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CHAPTER ONE 

Introduction 

(1.1)History of superconductivity: 

Superconductivity is the ability of certain materials to conduct electrical current 

with practically zero resistance. To his produces interesting and potentially useful 

effects. For a material to behave as a superconductor, low temperatures are 

required. 

(1.1.1) Discovery of superconductivities:                                                

Superconductivity was first observed in 1911 by H. K. Ones, a Dutch physicist. 

His experiment was conducted with elemental mercury at 4 degrees Kelvin 

(approximately -452 degrees Fahrenheit), the temperature of liquid helium. Since 

then, some substances have been made to act as superconductors at higher 

temperatures, although the ideal  a material that can superconductor at room 

temperature remains elusive. 

 (1.2) Applications of superconductivity: 

High-temperature superconductors may lead to many important technological      

Advances, Such as highly efficient, lightweight superconducting motors. However, 

any significant materials-science problems must be overcome before such 

applications Become reality. Perhaps the most difficult technical challenge is to 

mold the brittle Ceramic materials into useful shapes, such as wires and ribbons for 

large-scale applications and thin films for small devices (e.g., SQUIDs). Another 

major problem is the relatively low current density that bulk ceramic compounds 
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can carry assuming that such problems will be overcome; it is interesting to 

speculate on some of the Future applications of these newly discovered materials. 

An obvious application using the property of zero resistance to direct currents is  

Low-loss electrical power transmission. A significant fraction of electrical power is 

lost as heat when current is passed through normal conductors. If power 

transmission lines could be made superconducting, these dc losses could be 

eliminated and substantial savings in energy costs would result.  

The new superconductors could have a major impact in the field of electronics. 

Because of its switching properties, the Josephson junction can be used as a 

computer element. In addition, if one could use superconducting films to inter 

connect computer chips, chip size could be reduced and consequently speeds 

would be enhanced. 

Thus information could be transmitted more rapidly and more chips could be 

contained on a circuit board with far less heat generation.                                                               

An important application of superconducting magnets is a diagnostic tool called 

magnetic resonance imaging (MRI). This technique has played a prominent role in 

diagnostic medicine because it uses relatively safe radio-frequency radiation, rather 

than x-rays, to produce images of body sections. Because the technique relies on 

intense magnetic fields generated by superconducting magnets, the initial and 

operating costs of MRI systems are high. A liquid-nitrogen-cooled magnet could 

reduce such costs significantly.                                                                                                                                                     

(1.3)Research problem 

The quantization of magnetic field in superconductivity is complicate                                      
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    (1.4) Aim of the work   

      The aim of this work is to deduce the quantization of magnetic field using                                       

simplified equation.                                               

    (1.5) Presentation of the thesis 

The research included three chapters. In the first chapter, we introduced the 

detailed information about discovery, definitions and applications of super 

conductivity and also the research problem and aim of the work has been 

conducted. In chapter two types of superconductive, magnetic field flux 

quantization and the different ideas that related to superconductive such BCS 

theory, Meissners’ effect and Copper pair are studied. In chapter three 

magnetic flux and quantization of  magnetic flux. 
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CHAPTER TWO 

Theory of Superconductivity 

(2.1)Introduction 

      Superconductivity is characterized by a vanishing static electrical resistivity 

and an expulsion of the magnetic field from the interior of a sample where fore 

mainly this chapter is dealing with the theory of super conductivity. We want to 

understand superconductivity using methods of theoretical physics. 

 

(2.2)The Cooper Pair 

     In 1956 Cooper [14] showed that the attraction, however weak, may bind a pair 

of electrons. He started with Cooper’s equation: 

𝜔𝑞 𝛼 𝑘, 𝑞 = [𝜀   𝑘 +
𝑞

2
  + 𝜀( −𝑘 +

𝑞

2
  )𝛼(𝑘, 𝑞)  

1

(2𝜋ℎ)2
𝜈0  𝑑2𝑘𝛼(𝑘 , 𝑞) 

                            (2.1.1) 

Where is the energy of a pairon,  𝛼 𝑘, 𝑞 . the wavefunction and the interaction 

strength. The solution of Eq. (2-1-1) for small moment yields: 

𝜔𝑞 = 𝜔0 + 𝑐𝑞 < 0 , 𝜔0 =
−2ℎ𝜔𝐷

exp  
2

𝜐0𝑁 0 
 −1

      (2.1.2) 
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Where for 
𝑐

𝜈𝐹
= 1/2( 

2

𝜋
 )                                           (2.1.3)  

For 3D. The constant strength can be justified for the acoustic phonon exchange: 

𝜈0 =  𝑣𝑞  
2 1

2𝜔𝑞
= 𝐴𝑞

2 ℎ𝑞
2

2𝜔𝑞
= 𝐴𝑞

2 1

2𝑐𝑠
2      (2.1.4) 

Where  𝜔𝑞 = 𝑐𝑠𝑞  and Cs= the sound speed. 

(2.3) Flux quantization: 

We now two concentric superconducting cylinders that are thick compared to the 

London penetration depth l
  a magnetic flux  

 o
Bd  2

                        (2.2.1)
 

Penetrates the inner hole and a thin surface layer on the order of  l
 of the inner 

cylinder the only purpose of the inner cylinder is to prevent the magnetic field 

from touching the outer cylinder which we are really interested in the outer 

cylinder is completely field- free we want to find the possible values of the flux  . 
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Figure (2.1).the surface layer 

Although the region outside of the inner cylinder has B=0 the vector potential does 

not vanish the relation BxA   implies. 

  rBddsA 2

                          (2.2.2)
 

By symmetry the tangential part of A is  






2
A

                             (2.2.3)
 

The London gauge requires this to be the only non-zero component. Thus outside 

of the inner cylinder we have in cylinder. 
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








22
A

                                 (2.2.4)
 

Since these is a pure gradient we can get from A=0to A= (  )2/  by a gauge 

transformation  

xAA                                       (2.2.5) 

With  





2
x

                                     (2.2.6)
 

X is continuous but multivolume outside of the inner cylinder we recall that gauge 

transformation of A must be accompanied by a transformation of the wave 

function. 




j sj
s

rx
he

ie
 )(exp(

                 (2.2.7)
 

This is most easily seen by noting that this guarantees the current to remain 

invariant under gauge transformation thus the wave function at )0(0  A and at 

non-zero flux are related by:  

 


 00
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              (2.2.8)
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Where j  is the polar angle of electron j for 


s
 as well as 

0

s
 to be single valued 

and continuous the exponential factor must not change for  2 jj  for any j 

this case if  

znwith
e

hc
nz

hc

e
 .

                 (2.2.9) 

We find that the magnetic flux is quantized in unites of he /e note that the inner 

cylinder can be dispensed with assume we are heating it enough to become normal 

conducting then the flux  will fill the whole interior of the outer cylinder plus a thin 

(on the order of 
j
 )layer on inside but if the outer cylinder is much thicker than  

j
 this should not affect 


0

s appreciably away from this thin layer . 

The quantum he /e is actually not correct based in the idea that two electrons could 

form a boson that could Bose –Einstein condense on sager suggested that the 

relevant charge is 2einsted of e leading to the superconducting flux quantum  

e

he

2
0                                                    (2.2.10) 

This is indeed found in experiments  
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(2.3)Types of superconductivity 

   (2.3.1) Type I and II superconductors: 

 

        High magnetic fields destroy superconductivity and restore the normal 

conducting state. Depending on The character of this transition, we may 

distinguish between type I and II superconductors. The graph shown in Figure 4 

illustrates the internal magnetic field strength, Bi, with increasing applied magnetic 

field. It is found that the internal field is zero (as expected from the Meissner 

effect) until a critical magnetic field, Bc, is reached where a sudden transition to 

the normal state occurs. `This results in the penetration of the applied field into the 

interior. Superconductors that undergo this abrupt transition to the normal state 

above a critical magnetic field are known as type I superconductors. Most of the 

pure elements in Figure 2 tend to be type I superconductors. Type II 

superconductors; on the other hand, respond differently to an applied magnetic 

field. An increasing field from zero results in two critical fields, Bc1 and Bc2. At 

Bc1 the applied field begins to partially penetrate the interior of the 

superconductor. However, the superconductivity is maintained at this point. The 

superconductivity vanishes above the second, much higher, critical field, Bc2. For 

applied fields between Bc1 and Bc2, the applied field is able to partially penetrate 

the superconductor, so the Meissner effect is incomplete, allowing the 

superconductor to tolerate very high magnetic fields. 
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Figure (2.2),  type-I superconductor behavior.     Figure (2.3), type-II superconductor behavior. 

Type II superconductors are most technologically useful   because the second 

critical field can be quite high, enabling high field electromagnets to be made out 

of superconducting wire. Most compounds shown in Figure (2.2) are type-II 

superconductors. Wires made from say niobium-tin (Nb3Sn) have a Bc2 as high as 

24.5 Tesla – in practice it is lower. This makes them useful for applications 

requiring high magnetic fields, such as Magnetic Resonance Imaging (MRI) 

machines. The advantage of using superconducting electromagnets is that the 

current only has to be applied once to the wires, which are then formed into a 

closed loop and allow the current (and field) to persist indefinitely – as long as the 

superconductor stays below the critical temperature. That is, the external power 

supply can be switched off. As a comparison, the strongest permanent magnets 

today may be able to produce a field close to 1 Tesla. However, it is possible to 

obtain up to 24.5 Tesla from a niobium–tin superconductor. 

There is a misconception amongst some non-specialists that the term "Type II" 

refers to the copper oxide based high temperature superconductors discovered in 
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the late 1980s. While these are type II superconductors, so are many 

superconductors discovered before that time 

(2.5)The Meissner effect: 

                      In 1933, Walter Meisrsne and Robert Ochsenfeld discovered a 

magnetic phenomenon that showed that superconductors are not just perfect 

conductors. Figure 3 illustrates a thought experiment that highlights this difference. 

Imagine that both the ideal conductor and superconductor are above their critical 

temperature, Tc. That is, they both are in a normal conducting state and have 

electrical resistance magnetic field, Ba, is then applied. This results in the field 

penetrating both materials. Both samples are then cooled so that the ideal 

conductor now has zero resistance. It is found that the superconductor expels the 

magnetic field from inside it, while the ideal conductor maintains its interior field. 

Note that energy is needed by the superconductor to expel the magnetic field. This 

energy comes from the exothermic Superconducting transition. Switching off the 

field induces currents in the ideal conductor that Prevent changes in the magnetic 

field inside it – by Lenz’s law. However, the initial superconductor returns to its 

State, i.e. no magnetic field inside or outside it.  
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Figure (2.4), the meissner effect 

 

(2.6)The BCS theory: 

         According to classical physics, part of the resistivity of a metal is due to 

collision between free electrons and thermally displaced ions of the metal lattice, 

and part is due to scattering of electrons from impurities or defects in the metal 

Soon after the discovery of superconductivity, scientists recognized that this 

classical model could never explain the superconducting state, because the 
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electrons in a material always suffer some collisions, and therefore resistivity can 

never be zero. Nor could superconductivity bounder stood through a simple 

microscopic quantum mechanical model, where one views an individual electron 

as an independent wave traveling through the material. Although many 

phenomenological theories based on the known properties of superconductors were 

proposed, none could explain why electrons enter the superconducting state and 

why electrons in this state are not scattered by impurities and lattice vibrations. 

Several important developments in the 1950s led to better understanding of 

superconductivity. In particular, many research groups reported that the critical 

temperatures of isotopes of a metal decreased with increasing atomic mass. 

This observation, called the isotope effect, was early evidence that lattice motion 

played an important role in superconductivity. For example, in the case of mercury, 

Tc _ 4.161 K for the isotope 199Hg, 4.153 K for 200Hg, and 4.126 K for 204Hg. 

The characteristic frequencies of the lattice vibrations are expected to change with 

the mass M of the vibrating atoms. In fact, the lattice vibration frequencies are 

expected to be proportional to M_1/2 [analogous 

To the angular frequency _ of a mass-spring system, where _ _ (k/M)1/2]. On this 

basis, it became apparent that any theory of superconductivity for metals must 

include electron-lattice interactions, which is somewhat surprising because 

electron-lattice interactions increase the resistance of normal metals. 
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The full microscopic theory of superconductivity presented in 1957 by Bardeen, 

Cooper, and Schrieffer has had good success in explaining the features of 

superconductors. The details of this theory, now known as the BCS theory, are 

beyond the scope of this text, but we can describe some of its main features and 

predictions. 

The central feature of the BCS theory is that two electrons in the superconductor 

are able to form a bound pair called a Cooper pair if they somehow experience an 

attractive interaction. This notion at first seems counterintuitive since electrons 

normally repel one another because of their like charges. However, anet attraction 

can be achieved if the electrons interact with each other via the motion of the 

crystal lattice as the lattice structure is momentarily deformed  

By a passing electron.13 to illustrate this point, Figure 12.20 shows two electrons 

moving through the lattice. The passage of electron 1 causes nearby ions to move 

inward toward the electron, resulting in a slight increase  
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Figure (2.5). the basis for the attractive interaction between two electrons via 

the lattice deformation. Electron 1 attracts the positive ions, which move 

inward from their equilibrium positions (d). This distorted region of the 

lattice has a net positive charge, and hence electron 2 is attracted to it  

 

 

 The concentration of  positive charge in this region. Electron 2 (the second 

electron of the Cooper pair), approaching before the ions have had a chance to 

return to their equilibrium positions, is attracted to the distorted (positively 

charged) region. The net effect is a weak delayed attractive force between the two 

electrons, resulting from the motion of the positive ions. as one researcher has 

beautifully put it, ―the following electron surfs on the virtual lattice wake of the 

leading electron.‖ 14 In more technical terms, one can say that the attractive force 

between two Cooper electrons is an electron-lattice-electron interaction, where the 

crystal lattice serves as the mediator of the attractive force. Some scientists refer to 
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this as a phonon-mediated mechanism, because quantized lattice vibrations are 

called phonons. 

                                    

Figure(2 .6), a schematic diagram Spin down of a Cooper pair. The electron 

moving to the right has a momentum p and its spin is up, while the electron 

moving to the left has a momentum _p and its spin is down. Hence the total 

momentum of the system is zero and the total spin is zero . 

 

A Cooper pair in a superconductor consists of two electrons having opposite 

momentum and spin, as described schematically in Figure 6. In the 

superconducting state, the linear momentum can be equal and opposite, 

corresponding to no net current, or slightly different and opposite, corresponding to 

a net superconducting current. Because Cooper pairs have zero spin, they can all be 

in the same state. This is in contrast with electrons, which are fermions (spin) that 

must obey the Pauli exclusion  principle. In the BCS theory, a 12 ground state is 
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constructed in which all electrons form bound pairs. In effect, all Cooper pairs are 

―locked‖ into the same quantum state. One can view this state of affairs as a 

condensation of all electrons into the same state. Also note that, because the 

Cooper pairs have zero spin (and hence zero angular momentum), their wave 

functions are spherically symmetric (like the s-states of the hydrogen atom.) In a 

―semi classical‖ sense, the electrons are always undergoing head-on collisions and 

as such are always moving in each other’s wakes. Because the two electrons are in 

a bound state, their trajectories always change directions in order to keep their 

separation within the coherence length.  

          The BCS theory has been very successful in explaining the characteristic 

superconducting properties of zero resistance and flux expulsion. From a 

qualitative point of view, one can say that in order to reduce the momentum of any 

single Cooper pair by scattering, it is necessary to simultaneously reduce the 

momentum of all the other pairs—in other words, it is an all-or-nothing situation. 

One cannot change the velocity of one Cooper pair without changing those of all of 

them.15 Lattice imperfections and lattice vibrations, which effectively scatter 

electrons in normal metals, have no effect on Cooper pairs! In the absence of 

scattering, the resistivity is zeros and the current persists forever. It is rather 

strange, and perhaps amazing, that the mechanism of lattice vibrations that is 

responsible (in part) for the resistivity of normal metals also provides the 

interaction that gives rise to their superconductivity. Thus, copper, silver, and gold, 

which exhibit small lattice scattering at room temperature, are not superconductors, 

whereas lead, tin, mercury, and other modest conductors have strong lattice 

scattering at room temperature and become superconductors at low temperatures. 
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As we mentioned earlier, the superconducting state is one in which the Cooper 

pairs act collectively rather than independently. The condensation of all pairs into 

the same quantum state makes the system behave as a giant quantum mechanical 

system or macromolecule that is quantized on the macroscopic level. The 

Condensed state of the Cooper pairs is represented by a single coherent wave 

function that extends over the entire volume of the superconductor. 

The stability of the superconducting state is critically dependent on strong 

correlation between Cooper pairs. In fact, the theory explains super conducting 

behavior in terms of the energy levels of a kind of ―macro molecule‖ and the 

existence of an energy gap Eg between the ground and excited states of the system, 

as in Figure 12.22a. Note that in Figure   there is no energy gap for a normal 

conductor. In a normal conductor, the Fermi energy EF represents the largest 

kinetic energy the free electrons can have at 0 K. 

The energy gap in a superconductor is very small, of the order of k T Bc (_10_3 

eV) at 0 K, as compared with the energy gap in semiconductors  (_1 eV) or the 

Fermi energy of a metal (_5 eV). The energy gap represents  the energy needed to 

break apart a Cooper pair. 
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CHAPTER THREE 

Flux Quantization for electron moving   in a circular orbit 

(3.1) Introduction: 

        Magnetic field plays an important role in many applications; therefore it is 

important to study the properties of magnetic field in different materials.  

(3.2) Magnetic Flux produced by: 

       Consider an electron reviving around   a nucleus in a circular orbit of radius(r) 

. The magnetic flux density produced is given by:  

𝑣 = 𝑤𝑟                                                                  3.2.1  

𝐵 =
𝜇0𝑖

2𝑟
                                                              (3.2.2) 

If the electron number of revolution per seconds is (f), then the current produced is 

giving by  

𝑖 = 𝑒𝑓            ,            𝑖 =
𝑒𝑤

2𝜋
                                                           (3.2.3)  

Where (e) is electron charge .but since    𝑤 = 2𝜋 

It follows that 
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𝑖 =
𝑒𝑤

2𝜋
                                                  (3.2.3) 

But the angular velocity   

  Can used to rewrite (i) in terms of it, where  

𝑖 =
𝑒𝑤

2𝜋
   =  

𝑒𝑣

2𝜋𝑟
                                  (3.2.4) 

Where 

𝑣 = 𝑤 𝑟                                              (3.2.5) 

The flux enclosed by the orbit of electron is given by  𝜙 = flux   𝜙 = 𝐵 𝐴 

𝜙 = 𝐵 𝐴 = 𝐵 2𝜋𝑟2                        (3.2.6) 

Substitute (3.2.4) in(3.2.1) to get  𝐵 =
𝜇0 𝑒 𝑣

4𝜋𝑟2
    

𝜙  =   𝐵 2𝜋𝑟2    =    
𝜇0 𝑒 𝑣

4𝜋𝑟2
  2𝜋𝑟2    =    

𝜇0 𝑒 𝑣

2
            (3.2.7)      

𝜙  =     
𝜇0 𝑒 𝑣

4𝜋𝑟2
  2𝜋𝑟2    =    

𝜇0 𝑒 𝑣

2
                                      (3.2.8)      

(3.3) Quantization of Magnetic Flux: 

The momentum P is given bys 

𝑝 = 𝑚𝑣                                                (3.3.1) 
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    From the laws of quantum mechanics the Eigen equation of the momentum (p) 

is given by 

𝑝 𝜓 = 𝑝                                                        (3.3.2)       

ℏ

𝑖

𝜕𝜓  

𝜕𝑥
=

ℏ

𝑖
 

𝜕

𝜕𝑥
𝑒𝑖𝑘𝑥  = ℏ𝑘                       (3.3.3)   

Comparing (3.3.2) and (3.3.3) the momentum is given by  

𝑝 = ℏ 𝑘𝑥 = 𝑚𝑣                                  (3.3.4) 

 

But from Bragg’s law the condition of reflection is given by  

2𝑑 sin 𝜃 = 𝑛𝜆                                      (3.3.5) 

2𝑑 sin 𝜃 = 𝑛  
𝜆

2𝜋
 2𝜋 =

2𝜋𝑛

𝑘
                                                 (3.3.6)    

Rearranging equations to get:, 2𝑑 sin𝜃 =
ℎ

2
 

1

𝑘
 2𝜋  =

𝑛𝜋

𝑘
         from which 

𝑘𝑥 = 𝑘 sin𝜃                                             (3.3.7)   

Where  n=1, 2,3,…..                        

Thus the wave number is quantized  .(n=integer) from(3.3.4) 
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𝑣   =   
ℏ𝑘𝑥

𝑚
   =     

𝑛ℏ

2𝑚𝑑
                              (3.3.8) 

Sub. In (3.2.8) are gets  

𝜙  =     
𝜇0𝑒 

2
 

𝑛ℏ

2𝑚𝑑
                                       (3.3.9) 

Also considering  particle in a box.  The solution of Schrodinger  equation.  

−
ℏ2

2𝑚

∂2Ψ

∂x2
= 𝐸Ψ                                             (3.3.10)     

Is 

Ψ = 𝐴 sinα 𝑥     

∂2Ψ

∂x2
= −α2𝐴 sinα 𝑥 = −α2  Ψ              (3.3.11) 

Sub (3.3.9)in(3.3.10) yields  

−α2
ℏ2

2𝑚
= 𝐸Ψ                                             (3.3.12) 

α =
 2𝑚𝐸

ℏ2
                                                 (3.3.13) 

For free particle 

           𝐸 =
ℏ2 𝑘2

2𝑚
                                             (3.3.14) 
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Thus 

α = k                                                            (3.3.15) 

Sub in (3.3.11) 

Ψ = 𝐴 sin k 𝑥                                            (3.3.16) 

For particle in a box  

 Ψ x = d  2 = 0 

Ψ x = d = 0 

sin𝑘𝑎 = 0 

𝑘𝑑 = 2𝑛𝜋 

𝑘 =
2𝑛𝜋

𝑑
 

But from equation (3.3.4) 

𝑚𝑣 = 𝑝 =  ℏ𝑘 =
2𝑛𝜋ℏ

𝑑
 

 

Thus  
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𝑣 =
2𝑛𝜋 ℏ       

𝑚𝑑
                                        (3.3.17) 

Sub equation (3.3.4) in (3.2.9)                                                                                               

𝜙  =     
𝜇0 𝑒 𝑣

2
=   

𝜇0 𝑒 𝑛ℎ

2𝑚𝑑
                   (3.3.18) 

                                                                                                                                                                                           
n=1, 2,3,…   (n: integer number)                                                                                                                                                                                                                                                                                         
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Conclusion 

Magnetic field plays an important role in many applications. Based on this research 

the following conclusion we can result it. The quantization of magnetic field in 

super conductivity is complicate .wherefore the Equations of quantization of 

magnetic field are simplified by using the relations of flux density and current 

intensity and momentum. 

                 

Recommendations 

Scientists are currently working on developing superconductors that are closer to 

room temperature, an important which would make superconductors important to 

everybody .as result of many applications of superconductors we can recommend 

to education more equation related to this technology ,and more researches about 

the   superconductors.  
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