
 1

Chapter One

Research Introduction

 1.1 Introduction

 1.2 Problem statement

 1.3 Research questions/ Hypothesis

 1.4 Research Philosophy

 1.5 Research Objectives

 1.6 Open research areas

 1.7 Research scope

 1.8 Proposed solution

 1.9 Methodology

 1.10 Thesis Organization

 2

1.1 Introduction

Measurements are used in everyday life [1]. Measurements are used extensively in

most areas of production and manufacturing to estimate costs, calibrate equipment,

assess quality, and monitor inventories. Science and engineering disciplines depend

on the rigor that measurements provide, but what does measurement really mean?

[2]. According to Fenton, "measurement is the process by which numbers or

symbols are assigned to attributes of entities in the real world in such a way as to

describe them according to clearly defined rules" [3]. In the context of software,

measurement is important to improve Software quality which becomes a critical

issue in current software evolution. The vast amount of software that has swept the

markets in addition to the presence of a lot of software that manages delicate and

dangerous tasks, making the quality of these systems important in specifying the

continuation of business.

The 2009 Standish Group CHAOS Report [4] states that 24% of all software

projects fail. This means they are cancelled prior to completion or delivered and

never used. One of the contributing factors is that modern software is almost never

completely developed from scratch, but is rather extended and modified using

existing code and often includes third party source code. This can lead to poor

overall maintainability, difficult extensibility and high complexity. To better

understand the impact of code changes and track complexity issues as well as code

quality software metrics are frequently used in the software development life cycle.

“Software metrics provide measurement of the software product attributes and the

process of software production” [4].

With an increasing complexity in information and software systems design as well

as the emergence of new software design and development paradigms, the focus of

software measurement widened to include measurement during the earlier stages of

the software development lifecycle, not only at code level. Design level metrics can

in theory be obtained much earlier in the development of a project thus providing

information which can be used for many purposes [5].

 3

1.2 Problem Statement and its significance

The software engineering field doesn’t have a unified set of metrics that the

community has agreed to use; instead there is a set of metrics that advised to use

them [6]. Most large companies dedicated to create their own standards of software

measurement; so the way metrics are applied usually varies from one company to

another.

Current used metrics were defined and calculated using only syntactic aspects of

software – using only aspects related to syntax and format of the code – such as

LOC, complexity etc. All syntactically based metrics have the problem of mapping

between values calculated by metrics and some quality attributes such as reliability,

cohesion… etc. are arguable.

A significant drawback of syntactic metrics is that different structural aspects of

code can result in different metrics values, even when the code is performing the

same task. Syntactic metrics are not always accurate descriptors of quality. Metrics

that provide a better mapping between software and its associated quality factors

have the potential to be used in improving software quality, including quality of

newly developed software as well as currently maintained software. Such metrics

can help in identification of good reusable software components.

On the other hand, desirable quality attributes like reliability and maintainability

cannot be measured until some operational version of the code is available [3]. In

addition to that, there is a need to integrate some kind of measure to the semantic

features of software which affects quality attributes. Yet we wish to be able to

predict which part of the software is less reliable, more difficult to test, or require

more maintenance than others, even before the system is completed.

1.3 Research Question/Hypothesis/Philosophy

1.3.1 Research Question

Two broad questions will be addressed:

 1- How to use semantic metrics to improve measurement of software

reliability?

 4

 2- How semantic metrics can be computed from a static analysis of the source

code?

 The answer for this question leads to another sub questions such as the following:

1- What is the measurement?

2- How to measure reliability in software.

3- What is most widely used measurement metrics that can be used?

4- What are the problems of traditional used metrics?

5- What is the main factors affecting software reliability? And how to measure

it?

6- What kind of semantic metrics required achieving such software quality

attribute “reliability”?

7- How to Linking semantic metrics to reliability or other quality attributes?

8- How to compute semantic metrics by static analysis?

1.3.2 Research Hypothesis

Software metrics can be used to examine the quality of software. It gives developers

or designers a picture about the expected efficiency of running code. The use of

semantic metrics has made a big contribution to the field of software quality

measurement. The following is the research Hypothesis:

 Semantic metrics can be used to measure software reliability.

 Semantic metrics can be used to predict fault tolerance without affecting

by code structure or programming language.

 Using metrics in different stages of software development may improve

software quality.

 Using of semantic measurement is much better than traditional used

metrics (synthetic).

 5

1.4 Research Philosophy

The philosophy of suggested metrics is based on the concept that different

programming languages and structures can result in different measurement values

for some quality attributes.

With an increasing complexity and quality requirements of information and software

systems designs as well as the emergence of new software design and development

paradigms, the role of software measurement has increased in recent years [7].

Measurement techniques widened to include measurement during the earlier stages

of the software development lifecycle, not only at code level. Using of software

metrics becomes an important issue to be discussed.

1.5 Research objective

 The main research objective is to:

 Define and construct semantic metrics that are contributing to the area of

software reliability measurements and monitor/control product reliability. This can

be achieved by the following Specific objectives:

1- Define set of metrics that examine the software semantically.

2- Correlate metrics to reliability attributes.

3- Using semantic metrics to estimate relevant quality attributes such as

reliability, fault tolerance, and the like.

4- Validate the proposed metrics using empirical observations.

5- Use the metrics to build an analytical model of software reliability

1.6 Open research areas

The software metrics field is an ongoing research area. Although, there is a number

of software metrics that are widely used to test some software attributes, still the

area is young and requires much research. There are still open research issues that

need to be investigated such as:

 6

1- Traditional metrics (syntactic metrics) doesn’t represent an accurate measure

because it calculated only by using syntactic aspects of software. Therefore,

different programming language or even different program structure of same

function may result in different measurement values.

2- Unified set of metric: there is a need for standardized set of metrics in which

there is ability to assess software attributes in different phases by integrating

both semantic and syntactic metrics. Research in this direction is very little and

still no optimum results have been reached.

3- Semantic metrics: using these kinds of metrics can help to overcome the

limitation of syntactic metrics. But still not much work has been done in this

area and no optimum solution has been found yet. two research directions:

 Linking semantic metrics to meaningful software quality attributes.

 Computing semantic metrics from source code and system specification.

Semantic metrics is a new trend in software measurement. Most studies in this area

agreed upon evaluating software in early stages in its development life cycle are

better for quality assurance. Since many studies have started suggesting metrics to

work in the design phase or even after implementation and a few of them attempt to

extract knowledge from system requirements. It is worth mentioning that not much

research has been done in semantic metrics, instead most of the focus is on semantic

web and ontology.

 1.7 Scope:

The study represents an attempt to contribute to the field of software metrics. It

considers semantic metrics that help to improve the monitoring of software quality

by measuring some quality features. Four semantic metrics were suggested. During

the research process metrics will be defined and evaluated.

In the study, only semantic metrics will be considered, In addition to their allied

features, advantages and drawbacks of applying them on software products and

using these metrics to give an indication of reliability. Semantic metrics have a

broader scope, because they abstract away syntactic details to focus on program

 7

states and program functions, and can be applied uniformly across heterogeneous

software systems.

1.8 Proposed Solution

The study is concentrated on defining semantic metrics which reflects what

functions the software product defines, rather than how these functions are

represented. Our proposed solution is an attempt to contribute to this area. In

particular, the study considered the following metrics [8], which are defined using

information theory functions:

 State redundancy: This metric reflects the extent to which a state is redundant,

i.e. includes relationships between its various variables; programs which carry

much state redundancy are more likely to be able to detect erroneous states,

when these arise.

 Functional redundancy. This metric reflects the extent to which the function of

the program is redundant, i.e. its results is represented in variables that have

many relationships between them; programs whose functions are redundant are

more likely to be able to detect errors in the results of their function execution,

when these arise.

 Maskability. This metric reflects the extent to which the function of a program

maps different inputs into common outputs; programs that have high maskability

are more likely to map erroneous states into correct final states, thereby avoiding

failure and making error recovery unnecessary.

 Non determinacy. Whereas the previous metrics dealt with the program (more

specifically its semantics), this metric deals with the specification of the program,

and represents the property that the same input may be mapped to a wide range

of possible correct output; specifications that are nondeterministic are more

likely to tolerate programs that produce erroneous final states.

Together, these four metrics reflect the ability of a program to be correct with

respect to its specification; unlike syntactic software metrics, they depend on what

function the program computes and what specification the program is intended to

satisfy, rather what form the program takes.

 8

1.9 Research Methodology

To begin with, a review to the current state of art is required to capture knowledge

about kinds, classification and uses of different software metrics. Based on findings

from the literature review a new set of metrics are suggested to overcome the

limitations of existing tools. Suggested metrics are modeled and evaluated against

the research objectives. The evaluation process is iterative each time research

objectives are re-examined to ensure that work is going in the right direction.

Figure 1.1: The Research Process will be followed in this study

Define Research

goals

Search literature Collect Data Prepare Data

Refine

goals?

Analyze Data

Examine related

work

Design

assumptions

Proposed solution Implementation Testing

Refine

goals

Evaluation

Refine

goals

Research report

Start

 9

1.10 Thesis organization:

The thesis chapters are organized as follow:

Chapter one: presents a general introduction including the problem statement,

research objectives, question, hypothesis and the proposed solution. Chapter two:

sheds light on the major developments in the field of software metrics. Chapter three,

explore what has previously been done in the area, chapter four, introduces the

following methodology. Chapter five and six: cover used reliability mechanisms in

general, in addition to the proposed semantic metrics. Chapter seven presents the

validation process, results and discussion. Finally, the research conclusion and future

work are covered in chapter eight.

 10

Chapter Two

Background

2.1 Introduction.

2.2 Software measurement and quality.

 2.2.1 Software measurement concept.

 2.2.2 Software quality Models.

 2.3 Software reliability measurement and predictions.

 2.3.1 The software reliability problem.

 2.3.2 Reliability models.

2.4 Software metrics.

 2.4.1 Syntactic metrics

2.5 Chapter summary.

 11

2.1 Introduction

Measurement is the process of assigning numbers or symbols to attributes of entities

in the real world in such a way as to describe them according to clearly defined

rules. [9] In general Measurement has two broad uses: for assessment e.g.

Monitoring project progress to facilitate corrective decisions if required, and

prediction such as planning certain project resources [9]. When using measurement

for prediction, the value of an attribute is given by a mathematical model that relates

the attribute to the measurement of other attributes. Table 2.1 shows the main

software entities along with their internal and external attributes.

Table 2.1: Software Entities with their attributes [9]

There are different ways to express the data collected in software measurement. As

described in [6] statisticians recognize four different types of measured data or

measurement scales with their associated possible operations. As the collection of

data and their usage for estimates truly is a statistical method. If inappropriate

 12

operations are used for analysis, the results will be useless. The following table 2.2

gives an overview of the measurement scales and possible operations: [10]

Table 2.2: Measurements Scales [10]

Type of Data Description of Data Possible Operations Explanation

Nominal Classification equal, not equal named categories with no attached value

Ordinal Ranking
greater/better,

less/worse, median
named categories with ordered values

Interval Differences
addition/subtraction,

mean, variance
numbers without an absolute zero

Ratio Absolute Zero Relation Numbers with an absolute zero

2.2 Software Measurement and Quality

2.2.1 Software quality Measurement concept

A principal objective of software engineering is to improve the quality of software

products [10]. Quality must be defined in terms of specific attributes interested to

user. Such attributes are classified into internal and external ones [9]. Internal

attributes can be used as predictor to other attributes. The notion of quality is usually

captured in a model that describes composite set of attributes along with its

relationship. Many models show distinction between internal and external attributes.

The following models gain acceptance within software engineering communities.

2.2.2 Software Quality Models

1- Early Models:

McCall and Boehm described quality using decomposition approach. McCall model

was developed for US Air force, and used with in the US department of defense for

evaluating software quality [3]. It includes 41 metrics to measure 23 quality criteria

from factors. In such model to measure any criteria a list of check list have to be

answered accordingly from requirement, design and implementation. Though

Boehm’s and McCall’s models might appear very similar, the difference is that

 13

McCall’s model primarily focuses on the precise measurement of the high-level

characteristics “As-is utility”, whereas Boehm’s quality model is based on a wider

range of characteristics with an extended and detailed focus on primarily

maintainability [3]. The following is the main features of such models:

a. Boehm and McCall model: model builders focus on formal products and

identify key attributes of quality. From the user prospective there are three

key attributes called “quality factors” such as reliability, usability and

maintainability which are high level external attributes these factors are

related to many internal attributes called quality criteria.[3]

b. In McCall model the factor reliability is composed of consistency, accuracy,

correctness, fault tolerance and simplicity. Sometimes quality criteria are

internal attributes such as “structures” and modularity, reflecting developer’s

belief. The internal attributes have the effect on external quality attributes.

Further decomposition is required in which quality criteria are associated to

low level directly measurable attributes (quality metrics). Figure 2.1and Fig

2.2 shows quality attributes and their decomposition [3] respectively.

 Figure 2.1: Boehm ‘software Quality characteristics Tree [11]

 14

Figure 2.2: McCall’s Quality Model [12]

Software quality can be seen in two different ways one is by using fixed models

approach, another is to define their own models by adopting the current models to

meet specific quality requirement.

2. Dromey's Quality Model

An even more recent model similar to the McCall’s, Boehm’s and the FURPS

quality model, is the quality model presented by R. Geoff Dromey [12,13]. Dromey

proposes a product based quality model which recognizes that quality evaluation

differs for each product and that a more dynamic idea for modeling the process is

needed to be wide enough to apply for different systems. The main focus of the

Dromey is on the relationship between the quality attributes and the sub-attributes,

as well as attempting to connect software product properties with software quality

attributes.

 15

Figure 2.3: principles of Dromey’s quality model [14]

3. Define own model:-

This approach was pioneered by Gillb et.al [12]. Their thought was to design a

measurable objective. User identifies the key measurable attributes in specification,

then software engineer design the product according to these attributes. The product

will be re-checked by the user to make sure that the objectives have been met.

Kitchinham [14] extended Gilb’s idea and support it with automated tools. In 1992,

derivation of McCall model was proposed as a basis for international standard

software quality ISO9126 (ISO 1991). In this standard software quality is defined to

be “the totality of features and characteristics of software product that pear on its

ability to satisfy stated needs”[14]. The model decomposes the quality into six

factors as follow: functionality, efficiency, usability, maintainability and portability.

Each of these factors is defined as a set of attributes e.g. reliability in ISO 9126 is

defined as “asset of attributes that bear on capability of software to maintain its

levels of performance understand condition for a stated period of time. The standard

is an important milestone in development of software quality measures. Nemours

companies used ISO model to support quality evaluation [12]. Although, objective

measurements is much better than subjective one, the measurement of many quality

factors described in formal models including McCall and Boehm models is

dependent on subjective ratings. Figure (2.4) shows the ISO 9126 model.

 16

Figure 2.4: The ISO 9126 quality model [14]

The following table (table 2-3) compares between mentioned quality models based
on quality attributes.

 17

Table 2-3: Comparison between criteria/ goals of the McCall, Boehm and

ISO 9126 quality models [13]

ISO 9126 proposes a standard which specifies six areas of importance, i.e. quality

factors, for software evaluation. Each quality factors and its corresponding sub-

factors are defined. The following is the two factors (functionality and reliability):

 Functionality: A set of attributes that relate to the existence of a set of

functions and their specified properties. The functions are those that satisfy

stated or implied needs.

- Suitability: Attribute of software that relates to the presence and

appropriateness of a set of functions for specified tasks.

- Accuracy: Attributes of software that bare on the provision of right or

agreed results or effects.

- Security: Attributes of software that relate to its ability to prevent

unauthorized access, whether accidental or deliberate, to programs and data.

- Interoperability: Attributes of software that relate to its ability to interact

with specified systems.

 18

- Compliance: Attributes of software that make the software adhere to

application related standards or conventions or regulations in laws and

similar prescriptions [14].

 Reliability: A set of attributes that relate to the capability of software to

maintain its level of performance under stated conditions for a stated period

of time.

- Maturity: Attributes of software that relate to the frequency of failure by

faults in the software.

- Fault tolerance: Attributes of software that relate to its ability to maintain a

specified level of performance in cases of software faults or of infringement

of its specified interface.

- Recoverability: Attributes of software that relate to the capability to re-

establish its level of performance and recover the data directly affected in

case of a failure and on the time and effort needed for it [14] .

- Compliance: See above.

Figure 2.5 Shows ISO 9126 software product evaluation: quality characteristics and

guidelines for their use [13].

 19

Figure 2.5: ISO 9126 software product evaluation: quality characteristics and

guidelines for their use.[13]

4. Capability Maturity Model(s) (CMMs)

Is a development model created after study of data collected from organizations that

contracted with the U.S. Department of Defense. The term "maturity" relates to the

degree of formality and optimization of processes, from ad hoc practices, to formally

defined steps, to managed result metrics, to active optimization of the processes. The

CMM/SW-CMM depicted in Figure 2.6 below addresses the issue of software quality from

a process perspective.

http://en.wikipedia.org/wiki/U.S._Department_of_Defense
http://en.wikipedia.org/wiki/Ad_hoc

 20

Figure 2.6: Maturity Levels of (SW-) CMM [13]

5. Defect based measures:-

Software quality measurements using decomposition approach requires good

planning and data collection. Many software engineers think of software quality in

much narrower sense where quality is considered to be only the lack of defects.

Defects are interpreted as known errors, fault or failure [3]. A defacto standard

measure here is defect density for a given product. Two types of defects are

available: 1- known defects: that have been discovered through testing, inspection or

another techniques. 2- Latent defects: defects that presents in system but still not

appeared. Generally defect density measured though the following equation:-

 Defect density= Number of known defects / product size [3].

Product size is usually measured in terms of line of code (LOC). Defect density is an

acceptable measure that provides useful measurement information. There are 5 main

issues should be considered when using this type of measure which are as follows:

1- Defects can be either a fault discovered during the review and testing, or

failure that observed during software operation. Defect count includes:

a. Post release failure

b. Residential faults

c. All known faults [3]

 21

2- Defect rate is the number of defects is being recorded with respect to measure

time. This can be an important measure for measuring software reliability.

3- Defect density is calculated using same consistent definition of size.

4- Defect density tells us more about quality of defects than quality of product

itself.

5- Even if we are able to know exactly the number of residential faults, we should

be careful about making definitive statement of how system will operate in

practice because it is difficult to:

a. Determine in advance the seriousness of faults.

b. Predict which fault will lead to failure.

Adam in 1984 [15] stated that finding large number of faults may not necessary lead

to improve reliability. Reliability is biased on failure data, not faults. It also follows

that a very accurate residential faults density prediction may be poor predictors for

operational reliability. Some researchers concentrated only on user detected defects,

in other words, the defect densities are really failures per unit of size. There are

inevitably many dormant software faults that have not yet led to such failure.

Japanese companies define quality in terms of spoilage.

 Spoilage=Time to fix post release defects / Total system development time [13].

2.3 Software reliability measurement and predictions:-

Most of software quality models identify reliability as a key high level attributes.

Quantitative methods for its assessment back to early 1970. It is important to note

that no current methods can feasibly assure software system with ultra-high

reliability requirements. The basic problem of reliability theory is to predict when

system will eventually fail. In hardware we concerned with component failure due

physical wear. Such failure is probabilistic in nature, that is, we usually do not know

exactly when something will fail, but we know that the product will fail at a

particular time. Based on that prediction models are identified to predict when the

next failure is [3].

Same approach applies in software. Researchers build basic model of component

reliability and create a probability density function (PDF) f of time t (written f(t))

 22

that describes uncertainty about when component will fail [18]. If the software

component is equally likely to fail in a given time interval, we can say it is uniform

pdf over that interval e.g. [0, x]. On the other hand, if failure time occurs randomly,

the function is expressed as exponential function. Having defined a pdf f(t), The

probability of component fails in a given time interval [t1- t2] calculated as

follows[3]:

 Probability of failure between t1 and t2= ∫ 𝑓(𝑡)𝑑𝑡
𝑡2

𝑡1

Usually there is desire to know how long component will behave correctly before it

fails. The distribution function (the cumulative distribution function) F(t) is the

probability of failure between t1 and t2. Thus reliability can be defined as R(t):

𝑅(𝑡) = 1 − 𝐹(𝑡)

Where F(t) is the cumulative distribution function. The function generates the

probability that the component will function properly up to time t. it is important to

note that when probability of failure is high reliability will be low and verse versa.

The mean time to failure (MTTF) is the mean of the probability density function.

The mean of pdf f(t) computed by the following equation:

𝐸(𝑇) = ∫ 𝑡𝑓(𝑡)𝑑𝑡

Median time to failure is the point in time t at which the probability of failure after t

is the same as the probability of failure before t. We can calculate m that satisfy

F(m)=1/2.

m = i/ƛ loge 2

The median time to fail gives middle value that splits the interval of failure

possibility in two equal parts. We can consider a given interval and calculate the

probability that component t will fail in the interval (hazard rate) h(t).

 23

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)

ℎ(𝑡)𝛿𝑡 is the probability that the component will fail during the interval [t, t+ 𝛿𝑡] in

hardware reliability, simply the failed component are replaced by another one. In

this situation reliability will be improved this called reliability growth. This is a

goal of software maintainability. Other measures like hazards rate helped to identify

the likely occurrence of a first failure in an interval [3].

A system run successfully, and then fails. The measures have introduced so far have

focused on the interruption of successful use. However once a fail occurs there is

additional time lost as faults causing failure are located and repaired. Thus, it is

important to know the mean time to repair (MTTR) for a component that has failed.

Combining this time with the mean time to failure tells how long the system is

unavailable for use [16].

MTBF=MTTF+MTTR [16]

This can give a measure about how long system will be available (availability)

Availability= (MTTF/(MTTF+MTTR)) * 100% [16]

2.3.1 The software reliability problem:

There are many reasons for software to fail such as: lack of user participation, badly

defined system requirements, changing requirements etc. [x]. The key distinction

between hardware and software reliability is difference between intellectual failure

and physical failure. In software, during long run, reliability accepted to be

improved. However, short term decreases caused by ineffective fix or novel faults.

Monitoring the time between failures can help in assessing reliability. At a given

point in time, the time of next failure is uncertain it is a random variable [3].

The previous measures like pdf and 𝐹𝑖 and R can be used theoretically to measure

reliability. But, the actual values for the functions are unknown. So, the history of

failures should be observed firstly. In other word we are not computing an exact

time for the next failure, we use the history to help us predict the failure time. It is

 24

important to know all attempts done to measure reliability represent prediction

problems [3]. To solve predication problem prediction system must be defined and

this requires:

1- Prediction model.

2- Inference procedure e.g. Mean time to next failure 1/x = (t i-2 +ti-1)/2

3- Prediction procedure.

Many prediction systems have been proposed, some of which use models and

procedures very sophisticated.[3]

2.3.2 Parametric Reliability models:

Program is defined here as transformation of inputs (I) to outputs (O). in most cases,

a complete description of input space is not available. The output consist of two

types those are acceptable and those are not [3]. The program will fail if the input

doesn’t transform to an acceptable output. There are two sources of uncertainty in

the failure behavior:

1- Uncertainty about the operational environment

2- Uncertainty about the effect of faults removal.

Good reliability model should address both types of uncertainty. The most difficult

problem is to model uncertainty type 2. Following is the most known reliability

models:

a) The Jelinski – Moranda model:

The model is the earliest and probably the best known reliability model (1972)[17].

It assumes that, for each I,

𝐹𝑖(𝑡𝑖)=1−𝑒−ƛ𝑖𝑡𝑖

ƛ𝑖 = (𝑁 − 𝑖 + 1)𝛷

N is the initial number of faults and ɸ is the contribution of each fault to overall

failure rate. The model is exponential, so type 1 uncertainty is random and

exponential. There is no type-2 uncertainty in this model. It assumes that fault

 25

detection and correction begins when program contains N faults. And that fixes are

perfect. And also all faults have the same rate. The interface procedure for the model

is called maximum likelihood estimation [3].

There are three related critics on the model:

1- The sequence of rates that considered by the model is deterministic and this

is not always realistic.

2- The model assumes all faults contribute equally to hazards rate.

3- Poor reliability prediction (too optimistic) [17].

b) Other models based on Jelinski – Miranda [17]

Several models are variations of Jelinski-Moranda. Shooman’s model is identical

(1983). The Musa model extend Jelinski model. It introduces some novel features on

top of previous model. It was the first model insists on using execution time to

capture inter-failure times. Musa model encourage using of reliability model

especially on communication [3].

c) The Little wood model

Attempts to be more realistic finite fault model than jelinski by treading hazard rates

as independent random variables. These rates are assumed to have a gamma

distribution with parameters (β,α). Unlike jelinski this model introduces two sources

of uncertainty for the rates. Both jelinski and little wood models are in general called

exponential order static models [18]. In this type of model the faults can be seen as

competing risks at any point in time. The distribution of little wood model equals:

 𝑷(𝑿 < 𝒙) = 𝟏 − (
𝜷

𝜷+𝒙
)α

d) The Little wood - Verrall model [3]

Is the simple model similar to little wood model. It captures the nature of the

conceptual model of failure process. The assumption here is that the inter failure

time Ti, are conditionally independent exponentials with probability density

functions:

 26

 𝑝𝑑𝑓 (𝑡𝑖|^𝑖 = ƛ𝑖) = ƛ𝑖𝑒
−ƛ𝑖 𝑡𝑖

𝑝𝑑𝑓 (ƛ𝑖) =
ψ (i)α−1𝑒–ψ(i)ƛ

Ѓ(α)

e) Non- homogenous Poisson process models

Non homogeneous passion process (NHPP) is the way to model process that is

statistically independent of the past [3]. It determined by failure occurring time. A

minor drawback is that such process have rate function that change continuously in

time. This is not real for software.

Others models found like Goel-Okumoto model is a NHPP variant of Jelinski model.

Similarly, the little wood NHPP model is variant of original little wood model. All

the above models are parametric models, in the sense that they are defined by values

of several parameters. Using these model involve 2 steps: selecting the model then

estimating the values of its parameters. Some researchers use different approach to

estimate the parameters by using Bayesian posterior distribution of known

parameters. On the other hand, predictive accuracy can be analyzed for the models

then select the best working one. Unfortunately, these techniques work effectively

only if software’s future operational environment is similar to the one in which the

failure data was collected. Worse still, there is no current methods that are feasibly

assuring software system with ultra-high reliability requirements [3].

2.4 Software Reliability Growth Modeling/Testing.

Reliability growth for software is the positive improvement of software reliability

over time, accomplished through the systematic removal of software faults. The rate

at which the reliability grows depends on how fast faults can be uncovered and

removed. A software reliability growth model allows project manager to track the

progress of the software’s reliability through statistical inference and to make

projections of future milestones. If the assessed growth falls short of the planned

growth, management will have sufficient notice to develop new strategies, such as

the re-assignment of resources to attack identified problem areas, adjustment of the

 27

project time frame, and re-examination of the feasibility or validity of requirements.

Measuring and projecting software reliability growth requires the use of an

appropriate software reliability model that describes the variation of software

reliability with time. The parameters of the model can be obtained either from

prediction performed during the period preceding system test, or from estimation

performed during system test. Parameter estimation is based on the times at which

failures occur [3].

The use of a software reliability growth testing procedure to improve the reliability

of a software system or to a defined reliability goal implies that, a systematic

methodology will be followed for a significant duration. In order to perform

software reliability estimation, a large sample of data must be generated to

determine statistically, with a reasonable degree of confidence that a trend has been

established and is meaningful [3].

There are several software reliability growth models available. Table 2-4

summarizes some of the software reliability models used in industry.

 28

Table 2-4: Software reliability model [19]

The following checklist determines which model or models to choose from given the

following constraints. This checklist is summarized as follows:

 Failure profiles

 Maturity of software product

 Characteristics of software development

 Characteristics of software test

 Existing metrics and data [3]

2.5 Software Metrics

The software metric is the measurement, usually using numerical ratings, to quantify

some aspects or attributes of a software entity [4]. Typical measurements include the

quality of the source codes, the development process and the accomplished

 29

applications. The field of software metrics is a relatively young one, whose origins

can be found in the work by Halstead published in 1972. Software metrics allow to

use a real engineering approach to software development, providing the quantitative

and objective base that software engineering was lacking. In fact, their use in

industry is becoming more and more widespread. Good metrics should enable the

development of models that are efficient of predicting process or product spectrum.

Thus, optimal metrics should be [4]: Simple, Objective, Easily obtainable, valid and

Robust. As shown in table 2.1 software metrics are classified mainly into:

1- Process metrics:

Metrics highlights the process of software development. It mainly aims at process

duration, cost incurred and type of methodology used.

2- Project or resources Metrics:

Project metrics are used to monitor project situation and status. And identify risk.

E.g.. Staff number and their patterns, cost, etc…

3- Product Metrics:

 Product metrics describe the attributes of the software product at any phase of its

development.[9]

Software quality attributes has to be evaluated through considering different views

such: users, manufacture, Product and value based view. This should be measured

by different users of different roles. The following tables (2-5) and (2-6)

summarizes these issues.

Table 2-5: Software quality attributes evaluation against different views

Views Description

User view evaluates the software product against the user’s needs

Manufacturing view Concentrates on the production aspect of the software

product.

Product view Take a look at the internal features of the products.

Value based view This becomes important when there are lots of contrasting

views, holds from different departments

Table 2-6: Different Measurements in terms of different roles.[9]

Role Measurements

User Usability, simplicity, Stability, Cost….

Designer Extendibility, scalability, Manageability…

Programmer Complexity, Maintainability….

 30

Different classification criteria have been introduced for software metrics according

to what has been measured. Main types of metrics can be categorized such as code,

Programmer productivity, Design, Testing, Maintainability, Management, Cost,

Duration, time, Staffing metrics [9].

Metrics are described as direct or indirect. The distinction between direct and

indirect metrics is based on the way a metric is measured. Size for example, can be

directly measured whereas quality or complexity can only be measured indirectly by

breaking them down into different aspects. Most metrics are indirect. This must not

be confused with the distinction between primitive and computed (derived) metrics.

Primitive metrics provide raw data, "physical" attributes of the software that are later

used as inputs for computed metrics [9]. Such attributes are:

 Bugs: can simply be counted as they are found and fixed, bugs can be

interpreted as the number of corrections resulting from a review.

 Cost/Effort: used to calculate critical measures that is important for

evaluating e.g. an organization's position with respect to its competitors and

the market

 Duration: This refers to both the duration of either all or part of certain

process.

 Size: Software size is probably the most important primitive metric can be

calculated directly from LOC.

 Line of code: The traditional way of measuring program size is by counting

lines of code (LOC).

 Function Point Analysis: Developed by A.J. Albrecht of IBM in 1997, this

approach tries to eliminate some of the disadvantages of LOC by deriving the

size of a program not from the code but from its (specified) functions as

viewed by the user. This leads to a metric which is independent of the

programming language and technology used. Thus, it can be used to

normalize and compare results from different environments [20].

 Halstead's metrics: Devised in the 70's by Maurice Halstead [21], this is a

very formal approach to define program size and derive various estimates. It

 31

is not really a primitive metric but as it measures size similar to LOC it fits

here and makes for a nice transition to computed metrics.

Computed Metrics are derived from primitive metrics such as:

 Complexity: metrics concerns with measuring software complexity e.g FP.

 McCabe's Cyclomatic Complexity: Amongst the most popular methods to

measure implementation complexity is the cyclomatic complexity defined in

McCabe76 [9]. His approach is based on the control flow graph.

 Productivity: According to [9], productivity is measured as the amount of

work (size) completed with a given effort, where "completed" usually means

"has passed quality control",

 Quality: Like complexity, quality is not easy to define, much less to measure.

A common metric that can be found in [9] defines quality as the degree to

which a product is bug-free.

Software quality is the degree to which software possesses a desired combination of

attributes such as maintainability, testability, reusability, complexity, reliability,

interoperability, etc. In other words, quality of software products can be seen as an

indirect measure and is a weighted combination of different software attributes

which can be directly measured. Moreover, many practitioners believe that there is a

direct relationship between internal and external software product attributes. For

example, a lower software complexity could lead to greater software reliability [3].

2.5.1 Syntactic metrics

Syntactic metrics reflect how programs are represented in source code, but not what

functions programs define. The terms metric and measure have some overlap. We

use measure for more concrete or objective attributes and metric for more abstract,

higher-level, or somewhat subjective attributes. For instance, a line of code (LOC) is

a measure: it is both objective and concrete [22]. Researchers investigate four types

of measures based on different criteria:

A) Length measurements

Metrics use this kind of measure focus only on code length without taking into

account software complexity. Such as:

 32

 Line of code (LOC): it is a traditional way of measuring program size by

counting its number of lines. All lines are counted except comments and

empty lines [22]. Although, this is the easiest way to measure program

length, it doesn’t give an accurate measure of actual program length in terms

of time and effort.

 Number of signs:

LOC does not take into account any factors other than total number of lines.

Number of lines doesn’t represent an accurate measure for program length.

To overcome this limitation the metric focus on code content rather than total

number of lines. It counts number of operands and operators as follow: n1 is

the number of operations, N1 total operation frequency, n2 is the number of

operands and N2 is the total operands frequency [22]. All these parameters

are used in program length calculation.

B) Depth measurements

This measurement considers code complexity regardless of it is length. It depends on

the concept of having two programs with same length and different complexity [22].

Such as:

 McCabe: Cyclomatic complexity was developed by Thomas J. McCabe, Sr.

in 1976 and is used to indicate the complexity of a program [23]. This metric

is amongst the most popular methods to measure implementation complexity

[23]. It represents program in a control flow graph. The nodes of the graph

correspond to indivisible groups of program commands, and a directed edge

connects two nodes if the second command might be executed immediately

after the first command. Number of edges and nodes are used to calculate the

following equation:

V=e-n+1.

Where e is the number of edges and n is the number of nodes. Researches

confirmed that McCabe metric can be used to give a glance of faults

density.[23]

 Size measurements:

 33

These metrics focused on both program length and depth to measure

complexity. One of the famous metrics that uses this method is Halsted

metric [21]. Halstead suggests a measure to program length by using the

following equation:

N = n1x log2(n1) +n2 x log2(n2).

Where n1 is the number of operators and n2 is the number of operands in the

code. In addition to that to calculate the program size Halsted metric represents

the program as a message written by a programmer. According to that if we need

to calculate the actual value for this message we must calculate H (n) [21].

Where n is the number of symbols and H is the massage name.

H (n) = log2(n)

Based on that we can conclude to the result that number of symbols = n1 + n2.

 Data measurements:

Data measurement aims to measure the size and complexity of the program

structure. It should be noted that the size of the program may differ according to

the type of programming language [22].

Size = minimum size / actual size.

By other way we can calculate the density of the program data by calculating the

number of known variables within the program [22]. These may contribute to

estimate the effort that made by the software programmer.

 Design measurement

There are two main concepts introduced here; Cohesion and coupling. Cohesion

reflects the extent to which internal elements of the system are related to each

other. Where, coupling cares about the relation between different partial

components.

Design quality = high cohesion + low coupling.

All the previous measurements fall in Syntactic metrics field. Which reflect

attributes of the source code text; they do not reflect attributes of the execution

of the program [22].

 34

2.5.2 Semantic Metrics

Most software metrics are based on program structure and are determined

statistically [24]. Nowadays, there is a great move towards the semantic metrics

which reflect what functions the software product defines, rather than how these

functions are represented. Semantic metrics are based on the meaning of software

within the problem domain. Researchers use semantic metrics to provide insight into

software quality early in the design phase of software development. Others extend

semantic metrics to analyze design specifications. In spite of the success of semantic

metrics in software quality field, but a few number of studies touch this issue.

Chapter 2 and 5 will discuss more about this issue

2.6 Chapter Summary

This chapter gives an overview to a background of the study field. Major concepts

and terminologies used were discussed started from general software measurement

concepts along with software quality models such as McCall, Boehm, Dromey,

CMM and ISO 9126. Then the chapter introduced software reliability measurement

started from reliability problem and parametric reliability models, table 2.7

summarizes the parametric reliability models. Finally, both syntactic and semantic

metrics were discussed.

Table 2.7: Summary of the main parametric reliability models

 Parametric reliability models Measurement Formula

1 The Jelinski – Moranda model

𝐹𝑖(𝑡𝑖)=1−𝑒−ƛ𝑖𝑡𝑖

 ƛ𝑖 = (𝑁 − 𝑖 + 1)𝛷

2 The Little wood model
𝑃(𝑋 < 𝑥) = 1 − (

𝛽

𝛽 + 𝑥
)

3 The Little wood - Verrall model
𝑝𝑑𝑓 (ƛ𝑖) =

ψ (i)α−1𝑒–ψ(i)ƛ

Ѓ(α)

 35

 Chapter Three

 Related work

3.1 Introduction

3.2 Current Research in software metrics.

 3.2.1 Complexity Metrics.

 3.2.2 Measuring Complexity of web applications.

3.3 Metrics for measuring software reliability.

3.4 Data mining techniques for semantic metrics:

3.5 Semantic metrics.

 3.5.1 Metrics based on entropy.

3.6 Summary of related studies.

 36

 3.1 Introduction

The previous chapter highlights a general overview on current used metrics.

Moreover, it surveys the most famous used kind of metrics - complexity metrics-

that are widely used. The next section will shed some light on semantic metrics

research and current research directions.

3.2 Current Research in software metrics

 3.2.1 Complexity metrics

Complexity metrics can measure the degree of software difficulty. Measuring complexity of

software products was, and still is, a widely distributed research subject. The scope of

studying it was to control the levels of the external attributes of software via internal

attributes, like complexity is. The most well-known internal attribute is software length.

While in the case of length is a quite well defined consensus about the ways the length

should be measured, in the case of complexity is still a lot of confusion [25]. It is not wrong

to say that there is a relationship between complexity and the length of the program. But, all

authors agree that when measuring complexity one should take into account other internal

attributes in addition to, length itself. This approach was discussed by Törn et al. [26] where

a new measure of software complexity called structural complexity is derived. The authors

use the equations that combine between code length and structure complexity for the

software collections and define new formulas that use some constants. In which one control

structure assign different value from the others.

In [4] traditional complexity metrics are investigated. They divide complexity of software

into three classes: the essential complexity, the selecting complexity and the incidental

complexity [25].

The essential complexity is determined by the problems that the software tries to

solve. The selective complexity is determined by the program languages, the

problem modeling methods and the software design methods. The incidental

complexity is determined by the quality of the involved implementer [25]. the

following table shows the classification of complexity metrics used during software

life cycle.

 37

Table 3.1: The classification of complexity metrics

Used during software life cycle [25]

Same metrics are classified based on the way of complexity calculation. Table 2.3

considers this issue.

Table 3.2: The classification of the complexity metrics by their calculation Basis

The study compares between traditional used metrics such as LOC which count lines

of code. Researchers in [27] found that there is a relationship between code lines

and bug density. Halstead metrics was introduced in 1977 by Maurice Halstead.

HCM calculate number of operators and operands to measure program quality and

complexity and based on these inputs it calculate difficulty, software length, volume,

error estimation and time. One of it is main advantages that it doesn’t require deep

knowledge of program logical structure so it is easy to calculate but in the other

hand, it doesn’t give accurate measure because it doesn’t consider program flow

control [27]. other metrics are discussed such as WHCM which overcome the

limitations of HCM. WHCM adds weight of the code instructions such as loops or

branches. The WHCM takes the documents of the project into consideration. The

 38

WHCM uses the Capability Maturity Model for Software (SW-CMM) to measure

the project’s documents and modify the HCM. In [23] Thomas J. McCabe

introduced a software complexity metric named McCabe Cyclomatic Complexity

Metric.

Tu Honglei et.al.[28] investigate the efficiency from using complexity metrics like

McCabe and CK metrics. The selection of these metrics is done after comparative

study between different available type’s pf complexity metrics. As an extension for

this study researchers try to expand the evaluation of complexity metrics. the main

intent of their study was to compare three proposed code complexity metrics:

McCabe's cyclomatic complexity, Halstead's software science and Shao and Wangs'

cognitive functional size and identify which metric is the most suitable metric that

can be used in the current state of the art with the help of thirty programmers. To

conduct this empirical study ten freely available java programs were used as the base.

From this study it was identified that Shao and Wangs' cognitive functional size is

the best complexity metric that can be used in the real world [28].

3.2.2 Measuring the Complexity of web application:

Another direction of measurement is web based application (WAs). Web

applications are similar to other software in that they have business logic in

application domains, however, there are several characteristics that differ from

traditional software [29]: WAs have hypertext structure, dynamically generate codes,

and rapid evolution is required [29,30]. For these reasons, it is hard to apply existing

metrics to WAs, and new metrics for WAs should be defined. In existing

maintenance approaches, structural systems or object-oriented systems are the main

focus and Web applications are not often considered [30]. Several studies have been

conducted for a complexity measure; however, most studies have focused on the

complexity of traditional software rather than the complexity of WAs. Zhang et al.

proposed a navigational complexity measure for the web using a navigational

structure and the number of links, from a user’s point-of-view [31]. Mendes et al.

introduced a count-based complexity measure of web applications [32]. However,

there are some cases where those count-based measures cannot handle well. In [33],

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tu%20Honglei.QT.&searchWithin=p_Author_Ids:38109479000&newsearch=true

 39

a web application is modeled as a graph composed of nodes and weighted edges.

Jung et al. [34] assumed that the information quantity of a frequently referenced

page is larger than that of an infrequently referenced page, when a maintainer

reviews web pages statically.

3.3 Metrics for measuring software reliability

The major goal of a research in software engineering is to improve the quality of

software. One of the most important quality attributes is reliability. The generally

accepted definition of software reliability is the probability of a failure-free

operation of software component or system in a specified environment for a

specified time [35]. Although the reliability estimation is the goal of many

researchers and also a wish of many customers, it is seldom used in the practice.

There are other useful measures which do not yield a probability of failure but other

figures related to the reliability attributes. For this reason authors decompose

reliability attribute into four reliability parameters such as: Probability of a failure

free operation R(t) , Mean time between failures MTBF, Failure intensity z(t) and

Number of errors left in software N(t). The main goal of this research is to prove

empirically that errors are correlated with the reliability parameters. Probably one of

the most comprehensive factor investigations was made by Schneidewind [36]. He

tried to determine the relationship between several complexity measures and

different error characteristics. In his experiment, different categories of errors were

taken into consideration. Many types of errors were defined within particular

categories: design errors, coding errors, clerical errors, debugging errors, and testing

errors. The total number of different types of errors was 63. On the same context, M.

Takahashi and Y. Kamayachi studied the relationship between errors remained in the

program and ten error factors [37] they considered the following factors such as

frequency of program specification change, programmer’s skill, organization and

program category, difficulty of programming, amount of programming effort,

volume of program design documents, levels of programming technologies, program

complexity (McCabe’s and Halstead’s metrics) and percentage of reused modules.

In this empirical study, it was experimentally found that there is statistically

 40

significant relation between the number of unsuccessful compilations (UC) and a

simple reliability parameter (TVS - number of Tested Versions of Software).

Therefore, UC can be used as an indicator of error proneness.

 In [38] Eduardo, Constitutes a review of the State of the Art techniques that helps to

improve the Software reliability. Such techniques are classified into 3 different

categories: Fault avoidance, Fault detection and Fault tolerance. To grantee

reliability the selection must include a combination of fault avoidance techniques,

fault detection techniques and if required, fault tolerance. Another attempt to

measure software reliability is done by Zeeshan Ahmed and Saman Majeed[39]. The

aim of his research is to address the importance of preprocessed source code and

project artifact measurement for better reliability analysis of software application by

visualizing obtained results in different diagrams to take advantage in analyzing over

all behavior of software project by predicting the level of complexities at different

stages and estimating the rate of fault of proneness as well [39].

In [40] authors move to another quality issue by investigating how to reduce

software maintenance costs by applying software renovation tools and

methodologies which will improve the program's intrinsic quality. Their basic idea

of the methodology presented here is to establish a diagnosis based on the program

quality analysis. The use of the alone static analyzers to evaluate software quality is

insufficient. Therefore, they suggest a quality analysis based on metrics but

supplemented by "checklists" covering all the quality criteria of the programs and

taking into account the semantic aspects which are not covered by the static

analyzers. A knowledge-based system which integrates both semantic and syntactic

aspects is proposed to implement such checklist. Their results show the ability of

suggested tools whether the program has to be reengineered only or redevelop

completely. In the same context Basson and Derniame [40, 41] have developed a

kernel of software quality metrics devoted to Ada language. Nowadays, new metrics

appear especially designed to measure specific aspects of object oriented languages

such as C++ [38]. In [42] the approach to the estimation of program reverse

semantic traceability (RST) influence on program reliability with assistance of

object-oriented metrics is proposed. Their paper shows how to change the software

reliability model parameters, that was received using logistic regression, in order to

 41

estimate influence of program RST on program reliability. Experiments show

promising results.

Jerey M. Voas et.al.[43] Touch an important factor to increase software confidence;

software testing techniques such as black box testing can be used to grantee that the

software no longer contains faults. Authors use lack of faults as a measure of

software quality. They also introduce Hamlet’s probable correctness model to assess

confidence that the true failure probability of the program is less than some preset

threshold. Research considers sensitivity analysis's predictions which are based upon

repeated executions. They concentrate on estimating and controlling testability

before it is written, during the design phase [43]. Ordonez et al. [44] examined

various metrics used in software industry to measure code size and design

complexity. They mentioned that NASA used the first five metrics presented in [43]

in the tool they developed for analyzing source code with respect to its architecture.

The author’s analysis was focused on how reliable are specific software modules

with respect to their maintainability and the probability of causing defects.

3.4 Data mining techniques for semantic metrics:

There are strong connections among the metrics. But that doesn’t mean that we can

replace one metric with other one. The article [45], using a data miner tool called

Multi method, did some experiments on three data sets in the Metrics Data Project

(MDP) of the NASA. The result shows, the effect of the software defect prediction

model integrating kinds of metrics, is much better than that using only one. Using

multiple metrics in the prediction or detection process may increase the accuracy and

thus increase software quality. Sallie.et.al. [46] offer a good comparative study

between code, structure and hybrid metrics. The Study has shown that structure and

hybrid metrics are extremely useful at design time. Moreover, the use of prediction

model can help to determine the complexity of the resultant code.

Data mining is positioned between different research domain as statistics, machine

learning, database management and data visualization. It is defined as the process of

identifying valid, novel, potentially useful, and ultimately comprehensible

 42

knowledge from data, used to help by crucial decision making. Current software

quality estimation models often involve use of data mining and machine learning

techniques for building a software fault prediction models. In [45] Mertik, M., et.al.

Address this issue. They achieved better results by building the fault prediction

model as with standard machine learning methods. Special data mining tool –

Multimethod- has been used. They present the case study of building the fault

prediction model based on the data from the Metrics Data Program Data Repository.

They get benefit from the data mining researches that reaches to truth that using

different techniques (algorithms) in data mining may improve the accuracy of

detection / classification model [47]. So, different approaches have been employed

during their study. In [48] Salwa K conducts the use of data mining in detection of

function clones in software systems. She presents an efficient metrics-based data

mining clone detection approach. First, metrics are collected for all functions in the

software system. A data mining algorithm, fractal clustering, is then utilized to

partition the software system into a relatively small number of clusters. Each of the

resulting clusters encapsulates functions that are within a specific proximity of each

other in the metrics space. Finally, clone classes, rather than pairs, are easily

extracted from the resulting clusters. For large software systems, the approach is

very space efficient and linear in the size of the data set. Evaluation has been done

using medium and large open source software systems. The investigation of results

reflects good improvement. T Menzies [49] touch a hot issue by investigating the

use of data mining to generate defect predictor from static code attributes. Many

researchers use static attributes to guide software quality predictions [49, 50, 51].

They take into their consideration the use of McCabe versus Halstead versus lines of

code counts previously and they tried to compare between them and the new

proposed method. Their predictors achieve good detection accuracy that reach to a

mean probability of detection of 71 percent and mean false alarms rates of 25

percent.

 43

3.5 SEMANTIC METRICS

Most software metrics are based on program structure and are determined statically

[3]. Nowadays, there is a great move towards the semantic metrics which reflect

what functions the software product defines, rather than how these functions are

represented.

In 2008 Gall, C. S [52] suggests an approach using semantic metrics to provide

insight into software quality early in the design phase of software development by

automatically analyzing software specifications for object oriented system using

natural language (NL) processing. In [53], researchers extend semantic metrics to

analyze design specifications. Since semantic metrics can now be calculated from

early in design through software maintenance, they provide a consistent and

seamless type of metric that can be collected through the entire lifecycle. A

comparison was done to compare semantic metrics from different phases of the

lifecycle with syntactically oriented metrics calculated from the source code.

Another direction has been touched related to the semantic is “web semantic” which

is related to web applications.

In the context of the Semantic Web, many ontology-related operations, e.g. ontology

ranking, segmentation, alignment, articulation, reuse, evaluation, can reduce to one

fundamental operation: computing the similarity and/or dissimilarity among

ontological entities, and in some cases among ontologies themselve [54]. Bo Hu

et.al.[55] gives formal account of semantic metrics drawn from a variety of research

disciplines, and enrich them with semantics based on standard Description Logic

constructs. Authors argue that concept-based metrics can be aggregated to produce

numeric distances at ontology-level and they speculate on the usability of their ideas

in potential areas. Zschaler in 2004 [56] define elements of a semantic framework

for non-functional specifications of component-based systems. Framework focuses

on how the runtime environment uses components, whose non-functional properties

have been specified. It is notable that very little research has been performed

concerning non-functional properties.

In 2010 B.Wen. and L. Zhang [57] make good contribution to the area of semantic

measurement. The paper presents a method to map process metrics to the enterprise

http://link.springer.com/search?facet-author=%22Bo+Hu%22

 44

information model automatically when the semantic features of metric are analyzed,

a structure called semantic tree is defined with domain ontology. B.Gabriele. [58]

Moves to another direction to consider the use of semantic information for software

modularity. He proposes a new technique for automatic re-modularization of

packages, which uses structural and semantic measures to decompose a package into

smaller, more cohesive ones. The paper presents the new approach as well as an

empirical study, which evaluates the decompositions proposed by the new technique.

The results of the evaluation indicate that the decomposed packages have better

cohesion without a deterioration of coupling and the re-modularizations proposed by

the tool are also meaningful from a functional point of view [59]. In particular,

Maletic and Marcus (2001) combined semantic and structural measures to identify

ADTs in legacy code. They used Latent Semantic Indexing (LSI) [60], an

Information Retrieval (IR) technique, to capture semantic relationships between

source artifacts.

Emanuel et.al. consider how to predict code changes [61]. Fine-grained source code

changes (SCC) capture detailed code changes and their semantics on the statement

level. They explore prediction models for whether a source file will be affected by a

certain type of SCC. These predictions are computed on the static source code

dependency graph and use social network centrality measures and object-oriented

metrics. The results show that Neural Network models can predict categories of SCC

types. In summary, the results of their work confirm the empirical findings regarding

the relation between coupling and changes.

Historically, software evolution has been studied at the file level. Lehman already

used in his laws of Software Evolution the number of files as a measure of system

growth [62]. Other authors have used SLOC (source lines of code) for the same

goals. Gregorio et.al. [63] Tried to move from file/SLOC (physical) level to

functions (physical and semantic) level to gain better understanding of the evolution

of a software project. Their point of view, considering functions is closer to the way

developers work and conceive a software system. They addressed two metrics from

software evolution research that have already been studied at the file level,

modification patterns and developer territoriality (also known as code ownership),

but this time considering a granularity of functions.

 45

 New trend has introduced by Selim et.al. They tried to extend the concept of

using semantic information to improve software quality. Authors consider software

component identification from the code [64]. It is worth saying that it is one of the

primary challenges in component based software engineering. Most of the software

component identification techniques [65, 66, 67] start from semi-formal domain

business models (Typically expressed in UML) and produce domain software

components. Authors propose an approach for identifying components based on a

fitness function to measure the quality of a component. To evaluate such function,

they use a semantic- correctness model defined in their previous works [65,68].

Their approach gives to the architect the choice between two strategies to identify

components. The first strategy is explorative. The second strategy is requirement-

driven.

Some studies shed light on how to integrate entropy concept with semantic aspects

of software as quality measure. Such concept dates back to 1997 when D. Melamed

defines semantic entropy as the measure of semantic ambiguity and [69]. It is a

graded lexical feature which may play a role anywhere lexical semantics plays a role.

The study proposed a method for measuring semantic entropy using translational

distributions of words in parallel text. The measurement method is well-defined for

all words, including function words, and even for punctuation. The hypothesis

behind the measurement method is that semantically heavy words are more likely to

have unique counterparts in other languages, so they tend to be translated more

consistently than semantically lighter words. Brown et al. [70] present a word-sense

disambiguation algorithm involving minimization of semantic entropy weighted by

word frequency. Yarowsky[71] compares the semantic entropy of homographs

conditioned on different contexts. Another way to use semantic that developers of

interlinguas for machine translation can use semantic entropy to predict the required

complexity of lexical elements of the representation. Another interpretation of

entropy is as the inverse of reliability. Machine learning algorithms may benefit

from discounting the importance of data that has high entropy. Semantic entropy can

help researchers decide not only how to work with words, but also which words to

work with. Several applications in computational linguistics use stop-lists of unusual

words. Salwa K and Abd-El-Hafiz, in 2004 [72] also address entropy as a means to

 46

measure software information content. They use the entropy metrics to study the

evolution of the modules within the system. Such an analysis provides a deep

understanding of the evolution of a software system. This study supported the use of

entropy concept in the measurement of some software attributes.

 In the context of using object Oriented (OO). The class is the basic term of

concern, not the procedure or statement. Hence, the metrics used to measure such

software should be class-oriented. A study in 2008 was empirically investigated the

suite of object-oriented (OO) design metrics introduced in [73]. More specifically,

their goal is to assess these metrics as predictors of fault-prone classes and,

therefore, determine whether they can be used as early quality indicators. Their

study represented as complementary to the work described in where the same suite

of metrics had been used to assess frequencies of maintenance changes to classes. To

perform validation accurately, they collected data on the development of eight

medium-sized information management systems based on identical requirements.

All eight projects were developed using a sequential life cycle model, a well-known

OO analysis/design method and the C++ programming language. Based on empirical

and quantitative analysis, the advantages and drawbacks of these OO metrics are

discussed. Several of Chidamber and Kemerer's OO metrics appear to be useful to

predict class fault-proneness during the early phases of the life-cycle. Also, on their

data set, they are better predictors than “traditional” code metrics, which can only be

collected at a later phase of the software development processes. On the other hand

Larry J in [52] focus on what is the suitable semantic information should be

considered during measurement. In [74] researchers proposed the design complexity

of object-oriented software with Weighted Methods per Class metric (WMC-CK

metric) expressed in terms of Shannon entropy, and error proneness. CK suite of

metrics has been successfully applied in identifying design defects early during the

design process. The analysis showed that components with high design complexities

were associated with more maintenance activities than those components with lower

class complexities.

 In 1993 [8] some researches make spot on software faults that infrequently

affect output cause problems in most software and are dangerous in safety-critical

systems. When a software fault causes frequent software failures, testing are likely

 47

to reveal the fault before the software is released; when the fault “hides” from testing,

the hidden fault can cause disaster after the software is installed. During the design

of safety-critical software, certain sub functions of the software can be isolated and

that tend to hide faults. A simple metric, derivable from semantic information found

in software specifications, indicates software sub functions that tend to hide faults.

The metric is the domain/range ratio (DRR): the ratio of the cardinality of the

possible inputs to the cardinality of the possible outputs. By isolating modules that

implement a high DRR function during design, programs that are less likely to hide

faults during testing can be produced. The DRR is available early in the software

lifecycle; when code has been produced, the potential for hidden faults can be

further explored using empirical methods. Using the DRR during design and

empirical methods during execution represents a better plan and implements

strategies for enhancing testability. For certain specifications, testability

considerations can help produce modules that require less additional testing when

assumptions change about the distribution of inputs. Such modules can be seen as

good candidates for software reuse. Norman in [6] found relationship between faults

density and module size and analysis time thorough his study. He confirmed that the

number of faults discovered in pre-release testing is an order of magnitude greater

than the number discovered in 12 months of operational use. Marcus etal. In [58] try

to improve this study by suggesting a way for predicting software faults in OO

programs. They suppose that High cohesion is a desirable property of software as it

positively impacts understanding, reuse, and maintenance. Currently proposed

measures for cohesion in Object-Oriented (OO) software reflect particular

interpretations of cohesion and capture different aspects of it. Existing approaches

are largely based on using the structural information from the source code. Their

study proposes a new measure for the cohesion of classes in OO software systems

based on the analysis of the unstructured information embedded in the source code,

such as comments and identifiers. The measure, named the Conceptual Cohesion of

Classes (C3), is inspired by the mechanisms used to measure textual coherence in

cognitive psychology and computational linguistics. This study presents the

principles and the technology that stand behind the C3 measure. A large case study

on three open source software systems is presented which compares the new

 48

measure with an extensive set of existing metrics and uses them to construct models

that predict software faults. The case study shows that the novel measure captures

different aspects of class cohesion compared to any of the existing cohesion

measures. In addition, combining C3 with existing structural cohesion metrics

proves to be a better predictor of faulty classes when compared to different

combinations of structural cohesion metrics.

 Different concept has been discussed by B Neate et.al. In 2006 [74] they

turned toward measuring of the relative importance of components within the

software structure which was examined in [29]. The use of page rank concept has

proved it’s successful in allowing search engines to identify important pages in the

World Wide Web. The authors suggested a new family of metrics, Code Rank, based

on the same concept used by the Google search engine [29] for ranking web pages.

Software is modeled as a graph whose nodes represent components of various

granularities (package, class, method,…etc) and whose edges indicate dependencies

(invocation, inheritance, overriding, . . .) between components. Metric values are

assigned to nodes according to an intuitively-appealing model which describes the

process in terms of rank flowing through the graph edges. Interpretation of the

CodeRank metric values indicates such things as the “importance” of a component,

its coupling to the remainder of the system and the extent to which it is reused.

Experiments prove the usefulness of the proposed metrics in different applications.

In an earlier work [75], for the same purpose the authors suggested to use a similar

metric called COMPONENT RANK. The main difference between these metrics is

that the CODERANK is computed based on the weighted graph that represents

various usage relations between the components and the number of time each usage

occurs. This research is consistent with the finding that PAGERANK is an

informative metric.

 Zhou applied PageRank and HITS algorithms to measure the importance of

classes [76]. Yi proposed metrics for measuring complexity of relationships among

classes [77]. In his work, he proposed classes as web pages and relationships among

classes as links among web pages. He inferred complexity of relationships according

to the PageRank algorithm.

 49

 Lorenz et al. [78] recommend using a wide range of metrics to test the quality

of models, classes and methods. Various metrics related to coupling, inheritance and

size of classes and methods play the major role in deducting the quality of the

software. In [79] authors make an attempt to help decide which metrics out of this

wide range should be presented to the architect as the most important to look at. The

information density property of software metric is proposed as a criterion for

selecting candidates competing on these resources. Lajios et al. [80] investigated the

correlation of various software metrics to the defect found in software modules and

proposed an approach to determine a sets of metrics for quality assessment of

complex software systems. First they calculated various quantitative, complexities,

coupling and other metrics at the class level for several similar projects using

different open source tools. Then they found the correlation of these metrics to the

history of bugs using machine learning techniques. They found that although some

of the metrics are more suitable for the assessment of software quality; these metrics

differ between the analyzed projects even though their natures are similar. They also

discovered that 5 out of 11 metrics were irrelevant for the analyzed systems. This

research completes ours in the attempt to find which metrics are informative and

which are irrelevant.

3.5.1 Metrics based on entropy

Entropy is used in various areas; in software engineering fields, it is applied to

measure the cohesion and coupling of a modular system, to design a mathematical

model for evaluating software quality, to define complexity measures, etc. [80, 81,

82]. Entropy-based metrics enable monitoring of a system’s aging and they are also

applied to evaluate software degradation [83, 84]. Aging and degradation of

software are principal concepts in software maintenance; however, most studies

using entropy have mainly focused on object-oriented systems [80, 84] or general

modular software [83]. This issue has been investigates by Matinee Kiewkanya and

Pornsiri Muenchaisri [85]. They present a new interpretation of the entropy metric.

They argue that the uncertainty of occurrences of developer-defined tokens for class

names, method names, parameters and variables in the source code is related to the

 50

quality of interfaces. This metric is superior to other metrics that assess the overall

understandability of a software system in terms of metric properties. Although the

original purpose of the metric is measuring the understandability and maintainability

in order to estimate further maintenance efforts, this metric could also be used to

measure the effectiveness of refractory. Zhou [67] and Kang et al. [85] proposed

measuring the structural complexity of class diagrams based on an entropy distance.

This method can measure the structural complexity of class diagrams objectively. In

essence, the Zhou’s and Kang’s metrics are similar. The proposed metrics consider

the number of relationships among classes, the interaction pattern of classes, and the

kinds of relationship. Yi et al. [82] presented an empirical analysis of the entropy

distance metric for class diagrams, specifically Zhou’s metric. This work explored a

correlation between the entropy distance metric and the three sub-characteristics of

maintainability: understandability, analyzability and modifiability measured from

human rating. The experimental result indicated that the metric was basically

consistent with human beings’ intuition.

Oleksandr et.al. [86] Proposes a novel interpretation of an entropy-based metric to

assess the design of a software system in terms of interface quality and

understandability. The proposed metric is independent of the system size and

delivers one single value eliminating the unnecessary aggregation step. Although the

use of entropy for measuring software artifacts is not new [87, 88], this research

presents a new interpretation of the entropy metric. The authors argue that the

uncertainty of occurrences of developer-defined tokens for class names, method

names, parameters and variables in the source code is related to the quality of

interfaces.

 51

3.6 Summary of related studies

The following table summarizes list of previous work along with their strength and

limitations.

Table 3.3: Summary of important related works

No Investigators Research

/approach

Strength Limitations

1

Törn et al. (1999)

Complexity

metrics

Suggests a new measure of

software complexity called

structural complexity.

Programs have to be

written in “node

representation”.

2

Sheng Yu, Shijie

Zhou. (2010)

Comparing different complexity

metrics

Comparative study

doesn’t consider

studies for using

semantic aspects for

measuring complexity

3

De Silva, D.I.et.al.

(2012)

Compare code complexity

metrics: McCabe's, Halstead's

and cognitive functional size

proposed by Shao and Wangs'

and identify which metric is the

most suitable metric.

Doesn’t consider

semantic aspects in

their comparison

4
Hartson, H. et.al.

(1987)

Investigate the effect of using

prediction model on reducing

software complexity

Using companion of

metrics may increase

complexity

5 Nadine MESKENS

1996 IEEE

Integrated

Metrics

Investigates how to Integrate

semantic and syntactic aspect to

reduce maintenance cost.

Concentrates on

maintenance only

6
Zheng Jian-hua, and

Wu Jia-pei,

2006

Building

prediction

models

introduced the Pseudo-path

metric model (PPMM)

Computed range of the

complexity is not

reasonable and boor

mathematical basis

7
 (Mertik, M., et.al.

(2006)

Construct fault Prediction model

using data miner tool.

Using combination of

method decrease

performance

8 Tim Menzies

(2007)

Construct defect predictor model

by using static software

Only static software

attributes are

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.De%20Silva,%20D.I..QT.&newsearch=true

 52

attributes. considered

9 T.M. Khoshgoftaar

and N. Seliya.

(2003)

Evaluate different predictive

performance of six commonly

used fault prediction

techniques. The results confirm

that CART-LAD model is the

best.

10

Emanuel Giger,

Martin Pinzger,

Harald C. Gall

Propose prediction models for

whether a source file will be

affected by a certain type of

source code change. The output

a list of the potentially change-

prone files ranked according to

their change-proneness, overall

and per change type category.

11

Salwa K

Using data

mining in

prediction

Produce an efficient metrics-

based data mining clone

detection approach.

Applied on medium

and large systems only

12 Ensan, F. and Du, W.

A, 2013.

Propose metrics that measure

cohesion and coupling of

ontologies. Based on semantic

information.

All metrics work in

Employment of

ontologies only

13
Yuehua Zhang, Ying

Liu, Lingling 2010

Proposes a defect detection

method using data mining

techniques in source code

Doesn’t detect implicit

programming rules

14

Tao Xie ; Taneja, K.

They develop a novel techniques

based on mining source code,

assisting developers to improve

software reliable.

Research focus on API

library only

15

Gall, C. S

2008

Analyzing natural language

(NL) design specifications for

object-oriented systems by using

semantic metric.

Applied for OO

systems in design

phase only.

 Salwa E.H 2004 Uses entropy to measure Does not consider the

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tao%20Xie.QT.&searchWithin=p_Author_Ids:37269659500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Taneja,%20K..QT.&searchWithin=p_Author_Ids:37314422100&newsearch=true

 53

Semantic

Metrics &

frameworks

information contents for (SW)

based on function

calls.(P=ni/N)

effect of this measure

on quality attributes.

16
Letha H. tzkorn

2006

Discuss three types of

conceptual and ontology based

metrics.

Focused on IR systems

17 Bo Hu,et.al.

2006

Propose formal semantic metrics

(web semantic).

Consider only ontology

18

Jeffrey M. Voas,

Keith W. Miller 1993

Propose semantic metrics from

specifications, to figure out

functions that tend to hide faults.

Boor specification may

lead to unreliable faults

detectors.

19
Larry J. Morell,

1993

 propose framework used to

quantify semantic information

Include only

information about

program execution

20 Selim Kebir,

Abdelhak-Djamel

Seriai

2012

Propose an approach for

identifying components based

on a fitness function to measure

the quality of a component.

The experiments done

on limited versions of

system.

21 B Neate Warwick

Irwin Neville

Churcher

2006

Implemented a tool,

CODERANKER, to compute

values of Code Rank metrics

based on a full semantic model

also suggested.

Focus on OO software

22

Steffen Zschaler

2004

Define elements of a semantic

framework for non-functional

specifications of component-

based systems.

Model doesn’t able to

identify unspecified

non- functional

requirements

23
Oleksandr

Panchenko, Stephan

H. Mueller,

Alexander Zeier

Semantic

entropy

Proposes a novel interpretation

of an entropy-based metric to

assess the design of a software

system in terms of interface

quality and understandability.

The resulting entropy

value is lower than the

entropy of

The actual developer-

defined tokens value.

24 D. Melamed Study proposed a method for He focus only on how

http://www.researchgate.net/researcher/5981813_Jeffrey_M_Voas/
http://www.researchgate.net/researcher/64801619_Keith_W_Miller/

 54

1997 measuring semantic entropy

using translational distributions

of words in parallel text corpora.

to work with words,

but not which words to

work with

25
Abd-El-Hafiz, Salwa

K 2004

Propose a model to measure

information content by using

entropy concept.

that syntactical rules of

languages

decrease entropy

26
Yossi Gil ! Maayan

Goldstein Dany

Moshkovich

Semantic

metrics in

OO systems

Paper describes a new criterion

for evaluating the competing

metrics based on a normalized

version of Shannon’s

information theoretical

the decision of using

one metric is very

much application

dependent

27

 R. SE LVARANI1

, 2009

Study proposed the design

complexity of object-oriented

software with Weighted

Methods per Class metric

(WMC-CK metric) expressed in

terms of Shannon entropy, and

error proneness

Using entropy to

measure only during

design phase

28

Bilong Wen, Li

Zhang 2010

Presents a method to map

process metrics to the enterprise

information model automatically

when the semantic features of

metric are analyzed. Two

semantics tree is presented and a

method to map metric to

enterprise information model is

put forward.

29 Gabriele

Bavota · Andrea De

Lucia · Andrian

Marcus · Rocco

Oliveto.

 2012

proposed a new technique for

automatic re-modularization of

packages, that uses structural

and semantic measures to

decompose a package into

smaller and more cohesive ones

http://link.springer.com/search?facet-author=%22Bilong+Wen%22
http://link.springer.com/search?facet-author=%22Li+Zhang%22
http://link.springer.com/search?facet-author=%22Li+Zhang%22

 55

 Chapter Four

Research Methodology

4.1 Introduction

4.2 Research Strategies

4.3 Research Process and Methods

 4.3.1 Define goals

 4.3.2 Literature Study

 4.3.3 Design Assumptions

 4.3.4 Proposed Solution

 4.3.5 Evaluation

4.4 Chapter Summary

 56

4.1 Introduction

This chapter details out the research methodology used to the current study and

how data collection, analysis and development of theory processed. It explains the

research objectives and a suitable methodology to achieve those objectives. As

mentioned previously in section 1.5 the main objective of the study was to use an

evaluation approach depends on semantic features of software system as a tool to

improve quality monitoring. One of the most important research questions addressed

in section 1.3, whether semantic metrics can contribute to the field of software

reliability measurement. It would be useful to know the probability of software

failure, or the rate at which software errors will occur, and the relationship between

semantic faults and failure rates as an indicator of software reliability.

The structure of this chapter is outlined in such a way that the first section 4.2

presents research strategies used in scientific researches. The subsequent section

describes the generally accepted approaches to research and validation of the research

followed by section 4.3 that describe how each step is carried out during research

process.

4.2 Research Strategy

A large number of research methodologies have been identified, Galliers for

example listing fourteen, while Alavi and Carlson , reported in Pervan, use a

hierarchical taxonomy with three levels and eighteen categories [89]. Table 4.1

below, list the methodologies identified by Galliers [89]. Before introducing the

methodologies used in this research, we summarize the key features of the key

methodologies in the table, identifying their respective strengths and weaknesses. In

the following sections, we justify our choice of methodologies and explain how they

both operate and interoperate in our research.

 57

Table 4.1 Taxonomy of Research Methodologies [89]

 Laboratory experiments permit the researcher to identify precise relationships

between a small numbers of variables that are studied intensively via a designed

laboratory situation using quantitative analytical techniques with a view to making

generalizable statements applicable to real-life situations [89]. The key weakness of

laboratory experiments is the "limited extent to which identified relationships exist

in the real world due to oversimplification of the experimental situation and the

isolation of such situations from most of the variables that are found in the real

world" [89].

 Field experiments extend laboratory experiments into real organizations and

their real life situations, thereby achieving greater realism and diminishing the extent

to which situations can be criticized as contrived. In practice it is difficult to identify

organizations that are prepared to be experimented on and still more difficult to

achieve sufficient control to make replication viable [98].

Surveys enable the researcher to obtain data about practices, situations or views at

one point in time through questionnaires or interviews. Quantitative analytical

techniques are then used to draw inferences from this data regarding existing

relationships. The use of surveys permits a researcher to study more variables at one

time than is typically possible in laboratory or field experiments, whilst data can be

collected about real world environments. A key weakness is that it is very difficult to

realize insights relating to the causes of or processes involved in the phenomena

measured. There are, in addition, several sources of bias such as the possibly self-

 58

selecting nature of respondents, the point in time when the survey is conducted and

in the researcher him/herself through the design of the survey itself.[89]

 Case studies involve an attempt to describe relationships that exist in reality,

very often in a single organization. Case studies can be considered weak as they are

typically restricted to a single organization and it is difficult to generalize findings

since it is hard to find similar cases with similar data that can be analyzed in a

statistically meaningful way. Furthermore, different researchers may have different

interpretations of the same data, thus adding research bias into the equation.

 Simulation involves copying the behavior of a system. Simulation is used in

situations where it would be difficult normally to solve problems analytically and

Typically involves the introduction of random variables. As with experimental forms

of research, it is difficult to make a simulation sufficiently realistic so that it

resembles real world events [89].

 Forecasting/futures research involves the use of techniques such as

regression analysis and time series analysis to make predictions about likely future

events. It is a useful form of research in that it attempts to cope with the rapid

changes that are taking place in IT and predict the impacts of these changes on

individuals, organizations or society. However, it is a method that is fraught with

difficulties relating to the complexity of real world events, the arbitrary nature of

future changes and the lack of knowledge about the future. Researchers cannot build

true visions of the future, but only scenarios of possible futures and so impacts under

these possible conditions [89].

 Subjective/argumentative research requires the researcher to adopt a creative

or speculative stance rather than act as an observer. It is a useful technique since new

theories can be built, new ideas generated and subsequently tested. However, as an

unstructured and subjective form of research, there is a strong chance of researcher

bias.

 Action research is a form of applied research where the researcher attempts

to develop results or a solution that is of practical value to the people with whom the

research is working, and at the same time developing theoretical knowledge. As with

case studies, action research is usually restricted to a single organization making it

difficult to generalize findings, while different researchers may interpret events

 59

differently. The personal ethics of the researcher are critical, since the opportunity

for direct researcher intervention is always present [89].

4.3 Research Process and Methods

The research reported in the study was done in an iterative manner. To begin with,

a review to the current state of art is done to capture knowledge about kinds,

classification and uses of different software metrics. While, the major research in

this area is focusing on syntactical aspects of software, few of them address

semantic concepts. As discussed in chapter 3, measuring quality attributes by using

only syntactic aspects has much limitation. Based on findings of literature review a

new set of metrics are suggested to overcome the limitations of existing tools.

Suggested metrics integrates semantic aspects of software to improve software

reliability monitoring. Metrics are divided to cover three phases fault detection,

error prevention and recover. Suggested metrics are modeled and evaluated

theoretically and empirically against the research objectives. The evaluation

process is iterative each time research objectives are re-examined to ensure that

work is going in the right direction. Two methodologies are adopted in the research:

1. Empirical research, which attempts to highlight statistical relationships

without attempting to justify them/ explain them.

2. Analytical research, which attempts to characterize software quality

attributes from semantic metrics.

Referencing to figure 1.1 that illustrates detailed research process. The work can be

divided into major phases as the following:

4.3.1 Define research goals

Research goals are identified previously, based on previous studies. The main goal is

to monitor/control software reliability by using set of semantic metrics.

 60

4.3.2 A literature study.

An extensive study was performed to survey what have been done in the area.

Advantages \ limitations are pointed for each study and if it is will be considered or

not in this study. Section 3.2 highlights this issue.

4.3.3 Data Collection

During this phase we must identify what quantifiable attributes can help to achieve

the goals set forth in the previous phase. Study focused on computing quantitative

functions that reflect a program’s potential for fault tolerance; the suggested

approach involves analyzing the program as well as its specification. The focus on

fault tolerance comes from two findings derived from previous studies:

- Northrop et al. in [90] stated that, to control the quality of software specially

large ones (Ultra Large Scale systems) it is better to consider Marco level

analysis rather than minute statement-level detail;

- Patterson and Fox [91] argue the favor of controlling software quality

through making error recovery, rather than straining to find and remove

faults in software products.

Both these findings are considered in the present study.

4.3.4 Prepare / analyze data

Based on previous studies both reliability data and standard used programs in

addition to, the most widely used metrics such as LOC, McCabe, Halstead, number

of faults and fault density… etc. are collected to be used for both empirical and

analytical research.

4.3.5 Design assumptions

In this stage assumptions are stated to be tested after work completion. Assumptions

can be abbreviated as follow:

- Semantic metrics can be used to improve software reliability measurement.

 61

- The statistical model could be used to predict probability of software failure

based on semantic features.

Four metrics are suggested to cover the stages of fault tolerance: error detection,

failure detection, error maskability and error recovery. Any of these measures is

going through multiple development steps figure 4.1 shows simple explanation of

these steps:

Figure 4.1: Steps for Defining Metrics

4.3.6 Proposed solution/ implementation/testing

According to defined goals four semantic metrics are suggested to measure program

ability to be fault tolerance by detecting errors at run-time and avoid failure. The

proposed solution are further tested and evaluated. Only one of the suggested

metrics is implemented. The following are brief about these metrics [8]:

- A measure of state redundancy, which used to check state consistency.

 62

- A measure of functional redundancy, abstract number, used to check

program function correctness.

- A measure of maskability, consider program ability to mask error.

- A measure of recoverability indicates the bandwidth of loss that a program

state can sustain while still satisfying the specification.

Metrics are discussed in more details in chapter 6.

4.3.7 Evaluation

In the evaluate phase, there is a need to evaluate the selected metrics to assess their

fitness for the goals established in the first phase. Two methods are selected to

evaluate the fitness of metrics: an analytical approach, which aims to compute or

approximate quality attributes from semantic metrics; and an empirical approach,

which collects statistical data regarding the link between semantic metrics and

observations of quality in software systems. For empirical approach, the correlation

between functional quality attributes (reliability, fault tolerance) and semantic

metrics are estimated. Both regression and correlation techniques are used. For

analytical approach, software failure life cycle are considered, Semantic metrics are

integrated to measure factors affects failure. Statistical model are applied to measure

probability of failure. Finally, multiple refinement process is done to insure

achieving research goals. This issue will be discussed in (7.2 and 7.3).

4.4 Chapter summary

The chapter presents methodology followed during research steps including data

collection and analysis then spot light on proposed solution and methods used to

evaluate this solution.

 63

Chapter Five

Software reliability mechanisms

5.1 Introduction

5.2 Fault/ Error / Failure concepts.

5.3 Software reliability Mechanisms

5.3.1 Fault prevention.

5.3.2 Fault removal.

5.3.3 Fault Tolerance

5.3.4 Fault / Failure Forecasting.

5.4 Information theory and entropy

5.4.1 Information Theory

5.4.2 Relational Mathematics

5.4.3 Entropy

5.4.4 Measuring Information Contents

 5.5 Chapter summary.

 64

5.1 Introduction

Nowadays a high number of software projects fail to follow their specified

requirements regarding time, budget and specifications. Also their maintenance

effort is higher than their implementation effort [4]. Thus, there is a great need for

software metrics, in order to aid towards the overcoming of this “software crisis".

Also, the results of the software metrics are not used efficiently enough to be able to

direct those actions which will lead towards the improvement of the software's

quality. This is because the metric's results are not fully analyzed and interpreted.

Software engineering relies on quantitative analysis to support decision making that

pertains to the management of products and processes. To this effect, researchers

have long been interested in defining and analyzing metrics results that capture

properties of software products and software processes, to such an extent that

software metrics have long since outgrown the laboratory stage and are now the

subject of regular textbooks [3,10,14], and common industrial practice. One of the

major software components that should be measured is reliability. IEEE 982.1-1988

defines Software Reliability Management as “The process of optimizing the

reliability of software through a program that emphasizes software error prevention,

fault detection and removal, and the use of measurements to maximize reliability in

light of project constraints such as resources, schedule and performance”[10]. Three

different techniques / mechanisms used to improve software reliability:

1. Error prevention.

2. Fault detection and removal.

3. Fault tolerance.

4. Fault/failure forecasting

The following sections explain these techniques used to improve reliability starting

by distinction between fault, error and failure concepts.

5.2 Faults / Error/Failure concepts:

The terms errors, faults and failures are often used interchangeable, but they have

different meanings. In software, fault is usually a programmer action or omission

that may results in an error.[3]

 65

An error is a software defect that causes a failure, and a failure is the unacceptable

departure of a program operation from program requirements. When measuring

reliability, only defects found and defects fixed are usually measured [92]. If the

objective is to fully measure reliability the focus will be on prevention as well as

fault tolerance. It is important to recognize that there is a difference between

hardware failure rate and software failure rate. Software however, has a different

fault or error identification rate. For software, the error rate is at the highest level at

integration and test. As it is tested, errors are identified and removed. This removal

continues at a slower rate during its operational use; the number of errors continually

decreasing, assuming no new errors are introduced. Software does not have moving

parts and does not physically wear out as hardware, but it becomes unable to achieve

the renewable requirements [92].

5.3 Software Reliability mechanisms

5.3.1 Fault prevention:

This mechanism is the initial defensive mechanism against unreliability. A fault

which is never created costs nothing to fix. Fault prevention is therefore the inherent

objective of every software engineering methodology. General approaches include

formal methods in requirement specifications and program verifications; early user

interaction and refinement of the requirements, disciplined and tool-assisted

software design methods, enforced programming principles and environments, and

systematic techniques for software reuse [39].

5.3.2 Fault removal:

Used to detect, by verification and validation, the existence of faults and eliminate

them. Fault prevention mechanisms cannot guarantee avoidance of all software

faults. When faults are injected into the software, fault removal is the next protective

means. Two practical approaches for fault removal are software testing and software

inspection, both of which have become standard industry practices in quality

assurance. Directions in software testing techniques are addressed in [47] in detail.

 66

When inherent faults remain undetected through the testing and inspection processes,

they will stay with the software when it is released into the field [39].

5.3.3 Fault tolerance:

It is the last defending line in preventing faults from manifesting themselves as

system failures. Fault tolerance is the survival attribute of software systems in

terms of their ability to deliver continuous service to the customers. Software

fault tolerance techniques enable software systems to:

 (1) Prevent dormant software faults from becoming active.

 (2) Recover software operations from erroneous conditions.

5.3.4 Fault/failure forecasting: to estimate, by evaluation, the presence of

faults and the occurrences and consequences of failures. This has been the main

focus of software reliability modeling. It involves formulation of the fault/failure

relationship, an understanding of the operational environment, the establishment of

software reliability models, developing procedures and mechanisms for software

reliability measurement, and analyzing and evaluating the measurement results [39].

 The ability to determine software reliability not only gives us guidance about

software quality and when to stop testing, but also provides information for software

maintenance needs.

 67

5.4 Information theory and entropy

5.4.1 Information theory

Information theory is a branch of applied mathematics, electrical engineering, and

computer science involving the quantification of information. Information theory

was developed by Claude E. Shannon to find fundamental limits on signal

processing operations such as compressing data and on reliably storing and

communicating data. Since its inception it has broadened to find applications in

many other areas, including statistical inference, natural language processing,

cryptography, neurobiology, thermal physics, plagiarism detection and other forms

of data analysis [93].

A key measure of information is entropy, which is usually expressed by the average

number of bits needed to store or communicate one symbol in a message. Entropy

quantifies the uncertainty involved in predicting the value of a random variable. The

following subsections define these concepts [93].

5.4.2 Relational mathematics

The main source of this section is [94], to which the interested reader can referred,

for further details. Consider a set S defined by the values of some program variables,

say x, y and z; typically denote elements of S by s, and note that s has the form s =

<x, y, z>. The following notation x(s), y(s), z(s) are used to denote the x-component,

y-component and z-component of s, respectively. A relation on S is a subset of the

Cartesian product S × S. Constant relations on some set S include the universal

relation, denoted by L (=S×S), the identity relation, denoted by I, and the empty

relation, denoted byϴ.

Because relations are sets, the usual set theoretic operations can be applied between

relations such as: union (∪), intersection (∩), and complement (𝑅). Operations on

relations also include the converse, denoted by Ȓ, and defined by Ȓ = {(s, s′)|(s′, s) є

R}. The product of relations R and R′ is the relation denoted by R ◦ R′ (or RR′) and

defined by R◦R′ = {(s, s′)|∃ s′′ : (s, s′′) ∈ R∧ (s′′ , s′) ∈ R′}. The domain of relation R

is defined as dom(R) = {s|s′: (s, s′) є R}. The range of relation R is denoted by rng(R)

and defined as dom(Ȓ). We admit without proof that for a relation R, RL = {(s, s′)|s

http://en.wikipedia.org/wiki/Quantification
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Information_theory#cite_note-7
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Symbol_(data)
http://en.wikipedia.org/wiki/Random_variable

 68

є dom(R)} and LR = {(s, s′)|s′ є rng(R)}. The nucleus of relation R is the relation

denoted by μ(R) and defined as RȒ. The co-nucleus of relation R is the relation

denoted by (R) and defined as ȒR.

We say that relation R is total if and only if μ(R) = L and we say that relation R is

surjective if and only if co-nucleus (R) = L. Given two relations R and R′ that have

the same domain, we say that R is more-injective than R′ if and only if μ(R) ⊆ μ(R′)

and we say that R is injective if and only if it is more-injective than I; the name

more-injective may be misleading, given that we are talking about a reflexive

ordering (it should be more-injective-than-or-as-injective-as), but we adopt it for

convenience. Given two relations R and R′ that have the same range; we say that

relation R is deterministic if and only if it is more-deterministic than I.

 5.4.3 Entropy

 Entropy is a measure of unpredictability of information content. In this context,

the term usually refers to the Shannon entropy, which quantifies the expected value

of the information contained in a message.[93] The following is the main equation of

entropy measured for variable X:

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖) log(𝑃(𝑥𝑖))

𝑛

𝑖=1

Where:

 log is the base 2 logarithm,

 X = {x1, x2, x3, ... xn},

 P (xi) is the probability of the event: X = xi.

Entropy is typically measured in bits [93]. Shannon entropy is the average

unpredictability in a random variable, which is equivalent to its information content.

Shannon entropy provides an absolute limit on the best possible lossless encoding or

compression of any communication, assuming that the communication may be

represented as a sequence of independent and identically distributed random

variables.

 Entropy, especially the Shannon entropy, is used in various and diverse

software engineering applications. For example, the entropy concept is used in

http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-2
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-3

 69

designing mathematical models for software quality evaluation [68] and in providing

mechanisms for selecting optimum reuse candidates.

Recently, many researchers move toward using entropy in software quality

measurement as discussed previously (see section 3.5.1).

The following are some possible interpretations of entropy in software [71]:

 Entropy of a probability distribution is the expected value of the information

of the distribution.

 Entropy is related to how difficult it is to guess the value of a random

variable X.

 Entropy indicates the best possible compression for the distribution, i.e. the

average number of bits needed to store the value of the random variable X.

According to above equation, study admit without proof that H(X) ≥ 0;and the

expression p log(p) equals zero when p equals 0, hence the entropy function may be

applied to probability distributions that are not necessarily non-zero for all xi [8].

Intuitively, the entropy of random variable X represents the amount of uncertainty

regarding the outcome of the random variable, and takes its maximal value (which is

log(n)) when all the outcomes are equally likely (π(xi) = 1 n for all i).

Given two random variables X and Y on sets X and Y , and let πX and πY be

probability distributions of X and Y over their respective sets; let πXY be the

probability distribution of the events (X = xi ∧Y = y j) over the Cartesian product X

× Y [8].

The joint entropy of X and Y denoted by H(X, Y)and represents the entropy of the

aggregate random variable (X, Y) over the set (X × Y). Using this

Definition, let the conditional entropy of X with respect to Y be denoted by H(X|Y)

and be defined as follows:

H(X|Y) = H(X, Y) − H(Y).

Whereas the entropy of X represents the amounts of uncertainty about the outcome

of X, the conditional entropy of X with respect to Y represents the amount of

uncertainty about the outcome of X once the outcome of Y is known. The conditional

entropy is non-negative because the joint entropy of (X, Y) is greater than or equal to

the entropy of Y.

 70

 Given a random variable X that takes its values in some space S, and given a

function G on X, let Y be the random variable Y = G(X),whose probability

distribution is derived from that of X, i.e.,

πY (Y = y) = _ ∀x:G(x)=yπX (X = x).

Then, the result is the inequality [93]: H(X) ≥ H(Y). In other words, applying a

function to a random variable reduces its entropy (due to possible loss of

information). If G is total and injective, then H(G(X)) = H(X).

To conclude this section, following section introduces a concept used throughout

this study to assign intuitive interpretations to semantic metrics.

Definition 1[8]:

Consider a set S and a predicate (A) on S, and let SA be the subset of S defined by

elements of S that satisfy A(s). The bandwidth of assertion A is defined as:

H(S) − H(SA).

E.g. consider a set S defined by three integer variables, say x, y and z. Under the

hypothesis of uniform probability distribution, and assuming that integers are

represented by 32-bit words, the entropy of S is 96 bits. By considering the

following predicate:

A(s) as x = y.

H (SA) = 64 bits, then the bandwidth of Assertion is 32 bits, which is the width of

the two expressions (x and y) involved in assertion A. entropy are used in the study

to define semantic metrics that contribute to software reliability measurement.

5.4.4 Measuring information content:

 Measuring software information content for the information measures to be as

independent as possible of any product abstractions, by following the general

definitions of software systems and modules introduced in [71]. A software system S

= <E, R> is defined as a set of elements, E, and a binary relation, R, on them. Given

a system S = <E, R>, a system m = <Em, Rm> is a module of S if and only if Em is

a subset of E and Rm is a subset of R. For example, E can be the set of functions and

R can be the set of calls from one function to another. A module m may be a group

 71

of functions. To measure the information content of software systems two different

issues must be addressed.

The first issue is about which entropy is suitable for measuring software information.

The second issue is about which parts of the source code should be treated as the

symbols emitted from the information source (the software system).

The relation between entropy and information gain could be abbreviated in “the

more Shannon entropy, the more information gained after learning the outcome of

probabilistic event”[71].

On the other hand, the information content of a system consisting of two modules is

not greater than the sum of the information expected from the individual

experiments.

That is, H(S) H(m1) + H(m2).

M1 and m2 represent modules names. The information gained from a system can be

less than the summation of the information gained from its two constituent modules

because of several reasons such as repeated calls to the same functions or repeated

usage of the same abstract data types. As long as two modules are in the same

system, they are, somehow, dependent.

5.5 Chapter Summary

 The chapter introduced major concepts related to reliability mechanisms such as

fault prevention, fault detection and fault tolerance. Recently, much research

considers the use of information theory to improve reliability. This issue is

investigated starting by defining the main concepts of information theory – entropy

and set theory. Finally, it introduced how to measure information gain using these

concepts.

 72

Chapter Six

Semantic Metrics

6.1 Introduction

6.2 Fault Tolerance Methodology

6.3 Error detection: Redundancy

6.3.1 State redundancy

6.3.2 Functional redundancy

6.4 Error Masking: Non injectivity

6.5 Error Recovery: Non determinacy

6.6 Summary of semantic metrics

6.7 Chapter Summary

 73

6.1 Introduction

Most of the software metrics that are being used nowadays (and certainly the most

widely known) are based on syntactic attributes of software artifacts; they reflect

how a program is represented, but not what a program does; yet, many important

program attributes may have more to do with the latter than the former[8]. In

addition, many software attributes of interest are not intrinsic to the software product

and also involve the specification that the software product is supposed to satisfy;

hence if we want metrics to reflect relevant quality attributes, we need to pay

attention not only to the software product, but also to its specification.

All of the research that has been done on the correlation between software metrics

on one hand and fault density, fault proneness, and fault forecasting on the other

hand, do not consider given specifications; yet a fault is a fault only with respect to a

specification. In order to be more comprehensive, software metrics ought to take into

account attributes of specifications along with attributes of programs [10].

In the study, a number of software metrics that reflect semantic properties of

software products are introduced, which is independent of the minute details of how

products are represented.

As mentioned in section (4.2) the work will proceed according to multiple phases

such as:

 The Establishment phase, in which goals should be defined.

 The Extraction phase, determines the attributes used to achieve the goals.

 The Evaluation phase, evaluate the selected metrics to assess their fitness for

the goals established in the first phase. study envision two venues to evaluate

the fitness of proposed metrics: an Analytical approach, which aims to

compute or approximate quality attributes from semantic metrics; and an

empirical approach, which collects statistical data regarding the link between

our semantic metrics and observations of quality in software systems.

 The Execution phase, deploys the selected metrics, once they are validated.

The software metrics that will present in the coming sections are semantic in the

following sense: they view software products as aggregates of spaces, functions and

relations; furthermore they reflect the set theoretic properties of theses spaces,

 74

functions and relations. The discussion is conducted in the context of C-like

procedural programs, but can be extended to include other types of programs.

6.2 Fault tolerance Methodology

The main source for this section is [8]. Consider a program g on some space S, of

the form

 g = {g1; L: g2;}

Where g1 and g2 are subprograms and L is a label preceding g2. We let R be a

relation on S that represents the specification that g must meet, and we let s0 be an

arbitrary initial state of g.

 A fault in program g is a feature of g that precludes it from satisfying its

specification.

 An error of the program at label L for initial state s0 is a state that is distinct

from the expected state at this label;

 A fault may or may not cause a fault at label L, depending on the initial state s0;

when a fault does cause an error, we say that it has been sensitized by the initial

state s0.

 A failure of program g occurs whenever the error that arises at label L causes

the program to fail to produce a correct (with respect to R) final state for initial

state s0. An error at label L may cause a failure of the program, in which case

we say that the error has been propagated; it may also cause no failure, in this

case the error said it has been masked.

Program g considered as fault tolerant if and only if it has provisions for avoiding

failure after faults have caused errors. Study considers three phases in the fault

tolerance process:

 Error Detection, when the program detects an inconsistency that indicates

that the program state is erroneous.

 Damage Assessment, when the program analyzes the current state to

determine whether it is maskable or recoverable (in which case recovery is

necessary and sufficient) or unrecoverable (in which case recovery is

insufficient).

 75

 Error Recovery, when a recovery is invoked to map the recoverable state into

a maskable state and let the computation resume from label L.

As an illustration, consider the space S defined by a natural variable, let the

specification be relation R defined by

𝑅 = {(𝑠, 𝑠′)| 𝑠′𝑚𝑜𝑑 3 = 𝑠2 𝑚𝑜𝑑 3}

Let g be the program g = {read(s); s=2*s; L: s = s mod 6; write(s);}

The intent of the programmer was for g to compute the following function:

𝐺 = {(𝑠, 𝑠′)| 𝑠′ = 𝑠2 𝑚𝑜𝑑 6}

Which would have been correct with respect to R (in the sense of [15]), since G and

R are both total, and G ⊆ R, as shown below:

𝑠′ = 𝑠2 𝑚𝑜𝑑 6 ⇒ s′𝑚𝑜𝑑 3 = (𝑠2 𝑚𝑜𝑑 6)𝑚𝑜𝑑 3 = 𝑠2 𝑚𝑜𝑑 3 .

But the programmer wrote the statement s = 2*s instead of the statement s=s*s,

creating a fault. This fault may or may not be sensitized, depending on the input

value:

 For 𝑠0 = 2, the fault is not sensitized, since the expressions 𝑠 ∗ 2 and 𝑠 ∗ 𝑠

return the same value for s = 2.

 For 𝑠0 = 6, the fault is sensitized, causing an error (s = 12 rather than s = 36

at label L), but the error is subsequently masked (since 12 mod 6 = 36 mod 6

at the end of the program).

 For 𝑠0 = 3, the fault is sensitized, leading to an error (s = 6 instead of s = 9 at

label L); the error is subsequently propagated, causing a failure (s = 0 instead

of s = 3 in the final state); in this instance, program g failed to behave

according to its intended function G, but did not fail with respect to its

specification R, since

 𝑠0𝑚𝑜𝑑 3 = 9 𝑚𝑜𝑑 3 = 0 = 0 𝑚𝑜𝑑 3.

Hence, strictly speaking, it satisfies its specification for 𝑠0 = 3.

 Finally, for 𝑠0 = 4, the fault is sensitized, leading to an error (the state at

label L is 𝑠 ∗ 2 = 8 rather than 𝑠 ∗ 𝑠 = 16); this error is propagated,

leading to a final state that is distinct from the expected final state (the output

is s = 2 rather than s = 4); this final state violates the specification, since 2

 76

mod 3 6= 4 mod 3; in this case, the program failed to compute the expected

final state, and also failed to satisfy the specification of the program.

The same fault may cause different chains of events, depending on the input. In

order to be fault tolerant, a program must make provisions for error detection (to

recognize when the potential of a failure may arise), error masking (to limit cases

when recovery is necessary), and error recovery (to map a recoverable state into a

maskable state, and let the computation proceed). The following sections describe

these issues.

6.3 Error detection: redundancy

Broadly speaking, redundancy is the property of using more data than is needed to

represent some information. Whereas redundancy is usually defined in terms of

duplicating elements of data (bits, words, etc), we model it instead as an algebraic

property of the representation function, i.e., the function that maps information onto

data. We distinguish between two types of redundancy in a program: state

redundancy and functional redundancy.

6.3.1 State redundancy

State redundancy can be seen as defining extra variable size than required. Given a

program g on space S, it is fair to say that in general, not all elements of S represent

valid program states. E.g. defining variable to indicate student age as an integer

value, even though, only a limited range will be used. The simplest representation

relations are those that are [8]:

 Total (each state value has at least one representation),

 Deterministic (each state value has at most one representation).

 injective (different states have different representations),

 Surjective (all representations represent valid states).

Not all representation functions satisfy these four properties. Study limited to

representation relations that are deterministic, total, and injective—whence each

state value has exactly one representation (by virtue of totality and determinacy) and

 77

different state values have different representations (by virtue of injectivity). Under

this assumption, representation relations refer to as representation functions.

Study is interested to quantify the redundancy of the state of a program. To this

effect, there is a need to distinguish between the actual state space of the program,

which defined as the set of states that the program may be in, and the declared state

space of the program, which is the set of values that the declared program variables

may take. We let ρ be the function that maps each actual state onto its representation

as an aggregate of values of the declared variables. The state redundancy of program

is defined by means of the representation function, as follows.

Definition 1 Let g is a program, and let be the set of actual states of g, and S be

the set of declared states of g.

 If we let ρ be the representation function that to each actual state σ assigns its

representation in S, then we define the redundancy of ρ as:

 κ(σ) = H(S) − H(ρ(σ)).

If ρ is total, deterministic and injective, then H(ρ(σ)) is equal to H(σ); hence, when

the representation function is total and injective, its redundancy can be written as:

 κ(ρ) = H(S) − H(σ).

Typically, the set of declared states is fixed for a given program block (which is the

scope of typical variable declarations), but the set of actual states varies as the

program proceeds through its execution; hence the redundancy of a state

representation may vary from one step to the next through the execution of a

program.

The state redundancy of the initial state reflects the gap between the minimal

bandwidth required to store the program state and the actual bandwidth reserved to

that effect. The state redundancy of the final state reflects the maximum bandwidth

of relationships that hold between program variables as a result of the execution of

the program.

As an illustration of this definition, consider a simple program that reads two

integers included between 1 and 1,024 and computes their greatest common divisor.

 { int x, y; cin << x << y;

 // initial state

 78

 while (x!=y) {if (x>y) {x=x-y;} else

 {y=y-x;}}

 // final state }

Example1: Computes greatest common divisor

The declared state space of the program includes two integer variables, which we

assume to be of width 32 bits; then H(S) = 2 × 32 bits = 64 bits.

As for σI, it consists of two integer values ranging between 1 and 1,024;

 H(σI) = 2 × log(1,024) bits = 20 bits.

We derive the state redundancy of the initial state as:

κ(σI) = 44 bits.

For the final state, the declared state space is the same, but the actual range of states

is now reduced to a single value between 1 and 1,024, since variables x and y are

identical. Then κ(σF) = 64 bits − 10 bits = 54 bits. The state redundancy of this

program is ranging between κ(g) = [44 bits..54 bits].

6.3.2 Functional redundancy

Whereas state redundancy reflects the excess data in the representation of a state,

and can be used to check consistency conditions within the variables of a state,

functional redundancy reflects the excess output data generated by a program

function, and can be used to check (partially or totally) whether the function has

executed properly. Whereas the redundancy of a state is equated with the non-

surjectivity of the representation function (mapping actual states to their

representation), the functional redundancy of a program is equated with the non-

surjectivity of the program function (mapping initial states to final states, or inputs to

outputs).

Definition 2:

Consider a program g on space S, and let G be the function defined by g on S. Let S

be a random variable that takes its values in set S, and Y be a random variable that

takes its values in the range of G. The functional redundancy of program g is

denoted by φ(g) and defined by:

 79

φ(g) = (H(S) − H(Y))/ H(Y).

Intuitive interpretation the functional redundancy of a program g is the ratio of the

excess information that represents the output of g prorated to the entropy of the

output produced by g. The functional redundancy of a program g may be used to

check (partially or totally) the correctness of the output produced by the program, or

even to generate the correct output. So, if φ(g) = 0, there is no scope for checking

any property;

If 0 < φ(g) < 1

Then part of results could be checked against redundant information; if φ(g) > 0,

then H(G(S)) × φ(g) represents the bandwidth of assertions that may be checked on

the functional properties of G.

For example, if program g computes the values of five integers, and φ(g) = 0.2, then

there may be sufficient redundancy to check that one of the five values is computed

correctly. Knowing the value of φ(g) does not tell us how to use the redundant

information; but if we identify and use it, it can tell us whether we are using all the

available redundant information. e.g. considers the following functions. A denotes 5

bit variable, so functional redundancy will be:

Table 6.1: Measured functional redundancy

Name Expression Input Output Redundancy Comment

F1 X A A 0 All bits are used

F2 X * 2 A A 0.25 Rightmost bit contains 0

6.4 Error masking: program non-injectivity

Whereas state and functional redundancy enable to detect errors, maskability enables

to mask them, i.e., produce a subsequent state that bears no trace of the error. What

makes this possible in practice is the non-injectivity of programs, i.e., their ability to

map distinct states into a single image. The following definition offers a way to

quantify the non injectivity of program functions.

 80

Definition 5 Let g is a program on space S, whose function is G. Let X be a random

variable that takes its values in the domain of G and let Y be defined as Y = G(X).

The non-injectivity of program g is denoted by θ(g) and defined by:

θ(g) = H(X|Y).

The conditional entropies are non-negative, hence θ (g) ≥ 0. To justify this definition,

study proceeds in two steps: first, assume a uniform probability distribution over

variable X; then the entropy of X given Y measures the amount of uncertainty of the

initial state of g if the final state is known; this quantity is a natural representation of

non-injectivity, in the sense that the more initial states map to the same image, the

bigger the entropy. Second, consider the question: why does a non-uniform

probability distribution represent smaller non-injectivity? The answer is that with a

non-uniform probability distribution, fewer possible input values have a higher

probability of occurrence, culminating in a smaller set of inputs mapping to a single

output, hence a less injective behavior.

 Intuitive interpretation the non-injectivity of program g is expressed in

Shannon bits and represents the bandwidth of error that the program can potentially

mask. For example, if the program handles integer variables of width w each, and

the non-injectivity of g is w bits, the program may potentially mask the loss of an

integer variable; for the same amount of injectivity, the program may also recover

from the violation of an assertion whose bandwidth is w (e.g., an equality between

two integer expressions); if the non-injectivity is 2w, the program can potentially

mask the loss of two integer variables, etc. Knowing the value of the program’s non-

injectivity does not tell us what variables may not be lost, nor which assertion may

be violated, but gives us some indication of the magnitude of error that can be

masked without outside intervention.

Proposition 1 Let g be a program on space S, whose function is G. Let X be a

random variable that takes its values in the domain of G and let Y be defined as Y =

G(X). The non-injectivity of program g can be written as:

θ(g) = H(X) − H(Y).

 81

Proof According to [93], H(X|Y) = H(X, Y)−H(Y),where H(X, Y) is the joint

entropy of X and Y . Given that study consider deterministic programs, Y is a

function of X, hence

H(X, Y) = H(X). Then

θ(g) = H(X) − H(Y).

In practice, there is a need to derive rules allows to compute the non-injectivity of a

program by analyzing its source code. Figure 6.1, shows the meaning of non-

injectivity metric.

Figure 6.1: A diagram showing a function that is not injective [95]

Example: if we consider example (1) in section (6.3.1). The non-injectivity equals:

θ(g) = H(X) − H(Y).

H(X) = 2w, assuming w is 32bit. H(Y) = 2w, then θ (g) =0.

Proposition 2 The non-injectivity of a sequence of programs is the sum of their non-

injectivities:

θ(g1; g2) = θ(g1) + θ(g2).

Proof: let X, Y, and Z be the random variables representing the state of the program

before g1, between g1 and g2, and after g2. We have:

θ(g1) = H(X) − H(Y), and θ(g2) = H(Y) − H(Z), hence θ(g1) + θ(g2) = H(X) −

H(Y)+ H(Y)− H(Z), which simplifies to (H(X)− H(Z)), which is θ(g1; g2)

Program Non-injectivity can be computed by knowing program function without

have to go through the inductive statement-by-statement analysis.

 82

6.5 Error recovery: Specification flexibility

A program may fail to compute its intended function and yet still behave according

to the specification it is intended to satisfy [8].

 Definition 6: We consider a specification R under the form of a binary relation on

some space S, and we let X be a random variable that takes its values in the domain

of R and Y be a random variable that takes its values in the range of R in such a way

as to maintain the condition (X,Y) є R. The non-determinacy of specification R is

denoted by χ(R) and defined by:

χ(R) = H(Y |X).

A specification is all the more non-deterministic (flexible) that the conditional

entropy of its output states for a given input state is greater; bigger entropies are

equated with larger sets of possible outputs, and more uniform probability

distribution of the occurrence of these outputs.

Intuitive interpretation the non-determinacy of a specification is expressed in

Shannon bits and represents the bandwidth of deviation of candidate programs from

their intended function that does not violate the specification, figure 6.2, shows the

meaning of non-determinacy. For example, if state S includes integer variables of

width w and we find that the non-determinacy of R is w, then we can lose up to one

integer variable and still satisfy the specification. Non-determinacy of this

specification can be computed by using the formula:

χ(R) = H(X, Y) − H(X).

Figure 6.2: Meaning of non-determinacy.

X

𝑦1, 𝑦1 … . 𝑦𝑛

 83

Illustration: Consider the following specification defined on space S of natural

variables, and is defined by:

𝑅 = {(𝑠, 𝑠′)|𝑠 𝑚𝑜𝑑 3 = 𝑠2 𝑚𝑜𝑑 3} [8]

Let X and Y are random variables that range over S in such a way as to maintain the

property:

𝑦 𝑚𝑜𝑑 3 = 𝑥2 𝑚𝑜𝑑 3.

The non-determinacy of relation R using the expression:

χ(R) = H(X, Y) − H(X),

Using the uniform probability distribution of X and Y. We find, H(X, Y) = 2w − log

(3), and H(X) = w. Hence,

χ(R) = w − log(3)

6.6 Summary of Semantic Metrics

In keeping with the foregoing premises, we have derived four semantic metrics,

which measure a program’s ability to detect errors at run-time and avoid failure.

1. A measure of state redundancy, which quantifies the non-surjectivity of state

representations, is expressed in Shannon bits, and indicates the bandwidth of

assertions that can be checked to ensure state consistency.

2. A measure of functional redundancy, which quantifies the non-surjectivity of

program functions, is expressed as an abstract number, and indicates the ratio of

the program function that can be checked for correctness.

3. A measure of maskability, which quantifies the non-injectivity of program

functions, is expressed in Shannon bits, and indicates the bandwidth of error that

may arise in the program state and still be masked by the program.

4. A measure of recoverability, which quantifies the non-determinacy of program

specifications, is expressed in Shannon bits, and indicates the bandwidth of loss

that a program state can sustain while still satisfying the specification.

Together, these four metrics ought to give the analyst some indication regarding the

program’s ability to tolerate faults and avoid failure. Table 6.2 Summarize semantic

metrics, definition, and interpretation along their use.

 84

Table 6-2: Metrics Definition and interpretations

6.7 Chapter Summary

 The chapter presents four semantic metrics based on entropy concept. The

four metrics can contribute to provide a measure of the main factors of fault

tolerance.

 85

Chapter 7

Validation

7.1 Introduction

7.2 Empirical Research

 7.2.1 Applying metrics

 7.2.2 Correlation Analysis

 7.2.3 Regression Results

 7.3 Analytical Research

 7.3.1 Estimating probability of executing faulty statements

 7.3.2 Probability of sensitization

 7.3.3 Probability of error propagation

 7.3.4 Probability of specification violation

7.4 Results

7.5 Using failure classification Model

7.5.1 Building classification model

7.5.2 Classification result rules

7.5.3 Classification Model Limitations

 86

7.1 Introduction

 This chapter describes validation process by using both empirical and analytical

validations. Empirical validation tends to explore correlations between different

measures used. Analytical validation employs statistical concepts to predict new

features based on probabilistic measures.

The structure of this chapter is outlined in such a way that the first section, 7.2,

presents empirical research done along with its results and the subsequent section

describes the proposed analytical model and its results.

7.2 Empirical research

Empirical validation is used to explore correlations between some functional quality

attributes such as reliability, fault tolerance and semantic metrics. During

experiments, the most famous standard programs – Siemens and Space [96]- are

selected to test the proposed metrics. The "Siemens" programs were assembled by

Tom Ostrand and colleagues at Siemens Corporate Research for a study of the fault

detection capabilities of control-flow and data-flow coverage criteria [96]. The space

program consists of 9564 lines of C code (6218 executable) and functions as an

interpreter for an array definition language (ADL). The program reads a file that

contains several ADL statements, and checks the contents of the file for adherence to

the ADL grammar and to specific consistency rules. If the ADL file is correct, space

outputs an array data file containing a list of array elements, positions, and

excitations; otherwise the program outputs error messages [96]. Our four metrics are

applied on 10 programs including 7 programs from Siemens collection in addition

to, three other programs. Such as: tacs, schedule, schedule2, replace, totinfo,

printtokens, printtokens2, Gzip, Sorting and Space, then results are recorded for

validation purpose. Table 7.1 shows a brief description of the used programs.

 87

Table 7.1: Description about used programs

 Program Name Description

1 Tcas Altitude separation - aircraft collision avoidance system.

2 Schedule2
Are priority schedulers

3 Schedule

4 Replace performs pattern matching and substitutions (pattern recognition)

5 Space interpreter for an array definition language (ADL)

6 Sorting program Algorithm receive unordered array and perform multiple

substations to order array.

7 Printtokins
lexical analyzers

8 Printtokins2

9 To_info Information gain measure

10 Gzip Unix utility

7.2.1 Applying metrics:

In this step 8 metrics are applied on selected programs. Metrics are: McCabe,

Halstead, Number of fault, Fault Density in addition to, the proposed four semantic

metrics. Tables 7.2 and 7.3, show the result of applying 8 metrics on selected

programs. Both correlation and regression analysis methods are used to explore

relation between syntactic and semantic metrics. The regression analysis method has

been used to identify the closest relation between the above mentioned metrics [97].

It implements a linear regression model. Which means that the dependent variable(s)

can be written in terms of linear combinations of the independent variable(s) [19].

The following section shows the results for the empirical validation step.

Table 7.2 shows the results of applying four syntactic metrics on selected programs

and table 7.3 shows applying the four semantic metrics on selected programs.

 88

TABLE ‘7.2’:

RESULTS OF APPLYING SYNTACTIC METRICS ON SELECTED PROGRAMS

P. name V(G) V Number of

faults

Fault density

Tcas 26 3800 41 0.01

Schedule2 49 7715 10 0.001

Schedule 37 7785 9 0.001

Replace 92 17293 32 0.001

Space 748 33015 35 0.02

Sorting 6 646 0 0.02

Totinfo 45 9311 23 0.01

Printtokins 72 12922 10 0.01

Printtokins2 79 9973 7 0.01

Gzip 1260 24149 40 0.0

Where P.name: program name, V (G): Complexity and V represents volume.

Fault density are measured by using the simple equation,

Fault density = number of faults/ size.

TABLE ‘7.3’:

SEMANTIC METRICS APPLIED ON 10 SELECTED PROGRAMS.

P. name Functional

redundancy

State

redundancy

Non- injectivity Non determinacy

Tcas 0.03 713.4 bits 34 bit 32

Schedule2 0.02 801.9 bits 64 bits 0

Schedule 0.02 124.7 bits 96 bits 0

Replace 0.03 601.6 bits 32 bit 32

Space 2.4 63996 bits 19200 bits 32

Sorting 14.6 2435 bit 564 bits 564

Totinfo 0.03 277.9 bits 224 bit 32

Printtokins 0.05 260 bits 318 bits 32

 89

7.2.2 Correlation Analysis:

The goal here is to verify that there is a statistically significant association between

attributes estimated by semantic and syntactic metrics. Spearman rank correlation is

a commonly-used robust correlation technique [97] because it can be applied even

when the association between elements is non-linear. Table 7.4 Shows that there

exists a statistically significant positive relationship between the following:

 - Functional redundancy and State redundancy.

- Non- determinacy and functional redundancy.

- Non injectivity and fault density / complexity.

- Complexity and volume

- Complexity and fault density

- Volume and fault density.

TABLE 7.4: CORELATION RESULTS

 FR NJ V(G) V SR NFaults FDensity

FR CC 1.000 .147 .087 .026 .578* -.127- -.258-

Sig . .600 .757 .928 .024 .653 .353

NJ CC
.147 1.000 .649** .496

.054

-
.033 -.630*

Sig. .600 . .009 .060 .849 .906 .012

V(G) CC .087 .649** 1.000 .928** .016 .549* -.680**

Sig. .757 .009 . .000 .955 .034 .005

V CC .026 .496 .928** 1.000 -.023- .657** -.572*

Sig. .928 .060 .000 . .934 .008 .026

SR CC .578* .054- .016 .023- 1.000 -.007- -.214-

Sig. .024 .849 .955 .934 . .980 .445

NFaults CC .127- .033 .549* .657** -.007- 1.000 -.100-

Sig. .653 .906 .034 .008 .980 . .723

Non-D CC .828 .000 .080 .158 .474 .399 .158

Sig. .021 1.000 .865 0.735 .282 .375 .605

Printtokins2 24.6 480 bits 200 bits 32

Gzip 0.07 30150 bit 300 bit 32

 90

Where:

FR: Functional redundancy, NJ: Non-injectivity , V(G): McCabe, V: Volume, SR:

State redundancy , Nfaults: Number of faults, Fdesnity, Fault Density, Non-D: Non-

determinacy and CC: correlation Coefficient.

7.2.3 Regression Results:

We now compare software metrics built based on syntactic features against those

built using semantics. Table 7.5 shows a summary of the regression results. R2 is a

measure of variance in the dependent variable that estimated by the model built

using certain predictors [97].regression was done by using SPSS software.

TABLE 7.5: SUMMARY OF REGRESSION RESULTS

 Semantic Metric Syntactic and semantic metrics R2

1 State redundancy Fault Density 0.859

2 Functional redundancy McCabe 0.501

3 Non_injectivity Fault Density 0.432

4 Functional redundancy Number Of Faults 0.259

5 Non_injectivity State redundancy 0.205

6 Non_injectivity McCabe 0.213

7
Functional redundancy

Volume 0.110

8
Number Of Faults 0.029

9 Non_injectivity

10 State redundancy McCabe 0.010

11
Non-determinacy

Functional redundancy/Non-injectivity 0.067

12 State redundancy 0.008

13 State redundancy Functional redundancy 0.006

14 Non_injectivity Functional redundancy 0.002

15 Non-determinacy McCabe 0

The regression results indicate that state redundancy and fault density have the

closest relation. The value of R2 for the first parameter denotes that 86% of the

change in the dependent variables explained by the change in independent variables.

 91

R2= 0.859 reflects a strong positive relationship. At the same for the last one, where

R2 equals 0.002 (0%), reflects a very week +ve. relationship.

7.3 Analytical Research

The main goal of this section is to figure out how proposed semantic metrics can

contribute to the prediction of software reliability in its early stages. As mentioned

previously, the study concentrates on measuring the ability of the program to be fault

tolerant, in order to, measure such properties we consider the lifecycle of failure as

follows:

1. Existence of a fault

2. Fault sensitization

3. Fault propagation

4. Specification violation

The proposed metrics tend to measure these factors as indicator of failure probability.

Figure7.1. describes the chain of reactions that happen when faults are executed as

follows:

Figure 7.1: Events generate system failure [98]

The probability of software faults resulting into a failure is heavily dependent on the

operational profile. Assuming a fault exists, the probability of a faulty code to be

executed is p1. If a faulty code is executed, the probability of error generation is p2.

If errors are generated, the probability of these errors resulting into failure is p3.

Another factor should be considered to reflect whether the resulting failure is

violating the specification (P4). Thus, the probability of a software fault resulting

into a failure is product of P1, P2, p3 and P4. The following section describes these

factors:

 92

7.3.1 Estimating probability of executing faulty statements:

 Due to high complexity and constraints involved in the software development

process, it is difficult to develop and produce software without faults. So, the aim of

this factor is to estimate the probability of executing statements that contain faults.

This study makes use of two metrics here, fault density and software size as follows,

probability of executing faulty statements= 1(1-fault density)^N. where N represents

software size measured in Lines of code.

 7.3.2 Probability of sensitization

Executing statements that contain faults may result in generating errors. The

probability of sensitization tends to measure, to what extent executed faults can

cause errors, errors represent deviations from an expected state to another erroneous

state. Both state redundancy and non-injectivity are contributors to this factor as

shown below:

Probability of sensitization= 1-2(Nj – initial state redundancy)

 = 1-2 (Nj- K(Ϭ))

7.3.3 Probability of error propagation

Errors can propagate to change the final state to be erroneous, non-injectivity metric

used to measure this,

Probability of error propagation = (1- 2) NJ – H(Ϭ))

Where NJ is non-injectivity, H(s) represents the entropy of inputs.

7.3.4 Probability of specification violation:

A program may fail to compute its intended function and yet still behave according

to the specification it is intended to satisfy [8]. This part tends to measure the

probability that the resulting erroneous final state is also violating the specification.

Non-determinacy metric is used here for this purpose.

Probability of specification violation (intolerance) = (1- 2) ND – H(Ϭ f)

 93

Where ND is non-determinacy, H(Ϭ f) represents the entropy of outputs. Figure7.2.

Shows data flow diagram for main factors of system failure

Figure 7.2: Flow diagram including factors of system failure

No
Yes

Yes

Yes

System Fail

No

Input

touches

faulty stat(s)

Does error

propagates to

other stat(s)

Fault causing

error

Does the

output violate

the

specifications?

Input

D

No

Reliable is Software

 94

7.4 Results

To predict failure probability as discussed in section (7.3) the product of the above

factors are measured. Table 7.6 shows failure probability for sample programs. The

probability of failure =P1 x P2 xP3 x P4.

TABLE 7.6: FAILURE PROBABILITY FOR SELECTED PROGRAMS

7.6 Using failure classification Model

To build a classification model data mining is used. The C5.0 algorithm was selected

to find a relationship between our four semantic metrics and P(failure), in the sense

that some of these metrics have more of an effect on system failure. The reason of

using C5.0 algorithm is its ability to classify a set of data based on training data and

generates a set of rules according to that. C5 is an algorithm developed by Ross

Quinlan and is used to generate a decision tree [99]. The decision trees generated by

C5.0 can be used for classification; therefore, it is often referred to as a statistical

classifier. C5.0 has a number of features such as:

 Speed - C5.0 is significantly faster than other algorithms such as C4.5

 Support for boosting - Boosting improves the trees and gives them more

accuracy.

 Weighting - C5.0 allows weighting different cases and misclassification types.

7.6.1 Building classification model

To build a classification model, data minor software was used - clementine software.

The sample data that was fed to the model consisted of 7 programs where all factors

P. name P(ex. Faults) P(sensitization) P(propagation) P(violation) P(Failure)

Tcas 0.8243 1 1 0.9 0.7416

Schedule2 0.312 1 1 0.9 0.2808

Schedule 0.663 1 0.9 0.99 0.59073

Replace 0.432 1 1 0.9 0.3888

Space 1 1 1 1 1

Sorting 0.635 1 1 1 0.635
Totinfo 0.9966 1 1 0.594 0.59198

http://en.wikipedia.org/wiki/Ross_Quinlan
http://en.wikipedia.org/wiki/Ross_Quinlan
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/C4.5_algorithm#cite_note-1
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Boosting_(meta-algorithm)

 95

were measured and P(failure) was further estimated. In order for the model to be

accurate the sample was increased by duplicating the existing programs data. The

size of the total sample was 24 records, 5 from the total are used as training sample

and the rest are testing data fed to perform classification. Each record from the

training set was further classified manually to either high or low, the study suggested

that the probability of failure will be high if it is more than 0.5 and low if it less.

Figure 7.3, shows the classification model.

Figure 7.3: Classifiction Model

7.6.2 Classification result rules

After applying the classification model, 2 classification rules were detected by a

classifier, rules confirmed that there was a relationship between failure probability

and both non-determinacy and functional redundancy. So we can predict failure

probability class (bigger than 0.5 or less than that) according to these rules. The rules

are shown below:

 96

1- If functional redundancy <= 11.5 and non-determinacy <=0 Failure

probability will be low(less than 0.5).

2- If functional redundancy > 11.5 and non-determinacy <=0 Failure

probability will be high (bigger than 0.5)

3- If Non-determinacy >0 , failure probability will be high.

Figure 7.4: Classication Rules

Based on these rules we can predict the failure probability for any new program

where metrics are calculated. Test are done on the sample program printtokins2

which appeared according to these rules to be in high class (failure probability is

greater than 0.5) and after real estimation of failure probability the result confirms

the observation (P (failure) = 0.98).

7.6.3 Classification Model Limitations:

Building a classification model requires a high, accurate, complete data set for both

training and testing purposes. The main difficulty that faced the prediction model is

 97

the lack of software specification required to estimate non – determinacy and

consequently the estimation of the fourth factor that affects failure probability.

7.7 Chapter Summary

This chapter inspects the validation process along with results. Validation is

divided into two parts: empirical and analytical research. Empirical research was

used to find correlation between semantic and syntactic metrics, where analytical

used to estimate probability of failure statistically based on the main factors

derived from the software failure lifecycle.

 98

8.1 Conclusion

At a time when software systems grow increasingly large and complex, it becomes

increasingly tenuous/unrealistic to obsess about fault avoidance and fault removal

[8].

At the very least, the goal of fault-free software, by whatever means it is achieved,

was to be combined with the goal of ensuring that the program is adequately

equipped to prevent residual faults from causing failure. The study presented a new

set of semantic metrics based on entropy to measure program ability to be fault

tolerant with respect to its specification. The proposed metrics are: state redundancy,

functional redundancy, non-injectivity and non-determinacy metric. Both empirical

and analytical validations were done to assess their fitness to the goal. Empirical

validation was used to find correlation between proposed metrics and other syntactic

metrics such as: McCabe, Halstead and Fault density. Analytical validation used

measure probability of failure by using semantic metrics. The reached results

confirmed the ability of these metrics to predict software reliability. Finally, data

mining based classification model were done to find out which of the measured

metrics has more effect on measuring probability of failure. The main obstacle here

is the number of programs that are used as a input sample to classification model.

The reason is that lack of available documented programs specifications that can be

used to measure non-determinacy metric. Results of this section show that 2 metrics

could be used to give indicator to probability of failure, metrics are: function

redundancy and non-determinacy.

8.2 Future Work

A number of extensions to the current work could be done in future work:

1. Consolidate the analytical validation by applying estimation techniques to

more sample product, for what we have:

 Source code.

 Usable specifications.

 99

 An estimated reliability.

2. Consolidate the empirical validation by extending/ broadening the software

for more samples.

3. Explore the possibility of automating the calculation of some semantic

metrics by analyzing source code.

4. Study the concept of bandwidth of assertions related to our semantic metrics.

 100

References

[1] Linda Westfall,12Steps to Useful Software Metrics, - 2005 available online at

floors-utlet.com/specs/spec-t-1-20111117171200.pdf. Access date: 28/3/2014.

[2] N Leveson-2009, software metrics available online:

www.core.org.cn/NR/rdonlyres/.../cnotes7. pdf access date 1/4/2014.

[3] Fenton, Norman, and James Bieman. Software metrics: a rigorous and practical

approach. CRC Press, 2014.

[4] Yu, Sheng, and Shijie Zhou. "A survey on metric of software complexity". Information

Management and Engineering (ICIME), 2010 the 2nd IEEE International Conference on.

IEEE, 2010.

[5] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lips Software Metrics

SEI Curriculum Module, SEI-CM-12-1.1, December 1988.

[6] Fenton, Norman E., and Martin Neil. "A critique of software defect prediction

models." Software Engineering, IEEE Transactions on 25.5 (1999): 675-689.

[7] Leveson, Nancy. "A new accident model for engineering safer systems."Safety

science 42.4 (2004): 237-270.

[8] Mili, A., A. Jaoua, M. Frias, and Rasha Gaffer Mohamed Helali. "Semantic

metrics for software products." Innovations in Systems and Software

Engineering 10, no. 3 (2014): 203-217.

[9] Rawat, Mrinal Singh, Arpita Mittal, and Sanjay Kumar Dubey. "Survey on

impact of software metrics on software quality". (IJACSA) International Journal

of Advanced Computer Science and Applications 3.1 (2012).

[10] A Whitepaper on Metrics, Andreas Rau, Steinbeis Transferzentrum

Softwaretechnik, 1998, 1999, 2001.Last Change: 2001-08-06.

[11] Boehm, Barry W., Brown, J. R, and Lipow, M.: Quantitative evaluation of

software quality, International Conference on Software Engineering,

Proceedings of the 2nd international conference on Software engineering, 1976.

[12] Kitchenham, B. and Pfleeger, S. L., "Software quality: the elusive target

[special issues section]", IEEE Software, no. 1, pp. 12-21, 1996.

[13] Hyatt, Lawrence E. and Rosenberg, Linda H.: A Software Quality Model and

Metrics for Identifying Project Risks and Assessing Software Quality, European

http://floors-outlet.com/specs/spec-t-1-20111117171200.pdf
http://www.core.org.cn/NR/rdonlyres/.../cnotes7.%20pdf

 101

Space Agency Software Assurance Symposium and the 8th Annual Software

Technology Conference, 1996.

[14] Software Quality Models and Philosophies, online at:

https://www.bth.se/com/besq.nsf/(WebFiles)/CF1C3230DB425EDCC12570690

0317C44/$FILE/chapter_1.pdf.

[15] Adams, E, “optimizing preventive service of software products,” IBM journal

of research and development,28(1),pp. 2-14, 1984.

[16] Pressman, R.S, Software engineering: A practitioner Approach , 3rd edn,

McGraw-Hill, New York 1992.

[17] Jelinski, Z. and Moranda,PB., “ Software reliability research,” in statistical

computer performance evaluation (ed.

[18] Miller D.R, “exponential order statistic models of software reliability growth”,

IEEE transactions on software engineering, SE-12(1),PP.12-24.1986.

[19] Shanmugam, Latha, and Lilly Florence. "A comparison of parameter best

estimation method for software reliability models." International Journal of

Software Engineering & Applications 3.5 (2012): 91-102.

[20] Albrecht, A.J. and J.E. Gaffney, Jr. Software Function, Source Lines of Code

and Development Effort Prediction: A Software Science Validation, IEEE

Transactions on Software Engineering SE-9,6 p639-648, Nov. 1983, A

comparison between FP, software science and LOC with a detailed appendix

on applying FP.

[21] Halstead, M.H. Elements of Software Science, New York: Elsevier North

Holland, 1977, the original book by Halstead on his software science.

[22] A. Rau, Steinbeis Transferzentrum Softwaretechnik,. A Whitepaper on Metrics.

1998, 1999, 2001. avilable online at:

http://www.it.fhtesslingen.de/~rau/forschung/metrics.htm.

[23] Thomas J McCabe, “A Complexity Measure”, IEEE Transactions On Software

Engineering, IEEE, Washington, Oct 1976, pp. 308-320.

[24] Morell, Larry J., and Jeffrey M. Voas. "A framework for defining semantic

metrics" Journal of Systems and Software 20.3 (1993): 245-251.

https://www.bth.se/com/besq.nsf/(WebFiles)/CF1C3230DB425EDCC125706900317C44/$FILE/chapter_1.pdf
https://www.bth.se/com/besq.nsf/(WebFiles)/CF1C3230DB425EDCC125706900317C44/$FILE/chapter_1.pdf
http://www.it.fhtesslingen.de/~rau/forschung/metrics.htm

 102

[25] Adrian COSTEA1 PhD, ON MEASURING SOFTWARE COMPLEXITY.,

University Lecturer Academy of Economic Studies, Bucharest, Romania journal

of applied quantive methods. June 2007

[26] Torn, A., T. Andersson and K. Enholm, 1999. “A complexity metrics model

for software”. South Afr. Comput. J., 24: 40-48.

[27] Victor R. Basili, and Barry T. Perricone, “Software errors and complexity: an

empirical investigation”, Communications of the ACM, ACM, New York, Jan.

1984, pp. 42 – 52

[28] Tu Honglei ; Coll. of Inf. Technol., Beijing Normal Univ., Zhuhai, China ; Sun Wei ;

Zhang Yanan, The Research on Software Metrics and Software Complexity Metrics,

Computer Science-Technology and Applications, 2009. IFCSTA '09. International

Forum on (Volume:1). 25-27 Dec. 2009 , 131 - 136 .

[29] J. Li, J. Chen, and P. Chen, “Modeling web application architecture with UML,”

in Proceedings of Technology of Object-Oriented Languages and Systems,

2000, pp. 265-274.

[30] E. Ghosheh, J. Qaddour, M. Kuofie, and S. Black, “A comparative analysis of

maintainability approaches for web applications,” in Proceedings of IEEE

International Conference on Computer Systems and Applications, 2006, pp.

1155-1158.

[31] Y. Zhang, H. Zhu, and S. Greenwood, “Website complexity metrics for

measuring navigability,” in Proceedings of International Conference on

Quality Software, 2004, pp. 172-179.

[32] E. Mendes, N. Mosley, and S. Counsell, “Comparison of web size measures for

predicting

web design and authoring effort,” IEEE Proceedings Software, Vol. 149, 2002,

pp. 86-92.

[33] E. Mendes, S. Counsell, and N. Mosley, “Web metrics − Estimating design and

authoring

effort,” IEEE Multimedia, Vol. 8, 2001, pp. 50-57.

[34] W. Jung, E. Lee, K. Kim, and C. Wu, “A complexity metric for web

applications based on the entropy theory,” in Proceedings of Asia-Pacific

Software Engineering Conference, 2008, pp. 511-518.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tu%20Honglei.QT.&searchWithin=p_Author_Ids:38109479000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sun%20Wei.QT.&searchWithin=p_Author_Ids:37596972500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Yanan.QT.&searchWithin=p_Author_Ids:37283677500&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5384535
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5384535

 103

[35] W. A. Barrett and J. C. Couch "Compiler construction: Theory and

Practice", Science Research Associates, Inc., 1979.

[36] N. F. Schneidewind and H. M. Hoffmann "An Experiment in Software Error

Data Collection and Analysis", IEEE Trans. on Software Eng., vol. SE-5, no.

3, pp.256 -286 1979.

[37] M. Lipow "Number of faults per line of code", IEEE Trans. on Software, vol.

8, 1982

[38] Giger, E. ; Pinzger, M. ; Gall, H.C., Can we predict types of code changes? An

empirical analysis. Mining Software Repositories (MSR), 2012 9th IEEE

Working Conference. June 2012, Zurich,217-226

[39] Zeeshan Ahmed and Saman Majeed, Measurement, Analysis with Visualization

for Better Reliability

[40] Software Quality Analysis System : a New Approach, Nadine MESKENS. 0-

7803-2775-6/96 $4.00 0 1996 IEEE

[41] H. Basson and J.-C. Derniame "Towards an Evolutive Kernel of Measurements on Ada

Sources Developed on an Integrated Software Engineering Environment", ACM

Proceedings of 7th Washington Ada Symposium, 1990.

[42] H. Basson and J.-C. Derniame "Quality Tree Extensions and Partial

Instantiation for Ada Objects", ACM Proceedings of 8th Washington Ada

Symposium, 199.

[43] Je_rey M. Voas, Keith W. Miller, Je_ery E. Payne, Designing Programs That

Are Less Likely To Hide Faults_1993. Volume 20, Number 1, January 1993.

[44] M. J. Ordo˜nez and H. M. Haddad. The state of metrics in software industry. In

Proc. of the Fifth International Conference on Information Technology: New

Generations, (ITNG 2008), pages 453–458, LasVegas, Nevada, USA, Apr. 7-8

2008. IEEE Computer Society.

[45] Mertik, M., Lenic, M., Stiglic, G., and Kokol, P, “Estimating Software Quality

with Advanced Data Mining Techniques”, International Conference on

Software Engineering Advances, IEEE, Tahiti, Oct. 2006, pp. 19-19

[46] Hartson, H. Rex and Smith, Eric C. and Henry, Sallie M. and Selig, Calvin

(1987) Design Metrics Which Predict Source Code Quality. Technical Report

TR-87-32 ...

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Giger,%20E..QT.&searchWithin=p_Author_Ids:37688698800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pinzger,%20M..QT.&searchWithin=p_Author_Ids:37265107400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gall,%20H.C..QT.&searchWithin=p_Author_Ids:37266441700&newsearch=true

 104

[47] T.M. Khoshgoftaar and N. Seliya, “Fault Prediction Modeling for Software Quality

Estimation: Comparing Commonly Used Techniques,” Empirical Software Eng., vol. 8,

no. 3, pp. 255-283, 2003.

[48] Salwa K, A Metrics-Based Data Mining Approach for Software Clone

Detection. Pages 35-41 , COMPSAC '12 Proceedings of the 2012 IEEE 36th

Annual Computer Software and Applications Conference IEEE Computer

Society Washington, DC, USA ©2012.

[49] Menzies, T., Greenwald, J., and Frank, A., “Data Mining Static Code Attributes

to Learn Defect Predictors”, IEEE Transactions on Software Engineering,

IEEE, San Francisco, Jan. 2007, pp. 2-13.

[50] W. Tang and T.M. Khoshgoftaar, “Noise Identification with the KMeans

Algorithm,” Proc. Int’l Conf. Tools with Artificial Intelligence (ICTAI), pp. 373-

378, 2004.

[51] Larry J. Morel, Jeffrey M. Voas, A framework for defining semantic metrics.

[52] Gall, C. S. Inf. Technol. & Syst. Center, Univ. of Alabama in Huntsville, Huntsville,

AL Lukins, Stacy K.; Etzkorn, Letha H.; Gholston, Sampson; Farrington, Phillip A.;

Utley, Dawn R.; Fortune, J.; Virani, Shamsnaz, Semantic software metrics computed

from natural language design specification. Volume: 2, Issue: 1 Page(s): 17 – 26.2008.

[53] Voas, J. M. and K. W. Miller (1993). Semantic metrics for software testability.

Journal of Systems and Software 20(3), 207–216

[54] Semantic Metrics, Conceptual Metrics, and Ontology Metrics: Letha H. Etzkorn

[55] Bo Hu, Yannis Kalfoglou, Harith Alani, David Dupplaw, Paul Lewis, Nigel

Shadbolt Managing Knowledge in a World of Networks Lecture Notes in

Computer ScienceVolume 4248, 2006, pp 166-181. Semantic Metrics.

[56] Zschaler, S.: Towards a Semantic Framework for Non-Functional Specifications of

Component-Based Systems. In: IEEE (ed.) Proceedings of the 30th EUROMICRO

Conference 2004, Rennes, France, 31 August - 3 September 2004, pp. 92–99. IEEE

Computer Society Press, Los Alamitos (2004).

[57] Bilong Wen, Li Zhang, An arithmetic of mapping enterprise process metrics to

information model based on semantics, April 2010, Volume 15, Issue 2, pp 121-

126

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gall,%20C.%20S..QT.&searchWithin=p_Author_Ids:38133791700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lukins,%20Stacy%20K..QT.&searchWithin=p_Author_Ids:37871289800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Etzkorn,%20Letha%20H..QT.&searchWithin=p_Author_Ids:37295177000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gholston,%20Sampson.QT.&searchWithin=p_Author_Ids:37295176800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Farrington,%20Phillip%20A..QT.&searchWithin=p_Author_Ids:37355469600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Utley,%20Dawn%20R..QT.&searchWithin=p_Author_Ids:38030452000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fortune,%20J..QT.&searchWithin=p_Author_Ids:38115202600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Virani,%20Shamsnaz.QT.&searchWithin=p_Author_Ids:37947793900&newsearch=true
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4460888
http://link.springer.com/search?facet-author=%22Bo+Hu%22
http://link.springer.com/search?facet-author=%22Yannis+Kalfoglou%22
http://link.springer.com/search?facet-author=%22Harith+Alani%22
http://link.springer.com/search?facet-author=%22David+Dupplaw%22
http://link.springer.com/search?facet-author=%22Paul+Lewis%22
http://link.springer.com/search?facet-author=%22Nigel+Shadbolt%22
http://link.springer.com/search?facet-author=%22Nigel+Shadbolt%22
http://link.springer.com/book/10.1007/11891451
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/search?facet-author=%22Bilong+Wen%22
http://link.springer.com/search?facet-author=%22Li+Zhang%22
http://link.springer.com/journal/11859/15/2/page/1

 105

[58] Gabriele Bavota · Andrea De Lucia · Andrian Marcus · Rocco Oliveto, Using

structural and semantic measures to improve software modularization, published

online: 14 September 2012. © Springer Science+Business Media, LLC 2012

[59] Maletic JI, Marcus A (2001) Supporting program comprehension using

semantic and structural information. In: Proceedings of 23rd international

conference on software engineering. IEEE CS Press, Toronto, Ontario, Canada,

pp 103–112

[60] Giger, Emanuel, Martin Pinzger, and Harald C. Gall. "Comparing fine-grained

source code changes and code churn for bug prediction." Proceedings of the 8th

Working Conference on Mining Software Repositories. ACM, 2011.

[61] M. M. Lehman and L. A. Belady, Eds., Program evolution: Processes of

software change. San Diego, CA, USA: Academic Press Professional, Inc.,

1985.

[62] M. W. Godfrey and Q. Tu, "Evolution in Open Source software: A case study,"

in Proceedings of the International Conference on Software Maintenance, San

Jose, California, 2000, pp. 131-142.

[63] Selim Kebir, Abdelhak-Djamel Seriai, Sylvain Chardigny, Allaoua Chaoui,

Quality-Centric Approach for Software Component Identification from Object-

Oriented Code, WICSA-ECSA '12 Proceedings of the 2012 Joint Working

IEEE/IFIP Conference on Software Architecture and European Conference on

Software Architecture. Pages 181-190

[64] S. Allier, H. A. Sahraoui, S. Sadou, and S. Vaucher, "Restructuring object-

oriented applications into component-oriented applications by using consistency

with execution traces," in Proceedings of the 13th international conference on

Component-Based Software Engineering, ser. CBSE'10. Berlin, Heidelberg:

Springer-Verlag, 2010, pp. 216-231.

[65] D. Birkmeier and S. Overhage, "On component identification approaches -

classification, state of the art, and comparison," in Proceedings of the 12th

International Symposium on Component-Based Software Engineering, ser.

CBSE '09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 1-18.

[66] S. D. Kim and S. H. Chang, "A systematic method to identify software

components," in Proceedings of the 11th Asia-Pacific Software Engineering

http://dl.acm.org/author_page.cfm?id=81508704631&coll=DL&dl=ACM&trk=0&cfid=379419726&cftoken=65833852
http://dl.acm.org/author_page.cfm?id=81100085169&coll=DL&dl=ACM&trk=0&cfid=379419726&cftoken=65833852
http://dl.acm.org/author_page.cfm?id=81365593172&coll=DL&dl=ACM&trk=0&cfid=379419726&cftoken=65833852
http://dl.acm.org/author_page.cfm?id=81418599851&coll=DL&dl=ACM&trk=0&cfid=379419726&cftoken=65833852

 106

Conference, ser. APSEC '04. Washington, DC, USA: IEEE Computer Society,

2004, pp. 538-545. [Online]. Available:

http://dx.doi.org/10.1109/APSEC.2004.11

[67] S. K. Mishra, D. S. Kushwaha, and A. K. Misra, "Creating reusable software

component from object-oriented legacy system through reverse engineering,"

Journal of Object Technology, vol. 8, no. 5, pp. 133-152, 2009.

 [68] D. Melamed, "Measuring Semantic Entropy," Proceedings of the SIGLEX

Workshop on Tagging Text with Lexical Semantics, Washington, DC, 1997.

[69] P. F. Brown, S. Della Pietra, V. Della Pietra, R. Mercer, "Word Sense

Disarnbiguation using Statistical Methods", Proceedings of the ~9th Annual

Meeting of the Association for Computational Linguistics, Berkeley, Ca., 1991.

[70] D. Yarowsky, "One Sense Per Collocation," DARPA Workshop on Human

Language Technology, Princeton, N J, 1993.

[71] Abd-El-Hafiz, Salwa K. An information theory approach to studying software

evolution [J]. AEJ - Alexandria Engineering Journal, v 43, n 2, March, 2004, p

275-284.

[72] Using the Conceptual Cohesion of Classes for Fault Prediction in Object-

Oriented Systems Software Engineering, IEEE Transactions on Date of

Publication: March-April 2008, Marcus, Andrian. Wayne State Univ., Detroit.

Poshyvanyk, Denys; Ferenc, Rudolf

Volume: 34, Issue: 2 . Page(s): 287 – 300.

[73] Chidamber, Shyam and Chris Kemerer, "A Metrics Suite for Object-Oriented Design,"

IEEE Transactions on Software Engineering, pp. 476- 492, June 1994.

[74] B. Neate, W. Irwin, and N. Churcher. Coderank: A new family of software

metrics. In J. Han and M. Staples, editors, ASWEC2006: Australian Software

Engineering Conference, pages 369-378, Sydney, Apr. 2006. IEEE.

[75] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, and S.

Kusumoto. Component rank: Relative significance rank for software component

search. In Proc. of the 25th International Conference on Software Engineering,

(ICSE 2003), pages 14–24, Portland, Oregon, USA, May 3-10 2003. IEEE

Computer Society.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Marcus,%20Andrian.QT.&searchWithin=p_Author_Ids:38267412600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Poshyvanyk,%20Denys.QT.&searchWithin=p_Author_Ids:37295294800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ferenc,%20Rudolf.QT.&searchWithin=p_Author_Ids:37264904100&newsearch=true
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4476751

 107

[76] Zhou Y., Research on Software Measurement [Ph.D. Thesis], Department of

Computer Science and Engineering, Southeast University, Nanjing, P.R. of

Chaina, 2002.

[77] Yi. Shin ,K. Kim and C. Wu, “Complexity measures for object-oriented

program based on the entropy,” in Proceedings of Asia-Pacific Software

Engineering Conference, 1995, pp. 127-136.

[78] M. Lorenz and J. Kidd. Object-oriented software metrics: a practical guide.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[79] Y Gil, Maayan Goldstein, Dany Moshkovich, How Much Information Do

Software Metrics Contain, PLATEAU '11 Proceedings of the 3rd ACM

SIGPLAN workshop on Evaluation and usability of programming languages

and tools, Pages 57-64 ACM New York, NY, USA ©2011

[80] G. Lajios. Software metrics suites for project landscapes. In Proc. Of the 2009

European Conference on Software Maintenance and Reengineering., volume 0,

pages 317–318, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[81] E. B. Allen, “Measuring graph abstractions of software: An information-theory

approach,”

in Proceedings of IEEE Symposium on Software Metrics, 2002, pp. 182- 193.

[82] Yi T. and Wu F., Empirical Analysis of Entropy Distance Metric for UML

ClassDiagrams, ACM SIGSOFT Software Engineering Notes, 2004.

[83] Zhou Y. and Xu B., Dependence structure analysis-based approach for

measuring importance of classes, Journal of Southeast University (Natural

Science Edition), 2008; 38(3): 380-384.

[84] Matinee Kiewkanya* and Pornsiri Muenchaisri, Constructing Modifiability

Metrics by Considering Different Relationships. 2011, Chiang Mai J. Sci. 2011;

38 (Special Issue) : 82-98 www.science.cmu.ac.th/journal-science/josci.html

Contributed Paper

[85] Kang D., Xu B., Lu J. and Chu W.C., A Complexity Measure for Ontology

Based on UML. Proceedings of the 10th IEEE International Workshop on

Future Trends of Distrubuted Computing Systems, Suzhou, Chaina, May, 2004;

222-228.

http://splashcon.org/
http://www.acm.org/publications
http://www.science.cmu.ac.th/journal-science/josci.html

 108

[86] Panchenko, O. ; Hasso Plattner Inst. for Software Syst. Eng., Potsdam,

Germany ; Mueller, S.H. ; Zeier, A. Measuring the quality of interfaces using

source code entropy, Industrial Engineering and Engineering Management,

2009. IE&EM '09. 16th International Conference, Oct. 2009, Page(s): 1108 -

1111

 [87] N. Chapin. “An entropy metric for software maintainability”. In Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences,

Software Track, pages 522{523. IEEE, October 1989.

[88] L. H. Etzkorn, S. Gholston, and W. E. Hughes, Jr. “Semantic entropy metric.

Journal of Software Maintenance: Research and Practice”, 14(4):293

[89] Research Methodology, online at:

http://www.is.cityu.edu.hk/staff/isrobert/phd/ch3.pdf.

[90] Northrop L, Feiler P, Gabriel RP, Goodenough J, Linger R, Longstaff T,

Kazman R, KleinM, Schmidt D, Sullivan K,Wallnau K (2006) Ultra large scale

systems: the software challenge of the future. Software Engineering Institute,

July 2006.

[91] Patterson D, Fox A (2005) Recovery oriented computing—an overview.

Technical report, University of California at Berkeley.

http://roc.cs.berkeley.edu/roc_overview.html.

[92] Sullivan, Mark, and Ram Chillarege. "Software defects and their impact on

system availability: A study of field failures in operating systems." FTCS. 1991.

[93] Csiszar I,Koerner J (2011) Information theory: coding theorems for discrete

memory less systems. Cambridge University Press, Cambridge,UK

[94] Brink C, Kahl W, Schmidt G (1997) Relational mathematics in computer

science. Advances in computer science. Springer, Berlin

[95] Mathematics for Computer Science. http://www.pling.org.uk/cs/mcs.html

[96] Software-artifact Infrastructure Repository, online:

http://sir.unl.edu/portal/bios/tcas.php. Access date: 2/2014.

[97] Lindley, D.V. (1987). "Regression and correlation analysis," New Palgrave: A

Dictionary of Economics, v. 4, pp. 120–23.

[98] Madeira, Henrique, João Durães, and Marco Vieira. "Emulation of software

faults: Representativeness and usefulness." Dependable Computing. Springer Berlin

Heidelberg, 2003. 137-159.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Panchenko,%20O..QT.&searchWithin=p_Author_Ids:37314356800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mueller,%20S.H..QT.&searchWithin=p_Author_Ids:37679439900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zeier,%20A..QT.&searchWithin=p_Author_Ids:37320937600&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5339384
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5339384
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5339384
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5339384
http://www.is.cityu.edu.hk/staff/isrobert/phd/ch3.pdf
http://sir.unl.edu/portal/bios/tcas.php
https://en.wikipedia.org/wiki/D.V._Lindley
https://en.wikipedia.org/wiki/New_Palgrave:_A_Dictionary_of_Economics
https://en.wikipedia.org/wiki/New_Palgrave:_A_Dictionary_of_Economics

 109

[99] Rokach, Lior; Maimon, O. (2008). Data mining with decision trees: theory and

applications. World Scientific Pub Co Inc. ISBN 978-9812771711.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-9812771711

	Computed Metrics are derived from primitive metrics such as:
	 Complexity: metrics concerns with measuring software complexity e.g FP.

	7.2.3 Regression Results:
	[52] Gall, C. S. Inf. Technol. & Syst. Center, Univ. of Alabama in Huntsville, Huntsville, AL Lukins, Stacy K.; Etzkorn, Letha H.; Gholston, Sampson; Farrington, Phillip A.; Utley, Dawn R.; Fortune, J.; Virani, Shamsnaz, Semantic software metrics com...
	[95] Mathematics for Computer Science. http://www.pling.org.uk/cs/mcs.html
	[96] Software-artifact Infrastructure Repository, online: http://sir.unl.edu/portal/bios/tcas.php. Access date: 2/2014.

