m Z?}=1(K(w]’ (Di)fi, f])m| < (tan Ol)Re (Im Z?}=1(K(w]’ (Di)fi, f])m)
cf.[6].For « = O the corresponding kernel is nonnegative.

Let Abe a non- densely defined closed symmetric contraction in the Hilbert spase
$ with the domain dom A =: $, and let Jt: = H © dom A. let P, and Py, be the
orthogonal projections in £ onto $H,and respectively . Then the operator Aqg =

1
Po A is contractive and self adjoint in the subspace $,.Let D, = (I — A2)2 be the

8



defect operator determined by Ao. The operator A,; = Py, Ais also contractive.
Moreover, it follows from A*A<1. That 45,45, < DjO.Therefore, the identity

K,D, f=PxnAf, fedomA

defines a contractive operator k, from®D, :=TanD, into N,cf,[21],[24]. This
gives the following decomposition for the symmetric contraction A

Ao
A=Ay +KoDy = <K0DA ) (17)
0

Let the closed symmetric contraction A be defined on the subspace $, = domA
and decompose A according to $ =$H,DJt as in(17 ).Let T be a gsc-extension of A,
so thatAcT and Ac T ™ and decompose T=(Tj;)also with respect to $H=,DJ,cf.(8)

.Then clearly Tu= AT =T =KeDy, | The next result gives a parametrization of all
gsc — extensions of A and some of its subclasses by means of block formulas cf.
[15],[18],[46],and [11],[13]. For completeness a short, simple proof presented.

Theorem(1.1.4)[1]:Let A be a closed symmetric contraction A in H$=$H,BIN with
dom A = §, and decompose A as in(17). Then:

(i)the formula

TZ[KOA[\;AO —KOAbéAlKSKSXDKJ: (%to) - (?no) (18)

gives a one — to — one correspondence( between all gsc — extensions T of the
symmetric contraction a=a, +k,D, and all contractions X in the subspace D::=

ranD.. c R;
KO

(ii) T in(18) belong to the class C(«) if and only if X belongs to the class C(a), a €
(0,m/2);

(iii) T is a selfadjoint contractive extension of A if and only if Xin (18) is a

selfadjoint contraction in D:

Proof: (i) Every operator T € L($) satisfying the conditions AcT and AcT*
admits the block matrix representation of the form



_[ A DyKo). %o $Ho
T_(KODAO D J(&n)_’(ﬁn)
whereD € L(M) then I-T*T is given in the block form

2 * * *
|_per—[ DL DaKKD,  —ADLK;-D KD}
~K;D, A, ~D'D, A, D} ~K,AJK; -D'D

Contractivity of T means that

0<[D,, f - AKN Z—HKODAOf +Dh (19)

2
+ HDKSh

for all f € Hoand h € I .Since ranKy € Dy, andAD,, © Dy, there exists a
sequence {f,}y=; © Du, such that for a given h € Nt the equality

limD, f, = AK:h

n—oo

holds. Hence, it follows from(19) that E = K,A,K; + D satisfies

Enf <[l |E T ohewm, (20)

2
<|ph

where the second inequality follows from the first one by taking into account that
T* is a contraction, too. By the second inequality in (20) there exists a contraction
Ze N(R,Dk: ) such the E= Dy.Zie.,D=-KAK;+D,.Z .

By substituting this into (19) one obtains

0<|p,, f - AKsh)-K;Zh|" +| ‘2—||Zh||2,f eHo, hen (22)

D,.h

since by means of (3) one has

2

Ko(Dy, f — AK;h) + DKSZhHZ =|Ko(Ds, f ~ AK;h

~|Zh[f +[K;Zn]" ~2Re(DK, (D, f ~ AKh). KoZh)

Due to the inclusion rank Z c D, ,one can choose a sequence {f,}n=;
DAO0 such that for a given hedt the equality

limD, D, f, =D, AKsZh (22)
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Holds. Now (21) shows that ||Zh||* < ||Dk:h
some contraction X in D, - Therefore

| 2for all h € 9 so that Z = XDy; for

E=D_.XD,.and
D = K,AK, +D,.XD,. (23)

Conversely, let D be of the from (23) , where X is a contraction in Dk .Then
D2 >oimplies that T given by (18) satisfie

)

Thus, every contraction X in Dg: defines a gsc- extension T of A via (18)(ii). It
follow from (18) and (24) that T satisfies (6) and only if

Stanoz(
2

=D, (D, f -~ AK;h)-K;XD,.h rzo. (24)

2
[+

DD,

Dy, (D, f ~ AKsh)- K;XD,.h

2
" +|p.D

2
) (25)
Holds for all f € $,, h € 9t in view of the condition (22) in equivalent to

tan o

()} < === D hf (26)

For allh € Dk

(iii)The statement is clear since T in (18) in selfadjoint if and only if T is self
adjoint inD:

The class of all selfadjoint contractive (sc-) extensions of A in part (iii) of
Theorem(1.1.4),forms an operator interval |Aw Am|. Using the block representation
(18) the endpoints of {A,,, A, Jare given by

A A Dy, Ko
“ 7| KDy KoAK;—DE (27)
and
A, = A, D,, Ko
T KoDy  KoAK;+DZ | - (28)
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WithX = —1 T Dg: and X = | [ D: respectively. From the formulas (27) and (28)
it is seen that

ActAy [ A DK | A=A, (000
2 KoDs KoAKs ) 2 0 Dy

This means that all gsc — extensions in (18) of the symmetric contraction A from
an operator ball

o AutPAu Au-A,
2 2

with center
(A, +Ay )2
and equal left and right radii
R, =R, =(A, +A,J?/42

The one — to — one correspondence between all gsc- extensions of A and all
contractions X in Theorem (1.1.4) can be reformulated also as follow

12 12
T:A”+AM N Ay +A” y AM+A”
2 2 2

(29)

where the parameters X are contractions in the subspace ra_n(AH1 -
Ap,cf.[11],[12],[13].1t is easy to see from (18 ),(27)and(28), that if T is a qsc-
extension of A such tha TR =(T-T")/2=Ap,(A, then in fact T =

Am(A,).Namely, x = x_ +ix, satisfies

{osx*x = X2 Hi(X X, =X, Xg)+ X2 < |}

0< XX*= X2 —i(X X, =X, Xg)+ X2 <1 (30)

sothat o< x 2+ x?<1and here clearly X7 =1impliesx, =0

The description of all contractive selfadjoint extensions of a symmetric
contraction A as the operator interval ‘Au’AM‘ Is due to M.G. Krien[ 28]. In that

section the notion of shorted operators was also introduced and used for instance to
establish the following characterization for A, and Ay:

12



ran(l +A, )VZ N9t = {0}, ran(l + A, > N9{0}, (31)

cf.[8],[23].Block formulas for describing all contractive extensions of a duel pair
appear in[15],[18],[46], a description in Crandall’s form in The one to one
correspondence between all gsc- extensionsTof Athe class C(«) and all operators X
in 7an(Ay — A,) belonging to the class C(«) by means of (29 ) was proved in a
different way in another proof based on(18) was given in[39].

According to[33] a closed symmetric contraction A is said to be simple if there is
no non- zero subspace in dom A which is invariant under A. Since A is
symmetric simplicity of A is equivalent A being completey non- selfadjoint,
I.e.,to A having no selfadjoint parts.

Lemma(l.1.5)[1]: Let the closed symmetric contraction A = A, + K,D, iNH =

HoDIN, Ho = domA be decomposed as in (17) with Ky: D, — It .is simple if
and only if the subspace

95 =span {(4g — zI)TK;N: z € p(4y)} (32)
= Span {A5K;9t:n=01,..}
Coincides with$,. In this caseDa, = Ho,Ko: Ho = Jt.an [|Aof || < |[f || for al f e
$0/{0}

Proof. Suppose that A is simple. Then clearly e p, - {0} OF equivalently
|Af|<|f|for all fe $,/{0}so that Dy, = HoandK,:H, — It Observe that the

subspace $§in(22) and therefore also H, © H3 is invariant under A, = A’ Then the
subspace$, © Hyis also invariant underp, Moreover,

90 © 9o ={f € Ho:KeAN =0,n=0.1, ..} (33)

Is follow that KoD, f = Ofor all fe€ $, © HaHence, in view of (17)Af = A,f

forf e $H, © Hiall This means that the subspace £, © Hyis invariant under A
since A is a simple, one concludes that$Hg =

Conversely, assume that$g = 9. Since ranK, <D, and p, is invariant underA,
the definition of $Hgin (22) shows that 5 c D, . Hence, the assumption implies
that $§ = D —ramD, SO that ker p, ={0}.Now suppose that $, c H, is a

13



subspace which is invariant under A  Then for every fe &, one has

Af = AT +K,D, fe $os0 thatkKoDa f=0for all f e $,and . Hencep, 9, is
invariant underA, and D5, Moreover sincep, - {ojthe imagep, $, is dense in$,

This implies that K,and since A’ one hasK,$, c $oforalln=01... ie.,

Ho c{f € H0:KoAJF=0,n=01,..19H, © H0

c.f(33)Therefore A is simple.

Let T be a gsc- extension of A in the Hilbert space $ = £, with $,=domA .
It is evident that the subspace

St =35pan{(T —zI)" N} |z > 1 =span {T":n =12, ... }, (34)
Is invariant underT, and that the subspace
H1:= HO Hr, (35)
is invariant underT* . Since :t < $7, one obtains
H7 € Nt =domA c ker(T —T*)

Therefore the restriction of T *to $7is a selfadjoint operator in 1 The restrictionc
TT$7 (: Pgr Hj’T). is called the9t —minimal par of T Moreover T is said to be

9 — minimal if the equality $ = $Hrholds. If T be a gsc- extension of A then its
adjoint T is also a gsc extension of A and one can associate with it the subspace
ngand the corresponding 9t — minimal part of T*. The next result shows the 9t —
minimal parts of T and T are gsc- extensions of the simple part A I' $gof A in the

same subspaceHt = H-

Proposition(1.1.6)[1]: let A be a symmetric contraction in $ = $,DIt with H, =
domA. Let T be a gsc- extension of A in $ and letT* be its adjoint. Then the

subspaces $r, Hr-and$H3 of H = $,HN as defined in (34) and (32) are connected
by

(&' =)91 = H1- = HRON. (36)

In particular, the symmetric contraction A is simple if and only if the qgsc-
extension T, or equivalently T*of Ais 9t — minimal.
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Proof. It follows from the Schur — Frobenius formula (10) that

—(Ap — Z)_lDAOK;

),|z|>1,
N

T-z)'N = (
which implies that
span{(T —zI)~'9n}: |z| > 1}
—span {(Ag —zI)71Da K59tz € p(Ap) }ON
= (closD,, span{(A, — z1) 7' D K;Jt:Z € p(A,) }N
This shows that

$1 = (clos Dp,H3) D N.
37)

Since K, =Dja, andDy is invariant under A, one has $3 © D, .In particular, $3
NkerD, ={0}which together with D, $3 c $; implies that D, $3 = $;. Hence,
(37) implies the equality $1 = HSDN. It follows from

(T*—z1) (T —2)" =(T-2) " [T-T*T-21)", |7>1
and the inclusion ran (T — T*) < 9 that
@—a)y'Rca-a)y' NcHy, |z|>1

Therefore , $';, € $'; and the reverse inclusion follows by symmetry. This
completes the proof of (36).

The last statement is clear from(36)

For selfadjoint extension of A the result in Proposition(1.1.6) has been given in
the case of closed densely defined symmetric operators Athere is an equivalent
criterion for the simplicity of A due to M.G. Krein based on the defect elements:

span {ker (A*-1): 1€ C/R}= §,

cf. Lemma(1.1.5) .This characterization has been extended to non — densely
defined symmetric operators in[37]
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Sec(1.2)
Quasi-Self adjoint Contractions

Let T be a gsc — operator in a separable Hilbert space & and let 9t be subspace
of $ such that it © ran(T — T*). The operator — valued function

Qr(@ =Pp(T—-z) 11 %], |zl <1, (38)

where Py is the orthogonal projection in $ onto $ is said to be Q — function
associated withTand the subspace 9t .Clearly, it has the limit value Qp() =
0 and the Q — function of T and T* in 9t are connected by

Q.(2)=Q: (7)., [|f>1. (39)

If T is a selfadjoint contraction then Q — function (38) is a Nevanlinna function of
the class Ny [-1,1]. The next result contains some basic properties for the Q -
function Q(z) of a gsc- operator T as defined in (38)

Proposition(1.2.1)[1]: Let Q(z) be a Q — function of a gsc — operator T as
defined in (38)Then:

(i) Q1 (2) has the following asymptotic expansion:

QT(Z):—£I+%F+O(%} Z— o, (40)

z 2 z
where F=—P,T I 9;

(i) Q71 (2) e L(M) forall |z| > 1;

(iii) Q71 (z)has strong limit valuesQ7* (%1):

Q'(-1) Qr(x)

imQ'(x). Q' (L)=lim

(iv)for all f,g € 9t thefollowing inequality holds:
Q7 (=1) + Qz*()f, ol*
< ((Q7'(=1) — Q7' (. H((Qr'(-1) — Q7 (1))g. 9);
(v)the function —Q7*(z) — F — zl is an operator — valued Nevanlinna function:
(vi) Qt(z) € Ny;[—1,1] ifand onlyif F=F*
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Moreover, if T is decomposed as in (18) with H,(H © 9t ) andA=T I H,, then

F = K,AK; —D,.XD, ., (41)

Q(-1)-D. (X +1D,., Q1)-D,(X-1p,, (42)

0

-Q@)-F -2 =K, (- A Ja 21 )'K;
(43)

Proof.(i) Clearly lim,_, zQt(z)h = lim zPy(T -z1)*"h=-Pyh for all h € N.
Z—00

Moreover, for all h € 9t

lim z(1+ 2Q, (z)h = lim zP NT(T —z1 ) *h=- P Th. (44)

Hence, Q1 (z) admits the asymptotic expansion (40)
(ii)Let |z| > 1,let f € 9, and letp = (T, —zl)"H.Then||f|| < (1 + |z]) || ol|

and

(@@, £Y=[(T-21)* ¢, ] =[0.T -21)p

|z| -
= T —7 2 >
|(, To) — Zllol| I—(|Z|+1)2

II£11%.
Since = |Qt(Df, f] = [(Q(2)*f, )], this implies that

|z|-1
(Izl+1)2

Therefore Q7(2) € L(N) for all |z| > 1.

IQr@)fll = GE= Ifll - Qe ()'f = = Ifll.

(iii) Decompose $H(Ho® ) and write T in block form as in(18) where H,(H ©
A= T|90,A0=POA isa selfadjoint
contraction $,Da, = (1 — A3)Y%,K, € L(D,,, M) is a contraction and X is a
contraction in the subspace Dy . The formula (41) for F is immediate from (18).
WriteQ71(z) as in (11
Qr (@) i1 QA ()=V;(2)-12, |7>1
where

Vi (2) = KolA) +(A\) -zl )71(1_ A\)Z)JK; - DKg XDKS (45)
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This shows that the limit values Q7' (1) exist and that they are given by (42).

(iv) 1t follows from (42)that

WD _p 0

QDLW b gy g

2 B (46)

It remains to apply the criterion (4) with S, =0 andR, =R = Dss

(v) It follows from (41) and (45) that(43) holds. Clearly, the function in(43) is
a Nevanlinna function.

(vi) if Q1(2) € Ny[—1,1]then —Q(z)tis a Nevanlinna function and now part
(v) implies that F =F* Conversely, if F=F*then the functionV(z) in( 45)and
- Qr(2)* =Vr(2)+ 21 gre Nevanlinna functions. ThereforeQ(z) € Ng;[—1,1].

Let T be a gsc — operator, let Qp(z)be defined by (38) and let F be defined
by F = —Py; I 9t. Associate withQ(z) the following kernels:

G, (Z,E ):: Q@)-%E) & (Z)(F -F *pT ) Q{l(l)

2§ (47)
Mr(z,8): 1 +2Qr(2) + EQr(§)" + 2E61(z, §) (48)
L (28 )=G(2.5)-M,(2.5)
(49)
and
Mz(z,8) = Lt(z,8) + Qr(2)(F — F)Q(8)", (50)

withz = € |z|, |€]| < 1. The insertion of the definition of G1(z, ) in Lt(z, )
and K1 (z, &) leads to the identities

(2-9Lr@® = (1 - 22)Qr@) — (1 — B)Qr(®"
~(1 - 28)Qr@(F — F)Qr(®)" — (- ¥,
and

(2-DLr@® = (1 - 29Q: (@ — (1 - B)Qr(®"
18



~(1+2)(1-5)Qr@DF - F)Q(®)* — (z -1

Proposition(1.2.2)[1]: LetT be a gsc — operator, let Q+(z)be defined by(39), and
let T be defined by F = —Py I 9t.Let the kernels associated withQ, (z) be given by

(47),(48),(49)and (50). Then the following equalities hold for every z # & |z], || >
1:

Gr(z,8) = Pp(T—z)~H(T* = &) 19, (51)
Mp(z, 8) = Pp(T—z)~1TT*(T" = 81) " 9%, (52)

and
Lt(z,8) = Pp(T —z)"H(T-T")N. (53)

The operator- valued function Gp(z,€),M(z,£), and Lt(z,€) are nonnegative
kernels. If in addition the operator T belongs to the classc(« ) then the function.

Kr(z,)=Pp(T—zD*A+T)A =TT =) 'R (54)

with|z| , [§] > 1 is an a —sectorial kernel.

Proof. Note that ran(T — T*) < 9t implies that 9t c ker(T — T*), and hence T —
T*=Py (T — T*)Ry,. Therefore for every f,g € N,

(@ (2)-Q:(0))f.9)= Pu(T — z)7H — Pp(T* — €)1, 9)

= (Pu(T =)' =TT = ) .9)

+(z — &) (Pp(T — z) " 1(T*EI) "1, 9)
=(Qr(@)(F - F")Q(®)*f,g)

+(z =) (Pp(T —zI)"X(T* — E)"1f, )

Hence, it follows that

Qr(@ — Q1(®) = Qr@)(F = F)Q1(®)+(z = §)(Pu(T =z (T" =&~ I ¢,

and this proves (51). The identity ( 52) follows now from
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(T (T =8) ', T°(T" —21)~1g) = (F— §(T" — &) ', g+ z(T* — z1)~1g)
= (f,9) + 2(Qr(D)f 9) + §Q1(®)f, 9) + z5(Gr(z, ©)f ) f,g € M.

Subtracting (53) from (51) gives immediately the identity (53).

It is clear from the given formulas (51),(52),and(53), that the functions
Gr(z,8),M1(z,€),andL(z, €) are nonnegative kernels.

Since (T-T*)= Py (T-T*)Ry, the definitions of Q(z) and F in (38),(44) show that
—Qr@)(F = F)Q3(®) == (Pp(T —zD)™"(T* = T)(T* - &N~
Combining this identity with (53) leads to (54).
It is a consequence of(7) that +K;(z — €) is an a —sectorial kernel.

Proposition(1.2.3)[1]: Let T be a gsc — operator in a Hilbert space $,Jt c
ran(T — T*). Suppose that T is 9t — minimal,i.e., $ = span{(T — z) "% |z| > 1}.
Then the following conditions are equivalent;

()9 =9;
(i) G,(z.2)=Q;(2)Q, (z) for at least one (and equivalently for every): with |z| > 1,
where Q1 (2)is Q- function of T defined by (38) and Q1(z, £) is defined by (47),

(iii) the operator- valued function q-(z)+ 21 Is constant.
Proof: (i) = (ii)& (iii) if N =$ then Qr(z) = (T — T*)~! and the

equality G, (z,2)=Q, (2)Q, (z) all z,1zI > 1,follows immediately from (51). Besides,
Q;'(z)+z +Tforallz,[z] >1

(i) = (i) Now suppose that Q;(z, z) = Q;(z)Qr(z)*for some z,|z| > 1.
Then (38) and (51) yield
I(T* = ZD7 |l = Poll(T™ — D7 f | forevery f € 0.

Therefore, (T* — zI)719 < 9 which implies that the subspace 9t is invariant
underT*,and hence also under T, since ran(T —T*) c Jt. Because T is Jt —
minimal, this leads to9t = $.

(iii) = (ii) Suppose that Q:'(2)+ 2 js constant for|z| > 1. According to

Proposition(1.1.3) the function—Q+'(z)+ I +F has a holomorphic continuation onto
20



Ext[-1,1]as a Nevanlinna function. Since_QTfl(z)Jr 721 + F is constant for |z]| >
1,0ne has

Q' @)-21+Q, @) +z1 +F =0, |7>1

it follows that

—Q;1(2)+QT(Z)*—(F—F*):1’ \Z‘>1

1-17

and thus

QT(Z)(—Qfl(Z) +Qr(z2) — (F - F*))QT(Z)*
z-¢
Therefore G (z,2)= Q1 (2)Qr(2)* for all z,|z|>1.

= Qr(2)Qr(2)*, lz| = 1.

Observe, that equality (51) can be rewritten in the following two equivalent
forms:

—Qr(2) ' -F-(=Qr(§)~'-F)"
z—§

= Qr(@) P (T -2)"—Qr ()™ (55)

and

—Qr(2) ' —F—zI-(=Qr(§)"*-F-¢D"
z-§

= Qr(2) " Py(T — zI) "L (T* = &) Qr() . (56)

These formulas show that —Q1(z) ™! — F and—Q(z) ™! — F — zI ideed are
Nevalinna functions. In particular, the conditions (i) — (iii) in Proposition(1.2.3)are
equivalent to the right side of (56) to vanish.

Remark(1.2.4)[1]: The Q — function as defined in(38) can be interpreted as the
Weyl function for a special kind of boundary value space of a duel pair of
operators,cf [38],[40],[41]. To explain this. Let A=Ay =KyDao be a Hermitian
contraction and let T be a gsc — extension of A,i.e., T is a contractive extension of a
dual pair {A, A}. let A*can be the adjoint linear relation of A in the Cartesian
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product $ x $.Then A* can be represented as follows:
A ={{fTF+o}feD oe R} ={{f T'F+y}feH yveR}
Define the following bounded linear operators acting from A* into 9t:

Colf, £} = Pouf Tilf, 3 = PuT"f = Pof \Tof, [} = PoTf = Puf’
where{f,f } € A*. Then {ER Iy, T, ,Fz}forms a boundary value space forA*.
Inparticular, for all f - {,'},§={g,9'} A" the following identity holds

(f',9)-(f,9)=,f.5,6)-(r, 7. r,6)
and moreover ker r, -+, kerr, =1, and

ker T, = {{h,A)h+p}:he®, ' @}

The corresponding y —fields are the following operator functions

vo(z2)p=—(A —21)'K;D, 0,
7 (2)p=—(T" -2 )71<0
72(Z)§0 (T _ZI)

where ¢ € 9t and Iz| > 1.. It follows that Q,(z)=T,7,(z) IS given by

Q(z)=Pp(T—zI )" I,
and that —Q:Y(2)=T,y,(2) IS given by
—Q7' (@) = (Ko[Ag + (Ag — z) (I — AD)IKG — Dg: XDg: +z1) [ %,

where T is decomposed as in (18) see also Proposition(1.1.7). In particular. this
means that Qp(z)can be interpreted as the Weyl function corresponding to the
boundary value space{9t,I"y,I"; , I'5}in the sense of [41],[42].

Let A=A +KD, be a closed symmetric contraction in $ and let T be a gsc-

extension of A given by the block matrix (18). If Q(z) = Pp(T —zI)~1 I Stisthe
(er*(-1-Q7'(D)
2

Q- function of T, then by(46)the operator IS nonnegative on Jt .Let
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5 5 (57)

B, =B [_ Q?l(_1)+Q?l(1), QTI(—l)—QTl(l)J
be the operator ball L(9t)in with center
-(@*-)-QrW)2=-p XD,
and equal left and right radii

-@*-1-Q*W)2=-p2

Recall that it is the set of all operators in 9t of the form

jﬁ4?¢®%@%%ﬂmﬁﬂfﬁ4§¢mr

Where||Y|| <1.

Thearem(1.2.5)[1]:Let A be a closed symmetric operator in aHilbert space $.Then
the formula

F-a) =T-a) -T-2)8(+Q (2)B) ' PRT -2)’ (58)

with |z| < 1 gives a one — to — one correspondence between the resolvents of all
gsc extensions{ of A and all operators g belonging to the operator ball B, in (57)

Proof. By Theorem (1.1.4) every gsc — extension +of A can be written in the
block form

= (A DK
KsD,,  KoAKg +D,.YD,. (59)
where ||Y|| < 1. This together with(18) gives
B:=(T~T)IN=-D.XD;+D,YD,. (60)
which in view of (46) this means that B € Bq, it follow from
T—zI =T —zI +BPy (61)
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that
(T—z)t=(F —2)  +(T—z)BP(T —2)", lz|>1,
and compression toJt lead to
Q(2)=Q(2)+Q(2)BQ(2)
SinceQr(z)and Q1(z) are invertible by part (ii) of Proposition (1.1.7) one obtains

Q) =Q(2)* +B=Q(2)*(1 +Q(z)8)= (I + BQ()R(2)™

Therefore, the operators Jt
1+Q(2)B and 1+BQ(2), |z]>1
are invertible in ER’ too Furthermore’ by rewriting (61) in the form
T—2zl = (1 +BPy(T—2z)™1)(T—2zl).
it is clear that (1 + BPy(T — zl)‘l)_1 € L(®) for every |z]>1 and
(T-z1) ' =T=z) (1 +BP(T—2z)"Y) " Jz] >1 (62)
It also follow from that
(T-21) = (T—z)"t=—(T—21) BRy(T—2z1)"! (63)
Now using the identities (61), (62) and
(1+ BRy(T — z1)7) 'BRy = BRy(1 + Po(T — z1)1BRy)
one obtains
F-a)] -(r-a)*
—(T-2)'(1+BPy (T-21)")'B Py (T-21)"
—(T-21)" BPp(1+ Py (T-21)"BPy)*Pp(T-2)*
——(T-21)*B(1+Q,(2)B) P (T a1 )* ,

which gives the required identity (58)
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Conversely, assume thatB < By that Bis given by

meakoib 0 (Qﬁ(— B- Q;l(l)j”zg(csﬁ(— Y- Q{l(l)jlz

for some H\?Hgl_ By(46) one has B = —Dg: XDy + Dy: YDx:.Consider the gsc -

extension T of A given by the block operatorf~ of the form (59)which is
determined by Y. Then cleary B = (T — T) I 9t.As was shown above, the operator

1+Q;(2) B is invertible for all|z] > 1and the resolvent of T takes the form(58).

The one — to — one correspondence is clear from the given arguments.

Observe that the Q — function Qr(z) of the operator T in(58) and the Q-
functionQr(z)of T are connected via

Q7(2) = Pa(T — 2D 1 R =(1+Q.(2)8) "0 (2) =@ ()1 + B, (2)” (64)
-E+or@)"

Let 9t be a Hilbert space. An operator valued function Q(z)with values inL(9t)and
holomorphic outside the unit disk is said to belong to the class Q(%t) if:

(i) Q(2)has the expansion

Q(z):—il +212F +O[lej, Z — oo
(65)
(ii)theL( 9t) — valued function
b5y = QD= QO - QIE=FE)” .
z—§
with |z|, [€] > 1 is a nonnegative kernel;
(iii)theL( 9t) — valued function
L(z¢)
_(0-7902) - (1-82) 0@ = (1 - 2@ F = F)QE)" —z(1 - &)
z=§

with z # £, 1zl, 1] > 1 is a nonnegative kernel:
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(iv)there exit a complex number zo, |zo] > 1l,and a vector f € 9t such that
Glz5,2,) #Q(2,)Q(z,) £

If T is a gsc- operator in the Hilbert space $, 9t is a subspace of $ such that 9t
#$ and ran (T-T*)<R and Q1 (2) is its Q- function defined by (38) then according
to Propositions (1.1.7),(1.2.1) and (1.2.2) the function Q(z)belongs to the class Q(

N).The converse statement is also true.

Theorem(1.2.5)[1]: Let Q(z)be a function of the class Q(9t). Then there exist a
Hilbert space H D N, + H,and an N — minimal gsc- operator T in H such
that 9t o ran(T — T*) and

Q@) =Pyp(T—zI)" 1N forall|z| > 1 (66).
If, in addition, theL( 9t) — valued function
K(z,8):L(z,§) — Q(2)(F — F)Q(&)"

_(0-20@) - (1-8) @) - A +2)(1-He@F - F)QE)" — (z—§)!
z—§

with z # £,]z|,|e] > 1 where F is given by(65),is ana — sectorial kernel with

aelox/2) then the corresponding operator T belongs to the classc(q)

Proof. Step 1. Let § the reproducing kernel Hilbert space associated with the
nonnegative kernelG(z,¢) ie., $ is the completion of

span{G(.,w): f € N, |w| > 1}
with respect to the norm determined by the inner product
(6(,w)f,G(. w935 = (G w)f, 9.
Forall f € %t and |w], |u| > 1
I @G(, w)f, GG(, wfIIg = lwl*(G (0, w)f, Halul* (G (w w)f,
—uw (G, w)f, g — nw(G( w)f, g (67)

In view of (65) one has Q(z) = (—=1/z)I + °(1/z)as z — oo , which implies that

lim _

o » 00z W)f ==-Q@)f, |zI > 1, (68)
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and moreover that

“ w”;”ooa—)a(z, Wf=ffeER (69)

(Here S stands for the nontangental limit in a sector |arg (z) — n/2| <

a<im2

Hence(67) and(69)imply that the following limit exists in §

Kf :=—lim @G(z,0)f (70)

and defines a linear operatorK: 9t ~ gfor which
IKFIIE = limyaal0GC,@)flIf = lim|ol?(G(@ o)f N = IfIR (71

Thus K is isometric. It follows from (68) that

(Kf.GC095= - T a(6( w)f.9)q
- wlgm @ (G(u, w)f,G(.,)9)q = (QW)f. O,
which shows that
(KG(uwoRM)g, geR (72)

Step 2.Define the linear relation Sin$ b

S = {1 GC,w)fi + Ty kfi + S, @,GC, 0)f Y fi € Ml > 1) (73)

By definition the doman ofS isdense in§in fact S is a contractive linear

operator in'$, since
IX7o1 GO ) fillg = IS kf; + Xy @G (., 0 fi I
221G (@), @) i o = Zjma e S = T2 @1(Q(@)) fis )
Fie1 05 (Q(@) fu fdm = ljer 0j@i6 (@), @) f;, fim

Lj= ((L(wj, 0;)fi [ 2 0,
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where (71) and (72) have been used. Therefore, the operator S has a unique

contractive continuation which is defined everywhere on $ and for which the same
notation S is preserved.

Step3. To calculate the imaginary part of S note that for h =Y, G(., w;)f; the
the following identities holds

(Sh,h) = (Tl kfi + T @G (L w) fi + X G(.,wj)fj)_
Xij= 1(Q(w])fl + w; G(“)J"‘) )fufj)ﬂ?
Similarly one obtains

(Shr) = X%-1(Q(w))" fi + G (0, ) fi fi)m

since Q(w;) — Q(w;)" + (@, ;)6 (w;, ;) = Q(w;)(F — F*)(w,)",one obtain
(6 =L 6 0)f) Xt G- 0p)f);

= 3%-1(Q(w))(F = FQ(w) fi fdw
- szzl((F — FYK*G(., w;) fu K*G(,w))f))n

= (K(F = F)K" (1 G(, 0)f), Xfoa G ) )
This implies that

s-5 =K(F-F )K" (74)

By the definition of (73)one has (S — @wI)G(.,w;)f = Kf, so that

(S—(DI)_le:G(.,a))f, fefﬁ, lwl > 1 (75)

Step4 . Since K is isometric ran K is closed. Let $, = kerK* and define ¢ =

$o oJt. Observe,that according to(72) » = Y-, G(., w;)f;belongs to the
subspace $,0f $if and only if T7,; Q(w]) fi = O Now decompose § = £, ran
K and define the operator U: $— $ by
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Ax+y)=x+K'y, xe Do YETanK.

Then U if maps Honto H and it is unitary. Hence, the operator T defined
byT: AS*A-1 is contractive in $and(74) shows that ,ran(T -7")c U (ranK )=
Jt. Furthermore for f,g eJtand|z|>1 the identities (72)and(75) yield

((T —7)*f, g)b:(s* —zl)_l ate, ut )s
:(S* —zl)_l K, Kg )5

(K (s*—z1)" K9)g
= (KfG(.,2)9)3
= (Q(2)f. 9x
Thus
Q@2)=Pp(T—2zI)T' IR, 2] >1
Moreover, it follows from(75)that the operator T is 9t —minimal.

Step 5.Finally it is shown that $, # {0}. If $, = {0} then Nt = § and by
proposition (1.2.2) the equality G(z,z) =Q(z)Q(z)" holds for all |z|>1 . But this is
impossible due to the condition (iv) of the definition of the class Q (9t)

Therefore $, # 0,N # Hand Tisa gsc-operator whose Q- function @ (z)
coincides withq(z) -

As to the last statement observe, that since Q(z) is the form (66)the kernel K(z,¢)
admits the operator representation(54) in Proposition (1.2.1) Since T is Jt -
minimal, it follows from(54)and that T € Q ().

The gsc-operator T constructed in Theorem(1.2.6) is 9t -minimal. The next

result shows that this model for functions Q(z)Pelonging to the class Q(Jt)is
essentially unique. Namely, the 9t -minimal part of a gsc—operator T(and hence
also of T*) is up to unitary equivalence uniquely determined by its Q-function;
afact which is well known in the selfadjoint case.

Theorem(1.2.6)[1]: Let $; = Ho: DIt and H, = Hy, DIt be two Hilbert spaces,
and let T, and T, be gas-operators in $,and £, respectively, such that ran(T; —
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T7) c 9tand (T, — T;) € N if Qr,(2) < Qr,(2) in some neighborhood of infinity
then the 9t -minimal parts of T, and T, are unitarily equivalent.

Proof. Assume that O (2)=Qx, (2)holds in some neighborhood of infinity, say, for
||, r >1. Then these functions coincide everywhere outside the unit disk. It follows
from(40)and (44)that F,=F, , while (51) implies that

Pp(Ty = D7 (T, -2)* TR =Pp(T; =D (T, -2)* TN

forall |z|,1¢] > 1; cf. (39)'Hence,for all f,g e N
((Ty-zD) 7 f (T -§D) 7 g) = (TozD) M, (T2-§1) 7 g). (76)

Now define the linear relation U from £} = {span(T; —zI)"19:|z| > 1}
into $, = {span(T, — zI)~'%:|z| > 1} by the formula

o)

k=1

Then the identity(76) implies that U is a unitary operator from $;onto$’, .In
addition, uf =f for all f e 9t,and

UTl(Zn:(Tl—zl kJ_kzllf +u(kznllzk —7,1) J

n n

=) fi+ Zk(Tl L )71 f,=TU (Z(Tl - Zkl)il fkj

k=1 k=1 k=1
Therefore, the simple parts of Tjand T, are unitarly equivalent.

The definition of the class Q(9t)can be seen as an analytical characterization
for Q-function of gas-operators T as defined in (38). Another characterization is
established in the next theorem.

Theorem(1.2.7)[1]: Let 9t be a Hilbert space. The following conditions are
equivalent;

(i)the function Q(9t)belongs to the classQ();
(i) (@) Q(z) € L(M)is holomporphic in the domain |z|] > 1 and with F € L(N)

it has the esymptotic expansion
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1, 1 1
Q(z)z—EI +?F +0(?j, 7— o

(b)the function
-Q(z)-2 -F
Is not constant, it has holomorphic continuation onto Exit{-1,1} as a
bounded Nevanlinna function, and the strong limits Q*(+1) exist;
(€) Q*(-1)-Q*(@)=0 and for all f,g <9t the following inequality
holds:

\((Q*l(—l)—Q*l(l))f,gf
<(@*CD-e @)t f)e* *W)e.9),

Proof.(i) = (ii)let the function Q(z) belong the class Q(9t) Then(a) holds by

definition see (65). ByTheorem (1.2.5) the function Q(z) has the operator
representation Q(z)= Py(T —zI )1 I N, where T is a gas-operator in a Hilbert

space H o9 such that ran(r, -7 )c 9 Now(b)follows from parts(ii)and (v) of
Proposition (1.2.7) and Proposition (1.2.3) see also the identity (50). The inequality
in(c) is obtained from part (iv)Proposition(1.2.6).

(if)= (i)Now assume that the function g(z)has properties(a)-(c) . It follows from
(@) and (c) that

QYz)=21-F-G(z) G(z)=00).z> =

HereG(z)e N [—1,1] and G(wx)=0.Now it follows from Theorem(1.2.3)that G(z)has
the representation

G(z)=K,(A - 21) (1 - A K;

where A, is a selfadjoint contraction in some Hilbert space $, andK, €
L($H, NN). Moreover, according to(15)

G(-1)=-Q7(-1)+1 - F =Ky(A ~2) K
G)=-Q7(-1)+1 -F =-K,(A +2) K
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This gives

Qil(_l)_Qil(l) = -K.K*
2 0" M0
QV+Q W) _y pg:F (77)
2 0 0 '

Now the assumption (c) implies that 1 - K K; > 0and

((Koak:-F)t.g)<|p, flD . fige®

By (4)ther exists a contraction X in D:suth that
~F =-KAK; —D,. XD;. (78)

Consider the Hilbert space $ = $H,DJtand let the operator T in $ be given by the
block form (18) .Then Tis a contraction and in fact,a gsc- extension of the closed
symmetric contraction A = A, + KD, defined on $,. According to Schur —

Frobenius formula(see(7),(11))
Pu(T — zI )71 I M=-(G(2), |z<1,

i.e., Q(z) is the Q-function of T. Therefore Q(z)belongs to the classQ(Jt)

The model establish in Theorem(1.2.5)yields the following simple
characterizations of Q-function corresponding to the extreme selfadjoint
contractive extensions A,and Ay of A within the class Q(N).

_Proposition(1.2.8)[1]: Let Q(z) belong to the classQ(9t) and suppose that

liminf|(Q(x)f, ), forallf ¢ J1\{0} (79)

liminfl(Q()T, f)=o0,  forallf e R\{O} (80)
ThenQ(z)s a Nevanlinna function in Nyp[—1,1]and it can be represented in the
form Q(z) = Pp(A,-21) ' I Ror Q(z) = Pr(dy —zI)7' I R,z € Ext[-11],
respectively, where A and Ay are the left and right extreme sc-extension of some
symmetric contraction A.
Proof. According to Theorem (1.2.5)the function Q(z)has the operator
representationQ(z)=Pyn (T — zI )~1 I 9N, where T is a gsc — operator in a Hilbert
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space $> N, such that ran(T -7*)< N. Moreover ,T is a gsc- entension of the closed
symmetric contraction A defined by A =T I domA withdomA = $ © Jt. Let

T,=(T+7")j2 and 7, = (T -7*);2 be the real and the imaginary part of T,
respectively, so thatT =T —jT1, . Then for |[x| > 1

(T+x1)" = (T —xt) (1 +iB) (T, —x1)™*
where
B= (T, —xI )T, (T, —x1 )™
Is a bounded selfadjoint operator. This shows that for all f M
QO)f, f)=(1+iB) Ty —x1 )2 £, T, (T, —x1 ) * f

Since H(I +iB)‘lH <1,0ne obtains

(QO)E, £ < .7, (T —x1 )2 £ 2
Now the assumption (79) implies that
Iiminf“(TR —xI)f ”2 = forall f e 9\{0}.

This means that ran (1+T,)">N N = {0},cf.,e.g.,[7].SinceT, is a sc-extensions of A
one concludes from the characterization in (31) thatT, = A, cf.[28],[8],[23].Now,

in view (30) T, =0and T = A, .The proof of the other statement is similar.

Some further characteristic properties of Q —functions in the selfadjoint case,
in particular, of @, -and Q,, - functions corresponding to the sc- extensions A, and

A, have been estiablished in[8], including some corrections to result stated in[33]

The Krein formula(58) and the discussion following it concerning the formulas
in(64) gives rise to a linear fractional transformation of Q- functions.

Theorem (1.2.10)[1]. Let Q(z)belong to the classQ(9t). Then the function

Q@)=(1+BQ() *,  |z1>1

belongs to the class Q(9t) if and only if
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B e B[Ql<—1>2+Q1<1),Q1<—1)—Q1<1)} (81)

Moreover, Q(2)= (1 +BQ(2)) js a Nevanlinna function of the class Ng;[—1,1] if and
only if B satisfies the conditions

B+Q'(1)<0, B+Q'(-1)<0. (82)
Proof. First observe that, if B € L(9t) and 9t(1 + BQ(z))_1 € L(N) forall |z| >
1, then it follows from(65) that

Q(z)=Q(z)(1 +BQ(z))* = L +Zi2(F ~B) +0(%} 7 - o0

z

and clearly Q*(z)=Q*(z) +B.

Now assume thatQ(z) € Q(9t).Then 0(z) € L(%),for all |z] < 1, and since by
Theorem(1.2.8).Q(2)™1,0(z) " € L(N), |z] < 1,0ne has B, (I + BQ(2))* e L(I) for
all |z| > 1.Moreover, the limit values Q*(+1)exist and satisfy

B+Q'(1)<0, B+Q*(-1)<0.

Now part(c) of Theorem (1.2.8)implies that
D

S(Q'l(—l)z—Q'l(l) ¢ fJ(Q'l(—l)z—Q'l(l) 0 gJ

2

(83)

holds for all f,ge 9t .Therefore, the condition (81) is satisfied.

Conversely. Let the operator B € L(9t)satisfy the condition (81). By
assumption Q(z) belongs to Q(9t)and Theorem (1.2.6) shows thatQ(z)= Py (T —

z)~ 1 I %, where T is gsc- operator in some Hilbert space $> 9t. Moreover, T is a
gsc — extension of the symmetric contraction A=T T $, ,Ho = H © . Now by
Theorem (1.2.4) the assumption (81) means that B defines a gsc- extensions T of A

whose resolvent is given by (58)with B=B . According to (64) the Q-
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function Q5 (2) is of the form Q(z) = Q) (I + BQ(Z))_l, |z] <1 and as a Q-
function belongs to the class Q(9t); see the discussion preceding Theorem (1.2.6).

To prove the second part of the theorem, observe that in view of (42)
Q' (-1)=B+Q*(-1)= D,. (Y + |)DK5,
and

Q:'(1)=B+Q*(-1)=D,.(Y-1)D,.,

0 0

where Y is a contraction in the supspace Dy = fan®Dy:. By Theorem (1.1.4) Tisa
selfadjoint contraction if and only if Y is a selfadjoint contraction in D, or
equivalently ,B satisfies the conditions (82). Now , if (82) holds then T is

selfadjoint and Q(z) (1 + BQ(z))_1 = Q5(2) € Ny[-1,1].

Conversely,if Q7(z) € Ny;[—1,1]then by part(vi) of Proposition (1.1.7) one has
F = F*and consequently T =T",i.. the conditions (82) are satisfied.
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Chapter 2
Pure Point Spectrum of the Laplacian

All eigenvalues have infinite multiplicity and a countable system of
orthonormal eigenfunictions with compact support is complete in the
corresponding Hilbert space. In fact the correct interpretation of Af 2is as a
singular measure, a result due to Kusuoka; we give a new proof of this fact. The
second is based on a dichotomy for the local behavior of a function in the domain
of A. At a junction point xq Of the fractal: in the typical case (nonvanishing of the
normal derivative) we have upper and lower bounds for |f(X) — f(Xo)| in terms of
d(x, xo)® for a certain value P, and in the nontypical case (vanishing normal
derivative) we have an upper bound with an exponent greater than 2. This method
allows us to show that general nonlinear functions do not operate on the domain of
A.

Sec(2.1) Fractal graphs

In the last decade, considerable attention has been paid by graph theorists to the
study of spectra of the difference Laplacians infinite graphs. We refer separately of
Mohar and Woess [61] Which is an excellent survey of this theory. Explicit
computational results about the spectrum of the Laplacians are Known only when
the graph under consideration satisfies certain kind of regularity property that leads
to the existence of the absoulutely continuous spectrum ([see [61, 50]).

If we study fractal or disordered materials and the difference Laplacians are
some discrete approximation, we should expect the spectrum to be pure point.

The first result of this type is the physics article [62] where the spectrum of the
Laplacian on the Sierpinski lattice is considered. An application of the very
interesting Renormalization Group method to this case was given by Bellissard in
[52].

We study the spectrum of the Laplacians on so-called two-point self-similar
fractal graphs (TPSG) (we mean the Laplacians which correspond to the adjacency
matrix and the simple random walk). A good example of such a kind of graphs is
the modified Koch graph which can be considered as the discrete approximation of
the fractal set, namely the modified Koch curve [58].
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Roughly speaking, we will prove that if the TPSG has an infinite number of
cycles and the length of these cycle approaches infinity, then the spectrum of the
Laplacians is pure point.

The problem of the description of the spectrum as a set in R is not trivial as
shown by the example of the modified Koch graph. The spectrum for this graph is
the union of two sets. The first set is the Julia set of the rational function.

R(z)=9(z - 1) (z — i) (z — E) (z — E)_1.

3 3 2

This is a Cantor set of Lebesgue measure zero which may be obtained as a closure
of a countable set of eigenvalues of the Laplacian with infinite multiplicity. The
second set is a discrete countable set of eigenvalues with infinite multiplicity
which has the limit points in the first set.

We note the new property of the eigenfunction of the Laplacians on TPSG: a
countable system of orthonormal eigenfunction with compact support is complete
in the Hilbert space where this operator is defined.

We consider in Theorem (2.1.5) the Anderson localization for the Schrodinger
operator with Bernoulli potential on TPSG. It was proven that any eigenvalue of
the Laplacian is an eigenvalue of infinite multiplicity of the Schrodinger operator
for any coupling constant. Unfortunately, we cannot prove that the spectrum of
such operator is pure point. However, we note that Aizenman and Molchanov [51]
proved the localization of the spectrum in the standard Anderson model for
suffiently large disorders on general graphs.

The two-point self-similar fractal graphs can be considered as nested pre-
fractals with two essential fixed points introduced by Lindestrom [57].We also
note that some questions about the integrated density of states of the Laplacian on
fractal graphs were studied in [59 ,54].

Some special examples of TPSG were considered in physical models of the
percolation theory (see [64, 53]).

Let G= (V,E) be a connected infinite locally finite graph, with vertex set V and
edge set E. We suppose that the degree dy of all vertices xV is finite.

Let A=A(G) be the adjacency matrix of the graph G and P= P(G)= (py.)
u,€ V be the transition matrix, where

Pur=auyv/ dy
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and a,, is the number of edges between u and v.

Associated with each of the preceding two matrices are the difference
Laplacians.

An=D(G) - A(G) (1)
and
A= 1(G) - P(G), (2)

where D(G) is the diagonal matrix of dy, xeV and 1(G)is the identity matrix over
V.

Let us introduce the spaces of functions on V.
L(V)={ f(x), xev; , Txerlf(x)]? < o0} 3)

with the inner product

(9. ) = Zxer 9GO (X)
and

13 (V) = {f(X), XeV; T xew dilf()]< 00} (4)
with inner product

(9.f)= Zrerdxg(X)f(x)

We note that if the function deg(x) = dy, XeV is bounded, then the operators Ajand
Apare self-adjoint bounded operators in I, (v) and l*z* (V)), respectively.

Let us introduce so-called two point self-similar graphs.

Suppose M= (V\, Em) and Go = (Vo, Ep) are finite connected graphs and M is an
odered graph. We fix some ey € Ey, which is not aloop,and vertices a, f € Vp,

and ao, fo. @ = f, ag = Po.

Informally speaking, the construction of a TPSG G is as fllows:to get G; from
M and G,we replace every edge (a,b) € Ey ,a,b € Vy by a copy of Gy such that ag
goes to a and Bo to b. Then we take a; = a, 1 = and proceed by induction. If a
graph Gn,= (V,, E,) with fixed vertices an, B, € V, is defined then the graph G.; is
obtained by replacement of every edge (a,b) of M by the copy of G, such that a,
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goes to a and 8, goes to b. The vertices an+1, Bn+1 are the vertices a, f after this
replacement.

We can assume that G, = G, is the copy corresponding to e, and define infinite
graph G=U4_,G,.

Let us give a more formal definition.

Definition(2.1.1)[49]: A graph G is called TPSG with model graph M and initial
graph G if the following holds:

(i)  There are finite subgraphs Gy, G;, G, ... such that G, = Gp., n = 0, and
G= Un20 Gn-

(i) Forany n > Oand e = Ey there is a graph homomorphism .G, — Gp+q
such that Gp.= e eEy P (Gy) and =0 is the inclusion of G, to Gy..

(iii)  For all n = 0 there are two vertices an , fn € V, such that ¢ restricted to
Gr\{an, Bn} is a one-to-one mapping for every e € E.
Moreover Uit (Vo\ {an, £n}) nW2Vo\ {an, fn}) = @ ife; = e,

(iv) For n =1, there is an injection K,: V\y — V, such that a, = Ky(a),, Bn =
Kn(B) and for every edge e= (a,b) € Em, W91 (@n1)= Kn(a), W1 (Bn-
1)= Kn(b).

We say that the vertices a,, 8, are the boundary vertices of G, , i.e., G, =
{an, Bn} and int G, = V \{a,, B} are interior vertices of Gy.

Suppose M does not have loops and Gy is just two vertices and one edge.
Then two point self-similar graphs are in one-to-one correspondence to so-
called post-critically finite (p.c.f) self-similar sets with the post-ciritical set
consisting of two points. Namely the graphs G, are isomorphic to so-called pre-
fractals for such p.c.f. sets. However, G is not a p.c.f. set since the limiting
procedures in these two cases are different. The definition of a p,c.f. set can be
found in [55] or [56].

Definition (2.1.2)[49]:Two different vertices x and y of a graph r are
equivalent if there is an automorphism ¢ of 1 such that (X)=y, @(y)= X.

By induction it is easy to prove the following lemma.

Lemma (2.1.3)[49]: if the vertices a, f € Vv and ao, Bo€ Vy are equivalent in
M and Gq , respectively, then vertices an, B, are equivalent in G, for all n.
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Although our results are valid for nonsymmetric graphs (with some
additional assumptions on the orientation of M) we do not consider such graphs
for the sake of simplicity.

Let us introduce the graph M (Vg, E ) which can be obtained in the same
way as G; if we take the graph M instead of G, and the vertices a, 8 play the
role of o, ﬁo.

we define the graph G+, by replacement of every edge of M by the copy of
G, such that for every edge (a,b) € E g, a, beVy we say a,, goes to a and S, to b.

Lemma (2.1.4)[49]: .The graphs G ., and G, are isomorphic.
Proof. By definition G ., can be written as
G = Ueers) P (Gn) (5)

where the maps ¢ have the same properties as éinDefinition(2.2.1).The
proof follows by induction .

Let us introduce the space Ix(x) by L,(X)={f € L,(V): f(x) =
0 for AV \ X}, where X V. I5(X)is defined analogously. By Aa(X), Ap(X)
we denote the restriction of Aa, Ap to 1, (X) 15 (X)more precisely, App(X)= PAap
P, where P is the orthogonal projector to Iy(x) or 15 (X)we will call these
operators the Laplacians with zero boundary conditions on 6G, by Aa(n) and

Ap(n).

By Lemma(2.1.3) there is isomorphism ¢,: G,— G, such that @y(an)= Bn,
¢On(Bn)= an. this is isomorphism induces unitary maps U n : 1,(G,) — L (G,)
and Uy: 15(Gy) — : 15(G,) by formula :Uy, f=foon.
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Lemma (2.1.5)[49]: U,(U;) commutes with A,(G,)and A,(n) (Ap(G,)and
Ap(n))

Proof of this lemma immediately follows from the definition of Aa and A,.

Let us consider the function deg(x)= d,. It can occur that the function deg (.) is not
bounded in general. Moreover, there can exit a point xo €V such that deg (x,) =o.

41



The next Lemma should be more clear from the following examples (see Figs. 1
and 2).

For an arbitrary graph Glet us denote by d,, (G ) the degree of the vertex x in G
Lemma (2.1.6)[12] :

() de,(Gn)=de((Go).(da((M))" =dg,_, (Gni). de(M).

(i)  Ifx e int G, ,then deg (x)=d, (Gn)=d, (Gn+1)for every n> 1.

(iii)  The function deg(x) is bounded if and only if d, (M)=L1.

(iv) Ifx eVand x # ap, Bothendeg (x) < .

(v) Deg (ay) == (deg (Bo)= «) if and only if « is indicent to ey and d, (M)
> 2 (B is incident to ey and dg (M) > 2).

Proof. The first statement can be proved by induction. The second follows from
(i) and (iii) of Definition (2.1.1) Statement (iii) follow from (i) and
equality maxxEGn+1dx(Gn+1) = max{maxxeGndx(Gn)- dxo (Gn) maxxede(M) }
(iv) There exists ngpeN such that xeV, for every n > n,. If xe int G, the
ststement follows from (ii). Otherwise, X € 0G, for every n> ny and
consequently x is equal to ag or Bo.
(v) By (iv), it follows that aoe0G, for any n > ng npeN. If « is not incident
to €y, then ay is an interior point of G, for some n;. Let « be incident to
eo and d,(M) > 2. Then statement (v) follows from (i).

Definition (2.1.7)[49] . We denote by
0G={x, deg(x)= oo}
the boundary of the graph G. if 6G=@, we say that G is a graph without boundary.
By Lemma (2.1.6) we obtain the following lemma.
Lemma(2.1.8)[49] (i) eo = (a, P) and d,(M) > 2, if and only if 6G= {ay, Bo}-

(if) The boundary 0G has only one point if and only if one of the points « or f is a
vertex of eq and the degree of this vertex in M is not less than 2.

(iii) If conditions (i), (ii) are not satisfied for the graph G then 6G= 0.

Let us introduce the main results of this section the operator. We consider the
operator A,. if the graph G is without boundary, then the operator is self-adjoint
because it is a linear symmetric bounded operator.
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If G has the boundary, we define the operator A, with zero boundary conditions,
le.

AY: 1 (V) — 1 (V),
where
(V) {felf (V) f(x)=0, xe 8 G}.

The Ag Is a self-adjoint bounded operator, too.

M
€p
B
a0m1=a2
Go |7 Gy qag=a Gz Bo
Bo B1
Bo

FIGURE 3
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The simple example of a two-point self-similar graph such that the condition of
Theorems(2.1.9),(2.1.10),(2.1.11),( 2.1.12), (2.1.13) are not satisfied is the lattice
Z. it is well known that the spectrum of the Laplacian in this case is absolutely
continuous.

Condition (iv) in Definition (2.1.1) defines the structure of eignfunctions of
Laplacians. It is easy to see that condition (i) — (iii) of Definition (2.1.1) are
satisfied for Sierpinsky lattic but Theorems(2.1.10),(2.1.12),(2.1.11) ,(2.1.13). are
not true in this case. By [52] it follows that there are such eigenvalues that if a
function ¢ is an eigenfunction corresponding to one of them, then ¢ cannot have a
compact support.

The problem of describing the spectrum as a set in R is hard enough as shown
by the example of the operator A, on the modified Koch graph in [58].

Let us introduce functions W:V— R which do not change the nature of the
spectrum of Laplacian ; i.e, the spectrum of the Schrodinger operator.

H=A+W (6)
will be pure point, too. Here we denote A and A, by the same symbol A.

We note that periodic functions are potentials of this sort for the Schrodinger
operator in 1,(Z") but only in the case of absolutely continuous spectrum.

Suppose that Wy: Vny— R is a function such that Wo(¢p(x))= Wo(x), where o:
Gn— Gy, is an automorphism of G, ¢(xn)= Bn, ®(Bn)= an. let us define the potential
W:V— R by induction. We denote by W3 the restriction of W on Vngy.m+ and
we suppose Win1(X)= Wi(y), where x= 97 _m (¥), Y€V, +m, €€ En for every m >
0.

Theorem (2.1.9)[49]: Let meN, 6 >0 and ¢ < « be fixed numbers and for every
n=1,2,..., there exists a linear operator ®,: H,, — H, ., such that ||®,|| < c, (f,
Oy(f)) = s||£]|” for any f e , and HOy(f)= A, dn(f) for any fefl ,i=1, ...,
K(n).

Then the following statements hold:

(i)  The operator H has only pure point spectrum. The set of eigenvalues is

Unet Uz sk f {253
(i) There is a countable set Sc H of orthonormal eigenfunctions of the
operator H which is complete in 7.
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(iii) If ®u(f) ¢ H,, for any nonzero f € H, and every n > 1, then each
eigenvalue of H has infinite multiplicity.
(iv) His a self-adjoint operator in H .

Proof. At first we note from the definition of H,, that #,,= @fz(rll)ﬁrf

Let
Sn:{fe }[n ;er }[n}
It is easy to see that S, < S,+; for every n>1.

We introduce the set S by the formula
S’:Un21 Ulsisk(n)(Fr{. N Sn)

and we note that the set S, N E! is not empty for n>m+1 because @, (f) € Hy4m
for every fe #,, and

Hirm @n(f)
= P m®@n(f)= Pram(Aly, @n(f))= A, @u(f), f € EL. (7)

One can see from the condition of theorem (2.1.10) and (7) that if 1€
o(H,) then A is an eigenvalue of H. That gives us the inclusion

Unet Ussisk An} < o(H). (8)

We will prove that the set S is complete in /. Suppose that there exists f € H
such that (f,g)= 0 for any ge S.

Let A be a subspace of H and P, be the orthogonal projection to A.
Then

1

>
[P fll= oo

(9, ) 9)
for every ge A, g#0, and f € . This follows from the expression

[llgl™ (9, DI = lgll™ I(Pag, I = llgll™ IPg,
= llglI™ (g, Pa D)l < llgl™ Il IPAf Il < [IPafL.

Let us introduce the subspace A, of H', by the formula
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A= o)

(Fr'] ns,)
and let Q, be the orthogonal projector to A,.
If f,.= P,f, n=1,2,..., by (9)and the condition of Theorem (2.1.9) we have
IQusm fall = [(@n (F), Fal 1@ (F )
>(c || fal)* [(@alfn), fo) =™ 0 | Fall (10)
Since An+m < Span S we obtain Q.+ f=0. Hence

0=/1Qusm 11 = [[Quem fall - | - Fll = ™ &l fll - | £~ Fall

This implies f=0 since || f- f,|| — 0 as n— oo. Therefore S is complete in H and (i),
(i) is proved.

(iii) For arbitrary eigenvalue A of H there exists a corresponding eigenfunction
f € S and consequently there are such no, i that f Filo N Sy, -

We denote gy =®n, (f) and gk« = O ngkm(gx). then {gk}r-, is alinearly
independent sequence of eigenfunctions of the operator H because, by the
definition of ®n, gx41 ¢ Hnyrkm-

(iv) It is enough to prove that Ran (H £ i) are complete sets in H (see [28]that
follows from (ii) of our theorem.

Theorem(2.1.10)[49] : Suppose that the graph M has cycle and the edge ey
belongs ro this cycle. Then the spectrum of the operator Ap(Ag) IS pure point.

Moreover, a countable set of orthonormal eugenfunctions of Ap(Ag) with compact

support is complete in ¥ (V)( f (V%) and every eigenvalue has infinite
multiplicty.

If e; does not belong to the cycle, we do not know the structure of the spectrum
in general. However, there is the following theorem in a particular case.

Theorem (2.1.11) [49]:Suppose all conditions for the graph G in Theorem (2.1.10)
hold. Then:

(i)  The operator Aa(A9) is self-adjoint.
(i) All statements of Theorem (2.1.10) are true.

Proof of Theorem (2.1.10) and Theorem (2.1.11)
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By Theeorem (2.1.9)it is enough to construct the operaror ®,: H,,— H nim, M >1
with required properties. We will prove Theorem (2.1.10) for the operator A,
because the case of the Aa is the same.

Let H\, = Ig (int Gp). We suppose that the cycle in M is defined bythe set of

vertices {Vg}k—o. Vie Vi, Vo=Vi.
If I=2m, meN, we can introduce sets of edges
E'= {(v2k: Vak+1)}Yieo € Em,
E = {(vak-11, ) k=1 € Em

We note that for any xe ¢ (V,\0G,) there is a unque yeV,\0G, such that x=
Y7, (¥), e€Ewm.

The maps P&, ecE" U E can be chosen such that if different edges e; and e,
have a common vertex, then at least one of the following equalities holds

Y (an)= LprZ (an) or Lprfl (Bn)= Lpriz (Bn)- (11)
let us define operators W ,: H,, — H,,+, For any ec Ey as follows:

0 if x ¢ W, (V,\0G,)
2 (M0 = { o e o
fly ) ifx= Wi (y)y€ Vy\aG,
Then we define the operator
(Dn :ZeEE+ cDreu - ZeEE— cDreu )

which maps H,, into ;. we will verify that it satisfies the conditions of
Theorem (2.1.9)

We note that if e, e;e Ey, and e;# e, then ®.*(f) and ®;2(f) have disjoint
supports. Thus ®:'(f)is orthogonal to ®;2(f)and the bound ||®@,| < c=1 is
obtained. By condition (ii) of Definition (2.1.1) we have ®;°(f) =fand

(F, @a(f) = [ I
for every f e #,. Now if f e E! then the equality

-Ap D (f)= ﬂ%q)n(f)
follows from the definition of the operator @,.
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F f(e) { 1

-(F+1(®)) t+1() -(1+f(%))

1 X0 X1 Xg X3 f(®)

DiAGRAM |

Since ®y(f) is an eigenfunction of the operator -A, with compact support by the
definition of the set S in the proof of Theorem (2.1.9) we find that S is a set of
eigenfunctions with compact supports.

Let I=2m +1,m > 1.The construction of the operator ®, in this case is
more delicate. In graph M (see Lemma (2.1.4) we have at least two cycles of length
l, joining by a path, and ey belongs to one of these cycles.

Say these cycles are {v, .o {ur}ico » Vo = V1, Ug = uy and they are joined
by a path vy= Xo, X1, ...,X = Ug.

Let Ef = {(vk,vk41), K is even}, Ef ={(vy,vx4+1),.K is 0dd}; E;f \E; Ef Ef
are defined similarly. Also, we define operators ®¢ analogously to ®¢, using P¢
instead of WS (see Lemma(2.1.4)

Then
= Toept B - Toer] Of - Zoep (B + BF0UD* Do (35 + B oL+
(O™ (Z, o5t Bh-Teer PR
We suppose that condition (11) is satisfied in this case, too. This construction is
sketched in Diagram 1 if r is odd and on Diagram 2 if r is even.

We note that ®,. G,—Gpi, and this operator satisfies the conditions of
Theorem (2.1.9)that can be proved analogously to case 1 using Lemmas (2.1.4)and
(2.1.5) The theorem is proved.
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-f
-(f+{®)) f+H{()
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f XQ X4 Xo -f{)
DiAGRAM 2

Theorem (2.1.12) [49]: Suppose that the graph M has an odd cycle and there is an
isomorphism ¢@: M— M such that ¢(a)= B, ¢(B)= a, and ¢(eg) # eo. If :

(i) the edge e belongs to a path joining o and f or.

(if) the edge ey belongs to a path joining o (or B) with the cycle then the
conclusions of Theorem(2.1.10) hold for A, and A9.

Let us know consider the operator Aa. If the boundary of G is empty its action is
well defined on all functions with compact support which form a dense subspace of
12(V). If6G # ¢ .

we define A as an operator with zero boundary conditions (see above definition
for A2). This operator is symmetric and thus closable. We will denote its closure
by the same symbol A(A9).

Theorem (2.1.13)[49]: If all conditions of Theorem(2.1.10) are satisfied for the
graph G, them the operator Aa(AS.

We note that the operator Aa is not self-adjoint in general. An example of a
locally finite graph with no unique self-adjoint extension of Aa was given in [26].

The condition of the existence of a cycle in the graph M is not a necessary
condition for the spectrum to be pure point. Moreover the graph G may be a tree in
this case (see Fig.3).

Proof of Theorem (2.1.12)and Theorem (2.2.13)
We will consider only operator A, because the case of A, is the same .

Also we assume that e, does not belong to a cycle Otherwise it is a special case of
Theorem (2.1.10)

We define
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7, ={fe I (Int Gy), A,f= Ay(n)f or U¥ f=}

We have H,, = H,, 4. Let us show that H'= U, 7, is complete in H = 1IF (V).
For any fe H there is such n that ||f — f,||< illfll, where f, is the restriction of f to V,.
Since @(eg) # € We have

((f, o+ U pafo)l > [ fo + URafo)l - If = Fall - [Ifa + U4 afo)l
V2 3
> (6117 -2 (IRl = 1P
because ||fq|| 2%||f|| and |[f, + U7, .f.l| = V2 |[f.]|. This implies that #is complete
since f is arbitrary and f, + U7, f,e. .

Therefore we need only construct operator @, which satisfies the conditions of
Theorem (2.1.9)

(i) One can see that the graph M has two odd cycles joining by a path such that e
belongs to this path. In this case, @, can be defined exactly the same way as in the
proof of Theorem (2.1.11) for an odd cycle.

(in)If, for example, « is incident to ey, then there is a path a= Xo, ...., X;= Ug and an
odd cycle {ux}r—o , Uo= Uy, Where eo= (Xo, X1). Then @, can be defined by
On= Yeep (Pn + Pr0 Uy) - Yeer; (PR dioUy) +(-1) (Xeer; Pn -
ZeEEJ cDg)-

where ®&, E}, E, EY, E7 are defined the same way as in the proof of Theorem
(2.1.10)

If a; is not include with eq the proof is analogously (i). The theorem is proved.

Theorem (2.1.14)[49] :Suppose there exit different vertices yo, Y1, Y2, € V(M)

such that there are edges (Yo, 1), (Y1, Y2) € E(M), €= (¥o, Y1), dyo (M)= dy, (M)=
1 and the set {yo, Y.} does not coincide with the set { a, }.

The all result of Theorems (2.1.10) and (2.1.12) hold.

Proof . At first we suppose that «, B are not from the set {yo, y.}. Without loss of
generality we can assume that d,., (Gy) < dg_(Gn+1) and W72 (Br) = Bn.
Let us define

H o ={fel? (G): f(x)= 0 if xeV\(V:\ Bnn)}-
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The operator ®,: H , — H n+1 can be given by the formula

f(x) if xeV,
@, (H(x)= -f(x) if xe LPBI' 1Y2 ), yeG, (11)
0 otherwise

If a = Yo the definition of the operator @, is the same.

Let =y,. Then we have to consider the graph M( Lemma (2.1.4) instead of M
which has the necessary properties to construct @, by the formula (11).

Theorem (2.1.15)[49] . if the function W is defined as above, then all results of
Theorems (2.1.10) ,(2.1.11) ,(2.1.12),(2.1.13) (2.1.14)( hold for the Schrodinger
operator [6].

Let us consider the so-called Bernoulli potential {W(x), X e V} made of a
sequence of i.i.d. random variables taking only two values 0 and 1.

We set
P{W(x)= 0}= P{W(X)= 1} ==, XxeV.
We are interested in the random Schrodinger operator
He= A + pW
with a coupling constant 3 > 0.

Proof .The proof is one —to-one to the proof Theorems(2.1.10),((2.1.11),(2.1.12)
,(2.1.13) ,(2.1.14)

Theorem(2.1.16)[49] :Let G satisfy conditions of one of the Theorems
(2.1.10),(2.1.11) ,(2.1.12) ,(2.1.13), (2.1.14).Then for any B > 0 with probability
one , every eigenvalue of A is an eigenvalue of Hp of infinite multiplicity.

Let H'be a Hilbert space with the inner product(, ) and H,, ,n=1, 2, ..., be a
sequence of # such that H, < H,., and H = US, H, is dense in £ We
suppose that H is a closed symmetric operator on # such that 7 belongs to the
domain of definition of the operator H and Hy = P,HP,,, where P,, is the orthogonal
projector on #,.

Then H,: #,, — H,, and H, is symmetric, too.
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Let /1}1 peesaa Ak(n)be all distinct eigenvalues of the operator H, (restricted to
n

Let £! be the eigenspace corresponding to A%, and let E! be an orthnormal basis
of EL.
Proof .It is easy to see that if y is an eigenfunction of the operator A with compact

support and supp y supp W= ¢ then the function y is an eigenfunction of the
operator Hg.

Let A be a set of all eigenvalue of the A and let S a countable set of orthonormal
eigenfunctions of the A with copmact support. For every A € Athere is an
eigenfunction f €S and the integer no such that supp f € Gy, .

We note that graph G can be written as the union of copies G, . With
probability one there is an infinity set of disjoint copies of G, where W is zero.
Consequently A is an eigenvalue of the operator Hg of infinite multiplicity.

Sec(2.2) Sierpinski Gasket Type Fractals

There exists a well developed theory of Laplacians on a class of fractals
including the familiar Sierpinski gasket. This theory may be obtained indirectly
through the construction of probabilistic processes analogous to Brownian motion
[68, 73, 74, 75, 83], or directly by taking renormalized limits of graph Laplacians,
as in the work of Kigami [66, 69]. See [66, 69, 71, 76, 77, 78, 79, 82, 84, 85, 86,
87] for a sampling of works on this subject.

To define a Laplacian A on a fractal F, we need a Dirichlet from € (f, f ), which
is the analog of [ |V f ? dx, and a measure p on F. The Dirichlet form determines

the harmonic functions, which are minimizers of g(f, f) subject to boundary
conditions. The Laplacian is determined by the analog of

[ Vf. vgdx=-[ gAf dx + boundary terms, (12)

with g(f, g) playing the role of the left hand side, and dp substituting for dx on the
right side. It is possible to interpret (f, g) as the total mass of a signed v ¢, ; defined

by
[ hdvs 4 = €(fh, g) + &(f, gh) - &(h, fg) (13)
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for h in the domain of €[70] ,but the energy measures vy ;may be unrelated to the
measure p used to define the Laplacian. In fact, Kusuoka [81] proves they are
singular for many fractals. We will give a new proof of this fact that is
considerably shorter, and that works for a larger class of examples. There is no
immediate interpretation of the energy measure vy as an inner product of
gradients. A theory of gradients is described in [85], but it is not clear yet if it can
be related to energy measures.

The domain of the Laplacian is defined to be the set of continuous funictions f
for which A f is defined as a continuous funiction. This domain is well behaved
in that it is dense in the continuous funictions in the uniform norm, and forms a
core for defining - A as a self-adjoint positive definite operator on L? (du) with a
discrete spectrum. we wish to point out that the domain is rather peculiar, however,
in that it fails to have properties one might expect it to have by analog with the
usual theory of Laplacians.We will show that the domain is not closed under
multiplication; in fact, if f is any nontrivial function in the domain, then f 2 is not
in the domain. We will also show that if we take a standard embedding of F into a
Euclidean space, then the restriction to F of noncontant C* functions are not in the
domain.

One way to understand our results is to begin with the identity.

Af? = 2f Af|VFI?, (14)

which holds pointwise for the usual Laplacian. There is an analogous result
holding for a graph Laplacian. In our case we show that the right side blows up in
the limit. Since f A f exits, this shows A f “cannot exist .in fact the identity(14)
shows that nonexistence of Af? is essentially equivalent to Kusuoka's singularity
result for the energy measure v ¢ ¢ .Our proof shows in more detail the divergence
of Af2at specific points.

Another approach is to study the behavior of funiction in the domain of A in the
neighborhood of a junction point on F (the junction points are the points in the
graph approximations to F). We show that there is a dichotomy: either

c1d(x, Xo)® < |£(X) — f(Xo)| < c2d(X, Xo)# (15)
for a certain f < 1, or

If(x) — f(Xo)| < cd(X, Xo)’log d(X, Xo) (16)
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for a certain y >2, with the first case holding if and only if the normal derivative of
f at Xqis nonzero. (This result was proved for harmonic funictions on the Sierpinki
gasket in [69]. It is then simple to see that when the first case holds for f at X,
neither case can hold for £2 at X,. The argument is then completed by observing
that the normal derivative can vanish at every junction point only for a constant
function. The same reasoning leads to the conclusion that essentially any nonlinear
function, not just the square, will fail to act on the domain of A.

What are we to make of these negative result? One point of view is that they
indicate certain natural limitations of the theory. For example, one might be
tempted to develop a distribution theory on fractals with the role of the space of
test functions played by the domain of all powers of A. Such a theory would not
allow multiplication of a distribution by a test function.

Another point of view is that we need to broaden the definition functions to
measures in such way that it is possible to define a Laplacian mapping functions to
measures in such a way that Af 2Af? is well defined. The drawback of this approach
Is that the domain and range of this Laplacian are not the same, so natural objects
like A* would not be defined. Still another idea is that we need to pick the initial
measure p more carefully. In [75] a rather broad class of measures is allowed in the
definition of A (in fact the notation A, is used there to indicate the independence of
the Laplacian on the measure). In most detailed studies, however, the measure is
assumed to be self-similar, and sometimes it is even required to be normalized
Hausdorff measure (a specific self-similar measure). The rationale for this
restriction is that all the energy measures v ; 4 are absolutely continuous with
respect to v. This allows the definition of a carre du champs operator [67] I'(f, g)
via dv ¢ = I'(f, g) dv. Thus if we use v in the definition of A, then all the problems
disappear, and Af2is well defined. Of course, one must be wary of changing the
problem in order to overcome difficulties. In this case there are sufficient doubts
that we really know what constitutes "the natural measure™ to use on fractals, that it
would certainly be interesting to explore the properties of the Laplacian defined
with this measure. Although v is not self-similar in the strict sense, it does satisfy
identities of a self-similar nature (involving some negative coefficients and
overlaps) that could be used to facilitate computations.

We will present our results in detail for the case of the symmetric Laplacian on
the planar Sierpinski gasket. In this case it is very easy to give all definitions
explicitly. The same arguments can be extended to many other examples of post
critically finite (p.c.f.) self-similar fractals.
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The Sierpinski gasket SG is the attractor of the iterated funiction system (i.f.s.)
in the plane

Sx=—(x-p)+p (=123,

where py, p,, ps are vertices of a triangle T. We regard it as the limit of graph G,
where G is just the triangle T, and

Gni1= U?;l Sj Gn

Go Gy G,
FIG.1. The graphs Gy, G;, G,

with the identification of the three junction points where the images S;G, meet
(see Fig. 1). The three vertices of T will be regarded as boundary points of each
graph G, and SG. Note that every nonboundary vertex of G, has exactly 4
neighboring vertices, so

Anf ()= (X) - 7 Ty f ) (17)
defines a symmetric graph Laplacian on G,, and
Kn(f, )= 7 Zxy(F ) = £ () (18)
the associated energy form. The Dirichlet form on SG is defined to be
i 5\"
&(f, )= iMoo (3) €0lf 1) (19)
The choice of the renormalization factor (g)nis dictated by the fact
5 n 5 n—1
G) et N=ZE)  ana (£ ), (20)

with equality holding if and only if A, f(x)= 0 at each vertex in G, that is not in
Gn.1. Thus the limit in (19) always exists as an extended real number.

A function on G, is called harmonic if A, f(x)= 0 at every nonboundary vertex x
of G,; equivalently, f minimizes g, (f, f) over all functions with the same boundary
values. A function that is harmonic on G,.; has a unique extension to a harmonic
function on G, given by the following harmonic algorithm,

f(V12)= 2 F(v2) 2 f(v2) + 2 f(va) (21)
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If vy, Vo, V3 are the vertices of any small triangle in G,.;, and vy, is the vertex in G,
between v, and v, (see Fig .2.2). A continuous function f on SG is called harmonic
If its restriction to every G, is harmonic. The space

V5 Vio

Vs Va Vi
FIG 2. Labeling of vertices in G, on a small tringle in G;.

Of harmonic functions is 3-dimenional, and the values of f at the dense set of all
junction points is determined by the boundary values f(p;) by successive
applications of the harmonic algorithm.

We choose for the measure p on SG the symmetric Bernoulli measure, which is
the unique probability measure satisfying the self-similar identity

#:§|_1031_1+§|J_082_1+§|J_0851. (22)

This is simply the measure that assigns the weight G)n to each of the 3" small
triangles in G, (regarded as subsets of SG). With this choice of measure, the
Laplacian on SG is just

Af(X)=lim, . (3/2)5" A, f(X). (23)

This is interpreted in the following sense. Let f and g be continuos functions on
SG. We say f belongs to the domain of A and A f = g provided lim,_..5"Anf(x)= g(x)
for every non boundary junction point x (of course A, f (x) is only defined for n
large enough that x is a vertex of G,).

n
The renormalization constant 5™ is explained as 3™. (g) , with 3"coming from

n
the reciprocal of the measure and (g) being the renormalization factor from the

Dirichlet form. The definition is consistent with the definition of harmonic
function, in that the harmonic functions are the solutions of A f = 0.
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We also need the notion of normal derivative at the boundary points. Each
boundary point has exactly 2 neighboring vertices in each graph G, so we define

@ f (O)=5f (O) = Ty -pf) (24)
for the normal derivative in G,, and
ov f ()=l )" (@n (p) (25)

for the normal derivative on SG, if the limit exists. On G, we have the Gauss-
Green formula

&n(f, 9)= - 2x 9(X) An f(X) + Xp 9(P)(O)n £ (P) (26)

(the x -sum is over non boundary points, and the p-sum over the 3 boundary

points). Multiplying by (g)n and taking the limit we obtain

e(f,0)=- oA fdu +X,0(p) oy f(p), (27)

The Gauss- Green formula on SG. This makes sense provided f and g are in the
domain of the Dirichlet form and f is in the domain of the Laplacian, and this
argument proves that the normal derivatives exist for functions in the domain of
the Laplacian, For f and g in the domain of A we can also obtain the symmetric
variant

J(@Af - £AQ)d 1= Zp(9(P) 3,1 () - F(P) 3»g(P)) (28)
by subtraction.
Now let T,=S;, ... S; T be any small triangle in G,. For each vertex p of T, we
can define the outward normal derivative by

o= "™ () Cre)-1 5, f O

n — oo

where the sum is over the 2 neghboring vertices of Gy that are in T,.. note that if we
take the other triangle that has p as a vertex, the normal dertivative will change by
a minus sign; and the normal derivative only depends on which side of p the
triangle lies on. We then have the existence of normal derivatives at all junction
points for functions in the domain of A, and the local Gauss-Green formula on T,

Jr. (@ Af = £ Ag) du=Fara(9(P) v f (P) - (p) 3, 9(P)). (29)
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Theorem (2.2.1) [65 ]: Let f be in the domain of A on SG, and let x be any junction
point where &, f(x)# 0. Then Af(x) is undefined, and in fact the limit in (51) is + .

Proof. On G, a simple computation yields
AnF2(x) = 2 () An f ()= i Yy~ x(f 00— f (). (30)

We multiply by 5™and try to take the limit. Since 5" f (x) A, f (X)— f (X) Af (X) it
suffices to show 5™ ¥, _ . (f (x) = f (¥))>— + . Now the assumption that &, f (x)
#0 implies that there exists a sequence of neighboring vertices y, in G, (for large
enough n) such that | f (X) = f (yn)|> > ¢(3/5)", because otherwise o, f (x)= 0 by(53).
Thus 5™ %, —(f (x) = f (¥))* > c((3/5))* 5)" which diverges because (3/5)° . 5= 9/5
>1.

Lemma (2.2.2) [ 65]: Let f be a nonconstant function in the domain of A. Then
there exists a junction point where o, f (x)# 0.

Proof. Apply the local Gauss-Green formula (57) with g =1, to obtain

Jr, Afdu = Eor, 0, (p) - (31)

If we had o, f (x)=0 at every junction point, this would imply that the integral of Af
vanishes on every triangle T,. Since Af is continuous, this can only happen if f is
harmonic. But it is easy to check that nonconstant harmonic functions have non-
zero normal derivative at least at one vertex of every small triangle.

Corollary (2.2.3) [65]: if f is a nonconstant function in the domain of A, then f 2 is
not in the domain of A.

Now we indicate how Af?2 can be defined as a measure. First we observe that
there is a positive energy measure , + obtained from the Dirichlet form.

If A is any polygonal set bounded by edges from one of the graphs Gy, then we let

' 5" 1
y@iw=_"" ) 2 > (- )
Xy
x,y € ANG,

(32)

The existence of the limit follows from the same argument that gives the limit
in (19). It is clear that v, is finitely additive, and extends to a finite Borel measure
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by the Caratheodory extension theorem. It is easy to see that ,f is non —atomic.In
fact vy = vy r=defined by(14)

Now if we multiply (30) by (5/3)" and sum over all x in a polygonal set A, we
can pass to the limit to obtain
lim
n — oo

37" Yxeanan 5" An F()= 2af A fdu + vy (A). (33)
This suggests that we have
Af?=2f Afdu + vy (34)

for f in the domain of A, with the following definition for a statement AF=p where
F is a continuous function and p a finite Borel measure.

Definition (2.2.4) [65]. We say a continuous function F is in the measure domain
of A and AF= p if there exists a finite Borel measure p such that
lim
n — oo

3" Xxeanen 5" AnF(X)= p(A) (35)

for all polygonal sets A.

This definition is consistent with the function definition: if F is in the domain of
A with AF= g then F is in the measure domain with AF= g dp.

With this definition, (33) implies (34) .

We show next that v; is singular with respect to p. Because of the net structure
of the triangles in SG, the analog of the Lebesgue differentiation of the integral
Theorem holds for triangular sets. Thus, to show that vz is singular with respect to
L, it suffices to show that for p-a.e. X,

3"v¢ (Ty)— 0 (36)

for T, a sequence of triangles with p(T,)= 3" converging to x. For simplicity
assume f is harmonic. Then we have simply

5

vi ()= (2)" 3((Faw) ~ f0)+ f(bon) ~f(G))? + (o) = @)D, (37)

3

Where a,, by, c, are the vertices of T,. The values f(a,), f(by), f(c,) are derived from
the values of f at the boundary points by applying a product of matrices determined
by the harmonic algorithm (49). depending on the mappings that send T to T,.

Since constants do not contribute to the energy (37).it is convenient to factor out by
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the constants to obtain a 2-dimensional Hilbert space with energy norm. Taking n=
0 for simplicity, we have an orthonormal basis of the two harmonic functions h;

and h, with boundary values (hi(a), hi(b), hi(c))= (0, V2, v2) and (h(a), ha(b),
h,(c))=(0, \/2/3 - \/2/3). With respect to this basis, the matrices have the form.

M. = (3/5 0 ) _ (3/10 \/§/10)
“\o 15) Z \V3/10 172
:< 3/10 —\/§/10)
¥ \—V3/10 172 )

We can then invoke the theory of products of random matrices, and

Furstenberg's theorem [70]: There exists an exponent « >+/3/5 such that
Log|[M;_ ... M;_ || ~ n loga (38)

as n—oo for a.e. choice of matrices. But this is exactly the same as p-a.e. X in (36).

To obtain the estimate (36).from (38).we need « <1/+/5. This inequality is proved
in the next Theorem.

The next Theorem follows from a more general result proved by S.Kusuoka in
[81]. Our proof seems to be shorter and more analytic in nature. Moreover, we
show that our method can be applied to general finitely ramified fractals with
fewer assumptions than are made in [81]. In the proof of Theorem (2.2.12) we
avoid using Furstenberg's Theorem [72] although do use this Theorem in the proof
of Theorem (2.2.5) in order to shorten the exposition.

In what follows the domain of the Dirichlet form € is denoted by F

Theorem (2.2.5) [65 ]. For any f e F the measure v; is singular with respect to
w.Moreover, there exists a measure v (singular to p), such that all the energy
measures are absolutely continuous with respect to v.

Proof. For p.a.e. point x we can define a unique sequence of matrices A,(x)=
M;_as above. Then Furstenberg's Theorem implies that

lim 210g [|Ax(X)... Ay(X) Vo= loga

n—>oon
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for p.a.e. X. Here v denotes the components of the harmonic function in the hy, h,
basis (mod constants), and ||.|| is now just the Euclidean norm on R?. Since M? +

M3 + M2= %I, it follows that

1
j Ao (DAL = ¢
T

Hence, by Jensen's inequality, for any nonzero vector v we have

[ 10gllAL CIvlIdux) < log fr (v, A7,(x) Anx) v ) du(x)= Zlog(;Iv I

Thus

B=AXqvi=u Jr 109l1ANGx) v |[du(x) <= log+. (39)

Denote vo(X)= An(X) ... Ai(X)Vo. The matrices An(x) are statistically independent
with respect to p, and so An(x) is statistically independent of v,.1(x). Hence

f; 1ogu,(x)du(x)= [, log [|4,(x) 2t 1) | )

lvn—1 GOl

+ [ log|lvn_; (x)ldu(x)

< p+ [, logllvy_1 (x) [ du(x)

By induction this implies log & < B and so 0< 1/v/5. Therefore vy, is singular with
respect to p for any harmonic function h.

Suppose now that f e €. Then f can be approximated by a sequence of functions
{ f} that are continuous and piecewise harmonic on the triangles T,[74, 75], The
approximation is in energy norm, &(f - f - f,)— 0 as m—o0, and also uniformly.
Let v = vy + vp,. Note that for any harmonic function h the measure v, has a
bounded density with respect to v since ve p 4¢,n, < 2(c12vh1 + szvhz)- The same
is true for the functions f . We claim that the measures v; , from a Cauchy
sequence in the space of measures.

This will complete the proof that v; << v because L'(v) is already complete in the
measure norm.

To see this we use the general estimate
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| Vg(A)- vg (A)f <e(g+ g, g+ &) e(g- 9, g - ) (40)

for any g,g'e Fand any polygonal subset A of SG. Taking g and g' to be f, and f¢
shows that | v¢ m(A) — V¢ K(A)] —0 uniformly in A as m, K— oo. This implies that {
V¢ m} IS @ Cauchy sequence.

We prove (40). first in the case A= SG, when v 4(SG)= &(g, g) and v ¢(SG)= (g,
g'), so(40). is just

e(g 2)° + e(g, 2)° - 26(g, 2) £(g £)
<(e(g, 8) * 2&(g, gt &(g', g))(e(g, g) - 2e(g, gt &(g g))-  (41)
Multiplying out the right side of (41). and cancelling like terms reduces to
O<4e(g, g) £(g) g) - 4e(g, £)°

which is just the Cauchy- Schwartz inequality. The modification of the argument
for general A is simple. We just restrict all energies to A, to obtain | vy(A) — vg,-(A)|2
< Vgg(A). Since v g and v g.gare positive measures, (40). follows.

It is clear by polarization that the energy measures viy are also absolutely
continuous with respect to v.

The measure v is independent of the choice of orthonormal basis (hy, hy),
and so it may be regarded as a natural measure associated to the Dirichlet form.

It is easy to see that the map f —(d v¢/ d v) is a continuous quadratic map from the
domain of € to L*(v).

Theorem (2.2.6) [65]. Foranyf eF the measure v has no atoms.

Proof. In view of Theorem (2.2.5). it suffices to prove this when f is harmonic. In
fact we will show

v (Tn)< (3/5)" &(f, f) (42)

for any triangle of level n( T,=S; ... S; T). A simple computation shows that for
any harmonic function f,

Vi (§iT) <(3/5) v (T) (43)

and in fact constant 3/5 is attained when f(vk)= oj. We then obtain (42) by iterating
(43), and it is clear that (42) implies v; has no atoms.

62



Let f belong to the domain of A on SG, and let X be any nonboundary junction
point. Let T, and T,' denote the 2 small triangles in G, that have x as a vertex, and
let a,, b, and c,, d, denote the neighboring vertices to x in T, and T,'. We know

A= 1M 35" (F (X) = 2( (@) + f (00) + T (Go) + £ (). (44)

But what is the rate of convergence? To answer this question we first use the
Gauss- Green formula to obtain an integral expression for the difference. Let h,
denote the piecewise harmonic function supported on the union T, U T', which
takes the value 1 at x and 0 at a,, by, cy, dy,

Lemma (2.2.7) [65]. We have

357 (109 2f(an)+ o) +T(co+ )+ AT

=(3/2)3" [1. ypr M (AF) = Af(Y))d(y). (45)
Proof . Apply (21) to T, and T,' and sum to obtain
[ 010 AT dp= X o ndf- Tohnt Y arn haduf- fouh,.
Now the terms involving o, f cancel , because h, is O except at x where the values

of o, f differ by a minus sign. On the other hand we have of differ by a minus sign.

On the other hand we have d,h,(x)= % (g)nand ovhn(y)= -i (g)nfor y=an, dn, Cn, dy

for harmonic functions a\,:(g)” (Ov)n exactly). Thus we have

5\ 1
Finw o Mo £dp=(3) " (F (- 3(F(@n)+ (o)~ f(ea+ ()

and we obtain (45) by combining this with the fact that 3"t v 1 h, du= 2/3.

It follows that the convergence in(41) is uniform, with the rate depending on the
modulus of continuity of Af. If Af is Lipschitz, then the error is O(2™).

For the next result we consider any small triangle in G, and label the vertices
as in(21) We have the following extension of the harmonic algorithm:
Theorem (2.2.8) [ 65]. Let fbe in the domain of A. Then

fvi2)== f ()+ 2 f (V)+ < f (va)

+2 = (ZAf(vi)+ 2A f (Vo)+ 2A f (V))+ Ro,  (46)

where the remainder R, satisfies
R,=0(5"") (47)

uniformly depending only on the modulus of continuity of Af. Moreover, if Af is
Lipschitz then

R,=0(107™) (48)
Proof . Let Ay=f (v i)+ f(Vas)+ f(val), Bi=F (v)+f(vy)+f(vs)and
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Ci=Af(Vio)+ Af(vas)+ AT (var). Apply (73) to each to the points v, Vo1 and v
to obtain
f (Vi) 5(F (Vo) + F(V)+ f (Var)+ T (v29))= 257 AT (Vi) + O(B™)  (49)
and so forth, and add to obtain
~Av-2B,=25"Cy+ 0(5"). (50)
Now the left side of (49) is just

2T (F W+ T (va)* AY)
And we can substitute (50) to eliminate A,, so
f(vi2)= 2(f (v)+ f (vo)+ B+ 257 C,
+0(5™)+ 5"(4/5) A f (vip)+0(5™
which is (46)
Theorem (2.2.9) [65] . Let f be the domain of A and let X be any junction point
(@) If o, f (x) # 0 then there exist positive constants ¢y, ¢, such that
c1(3/5)"<| f (x) - f (an)| < ¢z (3/5)" (51)
(and the same for by, ¢y, dy).
(b) Ifo,f(x)=0
then
| f (x)-f (ay)] < con5™ (52)
(and the same for by, ¢y, dy).
Proof.  In either case we have

f (an)- f (Bn)= 2( (@n1)- f (b)) *+ O™
by subtracting (46) and its analog. From this we obtain easily

| T (an)- f (bn)| < cnS™ (53)

(we can eliminate the factor n from (53) and (52) if we assume that A f is Lipschitz
continuous).
By applying (46) twice and adding we obtain
FX)- 2 @)+ £ (00)= 2(f (- 5(f (ana)* £ (bro)))+ OG™).
if we write v,= (g)n (f (x)- %( f (an)+ f (by))) this is just
Vo= Voat O™, (54)
and since O(3™) is a convergent geometric series it follows that v, is a Cauchy

sequence, and the limit is a multiple of the normal derivative. In the case that the
normal derivative is nonzero, we obtain ¢; < v,<c, which yields (51) when
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combined with (53). On the other hand, if v,—0 then (54) implies v,= O(3™),
which yields (53). when combined with (54).
Since d(x, a,)= 2", we can express (51)as

crd(x, y)F < [f(x) - f(y)| < c2 d(x, y)P (55)
for = log(5/3)/ log2 =~ .7369655 and y equal to one of the points a,, by, Cp, dn. By
using similar arguments it is easy to extend (83) to all points y. Similarly (80)
becomes

[f(x) = f(y)| < cd(x, y)” log d(x, y) (56)

for y= log 5/log 2~ 2.3219281. This dichotomy was established in [38] for
harmonic functions (Theorem (2.2.9),without the logarithm term in (56).

It is easy to give another proof of Corollary (2.2.3) , using this dichotomy,
although we do not obtain Theorem(2.2.1) since we need to assume that a function
belongs to the domain of the Laplacian in order to obtain the dichotomy at a single
point. On the other hand, the dichotomy shows how difficult it is for a function to
belong to the domain of the Laplacian, and allows us to deduce more general
negative results.

Theorem (2.2.10) [65]. Let ®: R—R be any C? function such that ®" only has
isolated zeroes. If f is any nonconstant function on SG in the domain of A, then
®(f) is not in the domain of A.

Proof. By asimple extension of Lemma (2.2.2)we can find a junction point
Xo Where 0.f(x o) #0 and also f(Xo) is not a zero of ®@. Consider the function g(x)=
O(f (X)) — @'(f (X)) f(x). If ©(f) were in the domain of A.

FIGURE. 3.

then g would be also.Theorem (2.2.8) would apply to g at x ,. But by Taylor's
Theorem.

9(0)- 9% ) = (1 ()~ D(f (x,)~ (£ (x, )N F () T4, ) = 2 () F () T (x)F ©F)

2
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for z between f(x,) and f(x). Since fis continuous, by taking x close enough to x_
we can make @(z) close too(f(x,)) which is not zero .Since f satisfies (51) at x,,
we obtain from (57) c,(3I5)" <|g(x,)-g(a, ) <c,(315)" for large enough n, so g
satisfies neither (51) nor (52).

Theorem(2.2.11)[65] Let f be any C' on R? with non constant restriction to SG
Then f is not in the domain of A.

Proof. Suppose f were in the domain ofA. By Lemma (2.2.2) there exists a
junction point where 4 f(x)=0. Then we are in part a) of Theorem (2.2.9), and
(51) is inconsistent with f beingC" .

We can also observe directly that Af (x) is undefined at a junction pointx if fis
differentiable at x and the directional derivative in the direction perpendicular to the

line segment containing x is non-zero. For example, ifx lies on a horizontal line
segment as in Fig. 4.1, then

F(x)—5 (Fla,)+ 16,)+ 1(c,)+ £(d,)

is sundefined.

Let (K,S{ f;}ses)be a post critically finite self-similar structure and(D, r) be a
harmonic structure as defined in [75]. Here K is a compact metric space, S=[1, 2,
...N], fs:K— K are continuous injections and r=(ry, ...,fn) is a collection of positive
numbers. The reader may find all the definitions in [75]. This harmonic structure
defines a Dirichlet form ¢ which satisfies a self-similarity relation

=§ﬂ(x)zn+o(zn)30 it (of 101, x) =0, Af (x)

2

N

g(f,f):/lzig(foFi,foFi), (58)

it I

where 1is a constant associated with (D,r).

The p. c .f. self-similar set K has a finite boundaryv,  k,and the bound-ary ofK
K.,..=F,-F, (KJisF,..F, (v,).The important feature of a p.c.f. structure is that the

[oon o8

intersection of the sets K, ..., andK ..., contained in the boundary of these sets
unlessw, = w!,i=1,..,n.

There are matricesM;, ...,My such that the boundary values of harmonic function

h on the boundary ofk,..., are equal tom ..M v, whereo is the vector of the

boundary values of h. For all x e K, except a countable subset, there corresponds a
unique sequence {w, },., suchthat{x}=n,., K, ..., . Then we denote A (x)=M,,

m>1 m>1 [}
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Let . be a Bernoulli measure on K such that u(K,, . )= g, i, Where g = u(K,)
. Then matrices A, (x) are statistically independent with respect to uwith Prob{
A, ()=M }=p,.
For any f from the domain F of ¢ we can define the measurev, in the same way
as it was done for the Sierpinski gasket. Then there is a matrixQ =(- D)"* such that
for any harmonic function h[75].

A

Mo,

vh(le....wm):

whereu, is the vector of the boundary values of h

For the next Theorem we assume that
1
r.

The same assumption is made in [75]. Note that we have constantsr, =r,=r, =1

r.nr lom,,. .M, ", (59)

Hy = (60)

and w, = u, =y, = % the same as (60) up to a constant factor.

Theorem(2.2.12)[65]: Suppose that for any non constant harmonic function with
boundary values o,there exists m such that function x i [QA, (x)...A(x),| is not
constant. Then the measure v, is singular with respect to , forany f eF

Proof. By (57) we have that

2 N1 2 2
[Quil =23 ZJeMiuy[ =4[ [QA (X" dulx)

=A[ QA (). A (X | dua(x) (61)

for any m. This relation is the same as[75]. The assumption of the Theorem
implies, similar to (39), that for some m
m
log|QV_(x) du(x)= ——log A,
sup l glQV, (<)} dulx)= <~ log
v |Quo|=1}

where V, (X)= AL (X A X0y

In this proof for the sake of simplicity we assume that for any nonconstant
harmonic function |Qv,(x)|=0 for all m and x. Otherwise one can change the

expression under the integral in (62) to log(|QV, (x)|+s) If6>0 is small then the
inequality (62) still holds though with a larger 8. Then, by induction,

J 1@V (x)die(x)

(62)
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+ [10g]Qy ) () da(x)

< B+ [10g|QVp o (x| du(x) < 3

if=|Qv,| =1. Moreover, one can see that for any sequencea,......o, We have
Ik{ ., Iog ||van+k (de:u(x) < :u(ul """" :ua)k (nﬁ + IOg”QVk (Xm)

This implies that (at least for a subsequence)

Iimsup%log”Qvn (x)||s%ﬁ<—%log/l (63)

fOI‘y —a.e.x.
n

Inequality (62) follows from the fact that the sequence {log|Qv,, (x)|- ﬁn}=1 is a
super martingale on the probability space (K, »). To prove it in more elementary
terms, define f,(x)=10g|QV, (X)| 9i.s = (tpreveore iy ) XL fa(X)du(x)forx e K ...,

andhk(x)z fk(x)_ gk(x)'
It is easy to see that {h |7, is a bounded orthogonal sequence in L’ and so

@y h

fn+1(x)S ﬁ + 1:n(x)-'- hn+1(x)' .
Then the L*-convergence implies that(at least for a subsequence) inequality (63)

holds for
LL—aex.

Thus by (58),(59),(60),(61),(62).f0 1 — a.e . SEQUENCE ©,, 0, ,... WE haV
for any harmonic function h.
To define the measure v, let |h,...h | be an orthonormal basis of the

—0asn—»>o At the same time g, (x)<p+f (x) that s

nonconstant harmonic functions in|Q)-norm. Thenv =v, +...v, .However, if not all

matricesMy, ...,My are invertible,v -measure of some open sets may not be positive.
The rest of the proof goes in the same way as in Theorem (2.2.6).
The singularity of the measuresv, was proved in [81]under the assumption that

the matrices{M;, ...,My}are invertible and strongly irreducible, and an additional
assumption on a certain index [81].
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Theorem(2.2.13)[65]:Under the hypotheses of Theorem(2.2.12).,the measurev

has no atoms,for any f e F.
Proof . we claim that there is a constant p <1 and a positive integer n such that
for any harmonic function f,

VKo )< oV (K) (64)

for any choice of ((w,,...., w,) Once we have (64), the proof is the same as
Theorem (2.2.6), using (64) in place of (43). By a compactness argument.
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Chapter 3
m-Function and Inverse Spectral Analysis

We show an extenstion of the theorem of Hochstadt (who proved the result
in case n=N) that n eigenvalues of an NxN Jacobi matrix H can replace the first n
matrix elements in determining H uniquely. We completely slove the inverse
problem for (6, (H — z)~'8,,) in the case N<co
Sec(3.1) Finite and Semi-Infinite Jacobi Matrices

There is an enormous literature on inverse spectral problems for- d2/dx? +
V' (x)(see[89,120,147-151,155], but considerably less for their discrete analog, the
infinite and semi-infinite Jacobi matrices (see e.g.,[91,92,94-96,101-110,113,116-
119,121,123,128,129,133-135,141-143,152-154,157,158,160-162]) and even less
for finite Jacobi matrices[97,98,112,115,130-132,136-139].Our in this section is to
study the last two problems using one of the most powerful tools from spectral
theory of —d?/dx? + V(x) , the m- finctions of Weyl.

Explicitly, we study finite N xN matrices of the form

H=|D R R (1)

0 ay, by
and the semi-infinite analog H defined on

22 = fu = (D, u(@),..)1 Y P < oo}

Given by:

(Hu)(n) = a,u(n+ 1)+ b,u(n) +a,_qu(n—-1), n=2, (2)

= a;u(2) + byu(l),

In both cases, the a’s and b’s are real numbers with a,> 0
To avoid inessential technical complication, we only consider the case where
supn[la,| + |b,|]1 < o, in which case H is a map from g2 to p?, and defines a
bounded self-adjoint operator.
In the semi-infinite case, we set N= co . At times , to have unified notation, we use
something like 1<j< N+ 1 to indicate 1< j <N in the finite case and
1 < j < oo in the semi-infinite case.
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It will sometimes be useful to consider the b’s and a’s as a single sequence b, , a,
b,, ....=C1,Cy,... that is
Con-1 = bna Con = QAnp N = 12 ... (3)

What makes Jacobi ,matrices special among all matrices is that the eigenvalue
condition Hu =x u is a second- order difference equation. The case n =1 of(2) can
be thought of as forcing the Dirichlet boundary condition u(0)=0 , Thus, any
possible non- zero solution of Hu =X u must have u(1) # 0, which implies .
(i) Eigenvalues of H must be simple (otherwise, a linear combination
would vanish at n=1).
(i) Eigenfunctions must be non- vanishing at n =1.
Thus for N < oo, H has eigenvalues 1, < --- < A, and associated orthonormal
eignvectors @, ... @N with ¢;(1) # 0.For N = oo, the proper way of
encompassing (i), (ii) is that 8, is a cyclic vector for H(§;is the vector in e? with
§j(n) = 1 (resp.0) if n = j (resp.n # j))
The spectral measure d,,for the pair(H, 8,) is defined by (6,,H?6;) =
[2¢dp(Q).
Since our H’s are bounded , dp is a masure of bounded support . In case N < oo,

N
() = ) 1o, PSA-4)d2  (0),01) = Sy )
j=1

The central fact of the inverse theory is that dp determines the a’s and b’s and any
d.p can occur for a unique H.(If N < o), dp has support at exactly N points. If
N < o), dp must have infinite support). The usual proof of this central fact is via
orthogonal polynomials and has been rediscovered by many people. For the
readers convenience , we have a brief appendix presenting this approach.

One purpose of this section to present a new approach to the central result based on

m-function and trace formla.Given p one from m(z) = fdp(/l)(/l—z)_l. The
function m(z)has an asymptotic expansion at infinity given by
m() -~ - A S P o 5)
z Zz2 z3 '
Thus, one easily recovers b, and a, (recall a; > 0) from m(z) . Now define m,(z)

by.

(-m(2))™" =z — by + aimy(2) (6)
It turns out that m,(z) is the spectral measure for the Jacobi matrix obtained by
removing the top raw and left-most column of H. An obvious inductive procedure
obtains by,ay,...
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The m-functions defined by this method , which we call m.(z,n) (so
m(z):=m.(z,0),m(z):=m+(z,1),etc),form the class of m-functions defined by

m+(z, Tl) — 5n+1(H[n+1,N] - Z)_15n+1) (7)

where Hp,14 n7 is the matrix with the top n rows and n left columns removed and

thought of as acting on #2(n+1,n + 2,...,N) . There is a second m-function that
plays a role.

_ -1
m_(z,n) = 5n—1( Hi1n-11 — 2) 15n+1) On-1 (8)
Where Hp, 4 q3is the n x n upper left corner of H.

also related these m-functions to solutions of the second —order difference
equation and obtains relations between m..(z,n) and m.(z, n + 1) (of which (6)
Is a special case) . also contains some critical formulas expressing the diagonal
Green’s functions G(z,n,n):= (6,,, (H — z)~168,) in terms of m.(z) and m.(z) .

Also contains one of the most intriguing results of this section. In [139]Hochstadt
proved the remarkable result that for a finite Jacobi matrix, a knowledge of all but
the first N c’s and the N -eigenvalues, that is , of Cns+1,Cn+2,---,Concz @Nd A4, ..., Ay,
determines H uniquely. We extend this by showing that cns+1 ,...,Con-e @nd any n
eigenvalues of H determine H uniquely for any n=1,2,...N,

After a brief interlude obtaining the straightforward analog of Borg’s two-
spectra theorem[99](see also0[100,145,146,148,150]) first considered in the Jacobi
context by Hochstadt[137,138](see also[10,30,43,44,48,51,72]) we turn to the
question of determining H from a diagonal Green’s function element 6, (H —
z)18,) whenN < oo, If n = 1 or N, the central inverse spectral theory result says

G(z, n, n) uniquely determines H. For other n, there are always at least (’7‘1’:%)

different H’s compatible with a given G(z, n, n). Generically, there are precisely
that many H’s. also has a complete analysis.

Finally we present some results and conjectures about the inverse problem
when a,, = 1.

Let H be a finite or semi-infinite Jacobi matrix of the type described. We
begin by defining some special functions of a complex variable z which we will
call {(zn}" X and{p+(zm3 ¥ . The P(z,n)’s are polynomials of degree n - 1
defined by the pair of conditions
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a,P(z,n+1) +b,P(z,n) +a,,_1P(z,n—1) = zP(z,n)
l1<n<N+1 P(z0)=0 P(z,1)=1 9
For convenience , we define ay = 1in order to define,P(z, N + 1) in case N <

coCleary(9)definep(z, n) that inductively as a polynomial of the claimed degrees
again, inductively it is clear that:

1

a1 ..... a]

P(z,j+1) = z/+ lower degree in z. (10)

As explained, the P’s are intimately related to the intimately related to the spectral
measure for H.

P(z,j+1)=(ay..a) 'det(z—Hp . =1, (1)
Where Hp, j, is the j < j matrix in the upper left corner of H.
Proof. By (10), a, ... a;jP(z,j + 1)and detH, ;; are monic polynomials of degree j.
Thus, it suffices to show they have the same zeros and multiplicities. But P(z.j +
1) if and only if there is a vector v = (v = vy, ... v;) lwithv; = 1so that (Hp ;) —
z)v = 0. As explained, every eigenvector of (H[, ;) has v, # 0. , Thus, the zeros
of P(z,j + 1) are precisely the eigenvalues of Hy, j; Since the eigenvalues are
simple, the multiplicities are all one.
In caseN < oo,y (z,n)is defined via

anP(zn+ 1)+ b (z,n) + a1, (zn—1) =z¢,(z,n)

n=1....N-1, ¢Y,(zn+1) =0, (12)
where again for convenience we define a =1to enable us to define
1
l/)_,.(Z, N _]) - dEt(Z - H[1.j+1,N]) (13)
aAN-1 -+ AN-j

is a polynomial of degree j.
Incase N = o0,y (z,n) initially is only defined in the region (z) # 0 by
requiring (12) and.

P20 =1 ) [ (zn)f < (14)
n=0

It is a standard argument that when H is bounded and self-adjoint, there is a
solution that is #2 at infinity unique up to constant multiples (and everywhere
Onvanishing so one can normalize it byy, (z,n) = 1.

Given any two sequencesu(n), v(n), define the (modified)
WronskianW (u. v)by
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W, v)(n) = ap[lu(m)v(n +1) — v(n + v(n)]

For any two solutions of (9), W is constant. The Green’s function is defined
by(l<mn<N+1)

G(z,m,n) = (6, (H — 2)7'8) (15)
For Im(z) # 0.We will also sometimes use (j < m,n < k)
Proposition (3.1.2) [88 ]:
G(z,m,n) = [W(P(z, ) Y.z, ))]'1P(z, min(m, n))y ., (z. max(m,n)) (16)
Proof:
One easily checks that if ¥, G (z, m, n)is defined by(16), then

Z(Hm,k - Z5m,k)G(Za k, Tl) - 5m,n
k

In the finite case, the choice of P, ensures that the equation holds at the points
where n or m equals lot N. In the infinite case, the choice of P ensures the equation
holds at n or m equals 1, and the choice ofy, ensures thaty.,, G(z, k,n)f,, is £%in k
for any finite support sequence{f,}. In either case, it follows that is indeed the
matrix of the resolvent.

We can now define the most basic mfunctiOn (there will be more later),

m(z) = (8p, (H — 2)~ "6, (17)
We have, by(16)
Proposition(3.1.3)[ 88]:
m(z) = — L&D (18)
aoP+(z,0)
proof.P(z,0) = 0, P(z,1) = 1so (16) becomes
Yi(z,1)
G(z,11) =
—aoP4(z,0)
In terms of the spectral measure dp,
m(z) = [ (19)

Theorem(3.1.4) [88] If N is finite, then

(N-1

H[:l (Z—U.g)

m(z) = - M, (z=x) "

(20)

where A; < .-+ <A, are the eigenvalues of Hand v; < --- < wvy_;
are the eigenvalue of Hp ny.

Proof. by (12) and (17)
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det (Z - H[Z,n))
det (z,H)

m(z) = —

This can be viewed as a cofactor formula for the matrix elements of H — z~1

Corollary (3.1.5)[88 ]: If N isfinite,{A,}j = ] . U{v, 3N tuniquely determine H.
Any set of real A’ s and v’s are allowed as long as

M <v <A <v,<- <Ay (21)
Proof. By (19), the A’ s and v’ s determine m(z), and then by (19), they
determine dp the a's and b’ s. That any v’ s, 4’ s are allowed follows from the fact
that if

=

m(z) =

then a; > O for all j is equivalent to(21)
Definition  (3.1.6)[88]: m,(z,n) = (6,11, Hns1ny1s,,,) n =01,..,N —
1, whereH, 1 npis interpreted as Hpqq 007 If N = 00,
Thus, m(z) := m+(z, 0), and by the same calculation that led to (17),

-, (z,n+ 1)/[aml,+ (z, n)]m+(z, n) = (22)
Equation (11) implies the following Ricatti equation (more precisely, an analog of
what is a Ricatti equation in the continuum case),

aim,(z,n) + m+(zln 1 =b,—z (23)

It is also useful to have an analog of the m-function, but starting at 1 instead of at
N or co.

Definition(3.1.7) [88]: m,(z,n) = (6n-1, (Hn-11-15, ,)n =23..,N+1

We immediately have analogs of (22) and (2.15), viz.,
m_(z,n) = —P(z,n — 1)/[a,,_,P(z,n)] (24)

1
ay_,m_(z,n) + G D =b,—1 (25)

The usefulness of having both m+(z) and m_(z) is that we can use them to express
G(z, n, n). We claim
Theorem (3.1.8) [88 ]:

-1

G ,n) =
(z,n,m) azm,(z,n) +aim_(z,n) +z— b,

(26)
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~1
= (27)

1
2 —
a;_m_(z,n) mzn=1)

~1
= o on=12,.. (28)

1
azm,(z,n) — m_(z,n + 1)

Proof :It suffices to prove (26), for then (24) follows from (23) and then (27)
follows from (24).
To prove (26), use (15) evaluating the Wronskian at n - 1 to see that
-1
P(zn—-1) Y, (zn-1)
an‘1< P(zn) — ¥i(zn) )
1
—aZ_ym_(z,n) + (my(z,n— 1)

G(z,n,n) =

By(21) and (23)

Theorem(3.1.9)[88]: .Let N € N. At any eigenvalue A;of H we infer that
m_(4;,n+1)=[aZm,(4,n)]"* 1<n<N, (29)

where equality in (29) includes the case that both sides equal infinity.

Proof.At first sight, this would seem to be a triviality. For G(z, n, n) has poles at 4;

and thus the denominator in (29) must vanish. But there is a subtlety. It can happen

that at an eigenvalue 4; of H, P(4;, n) =¢,(4;, n) = 0 and G(z, n, n) then also

vanishes at 4;.

Thus we consider two cases: First ¢;m) # O(p; the eigenvector of H
associated with (4;). In that case G(z, n, n) has a pole as z— A; and so by (28),
(29) must hold (although both sides will be infinite if ¢;(n + 1) = 0).

In the second case, ¢;(n) = 0. Then both sides of (29) are zero, and so
(29)holds. (However, the denominator of (27) is co — oo and happens to be oo so
that G(z, n, n) vanishes, but (29) still holds.)

In this section, we will use m-functions to show how to recover a Jacobi matrix
from the spectral function dp. The more usual approach via orthogonal
polynomials is sketched. Our approach is new, although iterated m-functions are
equivalent to a continued fraction expansion of m(z), and so the work of Masson
and Repka [152]is not unrelated to our approach. We begin with
Theorem(3.1.10)[88]:.Near z =0

my =20 GrP Lo (a0)

z z2 z3

First proof.By the basic definition of m(z) (see (16)) and the norm
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convergent expansion (since H is bounded)
(H-2)t=-z11-z"1H)?
=—z"1—272H - z23H? + 0(z™%).
We have
m(z) —z7' —z7%(8;, H61) — z73|[H8||> + 0(z™%)
Clearly,(81, H61) = by and ||[H8,||* = |lay8, + by, || = af + bf
Second proof. By (23),
1

b, — z—a*m,(z,1)

m(z) =

But m+(z, 1) = -1/z + O(z*®). Thus,

1 b, a? -
m(z) = ——<1 - —; + 0(2'3)>
z z z

b, a? /b
Z Z Z

In terms of the spectral measure dp, (30) becomes

b, = fz dp (1), |

@t = 2ap@) - ([ 20 @)

formulas implicit in the orthogonal polynomial approach.

In case N <oo, there is a direct way to interpret (30) as generating trace

formulas:

(31)

(32)

Theorem(3.1.11)[88]: Assume N € N, and let A;,...,Ay be the eigenvalues of H

and vy, ..., Vn—1the eigenvalues ofHp, xy. Then

N N-1
b1:ZAj— Vp
=1 =1
N N-1
242 + b2 :zaf—zvj
=1 =1

Where

(33)

(34)



N N-1
a — z A] — Vp (35)
]:1 =1
N-1 N N-1
B = ZAZ Z’”k zvam—z,y v, (36)
j<k f<m j=1 =1
(35) is just (33), and usmg (34) (55) becomes
N N-1
1 1 1
— 2 2
B Ez /1] — E v, + E a?
j=1 =1
Thus,
N N-1
2,1]2— vZ =28 — a? = 2a? + b2
j=1 =1
By (29)
of course, (33), (34) have direct proofs in terms of traces since they just say
that
Tr (H) — Tr(Hpny) = by (37)
Tr(H?) — Tr(H?,n1) = 2a + b7 (38)

and is one reason why (30) should be thought of as generating trace formulas. In
the case of periodic Jacobi matrices, this strategy has been employedin[153].

There is another way to write (30) that doesn't require us to analyze m(z) for large
z. Define the & function [124] by

EQ) = %Arg (m(A+i0)) for ae1€R (39)
Then if supp (dp) = spec(H) c [a.B] we infer that é(1) = 0 for A<a and é(1)=1
for A = . We claim
Theorem(3.1.12) [88]:

B
by=a+ j (1 - £(1))dA (40)

§
202 + b2 = q + j 24(1 — £(1))dA (41)

Proof. [124].By Theorem (3.1.10) , the function -zm(z) has the asymptotics near co

b, a? b1

—zm(z)—1+;+ +0(z73)
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Using In(1 + x) = z — 2% + 0(x>)for | x |sufficiently small, we see that
Q(z) = In(—zm)(2))
has the asymptotics
_ by 2af +b7
Q2) = z N 2272
Notice that the right sides of (40), (41) are unchanged if £ is increased or « is
decreased (sinceé(1) =1 ifA > a) and, so we can assume that O € (a, 8). Then
Q(2) is analytic in C/[a, f]and on (a, B):

%Im(Q(/l +1i0)) = &), 1<0,

&) -1 A<0.
By (42), for R sufficiently large,

1 Al .
by =5 3€|Z|=R 0(z)dz) = — L Lim(Q( A+ i0))d 2

+0(z7%) as z—>o o (42)

:—fod/1+f(1—€(/1))d/1

(04
which is expression (39), and

B
1 1
2a + b = — 2zQ(z)dz = — | =22im(Q(A + i0)dA
170
21i J|5)=r I
a

. B
:—j 2,1d,1+jz,1(1—€(/1))d,1

which is expression (31)
Equations (31)-(34), (37), (38), (40), (41), etc., clearly underscore that one can
derive an infinite sequence of such trace formulas which are precisely the well-
known invariants of the hierarchy of Toda lattices. A systematic approach to these
trace formulas can be found, for instance[101,107,122,160].

We can now describe the scheme for recovering H from dp, or equivalently,from
m@) =f dp(A)(A —z)7%
(i) Use the trace formulas (via (30) or (40), (41)) to recover b, and a2.
(i) Use (23), viz.

m,(z,1) = ay? (b1 —z— ﬁ)

to find m.(z, 1), which is the m-function forHp; o
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(iii) Use the trace formulas to find b,, a3and then (22) to find m+(z,2), ...,
etc.

This clearly shows a given dp can come from at most one H, since we have
just described how to compute the bj and ajzfrom dp. We want to prove existence
via this method, that is, given any dp of compact support, this method yields an H
which is bounded and whose spectral measure is precisely dp.
Lemma(3.1.13)[88]:Suppose that m(z) = [dp (A)(A—z)~t, where dp is a
probability measure on [-C, C] whose support contains more than one point.
Define

b, = Afﬂdp ), a%j/lzdp(/l) — b? (43)
(a2 is always strictly positive by the support hypothesis on dp). Define my(z) by
1
ml(Z) - al_z [bl —Z — m(z)
Then
_ [dps 1)
mi(@) = | = (44)

where dp; is a probability measure also supported on [-C, C]. Moreover, p is
supported on exactly N points if and only if p; is supported on exactly ( N -
1)points.

Proof. By (42) and an expansion of a geometric series, (29) holds, so
2

A@) = (M) =z-b -2 +0G) (@)

Since m(z) has Im(m(z)) > 0 when Im (z) > 0 (we recall that m is a Herglotz.
function), M(z) =(-m(z)) “has the same property. Moreover, M(z) is analytic
onC\[C, C]since m(A) > 0 for A< -C and m(A) < 0 for A> C. Thus, by the Herglotz
representation theorem,
dp(4)

—Z
for a measuredp By (44), ¢ = —b;,d =1, and, [ dp(1) = a?
Thus,

ﬁi(z)=é+(iz+j

dp1(1)

A—2z

ﬁi(z)=é+(iz+j

anddp; = ay? dpis also a probability measure.

Since dpis supported on N points if and only if m(z) is a ratio Py.; (z)/Qn(z) of
polynomials with deg(Pn.(2)) = N - 1, deg(Qn (2))= N, we obtain the last assertion.
Theorem(3.1.14) [88]. Every N-point probability measure arises as the spectral

measure of a uniqgue N x N Jacobi matrix. Every probability measure of bounded
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and infinite support arises as the spectral measure of a unique semi-infinite
bounded Jacobi matrix.

Proof. By iterating the p — p, procedure of the lemma, we can find suitable
ajz,bjinductively. If dp has N-point support, the process terminates after N — 1

steps where dpy has a single point, and we define byto be that point. If dphas
infinite support, p the process continues indefinitely. Because sup (dp,) S
[-C, C], |a | and | b, |are bounded by C, and so H is bounded.
Let dp be the spectral measure for the H that has just been constructed. We
will show dp, thereby completing the proof.
Let m(z) = p [ dp(1)(A — z)~1. Then by construction,
-1
Z=bi+a [z—bziag...]

That is, m and m have identical partial fraction expansions although a priori
theremainders could be different. This means that the Taylor series for 71(z) near z
= oo agrees with that for m near z = oo so m(z) = m (z), and hence dp =dp

The continuum analog of the orthogonal polynomial approach of the Appendix is
the Gel'fand-Levitan [120] inverse spectral theory which is a kind of continuum
orthonormalization. It would be very interesting to find a continuum analog of the
m-function approach to inverse problems that we discussed in this section. As an
application of the m-function approach to inverse problems, we prove the
following (which can also be obtained via orthogonal polynomials):
Theorem(3.1.15)[88].[93,120]Fix N € N.Consider the following parametrizations
of N x N
Jacobi matrices."

(i) {an izt U{bn}n=1(an) > 0.

(i) (4}, Vel Oy < vy < 2y <oy < Ay).

(i) {Aj}leu{aj}le(zl < <Aya; <0, TN o, = 1)
Here A; are the eigenvalues of H, v, are the eigenvalues of Hf, ,; and the o's are the
residues of the poles in m so
M(z)=Y}L; (A — 2) 7 (or dp(d) = ¥ oy8(A — A;)d).
The maps between these parameters are real bianalytic diffeomorphisms.
Proof.It is well known and elementary (the determinant of the Jacobian matrix is
just £I1; . (4; — M) ~1that the map from the N coefficients of amonic polynomial
Py (A) of degree N to the roots 4;, ... A, 0f that polynomial is a bianalytic
diffeomorphism in the region where the roots are all real and distinct. This
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immediately implies that the map from (i) to (ii) is real analytic. The map from (ii)
to (iii) is rational since a; = MY=}M(A; — vp)IIR,, ;(4; — A)~*. That means
we need only show that the map from (iii) to (i) is real analytic.

Since by =¥} a;4; and af = (X}, ;A7) —bi , those are analytic
functions. Moreover, the v, are the roots of the polynomial Z?’zl a;ll.i(z —
Ak)and so real analytic in (4/,ay) by the first sentence in this proof, m+(z, 1) has
the form Y31 B, (v, — z)~t whereB, = [a?m'(v,)] tis clearly analytic in the A's
and a's. Thus following the m-function reconstruction shows that the a's and b's are
real analytic functions of the A's and a's.

In[139],Hochstadt proved the following remarkable theorem (see (3)) for the
definition of c;):
Theorem (3.1.16) [88 ].LetN € N. Suppose that Cy 1, ..., Con—z1are known, as well
as the eigenvalues 4, ...,Ay0f H. Then ¢4, ..., ¢y are uniquely determined.

Hochstadt's proof is sketched in the appendix (but in

"reflected"coordinates,i. e. cq, ..., cy_qare assumed to be known). Our goal in this
section is to prove.
Lemma(3.1.17)[88 ].[126,127,139,140]Suppose f; = P1/Qq, f, = P,/Q,, where
deg(P.) = deg(P-)and deg(Q:) = deg(Q>), and d = deg(fi),
(i) If f; and f, agree at d + 1 points in C, then f; = f,.
(i) If f, and f, are both monic and they agree at dpoints in C, then f; = f,.
Proof. If fi(z) = f,(2), then Py (2)Q2(2)- P2(2)Q1(Z) = 0 (even if both values are
infinite, since then Q; =Q2 = 0). In case (i), P,Q2 - Q,P;has degree d. In case (ii),
the leading terms cancel and PxQ, - Q;P;has degree d-1. The lemma follows from
the fact that ifa polymonial Ry, 0f degree do vanishes at do +1 points,then Ry, = 0.
Theorme (3.1.18)[88]. Suppose that 1 < j < Nand c;, ..., C,y— are known, as well

as j of the eigenvalues. Then cy, ..., ¢; are uniquely determined.
Proof. Suppose first that j is odd so j = 2n-1, andb,, . . . ,a,-I, by are unknown, but
an, bns,..., by are known, as well as j eigenvalues which we will denote
A1, o Aan-1BY(28)

—m— (4n+1)+[-aim,(4,)]""
By definition, m.(z, n) is determined by Hp,, 1 yjand so by bn.,an4,..., by
Thus, [—a,zlm+(/1j, n)]~11 are known numbers.

By the analog of Theorem (3.1.4)(see also (23)), -m.(z,n + 1) is a ratioP,.
1(2)/Qn(z) of polynomials, where deg(P,.(z)) = n - 1 and deg(Qn(z)) = n, and each
iIs monic. By part (ii)) of Lemma (3.1.17) the values of such a monic rational
function of degree 2n- 1 is determined by its values at the 2n- 1 points A4, ..., 4551
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Once we know m. (z, n + 1), by, a,,...,b, are determined by Corollary (3.1.5).

Suppose next that j is even so j = 2n, and a, moves from the known group to
the unknown group. We can use

—azm_(A;,n+1) = (—=m(4;,n)"*
to conclude that we know f(z) := a?m_(n + 1) at the 2n points 44, ..., 4,,. The
function f(z) is no longer monic, but it is of degree 2n - 1 and so its valuesat 2n
points determine it uniquely by part (i) of Lemma (3.1.22). Once we
know—ajm_(z,n + 1), we can obtain azby ag lim,e[—2zm_(zm_(z,n + 1) =
land thenby, a,, ...,byby Corollary (3.1.5).
Example(3.1.19) [88]. (j = 1) We use m_(z.n) = (&;, (Hp.11 —2)7%8;) = (b, —
2)71
Then
by =24, + a%(/lj, 1)
This has a solution as long as m,(4;m1) # o0.The only forbidden values for 1,are
the obvious ones, namely, the eigenvalues ve of Hp, yywhich we know must be
unequal to theA's.
Example(3.1.20) [88]. (j = 2) We get
by =X +ai(;,1) j=1.2
m, (4;,1) # oois still required, but we also need that
my (A3, D)m, (41, 1)
B A, — A

which equals a;2, must be positive. This avoids two eigenvalues between a single
pair of eigenvalues of Hp, y7 but requires a lot more. There are severe restrictions in
the 1, 'sfor existence (see, e.g., the discussion in [112]). As j increases, these
become more complicated.

Borg[99] proved a famous theorem that the spectra for two boundary conditions
of a bounded interval regular Schrodinger operator uniquely determine the
potential. Later refinements (see, e.g.,100,145,146,148,150]) imply that they even
determine the two boundary conditions.

We consider analogs of this result for a finite Jacobi matrix. Such analogs were
first considered by Hochstadt[137,138](see also0[98,118,131,132,136,139]).In one
sense, the fact that the eigenvalues of Hy; yjand Hp, y determine H is such a two-
spectrum result and, indeed, it can be viewed as Theorem (3.1.28)below for b =
co. Our results are straightforward adaptations of known results for the continuum
or the semi-infinite case, but the ability to determine parameters
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by counting sheds light on facts like the one that the lowest eigenvalue in the Borg
result is not needed under certain circumstances.

Given H, an N x N Jacobi matrix, define H(b) to be the Jacobi matrix where
all a's and b's are the same as H, except by is replaced by b, + b, that is,

H(b) = H + b(54,.)0;. (46)
Theorem(3.1.21) [88].The eigenvalues A; + Ayof H, together with b and N - 1
eigenvalues(A(b), ..., A(b)y_1,0f H determine H uniquely.
Proof.Choosing ap = 1, we have
m(z) = -y, (z, 1)/, (z,0)
and
V.(2,0) + (by — 2)¢,(2,1) + a19,(2,2) =0

It follows that z is an eigenvalue of H(b) if and only if

Y.(2,0) = b, (z1),
that is, if and only if

1
TR(Z) — —E

(a standard result in the general theory of rank-one perturbations[156]).

Write m(z) =—Py_1(2)/Qn(2), where Py.(Z) and Qn(Z) are monic polynomials of
degree N - 1 and N, respectively. Qu(z) = [T}=(z — 4;) is known

and

N
P,_ (A(b)) = b1 H(A(b)k —%), 1<k<N-1
j=1

are also known. Since the values ofa monic polynomial Py(z) of degree d atd
points uniquely determine Pg4(z) by Lagrange interpolation,

A(b)q, ..., A(b) y_quniquely determine Py.(z). The solution of the inverse problem,
given—Py_1(2)/Qy(2),and hence m(z), then determines H uniquely.
Theorem(3.1.22) [88].The eigenvalues A,,...,Ay of H, together with the N
eigenvalues A(b)4, ..., A(b)yof some H(b) (with b unknown), determine H and b.
Proof. Following the proof of Theorem(3.1.22),we have a monic polynomial Py.
1(2), an unknown g :=1/b, and

N
P B =8| [ - @),
Let: "

N
Ry@ =8| |(z=2)-Pucs @)
j=1
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Since Ry (z) = z" +lower-order terms and Ry (1) (b),) = 0,1< k < Nwe have

N
Ry(z) =B 1_[(2 — 4 +1)
j=1

Since Ry _4(z)is monic of degree N - 1,
N

Ry(z) = pzN - ,BZ(A]- + 1)z + .

j=1
on the one hand and

N
Ry(@) =Bz —[ B ) Ab); |2Vt + -
v ,Z ,

on the other. It follows that

1
= =p 1 48
b= ST Gy, - 1) (48)

Once B is known, Ry(z) determines Py.(z), and thus m(z) and H.(48)then
determines b.

The basic inverse spectral theorems show that (&,, (H — z)~18;)determines H
uniquelyWe take NeN,1<n<N , and ask whether (&;,(H—
z)—1ndetermines H uniquely. For notational convenience, we occasionally allude
toG(z, n, n) as the nn Green's function in the remainder of this section. The n =1
result can be summarized via:

Theorem(3.1.23)[88]: (8;,(H—2)718,) has the form Z]N=1 (A —z)~" with
M<< }\N,Z]N:locj = land each a;>0. Every such sum arises as thell Green”s
function of an H and of exactly one such H.

For general n, define fi =rain(n, N + 1 - n). Then we will prove the following
theorems:

Theorem(3.1.24)[88]:. (8;, (H —z)7'8,) has the form YL, oy(A; — 2) > with k
one of N, N -1, .., N-A+1and) <- <X, XL =1land each o > 0.
Every sum arises as the nn Green's function of at least one H.
Theorem(3.1.25)[88]:.1f k = N, then precisely ('r\]‘:i)H’s yield the given nn Green's
function.

Theorem(3.1.26)[88].if k < N, then infinitely many H's yield the given nn Green's
function.Indeed,the inverse spectral family is a collection of

(V=P (K- 12N~ disjoint manifolds, each of dimension N - k and diffeomorphic
to an (N - k)-dimensional open ball.
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Proof. Consider first the case k = N (which is generic; k < N occurs in a
set of Jacobi matrices of codimension 1). Lety; < :-- < uy_q, be the zeros of
G(z.n.n):= ?’:1 a;(4; —z)~ . Then.

N-1
—G@znn)lt=z—-b+ be (49)
=l — z
whereb, u, € R and S, > 0 are determined by the a's and 1's. By,
—G(znn)t=z-b,+aim,(z,n) + a’_m_(z,n) (50)
m_(z,n) = (6,1, (Hpn-1) — 2) " '6,-1) determines H,_;juniquely (by
Theorem(3.1.15).and has the form
n-—1
m_(z,n) = z Y ¥; >0, (51)
=1 G

where 7:‘11 ¥; = Lland the e;'sare the eigenvalues of Hp,_q;. Similarly,m.(z,n) =
(on—1,(Hn—1—2)—-15n-1) determines AZn+1,/V uniquely and has the form

N—-n k
my(z,n) = z L ki >0, (52)
=t i

whereX¥-""k: = 1and the f;'s are the eigenvalues ofHp,,.; y1. Comparing (49)-
j=1"7j [n+1,N]

(52), we see that{u}V=1 = {e/}" " U {£:}" . We can choose which y,are to be e;

in (N B 1)ways. Once we make the choice,

n—1
Ga= ) fead &= > B

tsoppisanej tsoppisanf;

andm..(z, n) are determined. But Hy; ,_1y, Hppyq yj@nda,—_q, by, a,, determine H.
Thus for each choice, we can uniquely determine H. Moreover, since any sums of
the form (51), (52) are legal form..(z,n), we have existence for each of the (’7‘1’ - 11)
choices.

k = N if and only if all the eigenfunctions ¢;(n) are non-vanishing at
n.Eigenfunctions obey the boundary conditions at both ends, so if ¢;(n)vanishes,
so do P(z,n) andy . (z,n), which are polynomials of degree n - 1 and N -n;so at
most min(n - 1, N - n) := 71- 1 eigenvalues of H can fail to contribute to G(z, n, n),
that is, at least N - 71 + 1 eigenvalues must contribute, that is, k is one of N.N —
1,..,—7+ 1. Eigenvalues that don't contribute are zeros of G(z, n, n)and
simultaneously eigenvalues of Hy; ,_yjand Hp,iq np-
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Thus if k < N, the k- 1 poles of-G(z, n, n)™ are in three sets. no := N- k are
eigenvalues of both Hp; ,,_yjand Hpyq nny :==n— 1 — (N — k), are eigenvalues
of Hp; »,—yjalone, and n; := (N - n) - (N - k) = k - n are eigenvalues of H, ,,_;jalone.
Notice that N > k > N - i+ 1 implies ny > 0,n, = 0,n, = 0and that n, + n, +
n, =k —1,ny,+ n, = N —n.To reconstruct m,(z,n)given -G(z, n, n)* , we
have to make two sets of choices:

(i) Figure out which ofuy, ..., ux—1lie in each of the three sets. This yields
k—1\(k—-1-ny)_ (k-1)!

( No )( ny )_nolnllnzl

discrete choices.

(ii) For each of the no nyu,'s in the set of common eigenvalues, we must pick a

decomposition

— @ (2) @)
Bf Py + £ £ <0
and then take
0
2 _ B‘f B-f
azm,(z.n) = P P
¢ so that He ¢ so that He
Ue IS solely an Ueisa
H[1n-11eigenvalue common eigenvalue
and
(2)
Be
aim_(z,n) = 2 + 2 —t
—Z —Z
¢ so that He ¢ so that He
Ue is solely an Uelisa
H[1n-1)eigenvalue common eigenvalue

Every such choice yields an acceptable H. Since the map from poles and residues
to matrices is a diffeomorphism (Theorem (3.1.15),the -“=2disjoint sets of poles

nolnginy!

and no’;,s(o,ﬁe) residues lead to that number of manifolds diffeomorphic to the no-

dimensional open ball.

A Jacobi matrix with all a, = 1 is called a discrete Schrrdinger operator. The
inverse problem for such operators is open, that is, there are no effective conditions
on a spectral measure dp that tell us that its associated Jacobi matrix has all a,=1.
(The isospectral manifold of general Jacobi matrices with a,, € Ris discussed in
[161], see also[111],[114],and[117].)

Consider the finite case,NeN. The number N of free parameters {»,}¥_,equals
exactly the number of eigenvalues.{,y.};“=1 The natural inverse problem is from A's to
b's. We do not have a complete solution, but have a number of conjectures and
comments which we make in this section. 1; < A, < --- < Ayare the eigenvalues
of H. For any b = (by,...b\)€ R, define A (b) = (A4, ..., Ay)eRas the eigenvalues.
Let Sy= Ran (A).
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Conjecture(3.1.27) [88]: (Main Conjecture). Sy is a closed set in R¥whose interior
Symis dense in Sy. For any A € S§ A~ (1) contains N! points. For any, 1 €
dSy,A~1 (1) contains fewer than N! points.

Thus, we believe that A~1 [S3™]is an N!-fold cover of S§™, but it is likely
anuninteresting one.
Conjecture(3.1.28) [88] A~1S5™ is a union of N! disjoint sets. On each of them,
Ais a diffeomorphism to S5
In the complex domain, things are more interesting. There is a small
neighborhood,D, of RY in CNto which A can be analytically continued and on
which 4; # A;still holds. Introduce
S, =A[D] and B ={1 € S,|A"1[A]} has ordinality less than N!}.
Conjecture(3.1.29)[88]. B has real codimension 2. IsA~1[S,\B] connected and is
an N!-cover of S,\B.

Thus, A~1 is a ramified cover of S,,. We begin with an analysis of the case

_ _ (b1 1
N=2,so0H = (1 bz) Then

[ by+b, by+b,\2 by+b, by+b,\2
A= (Bgte () et (B2 1) )
Thus S, = {(1;,1,) € R?|A, > 4, + 2}.0S, = {(11,1,) € R?|A, = A, + 2}

A a—-1a+1)= {(i‘ i)} otherwise A~*((14,4;))has two points (f i})and

(i} i) A~1(SiM) has two connected components where by> b, and where by> by

If one continues into the complex domain, A~1[S,\B] is connected.

Thus, our conjectures are true in the not quite trivial case N = 2.

At first sight, it may seem surprising that Syis closed. After all, the
eigenvalueimage of all Jacobi matrices {1 € RN|1; < A, < --- < Ay }is open and
notclosed. The existence of strict inequalities is a reflection of the condition a,> 0.
Once a,= 1, they disappear.

Theorem(3.1.30) [88].Sy is closed.
Proof. Let A,, € Syand pickb,, € RN so thatA (b,,) = A,,,. Suppose 1, > A, €
R2. asm — oo. Let H(b) be the N x N Schrodinger matrix with the components of
b along the diagonal. Then

|A(b)|? = Tr(H(b)*) = 2(N — 1) +||b]|?,
so{b,,, }is a bounded subset of RY. Thus, we can find a subsequence {mp}such that
bmp — b,.aS p = by,.By continuity of A, A(b,,) = A thatis, A, € S,,.
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This theorem implies that if||b|]| < R,, then there is a minimum distance
between eigenvalues. One might think there are global bounds on eigenvalue
splittings (i.e., N-dependent but independent of R), but that is false if N > 3, as is
seen by the following example motivated by tunneling considerations. Let H(S) be
the N x N Schrodinger matrix with b= by = 8 and b,= ... by.;= 0. Then forg large,
the two largest eigenvalues E. ()satisfy

E+(B) =px0(p~ ("% (54)
and ifN > 3,|E.(B) —E—(B) > 0as B »

An important open question is finding some kind of effective description of
Sn.

We note that if
1 1 1 1 (—1)N+1)

— 1 — —_—
P+ = («_N""’_N)a”d‘f)- - (m’m’m""’ VN
then(p,, Hop,) — (p_, Hp_) = 4(1/N))sody — A, = 4 (1 - (%))
The N!'in our main conjecture comes from the following
Theorem(3.1.31)[88].For Blarge, Ag := (B,2B,3,...,NB) € Sy and A‘l(?\B )hasN!

points.
Proof. Consider the N! Hamiltonians

) 0 oy
H.(B) =B + |t S (55)
0 7(N) '
0 1 0

where m is an arbitrary permutation on {1,..., N}. Then A(B) = p~1H,(B) at =0
has N eigenvalues (1, 2 ,...,N) and it is easy to see that forg small, the Jacobian of A
is invertible. It follows by the inverse function theorem that for £.

large, there is a unique H,(B) = H,(B) + 0(B) 1) so that the eigenvalues of
H_(B)are precisely (8,28, ... NB)

A separate and easy argument shows that for S large, any Schrodinger
matrix with eigenvalues (f,..., NB) must have bn =g.(n) + 0(8~*)for some
permutation, 7 and so must be one of the A, (5).

The evidence for the strong forms of the conjectures here is not
overwhelming.We make them as much to stimulate further research as because we
are certain theyare true.
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Sec (3.2) Inverse Problems on Jacobi Matrices:

The study of inverse eigenvalue problems for Jacobi matrices is not purely of
mathematical interest, actually, in aplications, it is related to vebariting systems
see[169] and the classical moment problems see[164] of a jacobi matrix

JV=Av, (56)
can be iwed as a discretization of the one- dimensional Schrddinger equation

y"(x)+ @ - px)y(x)=0 O< x<1, (57)

where q(x) is acounuous function defined on(0,1).Hence, it is not surprising that
there are several analogies between the inverse eigenvalue problems for Jacobi
matrices and the inverse spectral problems for sturm- liouville equations. For

example, for a given pair (h, H, q) R%*X c(0,1), let Qn.H(g) denote the spectrum of
the equation

y"( )+ (2 —a(x)y(x)=0 0<x<1, (58)
with the boundary conditions

{y’(o) ~hy(0)=0

(1)~ Hy@) =0 9)

where (h,H) is in R%.Borg[2] showed that ifs, , (q,) and o, ,,,(q,)for some H#
Ha,then q,(x)=q,(x) on [0,1]On the other hand, denote

a, b 0 0 O 0
b, a, b, 0 0 0
b, a, b, O 0
J. [a,.a,...a,;b,b,,.., bnfl]:. . | (60)

cr e e e b, A, by
o 0 0 .. 0 b, a,

Hochstart[170] proved that an irreducible Jacobi matrix.
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Is uniquely determined by its eigenvalues( corresponding to the dirichelt-
Neumann spectrum of (58) and the eigenvalues of its truncated matrix
J..[a,,ay,ma, ;b by, b ] (corresponding to the dirichlet spectrum of(58) if we

require that bj>= 0 for I = 1, 2,....., n-1. In 1973, Hochstadt[171] showed that if

q(x)=q(x-1)q for or x in(0,1) then one spectrum set o pn(g)can determine g(x)
uniquely; later , in 1974, a discretized version of the following theorem was also
proved by him; he showed that the eigenvalues of an irreducible persymmetric
Jacobi matrix

(ie,a,=a,,b,=b,,a,=a,,,b,=b,,,.) determine this matrix uniquely with the
requirement b; = 0 for i= 1,2,........... n-1 until 1978, Hochstadt and
liberman[172]proved that.

Theorem(3.2.1)[163] let g(x)=q(x) be two summable functions in(0,1).Suppose
that q(x)=q(x) for all x €(1/2,1) and onn(q) = onu(T) then g (x) = q (1-X)
almost everywhere in (0,1).

They named the pair (q (x))@12), onn(q) with the term™ mixed data, Afterwards,
Hochstardt [173] immediately proved that

Theorem (3.2.2)[163] Let J,[a,,a,.... a,;b,,b, ... b, ;] b€ @ Jacobi matrix with b; =
Ofori=1,2,........ ,nN-1 suppose we are given its n distinct eigenvalues 1,,1,,,... 4,
as well as the n-1 entries ay, ay,........... a2y b1,b2, i b[(n ~1/2)] then these

data determine a unique Jacobi matrix.

So far, most of the theorems are concerned with the , uniqueness, there are
not many papers that discuss the existence of the inverse eigenvalue problems, In
1984, Deift and Nanda[166] provided sufficient conditions for the solvability of
theorem (3.2.1) they also gave a description for the solution set. Finally ,I have to
mention one more result.

Theorem (3.2.2)[163] fix c,d & Rwith ¢< d and qe L' ((c,d)) real —value let

2

S(c,d;q)denote the set of eigenvalues - ;j—2+q on L?((c,d)) with the boundary
X

conditions u( ¢) = u(d)= 0. Suppose qi,0.€ L*((0,1) are real —valued and there is
some ac(0,1) so that
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() s(059,)=5(0.%4,),5(0,2;9,)=5(0,2;9,)and s(at;q,)=S(aLq,)
(i1) the sets s(0,1;q,) S(0,a;q,)and s(aJ;q, )are pairwisely dis joint.
Then g;=qya.e. on ( 0,1). In particular, if a = 1/2 the condition(ii) can be dropped.

This section was partially motivated by Theorems (3.2.1)and(3.2.3).We stady some
inverse problems for Jacobi matrices. We give a brief introduction, some
preliminary results.

We will review some connections among continued fractions, Mobius transforms
and Jacobi matrices that play core roles for our main theorems, The readers who
are interested in this topic may refer to[174]

Let ({a,}”,and {b,}”, be tow sequences of intigeres with a, € z, a; > 0, and b; >
0 for I = 1. Denote

Boge— B
n 2
& + b,
a, +
.+a +b7n
n-1 an
b, b b
=g, +— —& — (61)
a +a,+..+a,
For example,
Po_ao
Qo ’
ﬂ:aoJrE:aoaﬁbl
Ql a'1 a'1
i—q+ b, :az(a1ao+b2)+bzao
QZ ’ a1+b72 a1a2+b2
a‘Z

On the other hand, we denote
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Z 1 0
a.z+1 a, 1
T.(z2)=—"2 =
() b,z (1 OJ
then
z b
T, oT.(z)=a, + =a L
oo Thlz)=2y az+l ° a+z
b,
TooTl(Z)oTz(Z)z a, +
b,z
1+
a,z+1
= a, + by
a, + b,
! 1
a2+E
Hence we have
. P, . R
lim T, oT,(z)eT,(z)==— and lim T, o T,(z)o T,(z)= =
250 Q, 250 Q
In general, we have
P, .
L =lim T, o T,....T, (2), (62)
Q, =
I:)n—l .
=lim T, o T,...T, (z), (63)
Q,, =
Hence
P P
Ty oT o T(z):=|" " (64)
( ) [Qn qnlj
1 1
=[% S L) (& (65)
1 0/lb, © b, 0
Note that
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P, P, (& 1l)(a, 1 a, 1
Q, d.) (1 0Jlb, 0)7"(b, 0

— Pn—l Pn—Z an 1
o el o &

holds with the initial conditions

{PO =2a,, P,=1 (67)
Q, =1 Q-1=0,
that is,
{ PK =ayg Pk—l + bk PK—Z’ (68)
QK = aka—l + kaK—Z'

The readers can refer to[174] for more details.Conversely, if we have the pair
(Pn, Po-1)( OF the pair(P,,q,)), then we can reconstruct {a, };_, and {,}"  from p,

k=1
andpn.1 by
I:)n an I:)n—l + bn Pn—Z bn
= =a, +
n-1 I:)n—l Pn—l
Pn—Z
b
=a, + " 5 (69)
a, , + n-1
.+
2
a‘0
Let J, denote an irreducible Jacobi matrix J [a,,a,,,...a ;b b,,...b, ], 1.. by # 0

fori=1,....,n-1,and

denote the (k -j + 1) X (k — j + 1) principal minor submatrix of J Rr(x the
characteristic polynomial of J,, andP,,(x) the characteristic polynomial of J ,
then we have

P.(x)=(x-ak)P ,(x)-bZ,P_,(x)  k=23..,n, (70)

with P, (x)=x-a, and p,(x)=1, similarly,
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P, (x)=(x=a,)Pe1n(x)-b2,P,(x)  k=1..,n-L1 (71)

with P, (x)=x-a,and P, (x)=1By the recursive relation (84), formally, we can
reconstruct J, from p (x)and P, ,(x) or(P,(x)and P, (x)Moreover, if we denote
Q, (x)the solution of(84) with initial condition @, =1, @, = 0. Then we have

aw oo al (o) 2

Comparing with ( 61) — ( 68), we can build one corresponding relation between
Jacobi matrices and products of 2 x 2 nonsingular matrices, more precisely , we
denote

Xx-a, 1l)(x-a, 1 x—a, 1
J.[a,,a, . a, ;b by, bnl];[ 11 OJ[—bzz Oj””[—bz Oj (73)
1 n-1

One important result for the inverse problems of Jacobi matrices is the
uniqueness theorem which is stated as follows:

Theorem (3.2.4)[163] (Hochstated [ 170]). For two given real sequences {4},

( the eigenvalues of J_ ) and {ﬂ,— }Ti (the eigenvalues of J,, , with
ML LA, i=12,...,n-1
Then {4,}]_,determine 3, =3 [a,,a,.,.. a,;b,,b,,... b, Juniquely if we require
b>0fori=1,......... n-1.

In other words, p,(x)and P, (x) (or (Q,(x)) determine a Jacobi matrix with

positive off- diagonals uniquely. The readers can refer to [169] for more complete
comprehension. Next, the author is going to provide an example to show how
Theorem (3.2.4) and( 74) work for the inverse problems of Jacobi matrices.

Theorem( 3.2.5)[163] (Hochstadt [173]). Lety =J,[a,,a,,.. a,;b;, b, ... b, ] DE @

Jacobi matrix with all a;,b; real and b; positive. Suppose we are given n distinct real
eigenvalues ; 1 2. as well the n—1 entries a,,a,,....., ap,,,),by,b, eeenr, by, 4, theN

these data determine a unique Jacobi matrix.

Proof. We may treat the case for n beign even, the argument for n being odd is
similar. Let n= 2k, k € N. suppose that there are two Jacobi matrix
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J, = ‘]2k[a1’a21 ----- ak'ak+1;b1'b21 ----- bk 1'bk ----- b2k—1]

and

J, =, lal,aﬂ,...,ak,akﬂ;bl,bﬂ,...,bkfl,bk,...,bZHJ

Which satisfy the assumptions. Then we can write

]2 x—a, 1)(x-a, 1 x-a, 1l)(x-a, 1 X—a, 1
L1 oJl-b* o) -b2, 0Jl -bZ 0)7(-b:, O
— Pk (X) Pkfl (X) 1 0 X—8,, 1} [X — 8y 1}

Qk(x) Qk—l(x) 0 _bk2 _bk2+1 0 a _bzzk—l 0

_(P() PL()Y(1 0 ) (Resn(X) PM,M(X)j
Quizn(®) Quizns(¥)

O
=~
—_
>
—
O
=~
iR
—_
>
~
o
|
O
~ N

_[ P2k (X) I:)2k71 (X)
Qu(x) Qua(x)

Similary,

3. Xx—a, 1l)(x-a, 1 x—a, 1)(x-a, 1 X—a, 1
L1 0Jl-pr o) -bz, o)l -b2 0)\-b%, O

30 &6 )G &)

P, (x)= P (X)Pk+2 (X)_ bk2 P, (X)Qk+2,n (X)

~ ~

IS2k (x)=P, (X)Pk+2 (X) -b’P., (X)6k+2,n (X)

By the assumption P, (x)= P, (x) we have

~

Pk (X)[Pk+2,n (X) - Pk+2,n (X)] = Pk—l (X)lblka+2,N (X) - 6k26k+2,n (X)J
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Note that the zeros of p, (x) and p,_,(x) are interlacing and that deg [bQ,.,(x)
-b2Q,,,,(x)] n-k-2=k-2 We conclude that

bl<2Qk+2,N (X) + 6-kzékﬁ-z,n (X)

Moreover, bothq,_,,(x) and Q,.,(x)are monic and b, and b, are positive,hence

bk - 6k ! Qk+2,N (X) = 6k+2,N (X) and I:)k+2,n (X) ): §<+2,n (X) thls Implles that ‘Jk+2,n = 3k+2,n ’and

a,,, = trace J —trace Jyx — — trace Jy o == 3, ,ie

We are going to use( 87) to investigate some inverse problem for Jacobi matrices,
including existence and uniqueness.The next theorem concerns uniqueness of a
mixed data problem.

Theorem(3.2.6)[163]. Denote

and

with b; > 0, b; > 0 >for i=1,2,...,n-1for two given natural numbers 0 < m; <
m,< n .Suppose that

(i) J,+2n=J,+2ndwhere J and J,are as defined.

(i) b,,+1=b, +1. Note that if m+1 = m, = n, this condition can be
dropped.
(i) o (3,,)=0 I,y forj=12

Then J, =7,

proof. For the case m, = m; +1, the theorem follows directly from
theorem(3.2.4) hence we may assume that m,=> m; + 2. We write

x—a, 1)(x-a, 1 x—a, 1
= " 74
. _[ 1 OJ[ _b12 Oj [_brfl Oj ( )
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(30 20 5

and

(Isk(x) Isk_l(x)J:[X—ﬁl lJ [x—éi2 1} [x—é‘k 1}

Qk(x) Qk—l(x) 1 0 _b12 0)" _bszl 0
where P, (x) Q, (x)), P.(x)and Q, (x)are is defined.Actually, p, (x)is characteristic
polynomial of J,,, P, (x)is the characteristic polynomial of j,x and P, (x)) is the

characteristic polynomial of J,,, let.

A el (W R G B
and
LI e B el
with
I el E
Since

<Pm1+1(x) Pml(x)> <Am1+2,m2(x) Bm1+2,m2(x)>

Qm1+1(x) Pml(x) Cm1+2,m2(x) Dm1+2,m2(x)

Qm, (x) Qm2—1(x) B
We have

<Pm2(x) sz—l(x)> .

sz (x) = Pm1+1(x) Am1+2,m2 (x) + (x)Cm1+2,m2(x) (77)

Similarly,
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Prn, (%) = Pro 41(x) A 42.m, (%) + (€) iy 42.m, (%) (78)
By our assumptions, we have

<Am1+21m2(x) Bm1+21m2(x)>_<A:m1+2,m2(x) Em1+2,m2(x)>

Cm1+2,m2 (x) Dm1+2,m2 (x) Cm1+2,m2 (x) 5m1+2,m2 (X)

Pn,(x)= Py (x)and_B, (x) = B, (x)hence P, 41(x) = P, 11(x) Hence,by
Theorem(3.2.4). Jim _ Jima With assumption(i) again, Io = J,.

By similar arguments, we have the conditions of existence for Theorem (3.2.5).

corollary(3.2.7)[163]. Let myand mybe tow natural numbers with 0<m; <m, <
n,and [u; < u<... um] and [34 <Ao< < A.,be two sequences of real

numbers corresponding to m; and m,, respectively. For a given (n-m-1)x(n-m;-1)
Jacobi matrix

T = ‘]n—ml—ll_aml+2 """ an;bml+2 """ bn—lJ’

<Am1+2,n(x) Bm1+2,n(x)>

Cm1+2,n(x) Dm1+2,n(x)
_(x—am42 L\ [(x—ap4s 1 <x -a, 1)
“\ =bhy OJ\ —bh, 0)7\=bpy O
Suppose that
(1) Q(x) is ammonic polynomial of degree m;+1.

(if)The zeros of Q(x)are all real and simple ,say{ B < im,,, }:Which are

interlacing with the set { Hoo < im, J-

Then we can reconstruct a unique n  n Jacobi matrix o with positive off-diagonal
elements such that o (Jl~ml) ={ y<py<an<u,})= {2 An2 Y and =T.

my 4

Proof. Since J, ,, the (m;+1,m;+2) entry of J, are pre-determent, it is sufficient to
determine, J, . Suppose such a Jacobi matrix exists, denoted by

n

then
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(x—a; L\(x—ay 1y (x—am, 1
»]1,m2 :( 1 1 O) ( _blz O)...(_brznz_l O)
<Pm1+1(x) sz (x) ) <Am1+2,m2(x) Bm1+2,m2(x)>
Qm1+1(x) Qm-1(x) Cm1+2,m2(x) Dm1+2,m2(x)

Since

<Am1+2,m2 (x) Bm1+2,m2 (x)>

Cm1+2,m2 (x) Dm1+2,m2 (x)

Is pre- determined,
Pm1+1(x)(x) — {H:Yizl(x - .ui) - [H:le(x - .ui)] Cm1+2,m2 (x)/Am1+2,m2 (x)}

Hence if P, 4 (x)satisfies assumption(i) and (ii), we can reconstruct J,,, ,1(x)),
henceforth, J_ (x) could be reconstructed as required.

Example(3.2.8)[163] There does not exist a 4 x 4 irreducible Jacobi matrix J= Js[
a1,82,83,84: b1,b2,b3] witha (J12) = {2,4},0 (J) ={1,3,5,6}, bz =1 and a; =2. Since in
this case, As4(x) =-1, hence

Q (x) =[(x-1) (x-3)( x-5)( x-6) = (x-2)( x-4)(-1))/ (x-2)

_ x* —15x® + 78x* —159x + 98
X—2

cannot be reduced to a polynomial.

Example(3.2.9)[163]. Reconstruct a 4 x4 Jacobi matrix J; = J4[ay, a, as, as: by, by,
bs] with 6(J12) = {1,3},0(js) = { 1-V3, 1, 1+V3,4}, jsa = Jo[2,1:2] and b; O, | =
1,2,3.

Solution. Letfy; = 4 and
Q(x) =[ (x* 2x-2)( x-1)( x-4)- (x-1)( x-3)(-4))/( x-2)
= x> -6x>+10x +4.

Then the zeros of Q(x) are 2- v2,2 and 2+ +/2, more over we have

Q)  _ . 1
(x—1)(x-3) x—2—— "




Hence, we can take
Js=04[2,2,2,1:1,1,2].

With the same techniques given above, we will provide an alternative approach to
the existence theorem for an inverse Jacobi matrix problem which was promoted

by Deift and Nanda see[166] let 5, be an n  n Jacobi matrix with positive off-

diagonals (3, is uniquely determined by o (3,) = s, and 6(Jyn_1) (= S3), the
question is, under what conditions can J_ be completed to a 2n x2n Jacobi matrix
J,, with apre- given spectral set o (J3,,) = $1?

Lemma(3.2.10)[163]. let s; ={A;,145,A3,.., A5, 1,52 = { u1, 2, ... \npand s3={ v,,
Vay s Vs )

Be three sets of real numbers with

U< Hy <Az <Ay<pi, <Ay<iAana<dy < Ho<han (79)
and
U< Vo<py<eeer Sl V< Hyyy < eee<y <My (80)
Denote
P, (0= TT50=24) P (0= T}, = ) Py (=TT L (X -v1)
C..100(x) be a polynomial with deg C,.,,,(x) <n-1with
Coaon (18:)= Py, (1)1 P, (1), fori=12,...,n,and
Then

An+l,2n(x): |_P2n(x)_ Pn—l(X)Cn+l,2n /P, (X)

(i) C,..,.(x) is @ polynomial of degree n-1 with negative

leading coefficient.
(i) A,..,.(x)is @ monic polynomial of degree n.
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P (,Ui )PZn (,Ui+1)

Proof. By the assumption, we have —=" <0, hence c,.,,,(x)has a zero
n—1(:ui) n—1(lui+1)

in( py, pw +1) for i= 1,2,3,...,n. since cC,,,.(x)is a polynomial with deg cC.,,.(x)<
n-1 and P, (u,)/ P, (u,)< O,we conclude assertion(i). to show assertion(ii), we
observe that

Pzn(fui) B Pn—l(tui) Chrisn (:ui )= P, (1, ) - Pn—l(lui) sz_nl((ﬂi-)) =0

= Pn(tui)

and deg[ P, (x)- P, ,(x)C,....(x)]= 2n and deg P, (x)) =n. These lead to assertion(ii ).

Corollary (3.2.11)[163]. let $;,5,,S3, P,,(x), P, ,(x) Ans1.2n(X) and c,,,,,(x) be as
given in Lemma (3.2.10) we denote by- a’ the leading coefficient of Coiaan(X)
.suppose the zeros ( ty, t,,...,tyq) of C, .., (x)are interlacing with the zeros{ si,s,,...,

Sn} Of Ani12n(X) (i e, si <ti<si+1, fori =1,2,...,n —1)are interlacing. Then An.12n(X) and
(/- &?)Cy120(x) determine a Jacobi matrix

3, =3.a.4,..3,:b,...b,

with positive off —diagonal elements suth that the characteristic polynomial of J,
IS An+1.2n(X) and the characteristic polynomial of

30 =3,]8,8,08 1 0p0,D, 4
IS (1/_a2)cn+l,2n (X)

Theorem(3.2.12)[163]. neN .let s1,5,,53 and P, (x)be as given in Lemma(3.2.10)
SuppOse that J, =J,[a,,a,...a,;b,,...b, ,]Jbe an nxn Irreducible Jacobi matrix with
b>0 fori=1,2,..,n-1,5(3,)

P(x) P_,(x))_  (x-a 1)(x-a, 1) (x-a, 1
Q(x) Qu(x)) "L-b7 0oJ{ b7 0) (-bi, 0
C..100(x) Is the unique polynomial of degree n-1 with
Cn+l,2n (,Ui )= PZn(lui)/Pn—l (lui )O (81)

fori=1,2,3,...,n,

An+l,2n(x)= |_P2n(X)— Pn—l(X)Cn+l,2n /P, (X) (82)
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Suppose zeros of A ,,.(x) are interlacing with the zeros of c,,,.(x) ,J can be
completed to a2nx2n Jacobi matrix J,, with

o (3, )= Parkaree

Proof. By the assumption and corollary (3.2.11).we can reconstruct an nxn Jacopi
matrixJ = J,[3,,3,.... ;0,00 ; by A,.,.(x) and L/ @?)Cyu1zn (x)0.We may writ

X—ay, 1) (x- Ani2 1 X—as 1 (83)
1 0 - brirl 0 - b22n—1 0

An+1,2n (X) Bn+1,2n (X)
-1l o 2Cn+1,2n (X) Dn+1,2n (X)

)
12

Henes
1 1 X—ay, 1l)(x-a,, 1 X—a, 1
1 —a? 1 o)l -b2, o) l-b2, 0
_ X—ay, 1 X—ap,, 1 X—a,, 1
~a’ 0 _brirl 0) _bZZn—l 0
[AHI,Zn(X) Bn+1,2n(x) j
Cn+1,2n (X) _aanJrl,Zn(X)
Moreover

(0 )= (e )

_(x-a 1l)(x-a, 1 x—a, 1) (Xx-ay, 1)(x-a,, 1 X—a, 1

L1 oJl-b* o) \-b2, 0o/ —a® O0J{ -b%, 0) (-b2, O
Pox (X) P, (X)Bn+l,2n (X) -a’ P (X)Dn+1,2n (X)

Qn (X)An+1,2n (X) + Qn—l (X)Cn+1,2n (X) QN (X)Bn+1,2n (X) -—Qa an—l (X)Dn+1,2n (X)

= Joy |_aml+2 ----- PV PR IVIERYC N JNPRI bZn-1_|E Jon s

Thorem(3.2.14)[163]. let
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and

denote tow Jacobe matrices with b; > 0,b; > 0. for i=1,2,,n-1. Suppose that

a(d)= G(J )

G(Jl,k ): G(Jl,k ) and G(J kez.n ): G(J oy ) for some 1<k<n2keN.

~

o(3)=000Jand(e3, 2, ) e pairwisely disjoint.
Then J=

~

Proof. It is sufficient show that G(JL”-l):G(JL”-l).We write
x-a, l)(x-a, 1 X—ag,, 1) (x—-a, 1
1 oJl -b2 o) -p2 o) |-b2, O
_[ PK+1(X) I:)K (X)j [X - aK+1 1} [X - a'N 1}
QK+1(X) QK(X) _b|i+1 0 _blsl—l 0
N1 1 X-ac,, 1)(x-a, 1
0 -b2, )l 1 ofl-b, o0

(e )

J

I

Pea(X) Pl

0 - bi+l
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Hence

B Pn (X)Pk+2,n—1 (X) + Pn—l (X)Pk+2,n (X)

P.(x)= :
k b? D¢ 5--02 s (84)

|5 (X) T IE;n (X)ISk+2,n—1 (X) + ISn—l (X)Isk+2,n (X)
k - ~5 ~ y
T ®)

Since P,(x)=P,(x), P (x)= ﬁ,k (x)andR,.,,(x)= P, (x), wehave

Pn (X) l: Pk+2,n—1 (X) _ E;Z n .1..( )] _ Pk+2,n (X) l: Pn71 (X) (Xz)

bZ,..b2, b? by by bk2+1 6

Note that deg,we f”l(xz) (.).( )
ShPRE bk2+1 by,
<n-2and thatP, ,(x)andP, ,(x)are both

moinc , by assumption (i )we obtain p_ (x)= P, ,(x) This completes the proof.
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Chapter 4
Completely Nonunitary Contractions with Rank One Defect Operator

It shown that another functional model for contractions with rank one defect
operators takes the form of the compression f({) = p,({f(¢)) on the Hilbert
space L(T,du) with a prodbabilty measure p onto the subspace K = L?(T, du)®cC.
The relationship between characteristic functions of sub-matrices of the truncated
CMYV matrix with rank one defect operators and the corresponding Schur iterates is
established. We develop direct and inverse spectral analysis for finite and semi-
infinite truncated CMV matrices. In particular, we study the problem of
reconstruction of such matrices from their spectrum or the mixed.

Sec(4.1) Rank One Defects Operator and Corresponding is Unitarily
Colligations

It is well known [176] that every self- adjoint or unitary operator with a
simple spectrum acting on some separable Hilbert space is unitarily equivalent to
the operator of multiplication by the independent variable on the Hilbert space
L*(R,du) or L(T,du) respectively, where du is a probability measure on the real
line R or on the until circle T :{gec:|§|=1}_The matrix representation of self —

adjoint operators with sample spectrum was established for the first time by
stone[176] , He proved that every self- adjoin operator with a simple spectrum is
unitarily equivalent to certain Jacobi ( tri- diagonal) matrix of form

(1)

where a;, > 0, and b, are real numbers for all k € N.The non-self-adjoint version
of the Stone theorem has been recently obtained in [178] for dissipative non-self-
adjoint operators with rank one imaginary part. It turned out that the matrix
representation of such operators is a non-self-adjoint Jacobi matrix of the form (1)
with only nonreal first entry b, satisfying Imb; > 0.

The problem of the canonical matrix representation of a unitary operator with a
simple spectrum has been recently solved by M. Cantero, L. Moral and L.
Velazquez in [188].

They introduced and studied five-diagonal unitary matrices of the form

106



a, apo  ppo 0 0
po —ae, Py 0 0
C= annD: 0 ap -0 ap, P3P,
0 PPy — Py~ P3P, - (2)
0 0 0 a,p,  — o0,

Such matrix appears as a matrix representation of the unitary operator

UFXE)=¢f(¢) in (T, du)with respect to the orthonormal system { x n} obtained
by orthonormalization of the sequence

{1,¢c %)
The so called Schur parameters or Verblunsky coefficients { an}, | an| < 1, arise
in the Szeg”o recurrence formula

(Pn(@ = Pnt1(Q +a3"P, (170, n=01,..

for monic orthogonal with respect to du polynomials {®,}, and p, == 1—|an|2 ‘The

matrices ({&®,})are called the CMV matrices. The spectral analysis of unitary CMV
matrices has recently attracted much attention, and we refer on this matter to the
[188,189,197,198,213-215] .

As pointed out by Simon in a recent section[215], the actual history of CMV
matrices is more involved as it started in 1991 with Bunse-Gerstner and Elsner
[187], and then with Watkins in 1993 [215], before Cantero, Moral, and Veldzquez
(CMV) re-discovered them in 2003. In a context different from orthogonal
polynomials on the unit circle, Bourget, Howland, and Joye [183] introduced
a set of doubly infinite matrices with three sets of parameters which for special

choices of the parameters reduces to two-sided CMV matrices on EZ(Z)_

The spectral theory of non-self-adjoint and nonunitary operators and their
models is based on the concept of characteristic function of the corresponding
operator or the operator colligation[180,185,186,203-210,216].

In this section we employ the Sz.-Nagy-Foias theory [216], and the Brodski -
LivSic unitary colligations approach [185] to the spectral analysis of contractions
acting on Hilbert spaces. The corresponding characteristic function belongs to the
Schur class of operator-valued functions holomorphic in the open unit disk D. By
Sz.-Nagy-Foias theorem [216] each completely nonunitary contraction T with rank
one defect operators D, =(1-T*T)*> and D,.=(@1-TT*)"’

(shortly, with rank one defects) is unitarily equivalent to the operator (functional
model) of the form
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9o = (H2 @ closAL?(T)) © {6u @ Au:u € H?}

f 2 2 '~
=14 1 f eH?.g eclosAL*(T).p,,.(®f +Ag) =0

Bl =rlg)  m()=("57)G)es

where H? is the Hardy space.
©=0;(2)=(-T +2D,.(- 2T *)*D; |0,
is the characteristics function ofr A> =1-jef, p_, is the orthogonal projection

onto H?in L*(T), and pg_ is the orthogonal projection onto the model space $e.

We obtain a new functional model that complements the above mentioned Sz.-

Nage- Foias functional model, and show that every completely nonunitary

contraction T with rank one defects is unitarily equivalent to the compression
f(¢)— p(&F(£))on the Hilbert space L2(T,du) with a probability measure » onto

subspace K = L2(T,dp) © C
We study the so called truncated CMV matrix T obtained from the “full’"CMV

matrix C =C({e, }) (82)by deleting the first row and first column.

o, po, 0 0

T-= T({Otn }) _ &2 P &Zal &ipz P; P,
PP — Py —aa, — P,

In the semi- infinite case T takes on the block- matrix from

B, CC 0 0 O..
T_|A B C 0 0.
|0 A B, C, O..

It turned out that the truncated CMV matrix T®) ({a,}) is a contraction with
rank one defects and the Sz.- Nagy- Foias characteristic function agrees with the
Schur function which has {a} as its Schur parameters.Moreover, we show that the

sub- matrix T ({a,}) obtained from T ({a,}) by deleting the first k rows and
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columns is also a contraction with rank one defects, and characteristics function
agrees with the well- known kth Schur iterate.

fi(2) = S @)t fo(2)

z(1—ap_1)fr-1(2)
This relation is an analog of the corresponding relation between the m- function
of a Jacobi matrix and the m- function of its sub- matrix [298].

Our main result states that an arbitrary completely nonunitary contraction T with
rank one defects unitarily equivalent to any operator from the one- parameter

family T(]e“an),where la,} are the Schur parameters of the SZ- Nagy- Foias

characteristic function of T. We develop direct and inverse spectral analysis finite
and semi- infinite truncated CMV matrices.

It is shown that given an arbitrary set of N not necessarily distinct numbers
from D there is a one- parameter family of unitarity equivalent N x N truncated
CMV matrices having those numbers as the eigen values counting algebraic
multiplicity. We prove the uniqueness of N x N truncated CMV matrix T with

given not necessary distinct eigenvalues z....z, , and given first N-r+1 Schur
parameters o, (T)...a,_(T) This result on inverse spectral analysis of finite

truncated CMV matrices is an analog of the Hochstadi [302] and Gesztesy- Simon
[298] uniqueness Theorem for finite self-adjoint Jacobe matrices as well as for
established in[178] uniqueness theorem for finite non-self-adjiont jacobi matrices
with rank one imaginary part. We obtain the existence of NxN truncated CMV

matrix T when its eigenvalues % and the last Schur parameters «,,(T)....a,(T)
are known.

Here is a summary of the rest of the section. We discuss some basics from the
Sz.- Nagy-Foias theory and the unitary colligations with the focus upon the
characteristics function and its properties, we provides a brief overview of the
theory of orthogonal polynomials on the unit circle and CMV matrices. The main
results concerning truncated CMV matrices and the models of completely
nonuitariy contractions with rank one defects are presented ,the inverse spectral
analysis for truncated CMV matrices .

Let H be a separable Hilbert space with the inner product (.,.) Abounded linear

operator T in H is called a contraction if [TI<1 (for the basic properties of
contractions see[217] ),if T is a contraction then the operators.
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D, =(1-T*T}? D.=@-TT*"
are called the defect operators of T or, shortly, defects and the subspaces
D, =ranD,, D,. =ranD;.the defect subspaces of T . The dimensions dim D, ,dim D..
are known as defect numbers of T. Given a Pair of numbers n,n*=01,...0 it is
easy to construct a contraction with n=dim D,.,n*=dim D,,Eash contraction T
acting on a finite. dimensional Hilbert space has equal defect numbers n=n=*
The defect operators satisfy the following intertwining relations.

TD, =D;.T,T*D;. =D, T* (3)

and the block- operators
[—T* DTJ'(DT*J (@TJ (—T DT*J'(DTJ (SDT*J
. —> ) . —>
D. T H H D, T*)(H H

are unitary operators in the corresponding orthogonal sums of the spaces it follows
from(3) that

C DT D € Dy and T(kerDy) = kerDy+, T* (kerDp+ = kerDy: Moreover
T I'kerDy and T* I kerDr-are isometric operators. It follows that T is a quasi-
unitary extension [204] of the isometric operator V =T I kerDy

A contraction T is called completely nonuitary if there is no nontrivial reducing
subspace of T, on which T generates a unitary operator. One of the fundamental
results of the contractions theory[217]reads that, given a contraction T in H, these
Is acanonical orthogonal decomposition

H=H, ®H, T=T,®T,T =Tt H, J =01

where Hy and H; reduce T,T, is a completely nonuitary contraction and Tiis a
unitary operator. Moreover,

H, :[ﬂ ker DTn)ﬂ[ﬂ Ker DT*n)
n>1 nx1 ’

SO

T is completely nounitary

@(ﬂ ker DTnjﬂ(ﬂ ker DT*n)={0} (4)

nx1 nx1
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Clearly

NkerD,, :Hespan{'l'*”DTH,n:O,l ..... } (5)

nx1

MkerD,., = HHspan{I’”DT*H,n =01,.... }

nx1

Let V be an isometry in H.A subspace Qin H is called wandering for V if
rvPQ L ViQforallp.q € Z,,p # q.SinceV is an isometry, the latter is equivalent
to V'QLQ for all neNif H=9_V"Qthen V is called a unilateral shift and @ is
called the generating subspace. The dimension of Qis called the multiplicity of the
unilateral shift V. It is well known [216] that V is a unilateral shift if and only if

o V'H :{0}. Clearly, if an isometry V is the unilateral shift in H,B then Q =
H © VH is the generating subspace forV.

Given a contraction T in H and asubspace $ c H, the unilateral shift V.9 — $ is

said to be contained in T if $ is invariant forT, and.The subspaces (1= K& Dr+ ang

Mot KeTDr are invariant for T and T* respectively, and the operators V. T T

Nps1 KerDpn and Vo« T* T N5 kerDp+nare unilateral shift Moreover VrandVy-are
the maximal unilateral shifts contained in T and The multiplicities of the shifts

Vr and V- do exceed the defect numbers dim®Dr-anddim®D,respectively [192] if
T is a completely nonunitary contraction with rank one
defects.then(see[190],[192]).

Tdoes not contain the unilateral shift
< T * Does not contain the unilateral shift
© NkerD,, = o} o NkerDy., = {0} (6)
The function[217].
©;(2)=(~T +2D.(L- 2T *)*D; |
iIs known as the characteristic function of the Sz- Nager- Foias type of a

contraction T. This function belong to the Schur class S(Pr.Dr.)of L(D;D;.) -valued
holomorphic in the unit disk D operator- functions, i.e., [®,(0)f|<]f| for all

f e D; \{0} The characteristic function of T and T* are connected by the relation
0..2)=0;(z) zeD
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Two operator- valued functions @, e S(m,,n,)and ®, € S(m,,n,) are said to agree if
there are two unitary operator v :n, — n,and w : m, — m,such that

Vo,z)W=0,z) zeb

It is well known[217] that two completely nonunitary contractions T,and T,are
unitarily equivalent if and only if their characteristic functions®r, and ©r, agree.

Every operator- valued function @ from the Schur class s(m,n) has almost
everywhere nontangential strong limit values (¢),¢ T - A function e € 5(m,n) is

called inner if e*(¢)o(¢)=1m for a.e.,, £ T . A function ® e S(m,n) is called bi-

inner, if it is both inner and co- inner. A contraction T on a Hilbert space$ belong
to the classes CO.(C.0),if

s—1imT"=0 (s—limT*”:O)

n—oo n—oo

respectively. By definitionCy, :== C, NC,. The completely nonunitary part of a
contraction T belong to the class C,,C,or C,,if and only its characteristics function

©, (z) Is inner. or bi- inner,respectively[217].

In the following statement[217] the spectrum of completely nonuitary contraction
Is described.

Theorem (4.1.1)[175]: letT be a completely nonunitary contraction onH. Denote
by s, the set of points zeD for which the operator ©.(z)is not boundedly
invertible, together with those z<T not lying on any of the open arcs of T on
which @, is a unitary operator valued analytic function.Furthermore, denote by S?
the set of points ze D for which e, (z)is not invertible at all. Then the spectrum
o(T)of T agrees with St,and the point spectrum o(T)with S?.

It T is completely nonunitary contraction with rank one defects, and if Zis an

eigenvalue of T, then the geometric multiplicity of z, is one, the algebraic
multiplicity is finite, and the characteristic function e, admits the following

factorization.

zk zk -z %
0:(0)= CHXl— zkz exp[ -0[

e +7z
_ du@ﬂ
e —z
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1 %fe*+72
— | = Ink(t)dt
o] L5 ke
where |c|=1k(t) > 0.Ink(t) € L[0,2] is a finite nonnegative measure singular with
respect to the Lebesgue measure, and {zk}are the eignvalues of T.In addition, if

dimH =N <o and T is a completely noninitary contraction in H with defects, then
its characteristic function is the linite Blaschhke product of order N of the form

m

o= |(F=2)"

k=1

where z,,.....z, are distinct eigenvalues of Twith the algebraic multiplicityies
A+, +1_respectively I +........ +1,=N, and ¢ <[0,2z] Hence a finite- dimensional

completely nonunitary contractionT with rank one defects belongs to the class C,,

’Tn

contractionT with rank one defects agrees with D ifand only if e, =0

and lim =0it is easily seen from Theorem(4.1.1). that the point spectrum of a

n—oo

Every contractionT acting on Hilbert space H can be included into the unitary
operator colligation[11]1

a={(2 3)im o H}

where mand n are separable Hilbert spaces and

_ (S GY./Mm N
U= {(F T)'(H) - (H)}
Is a unitary operator.T is called the basic operator of the unitary colligation A. The

spaces It and 9t are called the left outer space and right outer space, respesctively.
The unitarly of means

or equivalently,
T*T +G*Gl, F*F+S*S=ImT*F+G*S=0 (7)
TT*+FF*=1,GG +SS*=1n TG *+FS*=0
The colligation
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_{(~T" Dr.
A= {< Dy T ) O D H}’ )
provides an example of the unitary colligation with give basic operatorT
_((S Gy. : . : :
Leta= {(F T) I, 0, H},be a unitary colligation. Define the following subspaces
inH

{T'FM,n =01, ..}, H = span

—_ *N A * —_ (0) =
span{T"G*R",n=0/1,..} H (9)

The subspaces H and H® are called the controllable and the observable
subspaces, respectively. Let

(HOY =HOHO(HO) :==(HO) = HOH© (10)

i N i i i S (0)
A unitary colligation A is called prime if H®+H =H . Clearly, the latter
condition is equivalent to

(HO) NHO) = o}
From(7) and (10) we get

(H®) = N ker(FT™)= N ker(D..T™)= N ker(D, .,)

n=0 n=0 n=0

(H®) = N ker(GT")= N ker(D,T")= ) ker(D,.) (11)

n=0 n=0

If follows now from (4) that the unitary colligation

a={(2 3)im o H}

is prime if and only if T is a completely nonunitary operator.

Given a unitary colligation

a={2 3)iman}

its characteristic functions? [286] is defined by

0,(z)=S+2G(1, -zT)*'F, zeD
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This function belong to the Schur class S(9, M) of L(IM, N) —valued holomorphic
in the unit disk D operator- functions. In particular, the characteristic function of
the unitray colligationA, (8)

0o(2) = (-T*+zDr(1 — zT) D) I Dy
Is in fact the Sz- Nagy- Fioas characteristic function of the operatorT*

Two prime unitary colligations

(S Gy S G\, _
A= {<Fl Tl) RURC Hl}a“d {<F2 Tz) RCRC HZ} A2=

Which have equal characteristic function are unitarily equivalent in the following
sense [286] there exists a unitary operator V :H; — H,Such that

VT,=TV, VFF, GV =G,

C>an S G) (S G} (In 0
o V)\FR T,) \F, T,) l0o Vv
Besides given® € S(M, N) ,there exists a prime unitary colligation

= (E Ymnn

such that ©®, =®in D [286].

Theorem(4.1.2)[175 ] Let T be a contraction with finite defect numbers acting on
Hilbert space H. Suppose that m and n are two given Hilbert space such that
dimN = dimOr,and dim M = dimO¢-. Then all unitary colligation with the
basic operator T and outer sunspaces 9t and 9t take the form.

-KT*M KD,
A= ‘m,n,H
D,;.M T

where K:D, -»nand M :m - D,, are unitary operators, The characteristic function
of Ais

(12)

0,(2)=K0O..(zM, zeD

l.e., ®, agrees with the characteristic function o,,0f T*
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proof. Let A:{(S Gj:m 0 H}be a unitary colligation. From the relation
F T o

G*G+T*T =1, it follows that
ot =[or 1. teH
Hence, the operator K: Ot — 9t defined by
KD, f =Gf, feH

is isometric, and ran K = 9t.Similarly, the relation FF *+TT*=1, yield than the
operator K: O~ — 9t given by the relation

ND,.f=F*f,  feH

Is isometric, and ran N = 9t soM = N*: 9t - O~ is unitary, and F =p,.M

From the relation T*F+G*S=0 we get T*D,.M +D,K*S=0 Hence by.
T*M +K*S=0 pgranM =D,. ranK =D;and TD,. c D, we have

S=KT*M
Observe also that

TG*+FS*=TD;K*-D1+*MM*TK =0

SS*+GG* = KT *MM *TK *+KD?K

= K(T*T +1-1T«Tk*=1n

S*S+F*F=M*TK*KT *M + M *D,,T
=M *(TT *+1-1TT*)M =1m
Thus, all conditions(7) are satisfied, i.e, the colligation ais of the form(12).

Conversely,if dim9t = dim O < oo, dimIt = dim O+ < oo, and k: O —
Jtand M:M—OT=* are unitary operators, then one can easily see that

5 T
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IS a unitary operator , i.e, the relation(7) are satisfied. It follows that

(3 oo

is a unitary colligation, where G-kp.,F=D,.M,S=-kT*M
For the characteristic function ©, we obtain for all ze D
0,(2)=S+2G(1-zt)'F
=—kT*M +zkD; (1 zT) ' D;.M = KO,.(z)M

Corollary(4.1.3)[175]:Let T be a contraction with finite defect numbers dimJt =
dimOr,and dim 9t = dimO+-. and let.

(3 oo

be a unitary colligation. Then all other unitary colligations with the operator T and
outer subspace m and n take the form

~ c.SC
A= 2% m n,H
FC, T

where ¢, and c, are unitary operators in nand m, respectively

Proof. by Theorem (4.12) we have

K:D;, F=D.M, S=KT*M

Where k : O —» Wt andM: 9t - O+ are unitary operators. If Z:{é ?J;m,n, H}

is some other unitary colligation then G = KDr,F = Dr.MS =-KT*Mwhere K:D. —m
and M:n—D., are unitary operators let C,:=KK* C,:=MM then c, and c, are
unitary operators in 9t nand 9t respectively, and

G=CG, F=FC, S=CSC,

as needed

117



Theorem (4.1.4)[175]. Each contraction T with rank one defects on the Hilbert
space H can be included into the unitary colligation

(3 e

Let] = (}) € C@H and let the subspace (H®) in H be defined by(10). Then
(HOY =(C®H)spanfu"T:n=01...}
(HO) =(C®H)spanfui:n=041.... (13)
And so the following conditions are equivalent:

(i) the unitary colligation =7 Teenlis primer;
(if) T is completely nonunitary contracting;

(iii) 1is the cyclic vector for U :quﬁu”i,nez}:(:@ H

All other unitary colligations with basic operatorT and the outer spacesC Care the

form
Z:{[CICZS CIGJ;C,C,H} (14)
c,F T
where [c|=[c,|=1

Proof. Since dimD, =dimD,,=1 by Theorem (4.1.2) we can choose unitary
colligation A:{[S Gj'c c H}of the form (12),i.e s=-KT *M,G =KD,.,F =D;.M and
F 1) '

K :ranD; - C,M :C — ranD,, are isometric operators. So, :(S GMCJ%(CJ is the
H

F 1) H

unitary operator

To prove (13), suppose that the vectorh= UJ e C @ H is orthogonal to the subsp

. - _ (0 :
span{u”1n=0,1,.....}. Then U™h 1,1,n=01......, S0 z=oandh=(hj.By using

. S * F *
U = ( G T *j . We get consequently
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F'h=0,FT"h=0FT"?h=0....FT*h=0,........

it follows from (11) that he(H©) Conversely, if he(H®) then

h Lspan{u"in=04,....}. Similarly, (H©) =(C ®H)(spanfu"1,n=01,....]) as

needed.

We arrive at the following conlusion:

1is a cyclic vectorfor U

=(HO) N(HO) ={o}

< The unitary colligation A:{(i ?);C,C,H}is prime

< The operator T is completely nonunitary.

By Corollary (4.1.3) all other unitary colligations with basic operatorT and the
outer subspace C are given by (14) with |c,]| = |c,| = 1.

Let us give more precise expressions for the operatorsF,G, and S Let
¢, € Dr, 9, € D;. put

¢1 = ¢z =

411’ 1®,1I

Then
Kh =b;(h,@,), he€ranDr,
M*g = b,(h,@,), g€ ranD,

where |b,|=|b,|=10bserve that Te, =-aup, and T *¢, = -ap, Where ¢, is a complex
number from p.It follows that

Do, =(1—|a0|2)<p1 Dr.¢, =(1—|a0|2)(p2

Let p, =1-|a,|" Since dim(ranD?)= dim(ranDZ.)=1 the number is a unique positive
eigenvalue of D, (D,.). Next,

Gh= bi(DThv¢1): bl(h' DT§01): blpo(hv%)

F*h= bg(DT*h1¢2)= bz(hv DT*%): b, po(h,goz)h eH
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Hence F, = p,b,ep, Since S = KT *M,we get
S, =-bb, (T *§021§01) = blbzézo

In the case dimH =N <« the operator T can be given by the NxN matrix with
respect to some orthonormal basic we can choose®, (respectively, ®,)as one the
nonzero columns of the matrix1-7 *T (1 TT *)in addition.

Trace(l- T*T)=Trace(1-TT*) = p;

Thus, if

[

@)

(2
()

I
S
=N

i)

then the column F takes the form

[

@s”

_ (2)
F=b,po| P2

i)

If
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[

i
(2)
@, = | P1
\p®/
then the row G take the form G:blp{(l) @ ‘(N)].Finally, the numbers S is
@ a .- a

given by G= blbz(T *(02’(01)

If dim H=N and T is a completely nonunitary contraction with rank one defects
then o, is a finite Blaschke product
Noz-7k

0,(z)=e"T]

k11— zkz

Where the numbers z,.......z, are the eigenvalues of T Since all other colligations are
of the form (14), for the characteristic function ©(z)we get
®;(2)=cc,0,(z)=¢"0,(z) zeDand te[0,27)

Let U be a unitary operator with a cyclic vector e, acting on the Hilbert space
H. The spectral measure . associated with U and e provides the relation

(F(U)e.e)= [ F(& )ul¢)

T

which the spectral Theorem for unitaries. For instance,
F(z)=(U +2)U-2) ee)= J%dy, 7eD (15)
Jo-

is the Caratheodory function(28) i.e.,F is holomorphic in the unit disc D. Re F >0
in D, and F(0)=1

Theorem (4.1.5)[175]:Let T be a completely nonunitary contraction with rank one
defects, A:{[S GJ:CC H} be the prime colligation, and e, be its characteristic
F T T

function_ Put
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F(z) = ((U +7)U-2z)"1 1) zeD (16)

N O [ A

_1F@®-1 F(z)l+ 20, (2)
z F(2)+1’ 1-120,(7)

0,(2)

,2eD (17)

Proof.We use the well- known schur- Frobenius formula for the inverse of block
operators(see[193,194]). Let $, and$, be two Hilbert spaces, and ® an operator in
510 H,.given by the block operator matrix

e oll)-le

Suppose thatD™* € L($,)and(A —BD™'C)~! € L(H,)Theng™* €
L($H:992, H1D92)and

oo K ~K*BD™
~-D'CK? D'+D’'CK'CK'BD™

where K = A-BD'C

Applying this formula for
[1—28 —zGJ [CJ [CJ
p=1-zU = : - eD
-zF 1-zT) \H H
we get K =1-2zS-2z°G(-zT)'F =1-20,(z) Therefore

;72 = D
1-120,(2)

(a-z0)11)=
Let

w(2)=(1+20)1-20) "1 1)0,
Clearly, the equality F(z)=y(z)holds which yield (17)

[191].1t is well recognized now that the , theory of orthogonal Polynomials on the
real plays an important role in the spectral theory of self- adjoint operators ( and
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close to such operators ) acting on Hilbert spaces. Likewise,the theory of
orthogonal polynomials on the unit circle ( OPUC ) appears in the same fashion in
the study of unitary operators and close to such operators. Here we recall some
rudiments and advances of the OPUC theory.

If #is a nontrivial probability measure on T ( that is , not supposed on a finite set
), the monic orthogonal polynomials ®,(z,1) are uniquely determined by

cpn(z)f[z—z jg'cp ¢)u=0, j=0l..n-1 (18)
j=1

so on the Hilbert space L*(T,du)(®,,®,)=0,nzm .We also consider the
orthonormal polynomials ¢, of the form ¢, /¢, |

In case when 4 is supported on a finite set, that is,
N
,uzzluké‘(ék)v CeeT, (19)
k=1
a finite number of orthogonal polynomials {®, )\, can be defined in the same

manner.

Clearly, (18) and the fact that the space of polynomials of degree at most n has
dimension n+1 imply

deg(P)=n, PL¢',j=01.....,n-1= P=c®, (20)

On L2(T,dy) the anti- unitary map f *(¢):=¢"f(¢) which depends on n) is naturally
defined. The set of polynomials of degree at most n is left invariant:

P(2)=2 P2’ (21)
j=0
(20) now implies
deg(P)<n, PLC), =Lt =P=cO; (22)

A key feature of the unit circle is that is that the multiplicationUf = zf in L*(T,du) is
a unitary operator, So the difference @, (z)-z®,(z)is of degree nand orthogonal
to z'for j=1.2....,n and by(22).

©,.4(2) = 20, (2) - &, ()07 (2) (23)
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with some complex numbers &, (u) called the Verblunsky coefficients [214]. (23).

Is known as the Szego recurrences after its first occurrence in the celebrated book
of G.szego (20) at z=0 imply

an(,u)zan =-0_ +1(0) (24)
It is Known that for nontrivial measure |o,|<1 for all n=0,1,2,.... ,and for trivial

measures(19)one has a finite set of Verblunsky coefficients A with

o] <L =01,.....N - 2and |y ,| =1. Since it arises often, define

p,=yL-|a;[ 0<p, <ife| +pt=1 (25)

The inverse Szego recurrences are also of interest[214].

20, (2) = p2(®,.4(2) + &,P;.,(2)) (26)

Let D* be set of complex sequences {aj}j_"zo With |o|<1.The map S from
u—>{aj(u)}°j°=o is a well- defined map from the set P of nontrivial probability

measures onT to D*. It was S . Verblunsky who proved that S is a bijection. As a
matter of fact,S is a homeomorphism, provided P is equipped with the weak*-
topology, and D= with the topology of component convergence. Moreover, it

follows directly from (23) that for two measures ., and .,
a(m)=a;(t,) j=01..n-1
=®,(z,1)=®,(z.1,) j=01...n
Conversely, by (26)
D, (z,14)=D,(z. 1) = ;1)) =a; (1) j=01...n-1

The orthogonal set {4,} >0does not necessarily form a basis in L*(T,dy)if du=dm
is the normalized Lebesgue measure on T theng, =¢"and ¢is orthogonal to all ¢,
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A celebrated result of Szego- Komogorov- Krein reads that {g, }is basis in L*(T,du)

if and only if logu' ¢ L'(T) where x'is the Radon- Nikodym derivative of x with
respect to dm . In addition, the following result holds true [215].

Theorem (4.1.6)[175]:For any nontrivial probability measure . on the unit circle,
the following are equivalent.

(i) Iimn_m”CDn”:O
(ii) Dnolon =0
(iii)the system {g,}~  is the orthonormal basic in L*(T,du)

Note that if Z:=O|an|2<ooand P is the orthogonal projection in L*(T,dx) onto
spanic",n=041,...}then( see[214].)

Jo-PE-T]" @7)

Let us now tumn to the basic properties of zero {z, ' of OPUC. It is will

known[215] that
that given a monic polynomial P,of degree nwith all its zeros inside D, there is a

<1for all n and j. Moreover, a result of Geronimus[215] reads

Zyj

(nontrivial) probabiltity measure nonT such that P, =, (u).Actually, there are

infinitely many such measure, all of them have the same Verblunsky coefficients

up to the order n-1 and the same same moments up to the order n. Given a monic
polynomial P, with all its zeros inside the disk, let us call a monic polynomial Q

n+m

an extension of P,if there is a measure such that

Pn = ®n(ﬂ)7 Qn,m =®n+m(ﬂ)

To obtain all such extensions one just has to extend a sequence of Verblunsky
coefficients «,,.....a, , Which are completely determined by P, by a sequences

Bo......Bn  With are bitrary g, e Dand then apply (23).

One of the most recent advances in the study of zeros of OPUC is the theorem

of Simon and Totik [ 215 ]. Which claims that given a polynomial B, as , and an
arbitrary set of point z,......z, in the unit disk, not necessarily distinct, there is an
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extension Q,,, of R such thatQ,,,(z;,) =0, j=12...,m counting the multiplicity. The

n+m

latter as usual means that
=21 ==2,, = Qn(z)=Qn(z)=".= QrEE?n(Zk) =0

The uniqueness of such extension is an open problem. A particular case m=1
appeared earlier in [178]. Now g, =«, is defined uniquely from (23) by

0= Qn+1(21) = len (21) - &n Pn*(zl)

There is an important analytic aspect of the OPUC theory which was developed
by Geronimus[195,196].

Given a probability measure ,on T define the caratheodory function by

f(z)= F(Z,u)i=f?_r§du(é)=1+22ﬁn2”,ﬁn = [¢"du (28)

the moments of ..F is an analytic function in D which obeys ReF >0,F(0)=1. The
Schur function is then defined by

~ -_EF(Z)_l 1+ 27f(2)
f(z)= f(Z’/J)'_z F(z)+1’f(z)_l—zf(2) (29)

so it is an analytic function in Dwith sup,|f(z)<1A one - to — one correspondence

can be easily set up between the three classes (probability measures, Caratheodory
and Schur functions). Under this correspondence  is trivial, that is, supported on a

finite set, if an only if the associate Schur function is a finite Blaschke product.
Moreover, this Blaschke product has order N —1for measures (19).

We proceed with the Schur algorithm. Given a Schur function f = f;Which is not
a finite Blachke product, define inductively

__ W@
fn+1(2)— Z(l— v fn(Z)) 1V = fn(o) (30)

It is clear that sequence{f,}is an infinite sequence of Schur function ( called the nth
Schur iterates) and neither of its terms is a finite Baschke product. The numbers
{r,}are called the Schur parameters.

Sf ={7/0,;/1 ..... }
In case when
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N pa—
f(2) —gl Hi
1 1

k
1 —ZkZ

Is a finite Blaschke product of order N, the Schur algorithm terminates al the Nth

<1

step. The sequence of Schur parameters {isis finite, 7« fork=01...N -1 and

ul=1,

If a Schur function f is not a finite balaschke product, the connection between

the nontangential limit values f(¢)and its Schur parameters {Vn}is given by the
formula

[Tl )- exp{f ink— (¢ )Iz)dm}
n=0 T (31)
(see[284])It follows that

> b =o <o 10| (0) Je L2T)
In addition, if one conditions
(i) Lim SUP, |7, =1
(i) LMo .7nm =0 for each M=12,.... pyt Lim ST AR

is fulfilled then f is the inner function(see[202],[212]).

We will make use of the following fundamental result of Suchur [ 213]: the set

of all Schur function f with prescribed first Schur parameters 7o~ 7nGiven by
linner fractional transformation

_ A(z)+2B*(2)s(z2)
f(2)= B(2)+ A% (2)s(2) (32)

Where s is an arbitrary Schur function, and A,B are polynomials of degree at most
N Moreover,

SES AN A O RA O B!

The pair (A,B),known as the Wall pair, is completely determined by {Vj}r,Lo
.Specifically.
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zB*(z) A(2)

W@ :=(ZA*(Z) B(2)

where

1 z w
Q1) = (25 lJa)e b

By conputing determinants, we see that
B*(2)B(z2) - A*(2)A(z) = z”Hﬁ—\yjr)yz
j=0

so A and B have no common zero in C/{0}.In fact they have no common zero at

all since B(0)=1. It is known also that B #0iN D  and both Ag-and A*Bare
Schur functions.

A straightforward computation shows that @, (and hence W) are j- inner
matrix functions:

W*(2)jW(z)>) forzeD

W*(2)jW(z)>) forzeT

oo

For further properties of the Wall pairs see[202],[215].

with the signature matrix

A curious situation when the Schur parameters for a finite Blaschke product can be

computed explicitly was found by Khrushchev[303].Let u be a nontrivial
probability measure (or measure of the form (19) with big enough N) with

Verblunsky coefficients n {a,} and @, be its nthmontic orthogonal polynomial.

Consider the following Blaschke produucet of order n:

d(2) ~2-2,; ~
b,(2) =—21"2 = —1p,(0)=—¢,_
0( ) q)n(z) 1J:!:l-_zn,jZ 0( ) “ '

It is a matter of a simple compution based on (56) to make sure that
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by () — b, (0) _®,.,4(2)

)=, 0B )0 () @, (2)

Hence the Schur parameters of b, are of the form

N A | (33)

Theorem(4.1.7)[175]:Let u be nontrivial probability measure on Tand f its Schur
with the Schur parameters y, (f)then y, (f)=ea,(x) For measures (19) the

latter equality holds for n=01,...N -1

It is clear now why a minus and conjugate is taken in (23)

Theorem (4.1.8)[175]:Given two sets %or+%1and %»Zm of complex numbers
in D and y € T there exists a finite Blaschke products b of order n+msuch
that

(i) Sb={w,, 0,1, Cgreerty 1,7}
(i) b(z;)=0, j=1....m counting multiplicity

Proof. Denote u g, =-ya, .k =01,....,n—1and construct a system monic

Orthogonal polynomials @Ak by (23). The theorem of Simon Totik claims
that there is a measure p with

(Dn(zhu):q)n(zvﬁ)v (Dn+m(zjnu)=0 J=1 11111 m

Finally , put

b(z) = y—zﬂ*mg’z;

The result now follows from Khrushechev’s formula (33).
Note that for m=1the Blaschke producet uniquely determined.
Sec(4.2) Truncated CMV Matrices

One of the most interesting developments in the OPUC theory in recent years is
the discovery by Cantero, Moral, and Velazquez [188,189] of a matrix realization
for the operator of multiplication by on L?(T, du)which is a unitary matrix of
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finite band size (i.e., |{{xmxn)| =0 if [m-n|<k for some k); in this case, k = 2 to be
compared with k = | for the Jacobi matrices, which correspond to the real line case.
The CMV basis (complete, orthonormal system) { x,,} is obtained by
orthonormalizing the sequence 1,{71,¢72,¢ 72, .... and the matrix, called the CMV
matrix,

C =C@ = llepmllmn=olllxmxnll, mn €z,
Is five —diagonal. Remarkably, the y's can be expressed in terms of @'s and @*s:
Xon(3) — 27"05,(2), Xon +1(8) = 27"0y,41(3), n€z,

and the matrix elements interms of a's and p's :
Ay Py PPy 0 0 ..
Lo —Q, — P, 0 0 ..

C=C{a,}) = 0 o -0 asfz P3Py - (34)

0 P —pooyy & TP
0 0 0 —-Q,p; —0,0,

a's are the Verblunsky coefficients and p's are given in (25).
It is not hard to write down a general formula for the matrix entries
C;;See[200]).Let2ey, == 1— (—=1)™.m € z,,and e_; = 1,50 {€;y}m>0 =
{0101,..,},

— — — m+1
€m + €Em+1 — O, Em€Em+1 — 0. €Em — €m+1 — (_1) .

Then
Cmm — _&mam—l
Cm + 2.m= PmPm + 1Em,
Cmm+2 — PmPm+1€Em+1 (35)
and

Cm+1m + &m+1pm1€m, — Cm-1Pm€Em+1,
Cmm+1 — &m+1pm1€m+1 — Am-1Pm€m- (36)

It is clear (cf. [182]), that any semi-infinite CMV matrix C (34) can be written in
the three-diagonal block-matrix form

B, C, 0 0 0 ..
c—|A B G 0 0. 37)
0O A B C, 0

With
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— — _ (P
By = (@), Co= (@1po p1Po) Ao = (OO)
4 = (Pznpzn—1 _Pzna’zn—1) _ <_&2n_1a2n—2_p2n_1a2n_2)
n 0 0 ’ n aznpzn—1 —5211_10.’2”_1

_ 0 0

Cn = (‘52,1_1/02” P2,+1P2,
There is a nice multiplicative structure of the CMV matrices. In the semi-infinite
case C is the product of two matrices: C = ZM, where

L=Y(ag) ® P(a) ® .. O lp(azm) D ..,
M =1 ®¢(a) ®yYlaz) D ... O l/)(azm+1) D .. (39)

andy(a) =(0p‘~ 0’?) The finite (N + 1) x (N + 1) CMV matrix C obeys ay,aq,...ay_1 €

), n=12.. (38)

D.|ay| = 1, and is also the product C = .£ZM, where in this case Y(ay) = (ay).
It is just natural to take the ordered set 1,1, ¢, ™2, ¢?, ...instead of

1’ Z—l” 2, (—2’
that leads to the alternate CMV basis {y,,}and the alternate CMV matrix
a, Po 0 0 0 ..
WPy~  pfy Py 0 ..
C = KX XD | = PPy — P& _~aza1 — P20y ~0
0 0 30, —a, %43
0 0 P3P2 — Pl 0,0,

which turns out to be the transpose of C (see [215]). Furthermore ,£= Lland
M=MimplyC=Cct=M<L

An important relation between CMV matrices and monic orthogonal
polynomials is similar to the well-known property of orthogonal polynomials on
the real line

¢n(z) = det (21, — ™)

holds, where €™ is the principal n x n block of C.

One of the most important results of Cantero, Moral, and Velazquez [138]
states that each unitary operator U with the simple spectrum (i.e., having a cyclic
vector e;) acting on some infinite-dimensional separable Hilbert space
(respectively, finite-dimensional Hilbert space) is unitarily equivalent to a certain
CMV matrix in £2(Z. )(respectively, in C*)™). The corresponding a’s come up as

the Verblunsky coefficients of the spectral measure du of U associated with#,
This is the analog of Stone’s self-adjoint cyclic model Theorem. To be more
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precise, let us, following [216], call a cyclic unitary model a unitary operator U
acting on a separable Hubert space H with the distinguished cyclic unit vector v,.
Two cyclic unitary models, (7, U, vy)and (£, U, 7,) are called equivalent if there
is a unitary operator W from H onto  such thatWvy = 5oand WUW ~1 = U. Itis
clear that §, = (1,0,0, ...)tis cyclic for any CMV matrix C.
Moreover, every class of equivalent unitary models contains exactly one CMV
model (£2,C,5,).
Theorem(4.2.1)[175] . Let T be a completely nonunitaty contraction with rank
one defects. Then there exists a probability measure y onT such that T is unitarily
equivalent to the following operator

Th(&) = Pg(¢n(8)), he = L*(T,du) © C. (41)
where Py is the orthogonal projection in L?>(T,du) onto$ . The Schur function
associated withu is exactly the characteristic function of T..
Proof. Include T into a prime unitary colligation

A= {(i g):«:,«:,H}

The characteristic function ®,agrees with the characteristic function of T*. By

Theorem(4.1.4) the vector 7= (Cl))is cyclic for the unitary operator v = (51; g)

Let Ey({) be the resolution of identity for U. Define d,({) =
(dE;(9)1,1) and put
uf($) =<¢f(9)
the unitary multiplication operator in L?(T,du). By the spectral Theorem for
unitaries with cyclic vectors (cf. [215]) there exists a unitary operator W: C®H —
L2 T,dusuch that

U=Ww1luwand=w1=1

It follows that W takes the block-operator form
1 0y.(C C
W:(O v):(H)_)<55)
where $ = L*>(T,du) © C,V:H - L*(T,du) © Cis a unitary operator. If Tis
given by (41),
then
T=PyU I H=VTV !
I.e., T is unitarily equivalent to . Clearly, U has the block form
u:<P<c‘UF<C ngursj)
PsUT H T
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where P¢ is the orthogonal projection in L?(T,du) onto the subspace C of the
constant functions in L2(T, du). The unitary colligation A t is unitarily equivalent
to the unitary colligation

(s, %49 coo).

Note that

Pe(UM) = [ &du.  Pg(UD) =&~ [ &du. Po(U1) =&~ [ &du
Le F(Z) = ((U+2)(U — 21)~1,1) .Then
&+2

F(2)=U+z)711) = [; = du ()

I.e., F is the Caratherodory function associated with u. From Theorem (4.1.7) we
conclude

1 F(2)-1
ZZF(Z)+1
and so by (38) 6,(2) agrees with the Schur function associated with p.

Let{@,} be the system of monic polynomials orthogonal with respect to
u, and let {a,} be the corresponding Verblunsky coefficients. By Geronimus’
theorem {a,,} are the Schur parameters of f. Let $() be the controllable subspace
of the unitary colligation (42). From (13) it follows that.

($))~UA(T, dp) © span{é™ n =0, ..}$

0A(Z) =

If u is a nontrivial measure, then in view of (27) we obtain

[Peyent] = | @ -1any
n=0

The latter is equivalent to

|Pyon e = | @ -1ant?
n=0

Hence, from (12) and (8) we have the equivalence

span{I*D¢n=01,.}=9H o zzlanl2 = o0 (43)
n=0
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Remark(4.2.2)[175]. By the construction of Theorem (4.1.5) the Schur function f
associated with u is exactly ©,(2) .Another (unitary equivalent) models of T are

connected with the operators v, = (ig g),where | A| = 1.The characteristic function

el 9 e

is 10 ,.The model operator¥, takes the form
H2 = L2(T,du) © C, THh(§) = Py, (ER(E)), h(§) € 9,
The Schur function f; associated with p; is f;= Af.The connection between the
Caratheodory functions r,(2) = (U + z1)(u — 21)~'1,7) and F given by
A-D+Q@+DF(2)
L&) G+ a—nrez)
The measures p are known as the Aleksandrov measures associated with u [215].
Let C = C({a,,})be the CMV matrix given by (34). Recall that C ({«,,})is the
matrix representation of the unitary operator u of multiplication by ¢in L2(T, dp),
where u is the probabilitymeasure with Verblunsky coefficients {a,,}. By the
Geronimus Theorem the Schur parameters of the Schur function (29) associated
with u are {a,,}.
The matrix C determines the unitary operator in the space £2(z.) are
(respectively CV*1in inthe case of (N + 1) x (N + 1) matrix). The vector Sp =
(1,0,0, ...)" is cyclic for C. Consider the matrix

of the unitary colligation

-0, — Py 0 0
_ _ | ap —a,y  agp PP, -
T=T (@)= | TE me e (a4)
PP TP O, TP, .
0 0 AyPs  — 0,0

obtained from C by deleting the first row and the first column. It is clear from (37)
that a semi-infinite 7"takes on the three-diagonal 2 x 2 block-matrix form

BB CC 0 0 O
s —|A B C 00 ..
0 A B, C, 0

WhereA,, , B,, and C,, are defined in (38). Henceforth T is called a truncatedCMV
matrix T is the matrix of the operator T = PgU [ § ,where Pgis the orthogonal

projection in L?(T, du)onto the subspace =$L?(T, du) © C.
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It is easy to see that given 7°(44), the values «,, are uniquely determined. Indeed,
from (4) and (14) entries we have by (25)|a,|? = |@,a4|? + p%|ay]?, so |a,]and
p1 = 0 are known,and we find «, a,from (2) and (3) entries of (44). From (3) and
(4) entries we getp, > 0, then, a, , azetc. We call a,, = a,,(7")the parameters ofT
(44).

As it was mentioned inthis Section , LM, £ and M are defined in (39). Given
a matrix A, we denote by Ar(Ac) the matrix obtained from A by deleting the first
row (column).
Clearly, Arc= (Ar).. SO we haveT = C,, = L, M., M. M is isometric with dim
ran (1 — M M;) = 1, whereasL, is coisometric withdimran. (1 — £;£,) = 1.
Let Ps ;be the orthogonal projection in€%(z,)(C¥*") onto the subspace
8y L= £2(N(CM). Then the matrix T determines on the Hilbert space & the
operator ' = Ps.C I 8, L Let the operators (matrices) S:C —» C,F:C — 65 — C

be given by

Po h1
0 h,
S1 = 5,:7:1 - , g - &1p0h1 + plhz

b\

Hence, the matrix C takes the block form

= 9

From (12) it follows that

ha\ ||° hy
o\l
gl : =||Dr | : = p§la hy + p1hy |3,
hn/ h,

Dr = {A(a,6; + p161), 1 € C}

hy hy
-]

F*| = ||Ds| : = p2la;h.|?, Dy ={16,,1 € C}
hn / ha
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Drh = po(h, @18, + p16;)(a,61 + p165). Dy-h = po(h,8,)61, hE€
R(NNCN.  TalSl+plde=—aldl. 45)

Since §,is the cyclic vector for C, then by Theorem (4.1.5) the unitary colligation

Ap= {(35D g) .C, C, 50} (46)

Is prime, and T'is a completely nonunitary operator with rank one defects on the
Hilbert spaces?,(N)orcV
Let

1 F(2)-1

F(z) = ((C + zI)(C — zI)™184,80), f(z) ==

z F(z)+1

(47)

Proposition(4.2.3)[175].

(i)For a semi-infinite truncated CMV matrix 7 = T({a,,}) the following
statements are equivalent,
(a) the matrix T"does not contain a unilateral shift ;
(b) the matrix 7" *does not contain a unilateral shift ;
(c)span[T™6;,n =0,1,...]1 = £,(N);
(d)span[T"" (a6, + p165),n = 01,..] = £,(N);
(©)Xeoletn]? = oo;
() In(-If )I* ¢ L'|-m, 7.
(i) If T is a semi-infinite truncated CMV matrix
(@) limsup,,{a,} = 1.
(b) lim,, 5@ pym = 0 for m = 1.2,... but
limsup,-ela,| >0
is fulfilled, then
S-limy, oo T™ = s-limy,_, oo T

(iii) If T is a finite truncated CMV matrix, then lim,,_,.||T"| =0

Proof.

(1) Since{an}are the Schur parameters of the Schur function f associated with the
full CMV matrix C ({a,,}) , and f agrees with the characteristic function

of T({a,,}) , the equivalence of the statements (a)—(f) follows from (5), (6), (9),

(11), (31), (45),(43), and Theorems (4.1.4) and (4.1.8)
136



(if) Each condition (a) or (b) implies f is inner .Hence 7 belongs to the class Cyy,
i.e., s-lim, o T ™ = s-lim,_,,,T"" =0

(iii) The function f is a finite Blaschke product and so inner. Since T is finite-
dimensional,we get lim,, . ||T"| = 0.

Proposition(4.2.4)[275 ]

Let T({a,,}) , and 7({B,,}) be truncated CMV matrices. Then

T ({a,,Hand 7 ({B,,Dare unitarily equivalent if and only if3,, = e’*a,,for all n and
te[0,2w).Moreover, if V is the diagonal unitary matrix of the form

V= diag(e',1, e,1,...) (48)
then

VT {a, DV =T ({e"a,}). (49)

Proof.
Consider two CMV matricesC({a,,})andC({B,,}) and associated with them Schur
functions foand fz. Since these functions agree with the characteristic functions
of T({a,,}) and T7({B,}), respectively, the operators T({a,}) and T({B,}) are
unitarily equivalent if and only iff,and fg differ by a scalar unimodular factor,
which in turn yields 8,, = e‘a,for all n and t€[0,2n).

Equality (49 )wishV (48) can be verified by the direct calculation based on (35),
(36).S0 T ({ar,}) and T ({e% a,,}). are unitarily equivalent.

From (49) it follows that
T({eita’n}) — eitAT({a’n})e_itA. .

where A is a self-adjoint diagonal matrixA= diag(1,0,1,0. . .).Hence the
matrix T ({e'*a, })satisfies the differential equation

d:(:—g(,t) =i(AT7 () = T()A), t€ER

and 7(0) = T(|a,1).
The next Theorem states that truncated CMV matrices are mode
Is of completely nonunitary contractions with rank one defects.
Theorem (4.2.5)[175 ]:Let T be a completely nonunitary contraction with rank one
defects acting on infinite-dimensional separable Hilbert space H

(respectively,finite-dimensional Hilbert space).Then T'is unitarily equivalent to the
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operator acting on £, (N)(respectively, on C¥in the case dim H=N) determined by
the truncated CMV matrix 7= T ({a,,}), where{a,, }are the Schur parameters of the
characteristic function of 7. In particular, every completely nonunitary contraction
with rank one defects is a product of co-isometric and isometric operators with
rank one defects.

Proof.Include T'into a prime unitary colligation

A= {(i s':) .C.C.H)

. By Theorem(4.1.4) the vectorl = (é)is a cyclic for the unitaryoperato v = (;E g)

From the results of [188, 187] (see also [213, 214]) there exists a uniqgue CMV
matrixC such that
U=w-licw, §,=WwI,
where W is a unitary operator fromC@H onto #%(Z,)(CN*1) and §, =
(1,0,0, ... )t. 1t follows that the operatorW takes the block-operator form

w=lo ) (i)~ (5¢)

where y:H — 63 iS a unitary operator. Hence T = yTx ™1, i.e., the operator T is
unitarily equivalent to the operator inl,(N)(CN) given by the truncated CMV
matrix 7 = T({a,}) .From representation (28) of F(z) = ((U+zI)(U—
z/—11,1.and Theorem (4.1.5) it follows thatazare the Schur parameters of the
function ©,(2) that agrees with the characteristic function of T.

Let Q be an arbitrary unitary operator in 85 . SinceT=L, M, we get

T=x"Tx=x"LMyx=x"LQQ"
Where M=Q~1M_y is an isometric operator with rank one defect, and. L=y ~1£,.Q
IS a co-isometric operator with rank one defect.

Note that the unitary colligation (46) is unitary equivalent to the unitary
colligation (42).

Let V be an isometric operator acting on some Hilbert space H with the domain
dom V and the range ranV. The numbers dim(H&domV) and dim(H& ran V) are
called the defect indices of V. The isometric operator V is called prime if there is
no nontrivial subspace on which V is unitary. In [203, 204] M. Liv'sic developed
the spectral theory of isometric operators with equal defect indices, and their quasi-
unitary extensions. A nonunitary operator S on H is called a quasi-unitary
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extension of the isometric operator V with the defect indices (n, n),if S agrees with
V on dom V and maps H &dom V into HSranV.

Let U be the bilateral shift in £,(2), i.e., ﬁak:(Sk_l,k € Z, where{s, = k €
Z}is the canonical orthonormal basis in#,(Z). Define,V,by

domV, = 8¢, V, I domV,

Then ran V, = §%,. Let the quasi-unitary extension S, of V,be given S,8, =
0,5, I dom V, = V,. Then each point of D is the eigenvalue of S,. So the spectrum
of 'S, agrees with D. The following result is essentially due to M. Liv“sic [203].

Theorem (4.2.6)[175].Let S be a quasi-unitary contractive extension of a prime
iIsometric operator V with the defect indices(1). If the whole open disk D consists

of the point spectrum of S, then V and S are unitarily equivalent to V, and S,
respectively.

Clearly, the rank of the defect operators (I — S;.S,)2and (I — S,S¢)Y/2
Is equal to one.Since the point spectrum of §0 is D the Sz.-Nagy-Foias
characteristic function ® of §0 Is identically equal to zero. On the other hand, one
can easily show (and it is well known) thata completely nonunitary contraction
with rank one defects and zero characteristic function is unitarily equivalent to the
operator S@S*, where S is the unilateral shift in€,(N). So the
operators S, and S @ S*
are unitarily equivalent. Since all Schur parameters of the

function ® = 0 are zeros, the corresponding truncated CMV matrix
To=lIto (i, j)|| takes the form

o O, O O
o O O O O
R O O O O
o O O +— O
o O O O O
o B O O O

e, to(2k,2k +2) = t,(2k + 12k —2) =k = 1, and the rest ty(i,j) = 0. The
matrix J; Is a submatrix of the free CMV matrix C,corresponding to zero Schur
parameters. Each point z of D is the eigenvalue of 7. The corresponding
eigensubspace is

N, ={1(0,10,20,220,23 ..),1 € C}
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Hence, the spectrum of T is the closed unit disk D.
Let V, be the operator in £,(N).

domV, = £,(N) © {cd:} = kerDr, Vo = T I domV,. (50)
Then ran Vo = £,(N) © {cd:} = kerDr;, andV, is isometric with the defect
indices (1).The contractionTyis the quasi-unitary extension of V,with the zero
characteristic function.Therefore, the truncated CMV matrix T, is unitarily
equivalent to the operatorS,, and by

Livsic Theorem [204] the isometric operatorV,is unitarily equivalent to 170.
All other quasi-unitary contractive extensions of V,are given by the truncated
CMVmatrices

T =@ NI

0 -re” 0 0 0 O
0 0 0 1 0 O
T = 1 0 0 0 0 O (51)
0 0 0 0 01
0 0 1 0 0 O

e, t(Rk, 2k +2) =t(Rk +12k—2) =k > 1,t(1,2) = —re*?,r € (0,1), ¢ r is
an arbitrary number from the interval [0,2m), and the restt(i, j) = 0. The
characteristic function of 7" is the constant function ® =re'?. The spectrum of
each such matrix is the unit circle 7. Because |@~1| =r~1, each of such matrix is
similar to unitary matrix [216].

The matrices 7y and T contain the shift

domw = Span{511 531 e 52n—1a }, w (Z‘;.lo=1 hn52n—1) = Z?ﬁ:l hn52n+1
The matricesTyand Tcontain the shift

domW* = Span{521 541 R 52n—1a }, W, (Z‘;.lo=1 hn52n+1) = Z?ﬁ:l hn52n+1
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Let T be a completely nonunitary contraction with rank one defects and the
constant characteristic function ®, 0<|®(z)}=r <1. Then by Theorem (4.2.5) T is
unitarily equivalent to the truncated CMV matrices (51).

Along with truncated CMV matrices 7 ({a,,}) (44), we consider here truncated
CMV matrices 7 ({a,,})obtained from the alternate CMV matrix C ({a,,}) (40) by
the same procedure. The matrix T ({a,,})is the transpose of T({a,,})

—u0y 0P PO, 0
— Py 00— Py 0
T=| 0 AP, —O0L0, COyPy .. (52)
0 P3Py — P30, 0

and
T({an)) = T({an}) = (ML )M,

It is not hard to show that 7 ({a,,}) is a completely nonunitary contraction with
rank one defects, and its characteristic function f agrees with the Schur
functionassociated with Verblunsky coefficients (Schur parameters) {«,,}. Indeed
(cf. 47))

(C+z)(C—z1)" =(Ct+z)(CL—z)"t = ((C+zI)(C + zI)~)!
and 0 7(z) = ((C +21)(C - 21) "6,,8,) = F(2), F = £ as claimed.So.the
matrices T({a,}) and T ({a,}) are unitarily equivalent.

Denote by 7 (7(K)) the matrix obtained from 7(7) by deleting the first k
rows and columns. The following result provides the characteristic function
of 7,

Theorem (4.2.7)[175]..Let ube a probability measure onT with Verblunsky
coefficients {a,} ¥_,, N < oo, and letf, C{a,.}, C{a,.}, T({a,.}), T({a,}) be the
corresponding Schur function, CMV and truncated CMV matrices, respectively.
Then 7 7 are completely nonunitary contractions with rank one defects, and
the following relations hold:
7D} Voo = THan} N=zm-1),
T(Zm){an} g=0 =T {an} g:Zm’ m = 1’2’

So, the characteristic function of 7 )agrees with the kth Schur iterate of f.
Proof. The relations
T{an} oo = T {and o T{and Nz = Tan} s
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follows directly from (44) and (52). The rest is a matter of simple induction and the
definition of the kth Schur iterates.

The relation between characteristic functions of the sub-matrices 7% ({a,,} N o)
and the kth Schur iterates established in the above Theorem is a complete analog of
the result concerning the connections between m-functions of a Jacobimatrix and
its sub-matrice [127] .

Theorem (4.2.8)[175]..Let u be a probability measure on T with Verblunsky
coefficients {a,} N_o, N < oo.
Consider three subspaces in L2(T, u):
Hom = spanf{l,3,3, 07,32, .., 3™, T},
Hom-1 = span{l,3, ¢, 0%, 0%, ... T 71, ™},
Hom-1 = span{l,3,3, 0% %, .., g™ 1 0™},

Denote bybzm(bzm_l,gm_l)their orthogonal complements inL?(T,u), and
by Pym(Pem—1, Pam_1) the orthogonal projections onto $,m(H2m-1, H2m-1) »
respectively. Then the operators

Lh(@ = Pe(th(@). h(Q € ¢ (53)

Tom-1h(Q) = ﬁK(Zh(Z))- h(Q) €S om-1.

are completely nonunitary contractions with rank one defects. The characteristic
function of T, agrees with the kth Schur iterate of the Schur functionf (u), the
characteristic function ¥,,,_; agrees with (2m-1)th Schur iterate of f(u). So, the
operator I is unitarily equivalent to the operator

h@ = PP (th@). h@ e AT, du({a} V) ©C.  (54)

where Po(k)is the orthogonal projection onto 12(r, du({a,} ¥_,)) © ¢. In addition I,,,,_¢
is unitarily equivalent to &,,,_4

Proof. Recall that CMV matricesC ({a,,}, C ({a,}) represent the unitary

operator Un(Q) = th(QinL?(T, du{a,})) with respent to the complete
orthonormal systems {x,,} and {x,,}, reprectively.Moreove

Hom = spanf{xo, X1, - Xam} = span{xg, X1, ..., Xom}
Hom-1 = span{xo, X1, - » Xom-1}
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Hom-1 = spanf{xo, X1, .., Xam—-1}

Since T{a, 3 N_)(T{a, I N_,) is the matrix of T (41) with respect to the
basis {x,} N_,, the operators T,,,, Ty_iand T,,,_, have the matrices 7G™
7@m-Dand 7@m-1 | respectively. From Theorem (4.2.8)it follows that T, are
completely nonunitary contractions with rank one defects for all k, and their
characteristic functions agree with the kth Schur iterates of f. By Theorems
(4.2.8)and (4.2.1) the operator T, is unitarily equivalent tothe operator given by
(54). We also have
T(Zm—l)({an} g=0) — T({an} g:Zm—l

Therefore, the characteristic function of 2™ 1({a,,} ¥_,) agrees with (2m-1)th
iterate f5,,,_10f f, and hence the operators T>™ *({a,} N_,)andT?™ *({a,} N_,)
are unitarily equivalent.

We complete the section with the general result from the contractions theory
which is proved with the help of the truncated CMV model.
Theorem (4.2.9)[175].Let T be a completely nonunitary contraction with rank one
defects in a separable Hilbert space H, dimH >2, and let P ker Dy, P ker Dy be the
orthogonal projections onto kerDy- and kerDsin H, respectively. Then the
operators

Ty = Pierp,.T | kerDp-, Ty = Pierp, T I kerDy

are unitarily equivalent completely nonunitary contractions with rank one defects,
and their characteristic functions agree with the function

_ l h(z) — h(0)
N TOTIE)

where h is the characteristic function of T.
Proof. By Theorem (4.2.5) the operator T is unitarily equivalent to the truncated
CMV matrices T = T({a,,}i_,) and T = T{a, }_,), where {a, }_, are the
Schur parameters of h, N < co. So, there exists a unitary operators V,V: 83 —
H such that
VTV-1=VTV-1=T

It follows that

VD V™Y =Dy., VD7V ™1=D;
and hence Vi p,.. = kerDr-, VkerDT = kerDy. Due to (45) we have
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D = D7 = span{d,}

and

TM = Prrp TV kerDy, T = Pyopp T 1 kerDy
Hence

vrWy-t=r1,  VFOF-1=F;

Now from Theorem (4.2.8) it follows thatT;and T;are completely nonunitary
contractions with rank one defects, and their characteristic functions agree with the
first Schur iterate h;of h. Hence T; and T are unitarily equivalent.
Consider a NxN truncated CMV matrix

-0, —pPQ, 0 0
UoPs  —0L0n O, 0
T=T{a.d) = | pp -pu -, 0 (55)
Oy Prna

TPNaPN-2 T OOy

(for even N it looks a bit different). The problem under investigation in the present
section in the reconstruction of the matrix 7 (55) from either the complete set of
its eigenvalues or from the mixed spectral data: the part of the spectrum and the
part of the parameters a,,(7°)

Theorem(4.2.10)[175].Let z,, z; , ..., zy be not necessarily distinct numbers from
the open unit disk. Then there exists a truncatedNxXxNCMYV matrix 7 (55)which has
eigenvalues z,z,, ..., zy, counting their algebraic multiplicities. Such matrix is
determined uniquely up to multiplication of its parameters «,,(7) by the same
unimodular factor.

Proof.Let

V4

b(z) = eV [I¥_,———, z€D,p €02m) (56)
—4k

we want to show that b is the characteristic function of a truncated CMV
matrixT(55).Put

which is a rational function with N+ 1 distinct simple poles lying on T, Re F(z) >
0,Z € D, and F(0) = 1. It follows that there exists a probability measure du on the
unit circle supported at those poles, so that
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F(z) = j 2 du9).

Let {agp,....,ay_q1,ay}be the Schur parameters of b, that is the same as the
Verblunsky coefficients of u. Construct the (N+1) x(N+1) unitary CMV matrix C
of the form (34).Then

F(z) = ((C +zI)(C — zI)780, &), Izl <1,

where 6,(1,0,...,0) € CV*1.Let T be NxN be truncated CMV matrix of the form
(55 ) C has the block form
_(S G
¢= (g-" :]")
Where S = @y, G =(ayp0, P10, 0, ... ,0), and

[ )

Po
0

\o/
Theorem(4.2.11)[175]. Let z;, ..., z,,, be distinct nonzero points in D, 14, ..., ,, be
positive integers, and r=l4,..., L, < N and. Leta,,....,ay_, € D. If there exists a
NxN truncated CMV matrix 7 (55)such that z,, ..., z,,are eigenvalues of Twith the
algebraic multiplicitiesly, ..., L,,, ande;(T)=a;,j = 0, ..., N — r, then this matrix is
unique.
Proof.If the required T exists then its characteristic function®4(z) is the Blaschke
product of order N and of the form

b(z) = e [T, (2 Z") J (57)

| J 1I—vjz

with the given first N—r+ 1 Schur parameters ay(b ), ...., ay_,(b ). Our goal is to
prove the uniqueness of such function b.

According to the result of Schur [213] the set of all Schur functions
b with given first N—r+ 1 Schur parameters is parametrized by
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_ A(2)+zB*(2)s(2)
b(z)= B(z)+zA*(2)s(2) (58)

where s(z) is an arbitrary Schur function, and A, B are polynomials of degree at
most N-r Since b is the Blaschke product of order N, it is clear that so is s(z),
degs(z) =r—1, and

Sb={ag, ..., an_r a(5), .., an_r(s)}
Let us solve (58) for s:

A(z)-B(2)b(2)
—zB*(2)+zA*(z)b(z)

s(2)=

so s(z) satisfies the Nevanlinna-Pick interpolation problem(57), where W]EZ) are
completely determined from the given nonzero zk’s and a;’s . There is at most one
such s(z), and the uniqueness of b is proved.

Remark(4.2.12)[175].. Suppose that z4, ..., z,,are distinct nonzero points in D, and
l1, ..., L,=N ,s0 the only a,is prescribed. It is clear thatis completely determined by
the choice of z; and their multiplicities ;.

. - I [
b(z) = et k=1 (%) k’ ay = b(0) = e't ;cn=1(_zlik)

So for all other « the inverse problem has no solution.

In the case when one of the eigenvalues is zero, all three possibilities (no
solution, unique solution, and infinitely many solutions) may occur for the inverse
problem in question. For instance, there is no solution at all as long as z; =
0, oy # 0. Assume next, thatr =I; = 1,z; = 0, and the points ay, a4, ...., ay_, are
taken in D, with the only restriction oy = 0, a; # 0. The Blaschke products b, with
the Schur parameters{ ay, a4, ...., @y_,; y} and arbitrary y € Tare of the form

N-1
. zZ—v;
b,(z) = ez | | S,
§ I — ij
j=1

and the corresponding NxN truncated CMV matrices 7, ,solve the problem.
Finally, assume that except for the zero eigenvalue of multiplicity k(z, = z, =
«+=2z,=0) , a few more nonzero (and not necessarily distinct)
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eigenvalues 14, ... ., A.are given, as well as the points ¢y = - ay_1; = 0, ay_in D.
If the solution of the corresponding mixed inverse problem 7 exists, its
characteristic function takes the form

T

b(z) = eifzkﬂ 274 ),

j=1 J

Where g is the Blaschke product of order N-k-1, g(0) # 0., and the first N-k-
1 +1Schur parameters of h = z~*p are given numbers a;, = --- ay_,. Clearly ,h is
exactly the kth Schur iterate of b. If the required truncated CMV matrix T exists,
then by Theorem(4.2.7) the characteristic function of 7 ®)agrees with h. It follows
now from Theorem (4.2.11)that 7®is unique, and since a;, T =0, ..., k — 1, the
matrix T is unique as well. The situation changes dramatically if we assume that
the last parameters of 77 (55) are known. In this case we can prove the existence,
but not the uniqueness of the solution.

Theorem (4.2.13)[175]. Letz,,...,z, and a,,, ...., ay_,- be two collections of
arbitrary complex numbers from the open unit disk, and let ) € T. Then there
exists a N x N truncated CMVmatrix 7 of the form(55) such that:

(i) z4, ..., z,y, are eigenvalues of T, counting the algebraic multiplicity,

(i) a,(T)= ap,n=mm+1,.. ,N=

Proof.

By Theorem (4.1.8)there exists a Blaschke product b(z) of order N such
that b(z,) = 0,k = 1, ..., m, with the Schur parameters

a,(b) = a, n=mm-+1....N.

Take now the matrix T (55) with a,(T) = a,,n=0,1,..,N. By Theorem
(4.2.14) the characteristic function of (7) agrees with b(z), that completes the
proof.
Theorem (4.2.13) thereby says that a NxN truncated CMV matrix T can be
reconstructed from its m eigenvalues and the lower principal block of order N—m.
The latter is either the truncated CMV matrix T, ({a,,}¥_,,,) or its transpose T

In this section we consider the criterion when given complex numbers z,, =
,n=12, ..from D are the eigenvalues counting algebraic multiplicity of some
semi-infinite truncated CMV matrix.
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Proposition (4.2.14)[175]..Given complex numbers z,=n=12,.. are
eigenvalues counting algebraic multiplicity of some semi-infinite truncated CMV
matrix if and only if

Yn=1l—lzyl) < o0

Proof.
The convergence of the sum is equivalent to the convergence of the Blaschke
product

Zy Zyp —Z
b(z) = —k%,
Kol Zy Zy ZiZ
Let {a,,} be the Schur parameters of b. The characteristic function of the truncated
CMV matrix T ({a,,} agrees with b. Hence the eigenvalues of 7 ({«,,} are precisely

the complex numbers{z,,}.
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Chapter 5
Harmonic Cooridinates and Products of Random Matrices

We show that if Kigami’s resistance form satisfies certain assumptions, then
there exists a waek Riemannian metric such that the energy can be expressed as
the integral of the norm squared of a weak gradient with respect to an energy
measure. Furthermore, we show that if such a set can be homeomorphically
represented in harmonic coordinates, then for smooth functions the weak gradient
can be replaced by the usual gradient. We also show a simple formula for the
energy measure Laplacian in harmonic coordinates.We apply our results to extend
the geography is desting principle to these cases, and Iso obtain results on the
pointwise behavior of local eccentricities on the sierpinski gasket, previously
studied by Oberg, stricharta and Yingst, and the authors. We also establish the
relation of the derivatives to the tangents and gradients previously studied by
strichartz and the authors. Our main tool is the Furstenberg-Kesten theory of
products of random matrices.

Sec(5.1)Fractals with Finitely Ramified Cell Structure

There is a well developed theory of Dirichlet (energy, resistance) forms, and
corresponding random processes, on the class of post-critically finite (p.c.f. for
short) self-similar sets, which are finitely ramified [220, 237,240, 255, 258].
Also, many piecewise and stochastically self-similar fractals have been considered
[225, 229, 230, 256]. The general non self-similar energy forms on the Sierpinski
gasket were studied in [253]. In all the mentioned works the fractals considered
have finitely ramified cell structure. We will extend some aspects of this theory for
a class of space, which may have no self-similarity in any sense, and may have
infinitely many cells connected at every junction point. Throughout this section we
extensively and substantially use the general theory of resistance forms developed
in [241]. The existence of such forms is a delicate question even in the self-similar
p.c.f. case [231, 241, 251] and references therein]. To prove our results we use
some methods introduced in [260]. We give the basic background information, and
the reader may find all the details in [241, 260].

We give the definition of a resistance form in the sense of Kigami [241]. We
define sets with finitely ramified cell structures. Examples of such fractals are
p.c.f. self-similar sets introduced by Kigami in [237, 240]. Fractafolds introduced
by Strichartz in [257], random fractals [225, 229, 230] and references therein, and
non self-similar Sierpinski gaskets [253, 261]. The key topological assumption is
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that there is a cell structure such that every cell has finite boundary, but we do not
assume any self-similarity.

The terminology we use can be explained as follows. The term "post-critically
infinte", means that every junction point can be an intersection of countably
infinite number of cells with pairwise disjoint interior, that is every cell can be
linked to countably many other cells. The term "finitely ramified" means that every
cell is joined with its complement in a finite number of points. A good example of
an infinitely ramified fractal is the Sierpinski carpet. There exists a self-similar
diffusion and corresponding Dirichlet form on the Sierpinski carpet [221, 222, 223,
249], but its unigueness has not been proved.

We prove that Kigami's resistance form is a local regular Dirichlet form under
appropriate conditions. We prove that if the resistance form satisfies certain non
degeneracy assumptions, then there exists a weak Riemannian metric,defined
almost everywhere such that the energy can be expressed as the integral of the
norm of weak gradient with respect to an energy measure. This generalizes earlier
results by Kusuoka [248] and the author [260]. We prove that if the finitely
ramified fractal can be homemorphically represented in harmonic coordinates, then
the weak gradient can be replaced by the usual gradient for smooth functions,
which generalizes an earlier result by Kigamiin[238]. We prove a simple formula
for the energy measure Laplacian in harmonic coordinates. This formula was
announced, in the case of the standard energy form on the Sierpinski gasket, in
[261] without a proof. In a sense, the generalized . Riemannian metric. In the case
of the standard energy form on the Sierpinski gasket, it is proved by Kusuoka in
[247] that this generalized Rimannian metric has rank one almost everywhere. This
can be interpreted as that in harmonic coordinates on the Sierpinski gasket the
energy Laplacian is the one dimensional second derivative in the tangential
direction. We conjecture that this is the case for any finitely ramified fractal
considered. The main tool we use in this Theorem is approximating the finitely
ramified fractal by a sequence of so called quantum graphs [245, 246]. We discuss
self-similar finitely ramified fractals, and existence of self-similar resistance forms
in particular. We give several examples of finitely ramified fractals for which our
theory can be applied . Among them are factor-spaces of p.c.f. self-similar sets,
and post-critically infinite analogs of the Sierpinski gasket.

In the case of the standard energy form on the Sierpinski gasket, it is proved by
Kigami in [244] that the heat Kernel with respect to the energy measure has
Gaussian asymptotics in harmonic coordinates (a weaker version was obtain in
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[252]. Recently a powerful machinery was developed to obtain heat Kernel
estimates on various "rough" spaces, including many fractals [224,243]. It is not
unlikely that this theory is applicable to many, if not all, finitely ramified fractals
in harmonic coordinates. Also, some results about the singularity of the energy
measure with respect to product measures [226, 232, 233] are valid in the case of
finitely ramified self-similar fractals under suitable extra assumptions.

Definitions(5.1.1) 218]. A pair (¢,Dom ¢€) is called a resistance form on a
countable set V, if it satisfies the following conditions.

() Dom g€ is a linear subspace of £(V«) containing constants, € is a

nonnegative symmetric quadratic form on Dom g, and € (u, u)= 0 if and
only if u is constant on V,
(i)  Let ~ be the equivalence relation on Dom ¢ defined by u ~ v if and only if

u —visconstant on V« Then (¢ /~, Dom €) is a Hilbert space.

(iii)  For any finite subset V < V= and for any v € £(V) there exists u € Dom €
such that u|,= v.

(iv) Forany p,q € V=

e(un) :u e€ Dom g, g(u, u) >0} < .

Sup { (u(p)- u(q))2

This supremum is denoted by R(p, g) and called the resistance between p
and q.

(iiv) for any u € Dom & we have the €(u-, u-) < &(u, u), where

1 ifu(p) =1,
u(p)= u(p) ifo<u(p) <1,
0 ifu(p) < 1.

Property (iiv) is called the Markov property.

Note that the effective resistance R is a metric on V=, and that any function in

Dom € is R-continuous. Let Q be the R-completion of V. Then any u eDom &
has a unique R-continuous extension to Q.

For any finite subset U < V= the finite dimensional Dirichlet form g, on U is
defined by
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e u(f, )= inf{e(g, g): g € Dom g, glu= f},

which exists by [84], and moreover there is a unique g for which the inf is attained.

The Dirichlet form gy is called the trace of € on U, and denoted. By the definition,
if Uy c U then € is the trace of £, on Uy, that is £, = Traceui(Ey,).

Theorem(5.1.2)[218] . (Kigami [241]). Suppose that V, are finite subsets of V-
and that U;_, V, is R-dense in V«. Then

E(F, )= im Ewlf, )

for any f € Dom £ , where the limit is actually non-decreasing. Is particular, £ is
uniquely defined by the sequence of its finite dimensional traces &,, on V,.

Theorem(5.1.3)[218] . (Kigami[241]). Suppose that V, are finite sets, for each n
there is a resistance form &€, on ¥}, , and this sequence of finite dimensional forms

is compatible in the sense that each &, is the trace of &, , on I}, weren =
0,1,2,... then there exists a resistance form € onV, = U,Z, V, such that

E(F, D)= lim &, (£, )

forany f € Dom &, and the limit is actually non-decreasing.

Definition(5.1.4)[218] . A finitely ramified fractal F is a compact metric space
with a cell structure F={F,}.ca and a boundary (vertex) structure v= {V,},ca
such that the following conditions hold.

(i) A'is a countable index set;

(i) each F, is a distinct compact connected subset of F;

(iii) each V, is a finite subset of F, with at least two elements;
(iv) if Fy =UJL Fy s then Vi < U, Vs

(iiv) there exists a filtration {An},_, such that

(@) A, are finite subsets of A, Aj= {0}, and Fo=F;

(B)A N An= ¢ ifn#m;

(c) For any a € A, there are oy, ..., ax € A+ such that F,= U}‘leaJ.;
(d)E,, - N F, =V, N V, for any two distinct a, o' € Ay;
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(e) for any strictly decreasing infinite cell sequence F, > F,, > ... there exists x
e Fsuchthat Nns Fy, = {X}.

If these conditions are satisfied, then

(F’ :7: 9 V): (Fa {Fa}aEA, {Va}ae A)
Is called a finitely ramified cell structure.

Notation(5.1.5)[73] . We denote V= Ugeq, Vo Note that V, cVp.g foralln >0
by Definition(5.2.4). We say that F,is an n-cell if o ¢ A,.

Proposition(5.1.5)[218]:[237],[239],[240]. For any x e F there is a strictly
decreasing infinite sequence of cells satisfying condition (G) of the definition. The
diameter of cells in any such sequence tend to zero.

Proof. Suppose x e F is given. We choose F,, = F. Then, if F, is chosen, we
choose F, . to be a proper sub-cell of F, which contains x. Suppose for a moment

that the diameter of cells in such a sequence does not tend to zero. Then for each n
there is x,, e F,_such that lim inf, ..a, d((x,, x) = € > 0. By compactness there is

Y € Mnx1Fy, such that d((y, x) > €. This is a contradiction with the property (G) of
Definition (5.1.4)

Proposition(5.1.6)[218] . The toplogical boundary of F, is contained in V, for any
o €A

Proof. For any closed set A we have 0A= A N Closure (A°), where A° is the
complement of A. If A= F, is an n-cell, then Closure (A°®) is the union of all n-cells
except F,. Then the proof follows from property (F) of Definition (5.1.4)

Proposition(5.1.7)[218].The set V= U,e a V, is countably infinite, and F is
uncountable.

Proof. The set V=« is a countable union of finite sets, and every cell is a union of at
least two smaller sub-cells. Then each cell is uncountable by properties (B) and (C)
of Definition (5.1.4)

Proposition(5.1.8)[218]. For any distinct x, y € F there is n(x, y) such that if m >
n (X, y) then any m-cell can not contain both x and y.

Proof. Let By, (x, y) be the collection of all m-cells that contain both x and y. By
definition any cell in  By+1(X, y) is contained in a cell which belongs to Bn(x, y).
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Therefore, if there are infinitely many nonempty collections B (x, y), then there is
an infinite decreasing sequence of cells that contains both x and y .

Proposition (5.1.9)[218]. For any x € F and n > 0, let U,(x) denote the union of
all n-cells that contain x. Then the collection of open sets U ={ Un(x)o}xe F.nso IS @
countable fundamental sequence of neighborhoods. Here B° denotes the
topological interior of a set B.

Moreover, for any x € F and open neighborhood U of x there exist y € V~ and
n such that x € Up(x) < Uy(y) <U. In particular, the smaller collection of open
sets U'= {Un(x) }xev. n=o IS @ countable fundamental sequence of neighborhoods.

Proof. Note that the collection U’ is countable because V- is countable by
Propostion (5.1.16). The collection U is countable because if x and y belong to the
interior of the same n-cell, then U,(x) = Un(y).

First , suppose x € V= Then we have to show that for any open neighborhood U
of x there exists n > 0 such that U,(x) <U. Suppose for a moment that such n does
not exist. Then for any n the set Uy(x) \ U is a nonempty compact set.

Moreover, the sequence of sets {Un(x)\ U} Is decreasing and so has a nonempty
intersection. Then we can choose zN,>oUn(X)\U. and for any n there is an n-cell
that contains bothbx and y. This is a contradiction with Proposition (5.1.12)

Now suppose x ¢ V= Then for any n > 0 there exists y, € V, such that x&
Un(Yn) < Un1(X). Moreover, we can assume also that U,(y,) U Un.1(yn1) for any n
>1. Then we have to show that any open neighborhood U of x there exist n >0
such that U,(y,) < U. Suppose for a moment that such n does not exist. Then the
set U, (yn)\ U is a nonempty compact set. Moreover, the sequence of sets
{Un(yn)\U}s1is decreasing and so has a nonempty intersection. Then we can
choose z € Nps1 Un(yn)\U, and for any n >1 there is an (n-1) — cell that contains
both x and z. This is a contradiction with Proposition (5.1.12).

We assume that there is a resistance form on V- in the sense of Kigami [76, 84].
See Definition (5.1.1)For convenience we will denote E.(f, ) = Eva(f, f). Recall
that E(f, f)=1im, € _ Ex(f, f) for any f € Dom £ , where the limit is actually non-
decreasing.

Definition(5.1.10)[218]. A function is harmonic if it minimizes the energy for the
given set of boundary values.
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Note that any harmonic function is uniquely defined by its restriction to V.
Moreover, any function on Vy has a unique continuation to a harmonic function.
For any harmonic function h we have £ g(h, h)= &,(h, h) for all n by [84]. Also
note that for any function g € Dom € we have £y(g, g) < £g(g, g), and a function h
Is harmonic if and only if £, (h, h) = E(h, h).

Let E, (f, f) = (E)v(f, ), where &, is the restriction of £ to F,. Then

€n= D8,

aeh,

Lemma(5.1.11)[218]. If h is harmonic and continuous then

lim >, Eu(hlvar hlva) =0

@ aeAm,XEF

Proof. Let £(h, h) = e >0. It is easy to see that the limit under consideration is
decreasing and so it exists. Suppose for a moment this limit is equal to ¢ > 0.

Without loss of generality we can assume that h(x)= 0 and that |h(y)| >1 for any
y € Vo\{ x }. By Proposition (5.1.5) for any € > 0 there are cells F,_, ..., F,, such
that [h(x) — h(y)| < & for any y € Uj_, Fy, . and Uiz, Fy, contains a neighborhood
of x. Without loss of generality we can assume that V N (U}leaj\{ x})=0.

Let V' =Uj_, Va;i @nd consider the trace of the resistance form on Vo U V.

Obviously if € i1s small then there is a uniform bound for conductances between
point in Vo\ {x } and V'. Then consider changing the values of h on V' to zero.
Inside of U;_, Fajthe energy will be reduced by at least C, since the function is

now constant there. On the other hand, outside of U}leajthe energy increase will

be bounded by a constant times ge. So the total energy will decrease if € is small
enough. This is a contradiction with the definition of a harmonic function, and so
c=0.

Note that the proof works even if V' is an infinite set and so it is applicable to
connected spaces with cell structure, such as the Sierpinski carpet, which is not a
finitely ramified fractal.

Corollary(5.1.12)[218]. If h is harmonic and continuous then there is a unique
continuous energy measure v, on F defined by vn(F.)= Eu(hlva, hlve) for all a
A
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Definition(5.1.13)[218]. We fix a complete, up to constant functions, energy
orthonormal set of harmonic functions hy, ..., hy=|Vo| - 1, and define the Kusuoka
energy measure by

V= vhl. + ...+ vhk.
If Fy < F, , then
Mg, o : 8(Vy) = U(Vy)

is the linear map which is define as follows. If f, is a function on V, then let h; be
the unique harmonic function on F, that coincides with f, on V. Then we define

Ma, (x'f o= hfa|vw .

Thus M,, o transforms the (vertex) boundary values of a harmonic function on F,
into the values of this harmonic function on V,, .We denote M, = M,_,.. We denote
D, the matrix of the Dirichlet form &£, on V,. By elementary linear algebra we have
the following Lemma (see [260] and also [237, 240, 247].

Lemma(5.1.14)[218]: If F, = UF, then

D = % Mg Deg Mo
and

v(Fy,) = Tr M;D,M,.

In particular y is defined uniquely in the sense that it does not denend on the
choice.

_ MgDgMq

We denote Z, 2 F)

if v(F,) #0. Then we define matrix valued functions

Zn(x) = Z,
If v(F,) #0, a € Ajand X € F,\ V,. Note that Tr Z,(x) = 1 by definition.
Theorem(5.1.15)[73]. For v -almost all x there is a limit

Z(x) = limy_., Za(x).
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Proof. One can see, following the original Kusuoka's idea [95, 94], that Z, is a
bounded v-martingale.

One can see that the energy measures v;, are the same as the energy measures in
the general theory of Dirichlet forms [100, 106]. One can also define the matrix Z
as the matrix whose cntrics are the densities

dvi, .

Zij = gy

Using the general theory of Dirichlet forms in [227, 228]. However we give a
different description because the pointwise approximation using the cell structure
Is important in this Theorem.

Definition(5.1.16)[218]. A function is n-harmonic if it minimizes the energy for
the given set of values on V.

Note that any n-harmonic function is uniquely defined by its restriction to V,
Moreover, any function on V, has a unique continuation to an n-harmonic
function. Also note that for any function g € Domé& we have £,(g, 9) < £(g, g), and
a function f is n-harmonic if and only if E.(f, f) = € (f, f).

Recall that R is the effective resistance metric on V=, and that any function in
Dom £ is R-continuous. Let Q be the R-completion of V«Then any u e Dom £
has a unique R-continuous extension to Q. The next Theorem generalizes [240]for
possibly non self-similar finitely ramified fractals.

Theorem(5.1.17)[218]. Suppose that all n-harmonic functions are conditions. Then
any continuous function is R-continuous, and any R-Cauchy sequence converges in
the topology of F. Also, there is a continuous injective map 6: & — F which is the
identity on V-.

Proof. It is easy to see from the maximum principle that any continuous function
can be uniformly approximated by n-harmonic functions, which implies that any
continuous. Suppose for a moment that {xx} is an R-Cauchy sequence in V=~ which
does not converge. By compactness, it must have a limit point say x . There is n
and two disigint of {x«},say {y«}-

Theorem(5.1. 18)[218]. Suppose that all n-harmonic functions are continuous.
Then € is a local regular Dirichlet form on Q (with respect any measure that
charges every nonempty open set).
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Proof. The regularity of £ is proved in [241]. In particular, Dom £ mod
(constants)is a Hilbert space in the energy norm. Note that the set of n-harmonic
functions is a core of € in both the original and R-topologies. Also note that if a set
Is R-compact then it is compact in the original topology of f by Theorem (5.1.17)
Suppose now f and g are two functions in Dom £ with disjoint compact supports.
Then, there is n and a finite number of n-cells Fy, ..., Fu such that U}‘le(Xi
contains the support of f but is disjoint with the support of g. Then it is easy to see
that for any m> n we have En(f, g) = 0 and so E(f, g) = 0.

Definition (5.1.19)[218]. We say that f € Dom £ is n- piecewise harmonic if for
any a € A, there is a (globally) harmonic function h, that coincides with f on F,.

Note that, by definition, the notion of n-piecewise harmonic functions in
general is more restrictive than the more commonly used notion of n-harmonic
functions defined in the pervious section.

Definition(5.1.20)[218]. We say that the resistance form on a finitely ramified
fractal is weakly non degenerate if the space of piecewise harmonic functions is
dense in Dom &.

The notion of weakly nondegenerate harmonic structures was studied in [87] in
the case of p.c.f. self-similar sets.

Assumption (WN). In what follows we assume that the resistance form is weakly
nondegenerate.

Proposition (5.1.21)[218]: The (WN) assumption implies supp(v) = F.

Proof. Our definitions imply that for any cell F, there is a function of finite energy
with support in this cell. If it can be approximated by piecewise harmonic
functions, then v(F,) > 0.

Theorem(5.1.22)[218]. Let F, be the factor-space (quotient) of F obtained by
collapsing all cells of zero v-measure. Then F, is a finitely ramified fractal with the
cell and vertex structures naturally inherited from F.

Proof. The only nontrivial condition to verify is that any cell of F, has at least two
boundary points. The maximum principle implies that a cell F, has a positive v-
measure if and only if there is a harmonic function which is non constant on V,,.

Definition(5.1.23)[218]. If f is n-piecewise harmonic then we define its tangent
Tan, f for a € A, as the unique element of £(V,) that satisfies two conditions:
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(i) if hy, Tan is the harmonic function with boundary values Tan,f then hy .,
coincides with fon Fg;

(if)hy, Tan has the smallest energy among all harmonic functions h, such that h,
coincides with fon F,.

We define L% as the Hilbert space of £(V,)-valued functions on F with the norm
defined by

||U||i% = [, (u, Zu)dv.

Definition(5.1.24) )[218]. If f is n-piecewise harmonic then we define its gradient
Grad f as the element of L% if x € F,and a € A,

Lemma(5.1.25) )[218] . If f is n-piecewise harmonic then E(f, f) — |||Grad fllﬁ% :

Proof. Follows from Lemma (4.1.14).

Theorem(5.2.26 )[218] . Under the (WN) assumption Grad can be extended from
the space of piecewise harmonic functions to an isometry

Grad: Dom £ — £2,
which is called the weak gradient.
Proof. The statement follows from Lemma (4.1.25).and the (WN) assumption.
Corollary(2.1.27) )[218]. Under the (WN) assumption we have
Ve <<
forany f € Dom €.

Proof. The statement follows from Theorem (5.2.26 ).It can be obtained directly
from the (WN) assumption, or the general theory of Dirichlet forms [100, 106].

Conjecture(5.1.28 )[218] . We conjecture that the assumption supp (v) = F is
equivalent to the (WN) assumption for all finitely ramified fractals.

Conjecture(5.1.29) )[218] . We conjecture that for any finitely ramified fractal t
all x.

The next Proposition follows easily from our definitions. It means, in particular,
that Conjecture (5.1.29) ) implies Conjecture (5.1.28).
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Proposition(5.1.30) )[218] . If supp(v) = F and rank Z(x) = 1 for v-almost all x
then the To define harmonic coordinates one needs to chose a complete, up to
constant functions, set of harmonic functions hy, ..., hy and define the coordinate
map ¥: F — R* by ¥(x)= (hy(x), ..., h(X)). A particular choice of harmonic
coordinates is not important since they are equivalent up to a linear change of
variables. Below we fix the most standard coordinares which make the
computations simpler.

Definition(5.1.31)[218]. Let Vo = {vi,..., Vm} and let h; be the unique harmonic
function with boundary values h;(vi) = &; ;. Kigami's harmonic coordinate map y:F
—R™ is defined by y(x) = (hy(X), ..., hn(X)).

Lemma(5.1.32)[218].

(1)  Anysety(F,) is contained in the conver hull of ¥(Vy).

(i) A sety(F,) has at least two points if and only if ¥(V,) has at least two
points.

(iti) (i) If on Fy =y (F) we define a cell structure that consists of all sets
y(F,) that have at least two points, then conditions (A) (E) and (G) of
Definition (5.1.4) are satisfied.

(iV) |If for all n and for any two distinct a, a' € A we have
l/)(Fa‘) N l/)(Fa) = l/)(va‘) N l/)(va)’

then Fy - y(F) is a finitely ramified fractal with the cell structure defined in Item
(iii) of this Lemma.

Proof. The maximum principle implies that y(F,) is contained in the convex hull
of w(V,), which implies the other statements.

Theorem(5.1.40)[218] . ¥: F — Fy = y¥(F) is a homeomorphism if and only if for
any o € A the map /|y, IS an injection, and

l/)(Fa' N Fa) = l/)(Fa‘) N l/)(Fa)
for all o, o' €A.

Assumption (HC). In what follows we assume that yv: F — Fy = y(F) is a
homeomorphism.

Proposition(5.1.33)[218]. The (HC) assumption implies the (WN) assumption.
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Proof. It is easy to see that under the (HC) assumption any cell has positive
measure, and that any continuous function can be uniformly approximated by
piecewise harmonic functions. The latter is true because all harmonic functions are
linear in harmonic coordinates, and the maximum principle implies that y(F,) is
contained in the convex hull of y(V,).

Theorem(5.1.34)[218]. Under the (HC) assumption we have that if f is the
restriction to F of a C'(R™) function then f € Dom & , and such functions are dense
inDom £ .

Moreover, if f € C* (R™) then

in the sense of the Hilbert space L2. In particular we have the Kigami formula

E(f, 1) IVFIIZ == [ (Vf,2Vf) dv
forany f e C*(R™).
Proof. In fact, we will prove this result for a somewhat larger space of functions.

We say that f is a piecewise C' — function if for some n and for all o € A, there is
foe CH(R™ such that f or, = f |rs . In particular, a piecewise harmonic function is
piecewise C'.

If g is a linear function in R™ then glvo = Vg since we identify £(Vo) with R™ in
the natural way. Therefore for any piecewise harmonic function f we have Grad f
= Vf in the sense of the Hilbert space L2.

Any C'- function is a piecewise C'- function, and any piecewise C'-function
can be approximated by piecewise harmonic (that is, piecewise linear) functions in
C! norm. Thus, to complete the proof we need an estimate of the energy of a
function in terms of its C' norm, provided by the next simple Lemma (5.2.44)

Lemma(5.1.35)[218]. If f is the restriction to F of a C'(R™) function then
En(f, ) SVEIFIIE(R™) (1)
and the same estimate holds for |e(f, f)|.

Proof. By Definition [237, 240] of £, we have that
En(f, )= Tayevn Caxf ()= ()’ <

122 (R™) S yev, CnxyX = VI = IF 12 (R™IV(F) . 2)
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[227].[228] The energy measure Laplacian can be defined as follows. We say
that f € Dom A, if there exists a function A, f € L2 such that

E(f, 9) = - lr gA fdv 3)

for any function g € Dom & vanishing on the boundary V. By [84]. The Laplacian
Ay is a uniquely defined linear operator with Dom A, « Dom €. In fact Dom A, is €
-dense in Dom ¢, and is also dense in L2 . The Laplacian A, is self-adjoint with,
say, Dirichlet or Neumann boundary conditions. Formula (3) is often called the
Geuss-Green formula Extensive information on the relation of a Dirichlet form.

Theorem(5.1.36)[218].. Under the (HC) assumption we have that if f is the
restriction to F of a C* (R™) function then f € Dom A,, and such functions are & -
dense in Dom A,. Moreover, v-almost everywhere

A,f = Tr (ZD?f)
where D?f is the matrix of the second derivatives of f.
Proof. We start with defining a different sequence of approximating energy forms.

In various situations these forms are associated with so called quantum graphs,
photonic crystals and cable systems. If f € C' (R™) then we define

gr? (f, g):Zx,ernCn,x,ygg,y (f, f)

where

2, (f. )= [y Gf (x(L- 1) + ty))?dt

is the integral of the square of the derivative
SFxA-Y+ty) =(Vf (- 1)+ ty),y —x)

Of f along the straight line segment connecting x and y. Thus 8,33,( f, f) is the
usual one dimensional energy of a function on a straight line segment. If fis linear
then «Sgy( . f) = (f (X) = f ()% Therefore if f is piecewise harmonic then 833,
f,f)= 833, ( f, f) for all large enough n. Also 833, satisfies estimate (1) Therefore
for any C'(R™) — function we have

lim £2,(.1) = &(f.1)

n—-0o
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by Theorem (5.2.34)

It is easy to see that if g is a C'(R™) — function vanishing on V, and f is a C*(R™)
— function then

£y (£, 0) = Ty evm Crxy [7 G010 + ty) (G FO(1-0) + ty)) ot

because after integration by parts all the boundary terms are canceled. Then if «
A, then

d2
Yxyeva Cn XY 32 f (xX(1-t) +ty) =

nyeVa n, X, yZU 1 2] f(x(1-1t) +ty)(yi- Xi)(Yj B Xj)
=Tr(MzDy Mo(D? f (Xa) + Ra(X, ¥, t, f, 01, X))
where x, € V, and

lim [Ra(X, ¥, t, f, &, Xo)| =
n—oo

Uniformly ina € An, X, Y, X, € F, and t e [0, 1], which completes the proof. Note
also that one can obtain an estimate similar to (1). as in Corollary (5.1.37)

Corollary(5.1.37)[218]. Under the (HC) assumption, A, f € L*(F) for any f e C?
(R™).

Corollary (5.1.38)[218]. If f is the restriction to F of a C%(R™) function, and g is
the restriction to F of a C' (R™) function vanishing on the boundary, then

[en(f, O < VB)lIgllcgmllf ¢, ®m)
And the same estimate holds for |e(f, g)|.
Proof. This estimate follows from the proof of Theorem (5.2.46)

Definition(5.1.39)[218].[234],[235],237],240]. A compact connected metric space
F is called a finitely ramified self-similar set if there are injective contraction maps

lPl. ceey \l/m: F_)F

and a finite set Vo € F such that



and for any n and for any two distinct words w, w' e Wn = {1, ..., m}" we have
F(u ﬂ F(u‘ = Vu)ﬂ Vu)‘ )

where F, = y(F) and V,, = vy, (Vo). Here for a finite word ® = o1 ... ®, € W, we
denote

Vo= L|Jw10 - 0 Lljwn
The set Vy is called the vertex boundary of F.

Proposition(5.1.40)[218]. A finitely ramified self-similar set is a finitely ramified
fractal provided V, has at least two elements.

We have A, =W, forn>1and A= {0} U W-x, where Wx= U p>; W,.

Proof. All items in Definition (5.1.4) are self-evident. Note that item (B) holds
because each cell is connected and has at least two elements, and the intersection
of two cells is finite. Item (G) holds because ; are contractions.

Definition(5.1.41)[218]: A resistance form & on Vx, is self-similar with energy
renormalization factors p= (py, ..., pm) if for any f € Dom € we have

E(f, f) = ZiZ1 pie(fi, fi)- (4)
Here we use the notation f, = foy, for any ® € W*.

The energy renormalization factors, or weights, p = (p1, ..., pm) are often also
called conductance scaling factors because of the relation of resistance forms and

. . . . 1
electrical networks. They are reciprocals of the resistance scaling factors r; = o
j

Definition (5.1.42)[218] . For a set of energy renormalization factors p = (py, ...,
pm) and any resistance form gy on Vy define the resistance form W¥,(g) on V; by

¥y (e0) (f, ) = XiZ1 pi &0(0i, 91,
where
_ -1
6= J llPi(Vo) 0%~
Then A(go) is defined as the trace of Wp(gg) On Vo :
A(So) = Tracyg \Pp(So).

The next two Propositions are essentially proved in [76, 84, 86].
164



Proposition(5.1.43)[218]. If € is self-similar then gy = A(gg).

Proposition(5.1.44)[218]. If & is such that &g = A(gg) then there is a self- similar
resistance form ¢ such that g Is the Trace of € on V.

Theorem(5.1.45) [218]. On any self-similar finitely ramified fractal with a self-
similar continuous. Since all y; are contractions, there is n such that any n-cell
contains for any ® € W, and any harmonic function h we have

max h(x) min h(x)

|max h(x)_ min h(x)
x €EE, x €EE,

> (1-
X €EF X €EF = ( 8)|

Then for any positive integer m and any w € Wp,, we have

|max h(x)_ min h(x)| o (1—gm |max h(x) min h(x)
xX€EF xeF I x €E, x €E,

We conjecture that the many other results of [76, 84] on the topology and analysis
on p.c.f. self-similar set hold for finitely ramified self-similar sets as well. The next
Theorem is one of these results. Following [75, 84], we say that the self-similar
resistance form is regular if p; > 1 for all i.

Theorem(5.1.46)[218].1f a self-similar resistance form on a self-similar finitely
ramified.

Proof. If diam g(.) denotes the diameter of a set in the effective resistive metric R,
and py, = py, .--pw,, forany finite word w3=w; ... w, e W, then

diam R(F) > p,,diam R(F)
by the self-similarity of the resistance form and the Definition of the metric R.

Definition(5.1.47)[73]. The group G is said to act on a finitely ramified fractal F if
each g € G is a homeomorphism of F such that g(V,) =V, for all n> 0.

Proposition (5.1.48)[73] . If a group G acts on a finitely ramified fractal F then
for each g € G and each n-cell F,, g(F,) is an n-cell.

Proof. We have that n-cells are connected, have pair wise disjoint interiors, and
their topological boundaries are contained in V,, which is preserved by g by
definition.

Theorem(5.1.49)[218]. Suppose a group G acts on a self-similar finitely ramified
fractal F and G restricted to V, is the whole permulation group of V. Then there
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exists a unique, up to a constant, G-invariant self-similar resistance form & with
equal energy renormalization weights and

Eo(f, f) = Zxyer,( f ()= f 1) ()

Proof. It is easy to see that, up to a constant, E, is the only G-invariant resistance
formon V. Let py = (1, ..., 1). Then A(gp) is also G-invariant and so gy = cTrace v
W, (o) for some c. Then the result holds for p= cp; by Proposition (5.1.43) and
Proposition (5.1.44)

An n-cell is called a boundary cell if it intersects V,. Other wise it is called an
interior cell. We say that F has connected interior if the set of interior 1-cell is
connected, any boundary 1-cell contains exactly one point of V,, and the
intersection of two different boundary 1-cells is contained in an interior 1-cell. The
following theorem is proved in [85] for the p.c.f. case, but the proof applies for
self-similar finitely ramified fractal without any changes.

Theorem(5.1.50)[73]. [231]. Suppose that F has connected interior, and a group G
avts on a self-similar finitely ramified fractal F such that its action on Vj is
transitive Then there exists a G-invariant self-similar resistance form €.

Other results in [231] also apply for self-similar finitely ramified fractal.

Example(5.1.51)[218]. (Unit interval). The usual unit interval is a finitely ramified
fractal. In this case V=~ can be countable dense subset of {0, 1}. The usual energy
form

1 1
e(f, =11 OF dt
satisfies all the assumptions of our paper. The energy measure is the Lebesgue.

Example (5.1.52)[218] . (Quantum graphs). A quantum graph, a collection of
finite number of point in R™ joined by weighted straight line segments (see [245,
246] and also the proof of Theorem (5.1.36) is a finitely ramified fractal. The usual
energy form on a quantum graph, which is the sum of weighted standard one
dimensional forms on each segment, satisfies all the assumptions of our Section.
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FIGURE 1. Sierpinski gasket in the standard harmonic coordinateski

Example (5.1.53)[73].(Sierpinski gasket). The Sierpinski gasket is a finitely
ramified fractal. The standard energy form [236, 237, 240] on the Sierpinski gasket
satisfies all the assumptions of our section. The Sierpinski gasket in harmonic
coordinates, see Figure 1, was first considered in [238], where the statement of
Theorem (5.1.34) was proved in this case. The statement of Theorem (5.1.36) was
announced in [261]. without a proof. In the case of the standard energy form in the
Sierpinski gasket Conjecture (5.1.29) was proved in [247]. The fact that the energy
measure is singular with respect to any product (Bernoulli) measure was proved in
[247, 226, 232, 233].
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Example(5.1.54)[218] . (The residue set of the Apollonian packing). It was proved
in [261] that the residue set of the Apollonian packing, see Figure 2. is the
Sierpinski gasket in harmonic coordinates defined by a non self-similar resistance
form. This resistance form satisfies all the assumptions of our section, including
the (HC) assumption.

Example(5.1.55)[218] . (Random Sierpinski gasket). In [253] a family of random
Sierpinski gasket was described using harmonic coordinates. Naturally, the results
of this section apply to these random gaskets, and the (HC) assumption is satisfied
due to the way in which these gaskets are constructed. Also, many examples of
random fractals in [80, 81] satisfy the (HC) assumption, although the harmonic
coordinates were not considered explicitly.

Example(5.1.56)[218] (Hexagasket). According to [260], the Hexagasket satisfies
the (WN) assumption but not the (HC) assumption. However, by small
perturbations of the harmonic coordinates one can construct two functions of finite
energy which map the hexagasket into R?> homeomorphically. Then the conclusion
of Theorems (5.1.15) and (5.1.34)will hold because of the general theory of
Dirichlet forms in [227, 228] However Theorem (5.1.36)will not hold unless these
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coordinates are in the domain of the domain of the energy Laplacian, which is
difficult to verify.

Example(5.1.57)[218]. (Quotients of p.c.f. fractals). If we consider quotient of a
p.c.f. fractal defined by its space of harmonic functions, and conditions of Theorem
(5.1.32) are satisfied (see also Theorem (5.1.18)then we have a finitely ramified
fractal which satisfies the (HC) assumption by Definition.Note that this set is not
self-affine. In harmonic coordinates the Hexagasket is represented as a union of a
Cantor set and a disjoint union of countably many closed straight line intervals.
One can show that the energy measure of this Cantor set is zero, and in fact the
energy measure is proportional to the Lebesque measure an each segment. Note
that in the limit no two intervals graph. In this case a three point boundary, see
[258, is chosen so that the resulting fractal can be embedded in R?. For a different
choice of the boundary the local structure of the fractal in harmonic coordinates is
the same.

Example(5.1.58)[218] . (Vicsek set). Vicsek set (see, for instance, [89] is a finitely
ramified fractal which does not satisfy the (WN) and (HC) assumptions. In
harmonic coordinates it is represented by four straight line segments graph with
five vertices and four edges, which is not homeomorphic to the Vicsek set.
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FIGURE 3. A regular post-critically infinite fractal and its first approxir'r'\ation.
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Example(5.1.59)[218] . (Post-critically infinite Sierpinnski gasket). The post-
critically infinite Sierpunski gasket, but is not a p.c.f. self-similar set. More
exactly, its post-critical set defined in [237, 241] is countably infinite, and each
vertex Vv e V= is an intersection of countably many cells with pairwise disjoint
interior. This fractal satisfies Definition (5.1.39) and can be constructed as a self-
affine fractal in R? using nine contractions, we also sketch the first approximation
to it in harmonic coordinates. In particular, shows the values of a symmetric and a
skew-symmetric harmonic functions. By Theorem (5.1.49) one can easily construct
a resistance form such that for any n the resistance are equal to (50/ 53)" in each
triangle with vertices in V. The energy renormalization factor is 53/ 50 =p; = ... =
po. The fact that this factor is larger than one is significant because it implies that
the harmonic structure is regular by Theorem (5.1.46), that is Q = F. By Theorem
(5.1.32), this resistance form satisfies all the assumptions, including the (HC)
assumption.

Example(5.1.60)[218]. In the end we describe two more examples of post-
critically infinite finitely ramified fractals, which are shown in Figures 3 and 4. In
these examples for any n there are n-cells which are joined in two points. Both
fractals satisfy Definition (5.1.39).And can be constructed as a self-affine fractal in
R? using six contractions. In particular, one can see the values of symmetric and
skew-symmetric harmonic functions on each fractal. By Theorem (5.1.49) one can
easily construct resistance forms such that Fg is given by (52)By Theorem (5.1.32),
these re an elementary shows that the common energy renormalization factor in
(51) is 5/4, and so the resistance form is regular. In the case of the fractal in Figure

4., the calculation shows that the common energy renormalization factor in (51)is
4/5, and so the resistance form is non regular.
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FIGURE 4. A non regular post-critically infinite fractal and its first approximation.
Sec(5.2) Derivatives on p.c.f Fractals

For the last twenty years a theory of analysis on fractals has evolved, with the
construction of Laplacians and Dirichlet forms as cornerstones. There is both a
probabilistic approach, where the Laplacian is constructed as an infinitesimal
generator of a diffiusion process, and an analytic approach where the Laplacian can
be defined as a limit of difference operators. In this section we will work in the
context of post critically finite (p.c.f.) fractals, for which Kigami laid the
foundations of an analytic theory[236,237,238,239].

We consider one of the most fundamental topics in analysis; the local structure
of smooth functions.This is not only an interesting matterbas such, it also shed
light on an important phenomenon that does not occur when the underlying set is
smooth.

In classical analysis any two points in the interior of the considered set have
homeomorphic neighborhoods. This is not the case in analysis on fractals. Some

points, called junction points, are boundary points of several copies of the self-
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similar set and neighborhoods of such points are different from those at
nonjunction points that have a canonical basis of neighborhoods consisting of
copies of the self-similar set. However, although two nonjunction points x, x have
bases of homeomorphic neighborhoods, the homeomorphisms do not in general
map x onto x’.

It turns out that, as a consequence of the above, the local behavior of functions
depend on the point under consideration. This geography is destiny principle, that
has no analog whatsoever in analysis on smooth sets, were proven for harmonic
functions on the Sierpinki gasket by Oberg, Strichartz and Yingst in [267].
Restriction to the canonical neighborhoods will, for most harmonic functions, line
up in the same direction, a direction that depends on the point, or rather the
neighborhood. This property follows from theorems on products of random
matrices since the restrictions to the canonical neighborhoods are given by linear
mappings.

We will show that the geography is destiny principle extends to order fractals
and to larger classes of functions with certain smoothness properties.

Generally speaking, the notion of smoothness of function addresses the degree
of differentiability of the function and its derivatives. Since the basic differential
operator in analysis on fractals is the Laplacian, the term smooth has mostly been
used for a function f in the domain of the Laplacian, It has also been used to refer
to those f for which AXf is continuous for some or all k.

On the other hand, in the classical calculus a differentiable function locally
behaves like an affine linear mapping. In fractal analysis the analogs of such
mappings are the harmonic functions, and from this point of view we make a
natural definition of a derivative, and thus a concept of differentiability, of a
functions with respect to a harmonic function. This gives us wider classes of
functions with some degree of smoothness for which we can prove geography is
destiny. We also relate this derivative to the gradient defined by the second author
[260].

Our results concerns generic, with respect to a self-similar measure, properties
of the local behavior of smooth functions at nonjunction points. It would be
interesting to know if the same properties hold generically with respect to the
Kusuoka energy measure [247, 260]. Local behavior at junction points were
studied in [256].
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It is likely that our results can be extended to the category of self-similar finitely
ramified fractals in [218].

We need to fix some notation, and at the same time recall some of the basic
results of the theory. We refer to the books by Kigami [240] and Strichartz [258]
for the whole story.

Positive constants in estimates will be denoted by C. The value of C might thus
change from to line.

F will denote a, p.c.f. self-similar fractal, or post critically finite self-similar set,
as defined in [240]. By is a compact connected metric space and there are
contractions y¥; Y,:F — F such that

F=UZ, ¥; (F), (6)

and a finite set Vo c F such that for any n and for any two distinct words w,w’ €
W= {1,..., m}" we have

E, NF, -V, OV, (7)
Where E,, = ¢, (F) and V,, =y, (Vo). Here for a finite word w = w; ... w,EW,,

We denote
Yw =9y, 0.y, = (8)

We call E,,w € W, a cell of level n. If f is any function defined on F we use
notation f,,= f o i, for its restriction toF,,.

The set Vq is called the boundary of F and consequently points in Vq are
referred to as boundary points. The fractal F is p.c.f. self- similar fractal if every
boundary point is contained in only one 1-cell. We denote the number of boundary
points by N, and will assume that N, > 2. A point x € F is called a junction point if
x €E,N €E,, fortwo distinctw, w'eW,.

Define Vn: UweWn VW V.= Unzl Vn and M/* :Unzl Wn. Ifw= Wq ... W € M/*
we say that |w| = K is the length of w. It is easy to see that V« is dense in F. Note
that, by definition, each y; maps V- into itself injectively.

Let Q= {1, ...m}" be the space of infinite sequences w = wyw, ... and W,= {1,
..., m}" the set of finite words in letters «v€ W= {1, ..., m}. For any w € Q let
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[W]n=w; ... w, € W, and [W], k=W p+1... Wk € Wk, , K> n, These notations will be
used also for w eWx and K<n <jw |.

There is a natural continuous projection n: Q— F defined by
T[(W): nnzO I:[W]n ] (9)

and n{ x } is finite for any x by the p.c.f. assumption. Moreover, n{X} consists
of more than one element if and only if x is a junction point . In case x is not a
junction point we can therefore define = {x},, [w], and [x]nk = [W]nk if x = m(W).

In particular, {x},, is well defined for any x ¢ V-.

We assume that a harmonic structure, as defined in [12], is fixed on the p.c.t.
self-similar structure. This will give rise to a self-similar Dirichlet (resistance,
energy) form

e(f)= Xty pie(f, /)= Xwewn Pwe(fw, fu)- (10)

Here pw= Pw,, ---» Pw, Where p= (py, ... ,pm) are the energy renormalization factors.
The energy renormalization factors, or weights, are often called conductance
scaling factors because of the relation of resistance forms and electrical networks.
They are reciprocals of the resistance scaling factors rj= 1/p;. We will always
assume that the resistance form is regular, i.e. p; >1, j=1, ..., m.

The domain, Dom g, of € consists of continuous functions such the energy, &(f)=
e(f, f) <o

A function on F is harmonic if it minimizes the energy for the given set of
boundary values.

Harmonic functions are uniquely defined by their restrictions to V, and we
often, for convenience, identify the space of harmonic functions with the Npg-
dimensional space (Vo) of functions on V.

The restrictions of a harmonic function to cells of level 1 give rise to linear
mappings A;, i= 1, ..., mon I(V,) through Aih= h; o y;. The restrictions to smaller
cells are given by products of these matrices since h,= h o y,= Ayh, where A,=
Ay, ... Ay, for wew,

Constant functions are harmonic so constant functions on 1(Vy) will be
eigenvectors of all the mappings A;, i= 1, ..., m with the corresponding eigen value
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equal to 1. To study the local behavior of harmonic functions it is therefore useful
to factor out the constant functions. Denote by # the space of harmonic functions
such that Y,ey, h(q) =0 and define operators A', i= 1, ..., m on 3 by A'=
Py AP Py , where Ps is the projection of (Vo) onto H given by Psyh= h-
Y.qevo h(q). Note that each A; commutes with Py .

We will from now on assume that the matrices A; are invertible, which implies
that A', are invertible. This is an underlying assumption in the theory of product of
random matrices that we will use. It is equivalent to that the restriction of a
nonconstant harmonic function to any cell is itself nonconstant. Harmonic
structures with this property are called nondegenerate. To see what the local
behavior of harmonic functions on a degenerate harmonic structure might be like,
there is an interesting study in [267] on the case of the hexagasket.

For any function f defined on Fwe will denote by Hf the unique harmonic
function that coincides with f on the boundary.

Given a finite nonatomic measure p on F with the property that u(O) >0 for any
nonempty open set O there is a Laplacian A, that is an unbounded operator defined
on a dense set of continuous functions by

(U, V)= - Jr uA vdp (11)

for any u € Dom & with u|vo= 0. In this section we will always assume that A,v €
L™(F). Functions with this property is denoted Dom _,Au but we will in what
follows omit the index L. We will also always assume that p is self-similar, i.e.
that there are real numbers ; , i= 1, ..., m such that p(F,)=1.

Harmonic functions are exactly those for which A,h= 0. It should be noted that
even though the Laplacian depends on the measure p, the set of harmonic functions
only depend on the harmonic structure.

There is a Green's operator

Gu(x)= Ik g(x, y)u(y)du(y) (12)

acting on L”*(F) such that -AGu= u, and Gu|Vo= 0. Thus, any function fe
DomA,can be written f = Hf — Gu. The Green's function g(x, y) is continuous for
regular harmonic structures.

We next define some regularity classes of functions on F.
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Definition(5.2.1)[262]. We say that f €CX(#() if there are harmonic functions h;,
..., h€X and u eC(R") such that f = u(hy, ..., h). We say that f eC*(Dom A,,), if
there are gy, ...,g1 € Dom A,and ueC*(R') such that f = u(gy, ..., gi).

Note that whereas C<(Dom A,) and C(#H) are multiplication domains, in
general Dom A,is not by [264, 232, 233] . Also note that by definition c(#H)U
Dom A,c C*(Dom A)).

There are several approaches to define derivatives on a p.c.f. fractal F. A weak
gradient was studied by KusuoKa in [247, 248]. A stronger notion of gradients and
tangents was considered in [256, 260] by Strichartz and the second author. In this
section we introduce the following definition.

Definition (5.2.2)[262 ]. Let f and h be real valued functions on a p.c.f. fractal F,
and suppose h is continuous at x € F. For S € F let Oscsh= supy ,es|h(y)- h(x).

Then we say that f is differentiable with respect to h at a nonjunction point X if
there is a real number z—i(x) such that

F0)= £ () + Z(h(y) - h(x)) + oscpy, (13)

where n is such that y € Fpqn, and at a junction point x if

fO)=1 (x) + z—i(x)(h(Y) = h(x)) + 0scy, () (h) y-x (14)

where Uy(x) is a canonical basis of neighborhoods and n is such that y € U,(x).
Naturally, z—i(x) Is called the derivative of f at x with respect to h.

It is easy to show usual properties of the derivative 3:](’5)’ such as sum, product,
ratio and chain rules. Also if f is differentiable with respect to h at x, then f is
continuous at x. For later use we formulate the following version of the chain rule.

Proposition (5.2.3)[262 ]. Suppose fj: F — R, j=1, ..., | are differentiable with
respect to h at x and that g: R' — R is in C'(R'). then g(f4, ..., fi) is differentiable
with respect to h at x and

d@U1.. 1) \_ i O of j
%(X)—Z}ﬂa—]‘?j 1o f1) (). (15)
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We will only use Definition(5.2.2) for h harmonic. Harmonic functions are
the natural choice with respect to which one should differentiate since they are, in a

sense, the analogues of linear functions on the interval. In fact, we will only
af _ _df
d(h+c) dh

maximum and minimum of a harmonic function is always attained on the boundary
and we can therefore replace OSCF[x]nh[x]n by [|A g, Il in(13)

differentiate with respect to h € H since for any constant c. The

We state the results on products of random matrices that will be used
subsequently and we formulate a condition on the harmonic structure that is
necessary to apply most of these results. We also state two main assumptions, a
weak and a strong, on the self-similar measure. Each of these is precisely the
condition, the weak one for the derivative and the strong one for the gradient, that
allows one to say that on sufficiently small cells the influence of Hfj,; dominates

the term from the Green's function p a.e. . This is the basis of essentially all of the
results that do not follow directly of the theory on products of random matrices.

We prove that a function f € C*(H) is differentiable with respect to arbitrary
nonconstant harmonic functions p. a.e. (see Theorem (5.2.23) Then, according to
Definition (5.2.2) the function f behaves as a function of one variable up to smaller
order terms. This means, in a sense, that the space F is essentially one dimensional.
We then prove, under the weak main assumption, the same result for any
function f €C'(Dom Au) in Theorem (5.2.24) We also prove an analog of
Fermat's theorem on stationary points and discuss the relationship between our
derivative and local derivatives defined at periodic points in [263, 265].

We prove the “geography is destiny” principle for smooth functions on the set
where the derivative is different from zero and then use this to prove a result on the
local behavior of the eccentricity for functions defined on fractals with three
boundary points. The concept of eccentricity was introduced and studied for
harmonic functions on the Sierpinski gasket in [267] and were studied for larger
classes of functions in [254].

We relate the derivative to the gradient defined in [256, 260] under the strong
main assumption. Using this relation and technical results from the theory of
products of random matrices we are also able to show geography is destiny on the
set where the gradient is different from zero.
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Since our aim is to describe the local behavior of functions with certain
smoothness properties with that of harmonic functions it is essential to understand
their local structure.

If x € F is a nonjunction point it is contained in a unique sequence of cell F x ,
and the local behavior of harmonic functions at x is given by the properties of the
products A'f,; | . The generic local behavior of harmonic functions with respect to

a self-similar measure p will thus be governed by the product of i.i.d. random
matrices. We define random matrices.

Mn(x): A,[x]n
on the probability space (F, p) with the Borel sigma-field. Note that we have
P[My= A", 1= py,

and the random matrices M, are products of i.i.d. random matrices with a common
Bernoulli distribution given by

P[Mi= A= Wi, i=1, ... ,m. (16)

In the 60s and 70s a theory of products of random matrices, as a natural
generalization of the classical limit theorems to products of i.i.d. invertible
matrices, was developed by Furstenberg, Kesten, Guivarch, le page, Raugi,
Osseledec et al.

In this section results and concepts from this theory that we will rely upon are
summarized. They can all be found in [266], where the reader will find references
to the original sources. However, we start by introducing the following notation.

The next Lemma collects some properties of the notion @(a"). As the proof is
elementary we omit it.

Lemma (5.2.4)[ 262]. Suppose C,= @(a") and d,= @(b"). Then the following
properties hold.

(i) 1cy= B((1/a)")
(i) cadn= @((ab)")

(i) X< cn is B(@") if a>1, O(L) if a<1 and B(L) if a=1.
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(V) Xnsn €= @(aN) if a<l.

Moreover, ¢,=@(a") if and only if c,= o((a+ €)"= o((a- €)" = o(c,) for any >0 but
C,= 0(a") is not equivalent to C,= O(a").

Throughout the rest of this section Y€ GI(R, d), n>1, will be any sequence of
I.i.d. invertible d x d random matrices with common distribution M and S,= Y, ...
Y1.We also suppose the support of M is finite since this obviously holds for M,
with distribution given by (16 ). It should be noted that the results we present do
not depend on the particular norms chosen on R and GI(R, d).

Theorem(5.2.5)[262 ]: [266] Let a;(n) > ay(n) >... > aq(n) >0 be the square roots
of the eigenvalues of (Yo, ... Y1) (Ya ... Ya).

Then there are numbers o= a3 > 0, > ...> 0y = a- >0 such that with probability one
ap(n)=O(az ), p=1,...,d (17)

and moreover
ISall= 1Y - Yall= @(ak) (18)

Definition(5.2.6)[262 ]: Let au=01> 0, > ... > a9 = a- >0 be as in Theorem (5.3.5
)-The numbers log a,, p=1, ..., d are called the Lyapunov exponents associated to
Y. The upper, respectively lower, Lyapunov exponents are log o respectively log

o

It is clear that the Lyapunov exponents of y;;! are — log agqy > ... > -log a.. It
should also be remarked that in general some Lyapunov exponents can be - oo,
however this possibility is excluded by the assumption that M has finite support.

Our interest lies in hp,y , i.e. in the long term behavior of Syv, veR! and to

apply the results on products of random matrices it is then necessary to make
additional assumption M, i.e. on the matrices A'j in the fractal setting. We need the
following definition, with are[266 ].

Definition(5.2.7)[262]: A subset S of Gl(d, R) is strongly irreducible if there does
not exist a finite family {L, ..., Lk} of proper linear subspaces of R such that

M(L;UL,U ... ULg)= L UL U ...ULg, (19)

Forany M € S.
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Definition(5.2.8)[ 262] :The index of a subset T of GI(d,R) is the least integer p
such that there exists a sequence M, in T for which ||M||;;1 M, converges to a rank
p matrix. T is contracting if its index is one.

Denote by Ty the smallest closed semigroup that contains the support of M.

Theorem(5.2.9)[ 262 ]: Suppose T, is strong irreducible, then for any v € RY v+
0, with probability one

ISnvl| = @(a}). (20)

Moreover, if T, also is contracting then the two first Lyapunov exponents are
distinct, i.e.,

oL > 0. (21)

For v € RY, v #0, denote by v ' the corresponding element in the real projective
space P(R%), and let & be the natural angular distance in P(RY). For Y € GI(R, d) let
Y .v =YW ePRY.

Theorem(5.2.10)[262]:[266].Suppose Ty is strongly irreducible and contracting.
Then, there is a random direction Z' (depending on S,), such that for anyv,w €

P
StV —Z, (22)
with probability one. If v is not orthogonal to Z, then
1S v I = B(a}), (23)
And if v is orthogonal to Z then

lim sup = log 1S, v || < log 0 (24)

Moreover, for any nonzero v € RY the probability that v is orthogonal to Z is zero.

The next theorem formulates the contraction property that is the basis for the
Geography is destiny principle.

Theorem(5.2.11)[ 262 ]:[266].Suppose T, is strongly irreducible and contracting.
Then forany v.w € P(RY,
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8(Snv S,.Ww)
8(v . W)

= B((ae/ a)"), (25)

With probability one.
In section 6 we will make use of the following.

Theorem(5.2.12)[262]:[266].Suppose Ty is strongly irreducible and contracting.
For any unit vector v € RY there is a > 0 so that

E(log ||Sy v || - n log a)* - na (26)
Converges to a finite limit. Moreover, there exists b > 0 such that for any & >0

lim sup 1
n —>ocon

log P[|log||S|| - n log a+| > ne] < - b, (27)

where E denotes expectation and P probability.

Definition(5.2.13)[262 ]:We say that F satisfies the SC- assumption if the
semigroup generated by the Ay , i= 1, ... , m is strongly irreducible and
contracting.

The index of a set is in general difficult to determine, however in the case of
semigroups there is a useful result in [266].Recall that an eigenvalue A of a matrix
M is a simple if Ker (M- Ald) has dimension one and equals Ker (M- AId)? and it is
dominating if |A| >|A'| for any other eigenvalue A'.

Proposition(5.2.14)[262 ]: A semigroup T in Gl(d, R) which contains a matrix
with a simple dominating eigenvalue is contracting.

Suppose a matrix M € Gl (2, R) has two distinct real eigenvalues. A finite union
of lines invariant under M consists of either one or both of the eigenspaces, so we
have the following.

Proposition(5.2.15)[262 ]: If the boundary V, consists of there points, then F
satisfies the SC-assumption if there is some M, with a simple dominating
eigenvalue and there are two matrices M,, , My, both with two distinct real
eigenvalues and no eigenvector in common.

It is readily verified that for instance the standard harmonic structures on the
Sierpinski gasket, as noted in [267, 256] and the level 3 Sierpinski gasket satisfies
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the SC- assumption. In fact, any nondegenerate structure with D3 symmetry
considered in[268] satisfies the SC-assumption satisfies if o # b where

1 0O O
l-a—-—b a b (28)
11— a-b b a

Is the matrix corresponding to the restriction to a level 1 cell containing one of the
boundary points.

With the SC- assumption one can obtain differentiability results for C*(H’). For
the same results on C'(Dom A,) an additional assumption on the measure p is
needed. we will use another, stronger, assumption on  to have a.e. existence of the
gradient. To this end, we define y by

logy = X7 1w log(r ). (29)
Then

r[x], H[x1an = B(Y") (30)

for p a.e. x, essentially because the probability of occurrence of the scaling factor r;
b. One can see that log 7y 1s the analog of the Lyapunov exponent for the Laplacian
scaling factor rpxy. mxy,,» Which in turn is the product of energy and measure
scaling factors.

Definition(5.2.16)[262]: We will say that (F, p) satisfies the weak main
assumption respectively the strong main assumption if F satisfies the SC-
assumption and

Y < Ot . (31)
respectively
y<a.. (32)

Essentially the weak main assumption says that, p, a.e. , restrictions of
harmonic functions to small cells scale to zero exponentially more slowly than the
Laplacian scale, while the strong main assumption says that extensions of
harmonic functions from smaller to larger cells scale to infinity exponentially
faster than the Laplacian scales.
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It is Known that the Sierpinski gasket with the standard harmonic structure and
uniform self-similar measure satisfies the weak main assumption. It also holds for
the level 3 Sierpinski gasket with the uniform self-similar measure and standard
harmonic structure, which is discussed in detail in [256, 258]. In this case y= 7/90
and of the six restriction matrices three have determinant 7/15% and three have
determinant 8/15°. It is Known that if all determinants equal one, then a,>1. It

follows that for the level 3 Sierpinski gasket a.. > g >y,

It has been shown [ 270,256] that the Sierpinski gasket with standard harmonic
structure and uniform self-similar measure satisfies the inequality,

YO+ < 0(2_ (33)
which is even stronger than (32)

for the standard harmonic structure on the Sierpinski gasket the resistance
scaling factors are all 3/5. Sabot showed in [268] that for small perturbations of
these factors there is a unique harmonic structure on the Sierpinski gasket, see also
[18]. Since the harmonic restriction mappings depend continuously on the
resistances, (33) implies that for small enough perturbations of the harmonic
structure the Sierpinski gasket, with a self-similar measure not far from being
uniform, will still satisfy the strong main assumption.

The following propositions are interpretations of Theorems (5.2.5)-(5.3.10) in
terms of analysis on fractals.

Proposition(5.2.17)[262 ]: For p, a.e. nonjunction point x,

My, b= @(ct). (34)

Proposition(5.3.18)[262]: Suppose F satisfies the SC-assumption and h €H, h #
0. Then a4 >a, and

1apeg, || = (Mg, 2l =0 (), (35)
For p, a.e. nonjunction point x.

Proposition (5.2.19)[262] ; For p, a.e. non junction point x there exists a subspace
H, < H of condimension one such that
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o, ]| =2(aal)), (36)
forh ¢ H, , and
lim supnﬁwilog | My, hll< o2, (37)

forh e H, .Foranynonzerohe H,he¢& Hy ,p,a.e..

The subspace H x corresponds to the orthogonal complement of Z' in Theorem
(5.2.10) we will denote by Hx the orthogonal complement of H, and by P, and
P the orthogonal projections onto H, and H respectively. Also denote by hf
h} and element of - of norm one. The property in Proposition (5.2.19)is what
we will use to prove differentiability so we make the following definition.

Definition(5.2.20) [262]: We say that x € F is weakly generic if there is a subspace
H,cH of co-dimension one such that

M, 2 [|=0l1Mpeg, llnor (38)
forany h € Hy

Proposition(5.2.21)[262] : x € F is weakly generic if and only if there is a
subspace H, < H of co-dimension one such that

M, 2| =0Mpsg llnee (39)

Foranyh'e}(x andh&‘}(x.

: + o

Proof. Necessarily [[Mpq,h_[I = Oy, [l , since if not | My, h||=0(1 Mg, 1ll)
for any h € 7. The proposition follows immediately since if h ¢ H; then P57 h #
0.

Clearly p. a.e. x is weakly generic if F satisfies the SC-assumption.

Proposition (5.3.22)[262 ]: If x € F is weakly generic and f = u(hy, ..., h;) €
CY(#) then % exists for any h ¢ H,; with

du df;

af _ 51 Ou
dh _Zf=1afj dh’ (40)
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If h' € H then

dh/ _ <h’hi >
dh = <hh} >’

(41)

dhr
=0.
dh}

And in particular h'e H if and only if

Proof. Because of Proposition (5.2.3) it is enough to show that % exists foe any h'
€ H. Write h'= a,h + h™ with h" €Hy; . Then since

(h'(y) = N'(x))IFpsq, = ax (h(y) = h(x)) +H(Mpg, A WL, Y) = Mpg, b~ (Wpg, %) (42)

- .. dhrs <h'hi>
it is clear from Proposition (5.3.22)that E(x) == 5o and (41)) follows.

Theorem (5.2.23)[262] Suppose F satisfies the SC-assumption. Then for any
nonzero h € H and any f = u(hy,... , h) € C'(#) we have that %(x) exists for .
a.e. x and is given by (40)

Proof. This follows immediately from Proposition (5.3.20) since p. a.e. x IS
weakly generic.

Lemma(5.2.24)[262]: Suppose u €L™(F) has support in a cell F,. Then
OscFy, GU< CK+L)E, Il (43)
fork=0,1, ..., n=|w|
Proof . It will be enough to show that
[Gu(x) - Gu(x o)l < C(k +1) 717, bw ([l (44)

for x € Fpyp,and xo € Vg, » This can be done by using properties of the Green's
function

9%, ¥)= Yveguw«Tv P H(X), Uy 1 (Y)). (45)

For the exact definition of V¥, see [240]. We only need that it is continuous and
harmonic on 1-cells.

Since we consider points in Fp,; and u has support in F, we are only

concerned about x and y in Fy,,, For those, ¥(y5 " (x), Y5 (y))= 0 in case |v] > k
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and [V]x # [w]k , and in case |v| < k and |w|y; # v. The properties of ¥ also makes
Pyt (xo), Wyly))= 0 forall [v] > k. In all

90, ¥) = 9%, V) <X il P (Wiwy, X0)s Wiwg, V) = P Wiy, X Wiwl,, O]
+ [Zveguwrviwic Paw (), bow W))1 (46)

The difference in the first term is, by the definition of ¥, bounded by a constant
times the difference of the value of 1-harmonic functions at qJ[‘“}]m(xo)the points

and qJ[‘“}]m(x).Both points lie in the cell Fy,, ., and the difference is thus
bounded by a constant times rrp,,) . wmk Since the largest eigenvalue of A', is less

or equal to r; , see [240], and the first term is bounded by CKr[w],. The second
termis 7,1, 9Wiwy, % Wiwg,Y) < 7w /Il and we conclude that

Gu(x) - Gu(x )| < JFlg(x, ¥) = g(x o, Y)llu(y)ldu(y)
<C(k+ Drpue JraU(Y)] dU(y) < Clk+1) 707, Ul (47)

Lemma(5.2.25)[262] . Suppose F satisfies the SC-assumption. Given any non
constant h. h' € H, we have for y, a.e. x € F that

|hlf[n])
|<hh¥>|’
X

VoY) = () = G ) ~ hGo)] < en, x (48)

where
lim sup% log Cx <logas,. (49)

Proof. Let x be such that h ¢ IH;. This holds for p, a.e. x. Since, in the proof of

.. -, h’,h;> -
Proposition (5.2.22) h- = th - <h’h;> P h, it follows from[94] that fory € f,;
. . dhr -
'(y) = h'(x) = —-(h(y) — h(x))| < [[Mpq,, Bl (50)

_ Inlfiny (llM[x]n Pxh'll 1My PxhII )
T I<hhi>| Y |<hhi>| [

Now, by Proposition (5.2.19)
Limy, sup% log||M[,,, h-ll < log a, (51)
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for any h- € }(; . Thus

_ SUp  |IMpy, h-|
=2 h_€H, | (52)

satisfies (49) and (48) follows from (50)

Theorem(5.2.26) [262]: Suppose (F, p) satisfies the weak main assumption and h
IS @ nonconstant harmonic function. Then for p-almost every x the derivative %(x)
exists for any function f = u(g, ..., g)) € C'(Dom Au) and is given by

ag; dh

df
ah Z;l 1 (53)

Moreover, there exists C such that if f € Dom Au, then for u, a.e. x

(A, + IIAfII

i R = EReo+ D/ I g, 1M1, DL (64

Proof. In view of Proposition (5.2.3)it is enough to suppose f € Dom Ap. It is clear
from Theorem (5.2.23) that we can suppose f = G,. We also assume x € F is

: n - n
weakly generic, 17, My, = @(y') and he¢H X with [[My,,hllI= @(a_).

Denote By = Fixy._,\ Fixg, and let ul*ln be the restriction of u to Bpy; so that

f = Yo Guln, (55)
[x]
since ul*l» = 0 on Fiy; , GUP™ is harmonic onFy,, and thus W exists and
our aim is to show that
d(Gu[x]n)
= Yn=1 (56)
To prove convergence of the right hand side of (56) we show that

[+

FE = gy (57)

Which is enough by Lemma (5.2.4) Let v*ln be the function in # that
corresponds to (Gul*In),; and note that
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(V[x]n h*_, )
d(Gul¥ln) _ d(v[ n) W™
(1P[x]n (%))

Where the last equality follows from (41) According to Lemma(5.2.4)we obtain
(57) by showing that the denominator of the right hand side of (58) is @(aZ}) and
that the absolute value of the numerator is @(y").

From Theorem (5.2.10)it follows that there is A€ such that

M *
hi =limp_ beln (59)
M, Rl
and
By = lim ["]n (60)
Yy (x)™ N—0
[IM [x]
consequently
—1% _ +
oy ()= —p % G
[x]n [IM [x], h
Note that
-1+« —1x + My, e —1x*x +
M, D ”_SUp”“” 1< Mg B >= sUkiaSgE R Miegn My
_ <K,hI> _ <K,h;>
= SUPIEL MG Kl IMIn K| (62)

for some K ¢ IH;. Since [|My. || = @(a}) it then follows by Lemma (5.2.4)that

IMIGE: R = 0((1/0)"). (63)
and
n
(M, b by (o)M= ||'<f‘1’: L= p(a,). (64)

[x]
The numerator has the bound
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< vEEn, h:lrj[-xﬁn(x) >| < C Osc(vi¥n) < C(nt1) 1y pipg, = GG, (65)

where the last inequality follows from Lemma (5.2.24)and the last equality follows
from Lemma( 5.2.4) Thus, the right hand side of (56) converges and (44) follows
from (64) and (65) as soon as we have shown (56)

For y € Fpg, we must show

d(Gu In)

| Gu(y) - Gu(x)- Xn=1 (n(y) = h(x))[ = O(||Mxy, hll). (66)

We write

d(Gu In)

| Gu(y) - Gu(x)- Xn=1 (h(y) = h(x))|

d(Gu[ In)

< [Zh=1( Gub™(y) - Gul™ (x)) - T8, (h(y) - h(x))l
+ | Xk ( Gul¥ny) - Gul¥ing)) |

d(Gu[ In)

(h(y) - h(x)) | (67)

Ll DI

Lemma( 5.2.26) and Lemma ( 5.2.5) implies that the second term is estimated
from above by

C(k+1) Ty, = B(*) = 0| My, ). (68)
The third term is @(y*) = O(||[M 1, bl since [h(y) — h(x)| = @(at) and

d(Gu In

= @((y/0)")

Zn:k+1

By lemma (5.2.5) and (57) Remains the first term which we write

dculXln

| =1 GulIn(y) - Gulin(x)- (h(y) - h(x))| (69)

Suppose that we fix a (large) constant M, which is to be chosen later, and that
the integers from 1 to k are divided into M subintervals [JK/M, (j+1)k/M]. From
the arguments below it is evident that without loss of generality we can assume
that k is an integer multiple of M, say k= Mm. So we write the sum in (69) as M
sums of m= k/M addends each, and have to show that for each j=1, ..., M we have
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; d(Gul*In
0 imtyer GUET ()= TGl ()~ SE(h(y)- h(x)| = 0(IMpg,  (70)

If we denote
hj = X0 -1 GUP () (71)
then we have to show
1 dh;
| L"im(,-_l)ﬂ hi(y) — h;(x) - == (h(y) = h(x))| = o(||Mxy, Rall). (72)

Note that h; is harmonic on Fygm. By Lemma (5.3.24) we have |hj||= (Z)(ym(j'l)) and
Lemma (5.2.25)then implies that the left hand side of (72) is bounded by Q)(ym(J'

D™Dy | et @& = max {y, ap} and &= %(ou - @) > 0. If we have that

Ty 73)
then
YoM <@yl < @+ o)M= (o - )V (74)
which implies
B @™ ) = 0((as - €)Y (75)

and this completes the proof.

Corollary(5.2.27) [262 ]: Suppose (F, ) satisfies the weak main assumption.
Then for any nonconstant harmonic function h there exists a set F' of full p-
measure such that if f= u(gy, ..., gi) € C(Dom A,) has a local maximum at x € F',

af, .
then E(X)_ 0.

Proof. Let F" be the set of full u-measure such that, according to Theorem (5.2.25)
the derivative %(x) exists for any f € C*(Dom A,)). There exists w € W* such that

the cell F,, does not contain any boundary points. We define F' as the set of all x
such that x € F" and there are infinitely many n such that [x], n+= W, |W]= k.
Obviously F'is a set of full u-measure.

Non-negative harmonic functions satisfy a harmonic inequality [240], on F,,
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max min
yeF 0S¢ e p hw), (76)

for some ¢ >1. Suppose h is a harmonic function with a zero in F,,. Applying (76)
on maxz h—hand h- ming h gives

max 1
F h> 1 Oscrw(h) (77)
and
] 1
mPl.n h< 1 Oscrw(h) (78)

Suppose f € C(Dom A,) has a local maximum at x € F. Since x € F' we can
choose a subsequence n; for which [X]ni ni+k = W. Then, for | large enough, we have
for y € Fxni that

F(y) - f(x)= %(X)(h(Y) = (h(x)) + O ([[Mpxy,,;hll) <0 (79)

Using (77) on hpy, . (Y) = h(x) we get
maX,erpani(N(Y)- NO))= Maxer(Npgn(y)-h0)) == O, (hpan)

1
=—0sCg, +x () = Cll  my, +xhll> W Mg Al (80)
w

So that by (79) we must have %(x) <0. In the same way (78) implies

miny €ryg, (004) = N00) < TS0 g, Al @1

which together with (79)implies <(x) > 0.

For the next theorem recall that a point x € F is called periodic if it is a fixed
point of some y, W € W*.

Theorem(5.2.28)[262 ] : Letx =y, (x) € F be a periodic point. Suppose M, has
a dominating eigenvalue A and the corresponding eigenvector is denoted by h,. If

A| >rypy then the local derivative %(x) exists for any f € C'(Dom Ap). In

particular, if x is a boundary fixed point then the normal derivative oxf(x) exists for

any f € C'(DomA,).
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Proof. In order to prove this one can adapt the proof of Theorem (5.2.24)defining

Byn = F,u-1\F,n , where w"= ~—— and use
n times

f =Yg Gu™". (82)

d(Gu*™)
dh;

The condition |[A| > r,py is necessary to have convergence of Yo,

Corollary(5.2.29)[262]: If x is a non-boundary periodic point, the assumptions of
Theorem (5.2.28) hold, and f = u(g,..., g))€ C'(Dom A,) has a local maximum at

af ,
X, then d—m(x)— 0.

Proof. The proof is the same as that of Corollary (5.2.27) and uses Theorem
(5.2.24) and Theorem (5.2.28).

The result of Theorem (5.2.28) .partially improves in [265] where it was shown
In the case of the Sierpinki gasket that 0,f and osf exist for any f € DomA.

Namely, under the assumption that M,, has two real eigenvalues A, > A3, two local
derivatives at periodic points of the Sierpinki gasket were defined in [265]. If h,, hs
€ H are any harmonic functions corresponding to these eigenvalues and

H fix), = 0an + a2n By [x) + o0z [x] (83)
then
02 T(X) = lim,_.02, and o5f(X) = limp_,, 03q (84)

If the limit exists. Note that the notation A, for the loading eigenvalue is used in
[265] because ;=1 denotes the leading eigenvalue of the matrix A,,.

For arbitrary p.c.f. fractals. Local derivatives 0, ..., ddy, can be defined
analogously to (84) at any periodic point x= y,/(X) such that M,, has distinct real
eigenvalues [Ap| > ... > |4y | with corresponding harmonic functions hy, ..., hy, .

Periodic points of this type are weakly generic and 7, is spanned by hs, ...,hy, .,

but the rate of decrease for h g is |Mpy, . hl=8(c") for o=}’ Wil instead of
@(al}).
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It should be noted that if x= ;i(x) is a boundary point then 6, equals, for an
appropriate choice of h,, the normal derivative oy. For the Sierpinki gasket, O3
equals the tangential derivative or, for an appropriate choice of hz. For periodic
points on the Sierpinki gasket where M,, has two complex conjugate eigenvalues
local derivatives 6" and 0- were defined in [263] using the eigenvectors. It was also
shown that there are infinitely many periodic points with this property.Such
periodic points are not weakly generic. Actually for any nonconstant h € H,

IMpgahll= O((V3/5)") and h is only differentiable with respect to harmonic
functions that are proportional to h. The local behavior at such points is thus truly
different from the generic behavior.

In this section we prove the geography is destiny principle for large classes of
functions and use it to obtain a result on the pointwise behavior of the principle . It
was formulated for the first time in [264] for harmonic functions on the Sierpinski
gasket. For harmonic functions it holds under the SC-assumption.

For any he 1(Vy), h #0 we define the direction Dirh as the element in the
projective space P(H) corresponding to Pxh. This definition extends to any
function f defined on F, and nonconstant on the boundary, through Dir f = Dir f|y.
P(H).

Proposition(5.2.30)[262 ] Suppose F satisfies the SC-assumption. Then for any
nonconstant harmonic functions hy, h, € H

lim,_.. p (Dirh1|F[X]n: , Dirh, - )=0 (85)

|Pry,
for , a.e. x.
Proof. This follows from Theorem(5.2.11)

In fact, the convergence in (85) is even exponential by (25).

If f is differentiabe with respect to h with nonzero derivative at a point x, then
the difference in direction of f[X]n: and f[X]n: will tend to zero. Note that by

definition of the derivative, Dir f[X]n: exists for n large enough if %(x) #0.

Proposition (5.2.31)[262 ]: Suppose %(x) exists and is different from zero. Then
Iimn_,oo p (Dlr f[x]n ) Dir h[x]n) =0 (86)
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Proof. This is clear since f(y) — f(x)= c(h(y) — h(x))+o (||[M[,, hll)implies

p(DIr fixy,, DIr hpyy, )= p (Dir(chpy, +0(([[Mpx,, RID)DIr Ay, )—0  (87)

The above Proposition together with Theorem (5.2.25) immediately gives the
following broad extension of the geography is destiny principle.

Theorem(5.2.32)[262]: Suppose (F, p) satisfies the weak main assumption and
that f € C' (Dom A,) and h € H is a non constant harmonic function. Then

Iimn_,oop(Dir f[x]n’ Dir h[x]n): 0 (88)
for u, a.e. x outside the set where % (x)=0.

{x: (=0} € {x : | < Hf, hf > < C'e} (89)
for any f = H f + GAf with ||A f]|., < & and ||h||= 1. Note that
wix:<Hf,hf>=0}=0

and so informally one can write p{X :%(x): 0}—0 as ||A f]lx—0. This can be

restated as follows. Given any H f # 0 and € > 0, there is §(g) >0 with lim._, 6(e)=
0, such that

df
RO 520 = 0} < 6(6)
forany f=H f+ G A fwith ||A fll. < & and |[h||= 1.

In [267] the eccentricity e(h) of a nonconstant harmonic function h on the
Sierpinski gasket were defined as

_ h(qq)-h(qp)
&)= @)~ heao) (90)

where q;, i= 0, 1, 2 are the boundary points labeled so that h(qgg) < h(qy).

Note that the eccentricity is the same for harmonic functions corresponding to the
same element in . The concept of eccentricity F and nonconstant on the
boundary.

It was shown in [267] that there is a measure on [0,1] such that for any

nonconstant harmonic function, the distribution of eccentricities of the restrictions
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hy to cells of a fixed level |w|= n converges in the Wasserstein metric to this
measure. This result was extended to functions with Holder continuous Laplacian
in [254].

If, instead of the global distribution of local eccentricities, we look at the
behavior of the eccentricities on neighborhoods of a point, the geography is destiny
principle applies. Since e(-f)= 1-e(f) we define an equivalence relation on [0, 1] by
e~ e'ifand only if e= e’ or e=1-e". We denote by e the equivalence class of e and
let d(e’, €)= miny-¢ x-¢|X- X'| be the natural distance on [0, 1]/~.

Corollary(5.2.33)[262 ]:If F satisfies the SC-assumption then for any nonconstant
harmonic functions h, h'

Iimn_,oo d(é(h[x]nn),é[x]n)): 0, (91)

for u a.e. x. If (F, u) satisfies the weak main assumption then for any f, f' €
c'(Dom A,) and nonconstant h € H we have

limy .. d(€ (fix1,,) €(f'x1,))= 0 (92)

. df dfs
for , a.e. x outside the set where a5, OF g are zero.

Proof. Since e depends continuously on the direction these results follow
immediately from Theorem(5.2.32).

We clarify the relation between the derivative and the gradient of a function on
F defined in [260]. We will restrict attention to cases where (F, p) satisfies the
strong main assumption.

For a nonjunction point x € F, let Grad[X]n: = M[;}nPy{Hf[x]n. The gradient of f
at x is defined as

Gradyf= lim,_,, Gradpy_f, (93)

If the limit exists. In [260] the gradient was defined for sequences w €Q, so at
junction points there are several “directional”gradients defined, but for nonjunction
points Gradf is defined unambiguously.

Immediately from the definition we have.

Proposition(5.2.34)[262]. If h € H then Gradyh exists for all x and Gradyh= h.
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In [260] the following estimate was proved for any harmonic structure on a, p.c.f.
fractal.

1Gradysy,,,, rf = Gradpg, £l| < CIAfIrp, e, [ME, | (94)
It implies the following theorem.

Theorem(5.2.35)[262 ].There exists a constant C such that for any f € DomA with
|Af]||l-<oc and any x € F\Vx with

Enz1 Ty Pl [|MEd, | < oo, (95)

Gradyf exists and
PscHf = Gradsf|| < ClIAf Il Sns1 Tpag)r g, IMied, || (96)

Also, for any n>0
PscHf = Gradsf|| < ClIAf Il Sites T, Hpte IMid, | - (97)

From Theorem (5.2.35)we can immediately deuce the following Lemma.

Lemma (5.2.36)[262 ] If(F, p) satisfies the strong main assumption, then for any
function f € Dom A, Grad,f exists for p-almost all x € F.

Proof. The upper Lyapunov exponent of the matrices M'lj with respect to the
measure p is 1/a — and so the series (95) converges exponentially p -almost
everywhere.

The next Lemma uses the central limit Theorem and large deviations results for
products of random matrices. We will use it to show that Grad,f is the unique
function in # that best approximates f in neighborhoods of x.

Lemma(5.2.37)[262 ]: Suppose (F, ) satisfies the strong main assumption. Then
for any > 0.

= o((y + €)oo (98)

-1
Dkzn Tlx]y Hx]k ||M[x]k,n
For p, a.e. x.

Proof. By the Borel-Cantelli Lemma this follows if for any § >0
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S i (v + 0" Bien T Uil | Miden|| > 63 <0 (99)

Since 1, Mg, = (") for u, ae. x it is then enough, by Lemma (5.2.5) (i): to
show that

oo L Y= &/2 _
anlﬂ{x- ( e N Ykon T, Hx], ||M[x}k,n > 5}
— o . Y- €/2 00 —
- Zn:l M{X ( )nZKzlr[X]k M[X]k“M[x}k“ > 6} (100)

Y+ €

Y+ €

0 (GO IR By <,

=n=1 B X X171, ||M[;C}k,n >

where the first equality follows from self-similarity and 1 > B > J—_ is a fixed
number. Thus, it is enough to show that

Y+e&E

Va1 2K=1M {X1 Tl Hixte [IMBd, |l = 6 ( > (I;B) ﬁK}

y— /2

= 5 Do 1 {x: 109 (e, g, [IMEd [ -k log () > co + nc; + ke, J< oo,
(101)

where ¢; ¢; > 0. Assuming 1- > - J—_ we have ¢yt kc, >0 and the last inner sum
can then be estimated from above by

2 Jabi() du() < o V(B [1bx ()1 (102)
where
B(X)= 109( 7, #pxg, IM3, D) — K log() (103)
and
Bik= {X: bk(X) > cot+ kcy}. (104)

By Theorem (5.2.12) the Li- norm of by(X) grows polynomially while w(By)
decreases exponentially, which completes the proof.
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Theorem(5.2.38)[262]: Suppose (F, n) satisfies the strong main assumption and f
€ Dom A,. Then for any € > 0 and p. a.e. X

f(y)= f(X)*+ Gradyf (y) — Gradf (x) + o ((y + €))y—x,  (105)
where 'y € Fiy1. .

Proof. The proof follows the same ideas as the proof of Theorem (5.2.24) but is
actually simpler. We assume that f = Gu and let u, be u multiplied by the indicator
function of Fi, . Fory € F,;, We have that

G(u- up)(y)- G(u- up)(X)- (Grady G(u-un)(y) — GradyG(u- un)(x))=0 (106)
since G(U- uy) is harmonic on F,y . Thus, we have to show that, fory € F,q, ,
G un(y)- Gun(X) — (GradyGu, (y)- Grady Gua(x))= a((y + €)"). (107)
Lemma (5.2.24)implies
IGUn (¥) = Gun (X)IL™ Fiyg,, = (v + €)"), (108)
and it follows that
|Gradpy, Gua(y) — Gradyy Gua(X)|| L Fiyy,) = o((v+ €)") (109)

by the maximum principle applied to the harmonic function (Gradpy  (GUp)[x,:
because its boundary values coincide with those of (Gu, )., . Hence it suffices to
bound

|| Grad [y, Gun(y) — Gradp,, Gun(x) — (Grad x Gun(y) — Grad x Guy(X)|| L Fix1,,) <
2||Gradpy;, GUn — Grad x GUn||LoFx,,)

<2¥k=nllGradp,y Gu,—Gradpg,,.GUylIL® (Fix,)

= 2Y=n |1 Gradpy,,  (GUn)py, = Gradpy, ., (GUn ), IL7 (F)

< C X k=n | 1A(GUn)panlleT 11, Hix], XIn K ||M[}}n,k |)

< Clulle Zifen T T iehn e | Mishy | = G ),
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where we used that (Gradp,g, GUy)px),= Gradpy, , GUn)py,,, the estimate (94) and
Lemma (5.2.37).

As an immediate consequence we obtain the following Corollary, which makes
it straightforward to prove p, a.e. differentiability at points where Gradyf exists.

Corollary(5.2.39)[262 ]: Suppose (F, p) satisfies the strong main assumption and f
€ Dom Ap. Then for , a.e. x

f(y)= f(x) + Grad «f(y) — Grad «f(x) + o (|[Mx;,, hl})y—x , (110)
for any nonconstant h € H.

The same result for Grad «f, or rather the tangent T,(f), on the Sierpinski gasket
was proved in[281] under the stronger assumption (33).

We can now state the relations between the derivative and the gradient.

Proposition(5.2.40)[262]: Suppose (F, p) satisfies the strong main assumption, f €
Dom A, and h is a nonconstant harmonic function. Then the following assertions
hold.

(1) For p, a.e. x such that Grad x f = 0, we have that %(X): 0.

df

(i1) For p, a.e. x such that Grad 4 f #0, we have that dGrad.f (x)=1.
(111) For p. A.e. x
df _ <Gradf h}>
an X = <hh}> (111)
In particular for p, a.e. x we have
daf _ +
e (X) = < Grad «f, h;>, (112)
X
df ;| _ 1P} Gradyfl
| dh (x)| T |Pr | (113)

and <(x) = 0 if and only if Grad , f € 7 .
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Proof. The first two statements are obvious Corollary(5.2.39) for the third, we
Know h ¢ H, for u, a.e. X, and in that case

F(y) - f(x)= Grad x f(y) — Grad  f(x) + o ([|M[x,,hl])y-x

_ <Gradyf h}>
<h,h}>

(n(y) = h(x)) + a(IMxy,, 0 [y (114)

As formulated, Theorem(5.2.32)on geography is destiny, raises the question
about where the derivative is different from zero. Our next results relates this to the
same question on the gradient.

Lemma(5.2.41)[262]:Suppose (F, p) satisfies the strong assumption. Then for any
€ > 0 there is 6(¢) >0 with lim,_,y 6 (€)= 0 such that if

% <e, (115)
Then
u{x: Grad x f € H, } < 4(e). (116)
In particular, p {x: Gradx f £ 0} > 1- §(¢).
Proof. For simplicity assume ||PxHf|| = 1 and ||Af]]., < € < % . Define
Fo = {X: C Zns1 71, Hidy MG, [I= < =3 (117)

where C is the constant in the estimate (93). Note that lim._, u(F:)= 1 by the strong
main assumption. From (96) we have for any x € F, that

IPs H f— Grad f|| < Ve, (118)
So Grad, f# 0 and
p(Dir Py H f, Dir Grad ) < 2v/& (119)

for all x € F.. Let V c P(H) be the set of directions orthogonal to PxH f, and let V,
= {vo € P(H): infyey p(vo, v) < e}. If X € F; and Grad 4 f € H, then by (118) we
see that p(Dir h}, v) < 2+/e for all ve V. It follows that

u{x:Gradx f e Hy }<pu{x€eF . Gradyfe H, } +1 - wF,)
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<u{x: Dir i€V, 5} + 1- u(F) (120)
=V (Vaye) + 1 - u(F)
where the measure v is a p-invariant measure on P(H), which means that
v(A)=XY", fp(}[) 1A(Dir(Ah)) dv(Dir h), (121)

for any Borel set A in P(H). A theorem of product of random matrices says that if
u is supported on a strongly irreducible semigroup such measure v has the property
that hyperplanes have zero v-measure [266]. Thus lim;_ v(V,,z} v(V)= 0.

Theorem(5.2.42)[262]: If(F, p) satisfies the strong main assumption, then for any
fe DomA,,

Gradsf & H . } (122)
for y, a.e. x with Grady f #0.

Proof. For simplicity assume ||Af]|., < 1. Define

F={X: ||Grady f]| > €} (123)
and
Fre= {X: llgradpx, fil > & and rig, i, [IMEd, [I< €73 (124)
Clearly
limy o W(F\ Fog)=0 (125)
and
lim,_o W(Fo\ Fe)=0 (126)

Then for any x € F, . we have

18/ 0nllee _ Ml 18 00l ronean MG,
IPscHfpa,ll || Mzd [|IMpq, Gradpg, £l —  Gradpa, /Il

<e. (127)

Here we can use Lemma (5.2.41) for eachfy together with

Gradypy, f = My, Grady, ) f
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and My Hy Hy . (. 10 Obtain that
6(e) > pix: Gradypy f € Hy }
= ui{x: Mpqn Gradygy (X) f€ Hy }
= uix: Gradyy (x) f€ M[_X}nf}fx' }
= uix: Gradyy (x) f€ }(l;[x]n(x),
= pg' p{y € Fy: Grady f € Hy ) (128)
Therefore,
u{X € Fne: Gradsf € H } (129)
=X pu{x € Fy: Grads f € 3 } <X pwd(e)= w(Fy, )0 (o),
where the sum is over all w € W, such that F, c F, .. Thus,
M{x € F.: Grady f € Hy } <limsup W(F:\F, ;) + w(F,)0(e) <d(e) \ (130)
and
u{x € Fo: Grady f € H, }=0. (131)
We can now formulate geography is destiny with conditions on the gradient.

Corollary(5.2.43)[262]: Suppose (F, p) satisfies the strong main assumption, f €
Dom A, and h is a nonconstant harmonic function. Then

limn_.. p(Dir fixy,, Dir hyy )= 0 (132)
for p, a.e. x where Grady f# 0
Proof . Theorem (5.2.42) Proposition (5.2.40) and Theorem (5.2.32)
The next corollary is one more analog of Fermat’s Theorem.

Corollary(5.2.44)[262]. Suppose (F, p) satisfies the strong main assumption. Then
there exists a set F' of full p-measure such that if f= u(gy, ..., g)) € C' (Dom A,) has
a local maximum at x € F', then Grad,f= 0.
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Proof. The proof is the same as that of Corollary (5.2.27) and uses Theorem
(5.2.38).

Similarly to Corollary (5.2.29) we can obtain an analogous corollary for
nonboundary periodic points under the assumption ry, pw||M;, || < 1. The existence
of the gradient in such a case is guaranteed by Theorem (5.2.35).
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Chapter 6
Composition Operator and Norm of the Hilbert Matrix

We find an upper bound for the norm of the induced operators. We compute the
exact value of the norm of the Hilbert matrix. Using a new technique, we
determine the norm of the Hilbert matrix on a wide range of Bergman spaces.

Sec (6-1) The Hilbert Matrix and Composition Operator
The classical Hilbert inequality

1
- 1

J g sinfﬂj(g |ak|pjp "
p

is valid for sequences a={a,} in the sequence spaces L"for 1 < p < oo, and the
constant t/sin(mt/p) is best possible[275] Thus the Hilbert matrix

0

2

0n+k+1

2

n=0

He —* ij=1.2,...

i+ j+1

acting by multiplication on sequences induces a bounded linear operator

H,=h Z

n+k+1
onthe L? space with norm||H||;p_;p = n/sin(/p) for 1 < p < o,

The Hilbert matrix also induces an operator on Hardy spaces H as explained
below ,by its action on Taylor coefficients. In this article we prove an analogue of
the inequality(1) on hardy space . More precisely we show

Theorem(6.1.1)[271]: (i) If2< p<o then

[HEO» < —7—<HE]s
s.n[ |
P

foreach f eH?’

(if) if l<p<2then
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[HE» < —7< RO
s.n[ |
P

foreach f eHP with f(0)=0.

The proof will be given and involves an expression of Hin terms of weighted
composition operators of which we can estimate the Hardy space norms .

Recall that the Hardy space H" 1< p<o of the unite discDis the Banach space
of analytic function f :D — C for which

VA
[f],,s =su U\Wem)\ dg] <, )

for finite p, and | f] =sup,.,

f(z). For 1< p<q<eo we have H'SHP SHY S H”
and HP"js embedded as a closed subspace inL"(T) the Lebesgue space on the unit

circle ,by identifying HP® with the closure of analytic polynomials in L"(T).
Additional properties of Hardy space can be found in [273].

To study the effect of Hilbert matrix on Hardy space let f(2)=) az'
belong to H' Hardy’s inequality says.

> AL s

and it follow that the power series

F-3 3]

n=0

has bounded coefficients hence its radius of convergence is >1. In this way we
obtain a well defined analytic function F =H(f) on the disc for each f eH'. A
calculation shows that we can write

7 (£)(2) =£ f(l)ﬁdt. 3)
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where the convergence of the integral is guaranteed by the Fejer —Riesz inequality
[273]and the fact that 1/(1—tz) is bounded int for eachzeD .

The correspondence f —»H(f) is clearly linear and we consider the
restriction of this mapping to the space H” for p>1. For p=2, the isometric
identification of H* with L* gives.

[

H2h2= 7

On the other hand H is not bounded on the space H' and H” For H” this is
because the constant function 1 is mapped to

7 (1)) :%Iogé

which is not a bounded function. For H' let &> 0 and let

1

1+¢
1- z)(l log 1)
Z 1-z

a function which belongs to H1[273]and IS positive on [0,1].We assert that the

f.(z)=

analytic function A (f,) does not belong to H* for small values of « . Indeed
using(3) we find

7 (£.)(2) = i(ﬂt fg(t)dtjz”

and if we assume H (f,) e H' then Hardy’s inequality implies that the quantity
S [tf dt= ['f >t
—~n+lo ¢ R = n+1
1 1 1
=|f (t) =log— |dt
[ 1. )(t ogl_J

=E 11 . —dt
1-t) “log——
( >(t gl_tj

iIs finite. For ¢ <1 this is a contradiction .
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The operator # is however bounded on H? for all 1< p<w_  This is known and
a quick way to see this is to view H as a Hankel operator. In fact 7 is a prototype
for Hankel operators see[276]. We will not pursue this aspect further expect to note
that a Hankel operator is bounded on H? if and only if it is bounded on each HP"
for 1< p <o see[272]. The results 0f[272] also imply that 7 is not bounded on H*
a fact that we obtained by a direct argument above.

we indicate how H can be written as an average of certain weighted composition
operators.

Every analytic function ¢: D — D induces a bounded composition operator
C,: f— fog

on HPfor 1< p < see[273]. In addition if w(z) is a bounded analytic function
then the weighted composition operator.

C,4(1)(2) = 0(2) T (4(2))

is bounded on each H” More information about these operator can be found
in[274]or[277]. We will not need here any of their properties expect from the fact
that they are bounded.

The connection of the Hilbert matrix with composition operator comes as follow.
For f eH' the Fejer — Riesz theorem, which guarantees convergence , along with

analyticity shows that the integral in (3) is independent of the path of integration.
For z e D we can choose the path.

1

g(t)=€z(t)=m’ 0<t<1 (4)

l.e.a circular are in D joining 0 to 1. The change of variable in (3)gives

1 1 t
H(ND@=, (t-1)z +1-[((t—1)z Rl )

This expression says that the transformation #'is an average
i
3 (F)(2) = [T.(F)@)dt

of the weighted composition operators
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T(1)(2) = (2) T((2)). (6)

where

1 t
C‘)t(z):(tT)Z+1 and ¢t(2):(tT)z+1

It is easy to see that ¢, is a self map of the disc hence f — fo¢, is bounded on H",
and that for each 0 <t<1, o/(z) is a bounded analytic function. Thus

T.:H? >HP1<p<o, is bounded for 0<t <1.

Proof.

We first obtain estimates for the norms of the weighted composition operatorT, .

The estimates are achieved by transferring T, to operators"l:t acting on Hardy spaces
of the right half plane, which are isometric to Hardy spaces of the disc. The form
of 'Ft permits estimates of its norm, there by estimate the for the norm of T, follows.

Lemma(6.1.2)[271] if p > 2, then.

1_1

(o <1t 0<tet -

(—)
for each feH"_

Proof. The Hardy space H " (IT) of the right half plane [T ={z:R(z) > 0}consists of
analytic function f :[1 — C such that

HprHP(H):SUpJ‘:‘f(X+inpdy<OO (8)

0<x<o0

These are Banach space for 1< p <.

Let u(z)=1+z/1-z be the conformal map of D onto [ with inverse
u(z)=1-z/1+zand let.

V(I)(2)=——-9(u(2) FeH (D)

- z)”)
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It can be checked that this map is a Linear isometry fromHP(1l)onto H" with
inverse given by

Vi(9)2) =ﬁg(u‘1(2))- geH’
"L+2)"°

Let T, : H(IT) - H"(IT) be the operators defined by

T.=V TV

and suppose he H"(IT). A calculation shows that T, are weighted composition
operators given by

2

N .
M@= t)z,p((t - 1_1() J o) OO

where

t 1
D, (z 0Q.0 Z——Z+—
((2) = pogou™(2) AL,

Is an analytic function mappingI] into itself. By an elementary argument we see
that if z[Tthen |t-1)u(z)+1>tand since 1-2/p=0 we have

2,

\h(fD @)

T, (@)=

Integrating for the norm we have

iy sup[

1— tp 0<x<oo

—o0l
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0’ %
- sup {I|hX+|Y)| —dyj

(1 t)p 1/(A-t)<X <o0 \ —o0

1 1 t
Where we have changed the variables X _1_X+ﬁ and Y —?y ,to obtain

<— 15Up(filh(X+iY)|pdy)%’
L-t)° 0<X <0

1_1

i

—

(1 )2

HP (H)

The conclusion follows.

For the final step of the proof we will need some classical identities about the
Gamma and Beta functions, see for example[278]. The Beta function is defined by

B(s,t)= j XL —x)"dx

for eachs,t with R(s) >0, R(t) > 0. The value B(s,t) can be expressed in terms of the

'(s)Ir(t . . .
Gamma function as B(s,t) Z%_ We are also going to the functional equation
for the Gamma function
rri-z=——-..
sin(nz)

which is valid for non-integer complex z

Now suppose p =2 and f e H? with|f],, =1. Then

%
—sup(ﬂH(f)(re'%\p dg}

r<1

1

j T.(f)(re”)dt

0

_Sup[}” d_ef

r<1 0
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Y
<jsup[ﬂT(f)(re )\"de]

( by the continuous version of Minkowski’s inequality)

1 1 _
:HTt(f)Hdet S_[t”p‘l(l—t)%dt
0 0

At

and this give the assertion for p>2

Suppose now 1<p<2 and feH” with f(0)=0_ Then f(z)=1zf,(z) with

If.],» =1 ll.,» - Writing ZCin the integral from (5) we see that

H(f)(2) =jTt(f0)(Z)dt

where T, are the weighted composition operators

_ L g
1(0)(2)= (t—-1)z +1)? g[(t—l)z +1]

We now follow the proof (with same notation ) of Lemma (6.2.2) to estimate the

norms of T, lettingT, \/ T\ :H P([T)—>H P([T) We find

¢ (1 Ti h(@,(2) 0<t<1 10)

2 t-Du(2)+1
(—)pk

Ti(N(2)=

2 i .
for each he HP(I]) .Because 2_B>O for p>1, the rest of the calculation in

Lemma(6.1.2) goes through and we conclude
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1,

tp
Mm@, <—=lglH*  o<t<1

1-t)p

for each geHP"(IT). Using this norm estimate we can repeat the final step of the
proof of the case p>2 to obtain

T T
HE =7t =— 1l
sin[] sin[j
p p

and this finishes the proof of the theorem .

Sec(6.2) Bergman Spaces and Hilbert Matrix

The Hilbert matrix H with entriesa;; = +lfor i and j positive integers

induces an operator by multiplication on sequences.

H :(a,) s —{Z % j

ko nN+k+1)

For 1 < p < oo, Hilbert’'s inequality[275]

2

n=0

1

P 0 P
T p 11
) < (Zlanl ) (11)

n=0

T

[0¢]

Dk
n+k+1

k=0

implies that H induces a bounded operator [Fspaces of P-summable
sequences. Moreover, the constant (,T) Is best-possible and the norm of His
p

T
. T
Sin (B)
The Hilbert matrix also induces a transformation H on spaces of analytic functions
by its action on Taylor coefficients defined by

IIH]lp e < l<p<ow

}[::ianz”aii 2"
=0 k=

pard n+k+1

for thoseanalytic functions f(z):z:zoanz” for which the coefficient
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A= kz(;‘n+k+1 , n=0L..
Converge.
The operatorHhas been studied on Hardy spaces. [271] proved that His a
bounded operator on the Hardy spacesHP,p>1 , and forl <p < cowe

found the following upper bound for its norm see:

I1H [gp—pe <

12
sin(g) (12)

where dm(z) = (1/ = Jdxdy is the normalized Lebesgue measure on unite disc. We
also.We also proved that for function s such that f(0)=0 the same estimate holds

forl<p<2.
In this article we prove that  is a bounded operator on the Bergman

spaces A’2< p<+o ot analytic function f on the disc for which
P p
[ 2 = | (2)f dm(z) <400

disc We also provide norm estimates on those spaces . More precisely we show:

Theorem(6.2.1)[279]:The operator H is bounded on Bergman spaces

P
A" ,2< P <+ andsatisfies :

(i) Ifd4<p<oand f eAP, then

[H < ooy Tl

sm(27r/ 9)

(i) Ifd<p<ocand f € AP, then

7-p b
2 -
||H<f>||Aps(9(p_2)+z ) —E

(lii) 1f2< p<4and f e APwith f(0)=0then
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%
P
L <(Boa] " Tl

The proof of this result will given, involves the representation, of 7 used in[271]
to prove(12), in terms of weighted composition operators for which we can
estimate the Bergman space norms. It uses a representation similar to one
developed by A . G. Siskakis to prove that the Cesaro operator is bounded on the
Hardy and Bergman spaces’ respectively[285],[286] p. Galanopoulos
[281]exploited the same representation to prove that the Cesaro operator is

bounded on Dirichlet spaces.

We consider the operator

JO
S(f)(2) = J - (13)

This operator is well defined on Bergman spaces. Indeed, using,[287], we have

%
rol<] sl ”
for p > 2and f e APand hence
1
T
o(1-t)/P
‘S( f )(Z)‘ < l_—‘z‘u f HAP < +00

Now given f(z)=>"a,z"jn A" |t fy ()= a,z". We see that

n=0

A(h)@) :iz +k+1 ?

:O
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N
=Y > [ trHdta 2"

k=0

Ms

Il
o

n

=3 £, ()" dt
=S(fy)(2)

so H well defined on polynomials. Also, forz€ D and P > 2 we see that

) h f(t)— fy (t)[dt
2" <

1-|2

Thus, as N — oo0,the series

converge and defines an analytic function
1 f(t
H (1)@ =S(@)= [

which is in the Bergman spaces A®, p > 2.

We derive the expression of H in terms of weighted, composition operators

mentioned above. Also , we prove that H is bounded on Bergman spaces

AP for P > 2and we give norm estimate Finally using the natural isometric

isomorphism between A? and Dirichlet space D, we prove that H is not

bounded on A?.
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We show how Hcan be written as an average of certain weighted

composition operators.

Every analytic function ¢:Dp — D induces abounded composition
operatorC,: f — f o¢ 0N AP for 1< p <+, the norm of this operator satisfies

[244].

e,

S(1+|¢(0)|J%_

1-[¢(0) (15)

In addition, if »(z) is a bounded analytic function, then the weighted

composition operator
Cos (F)(@) = (2) T (4(2))
is bounded on each AP This is the property of this operator that we will use.

The connection between the Hilbert matrix and composition operators arises as

follows .Forz€D and Q<r <1we define
(16)

: 1
c:r(f)(z):j0 f(t)l—dt
and we see that —t

H(f)(z) =1limC, ()(2)

Given z ¢ p we choose the path of integration

s
t(S):tZ(S):m 0<s<1

and changing variables in(16) we obtain

Cr(f)(z)zj f(t)ﬁdt
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1

O

0

t (s)ds

:J.l r f[ rs jds
or(z-D)z+1 (r(s-1z+1

Now let f e AP, p>2.and; e pando<s<ilet

h (s) = r . rs
U rs-Dz+1 (r(s-1z+1

;
Cr(s-1)z+1

F(¢5(2))
where ¢, (z) =rs/(r(s—1)z+1) is an analytic self — map of the unite disc.
Since
r(s-Dz+1>1-|7 0<s,r<i,
we have

r < 1 < 2
|r(s—1)z+]1_1—|2|_1—|z|2.

By (14)we have

r,s

%
\fo¢rs<z)\s[ ]
C L

and using(15) we obtain
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1+]¢.,(0)
f <
ol 5[ 01,

(L),

1-rs

(22",

The above estimates give

2 1+s
Ol A 1

For p >2 the right — hand side of the latter inequality is an integrable function of s

.By Lebesgue’s dominated convergence theorem we conclude that

S
H (@)= j( —1)z+1f((s—1)z+1JdS’

that is , we can express H as an integral mean

H(H)@) = [ T(H)@)et
of the family of weighted composition operators
T.(1)(2) = (2) £ (4,(2)

where

)=y

and
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1

#(2)= (t-1)z+1

It is easy to see that w, is a bounded function for 0 <t < 1, and thatg,is a self -

map of the disc.Thus the operator T,: A" - A" 1< p<+owo Bounded on AP

forevery O<t<1.

We first obtain estimates for the norms of the weighted composition

operatorsT,
Lemma (6.2.2)[276].Let2 < p < +w. Then:

() i1fa<p<+oandfeA’, then

tZ/p—l
IT(DIlar < a—o=r 11l o7

(ii)if 2 < p < +ooand f e A”, then

tZ/p 1

27-p 1/p
ITe (Dl ap < <m+ 24_p> a—o=r Il op

Proof. We can easily check that

(Dt(z)z

t(l )(I) t(z)

Let f € AP p > 2. Using the last equation we obtain
TG = [y 1o @IPIf (8¢ (2) ) I2+<dm(2)

= [y lot@P*o@)*If(2:(2))[Pdm(z)

- (t(1it))2 fD l(‘)t (Z)lp_4|f (Q)(t)(z)) |2dm(2)
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—1 - =
~ H1-02 fwtn | (B71(2) 1P| (2)|Pdm(2)
=1
We now consider two cases.

First suppose that. p > 4. We compute

—t
071 (2) = —
(1-1)z
and
1 y4
-1 = -
(Dt(q)t (Z)) (t— 1)®t_1(z) +1 t
Hence
I£11%p
1< 201 — D2

Next assume that 2 < p < 4. then

| = 57 Jou oy 100 (97 (@) P41 () Pdim

1
Tra-1)? j %|p_4|f(w)|pdm(a))
?¢(D)
p—4
1
T 12(1 - 1)2 f|‘0| |f (w)[Pdm(w)
?¢(D)

p—4
= mf,) ol [f(w)[Pdm(w).

The last integral is well defend near the origin since
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2
j|(1)|p—4 dm(w) = pTZ <o, p=>2
D

We write

[ r@ram@ = [ + [ loPir@WPrdn)]

and we estimate

fl/zlwl<1|(‘)|p_4|f(w)lpdm((‘)) = flwl<

lw|P—4|
15 (1-1w]?)?

f (w)[Pdm(w) lIfll}3p

1
=T (@22 f lo[P~*dm(w) IIfll3p

lol<?/

27-p
~9(p-2)

Il

and

p—4
oPf@ram@) < (5) [ lelPtdme)

< 24 j 1) dm(w)
D

= 2*"P|fll 5

We conclude that for 2 < p < 4,

27-p . t2-p b
< 2 PR

which is the desired result.
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For the proof of the Theorem we need some classical identities for the Beta and

Gamma function see. For example[278].The Beta function is defined

by

+0o0 1

B(u,v) =j . dxjsu‘l(l —s)V"1ds
0

X
(x + 1)u+v
0

For y vy such that%(u)> 0,%(v)>0.The value g(u,v)can be expressed in terms of

Gamma function as

Moreover , the Gamma function satisfies the function equation

T
sinzz’

I(z)r(l-z)=

For non-integral complex numbers z.
Now we can complexthe proof of the Theorem(6.2.1). Let f € AP. We have from
the continuous version of Minkowski’s inequality

1/p

1FH Dl o = j HO@P dm@)
D

L P 1/p

= jjTt(f)(z)dt dm(z)

D |D
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sj j (@1 | (dm@)  dt
0 D

= j ITe (P lar dt.
0

Using Lemma(6.2.2) for p = 4 we conclude

1

1)l < j (/0-1(1 — )22 ]| |

0

= B(S,l—g) 1 llap

=T (;) r(1- %) 1f 1l ar

SII’I(ZT[/p) ”f”Ap

Analogously, 2 < p <4, andf € AP we have

27-p 1/p £2/p
<|— 4-p S—
96D < (55 27) gy el

27°Pp 1/p U
=] — 4'_p —
<9(p "2 ) sinczrzpy |/ llav

Now, consider f € AP | 2 < p < 4 with f(0)=0 and write f(2)=7,(2).
The function fo is a Bergman space function and satisfies

p 1/p
Wfollar < (G+1)  Ifllar
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Indeed, this estimate is a special case of a result on AP -inner function
[281].However, it is also possible to give an elementary proof

Lemma(6.2.3)[279 ]. For every analytic functionf,

I, If@IP dm() < (2+1) [ I2f@)IP dm(2).

Proof. Let ¢ >1. We compute.

I, 1If@IPdm —C [ |zf (2)|P dm(z) = f01(1 — CrP*Y) f02”| f(re'?)|dodr

= [Cremg .o
0

=D.

The real function o(r) = (r) — C(r)P*1 is positive for r € (O, C‘“p)and negative
for r € (C™/P,1). In addition, it is well known that My (f,r)is a nondecreasing

functionof r [283]. Hence in order for Dto be < 0, it is enough to choose C such

that the following inequality holds:
[l = COP Y dr = [Py - cretlar
or equivalently,
fol r—CrP*ldr <0.
From the last inequality we get the condition C> g + 1.

Now we compute

HN@ = [, oo f (o) dt

(t-1)z+17 \(t-1)z+1
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- fol (t- 1)z+1f0 ((t 1)z+1) dt
= fol%f(pt(z)zfo((pt(Z))dt

= fol Sefo(2)dt,

where
@) =T @D(9.D).  gea
and ¢(z) = t/(t — 1)z + 1).An easy computation show that
dc(2)* = —(bt(Z) zeD, O<t<l
It follows that
IS = = [, 16 @D1?]g(6(2))|” dm(z)

= L1, 16174 (6:@)[* |9(¢:)| dm(z)

< 1 19e@I g ()] (@) dm(2)

— (-2

t2-p _
BRCENE ot Jeuo@ @[~ |g(w)|IPdm(w)

t27P 2+e

f lg(w)IPdm(w)

= (1 t)2 7D
t2-p
= o do 19l

Hence
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tz/p—l
IS (Dllar < =527 g llar

For the norm of ' we compute

1 tZ/p—l

13 llar < (Jy ey t) Wollav

_ T
= <o follar

=2+ 1) = jif,

sin(2m/p)
Let D be the usual Dirichlet space of analytic function on the unit disc with

square summable derivative. The following result is well known .

LLemma(6.2.4)[279].Each bounded linear functional on the Bergman AZcan be
associated to a function g € D ( by the pairing (f,g) = ¥1—,a,(2 +€),) and the

association is an isometric isomorphism of the spaces.
This yields the following result

Proposition(6.2.5)[279].There is no bounded linear operatorT : A* — A* satisfying.
T(& )(O)ZL, n=012,.
" n+1 o

Where £,(z) = z".

Proof. Suppose to the contrary. that there exists such an operator T. Using
pairing that defines an isometric isomorphism between (A%)* and
D,we find that the adjoint operatorT*:D - D

(T(),0) =T () (17)

for every f € A%, g € D. We choose g = 1 and write
TW@ = ) 2"
n=0

as the Taylor series of T*(1) € D.Using (7) forf = ¢, andg = 1 we have
1 —
L= T(5,)(0)
226



= (T(§y), 1)

= (€0, T°(1))

::Cn
For every n=0,1,2,....Hence

x —yo 1 _n

TW@ =T, —
but this function is not in D.
Now we consider the integral
H® = f, FO)—d().
This integral is well defined for polynomials are dense in AZ . It is not known if
the last integral is well defined for all f € A%.In any case, from Proposition
(6.2.5) we obtain:
Corollary(6.2.6)[279]. # is not bounded on AZ.
Proof .We apply Proposition (6.2.5) and note that
H(£.)(0) = —— n=012,.

n+1

Lemma(6.2.7)[297].Let 0 < € < +oo . Then

()if0 < e <+ and f € A**cthen

(1- e3)2 €
o O yare < I llas+e
E§+e
(i) if 0 < e < 2and f € A?*€ then
1 2
8 B 2+€( — € )1+e
ITsmcs Gl e < <(§+ 1)22 ) = I e
(63)2+e

Proof. We can easily check that
@10 @ = T Yo

Let f € A?*¢ e > 0. using the last equation we obtain

2+€

17, (Dl e = Jy Nw1-¢, @IP*IS (Ba-e)(2)) 2+ (2)

= fy) 101-¢, @I |01-¢, DI*If (81-ey(2)) [7+<dm(2)

= 2oy [91-6, D172 (B1-c) @) 17901 | dm(@)
|01-¢, (972, @) ) 121F (2)|**<dm(2)
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=|.
We now consider two cases.
First,suppose that e > 0. We compute

- z+e3—1
01le,(z) = ——

€3Z
and
-1 1 zZ
0)1 €3 (®1 e3(Z)) 1- €3®11€3(Z) 1—63
Hence

4+
Tiwid
E% (1—63)2+€.

Next, assume that 0 < e <2 Then
— 1 €—2 24€
= e (1 €3)? fq)(l 63)(D)| 1-€; (Q)l €3 ((1))) | |f((1))| dm(w)

— =z €=2 2+e€
B € (1 €3)? f@(l - )(D) 1—€3 | |f((‘))| dm(a))

I<

= o e, @@ If(@)FFdm(w)

< gl 10177 If (@)1 dm(w).
The last integral is well defend near the origin, since
Jp lol? dm(w) = % <o, €>0.
We write
fo 10l @)PHdm(@) = fj 11 figjgpeq0l? 1f @) dm(w)

and we estimate
fl |<1|(1)|E 2|f(0))|2+edm(w) = f|00|< (1 | |2)2 dm( )”f”i}fe
< Zf|w|<1|w|e 2 dm(w) [If 11535
(1‘(5) )
25—6

4+€

and
ool @l @M (@) < (2) foypcy I @) 5dm(@)
<22°¢ [ ()| dm(w)

= 227¢| flI 4%

We conclude that for0 < € < 2,
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8 - (1 )€
1< ((2+1)2) =z

Theorem(6.2.8)[297].The operatorH is bounded on Bergman spaces
A?t€ 0 < € < o0, and satisfies:
()if 0 < e < wand f € A**€ then

N ()| ps+e < ——5=—|If || a2+
sm(4 - E)
(i)if0 <e < 2and f € A**€ then
8 2-1|-e
IFH ()l az+e < <(9— + 1) 22-€> S—
€
sm(2 aps)

(iii)if 0 < e < 2 and f € A%*€ then

1

44 €
1P azee < (57) mezms 1l

2+€
Proof.

we need some classical identities for the Beta and Gamma function see. For
example [283]. The Beta function is defined

by

‘Ll.

+
B(u,v) = [, Gt dxf (1- )" ()" 1d(1 - ¢)
for u, v such that R(u) > 0, R(v) > 0.The value B(u, v) can be expressed in terms of
Gamma function as

B(u,v)= T(u)r(v)

F(u,u) '
Moreover , the Gamma function satisfies the function equation

r(z)r1-z)=—=

sinnz’

for non-integral complex numbers z.
Now we can complexthe proof of the Theorem(6.2.8) (see[13]). Let f € A2+€_
We have from the continuous version of Minkowski’s inequality

1

IH ()l ger+= = (f |j—[(f)(z)|e+2 dm(z))ﬁz

1

d(1-e)| dm(z))m

€+2

= (I, [K1m-e (N
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1

< 13 (I T (D@ dm@ )™ d(@ - )
= fo ||T1—e3(f)||A2+e d(1 - €3).

Using Corollary(6.2.7) fore = Owe conclude

2

IF ()] goe < f 1- 63)6+366+4d(1 €3)|If || pa+e

2+€

= B (=25 lIfllpese

4+€ 4+e

=T () T (50) Ifllasse (T =1)

4+€

-_T _ .
- Sin(j_:e) ”f”A‘“r
Analogously, 0 < e < 2, and f € A2*€we have

1

176 < (2 4+ 1) 227¢) ™ 1 & V(1 - el

1+e
€3

1
+1) 22 e
= (G 027) " e
Now, consider f € A**€ 0 < € < 2with f(0) = 0and write f(z)=zf,(z). The

function f,is a Bergman space function and satisfies
1

4 + e\2+€
Wollazse < (<) I1fllaese

Indeed, this estimate is a special case of a result on A?*€ -inner function
[282].However, it is also possible to give an elementary proof .
Lemma(6.2.9)[297].For every analytic functionf,

[, F @1+ dm(z) < (5°) [, lzf (2|2 dm(2).

Proof. Let C >1. we compute
[, If @17 dm(z) = C [, |zf (2)|2+€ dm(2)
‘n12+€
= fol((l —€;) — C(1—€1)3*9) f02“| f(1—¢€)e’| Td0d(1 — €,)
= fol((l - El) - C(l - 61)3+E)M22_-:_-ee (f, 1 - El)d(l - El)'
=D

The real function (1 — €;) = (1 — ;) — C(1 — €,)3*€ is positivefor
(1-¢)E€ (O, Cz__+e)and negative for (1 —¢,) € (Cz__+e, I) in addition, it is well
known that M31€ (f, 1 — €,)is a non decreasing functionof(1 — €,) [3]. Hence
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in order for Dto be < 0, it is enough to choose C such that the following
inequality holds:
- f:%(l —e—C(1—€)*)d(1—¢) >
-6 - - )9 d(l—e) >
or equivalently ,
[iA -6 —C(L-&))dl-¢) <0

From the last inequality we get the condition C> %

Now we compute

H(F)(2) = fo () d@-e)

1_632

0 1—¢4 zf0 (11_EE3 ) d(l B 63)

0 1-e; f¢(1 63)(2) fo (¢(1 63)(2)) d(1—e3)
= fo Sa-eyfo(2)d(1 - €3),

where
Sl—eg(g)(z)=ﬁ¢<1_63)(z)Zg(¢<1_63)(z)) geazte
and ¢ _¢,)(2) = 3) AAn easy computationshowthat
<I>(1-63)(Z) = :3 01_,(2), zeD, 0<e <1

It follows that

2+€ 2€+4

151-c, @ = ggmme Jo [$a-e)@[ " |g (¢(1 63)(2))|2+edm(2)
—rg)mf,) |-y (@] (- 63)(2))| |g (¢a- 63)(2))| dm(z)
< (1_55)_6f,3 |¢(1—63)(Z)|26 g(¢(1-63)(z))| |@(1—63)(Z)| dm(z)

_ (1-€3)7¢ 2€ 2+e
- 2 f¢(1_63)(D)|w| |g((‘))| dm((‘))

€3
(1-€3)”¢ 2+e
= €52 f¢(1_63)(D)|g(w)| dm(w)
< 22 ) 1g(@)P+edm()
=& 63) lgll3Es.

Hence

2 2\71
||Sl—63(g)||A2+e < (1—e3)emt <E§+E> | gl az+e
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For the norm of /' we compute

2

I ()l goe < (fol(l —e;)en (J) d(1 - e3)> 1foll a2+

Tt
= —zm 1 foll az+e
51n(2—+€)
1

- ﬂ 2_+€—T[ 2+€
= (5 gy Il
Corollary(6.2.10)[297]. let 0 < € < . Then
(i) If0<e<owandf € A* € then

2
1Tt Ol e < T2 e

44+€
€k+1

(i) If 0<e<2andf € A%*€ then
1 2
8 _ 2+e (1 — Ek )ﬁ
I7i-es OO e < <<9_+ 1)2 ) 1 g
€ Em
K+1
Proposition(6.2.11)[297].There is no bounded linear operator T:A® —> A°

satisfying.

T(én)(0)=ﬁ, n=012...

Where £,(z) = z".

Proof. Suppose to the contrary. that there exists such an operator T. Using
pairing that defines an isometric isomorphism between (A%)* and
D,we find that the adjoint operatorT*:D — D

(T().9) = T(9)

for every f € A%, g € D. We choose g = 1 and write
TW@ = ) 2"
n=0

as the Taylor series of T*(1) € D.Using (7) forf =&, andg = 1 we have
— = T(5,)(0)

=(T(n). 1)
= (&, T°(1))
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For every n=0,1,2,....Hence
* (0] 1
T'(1)(@) = Xnto 72"
but this function is not in D.
Now we consider the integral

1

€k+1Z

H(f) = j FL = epey) ——d(L = €sn).
0

This integral is well defined for polynomials are dense in AZ . It is not known if
the last integral is well defined for all f € A%2.In any case, from Proposition
(6.2.11) we obtain:

Sec (6-3) Bergman and Hardy Spaces with a theorem of Nehari type

A Hankel operator on the space [Pof all square —summable complex sequences in
an operator defined by a matrix whose entries a, depend only on the sum of the

coordinates a,yx = Cp4x SOme sequence (C,)n-o. Hankel operator on different
spaces are related to many areas such as the theory of moment sequence,

orthogonal polynomials, Toeplitz operators ,or analytic Besov spaces .

Nehari’s classical theorem states that every Hankel operator S on [Pcan be
represented by an essentially bounded function g on the circle T, in the sense
that ¢, = §(n) for all n > 0 ;moreover ,a function g can always be chosen so
that [[g] Leo(ry = [ISIl}2-12 S€e[295] ,[298] or[299]. A typical Hankel operator

is the Hilbert matrix H whose entries are a_, =(n+k+1)",n,k >0 Itis

relevant in many fields ranging from number theory or linear algebra to numerical
analysis and operator theory. For this operator, the following choice: g(t) =
ieT(m—1t),0<t<2m in Nehari’'s theorem vyields |gl| Lo(T) = M=
IIH[l;2_;2. Several interesting facts about the Hilbert matrix are described
iNn[290] and[293] problems and further results about the spectrum of H can
be found in[298] .
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The Hilbert matrix can be viewed as an operator on other spaces and it is a basic
question to determine its operator norm.One from of Hilbert’s classical
inequality[271],[275].

>

—=n+k+1

b

n=0

ez (Zmr)

can be used to compute the norm of H on the space (2 all p- summable sequences:

TT

IHI[;22 = 1< p<ow

sin(mt/p)’ )

The Toylor coefficients of the function in the Hardy spaces HY are closely related
to [P spaces. Thus , it is natural to consider the Hilbert matrix as an operator
defined on HF by its action on the coefficients:

5 f(k)
f :
() Z ‘n+k+1
that is , by defining
HF@) = Sieo (Sfoompey) 2" fEHPzED  (18)

It is possible to write Hf , f € HP in other forms which are convenient for
analyzing this operator see[271] for example :

© f(r)
Hf (z) = dr. ze D
'([1—I’Z (19)

The equality of the expressions in(18) and (19) can be verified in a straightforward
way from the Toylor series expansion of f .

The most basic question is:on which Hardy spaces is H bounded? Diamantopoulos
and Siskakis [271] showed its boundedness on any HP with 1< P <oo. By
establishing another useful representation of H as an average of weighted
composition operator and integrating over semi-circular paths, they obtained the
following upper bound:
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TT

< <P<
IHllyropr < s, 2P <o

In view of Nehari’s I® Theorem,this result is sharp when P=2.

In the case 1< P < oo, it was also shown in[271] that the above estimate continues
to hold for the restricition of the operator to the subspace {f e HF:f(0) = 0}.
Two natural question come to mind:

(a) Can the above norm estimate for H be extended to the case 1< P < oo. without
restrictions?

(b)What is the actual value of the norm of H as an HP operator 1< p <« 9

We give a more general answer to the above question (a) by deducing the
following Nehari-type result: an arbitrary Hankel operator H, associated with a

function g € L (T) isbounded HP 1< P < oo:

sl

HHg‘HpﬁHp _s|n ﬂ-/p

The key point is that every Hankel operator on HP has representations as a
composition of a (non-analytic) isometru and a multiplication . followed by the
Rizez(szego) projection P, from LP (T) onto its closed subspace HP. It is well
know that this projection is bounded for 1 < P < oo. In 1968 Gohberg and
Krupnik[262] showed that

1Py >~ 1< p<w
TR T sin(x/ p)

and conjectured that equality should hold . Hollenbeck and Verbitsky [267]proved

this conjecture in 2000. Their result allows us to deduce the estimate for ||Hy||

above.

Using some Hardy spaces techniques and splitting H into a difference of two
operators we also get a lower bound which yields

T
||H||Hqu—m’ l<p<m

thus answering the above question (b) for all admissible values of p.
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The behavior of the Hilbert matrix as an operator defined by (18) turns out to be
similar in the classical Bergman spaces AP of functions P-integral in D with
respect to the area measure. Diamantopoulos [258] recenntly proved that H is
bounded on AP if and only P > 2. In the case

4 < P < o he obtained the estimate

T
”Hmpﬂpﬁgaggﬂﬁ

(This is what one may expect by the “rule of thumb” that say for many operators
and functionals defined on both HFP and AP their norm when acting on AP
is obtained by doubling an appropriate quantity in the norm when acting on

A

P P
H ') A less precise estimate for the norm of H on when 2< P <4 was also

obtained in[279] .

We optain a lower bound valid for all P > 2 which coincides with the upper bound
from [279] when P < 4, thus yielding the exact value of the norm for these
exponents:

T

[H ], e < Sn(272/p)’ 4<p<w

In the case 2 < p < 4 although we are currently not able to identify the exact value
of the norm, we do improve the bound obtained in[279]. We also point out that the
Hilbert matrix has an integral representation with respect to the area measure with
a kernel rather different from the usual Bergman space kernels.

D = {z € C: |z| < 1} Will denote the unit disk in the complex plane C and H(D)
will signify the algebra of holomorphic functions in D. For fin H(D) and 0<r<1,
the integral means M(r,f) are defined by

2 Yo
Mp(r, f):(% Hf(reie}PdeJ

and are increasing with r. The Hardy space HF (0 < P < o) is the space of all f
in H(D) for which [[f||yp = lim_; =My (r,f) < oo, and H*is the space of all
bounded f in H(D) we will denote by T the unit circle . The standard Lebesgue
space L"(T) of the circle is to be considered with respect to the normalized measure
dm(z)= (2m)~'dt where z=e" 0 < ¢ < 2m It is a well known fact that the space
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H® is the closed subspace of L"(T) consisting of all function whose fourier
coefficient with the negative index vanish. The Riesz (szego) projection p. from

LP(T) onto H" is defined by

1% u@
Puew =5 !1_ el zeD (20)

For more details , the reader is referred to [290] among other sources .

One can define Hankel operator on any space HP 1< P < c. Given an
arbitrary g € L (T),consider its Fourier coefficients with non- negative indices :

2

. 1 °%F
n)=— | e "g(t)dt, n>0
§(n)=——[e"9(®

0

We can formally define the associated Hankel operator Hg by

H, f(z)=§(:ﬁoé(n+k)f (k)jz"

(21)

foran analytic function f with the Taylor series f(z) = ¥ ,f(n)z%inD. In

particular,when g(t) = ielf(m—1),0<t<2m a straightforward calculation
shows that

g(n) —iTe‘mg(t)dt 1 n>0
27 n+1’ N

hence Hy = H, the Hilbert matrix . This is well known; see[280],[295],0r[298].

We will compute the norm of Hilbert matrix H as an HP operator,1 < P < oo
as a consequence of an upper bound for the norm valid for an arbitrary operator Hg
as above. To this end , we consider the isometric conjugation operator (also called
the flip operator) for the function on the unit circle T as C f(e't) = f(e ™). It is
obvious that C is an isometry from HP into LP (T). Next, let M,y denote the
operator of multiplication by the essentially bounded function g: Myu = gu; this is
clearly bounded by ||g||L® as an operator acting on L? (T) We will now establish
an equality H; = p,M,C which is known to hold in [P context(see[295], thus
obtaining a Nehari — type theorem for Hankel operators on Hardy spaces .

237



Theorem(6-3-1)[289]: let 1< P < oo and g e€L”(02m) The operator
Hgdefined as in (21) is bounded on HP the equality Hy = p,M,C holds and
consequently,

[,

In particular, when g(t) = ie''(m —t),0 < t < 2w, we get H,=H and

T
<

HT=HT T sin(a/ p) (22)

[H

Proof. Given f € HY, denote by f,, its mth Taylor polynomial f.(2)=>", f (k)z*

the following result[293] will be useful: if 1 < P < oo and then ||f,f
m-— oo

v = 0as

Given f € HP we first verify that the power series for H,f converges in D.To
this end, it suffices to show that

2. 8n+K)F (k) <[olee| ],,,
k=0

(23)

For £, instead of f, this follows immediately by recalling that C is an isometry of
HP into L? (T) and applying Holders inequality:

A similar argument applied to the difference f,, —f, shows that (3y_,G(n+
kf (k))m=0oc0is a Cauchy sequence uniformly in n, so it is legitimate to let m—co
obtain (23)

We will now establish the formula Hgf = p,MyCf for all fin HP,1 <p < . By
the theorem of Hollenbeck and Verbitsky this will immediately imply that Hg
bounded and, moreover,(22) holds:

[,

Given f € H, we get the identity ||Hf, = p,+M,Cf,, and the bound
g gmlly g

I,
LP(T)-LP(T) sin ﬂ-/p

HP SHP S||p+||Lp(T)~)Hp 9

. _lal.

HP _Sinﬂ'/pH mHHp

g m

HH f
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for the mth Toylor polynomial f,of f by an easy computation involving
(21)and(20):

— S Y i(n+k)t g(t)f (e It) dt
Hgfm(z)—nz:(;k; (k)je g(t) j s e o

The interchange of the series and the integral is justified by uniform convergence

of the geometric series 2ol? on compact sets in D.

To extend the identity Hyf, = p,MCf,, and(24) for arbitrary f in HP, note

that (Hgfm ):zois a Cauchy sequence in H® in view of

ok Sy,

HHg(fm - f”)‘H” sinz/p

so the standard HF piontwise estimate f(z) < (1 — ||z||*>~2/P)f4» [280] implies
uniform convergence of H,f,, on compact sets. Next our earlier observation that

@E’:Og(mk) fA(k)Tm:O

Is a Cauchy sequence uniformly in n and standard estimates for the nth Toylor
coefficients based on the Cauchy integral formula allow us to conclude that
actually Hgfp, — Hgf uniformly on compact sets. Finally . the statement follow by

Falou’s Lemma after taking the limitas n — oo in the inequality(24).
The main theorem of this section gives the Lower bound for the norm.

Theorem(6-3-2)[289]; Let as 1 < p < oo . Then the norm of the Hilbert matrix as
an operator acting on H " satisfies the Lower estimate

[H

T
HP >HP ZSinﬂ/p (25)

Proof .We break up the argument into four key steps.

Stepl. We begin by selecting a family of test functions. Let e be fixed0 <e <1
and choose an arbitrary y such that e <y < 1. It is a standard exercise to check
that the function £,(z) < (1 — z)~YPbelongs to HP it is also easy to see that

Iirp\ Ny = (26)
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Step 2 . set f=1, in the representation formula(19). The change of variable

1-r=X yields
HF, (2) = j(l " dr:.lf X
rz 1-z+xz

Now define

ks -7/p d R X}//p 57

g(z)_;[l—z V4 X (2)= Il 7+ Xz ax ( )

so that obviously

Hf (2)=9(2) -R(2) (28)

where each of the three function in(28) makes sense almost everywhere on T thus
we can consider their LP (t) norms.

Step3. Note that z'~Y/Pg(z) can be defined as an analytic function in the complex
plane minus two slits : One along the positive part of the real axis from 1 to « and
another along the negative part of the real axis from 0 to ©These value of z will
always avoid the real value(1-x)™.

Now, whenever z is a real number such that 0 < z < 1, after the change of
variable xz/(1-z)=u we get

1-y/p « -7/p © —y/p
757/Pq(z _ L X dx=(@1-2)7"/" u—du
9(2) 1-z2 I ( ) J.1+u

01+ X— 0
1-z

T

sin(z y/p)
by a well — know identity for the Gamma function[273,268],270].Hence

=r(y/p)rt-y/p)-2) """ = L-2)7""

T

1-y7/p —(1_7\7/P
z77"Pg(z)=(1-12) Sin(z/ p)

holds throughout the silt disk D\(-1,0]. Both sides are defined almost everywhere
on T, hence their L¥ (t) norms make sense and
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l9@]s iy =77 0(2)

whenevere <y < 1.

Step4d. We now obtain an upper bound for the LP (t)-norm of the remaining
integral R in(27). Note that R can be defined as analytic function in the plane
minus a slit from 0 to oo along the negative part of the real axis , so it also makes
sense almost everywhere on T it follows from the definition of the operator norm

*M  sin my/p

=l

and by(28), the triangle inequality, and(29) that

H

Hence

s e

Minkowski’s

HP >HP

7llne ZH f7 LP(T) 2‘HQHL”(T) _HRHLP(T)
= Sln(ﬂﬂw 7y e _”R”L"(T)
e IRl
sin(zy/p) |,

inequality in its integral from (see[280,275], followed by a change of

variable x-1=u and some simple estimate yields

, Yp
1T X7
<||— d d
1{2 j\1+(x 1)e"\ t] "
, Yp
x7/P ! f at dx
27 4 \1+(x—1)e“\p

2z 1 2z dt VP
:j(l—u)‘”p EI — | du

o 5 ‘1+ ue"‘

:
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, , Yp
15 dt
<l =1—2 | d
<'([{2” E[‘l+ue“‘pJ -
Yp

+'|.(1+u)*’"/p[21ﬁz'|? at Jdu

‘1 ue“‘

where € was the number fixed in the first step of the proof .

. . 1 (2r itipdt _ Q 1*p) 1
An easy modification of a standard lemma: gfo L+ue'| dt=olu-1")as u—

[280],Both from below and from above, justifies the convergence of the integral

P

f1 dt
d
! 2 !‘1+ue“‘p :

On the other hand Zijoz”‘u ue“‘fpdt <u-1" foru>2 so
T

dt ]d<J~1+U g/p

‘1 ue”‘

2z

foow [ L]

This shows that ||R]| .r « 1S bounded by a constant independent of our choice of
7 <D Now by(26) we get |R|| .r ® /||fy||Hp —0asy 71 and taking the limit
in(30) ,we finally obtain(25).

Corollary(6-3-3)[289]: Let 1 < p < co. The norm of the Hilbert matrix as an
operator acting on HP equals

T

(LT I ~sin(z/p)

For g € L*(0,2m), let Hghe the operator defined by i.e.
H,f(z2) = Z(Zg(n +K) f(k)jz"
n=0\ k=0

and Ag: H' — I" be the coefficient multiplier operator defined by
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A f=(F()§n)z,

We refer the reader to[260]for a detailed account of the theory of coefficient
multipliers on Hardy spaces.

Hedlund[294] showed that if §(n) = O whenever n > 0O, then the norm of the
operator Hg viewed as an [* operator (which is equivalent to begin an H? operator)
equals the norm of the coefficient multiplier operator A, from H! to the space I*
of absolutely summable sequences .

This is implicit in the proof of Theorem (6.3.1) [294]. Thus.

>

f

g HZHZ

()3} <[ " (31)
The standard choice g(t) = ie”*(m —t),0 < t < 2rm yield as a corollary Hardy’s
classical inequality see[290]or[264]:

flk X

00

2

k=0

for every feH’ (32)

There is a slight improvement which is also sharp and canbe found

in[182]:

flk)
= k+1/2

This result can also be obtained from our Theorem(6.3.1) and by(31) choosing

for every f e HL. (33)

g(t) = me' ) ,0 <t < 2m. Sincel||g||l = m,a straightforward calculation shows
that.

1 2r 7_t 1
= — n tdt= 20
9(n) 27 'O[e 9(t n+1/2 "

and (33) follow. It is interesting to notice that the constant mt is best possible in both
inequalities (32) and(33) even though this may look paradoxical at a first glance.

Let A(z) = nldxdy = n~lrdrdt denote the normalized Lebesgue area measure
on D.z = x + yi = re't, Recall that the Bergman space APis the set of all f in H(D)
for which
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[ =( I \f(z)tpdA(z)] <o

It is known that HP < A?P, Actually , the function in Bergman spaces exhibit a
behavior some-what similar to that Hardy spaces functions but often a bit more
complicated For more about these spaces, the reader may consult[291]or[282].

It was shown in[258]that in that the Hilbert matrix operator is unbounded on
AZ? The situation is actually even worse : there exist a function f in A2 such that not
only Hf & A% but even the series defining Hf (0) is divergent. Indeed, consider the

function f defined by
00 1
f(Z) - Zn=1 log(n+1) Zn'

Then f € A since ||, =>" (n +1) log2(n+1) <o ‘However,

—_ (00] 1 —_
Hf(O) - Zn:l (n+1)log(n+1) = ®

It is well known that there exists a constant such that C > 0 such that

. A(k)‘
KZ=0 k+1

<C|f,

for every f(z)=Z‘;’=OfA(k)zk that belongs to AP,2 < p < oo, This is a result of
Nakamura Ohya, and Watanabe[269]; a proof can also be found in [291].
Therefore if f belongs to A*>, 2<p <oo,and f(z)=) f(k)z* then the power
series

HE (2) = [i—‘?(k) jz”

~len+k+1

has bounded coefficients, hence its radius of convergence is = 1. in this way
we obtain a well defined analytic function Hf on D for each f e A’,2<p<ww .It
actually turns out as was proved in[279] that H maps AZinto itself in a bounded
fashion whenever 2 < p < oo. In order to show this, Diamantopoulos again used
formula(19) in which the convergence of the integral is guaranteed by the poinwise
estimates on AP function and by the fact that1/(1-rz) abounded function of f for

each,z € D (see[279].
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The following formula shows that the Hilbert matrix operator has a different
integral representation on the Bergman space. The representation below should be
compared with our Theorem (6.3.1)for HP applied to the Hilbert matrix for the
Hardy spaces in order to appreciate the difference between the two situations.

Theorem(6-3-4)[289]. Let 2 <p < co. Then the operator H can be written as
follows:

f (@)

D

for any f € AP.

Proof. writing

f(2)=3 ake* %ia)‘
k=0 - j

and recalling that

we see that

N\ | f (@)
v dAt(a’)J( 2) -l oaag @
The interchange of integrals and sums is again easily justified by a geometric series
argument.

It should be observed that the representing kernel lacks the usual “symmetry” in
two variables.

Our next result is analogous to Theorem(6.3.2)The key idea of the approach
below is again the observation that our function f, are “ not far from begin
eigenvectors’” of the Hilbert matrix H. The proof below can also be adapted to the
Hardy space case while the earlier proof of Theorem(6.3.2)with its typical “ Hardy
space flavor ” cannot be made to work for AP spaces.
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Theorem(6.3.5)[290]:Let 2 < p < oo. Then the norm of the Hilbert matrix as an
operator acting on AF satisfies the lower estimate

[H

T
AP 2 o T
A=A sin2r/ p)

Proof : We use the same function f, as in the proof of Theorem(6.3.2). Note that
f, eA? if and only ify <2 ;this is well known and will be quantified below.
Aplying H to f, and making the change of variable w =(1-rz)/(1-r), a direct
computation shows that Hf, =4, , where for every z in D we define

4,(2) = I o Z)l T (35)

Here is how the above formula should be understood. As r traverses the interval
[0,1), the point w runs long a ray L, from 1 to the point at infinity. This ray is
contained entirely in the half- plane to the right of the point 1 since

1-Rez
1-r

Rew = >1

It is also important to observe that the integration in(35) can always be performed
over the ray[1, oo) of the positive real semi-axis instead of over
L, ={@-rz)/1-r):0<r <1}, Since for anys fixed z in D the integrals over the two

paths coincide. This can be seen by a typical argument involving the Cauchy
integral theorem and integrating over the triangle with the vertices 1,(1-rz)/(L-r)

and Re(1-rz)/(1-r) and Letting r —1. Namely, writingz=x+yi, we see that on the
vertical line segment S, fromRe(1-rz)/@1-r) =@ -rx)/@-r)t0 (L rx—ryi)/(1-r)every
w point satisfies

|w_z|>Rel rz_l::dl—x)’ |a)|21—rx
1-r 1-r 1-r
and the length of the segments, is Pmll__—rrz =% Thus.
rly|
[ o |op el i
{ a)‘a)— Zlfy/pH l |a)||a)— Z|1fy/p

1-rx(ra-x) )"
1-r 1-r
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By letting r » 1 it follow that

I Z)l r/p ! Z)l r/p

Knowing that in the definition (35)of the function @, we can take to be a real
numbers = 1, it is immediate that @, belongs the disk algebra wheneve y < 2r
since p >2 now ( the case y = 2 will also be useful to us although f, ¢ A?). Indeed
@, is clearly well defined as an analytic function of z for all z € D\{1}as

1 —y/p > 0.The inequality The s — 1 < |s — z| obviously holds fors>1 and all
z in D, hence the function (Z)y attains its maximum modulus at z=1 and

° dx ps

ds
¢() '[ ( 1)1 y/P=.£(1+X)X1y/p=Sin(ﬂ7/p)<oo

whenevery < 2 <p.

Set C,=|f,|,, -By integrating in polar coordinates centered at z=1 rather than at
the origin, one easily chechs that

7/22costt

:Ip— dA(z) = 2j jr“drdt

3-y /2
2 I cos? 7 tdt =
— 7/ 0

237
-

B(3-7,3/2) >

as y 7 2. Defining g, =fC, ,it is clear that Hg, =¢,9 and the family of

functions{|gy(z)|p:0 <y<2z€ D} has all the properties of an approximate
identity:

@) |o,()| =0
() J,Jo =1

(©) |g, ()| — 0on any compact subset of D\{1} ,as y > 2 ¢
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Using the usual procedure of splitting the disk into two domains D, =
{z € D: |z — 1] < €} and D/D, and estimatinsg the difference

[|Hg, (2)]"dA@) -, @) = f(‘@(z)‘p ——|¢2(1)|p)gy(z)‘pdA(z)

separately over each one the two regions, we see that difference tends to zero
asy — 2 because the function g, (z) is continuous on the compact set{(z,y)e D x[0,2]}

and is, hence, uniformly continuous there. It is also uniformly bounded on D, x[0,2]
.a fact used also in one of the two estimates. This allows us to conclude that

IimHHgy

y—2

T
o =l =40 ~sin(2z/ p)

= Iiqubygy

y—2

Which gives the desired lower bound for the norm of H on AP

By combining Theorem(6.3.5). with the upper bound proved in[279] for4 <p <
oo, we get the following consequence.

Corollary(6.3.6)[289]. Where 4<p<o, the norm of the Hilbert matrix as an
operator acting on AP equals

T
A=A sin2z/ p)

[H

It should be remarked that the assumption p-4>0 is fundamental in obtaining the

upper bound by Diamantopoulos’ method[279].Let us new recall his estimates
when2< p<4.0ne is as follows:

|HE |, Scpsin;ﬂ/p”f . forevery feA’ (36)
where C, — coasp — 2 The other is:
b T
|HE[ . <(p/2+2) sin27r/p”f o (37)

whenever feA” and f(0)=0 (again,2 < p< 4). Although the present time we are
not able to extend Corollary(6.3.6) to the entire range 2< p<«, we do have a

reasonable jnrovement of the upper bound(36) and our result is also closer to the
estimate for p>4
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Theorem(6.3.7)[289]. Let2< p <4 then there exists an absolute constant C
independent of p,1<C <« such that

T

—|f for every f e AP
sin(z/p)" ™ y te

[Hf,. <C

Proof. Let feAP Dbe a function whose Taylor series is f(z)=Z‘f=()fA(k)zk Write

f=fo+f where f,(z)= f(0) and f,(z)=>"_ f(k)z.Then using we find that

p
It <( (b/2+1) S|n2 7/ p) ” th = S|n2 sin(2z/p) (38)
From
f(0) o f(0)
Hf,(2) = Zkon+1 B z Iog -z
we obtain

N I
[Hty| .o =|f (0)‘”2 log—~—

AP

It is easy to see that C, = H IogL

<C, <o From the version of the mean-value
A

AP

equality f(0)= | f(2)dAz) we find that \f (0)‘s||f||A,, Thus.

Mol <Cal 1, <C - 7ol (39)
Since
fill 1o =||f — folle SJF Ap+||f0
Using(38)and(39)we get
| S(Z@Jrc)sm (271 p)

The exact computation norm of the Hilbert matrix as an operator on AP by the
methods employed here might be a more difficult problem than its Hardy space
counterpart perhaps because integral of H is more involved.The case 2<p<4
well reguire a further stady.

249



List of Symbols

Symbol Page
&) .direct deference 1
Im . Imaginary 1
Ker : Kernel 2
dom : Domain 4
ran . range 4
arg s argument 4
Re : Real 4
) . orthogonal Sum 5
Ext : Exterior 6
clos : closure 15
gsc : quasi self adjont contraction 29
TPSG : tow-point self-similar fractal graph 36
p.c.f . post- critical finite 39
deg : degree 41
max : maximum 42
supp . Support 52
SG - Sierpinski Gaskef 55
i.f.s . iterated function system 55
a.e : Almost Everywhere 60
LP . lebesgue measure on the real line 61
Prob . probability 67
sup . Supremum 68
det . determinant 73
min : Minimum 74
Tr : Trace 78
Spec : spectrum 78
1? - Hilbert Space 91
CMV : Contero Moral and Velazquez 107
e - Hilbert Space 107
A? : Hardy spaces 108
dim : Dimension 110
OPUC : Orthogonal Pelynomials on the Unit Circle 123
diag - diagonal 137
WN : weakly non degenerate 158
HC : harmonic coordinates 166
0SC - Oscillation 176
HP : Hardy spaces 204
AP : Bergman Space 213
P : all sequence —summable complex 233
H® : Essential Hardy spaces 236
L® : Essential lebesgue spaces 237
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