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1.1   Introduction 
 

Measurements are used in everyday life [1]. Measurements are used extensively in 

most areas of production and manufacturing to estimate costs, calibrate equipment, 

assess quality, and monitor inventories. Science and engineering disciplines depend 

on the rigor that measurements provide, but what does measurement really mean? 

[2]. According to Fenton, "measurement is the process by which numbers or 

symbols are assigned to attributes of entities in the real world in such a way as to 

describe them according to clearly defined rules" [3]. In the context of software, 

measurement is important to improve Software quality which becomes a critical 

issue in current software evolution. The vast amount of software that has swept the 

markets in addition to the presence of a lot of software that manages delicate and 

dangerous tasks, making the quality of these systems important in specifying the 

continuation of business. 

The 2009 Standish Group CHAOS Report [4] states that 24% of all software 

projects fail. This means they are cancelled prior to completion or delivered and 

never used. One of the contributing factors is that modern software is almost never 

completely developed from scratch, but is rather extended and modified using 

existing code and often includes third party source code. This can lead to poor 

overall maintainability, difficult extensibility and high complexity. To better 

understand the impact of code changes and track complexity issues as well as code 

quality software metrics are frequently used in the software development life cycle. 

“Software metrics provide measurement of the software product attributes and the 

process of software production” [4]. 

With an increasing complexity in information and software systems design as well 

as the emergence of new software design and development paradigms, the focus of 

software measurement widened to include measurement during the earlier stages of 

the software development lifecycle, not only at code level. Design level metrics can 

in theory be obtained much earlier in the development of a project thus providing 

information which can be used for many purposes [5].  
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1.2 Problem Statement and its significance  
 

The software engineering field doesn’t have a unified set of metrics that the 

community has agreed to use; instead there is a set of metrics that advised to use 

them [6]. Most large companies dedicated to create their own standards of software 

measurement; so the way metrics are applied usually varies from one company to 

another.  

Current used metrics were defined and calculated using only syntactic aspects of 

software – using only aspects related to syntax and format of the code – such as 

LOC, complexity etc.  All syntactically based metrics have the problem of mapping 

between values calculated by metrics and some quality attributes such as reliability, 

cohesion… etc. are arguable. 

A significant drawback of syntactic metrics is that different structural aspects of 

code can result in different metrics values, even when the code is performing the 

same task. Syntactic metrics are not always accurate descriptors of quality. Metrics 

that provide a better mapping between software and its associated quality factors 

have the potential to be used in improving software quality, including quality of 

newly developed software as well as currently maintained software. Such metrics 

can help in identification of good reusable software components.    

On the other hand, desirable quality attributes like reliability and maintainability 

cannot be measured until some operational version of the code is available [3]. In 

addition to that, there is a need to integrate some kind of measure to the semantic 

features of software which affects quality attributes.  Yet we wish to be able to 

predict which part of the software is less reliable, more difficult to test, or require 

more maintenance than others, even before the system is completed.  

 

1.3 Research Question/Hypothesis/Philosophy 
 

1.3.1 Research Question 
 

Two broad questions will be addressed: 

        1- How to use semantic metrics to improve measurement of software 

reliability? 
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        2- How semantic metrics can be computed from a static analysis of the source 

code? 

 The answer for this question leads to another sub questions such as the following: 

1- What is the measurement? 

2- How to measure reliability in software. 

3- What is most widely used measurement metrics that can be used? 

4- What are the problems of traditional used metrics? 

5-  What is the main factors affecting software reliability? And how to measure 

it? 

6- What kind of semantic metrics required achieving such software quality 

attribute “reliability”?  

7- How to Linking semantic metrics to reliability or other quality attributes? 

8- How to compute semantic metrics by static analysis? 

 

1.3.2 Research Hypothesis 
 

Software metrics can be used to examine the quality of software.  It gives developers 

or designers a picture about the expected efficiency of running code. The use of 

semantic metrics has made a big contribution to the field of software quality 

measurement. The following is the research Hypothesis: 

 Semantic metrics can be used to measure software reliability.  

 Semantic metrics can be used to predict fault tolerance without affecting 

by code structure or programming language. 

 Using metrics in different stages of software development may improve 

software quality. 

 Using of semantic measurement is much better than traditional used 

metrics (synthetic).  

 

 

 

 

 



 5 

1.4 Research Philosophy  
 

The philosophy of suggested metrics is based on the concept that different 

programming languages and structures can result in different measurement values 

for some quality attributes.  

With an increasing complexity and quality requirements of information and software 

systems designs as well as the emergence of new software design and development 

paradigms, the role of software measurement has increased in recent years [7]. 

Measurement techniques widened to include measurement during the earlier stages 

of the software development lifecycle, not only at code level. Using of software 

metrics becomes an important issue to be discussed. 

 

1.5  Research objective 
 

  The main research objective is to: 

     Define and construct semantic metrics that are contributing to the area of 

software reliability measurements and monitor/control product reliability. This can 

be achieved by the following Specific objectives: 

1- Define set of metrics that examine the software semantically.  

2- Correlate metrics to reliability attributes. 

3- Using semantic metrics to estimate relevant quality attributes such as 

reliability, fault tolerance, and the like. 

4- Validate the proposed metrics using empirical observations. 

5- Use the metrics to build an analytical model of software reliability 

1.6 Open research areas 

The software metrics field is an ongoing research area. Although, there is a number 

of software metrics that are widely used to test some software attributes, still the 

area is young and requires much research. There are still open research issues that 

need to be investigated such as: 
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1- Traditional metrics (syntactic metrics) doesn’t represent an accurate measure 

because it calculated only by using syntactic aspects of software. Therefore, 

different programming language or even different program structure of same 

function may result in different measurement values. 

2- Unified set of metric: there is a need for standardized set of metrics in which 

there is ability to assess software attributes in different phases by integrating 

both semantic and syntactic metrics. Research in this direction is very little and 

still no optimum results have been reached. 

3- Semantic metrics: using these kinds of metrics can help to overcome the 

limitation of syntactic metrics. But still not much work has been done in this 

area and no optimum solution has been found yet. two research directions: 

 Linking semantic metrics to meaningful software quality attributes. 

 Computing semantic metrics from source code and system specification. 

Semantic metrics is a new trend in software measurement. Most studies in this area 

agreed upon evaluating software in early stages in its development life cycle are 

better for quality assurance. Since many studies have started suggesting metrics to 

work in the design phase or even after implementation and a few of them attempt to 

extract knowledge from system requirements. It is worth mentioning that not much 

research has been done in semantic metrics, instead most of the focus is on semantic 

web and ontology.  

  

 1.7 Scope: 
 

The study represents an attempt to contribute to the field of software metrics. It 

considers semantic metrics that help to improve the monitoring of software quality 

by measuring some quality features. Four semantic metrics were suggested. During 

the research process metrics will be defined and evaluated.  

In the study, only semantic metrics will be considered, In addition to their allied 

features, advantages and drawbacks of applying them on software products and 

using these metrics to give an indication of reliability. Semantic metrics have a 

broader scope, because they abstract away syntactic details to focus on program 
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states and program functions, and can be applied uniformly across heterogeneous 

software systems. 

 

1.8 Proposed Solution  
 

The study is concentrated on defining semantic metrics which reflects what 

functions the software product defines, rather than how these functions are 

represented. Our proposed solution is an attempt to contribute to this area.  In 

particular, the study considered the following metrics [8], which are defined using 

information theory functions: 

 State redundancy:  This metric reflects the extent to which a state is redundant, 

i.e. includes relationships between its various variables; programs which carry 

much state redundancy are more likely to be able to detect erroneous states, 

when these arise. 

 Functional redundancy.  This metric reflects the extent to which the function of 

the program is redundant, i.e. its results is represented in variables that have 

many relationships between them; programs whose functions are redundant are 

more likely to be able to detect errors in the results of their function execution, 

when these arise. 

 Maskability.  This metric reflects the extent to which the function of a program 

maps different inputs into common outputs; programs that have high maskability 

are more likely to map erroneous states into correct final states, thereby avoiding 

failure and making error recovery unnecessary. 

 Non determinacy.  Whereas the previous metrics dealt with the program (more 

specifically its semantics), this metric deals with the specification of the program, 

and represents the property that the same input may be mapped to a wide range 

of possible correct output;  specifications that are nondeterministic are more 

likely to tolerate programs that produce erroneous final states.   

Together, these four metrics reflect the ability of a program to be correct with 

respect to its specification; unlike syntactic software metrics, they depend on what 

function the program computes and what specification the program is intended to 

satisfy, rather what form the program takes. 
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1.9 Research Methodology 
 

To begin with, a review to the current state of art is required to capture knowledge 

about kinds, classification and uses of different software metrics.  Based on findings 

from the literature review a new set of metrics are suggested to overcome the 

limitations of existing tools. Suggested metrics are modeled and evaluated against 

the research objectives. The evaluation process is iterative each time research 

objectives are re-examined   to ensure that work is going in the right direction.  

 

 

 

  

  

 

 

Figure 1.1: The Research Process will be followed in this study  
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1.10 Thesis organization: 
 

The thesis chapters are organized as follow: 

Chapter one: presents a general introduction including the problem statement, 

research objectives, question, hypothesis and the proposed solution. Chapter two: 

sheds light on the major developments in the field of software metrics. Chapter three, 

explore what has previously been done in the area, chapter four, introduces the 

following methodology. Chapter five and six: cover used reliability mechanisms in 

general, in addition to the proposed semantic metrics. Chapter seven presents the 

validation process, results and discussion. Finally, the research conclusion and future 

work are covered in chapter eight. 
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2.1 Introduction  
 
Measurement is the process of assigning numbers or symbols to attributes of entities 

in the real world in such a way as to describe them according to clearly defined 

rules. [9] In general Measurement has two broad uses: for assessment e.g. 

Monitoring project progress to facilitate corrective decisions if required, and 

prediction such as planning certain project resources [9].  When using measurement 

for prediction, the value of an attribute is given by a mathematical model that relates 

the attribute to the measurement of other attributes. Table 2.1 shows the main 

software entities along with their internal and external attributes. 

Table 2.1: Software Entities with their attributes [9] 

 

 
 
There are different ways to express the data collected in software measurement. As 

described in [6] statisticians recognize four different types of measured data or 

measurement scales with their associated possible operations. As the collection of 

data and their usage for estimates truly is a statistical method. If inappropriate 
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operations are used for analysis, the results will be useless. The following table 2.2 

gives an overview of the measurement scales and possible operations: [10] 

 

Table 2.2: Measurements Scales [10] 

Type of Data Description of Data Possible Operations Explanation 

Nominal Classification equal, not equal named categories with no attached value 

Ordinal Ranking 
greater/better, 

less/worse, median 
named categories with ordered values 

Interval Differences 
addition/subtraction, 

mean, variance 
numbers without an absolute zero 

Ratio Absolute Zero Relation Numbers with an absolute zero 

 

2.2 Software Measurement and Quality  
 

2.2.1 Software quality Measurement concept 
 

A principal objective of software engineering is to improve the quality of software 

products [10].  Quality must be defined in terms of specific attributes interested to 

user. Such attributes are classified into internal and external ones [9]. Internal 

attributes can be used as predictor to other attributes. The notion of quality is usually 

captured in a model that describes composite set of attributes along with its 

relationship. Many models show distinction between internal and external attributes. 

The following models gain acceptance within software engineering communities. 

 

2.2.2   Software Quality Models 
 

1- Early Models: 

 

McCall and Boehm described quality using decomposition approach. McCall model 

was developed for US Air force, and used with in the US department of defense for 

evaluating software quality [3]. It includes 41 metrics to measure 23 quality criteria 

from factors. In such model to measure any criteria a list of check list have to be 

answered accordingly from requirement, design and implementation. Though 

Boehm’s and McCall’s models might appear very similar, the difference is that 
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McCall’s model primarily focuses on the precise measurement of the high-level 

characteristics “As-is utility”, whereas Boehm’s quality model is based on a wider 

range of characteristics with an extended and detailed focus on primarily 

maintainability [3]. The following is the main features of such models: 

a. Boehm and McCall model: model builders focus on formal products and 

identify key attributes of quality. From the user prospective there are three 

key attributes called “quality factors” such as reliability, usability and 

maintainability which are high level external attributes these factors are 

related to many internal attributes called quality criteria.[3] 

b. In McCall model the factor reliability is composed of consistency, accuracy, 

correctness, fault tolerance and simplicity. Sometimes quality criteria are 

internal attributes such as “structures” and modularity, reflecting developer’s 

belief. The internal attributes have the effect on external quality attributes. 

Further decomposition is required in which quality criteria are associated to 

low level directly measurable attributes (quality metrics). Figure 2.1and Fig 

2.2 shows quality attributes and their decomposition [3] respectively.   

 

 
                     Figure 2.1:  Boehm ‘software Quality characteristics Tree [11]  
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Figure 2.2:  McCall’s Quality Model [12]  

 

Software quality can be seen in two different ways one is by using fixed models 

approach, another is to define their own models by adopting the current models to 

meet specific quality requirement.   

 

2. Dromey's Quality Model 

 

An even more recent model similar to the McCall’s, Boehm’s and the FURPS 

quality model, is the quality model presented by R. Geoff Dromey [12,13]. Dromey 

proposes a product based quality model which recognizes that quality evaluation 

differs for each product and that a more dynamic idea for modeling the process is 

needed to be wide enough to apply for different systems. The main focus of the 

Dromey is on the relationship between the quality attributes and the sub-attributes, 

as well as attempting to connect software product properties with software quality 

attributes. 
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Figure 2.3: principles of Dromey’s quality model [14] 

 

3. Define own model:- 
 

This approach was pioneered by Gillb et.al [12]. Their thought was to design a 

measurable objective. User identifies the key measurable attributes in specification, 

then software engineer design the product according to these attributes. The product 

will be re-checked by the user to make sure that the objectives have been met. 

Kitchinham [14] extended Gilb’s idea and support it with automated tools. In 1992, 

derivation of McCall model was proposed as a basis for international standard 

software quality ISO9126 (ISO 1991). In this standard software quality is defined to 

be “the totality of features and characteristics of software product that pear on its 

ability to satisfy stated needs”[14]. The model decomposes the quality into six 

factors as follow:  functionality, efficiency, usability, maintainability and portability.  

Each of these factors is defined as a set of attributes e.g. reliability in ISO 9126 is 

defined as “asset of attributes that bear on capability of software to maintain its 

levels of performance understand condition for a stated period of time. The standard 

is an important milestone in development of software quality measures. Nemours 

companies used ISO model to support quality evaluation [12]. Although, objective 

measurements is much better than subjective one, the measurement of many quality 

factors described in formal models including McCall and Boehm models is 

dependent on subjective ratings.  Figure (2.4) shows the ISO  9126  model. 
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Figure 2.4: The ISO 9126 quality model [14] 

 
The following table (table 2-3) compares between mentioned quality models based 
on quality attributes. 
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Table 2-3: Comparison between criteria/ goals of the McCall, Boehm and 

ISO 9126 quality models [13] 

 
ISO 9126 proposes a standard which specifies six areas of importance, i.e. quality 

factors, for software evaluation. Each quality factors and its corresponding sub-

factors are defined. The following is the two factors (functionality and reliability): 

 

 Functionality: A set of attributes that relate to the existence of a set of 

functions and their specified properties.  The functions are those that satisfy 

stated or implied needs. 

- Suitability: Attribute of software that relates to the presence and 

appropriateness of a set of functions for specified tasks. 

- Accuracy: Attributes of software that bare on the provision of right or 

agreed results or effects. 

- Security: Attributes of software that relate to its ability to prevent 

unauthorized access, whether accidental or deliberate, to programs and data. 

- Interoperability: Attributes of software that relate to its ability to interact 

with specified systems. 
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- Compliance: Attributes of software that make the software adhere to 

application related standards or conventions or regulations in laws and 

similar prescriptions [14].  

 Reliability: A set of attributes that relate to the capability of software to 

maintain its level of performance under stated conditions for a stated period 

of time. 

- Maturity: Attributes of software that relate to the frequency of failure by 

faults in the software. 

- Fault tolerance: Attributes of software that relate to its ability to maintain a 

specified level of performance in cases of software faults or of infringement 

of its specified interface. 

- Recoverability: Attributes of software that relate to the capability to re-

establish its level of performance and recover the data directly affected in 

case of a failure and on the time and effort needed for it [14] . 

- Compliance: See above. 

Figure 2.5 Shows ISO 9126 software product evaluation: quality characteristics and 

guidelines for their use [13]. 
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Figure 2.5: ISO 9126 software product evaluation: quality characteristics and 

guidelines for their use.[13]  
 
4. Capability Maturity Model(s) (CMMs) 
 

Is a development model created after study of data collected from organizations that 

contracted with the U.S. Department of Defense. The term "maturity" relates to the 

degree of formality and optimization of processes, from ad hoc practices, to formally 

defined steps, to managed result metrics, to active optimization of the processes. The 

CMM/SW-CMM depicted in Figure 2.6 below addresses the issue of software quality from 

a process perspective. 

 

http://en.wikipedia.org/wiki/U.S._Department_of_Defense
http://en.wikipedia.org/wiki/Ad_hoc
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Figure 2.6: Maturity Levels of (SW-) CMM [13] 

 

5. Defect based measures:- 
 

Software quality measurements using decomposition approach requires good 

planning and data collection. Many software engineers think of software quality in 

much narrower sense where quality is considered to be only the lack of defects. 

Defects are interpreted as known errors, fault or failure [3]. A defacto standard 

measure here is defect density for a given product. Two types of defects are 

available: 1- known defects: that have been discovered through testing, inspection or 

another techniques. 2- Latent defects: defects that presents in system but still not 

appeared. Generally defect density measured though the following equation:-   

     

                      Defect density= Number of known defects / product size [3]. 

 

Product size is usually measured in terms of line of code (LOC). Defect density is an 

acceptable measure that provides useful measurement information. There are 5 main 

issues should be considered when using this type of measure which are as follows: 

1- Defects can be either a fault discovered during the review and testing, or 

failure that observed during software operation. Defect count includes: 

a. Post release failure 

b. Residential faults 

c. All known faults [3] 



 21 

2- Defect rate is the number of defects is being recorded with respect to measure 

time. This can be an important measure for measuring software reliability. 

3- Defect density is calculated using same consistent definition of size. 

4- Defect density tells us more about quality of defects than quality of product 

itself.  

5- Even if we are able to know exactly the number of residential faults, we should 

be careful about making definitive statement of how system will operate in 

practice because it is difficult to:  

a. Determine in advance the seriousness of faults. 

b. Predict which fault will lead to failure. 

Adam in 1984 [15] stated that finding large number of faults may not necessary lead 

to improve reliability. Reliability is biased on failure data, not faults. It also follows 

that a very accurate residential faults density prediction may be poor predictors for 

operational reliability. Some researchers concentrated only on user detected defects, 

in other words, the defect densities are really failures per unit of size. There are 

inevitably many dormant software faults that have not yet led to such failure. 

Japanese companies define quality in terms of spoilage. 

 

   Spoilage=Time to fix post release defects / Total system development time [13]. 

 

2.3 Software reliability measurement and predictions:- 
 

Most of software quality models identify reliability as a key high level attributes. 

Quantitative methods for its assessment back to early 1970. It is important to note 

that no current methods can feasibly assure software system with ultra-high 

reliability requirements. The basic problem of reliability theory is to predict when 

system will eventually fail. In hardware we concerned with component failure due 

physical wear. Such failure is probabilistic in nature, that is, we usually do not know 

exactly when something will fail, but we know that the product will fail at a 

particular time. Based on that prediction models are identified to predict when the 

next failure is [3]. 

Same approach applies in software. Researchers build basic model of component 

reliability and create a probability density function (PDF) f of time t (written f(t)) 
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that describes uncertainty about when component will fail [18]. If the software 

component is equally likely to fail in a given time interval, we can say it is uniform 

pdf over that interval e.g. [0, x]. On the other hand, if failure time occurs randomly, 

the function is expressed as exponential function. Having defined a pdf f(t), The 

probability of component fails in a given time interval [t1- t2] calculated as 

follows[3]: 

 

        Probability of failure between t1 and t2=  ∫ 𝑓(𝑡)𝑑𝑡
𝑡2

𝑡1
          

Usually there is desire to know how long component will behave correctly before it 

fails. The distribution function (the cumulative distribution function) F(t) is the 

probability of failure between t1 and t2. Thus reliability can be defined as R(t): 

 

𝑅(𝑡) = 1 − 𝐹(𝑡)                

 

Where F(t) is the cumulative distribution function. The function generates the 

probability that the component will function properly up to time t. it is important to 

note that when probability of failure is high reliability will be low and verse versa.  

The mean time to failure (MTTF) is the mean of the probability density function. 

The mean of pdf f(t) computed by the following equation: 

 

𝐸(𝑇) =  ∫ 𝑡𝑓(𝑡)𝑑𝑡     

 

Median time to failure is the point in time t at which the probability of failure after t 

is the same as the probability of failure before t. We can calculate m that satisfy 

F(m)=1/2. 

m = i/ƛ loge 2 

 

The median time to fail gives middle value that splits the interval of failure 

possibility in two equal parts. We can consider a given interval and calculate the 

probability that component t will fail in the interval (hazard rate) h(t). 
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ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
     

ℎ(𝑡)𝛿𝑡 is the probability that the component will fail during the interval [t, t+ 𝛿𝑡] in 

hardware reliability, simply the failed component are replaced by another one. In 

this situation reliability will be improved this called reliability growth. This is a 

goal of software maintainability. Other measures like hazards rate helped to identify 

the likely occurrence of a first failure in an interval [3]. 

A system run successfully, and then fails. The measures have introduced so far have 

focused on the interruption of successful use. However once a fail occurs there is 

additional time lost as faults causing failure are located and repaired. Thus, it is 

important to know the mean time to repair (MTTR) for a component that has failed. 

Combining this time with the mean time to failure tells how long the system is 

unavailable for use [16]. 

 

MTBF=MTTF+MTTR  [16] 

 

This can give a measure about how long system will be available (availability) 

Availability= (MTTF/(MTTF+MTTR)) * 100%     [16] 

 

2.3.1 The software reliability problem:  

 
There are many reasons for software to fail such as: lack of user participation, badly 

defined system requirements, changing requirements etc. [x]. The key distinction 

between hardware and software reliability is difference between intellectual failure 

and physical failure. In software, during long run, reliability accepted to be 

improved. However, short term decreases caused by ineffective fix or novel faults. 

Monitoring the time between failures can help in assessing reliability. At a given 

point in time, the time of next failure is uncertain it is a random variable [3]. 

 

The previous measures like pdf and 𝐹𝑖 and R can be used theoretically to measure 

reliability. But, the actual values for the functions are unknown. So, the history of 

failures should be observed firstly. In other word we are not computing an exact 

time for the next failure, we use the history to help us predict the failure time. It is 
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important to know all attempts done to measure reliability represent prediction 

problems [3]. To solve predication problem prediction system must be defined and 

this requires: 

1- Prediction model. 

2- Inference procedure  e.g. Mean time to next failure 1/x = (t i-2 +ti-1)/2 

3- Prediction procedure. 

Many prediction systems have been proposed, some of which use models and 

procedures very sophisticated.[3] 

 

 

2.3.2 Parametric Reliability models: 
 

Program is defined here as transformation of inputs (I) to outputs (O). in most cases, 

a complete description of input space is not available. The output consist of two 

types those are acceptable and those are not [3]. The program will fail if the input 

doesn’t transform to an acceptable output. There are two sources of uncertainty in 

the failure behavior: 

1- Uncertainty about the operational environment  

2- Uncertainty about the effect of faults removal.   

Good reliability model should address both types of uncertainty. The most difficult 

problem is to model uncertainty type 2.  Following is the most known reliability 

models: 

 

a) The Jelinski – Moranda model: 

 

The model is the earliest and probably the best known reliability model (1972)[17]. 

It assumes that, for each I, 

𝐹𝑖(𝑡𝑖)=1−𝑒−ƛ𝑖𝑡𝑖
 

     

ƛ𝑖 = (𝑁 − 𝑖 + 1)𝛷 

 

N is the initial number of faults and ɸ is the contribution of each fault to overall 

failure rate. The model is exponential, so type 1 uncertainty is random and 

exponential. There is no type-2 uncertainty in this model. It assumes that fault 
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detection and correction begins when program contains N faults. And that fixes are 

perfect. And also all faults have the same rate. The interface procedure for the model 

is called maximum likelihood estimation [3]. 

There are three related critics on the model: 

1- The sequence of rates that considered by the model is deterministic and this 

is not always realistic. 

2- The model assumes all faults contribute equally to hazards rate. 

3- Poor reliability prediction (too optimistic) [17].  

 

b) Other models based on Jelinski – Miranda  [17] 

 

Several models are variations of Jelinski-Moranda. Shooman’s model is identical 

(1983). The Musa model extend Jelinski model. It introduces some novel features on 

top of previous model. It was the first model insists on using execution time to 

capture inter-failure times. Musa model encourage using of reliability model 

especially on communication [3]. 

 

c) The Little wood model 

 

Attempts to be more realistic finite fault model than jelinski by treading hazard rates 

as independent random variables. These rates are assumed to have a gamma 

distribution with parameters (β,α). Unlike jelinski this model introduces two sources 

of uncertainty for the rates. Both jelinski and little wood models are in general called 

exponential order static models [18]. In this type of model the faults can be seen as 

competing risks at any point in time. The distribution of little wood model equals: 

 

                                       𝑷(𝑿 < 𝒙) = 𝟏 − (
𝜷

𝜷+𝒙 
)α  

 

d) The Little wood - Verrall model    [3] 

 

Is the simple model similar to little wood model. It captures the nature of the 

conceptual model of failure process. The assumption here is that the inter failure 

time Ti, are conditionally independent exponentials with probability density 

functions: 
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                                           𝑝𝑑𝑓 (𝑡𝑖|^𝑖 = ƛ𝑖) =  ƛ𝑖𝑒
−ƛ𝑖 𝑡𝑖      

 

𝑝𝑑𝑓 (ƛ𝑖) =
ψ (i)α−1𝑒–ψ(i)ƛ 

Ѓ(α)
  

 

e) Non- homogenous Poisson process models 

 

Non homogeneous passion process (NHPP) is the way to model process that is 

statistically independent of the past [3]. It determined by failure occurring time. A 

minor drawback is that such process have rate function that change continuously in 

time. This is not real for software. 

Others models found like Goel-Okumoto model is a NHPP variant of Jelinski model. 

Similarly, the little wood NHPP model is variant of original little wood model. All 

the above models are parametric models, in the sense that they are defined by values 

of several parameters. Using these model involve 2 steps: selecting the model then 

estimating the values of its parameters. Some researchers use different approach to 

estimate the parameters by using Bayesian posterior distribution of known 

parameters. On the other hand, predictive accuracy can be analyzed for the models 

then select the best working one. Unfortunately, these techniques work effectively 

only if software’s future operational environment is similar to the one in which the 

failure data was collected. Worse still, there is no current methods that are feasibly 

assuring software system with ultra-high reliability requirements [3]. 

 

 

2.4 Software Reliability Growth Modeling/Testing. 
 

Reliability growth for software is the positive improvement of software reliability 

over time, accomplished through the systematic removal of software faults. The rate 

at which the reliability grows depends on how fast faults can be uncovered and 

removed. A software reliability growth model allows project manager to track the 

progress of the software’s reliability through statistical inference and to make 

projections of future milestones. If the assessed growth falls short of the planned 

growth, management will have sufficient notice to develop new strategies, such as 

the re-assignment of resources to attack identified problem areas, adjustment of the 
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project time frame, and re-examination of the feasibility or validity of requirements. 

Measuring and projecting software reliability growth requires the use of an 

appropriate software reliability model that describes the variation of software 

reliability with time. The parameters of the model can be obtained either from 

prediction performed during the period preceding system test, or from estimation 

performed during system test. Parameter estimation is based on the times at which 

failures occur [3]. 

The use of a software reliability growth testing procedure to improve the reliability 

of a software system or to a defined reliability goal implies that, a systematic 

methodology will be followed for a significant duration. In order to perform 

software reliability estimation, a large sample of data must be generated to 

determine statistically, with a reasonable degree of confidence that a trend has been 

established and is meaningful [3]. 

There are several software reliability growth models available. Table 2-4 

summarizes some of the software reliability models used in industry. 
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Table 2-4: Software reliability model [19] 

 
The following checklist determines which model or models to choose from given the 

following constraints. This checklist is summarized as follows: 

 Failure profiles 

 Maturity of software product 

 Characteristics of software development 

 Characteristics of software test 

 Existing metrics and data [3] 

 

2.5  Software Metrics  
 

The software metric is the measurement, usually using numerical ratings, to quantify 

some aspects or attributes of a software entity [4]. Typical measurements include the 

quality of the source codes, the development process and the accomplished 
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applications.  The field of software metrics is a relatively young one, whose origins 

can be found in the work by Halstead published in 1972. Software metrics allow to 

use a real engineering approach to software development, providing the quantitative 

and objective base that software engineering was lacking. In fact, their use in 

industry is becoming more and more widespread.  Good metrics should enable the 

development of models that are efficient of predicting process or product spectrum. 

Thus, optimal metrics should be [4]: Simple, Objective, Easily obtainable, valid and 

Robust. As shown in table 2.1 software metrics are classified mainly into: 

1- Process metrics: 

Metrics highlights the process of software development. It mainly aims at process 

duration, cost incurred and type of methodology used. 

2- Project or resources Metrics:  

Project metrics are used to monitor project situation and status.  And identify risk. 

E.g.. Staff number and their patterns, cost, etc… 

3- Product Metrics:  

      Product metrics describe the attributes of the software product at any phase of its 

development.[9] 

Software quality attributes has to be evaluated through considering different views 

such: users, manufacture, Product and value based view. This should be measured 

by different users of different roles.  The following tables (2-5) and (2-6) 

summarizes these issues. 

 

Table 2-5: Software quality attributes evaluation against different views  

Views Description 

User view evaluates the software product against the user’s needs 

Manufacturing view Concentrates on the production aspect of the software 

product. 

Product view Take a look at the internal features of the products. 

Value based view  This becomes important when there are lots of contrasting 

views, holds from different departments 

 

Table 2-6: Different Measurements in terms of different roles.[9] 

Role Measurements 

User Usability, simplicity, Stability, Cost…. 

Designer Extendibility, scalability, Manageability… 

Programmer Complexity, Maintainability…. 
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Different classification criteria have been introduced for software metrics according 

to what has been measured. Main types of metrics can be categorized such as code, 

Programmer productivity, Design, Testing, Maintainability, Management, Cost, 

Duration, time, Staffing metrics [9]. 

Metrics are described as direct or indirect. The distinction between direct and 

indirect metrics is based on the way a metric is measured. Size for example, can be 

directly measured whereas quality or complexity can only be measured indirectly by 

breaking them down into different aspects. Most metrics are indirect. This must not 

be confused with the distinction between primitive and computed (derived) metrics.  

Primitive metrics provide raw data, "physical" attributes of the software that are later 

used as inputs for computed metrics [9]. Such attributes are: 

 Bugs: can simply be counted as they are found and fixed, bugs can be 

interpreted as the number of corrections resulting from a review. 

 Cost/Effort: used to calculate critical measures that  is important for 

evaluating e.g. an organization's position with respect to its competitors and 

the market 

 Duration:  This refers to both the duration of either all or part of certain 

process. 

 Size: Software size is probably the most important primitive metric can be 

calculated directly from LOC. 

 Line of code: The traditional way of measuring program size is by counting 

lines of code (LOC). 

 Function Point Analysis: Developed by A.J. Albrecht of IBM in 1997, this 

approach tries to eliminate some of the disadvantages of LOC by deriving the 

size of a program not from the code but from its (specified) functions as 

viewed by the user. This leads to a metric which is independent of the 

programming language and technology used. Thus, it can be used to 

normalize and compare results from different environments [20]. 

 Halstead's metrics: Devised in the 70's by Maurice Halstead [21], this is a 

very formal approach to define program size and derive various estimates. It 
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is not really a primitive metric but as it measures size similar to LOC it fits 

here and makes for a nice transition to computed metrics. 

Computed Metrics are derived from primitive metrics such as: 

 Complexity: metrics concerns with measuring software complexity e.g FP. 

 McCabe's Cyclomatic Complexity: Amongst the most popular methods to 

measure implementation complexity is the cyclomatic complexity defined in 

McCabe76 [9]. His approach is based on the control flow graph. 

 Productivity: According to  [9 ], productivity is measured as the amount of 

work (size) completed with a given effort, where "completed" usually means 

"has passed quality control", 

 Quality: Like complexity, quality is not easy to define, much less to measure. 

A common metric that can be found in [9] defines quality as the degree to 

which a product is bug-free.  

Software quality is the degree to which software possesses a desired combination of 

attributes such as maintainability, testability, reusability, complexity, reliability, 

interoperability, etc. In other words, quality of software products can be seen as an 

indirect measure and is a weighted combination of different software attributes 

which can be directly measured. Moreover, many practitioners believe that there is a 

direct relationship between internal and external software product attributes. For 

example, a lower software complexity could lead to greater software reliability [3]. 

 

2.5.1   Syntactic metrics  
 

Syntactic metrics reflect how programs are represented in source code, but not what 

functions programs define. The terms metric and measure have some overlap. We 

use measure for more concrete or objective attributes and metric for more abstract, 

higher-level, or somewhat subjective attributes. For instance, a line of code (LOC) is 

a measure: it is both objective and concrete [22]. Researchers investigate four types 

of measures based on different criteria:  

A) Length measurements  

Metrics use this kind of measure focus only on code length without taking into 

account software complexity. Such as:  
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 Line of code (LOC): it is a traditional way of measuring program size by 

counting its number of lines. All lines are counted except comments and 

empty lines [22]. Although, this is the easiest way to measure program 

length, it doesn’t give an accurate measure of actual program length in terms 

of time and effort.  

 Number of signs:  

LOC does not take into account any factors other than total number of lines. 

Number of lines doesn’t represent an accurate measure for program length. 

To overcome this limitation the metric focus on code content rather than total 

number of lines. It counts number of operands and operators as follow: n1 is 

the number of operations, N1 total operation frequency, n2 is the number of 

operands and N2 is the total operands frequency [22]. All these parameters 

are used in program length calculation.  

B) Depth measurements  

This measurement considers code complexity regardless of it is length. It depends on 

the concept of having two programs with same length and different complexity [22]. 

Such as:  

 McCabe: Cyclomatic complexity was developed by Thomas J. McCabe, Sr. 

in 1976 and is used to indicate the complexity of a program [23]. This metric 

is amongst the most popular methods to measure implementation complexity 

[23]. It represents program in a control flow graph. The nodes of the graph 

correspond to indivisible groups of program commands, and a directed edge 

connects two nodes if the second command might be executed immediately 

after the first command. Number of edges and nodes are used to calculate the 

following equation:  

V=e-n+1.          

Where e is the number of edges and n is the number of nodes. Researches 

confirmed that McCabe metric can be used to give a glance of faults 

density.[23]  

 

 Size measurements:  
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These metrics focused on both program length and depth to measure 

complexity. One of the famous metrics that uses this method is Halsted 

metric [21]. Halstead suggests a measure to program length by using the 

following equation:  

N = n1x log2(n1) +n2 x log2(n2).        

Where n1 is the number of operators and n2 is the number of operands in the 

code. In addition to that to calculate the program size Halsted metric represents 

the program as a message written by a programmer. According to that if we need 

to calculate the actual value for this message we must calculate H (n) [21].  

Where n is the number of symbols and H is the massage name.  

H (n) = log2(n)  

Based on that we can conclude to the result that number of symbols = n1 + n2.  

 

 Data measurements:  

 

Data measurement aims to measure the size and complexity of the program 

structure. It should be noted that the size of the program may differ according to 

the type of programming language [22].  

Size = minimum size / actual size.  

By other way we can calculate the density of the program data by calculating the 

number of known variables within the program [22]. These may contribute to 

estimate the effort that made by the software programmer. 

  

 Design measurement  

 

There are two main concepts introduced here; Cohesion and coupling. Cohesion 

reflects the extent to which internal elements of the system are related to each 

other. Where, coupling cares about the relation between different partial 

components.  

Design quality = high cohesion + low coupling.  

All the previous measurements fall in Syntactic metrics field. Which reflect 

attributes of the source code text; they do not reflect attributes of the execution 

of the program [22].  
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2.5.2 Semantic Metrics 

 

Most software metrics are based on program structure and are determined 

statistically [24]. Nowadays, there is a great move towards the semantic metrics 

which reflect what functions the software product defines, rather than how these 

functions are represented. Semantic metrics are based on the meaning of software 

within the problem domain. Researchers use semantic metrics to provide insight into 

software quality early in the design phase of software development. Others extend 

semantic metrics to analyze design specifications. In spite of the success of semantic 

metrics in software quality field, but a few number of studies touch this issue. 

Chapter 2 and 5 will discuss more about this issue 

 

2.6 Chapter Summary 
 

This chapter gives an overview to a background of the study field. Major concepts 

and terminologies used were discussed started from general software measurement 

concepts along with software quality models such as McCall, Boehm, Dromey, 

CMM and ISO 9126.  Then the chapter introduced software reliability measurement 

started from reliability problem and parametric reliability models, table 2.7 

summarizes the parametric reliability models. Finally, both syntactic and semantic 

metrics were discussed.  

Table 2.7: Summary of the main parametric reliability models 

 Parametric reliability models Measurement Formula  

1 The Jelinski – Moranda model 

 
𝐹𝑖(𝑡𝑖)=1−𝑒−ƛ𝑖𝑡𝑖

 

   ƛ𝑖 = (𝑁 − 𝑖 + 1)𝛷 

2 The Little wood model 
𝑃(𝑋 < 𝑥) = 1 − (

𝛽

𝛽 + 𝑥 
) 

3 The Little wood - Verrall model     
𝑝𝑑𝑓 (ƛ𝑖) =

ψ (i)α−1𝑒–ψ(i)ƛ 

Ѓ(α)
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 3.1 Introduction  
 

The previous chapter highlights a general overview on current used metrics. 

Moreover, it surveys the most famous used kind of metrics - complexity metrics- 

that are widely used. The next section will shed some light on semantic metrics 

research and current research directions. 

 

3.2 Current Research in software metrics 

 3.2.1 Complexity metrics 
 

Complexity metrics can measure the degree of software difficulty. Measuring complexity of 

software products was, and still is, a widely distributed research subject. The scope of 

studying it was to control the levels of the external attributes of software via internal 

attributes, like complexity is. The most well-known internal attribute is software length. 

While in the case of length is a quite well defined consensus about the ways the length 

should be measured, in the case of complexity is still a lot of confusion [25].  It is not wrong 

to say that there is a relationship between complexity and the length of the program. But, all 

authors agree that when measuring complexity one should take into account other internal 

attributes in addition to, length itself. This approach was discussed by Törn et al. [26] where 

a new measure of software complexity called structural complexity is derived. The authors 

use the equations that combine between code length and structure complexity for the 

software collections and define new formulas that use some constants. In which one control 

structure assign different value from the others. 

In [4] traditional complexity metrics are investigated. They divide complexity of software 

into three classes: the essential complexity, the selecting complexity and the incidental 

complexity [25].  

The essential complexity is determined by the problems that the software tries to 

solve. The selective complexity is determined by the program languages, the 

problem modeling methods and the software design methods. The incidental 

complexity is determined by the quality of the involved implementer [25]. the 

following table shows the classification of complexity metrics used during software 

life cycle. 
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Table 3.1: The classification of complexity metrics 

Used during software life cycle [25] 

 

Same metrics are classified based on the way of complexity calculation. Table 2.3 

considers this issue. 

Table 3.2: The classification of the complexity metrics by their calculation Basis 

 

The study compares between traditional used metrics such as LOC which count lines 

of code.  Researchers in [27] found that there is a relationship between code lines 

and bug density. Halstead metrics was introduced in 1977 by Maurice Halstead. 

HCM calculate number of operators and operands to measure program quality and 

complexity and based on these inputs it calculate difficulty, software length, volume, 

error estimation and time. One of it is main advantages that it doesn’t require deep 

knowledge of program logical structure so it is easy to calculate but in the other 

hand, it doesn’t give accurate measure because it doesn’t consider program flow 

control [27]. other metrics are discussed such as WHCM which overcome the 

limitations of HCM. WHCM adds weight of the code instructions such as loops or 

branches.  The WHCM takes the documents of the project into consideration. The 
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WHCM uses the Capability Maturity Model for Software (SW-CMM) to measure 

the project’s documents and modify the HCM. In [23] Thomas J. McCabe 

introduced a software complexity metric named McCabe Cyclomatic Complexity 

Metric.   

Tu Honglei et.al.[28]  investigate the efficiency from using complexity metrics like 

McCabe and CK metrics. The selection of these metrics is done after comparative 

study between different available type’s pf complexity metrics. As an extension for 

this study researchers try to expand the evaluation of complexity metrics. the main 

intent of their study was to compare three proposed code complexity metrics: 

McCabe's cyclomatic complexity, Halstead's software science and Shao and Wangs' 

cognitive functional size and identify which metric is the most suitable metric that 

can be used in the current state of the art with the help of thirty programmers. To 

conduct this empirical study ten freely available java programs were used as the base. 

From this study it was identified that Shao and Wangs' cognitive functional size is 

the best complexity metric that can be used in the real world [28]. 

 

3.2.2 Measuring the Complexity of web application: 

 

Another direction of measurement is web based application (WAs). Web 

applications are similar to other software in that they have business logic in 

application domains, however, there are several characteristics that differ from 

traditional software [29]: WAs have hypertext structure, dynamically generate codes, 

and rapid evolution is required [29,30]. For these reasons, it is hard to apply existing 

metrics to WAs, and new metrics for WAs should be defined. In existing 

maintenance approaches, structural systems or object-oriented systems are the main 

focus and Web applications are not often considered [30]. Several studies have been 

conducted for a complexity measure; however, most studies have focused on the 

complexity of traditional software rather than the complexity of WAs. Zhang et al. 

proposed a navigational complexity measure for the web using a navigational 

structure and the number of links, from a user’s point-of-view [31]. Mendes et al. 

introduced a count-based complexity measure of web applications [32]. However, 

there are some cases where those count-based measures cannot handle well.  In [33], 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tu%20Honglei.QT.&searchWithin=p_Author_Ids:38109479000&newsearch=true
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a web application is modeled as a graph composed of nodes and weighted edges. 

Jung et al. [34] assumed that the information quantity of a frequently referenced 

page is larger than that of an infrequently referenced page, when a maintainer 

reviews web pages statically.  

 

3.3 Metrics for measuring software reliability 
 

The major goal of a research in software engineering is to improve the quality of 

software. One of the most important quality attributes is reliability. The generally 

accepted definition of software reliability is the probability of a failure-free 

operation of software component or system in a specified environment for a 

specified time [35]. Although the reliability estimation is the goal of many 

researchers and also a wish of many customers, it is seldom used in the practice. 

There are other useful measures which do not yield a probability of failure but other 

figures related to the reliability attributes. For this reason authors decompose 

reliability attribute into four reliability parameters such as:  Probability of a failure 

free operation R(t) , Mean time between failures MTBF, Failure intensity z(t) and  

Number of errors left in software N(t). The main goal of this research is to prove 

empirically that errors are correlated with the reliability parameters. Probably one of 

the most comprehensive factor investigations was made by Schneidewind [36]. He 

tried to determine the relationship between several complexity measures and 

different error characteristics. In his experiment, different categories of errors were 

taken into consideration. Many types of errors were defined within particular 

categories: design errors, coding errors, clerical errors, debugging errors, and testing 

errors. The total number of different types of errors was 63. On the same context, M. 

Takahashi and Y. Kamayachi studied the relationship between errors remained in the 

program and ten error factors [37] they considered the following factors such as 

frequency of program specification change, programmer’s skill, organization and 

program category, difficulty of programming, amount of programming effort, 

volume of program design documents, levels of programming technologies, program 

complexity (McCabe’s and Halstead’s metrics) and percentage of reused modules. 

In this empirical study, it was experimentally found that there is statistically 
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significant relation between the number of unsuccessful compilations (UC) and a 

simple reliability parameter (TVS - number of Tested Versions of Software). 

Therefore, UC can be used as an indicator of error proneness. 

 In [38] Eduardo, Constitutes a review of the State of the Art techniques that helps to 

improve the Software reliability. Such techniques are classified into 3 different 

categories:  Fault avoidance, Fault detection and Fault tolerance. To grantee 

reliability the selection must include a combination of fault avoidance techniques, 

fault detection techniques and if required, fault tolerance. Another attempt to 

measure software reliability is done by Zeeshan Ahmed and Saman Majeed[39]. The 

aim of his research is to address the importance of preprocessed source code and 

project artifact measurement for better reliability analysis of software application by 

visualizing obtained results in different diagrams to take advantage in analyzing over 

all behavior of software project by predicting the level of complexities at different 

stages and estimating the rate of fault of proneness as well [39].  

In [40] authors move to another quality issue by investigating how to reduce 

software maintenance costs by applying software renovation tools and 

methodologies which will improve the program's intrinsic quality. Their basic idea 

of the methodology presented here is to establish a diagnosis based on the program 

quality analysis. The use of the alone static analyzers to evaluate software quality is 

insufficient. Therefore, they suggest a quality analysis based on metrics but 

supplemented by "checklists" covering all the quality criteria of the programs and 

taking into account the semantic aspects which are not covered by the static 

analyzers. A knowledge-based system which integrates both semantic and syntactic 

aspects is proposed to implement such checklist. Their results show the ability of 

suggested tools whether the program has to be reengineered only or redevelop 

completely. In the same context Basson and Derniame [40, 41] have developed a 

kernel of software quality metrics devoted to Ada language. Nowadays, new metrics 

appear especially designed to measure specific aspects of object oriented languages 

such as C++ [38]. In [42] the approach to the estimation of program reverse 

semantic traceability (RST) influence on program reliability with assistance of 

object-oriented metrics is proposed. Their paper shows how to change the software 

reliability model parameters, that was received using logistic regression, in order to 
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estimate influence of program RST on program reliability. Experiments show 

promising results. 

 

Jerey M. Voas et.al.[43]  Touch an important factor to increase software confidence; 

software testing techniques such as black box testing can be used to grantee that the 

software no longer contains faults. Authors use lack of faults as a measure of 

software quality. They also introduce Hamlet’s probable correctness model to assess 

confidence that the true failure probability of the program is less than some preset 

threshold. Research considers sensitivity analysis's predictions which are based upon 

repeated executions. They concentrate on estimating and controlling testability 

before it is written, during the design phase [43]. Ordonez et al. [44] examined 

various metrics used in software industry to measure code size and design 

complexity. They mentioned that NASA used the first five metrics presented in [43] 

in the tool they developed for analyzing source code with respect to its architecture. 

The author’s analysis was focused on how reliable are specific software modules 

with respect to their maintainability and the probability of causing defects. 

 

3.4 Data mining techniques for semantic metrics: 

 

There are strong connections among the metrics. But that doesn’t mean that we can 

replace one metric with other one. The article [45], using a data miner tool called 

Multi method, did some experiments on three data sets in the Metrics Data Project 

(MDP) of the NASA. The result shows, the effect of the software defect prediction 

model integrating kinds of metrics, is much better than that using only one. Using 

multiple metrics in the prediction or detection process may increase the accuracy and 

thus increase software quality. Sallie.et.al. [46] offer a good comparative study 

between code, structure and hybrid metrics. The Study has shown that structure and 

hybrid metrics are extremely useful at design time. Moreover, the use of prediction 

model can help to determine the complexity of the resultant code. 

Data mining is positioned between different research domain as statistics, machine 

learning, database management and data visualization. It is defined as the process of 

identifying valid, novel, potentially useful, and ultimately comprehensible 
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knowledge from data, used to help by crucial decision making. Current software 

quality estimation models often involve use of data mining and machine learning 

techniques for building a software fault prediction models.  In [45] Mertik, M., et.al. 

Address this issue. They achieved better results by building the fault prediction 

model as with standard machine learning methods. Special data mining tool – 

Multimethod- has been used. They present the case study of building the fault 

prediction model based on the data from the Metrics Data Program Data Repository. 

They get benefit from the data mining researches that reaches to truth that using 

different techniques (algorithms) in data mining may improve the accuracy of 

detection / classification model [47]. So, different approaches have been employed 

during their study. In [48] Salwa K conducts the use of data mining in detection of 

function clones in software systems. She presents an efficient metrics-based data 

mining clone detection approach. First, metrics are collected for all functions in the 

software system. A data mining algorithm, fractal clustering, is then utilized to 

partition the software system into a relatively small number of clusters. Each of the 

resulting clusters encapsulates functions that are within a specific proximity of each 

other in the metrics space. Finally, clone classes, rather than pairs, are easily 

extracted from the resulting clusters. For large software systems, the approach is 

very space efficient and linear in the size of the data set. Evaluation has been done 

using medium and large open source software systems. The investigation of results 

reflects good improvement. T Menzies [49] touch a hot issue by investigating the 

use of data mining to generate defect predictor from static code attributes. Many 

researchers use static attributes to guide software quality predictions [49, 50, 51]. 

They take into their consideration the use of McCabe versus Halstead versus lines of 

code counts previously and they tried to compare between them and the new 

proposed method. Their predictors achieve good detection accuracy that reach to a 

mean probability of detection of 71 percent and mean false alarms rates of 25 

percent.  
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3.5   SEMANTIC METRICS 

 

Most software metrics are based on program structure and are determined statically 

[3]. Nowadays, there is a great move towards the semantic metrics which reflect 

what functions the software product defines, rather than how these functions are 

represented.  

In 2008 Gall, C. S [52] suggests an approach using semantic metrics to provide 

insight into software quality early in the design phase of software development by 

automatically analyzing software specifications for object oriented system using 

natural language (NL) processing. In [53], researchers extend semantic metrics to 

analyze design specifications. Since semantic metrics can now be calculated from 

early in design through software maintenance, they provide a consistent and 

seamless type of metric that can be collected through the entire lifecycle.  A 

comparison was done to compare semantic metrics from different phases of the 

lifecycle with syntactically oriented metrics calculated from the source code.  

Another direction has been touched related to the semantic is “web semantic” which 

is related to web applications.  

In the context of the Semantic Web, many ontology-related operations, e.g. ontology 

ranking, segmentation, alignment, articulation, reuse, evaluation, can reduce to one 

fundamental operation: computing the similarity and/or dissimilarity among 

ontological entities, and in some cases among ontologies themselve [54]. Bo Hu 

et.al.[55] gives formal account of semantic metrics drawn from a variety of research 

disciplines, and enrich them with semantics based on standard Description Logic 

constructs. Authors argue that concept-based metrics can be aggregated to produce 

numeric distances at ontology-level and they speculate on the usability of their ideas 

in potential areas. Zschaler in 2004 [56] define elements of a semantic framework 

for non-functional specifications of component-based systems. Framework focuses 

on how the runtime environment uses components, whose non-functional properties 

have been specified. It is notable that very little research has been performed 

concerning non-functional properties. 

In 2010  B.Wen. and L. Zhang [57] make good contribution to the area of semantic 

measurement.  The paper presents a method to map process metrics to the enterprise 

http://link.springer.com/search?facet-author=%22Bo+Hu%22
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information model automatically when the semantic features of metric are analyzed, 

a structure called semantic tree is defined with domain ontology. B.Gabriele. [58] 

Moves to another direction to consider the use of semantic information for software 

modularity. He proposes a new technique for automatic re-modularization of 

packages, which uses structural and semantic measures to decompose a package into 

smaller, more cohesive ones. The paper presents the new approach as well as an 

empirical study, which evaluates the decompositions proposed by the new technique. 

The results of the evaluation indicate that the decomposed packages have better 

cohesion without a deterioration of coupling and the re-modularizations proposed by 

the tool are also meaningful from a functional point of view [59]. In particular, 

Maletic and Marcus (2001) combined semantic and structural measures to identify 

ADTs in legacy code. They used Latent Semantic Indexing (LSI) [60], an 

Information Retrieval (IR) technique, to capture semantic relationships between 

source artifacts. 

Emanuel et.al. consider how to predict code changes [61]. Fine-grained source code 

changes (SCC) capture detailed code changes and their semantics on the statement 

level. They explore prediction models for whether a source file will be affected by a 

certain type of SCC. These predictions are computed on the static source code 

dependency graph and use social network centrality measures and object-oriented 

metrics. The results show that Neural Network models can predict categories of SCC 

types. In summary, the results of their work confirm the empirical findings regarding 

the relation between coupling and changes. 

Historically, software evolution has been studied at the file level. Lehman already 

used in his laws of Software Evolution the number of files as a measure of system 

growth [62]. Other authors have used SLOC (source lines of code) for the same 

goals. Gregorio et.al. [63] Tried to move from file/SLOC (physical) level to 

functions (physical and semantic) level to gain better understanding of the evolution 

of a software project. Their point of view, considering functions is closer to the way 

developers work and conceive a software system. They addressed two metrics from 

software evolution research that have already been studied at the file level, 

modification patterns and developer territoriality (also known as code ownership), 

but this time considering a granularity of functions.  
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          New trend has introduced by Selim et.al. They tried to extend the concept of 

using semantic information to improve software quality. Authors consider software 

component identification from the code [64]. It is worth saying that it is one of the 

primary challenges in component based software engineering. Most of the software 

component identification techniques [65, 66, 67] start from semi-formal domain 

business models (Typically expressed in UML) and produce domain software 

components. Authors propose an approach for identifying components based on a 

fitness function to measure the quality of a component. To evaluate such function, 

they use a semantic- correctness model defined in their previous works [65,68].  

Their approach gives to the architect the choice between two strategies to identify 

components. The first strategy is explorative. The second strategy is requirement- 

driven. 

Some studies shed light on how to integrate entropy concept with semantic aspects 

of software as quality measure. Such concept dates back to 1997 when D. Melamed 

defines semantic entropy as the measure of semantic ambiguity and [69]. It is a 

graded lexical feature which may play a role anywhere lexical semantics plays a role. 

The study proposed a method for measuring semantic entropy using translational 

distributions of words in parallel text. The measurement method is well-defined for 

all words, including function words, and even for punctuation. The hypothesis 

behind the measurement method is that semantically heavy words are more likely to 

have unique counterparts in other languages, so they tend to be translated more 

consistently than semantically lighter words. Brown et al. [70] present a word-sense 

disambiguation algorithm involving minimization of semantic entropy weighted by 

word frequency. Yarowsky[71] compares the semantic entropy of homographs 

conditioned on different contexts. Another way to use semantic that developers of 

interlinguas for machine translation can use semantic entropy to predict the required 

complexity of lexical elements of the  representation. Another interpretation of 

entropy is as the inverse of reliability. Machine learning algorithms may benefit 

from discounting the importance of data that has high entropy. Semantic entropy can 

help researchers decide not only how to work with words, but also which words to 

work with. Several applications in computational linguistics use stop-lists of unusual 

words. Salwa K and Abd-El-Hafiz, in 2004 [72] also address entropy as a means to 
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measure software information content. They use the entropy metrics to study the 

evolution of the modules within the system. Such an analysis provides a deep 

understanding of the evolution of a software system. This study supported the use of 

entropy concept in the measurement of some software attributes.  

          In the context of using object Oriented (OO). The class is the basic term of 

concern, not the procedure or statement. Hence, the metrics used to measure such 

software should be class-oriented. A study in 2008 was empirically investigated the 

suite of object-oriented (OO) design metrics introduced in [73]. More specifically, 

their goal is to assess these metrics as predictors of fault-prone classes and, 

therefore, determine whether they can be used as early quality indicators. Their 

study represented as complementary to the work described in where the same suite 

of metrics had been used to assess frequencies of maintenance changes to classes. To 

perform validation accurately, they collected data on the development of eight 

medium-sized information management systems based on identical requirements. 

All eight projects were developed using a sequential life cycle model, a well-known 

OO analysis/design method and the C++ programming language. Based on empirical 

and quantitative analysis, the advantages and drawbacks of these OO metrics are 

discussed. Several of Chidamber and Kemerer's OO metrics appear to be useful to 

predict class fault-proneness during the early phases of the life-cycle. Also, on their 

data set, they are better predictors than “traditional” code metrics, which can only be 

collected at a later phase of the software development processes. On the other hand 

Larry J in [52] focus on what is the suitable semantic information should be 

considered during measurement. In [74] researchers proposed the design complexity 

of object-oriented software with Weighted Methods per Class metric (WMC-CK 

metric) expressed in terms of Shannon entropy, and error proneness. CK suite of 

metrics has been successfully applied in identifying design defects early during the 

design process. The analysis showed that components with high design complexities 

were associated with more maintenance activities than those components with lower 

class complexities. 

       In 1993 [8] some researches make spot on software faults that infrequently 

affect output cause problems in most software and are dangerous in safety-critical 

systems. When a software fault causes frequent software failures, testing are likely 
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to reveal the fault before the software is released; when the fault “hides” from testing, 

the hidden fault can cause disaster after the software is installed. During the design 

of safety-critical software, certain sub functions of the software can be isolated and 

that tend to hide faults. A simple metric, derivable from semantic information found 

in software specifications, indicates software sub functions that tend to hide faults. 

The metric is the domain/range ratio (DRR): the ratio of the cardinality of the 

possible inputs to the cardinality of the possible outputs. By isolating modules that 

implement a high DRR function during design,  programs that are less likely to hide 

faults during testing can be produced. The DRR is available early in the software 

lifecycle; when code has been produced, the potential for hidden faults can be 

further explored using empirical methods. Using the DRR during design and 

empirical methods during execution represents a better plan and implements 

strategies for enhancing testability. For certain specifications, testability 

considerations can help produce modules that require less additional testing when 

assumptions change about the distribution of inputs. Such modules can be seen as 

good candidates for software reuse. Norman in [6] found relationship between faults 

density and module size and analysis time thorough his study. He confirmed that the 

number of faults discovered in pre-release testing is an order of magnitude greater 

than the number discovered in 12 months of operational use.  Marcus etal. In [58] try 

to improve this study by suggesting a way for predicting software faults in OO 

programs. They suppose that High cohesion is a desirable property of software as it 

positively impacts understanding, reuse, and maintenance. Currently proposed 

measures for cohesion in Object-Oriented (OO) software reflect particular 

interpretations of cohesion and capture different aspects of it. Existing approaches 

are largely based on using the structural information from the source code. Their 

study proposes a new measure for the cohesion of classes in OO software systems 

based on the analysis of the unstructured information embedded in the source code, 

such as comments and identifiers. The measure, named the Conceptual Cohesion of 

Classes (C3), is inspired by the mechanisms used to measure textual coherence in 

cognitive psychology and computational linguistics. This study presents the 

principles and the technology that stand behind the C3 measure. A large case study 

on three open source software systems is presented which compares the new 
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measure with an extensive set of existing metrics and uses them to construct models 

that predict software faults. The case study shows that the novel measure captures 

different aspects of class cohesion compared to any of the existing cohesion 

measures. In addition, combining C3 with existing structural cohesion metrics 

proves to be a better predictor of faulty classes when compared to different 

combinations of structural cohesion metrics. 

           Different concept has been discussed by B Neate et.al. In 2006 [74] they 

turned toward measuring of the relative importance of components within the 

software structure which was examined in [29]. The use of page rank concept has 

proved it’s successful in allowing search engines to identify important pages in the 

World Wide Web. The authors suggested a new family of metrics, Code Rank, based 

on the same concept used by the Google search engine [29] for ranking web pages. 

Software is modeled as a graph whose nodes represent components of various 

granularities (package, class, method,…etc) and whose edges indicate dependencies 

(invocation, inheritance, overriding, . . . ) between components. Metric values are 

assigned to nodes according to an intuitively-appealing model which describes the 

process in terms of rank flowing through the graph edges.  Interpretation of the 

CodeRank metric values indicates such things as the “importance” of a component, 

its coupling to the remainder of the system and the extent to which it is reused. 

Experiments prove the usefulness of the proposed metrics in different applications.    

In an earlier work [75], for the same purpose the authors suggested to use a similar 

metric called COMPONENT RANK. The main difference between these metrics is 

that the CODERANK is computed based on the weighted graph that represents 

various usage relations between the components and the number of time each usage 

occurs. This research is consistent with the finding that PAGERANK is an 

informative metric. 

         Zhou applied PageRank and HITS algorithms to measure the importance of 

classes [76]. Yi proposed metrics for measuring complexity of relationships among 

classes [77]. In his work, he proposed classes as web pages and relationships among 

classes as links among web pages. He inferred complexity of relationships according 

to the PageRank algorithm.  
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         Lorenz et al. [78] recommend using a wide range of metrics to test the quality 

of models, classes and methods. Various metrics related to coupling, inheritance and 

size of classes and methods play the major role in deducting the quality of the 

software. In [79] authors make an attempt to help decide which metrics out of this 

wide range should be presented to the architect as the most important to look at.  The 

information density property of software metric is proposed as a criterion for 

selecting candidates competing on these resources. Lajios et al. [80] investigated the 

correlation of various software metrics to the defect found in software modules and 

proposed an approach to determine a sets of metrics for quality assessment of 

complex software systems. First they calculated various quantitative, complexities, 

coupling and other metrics at the class level for several similar projects using 

different open source tools. Then they found the correlation of these metrics to the 

history of bugs using machine learning techniques. They found that although some 

of the metrics are more suitable for the assessment of software quality; these metrics 

differ between the analyzed projects even though their natures are similar. They also 

discovered that 5 out of 11 metrics were irrelevant for the analyzed systems. This 

research completes ours in the attempt to find which metrics are informative and 

which are irrelevant. 

 

3.5.1 Metrics based on entropy 

 

Entropy is used in various areas; in software engineering fields, it is applied to 

measure the cohesion and coupling of a modular system, to design a mathematical 

model for evaluating software quality, to define complexity measures, etc. [80, 81, 

82]. Entropy-based metrics enable monitoring of a system’s aging and they are also 

applied to evaluate software degradation [83, 84]. Aging and degradation of 

software are principal concepts in software maintenance; however, most studies 

using entropy have mainly focused on object-oriented systems [80, 84] or general 

modular software [83]. This issue has been investigates by Matinee Kiewkanya and 

Pornsiri Muenchaisri [85]. They present a new interpretation of the entropy metric. 

They argue that the uncertainty of occurrences of developer-defined tokens for class 

names, method names, parameters and variables in the source code is related to the 
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quality of interfaces. This metric is superior to other metrics that assess the overall 

understandability of a software system in terms of metric properties. Although the 

original purpose of the metric is measuring the understandability and maintainability 

in order to estimate further maintenance efforts, this metric could also be used to 

measure the effectiveness of refractory. Zhou [67] and Kang et al. [85] proposed 

measuring the structural complexity of class diagrams based on an entropy distance. 

This method can measure the structural complexity of class diagrams objectively. In 

essence, the Zhou’s and Kang’s metrics are similar. The proposed metrics consider 

the number of relationships among classes, the interaction pattern of classes, and the 

kinds of relationship. Yi et al. [82] presented an empirical analysis of the entropy 

distance metric for class diagrams, specifically Zhou’s metric. This work explored a 

correlation between the entropy distance metric and the three sub-characteristics of 

maintainability: understandability, analyzability and modifiability measured from 

human rating. The experimental result indicated that the metric was basically 

consistent with human beings’ intuition. 

Oleksandr et.al. [86] Proposes a novel interpretation of an entropy-based metric to 

assess the design of a software system in terms of interface quality and 

understandability. The proposed metric is independent of the system size and 

delivers one single value eliminating the unnecessary aggregation step. Although the 

use of entropy for measuring software artifacts is not new [87, 88], this research 

presents a new interpretation of the entropy metric. The authors argue that the 

uncertainty of occurrences of developer-defined tokens for class names, method 

names, parameters and variables in the source code is related to the quality of 

interfaces. 
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3.6 Summary of related studies  

 

The following table summarizes list of previous work along with their strength and 

limitations. 

Table 3.3: Summary of important related works 

No Investigators Research 

/approach 

Strength Limitations 

1 

Törn et al. (1999) 

Complexity 

metrics  

 

Suggests a new measure of 

software complexity called 

structural complexity. 

Programs have to be 

written in “node 

representation”. 

2 

Sheng Yu, Shijie 

Zhou. (2010) 

Comparing different complexity  

metrics 

Comparative study 

doesn’t consider 

studies for using 

semantic aspects for 

measuring complexity 

3 

De Silva, D.I.et.al.  

(2012) 

Compare code complexity 

metrics: McCabe's, Halstead's 

and cognitive functional size 

proposed by Shao and Wangs' 

and identify which metric is the 

most suitable metric.   

Doesn’t consider 

semantic aspects in 

their comparison 

4 
Hartson, H. et.al. 

(1987) 

Investigate the effect of using 

prediction model on reducing 

software complexity 

Using companion of 

metrics may increase 

complexity  

5 Nadine MESKENS 

1996 IEEE 

Integrated 

Metrics  

 

Investigates how to Integrate 

semantic and syntactic aspect to 

reduce maintenance cost.  

Concentrates on 

maintenance only 

6 
Zheng Jian-hua, and 

Wu Jia-pei, 

2006 

Building 

prediction 

models 

introduced the Pseudo-path 

metric model (PPMM) 

Computed range of the 

complexity is not 

reasonable and boor 

mathematical basis  

7 
 (Mertik, M., et.al. 

(2006) 

Construct fault Prediction model 

using data miner tool. 

Using combination of 

method decrease 

performance 

8 Tim Menzies 

(2007) 

Construct defect predictor model 

by using static software 

Only static software 

attributes are 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.De%20Silva,%20D.I..QT.&newsearch=true
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attributes. considered 

9 T.M. Khoshgoftaar 

and N. Seliya. 

(2003) 

Evaluate different predictive 

performance of six commonly 

used fault prediction 

techniques. The results confirm 

that CART-LAD model is the 

best. 

 

10 

Emanuel Giger, 

Martin Pinzger, 

Harald C. Gall 

 

Propose prediction models for 

whether a source file will be 

affected by a certain type of 

source code change. The output 

a list of the potentially change-

prone files ranked according to 

their change-proneness, overall 

and per change type category. 

 

11 

Salwa K 

Using  data 

mining in 

prediction  

 

Produce an efficient metrics-

based data mining clone 

detection approach. 

Applied on medium 

and large systems only 

12 Ensan, F. and Du, W. 

A, 2013. 

Propose metrics that measure 

cohesion and coupling of 

ontologies. Based on semantic 

information. 

All metrics work in 

Employment of 

ontologies  only 

13 
Yuehua Zhang, Ying 

Liu, Lingling  2010 

Proposes a defect detection 

method using data mining 

techniques in source code  

Doesn’t detect implicit 

programming rules 

14 

Tao Xie ;   Taneja, K. 

They develop a novel techniques 

based on mining source code, 

assisting developers to improve 

software reliable.  

Research focus on API 

library only 

15 

Gall, C. S 

2008   

 

 

 

 

 

Analyzing natural language 

(NL) design specifications for 

object-oriented systems by using 

semantic metric. 

Applied for OO 

systems in design 

phase only. 

 Salwa E.H 2004 Uses entropy to measure Does not consider the 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tao%20Xie.QT.&searchWithin=p_Author_Ids:37269659500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Taneja,%20K..QT.&searchWithin=p_Author_Ids:37314422100&newsearch=true


 53 

  

 

 

 

 

 

 

 

 

 

Semantic 

Metrics & 

frameworks 

information contents for (SW) 

based on function 

calls.( P=ni/N)  

effect of this measure 

on quality attributes.  

 

16 
Letha H. tzkorn 

2006 

Discuss three types of 

conceptual and ontology based 

metrics. 

Focused on IR systems 

17 Bo Hu,et.al. 

2006 

Propose formal semantic metrics 

(web semantic). 

Consider only ontology 

18 

 
Jeffrey M. Voas, 

Keith W. Miller 1993 

Propose semantic metrics from 

specifications, to figure out 

functions that tend to hide faults. 

Boor specification may 

lead to unreliable faults 

detectors. 

19 
Larry J. Morell,  

1993 

 propose framework used to 

quantify semantic information  

Include only 

information about 

program execution 

20 Selim Kebir, 

Abdelhak-Djamel 

Seriai 

2012 

Propose an approach for 

identifying components based 

on a fitness function to measure 

the quality of a component.  

The experiments done 

on limited versions of 

system. 

21 B Neate Warwick 

Irwin Neville 

Churcher 

2006 

 

Implemented a tool, 

CODERANKER, to compute 

values of Code Rank metrics 

based on a full semantic model 

also suggested. 

Focus on OO software 

22 

Steffen Zschaler 

2004 

Define elements of a semantic 

framework for non-functional 

specifications of component-

based systems. 

Model doesn’t able to 

identify unspecified 

non- functional  

requirements 

23 
Oleksandr 

Panchenko, Stephan 

H. Mueller, 

Alexander Zeier 

Semantic 

entropy 

 

Proposes a novel interpretation 

of an entropy-based metric to 

assess the design of a software 

system in terms of interface 

quality and understandability.  

The resulting entropy 

value is lower than the 

entropy of  

The actual developer-

defined tokens value. 

24 D. Melamed Study proposed a method for He focus only on how 

http://www.researchgate.net/researcher/5981813_Jeffrey_M_Voas/
http://www.researchgate.net/researcher/64801619_Keith_W_Miller/
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1997 measuring semantic entropy 

using translational distributions 

of words in parallel text corpora. 

to work with words, 

but not  which words to 

work with 

25 
Abd-El-Hafiz, Salwa 

K 2004 

Propose a model to measure 

information content by using 

entropy concept. 

that syntactical rules of 

languages 

decrease entropy 

26 
Yossi Gil !  Maayan 

Goldstein Dany 

Moshkovich 

 

 

Semantic 

metrics in 

OO systems 

Paper describes a new criterion 

for evaluating the competing 

metrics based on a normalized 

version of Shannon’s 

information theoretical 

the decision of using 

one metric is very 

much application 

dependent 

 

27 

 R. SE LVARANI1 

, 2009 

 

Study proposed the design 

complexity of object-oriented 

software with Weighted 

Methods per Class metric 

(WMC-CK metric) expressed in 

terms of Shannon entropy, and 

error proneness 

Using entropy to 

measure only during 

design phase 

28 

 

 

 

Bilong Wen,  Li 

Zhang 2010 

Presents a method to map 

process metrics to the enterprise 

information model automatically 

when the semantic features of 

metric are analyzed. Two 

semantics tree is presented and a 

method to map metric to 

enterprise information model is 

put forward. 

 

29 Gabriele 

Bavota · Andrea De 

Lucia · Andrian 

Marcus · Rocco 

Oliveto. 

 2012 

proposed a new technique for 

automatic re-modularization of 

packages, that uses structural 

and semantic measures to 

decompose a package into 

smaller and more cohesive ones 

 

 

http://link.springer.com/search?facet-author=%22Bilong+Wen%22
http://link.springer.com/search?facet-author=%22Li+Zhang%22
http://link.springer.com/search?facet-author=%22Li+Zhang%22
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4.1 Introduction  

This chapter details out the research methodology used to the current study and 

how data collection, analysis and development of theory processed. It explains the 

research objectives and a suitable methodology to achieve those objectives. As 

mentioned previously in section 1.5 the main objective of the study was to use an 

evaluation approach depends on semantic features of software system as a tool to 

improve quality monitoring. One of the most important research questions addressed 

in section 1.3, whether semantic metrics can contribute to the field of software 

reliability measurement.  It would be useful to know the probability of software 

failure, or the rate at which software errors will occur, and the relationship between 

semantic faults and failure rates as an indicator of software reliability.    

The structure of this chapter is outlined in such a way that the first section 4.2 

presents research strategies used in scientific researches. The subsequent section 

describes the generally accepted approaches to research and validation of the research 

followed by section 4.3 that describe how each step is carried out during research 

process. 

 

4.2 Research Strategy 
 
A large number of research methodologies have been identified, Galliers for 

example listing fourteen, while Alavi and Carlson , reported in Pervan, use a 

hierarchical taxonomy with three levels and eighteen categories [89]. Table 4.1 

below, list the methodologies identified by Galliers [89]. Before introducing the 

methodologies used in this research, we summarize the key features of the key 

methodologies in the table, identifying their respective strengths and weaknesses. In 

the following sections, we justify our choice of methodologies and explain how they 

both operate and interoperate in our research.  
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Table 4.1 Taxonomy of Research Methodologies [89] 

  

 

         Laboratory experiments permit the researcher to identify precise relationships 

between a small numbers of variables that are studied intensively via a designed 

laboratory situation using quantitative analytical techniques with a view to making 

generalizable statements applicable to real-life situations [89]. The key weakness of 

laboratory experiments is the "limited extent to which identified relationships exist 

in the real world due to oversimplification of the experimental situation and the 

isolation of such situations from most of the variables that are found in the real 

world" [89]. 

         Field experiments extend laboratory experiments into real organizations and 

their real life situations, thereby achieving greater realism and diminishing the extent 

to which situations can be criticized as contrived. In practice it is difficult to identify 

organizations that are prepared to be experimented on and still more difficult to 

achieve sufficient control to make replication viable [98].  

Surveys enable the researcher to obtain data about practices, situations or views at 

one point in time through questionnaires or interviews. Quantitative analytical 

techniques are then used to draw inferences from this data regarding existing 

relationships. The use of surveys permits a researcher to study more variables at one 

time than is typically possible in laboratory or field experiments, whilst data can be 

collected about real world environments. A key weakness is that it is very difficult to 

realize insights relating to the causes of or processes involved in the phenomena 

measured. There are, in addition, several sources of bias such as the possibly self-
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selecting nature of respondents, the point in time when the survey is conducted and 

in the researcher him/herself through the design of the survey itself.[89] 

        Case studies involve an attempt to describe relationships that exist in reality, 

very often in a single organization. Case studies can be considered weak as they are 

typically restricted to a single organization and it is difficult to generalize findings 

since it is hard to find similar cases with similar data that can be analyzed in a 

statistically meaningful way. Furthermore, different researchers may have different 

interpretations of the same data, thus adding research bias into the equation. 

         Simulation involves copying the behavior of a system. Simulation is used in 

situations where it would be difficult normally to solve problems analytically and 

Typically involves the introduction of random variables. As with experimental forms 

of research, it is difficult to make a simulation sufficiently realistic so that it 

resembles real world events [89]. 

             Forecasting/futures research involves the use of techniques such as 

regression analysis and time series analysis to make predictions about likely future 

events. It is a useful form of research in that it attempts to cope with the rapid 

changes that are taking place in IT and predict the impacts of these changes on 

individuals, organizations or society. However, it is a method that is fraught with 

difficulties relating to the complexity of real world events, the arbitrary nature of 

future changes and the lack of knowledge about the future. Researchers cannot build 

true visions of the future, but only scenarios of possible futures and so impacts under 

these possible conditions [89]. 

             Subjective/argumentative research requires the researcher to adopt a creative 

or speculative stance rather than act as an observer. It is a useful technique since new 

theories can be built, new ideas generated and subsequently tested. However, as an 

unstructured and subjective form of research, there is a strong chance of researcher 

bias. 

            Action research is a form of applied research where the researcher attempts 

to develop results or a solution that is of practical value to the people with whom the 

research is working, and at the same time developing theoretical knowledge. As with 

case studies, action research is usually restricted to a single organization making it 

difficult to generalize findings, while different researchers may interpret events 
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differently. The personal ethics of the researcher are critical, since the opportunity 

for direct researcher intervention is always present [89]. 

 

4.3 Research Process and Methods 

 

The research reported in the study was done in an iterative manner. To begin with, 

a review to the current state of art is done to capture knowledge about kinds, 

classification and uses of different software metrics.  While, the major research in 

this area is focusing on syntactical aspects of software, few of them address 

semantic concepts. As discussed in chapter 3, measuring quality attributes by using 

only syntactic aspects has much limitation. Based on findings of literature review a 

new set of metrics are suggested to overcome the limitations of existing tools. 

Suggested metrics integrates semantic aspects of software to improve software 

reliability monitoring.  Metrics are divided to cover three phases fault detection, 

error prevention and recover. Suggested metrics are modeled and evaluated 

theoretically and empirically against the research objectives. The evaluation 

process is iterative each time research objectives are re-examined to ensure that 

work is going in the right direction. Two methodologies are adopted in the research:  

1. Empirical research, which attempts to highlight statistical relationships 

without attempting to justify them/ explain them. 

2. Analytical research, which attempts to characterize software quality 

attributes from semantic metrics. 

Referencing to figure 1.1 that illustrates detailed research process. The work can be 

divided into major phases as the following: 
 

 

4.3.1 Define research goals 

Research goals are identified previously, based on previous studies. The main goal is 

to monitor/control software reliability by using set of semantic metrics.  
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4.3.2 A literature study. 

 

An extensive study was performed to survey what have been done in the area. 

Advantages \ limitations are pointed for each study and if it is will be considered or 

not in this study. Section 3.2 highlights this issue. 

  

4.3.3 Data Collection 

 

During this phase we must identify what quantifiable attributes can help to achieve 

the goals set forth in the previous phase. Study focused on computing quantitative 

functions that reflect a program’s potential for fault tolerance; the suggested 

approach involves analyzing the program as well as its specification. The focus on 

fault tolerance comes from two findings derived from previous studies: 

- Northrop et al. in [90] stated that, to control the quality of software specially 

large ones (Ultra Large Scale systems) it is better to consider Marco level 

analysis rather than minute statement-level detail; 

- Patterson and Fox [91] argue the favor of controlling software quality 

through making error recovery, rather than straining to find and remove 

faults in software products. 

Both these findings are considered in the present study. 

 

4.3.4  Prepare / analyze data 
 

Based on previous studies both reliability data and standard used programs in 

addition to, the most widely used metrics such as LOC, McCabe, Halstead, number 

of faults and fault density… etc. are collected to be used for both empirical and 

analytical research. 

  

4.3.5 Design assumptions 

 

In this stage assumptions are stated to be tested after work completion. Assumptions 

can be abbreviated as follow: 

- Semantic metrics can be used to improve software reliability measurement. 
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- The statistical model could be used to predict probability of software failure 

based on semantic features. 

Four metrics are suggested to cover the stages of fault tolerance: error detection, 

failure detection, error maskability and error recovery. Any of these measures is 

going through multiple development steps figure 4.1 shows simple explanation of 

these steps: 

     

 

Figure 4.1: Steps for Defining Metrics 

 

4.3.6 Proposed solution/ implementation/testing  

 

According to defined goals four semantic metrics are suggested to measure program 

ability to be fault tolerance by detecting errors at run-time and avoid failure. The 

proposed solution are further tested and evaluated. Only one of the suggested 

metrics is implemented. The following are brief about these metrics [8]: 

- A measure of state redundancy, which used to check state consistency. 
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- A measure of functional redundancy, abstract number, used to check 

program function correctness. 

- A measure of maskability, consider program ability to mask error. 

- A measure of recoverability indicates the bandwidth of loss that a program 

state can sustain while still satisfying the specification. 

Metrics are discussed in more details in chapter 6. 

 

4.3.7 Evaluation  

 

In the evaluate phase, there is a need to evaluate the selected metrics to assess their 

fitness for the goals established in the first phase. Two methods are selected to 

evaluate the fitness of metrics: an analytical approach, which aims to compute or 

approximate quality attributes from semantic metrics; and an empirical approach, 

which collects statistical data regarding the link between semantic metrics and 

observations of quality in software systems. For empirical approach, the correlation 

between functional quality attributes (reliability, fault tolerance) and semantic 

metrics are estimated. Both regression and correlation techniques are used. For 

analytical approach, software failure life cycle are considered, Semantic metrics are 

integrated to measure factors affects failure. Statistical model are applied to measure 

probability of failure. Finally, multiple refinement process is done to insure 

achieving research goals. This issue will be discussed in (7.2 and 7.3). 

 

4.4 Chapter summary 
 

The chapter presents methodology followed during research steps including data 

collection and analysis then spot light on proposed solution and methods used to 

evaluate this solution. 
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5.1 Introduction  
 

Nowadays a high number of software projects fail to follow their specified 

requirements regarding time, budget and specifications. Also their maintenance 

effort is higher than their implementation effort [4]. Thus, there is a great need for 

software metrics, in order to aid towards the overcoming of this “software crisis". 

Also, the results of the software metrics are not used efficiently enough to be able to 

direct those actions which will lead towards the improvement of the software's 

quality. This is because the metric's results are not fully analyzed and interpreted. 

Software engineering relies on quantitative analysis to support decision making that 

pertains to the management of products and processes. To this effect, researchers 

have long been interested in defining and analyzing metrics results that capture 

properties of software products and software processes, to such an extent that 

software metrics have long since outgrown the laboratory stage and are now the 

subject of regular textbooks [3,10,14], and common industrial practice. One of the 

major software components that should be measured is reliability. IEEE 982.1-1988 

defines Software Reliability Management as “The process of optimizing the 

reliability of software through a program that emphasizes software error prevention, 

fault detection and removal, and the use of measurements to maximize reliability in 

light of project constraints such as resources, schedule and performance”[10]. Three 

different techniques / mechanisms used to improve software reliability:  

1. Error prevention. 

2. Fault detection and removal. 

3. Fault tolerance. 

4. Fault/failure forecasting 

The following sections explain these techniques used to improve reliability starting 

by distinction between fault, error and failure concepts.  
 

5.2 Faults / Error/Failure concepts: 

The terms errors, faults and failures are often used interchangeable, but they have 

different meanings. In software, fault is usually a programmer action or omission 

that may results in an error.[3] 
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An error is a software defect that causes a failure, and a failure is the unacceptable 

departure of a program operation from program requirements. When measuring 

reliability, only defects found and defects fixed are usually measured [92]. If the 

objective is to fully measure reliability the focus will be on prevention as well as 

fault tolerance.  It is important to recognize that there is a difference between 

hardware failure rate and software failure rate. Software however, has a different 

fault or error identification rate. For software, the error rate is at the highest level at 

integration and test. As it is tested, errors are identified and removed. This removal 

continues at a slower rate during its operational use; the number of errors continually 

decreasing, assuming no new errors are introduced. Software does not have moving 

parts and does not physically wear out as hardware, but it becomes unable to achieve 

the renewable requirements [92].  

 

5.3  Software Reliability mechanisms 

5.3.1 Fault prevention:  

This mechanism is the initial defensive mechanism against unreliability. A fault 

which is never created costs nothing to fix. Fault prevention is therefore the inherent 

objective of every software engineering methodology. General approaches include 

formal methods in requirement specifications and program verifications; early user 

interaction and refinement of the requirements, disciplined and tool-assisted 

software design methods, enforced programming principles and environments, and 

systematic techniques for software reuse [39]. 

  

5.3.2 Fault removal: 
 

Used to detect, by verification and validation, the existence of faults and eliminate 

them. Fault prevention mechanisms cannot guarantee avoidance of all software 

faults. When faults are injected into the software, fault removal is the next protective 

means. Two practical approaches for fault removal are software testing and software 

inspection, both of which have become standard industry practices in quality 

assurance. Directions in software testing techniques are addressed in [47] in detail. 
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When inherent faults remain undetected through the testing and inspection processes, 

they will stay with the software when it is released into the field [39]. 

5.3.3 Fault tolerance: 

It is the last defending line in preventing faults from manifesting themselves as 

system failures. Fault tolerance is the survival attribute of software systems in 

terms of their ability to deliver continuous service to the customers. Software 

fault tolerance techniques enable software systems to: 

 (1) Prevent dormant software faults from becoming active.  

 (2) Recover software operations from erroneous conditions. 

 

5.3.4 Fault/failure forecasting: to estimate, by evaluation, the presence of 

faults and the occurrences and consequences of failures. This has been the main 

focus of software reliability modeling. It involves formulation of the fault/failure 

relationship, an understanding of the operational environment, the establishment of 

software reliability models, developing procedures and mechanisms for software 

reliability measurement, and analyzing and evaluating the measurement results [39].  

         The ability to determine software reliability not only gives us guidance about 

software quality and when to stop testing, but also provides information for software 

maintenance needs.  
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5.4 Information theory  and entropy 
   

5.4.1 Information theory 

Information theory is a branch of applied mathematics, electrical engineering, and 

computer science involving the quantification of information. Information theory 

was developed by Claude E. Shannon to find fundamental limits on signal 

processing operations such as compressing data and on reliably storing and 

communicating data. Since its inception it has broadened to find applications in 

many other areas, including statistical inference, natural language processing, 

cryptography, neurobiology, thermal physics, plagiarism detection and other forms 

of data analysis [93]. 

A key measure of information is entropy, which is usually expressed by the average 

number of bits needed to store or communicate one symbol in a message. Entropy 

quantifies the uncertainty involved in predicting the value of a random variable. The 

following subsections define these concepts [93]. 

 

5.4.2 Relational mathematics 
 

The main source of this section is [94], to which the interested reader can referred, 

for further details.  Consider a set S defined by the values of some program variables, 

say x, y and z; typically denote elements of S by s, and note that s has the form s = 

<x, y, z>. The following notation x(s), y(s), z(s) are used to denote the x-component, 

y-component and z-component of s, respectively. A relation on S is a subset of the 

Cartesian product S × S. Constant relations on some set S include the universal 

relation, denoted by L (=S×S), the identity relation, denoted by I, and the empty 

relation, denoted byϴ.  

Because relations are sets, the usual set theoretic operations can be applied between 

relations such as: union (∪), intersection (∩), and complement (𝑅). Operations on 

relations also include the converse, denoted by Ȓ, and defined by Ȓ = {(s, s′)|(s′, s) є 

R}. The product of relations R and R′ is the relation denoted by R ◦ R′ (or RR′) and 

defined by R◦R′ = {(s, s′)|∃ s′′ : (s, s′′) ∈  R∧ (s′′ , s′) ∈  R′}. The domain of relation R 

is defined as dom(R) = {s|s′: (s, s′) є R}. The range of relation R is denoted by rng(R) 

and defined as dom(Ȓ). We admit without proof that for a relation R, RL = {(s, s′)|s 

http://en.wikipedia.org/wiki/Quantification
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Statistical_inference
http://en.wikipedia.org/wiki/Information_theory#cite_note-7
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Symbol_(data)
http://en.wikipedia.org/wiki/Random_variable
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є dom(R)} and LR = {(s, s′)|s′ є rng(R)}. The nucleus of relation R is the relation 

denoted by μ(R) and defined as RȒ. The co-nucleus of relation R is the relation 

denoted by (R) and defined as ȒR. 

We say that relation R is total if and only if μ(R) = L and we say that relation R is 

surjective if and only if co-nucleus (R) = L. Given two relations R and R′ that have 

the same domain, we say that R is more-injective than R′ if and only if μ(R) ⊆  μ(R′) 

and we say that R is injective if and only if it is more-injective than I; the name 

more-injective may be misleading, given that we are talking about a reflexive 

ordering (it should be more-injective-than-or-as-injective-as), but we adopt it for 

convenience. Given two relations R and R′ that have the same range; we say that 

relation R is deterministic if and only if it is more-deterministic than I. 

 

      5.4.3   Entropy  
 

       Entropy is a measure of unpredictability of information content.  In this context, 

the term usually refers to the Shannon entropy, which quantifies the expected value 

of the information contained in a message.[93] The following is the main equation of 

entropy measured for variable X: 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖) log(𝑃(𝑥𝑖))

𝑛

𝑖=1

 

Where: 

 log is the base 2 logarithm, 

 X = {x1, x2, x3, ... xn}, 

 P (xi) is the probability of the event: X = xi. 

  

Entropy is typically measured in bits [93]. Shannon entropy is the average 

unpredictability in a random variable, which is equivalent to its information content. 

Shannon entropy provides an absolute limit on the best possible lossless encoding or 

compression of any communication, assuming that the communication may be 

represented as a sequence of independent and identically distributed random 

variables. 

        Entropy, especially the Shannon entropy, is used in various and diverse 

software engineering applications. For example, the entropy concept is used in 

http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-2
http://en.wikipedia.org/wiki/Entropy_(information_theory)#cite_note-3
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designing mathematical models for software quality evaluation [68] and in providing 

mechanisms for selecting optimum reuse candidates. 

Recently, many researchers move toward using entropy in software quality 

measurement as discussed previously (see section 3.5.1).  

The following are some possible interpretations of entropy in software [71]: 

 Entropy of a probability distribution is the expected value of the information 

of the distribution. 

 Entropy is related to how difficult it is to guess the value of a random 

variable X. 

  Entropy indicates the best possible compression for the distribution, i.e. the 

average number of bits needed to store the value of the random variable X. 

According to above equation, study admit without proof that H(X) ≥ 0;and the 

expression p log(p) equals zero when p equals 0, hence the entropy function may be 

applied to probability distributions that are not necessarily non-zero for all xi [8]. 

Intuitively, the entropy of random variable X represents the amount of uncertainty 

regarding the outcome of the random variable, and takes its maximal value (which is 

log(n)) when all the outcomes are equally likely (π(xi ) = 1 n for all i ). 

Given two random variables X and Y on sets X and Y , and let πX and πY be 

probability distributions of X and Y over their respective sets; let πXY be the 

probability distribution  of the events (X = xi ∧Y = y j ) over the Cartesian product X 

× Y [8]. 

The joint entropy of X and Y denoted by H(X, Y)and represents the entropy of the 

aggregate random variable (X, Y) over the set (X × Y). Using this 

Definition, let the conditional entropy of X with respect to Y be denoted by H(X|Y ) 

and be defined as follows: 

H(X|Y ) = H(X, Y ) − H(Y ). 

Whereas the entropy of X represents the amounts of uncertainty about the outcome 

of X, the conditional entropy of X with respect to Y represents the amount of 

uncertainty about the outcome of X once the outcome of Y is known. The conditional 

entropy is non-negative because the joint entropy of (X, Y) is greater than or equal to 

the entropy of Y. 
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      Given a random variable X that takes its values in some space S, and given a 

function G on X, let Y be the random variable Y = G(X),whose probability 

distribution is derived from that of X, i.e., 

πY (Y = y) = _ ∀x:G(x)=yπX (X = x). 

 

Then, the result is the inequality [93]: H(X) ≥ H(Y). In other words, applying a 

function to a random variable reduces its entropy (due to possible loss of 

information). If G is total and injective, then H(G(X)) = H(X). 

To conclude this section, following section introduces a concept used throughout 

this study to assign intuitive interpretations to semantic metrics.  

Definition 1[8]:  
 

Consider a set S and a predicate (A) on S, and let SA be the subset of S defined by 

elements of S that satisfy A(s). The bandwidth of assertion A is defined as: 

H(S) − H(SA). 

E.g. consider a set S defined by three integer variables, say x, y and z. Under the 

hypothesis of uniform probability distribution, and assuming that integers are 

represented by 32-bit words, the entropy of S is 96 bits. By considering the 

following predicate: 

A(s) as x = y. 

H (SA) = 64 bits, then the bandwidth of Assertion is 32 bits, which is the width of 

the two expressions (x and y) involved in assertion A. entropy are used in the study 

to define semantic metrics that contribute to software reliability measurement. 

 

5.4.4 Measuring information content: 

 

          Measuring software information content for the information measures to be as 

independent as possible of any product abstractions, by following the general 

definitions of software systems and modules introduced in [71]. A software system S 

= <E, R> is defined as a set of elements, E, and a binary relation, R, on them. Given 

a system S = <E, R>, a system m = <Em, Rm> is a module of S if and only if Em is 

a subset of E and Rm is a subset of R. For example, E can be the set of functions and 

R can be the set of calls from one function to another. A module m may be a group 
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of functions. To measure the information content of software systems two different 

issues must be addressed.  

The first issue is about which entropy is suitable for measuring software information.  

The second issue is about which parts of the source code should be treated as the 

symbols emitted from the information source (the software system).  

The relation between entropy and information gain could be abbreviated in “the 

more Shannon entropy, the more information gained after learning the outcome of 

probabilistic event”[71]. 

On the other hand, the information content of a system consisting of two modules is 

not greater than the sum of the information expected from the individual 

experiments.  

That is, H(S) H(m1) + H(m2). 

M1 and m2 represent modules names. The information gained from a system can be 

less than the summation of the information gained from its two constituent modules 

because of several reasons such as repeated calls to the same functions or repeated 

usage of the same abstract data types. As long as two modules are in the same 

system, they are, somehow, dependent. 

 

5.5   Chapter Summary  
 

   The chapter introduced major concepts related to reliability mechanisms such as 

fault prevention, fault detection and fault tolerance.  Recently, much research 

considers the use of information theory to improve reliability. This issue is 

investigated starting by defining the main concepts of information theory – entropy 

and set theory.  Finally, it introduced how to measure information gain using these 

concepts.  
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6.1 Introduction  
 

Most of the software metrics that are being used nowadays (and certainly the most 

widely known) are based on syntactic attributes of software artifacts; they reflect 

how a program is represented, but not what a program does; yet, many important 

program attributes may have more to do with the latter than the former[8]. In 

addition, many software attributes of interest are not intrinsic to the software product 

and also involve the specification that the software product is supposed to satisfy; 

hence if we want metrics to reflect relevant quality attributes, we need to pay 

attention not only to the software product, but also to its specification. 

All of the research that has been done on the correlation between software metrics 

on one hand and fault density, fault proneness, and fault forecasting on the other 

hand, do not consider given specifications; yet a fault is a fault only with respect to a 

specification. In order to be more comprehensive, software metrics ought to take into 

account attributes of specifications along with attributes of programs [10].  

In the study, a number of software metrics that reflect semantic properties of 

software products are introduced, which is independent of the minute details of how 

products are represented. 

As mentioned in section (4.2) the work will proceed according to multiple phases 

such as:  

 The Establishment phase, in which goals should be defined. 

 The Extraction phase, determines the attributes used to achieve the goals. 

 The Evaluation phase, evaluate the selected metrics to assess their fitness for 

the goals established in the first phase. study envision two venues to evaluate 

the fitness of proposed metrics: an Analytical approach, which aims to 

compute or approximate quality attributes from semantic metrics; and an 

empirical approach, which collects statistical data regarding the link between 

our semantic metrics and observations of quality in software systems. 

 The Execution phase, deploys the selected metrics, once they are validated. 

The software metrics that will present in the coming sections are semantic in the 

following sense: they view software products as aggregates of spaces, functions and 

relations; furthermore they reflect the set theoretic properties of theses spaces, 
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functions and relations. The discussion is conducted in the context of C-like 

procedural programs, but can be extended to include other types of programs.  

 

6.2 Fault tolerance Methodology 
 

The main source for this section is [8]. Consider a program g on some space S, of 

the form       

                                               g = {g1; L: g2;} 

Where g1 and g2 are subprograms and L is a label preceding g2. We let R be a 

relation on S that represents the specification that g must meet, and we let s0 be an 

arbitrary initial state of g. 

 A fault in program g is a feature of g that precludes it from satisfying its 

specification.  

 An error of the program at label L for initial state s0 is a state that is distinct 

from the expected state at this label;  

 A fault may or may not cause a fault at label L, depending on the initial state s0; 

when a fault does cause an error, we say that it has been sensitized by the initial 

state s0.  

 A failure of program g occurs whenever the error that arises at label L causes 

the program to fail to produce a correct (with respect to R) final state for initial 

state s0. An error at label L may cause a failure of the program, in which case 

we say that the error has been propagated; it may also cause no failure, in this 

case the error said it has been masked. 

Program g considered as fault tolerant if and only if it has provisions for avoiding 

failure after faults have caused errors. Study considers three phases in the fault 

tolerance process: 

 Error Detection, when the program detects an inconsistency that indicates 

that the program state is erroneous.  

 Damage Assessment, when the program analyzes the current state to 

determine whether it is maskable or recoverable (in which case recovery is 

necessary and sufficient) or unrecoverable (in which case recovery is 

insufficient).  
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 Error Recovery, when a recovery is invoked to map the recoverable state into 

a maskable state and let the computation resume from label L.  

 

As an illustration, consider the space S defined by a natural variable, let the 

specification be relation R defined by    

𝑅 = {(𝑠, 𝑠′)| 𝑠′𝑚𝑜𝑑 3 = 𝑠2 𝑚𝑜𝑑 3} 

Let g be the program g = {read(s); s=2*s; L: s = s mod 6; write(s);}  

The intent of the programmer was for g to compute the following function: 

𝐺 = {(𝑠, 𝑠′)| 𝑠′ = 𝑠2 𝑚𝑜𝑑 6}  

Which would have been correct with respect to R (in the sense of [15]), since G and 

R are both total, and G ⊆  R, as shown below: 

𝑠′ = 𝑠2 𝑚𝑜𝑑 6  ⇒ s′𝑚𝑜𝑑 3 = (𝑠2 𝑚𝑜𝑑 6)𝑚𝑜𝑑 3 =  𝑠2 𝑚𝑜𝑑 3 . 

But the programmer wrote the statement s = 2*s instead of the statement s=s*s, 

creating a fault. This fault may or may not be sensitized, depending on the input 

value: 

 For 𝑠0 = 2, the fault is not sensitized, since the expressions 𝑠 ∗ 2 and 𝑠 ∗ 𝑠 

return the same value for s = 2.  

 For 𝑠0 = 6, the fault is sensitized, causing an error (s = 12 rather than s = 36 

at label L), but the error is subsequently masked (since 12 mod 6 = 36 mod 6 

at the end of the program).  

 For 𝑠0 = 3, the fault is sensitized, leading to an error (s = 6 instead of s = 9 at 

label L); the error is subsequently propagated, causing a failure (s = 0 instead 

of s = 3 in the final state); in this instance, program g failed to behave 

according to its intended function G, but did not fail with respect to its 

specification R, since 

  𝑠0𝑚𝑜𝑑 3 = 9 𝑚𝑜𝑑 3 = 0 = 0 𝑚𝑜𝑑 3. 

Hence, strictly speaking, it satisfies its specification for 𝑠0 = 3.  

 Finally, for 𝑠0 = 4, the fault is sensitized, leading to an error (the state at 

label L is 𝑠 ∗ 2 = 8   rather than 𝑠 ∗ 𝑠 = 16 ); this error is propagated, 

leading to a final state that is distinct from the expected final state (the output 

is s = 2 rather than s = 4); this final state violates the specification, since 2 
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mod 3 6= 4 mod 3; in this case, the program failed to compute the expected 

final state, and also failed to satisfy the specification of the program. 

The same fault may cause different chains of events, depending on the input. In 

order to be fault tolerant, a program must make provisions for error detection (to 

recognize when the potential of a failure may arise), error masking (to limit cases 

when recovery is necessary), and error recovery (to map a recoverable state into a 

maskable state, and let the computation proceed).  The following sections describe 

these issues. 

 

6.3 Error detection: redundancy  
 

Broadly speaking, redundancy is the property of using more data than is needed to 

represent some information. Whereas redundancy is usually defined in terms of 

duplicating elements of data (bits, words, etc), we model it instead as an algebraic 

property of the representation function, i.e., the function that maps information onto 

data. We distinguish between two types of redundancy in a program: state 

redundancy and functional redundancy.  

 

6.3.1 State redundancy 

 

State redundancy can be seen as defining extra variable size than required. Given a 

program g on space S, it is fair to say that in general, not all elements of S represent 

valid program states. E.g. defining variable to indicate student age as an integer 

value, even though, only a limited range will be used. The simplest representation 

relations are those that are [8]: 

 Total (each state value has at least one representation), 

 Deterministic (each state value has at most one representation). 

 injective (different states have different representations), 

 Surjective (all representations represent valid states). 

Not all representation functions satisfy these four properties. Study limited to 

representation relations that are deterministic, total, and injective—whence each 

state value has exactly one representation (by virtue of totality and determinacy) and 
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different state values have different representations (by virtue of injectivity). Under 

this assumption, representation relations refer to as representation functions. 

Study is interested to quantify the redundancy of the state of a program. To this 

effect, there is a need to distinguish between the actual state space of the program, 

which defined as the set of states that the program may be in, and the declared state 

space of the program, which is the set of values that the declared program variables 

may take. We let ρ be the function that maps each actual state onto its representation 

as an aggregate of values of the declared variables. The state redundancy of program 

is defined by means of the representation function, as follows. 

 

Definition 1 Let g is a program, and let  be the set of actual states of g, and S be 

the set of declared states of g. 

 If we let ρ be the representation function that to each actual state σ assigns its 

representation in S, then we define the redundancy of ρ as:  

                                              κ(σ) = H(S) − H(ρ(σ )). 

If ρ is total, deterministic and injective, then H(ρ(σ )) is equal to H(σ ); hence,  when 

the representation function is total and injective, its redundancy can be written as: 

                                        κ(ρ) = H(S) − H(σ ). 

Typically, the set of declared states is fixed for a given program block (which is the 

scope of typical variable declarations), but the set of actual states varies as the 

program proceeds through its execution; hence the redundancy of a state 

representation may vary from one step to the next through the execution of a 

program.  

The state redundancy of the initial state reflects the gap between the minimal 

bandwidth required to store the program state and the actual bandwidth reserved to 

that effect. The state redundancy of the final state reflects the maximum bandwidth 

of relationships that hold between program variables as a result of the execution of 

the program. 

As an illustration of this definition, consider a simple program that reads two 

integers included between 1 and 1,024 and computes their greatest common divisor. 

                        {    int x, y; cin << x << y; 

                              // initial state 
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                              while (x!=y) {if (x>y) {x=x-y;} else 

                              {y=y-x;}} 

                              // final state         } 

 

Example1: Computes greatest common divisor 

The declared state space of the program includes two integer variables, which we 

assume to be of width 32 bits; then     H(S) = 2 × 32 bits = 64 bits. 

As for σI, it consists of two integer values ranging between 1 and 1,024;                

                                  H(σI ) = 2 × log(1,024) bits = 20 bits. 

We derive the state redundancy of the initial state as: 

κ(σI ) = 44 bits. 

For the final state, the declared state space is the same, but the actual range of states 

is now reduced to a single value between 1 and 1,024, since variables x and y are 

identical. Then    κ(σF ) = 64 bits − 10 bits = 54 bits. The state redundancy of this 

program is ranging between κ(g) = [44 bits..54 bits].  

 

6.3.2 Functional redundancy 
 

Whereas state redundancy reflects the excess data in the representation of a state, 

and can be used to check consistency conditions within the variables of a state, 

functional redundancy reflects the excess output data generated by a program 

function, and can be used to check (partially or totally) whether the function has 

executed properly. Whereas the redundancy of a state is equated with the non-

surjectivity of the representation function (mapping actual states to their 

representation), the functional redundancy of a program is equated with the non-

surjectivity of the program function (mapping initial states to final states, or inputs to 

outputs). 

 

Definition 2:  

Consider a program g on space S, and let G be the function defined by g on S.  Let S 

be a random variable that takes its values in set S, and Y be a random variable that 

takes its values in the range of G. The functional redundancy of program g is 

denoted by φ(g) and defined by: 
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φ(g) = (H(S) − H(Y ))/ H(Y ). 

Intuitive interpretation the functional redundancy of a program g is the ratio of the 

excess information that represents the output of g prorated to the entropy of the 

output produced by g. The functional redundancy of a program g may be used to 

check (partially or totally) the correctness of the output produced by the program, or 

even to generate the correct output. So, if φ(g) = 0, there is no scope for checking 

any property; 

If  0 < φ(g) < 1 

Then part of results could be checked against redundant information; if φ(g) > 0, 

then H(G(S)) × φ(g) represents the bandwidth of assertions that may be checked on 

the functional properties of G.  

For example, if program g computes the values of five integers, and φ(g) = 0.2, then 

there may be sufficient redundancy to check that one of the five values is computed 

correctly. Knowing the value of φ(g) does not tell us how to use the redundant 

information; but if we identify and use it, it can tell us whether we are using all the 

available redundant information. e.g. considers the following functions. A denotes 5 

bit variable, so functional redundancy will be: 

Table 6.1: Measured functional redundancy 

Name Expression Input Output Redundancy Comment 

F1 X A A 0 All bits are used 

F2 X * 2 A A 0.25 Rightmost bit contains 0 

 

 

6.4 Error masking: program non-injectivity  
 

Whereas state and functional redundancy enable to detect errors, maskability enables 

to mask them, i.e., produce a subsequent state that bears no trace of the error. What 

makes this possible in practice is the non-injectivity of programs, i.e., their ability to 

map distinct states into a single image. The following definition offers a way to 

quantify the non injectivity of program functions. 
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Definition 5 Let g is a program on space S, whose function is G. Let X be a random 

variable that takes its values in the domain of G and let Y be defined as Y = G(X). 

The non-injectivity of program g is denoted by θ(g) and defined by: 

θ(g) = H(X|Y ). 

The conditional entropies are non-negative, hence θ (g) ≥ 0. To justify this definition, 

study proceeds in two steps: first, assume a uniform probability distribution over 

variable X; then the entropy of X given Y measures the amount of uncertainty of the 

initial state of g if the final state is known; this quantity is a natural representation of 

non-injectivity, in the sense that the more initial states map to the same image, the 

bigger the entropy. Second, consider the question: why does a non-uniform 

probability distribution represent smaller non-injectivity? The answer is that with a 

non-uniform probability distribution, fewer possible input values have a higher 

probability of occurrence, culminating in a smaller set of inputs mapping to a single 

output, hence a less injective behavior. 

       Intuitive interpretation the non-injectivity of program g is expressed in 

Shannon bits and represents the bandwidth of error that the program can potentially 

mask. For example, if the program handles integer variables of width w each, and 

the non-injectivity of g is w bits, the program may potentially mask the loss of an 

integer variable; for the same amount of injectivity, the program may also recover 

from the violation of an assertion whose bandwidth is w (e.g., an equality between 

two integer expressions); if the non-injectivity is 2w, the program can potentially 

mask the loss of two integer variables, etc. Knowing the value of the program’s non-

injectivity does not tell us what variables may not be lost, nor which assertion may 

be violated, but gives us some indication of the magnitude of error that can be 

masked without outside intervention.  
 

Proposition 1 Let g be a program on space S, whose function is G. Let X be a 

random variable that takes its values in the domain of G and let Y be defined as Y = 

G(X). The non-injectivity of program g can be written as: 

θ(g) = H(X) − H(Y ). 



 81 

Proof According to [93], H(X|Y ) = H(X, Y )−H(Y ),where H(X, Y ) is the joint 

entropy of X and Y . Given that study consider deterministic programs, Y is a 

function of X, hence  

H(X, Y) = H(X). Then     

θ(g) = H(X) − H(Y ). 

In practice, there is a need to derive rules allows to compute the non-injectivity of a 

program by analyzing its source code.  Figure 6.1, shows the meaning of non-

injectivity metric. 

 

Figure 6.1: A diagram showing a function that is not injective [95] 

 

Example: if we consider example (1) in section (6.3.1). The non-injectivity equals:  

θ(g) = H(X) − H(Y ). 

H(X) = 2w, assuming w is 32bit. H(Y) = 2w, then θ (g) =0. 
 

Proposition 2 The non-injectivity of a sequence of programs is the sum of their non-

injectivities: 

θ(g1; g2) = θ(g1) + θ(g2). 

Proof:  let X, Y, and Z be the random variables representing the state of the program 

before g1, between g1 and g2, and after g2. We have:  

θ(g1) = H(X) − H(Y ), and  θ(g2) = H(Y ) − H(Z), hence θ(g1) + θ(g2) = H(X) − 

H(Y )+ H(Y )− H(Z), which simplifies to (H(X)− H(Z)), which is θ(g1; g2) 

Program Non-injectivity can be computed by knowing program function without 

have to go through the inductive statement-by-statement analysis. 
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6.5   Error recovery: Specification flexibility 
 

A program may fail to compute its intended function and yet still behave according 

to the specification it is intended to satisfy [8]. 

 

 Definition 6:  We consider a specification R under the form of a binary relation on 

some space S, and we let X be a random variable that takes its values in the domain 

of R and Y be a random variable that takes its values in the range of R in such a way 

as to maintain the condition (X,Y) є R. The non-determinacy of specification R is 

denoted by χ(R) and defined by: 

χ(R) = H(Y |X). 

A specification is all the more non-deterministic (flexible) that the conditional 

entropy of its output states for a given input state is greater; bigger entropies are 

equated with larger sets of possible outputs, and more uniform probability 

distribution of the occurrence of these outputs. 

Intuitive interpretation the non-determinacy of a specification is expressed in 

Shannon bits and represents the bandwidth of deviation of candidate programs from 

their intended function that does not violate the specification, figure 6.2, shows the 

meaning of non-determinacy. For example, if state S includes integer variables of 

width w and we find that the non-determinacy of R is w, then we can lose up to one 

integer variable and still satisfy the specification. Non-determinacy of this 

specification can be computed by using the formula: 

χ(R) = H(X, Y ) − H(X). 

 

 

Figure 6.2: Meaning of non-determinacy.  

 

 

X

𝑦1, 𝑦1 … . 𝑦𝑛  
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Illustration: Consider the following specification defined on space S of natural 

variables, and is defined by: 

𝑅 = {(𝑠, 𝑠′)|𝑠 𝑚𝑜𝑑 3 = 𝑠2 𝑚𝑜𝑑 3}    [8] 
 

Let X and Y are random variables that range over S in such a way as to maintain the 

property: 

𝑦 𝑚𝑜𝑑 3 =  𝑥2 𝑚𝑜𝑑 3. 
 

The non-determinacy of relation R using the expression: 
 

χ(R) = H(X, Y ) − H(X), 
 

Using the uniform probability distribution of X and Y. We find, H(X, Y) = 2w − log 

(3), and H(X) = w. Hence, 

χ(R) = w − log(3)    
 

6.6 Summary of Semantic Metrics 
 

In keeping with the foregoing premises, we have derived four semantic metrics, 

which measure a program’s ability to detect errors at run-time and avoid failure. 

1. A measure of state redundancy, which quantifies the non-surjectivity of state 

representations, is expressed in Shannon bits, and indicates the bandwidth of 

assertions that can be checked to ensure state consistency. 

2. A measure of functional redundancy, which quantifies the non-surjectivity of 

program functions, is expressed as an abstract number, and indicates the ratio of 

the program function that can be checked for correctness. 

3. A measure of maskability, which quantifies the non-injectivity of program 

functions, is expressed in Shannon bits, and indicates the bandwidth of error that 

may arise in the program state and still be masked by the program. 

4. A measure of recoverability, which quantifies the non-determinacy of program 

specifications, is expressed in Shannon bits, and indicates the bandwidth of loss 

that a program state can sustain while still satisfying the specification. 

Together, these four metrics ought to give the analyst some indication regarding the 

program’s ability to tolerate faults and avoid failure. Table 6.2 Summarize semantic 

metrics, definition, and interpretation along their use. 
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Table 6-2: Metrics Definition and interpretations 

 

 

6.7   Chapter Summary  

 

   The chapter presents four semantic metrics based on entropy concept. The 

four metrics can contribute to provide a measure of the main factors of fault 

tolerance.   
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7.1 Introduction  

 

  This chapter describes validation process by using both empirical and analytical 

validations. Empirical validation tends to explore correlations between different 

measures used. Analytical validation employs statistical concepts to predict new 

features based on probabilistic measures. 

The structure of this chapter is outlined in such a way that the first section, 7.2, 

presents empirical research done along with its results and the subsequent section 

describes the proposed analytical model and its results.  

 

7.2 Empirical research 

 

Empirical validation is used to explore correlations between some functional quality 

attributes such as reliability, fault tolerance and semantic metrics. During 

experiments, the most famous standard programs – Siemens and Space [96]- are 

selected to test the proposed metrics.  The "Siemens" programs were assembled by 

Tom Ostrand and colleagues at Siemens Corporate Research for a study of the fault 

detection capabilities of control-flow and data-flow coverage criteria [96]. The space 

program consists of 9564 lines of C code (6218 executable) and functions as an 

interpreter for an array definition language (ADL). The program reads a file that 

contains several ADL statements, and checks the contents of the file for adherence to 

the ADL grammar and to specific consistency rules. If the ADL file is correct, space 

outputs an array data file containing a list of array elements, positions, and 

excitations; otherwise the program outputs error messages [96]. Our four metrics are 

applied on 10 programs including 7 programs from Siemens collection in addition 

to, three other programs.  Such as: tacs, schedule, schedule2, replace, totinfo, 

printtokens, printtokens2, Gzip, Sorting and Space, then results are recorded for 

validation purpose.  Table 7.1 shows a brief description of the used programs. 
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Table 7.1: Description about used programs 

 Program Name  Description 

1 Tcas Altitude separation - aircraft collision avoidance system. 

2 Schedule2 
Are priority schedulers 

3 Schedule 

4 Replace performs pattern matching and substitutions (pattern recognition) 

5 Space interpreter for an array definition language (ADL) 

6 Sorting program Algorithm receive unordered array and perform multiple 

substations to order array. 

7 Printtokins 
lexical analyzers 

8 Printtokins2     

9 To_info Information gain measure 

10 Gzip Unix utility 

 

7.2.1 Applying metrics: 

 

In this step 8 metrics are applied on selected programs. Metrics are: McCabe, 

Halstead, Number of fault, Fault Density in addition to, the proposed four semantic 

metrics. Tables 7.2 and 7.3, show the result of applying 8 metrics on selected 

programs. Both correlation and regression analysis methods are used to explore 

relation between syntactic and semantic metrics. The regression analysis method has 

been used to identify the closest relation between the above mentioned metrics [97]. 

It implements a linear regression model. Which means that the dependent variable(s) 

can be written in terms of linear combinations of the independent variable(s) [19]. 

The following section shows the results for the empirical validation step. 

Table 7.2 shows the results of applying four syntactic metrics on selected programs 

and table 7.3 shows applying the four semantic metrics on selected programs. 
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TABLE ‘7.2’: 

RESULTS OF APPLYING SYNTACTIC METRICS ON SELECTED PROGRAMS 

P. name V(G) V Number of 

faults 

Fault density 

Tcas 26 3800 41 0.01 

Schedule2 49 7715 10 0.001 

Schedule 37 7785 9 0.001 

Replace 92 17293 32 0.001 

Space 748 33015 35 0.02 

Sorting 6 646 0 0.02 

Totinfo 45 9311 23 0.01 

Printtokins 72 12922 10 0.01 

Printtokins2 79 9973 7 0.01 

Gzip 1260 24149 40 0.0 

 

Where P.name: program name, V (G): Complexity and V represents volume. 

Fault density are measured by using the simple equation,  

Fault density = number of faults/ size.  

TABLE ‘7.3’: 

SEMANTIC METRICS APPLIED ON 10 SELECTED PROGRAMS. 

P. name Functional 

redundancy 

State 

redundancy 

Non- injectivity Non determinacy 

Tcas 0.03 713.4 bits 34 bit 32 

Schedule2 0.02 801.9 bits 64 bits 0 

Schedule 0.02 124.7 bits 96 bits 0 

Replace 0.03 601.6 bits 32 bit 32 

Space 2.4  63996 bits 19200 bits 32 

Sorting 14.6 2435 bit 564 bits 564 

Totinfo 0.03 277.9 bits 224 bit 32 

Printtokins 0.05 260 bits 318 bits 32 
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7.2.2 Correlation Analysis:  
 

The goal here is to verify that there is a statistically significant association between 

attributes estimated by semantic and syntactic metrics. Spearman rank correlation is 

a commonly-used robust correlation technique [97] because it can be applied even 

when the association between elements is non-linear. Table 7.4 Shows that there 

exists a statistically significant positive relationship between the following: 

 - Functional redundancy and State redundancy. 

-  Non- determinacy and functional redundancy. 

- Non injectivity and fault density / complexity. 

- Complexity and volume  

- Complexity and fault density  

- Volume and fault density.  

TABLE 7.4:  CORELATION RESULTS  

  FR NJ V(G) V SR NFaults FDensity 

FR CC 1.000 .147 .087 .026 .578* -.127- -.258- 

Sig . .600 .757 .928 .024 .653 .353 

NJ CC 
.147 1.000 .649** .496 

.054

- 
.033 -.630* 

Sig. .600 . .009 .060 .849 .906 .012 

V(G) CC .087 .649** 1.000 .928** .016 .549* -.680** 

Sig.  .757 .009 . .000 .955 .034 .005 

V CC .026 .496 .928** 1.000 -.023- .657** -.572* 

Sig.  .928 .060 .000 . .934 .008 .026 

SR CC .578* .054- .016 .023- 1.000 -.007- -.214- 

Sig.  .024 .849 .955 .934 . .980 .445 

NFaults CC .127- .033 .549* .657** -.007- 1.000 -.100- 

Sig.  .653 .906 .034 .008 .980 . .723 

Non-D CC .828  .000 .080 .158  .474 .399 .158 

Sig. .021 1.000 .865 0.735 .282 .375 .605 

Printtokins2 24.6 480 bits 200 bits 32 

Gzip 0.07 30150 bit 300 bit 32 
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Where: 

FR: Functional redundancy, NJ: Non-injectivity , V(G): McCabe, V: Volume, SR: 

State redundancy , Nfaults: Number of faults, Fdesnity, Fault Density, Non-D: Non-

determinacy and  CC: correlation Coefficient.  

 

7.2.3 Regression Results: 

 

We now compare software metrics built based on syntactic features against those 

built using semantics. Table 7.5 shows a summary of the regression results.   R2 is a 

measure of variance in the dependent variable that estimated by the model built 

using certain predictors [97].regression was done by using SPSS software. 

 

TABLE 7.5:    SUMMARY OF REGRESSION RESULTS 

 Semantic Metric Syntactic and semantic metrics R2 

1 State redundancy Fault Density 0.859 

2 Functional redundancy McCabe 0.501 

3 Non_injectivity Fault Density 0.432 

4 Functional redundancy Number Of Faults 0.259 

5 Non_injectivity State redundancy 0.205 

6 Non_injectivity McCabe 0.213 

7 
Functional redundancy 

Volume 0.110 

8 
Number Of Faults 0.029 

9 Non_injectivity  

10 State redundancy McCabe 0.010 

11 
Non-determinacy 

Functional redundancy/Non-injectivity 0.067 

12 State redundancy 0.008 

13 State redundancy Functional redundancy 0.006 

14 Non_injectivity Functional redundancy 0.002 

15 Non-determinacy McCabe 0 

 

The regression results indicate that state redundancy and fault density have the 

closest relation. The value of R2 for the first parameter denotes that 86% of the 

change in the dependent variables explained by the change in independent variables. 
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R2= 0.859 reflects a strong positive relationship. At the same for the last one, where 

R2 equals 0.002 (0%), reflects a very week +ve. relationship. 

 

7.3 Analytical Research 

 

The main goal of this section is to figure out how proposed semantic metrics can 

contribute to the prediction of software reliability in its early stages. As mentioned 

previously, the study concentrates on measuring the ability of the program to be fault 

tolerant, in order to, measure such properties we consider the lifecycle of failure as 

follows: 

1. Existence of a fault 

2. Fault sensitization 

3. Fault propagation 

4. Specification violation 

The proposed metrics tend to measure these factors as indicator of failure probability. 

Figure7.1. describes the chain of reactions that happen when faults are executed as 

follows: 

 

 

Figure 7.1: Events generate system failure [98] 

 

The probability of software faults resulting into a failure is heavily dependent on the 

operational profile. Assuming a fault exists, the probability of a faulty code to be 

executed is p1. If a faulty code is executed, the probability of error generation is p2. 

If errors are generated, the probability of these errors resulting into failure is p3. 

Another factor should be considered to reflect whether the resulting failure is 

violating the specification (P4). Thus, the probability of a software fault resulting 

into a failure is product of P1, P2, p3 and P4.  The following section describes these 

factors: 
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7.3.1 Estimating probability of executing faulty statements:  

 

       Due to high complexity and constraints involved in the software development 

process, it is difficult to develop and produce software without faults. So, the aim of 

this factor is to estimate the probability of executing statements that contain faults. 

This study  makes use of two metrics here, fault density and software size as follows, 

probability of executing faulty statements= 1(1-fault density)^N. where N represents 

software size measured in Lines of code.  

 

 7.3.2 Probability of sensitization  

 

Executing statements that contain faults may result in generating errors. The 

probability of sensitization tends to measure, to what extent executed faults can 

cause errors, errors represent deviations from an expected state to another erroneous 

state. Both state redundancy and non-injectivity are contributors to this factor as 

shown below: 

Probability of sensitization= 1-2( Nj – initial state redundancy ) 

 = 1-2 ( Nj- K(Ϭ ) ) 

 

7.3.3 Probability of error propagation 

 

Errors can propagate to change the final state to be erroneous, non-injectivity metric 

used to measure this,  

Probability of error propagation = (1- 2) NJ – H(Ϭ)) 

Where NJ is non-injectivity, H(s) represents the entropy of inputs. 
 

7.3.4 Probability of specification violation: 

 

A program may fail to compute its intended function and yet still behave according 

to the specification it is intended to satisfy [8]. This part tends to measure the 

probability that the resulting erroneous final state is also violating the specification.  

Non-determinacy metric is used here for this purpose.  

 

Probability of specification violation (intolerance) = (1- 2) ND – H(Ϭ f) 
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Where ND is non-determinacy, H(Ϭ f) represents the entropy of outputs. Figure7.2. 

Shows data flow diagram for main factors of system failure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Flow diagram including factors of system failure 
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7.4 Results  
 

To predict failure probability as discussed in section (7.3) the product of the above 

factors are measured. Table 7.6 shows failure probability for sample programs. The 

probability of failure =P1 x P2 xP3 x P4. 

 

TABLE 7.6: FAILURE PROBABILITY FOR SELECTED PROGRAMS 

 

7.6 Using failure classification Model 
 

To build a classification model data mining is used. The C5.0 algorithm was selected 

to find a relationship between our four semantic metrics and P(failure), in the sense 

that some of these metrics have more of an effect on system failure. The reason of 

using C5.0 algorithm is its ability to classify a set of data based on training data and 

generates a set of rules according to that. C5 is an algorithm developed by Ross 

Quinlan and is used to generate a decision tree [99]. The decision trees generated by 

C5.0 can be used for classification; therefore, it is often referred to as a statistical 

classifier. C5.0 has a number of features such as:  

 Speed - C5.0 is significantly faster than other algorithms such as C4.5  

 Support for boosting - Boosting improves the trees and gives them more 

accuracy. 

 Weighting - C5.0 allows weighting different cases and misclassification types. 

 

7.6.1 Building classification model 

 

To build a classification model, data minor software was used - clementine software. 

The sample data that was fed to the model consisted of 7 programs where all factors 

P. name P(ex. Faults) P(sensitization) P(propagation) P(violation) P(Failure) 

Tcas 0.8243 1 1 0.9 0.7416 

Schedule2 0.312 1 1 0.9 0.2808 

Schedule 0.663 1 0.9 0.99 0.59073 

Replace 0.432 1 1 0.9 0.3888 

Space 1 1 1 1 1 

Sorting 0.635 1 1 1 0.635 
Totinfo 0.9966 1 1 0.594 0.59198 

http://en.wikipedia.org/wiki/Ross_Quinlan
http://en.wikipedia.org/wiki/Ross_Quinlan
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/C4.5_algorithm#cite_note-1
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
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were measured and P(failure) was further estimated. In order for the model to be 

accurate the sample was increased by duplicating the existing programs data. The 

size of the total sample was 24 records, 5 from the total are used as training sample 

and the rest are testing data fed to perform classification. Each record from the 

training set was further classified manually to either high or low, the study suggested 

that the probability of failure will be high if it is more than 0.5 and low if it less. 

Figure 7.3, shows the classification model.  

 

 

 

Figure 7.3: Classifiction Model 

7.6.2 Classification result rules 

 

After applying the classification model, 2 classification rules were detected by a 

classifier, rules confirmed that there was a relationship between failure probability 

and both non-determinacy and functional redundancy. So we can predict failure 

probability class (bigger than 0.5 or less than that) according to these rules. The rules 

are shown below: 
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1- If functional redundancy <= 11.5 and non-determinacy <=0 Failure 

probability will be low(less than 0.5). 

2- If functional redundancy > 11.5 and non-determinacy <=0 Failure 

probability will be  high (bigger than 0.5) 

3- If Non-determinacy >0 , failure probability will be high.  

 

Figure 7.4: Classication Rules 

 

Based on these rules we can predict the failure probability for any new program 

where metrics are calculated. Test are done on the sample program printtokins2 

which appeared according to these rules to be in high class (failure probability is 

greater than 0.5) and after real estimation of failure probability the result confirms 

the observation (P (failure) = 0.98). 

 

7.6.3 Classification  Model Limitations:   

Building a classification model requires a high, accurate, complete data set for both 

training and testing purposes. The main difficulty that faced the prediction model is 
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the lack of software specification required to estimate non – determinacy and 

consequently the estimation of the fourth factor that affects failure probability.  

 

7.7 Chapter Summary 

 

This chapter inspects the validation process along with results. Validation is 

divided into two parts: empirical and analytical research. Empirical research was 

used to find correlation between semantic and syntactic metrics, where analytical 

used to estimate probability of failure statistically based on the main factors 

derived from the software failure lifecycle.      
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8.1 Conclusion  

 
At a time when software systems grow increasingly large and complex, it becomes 

increasingly tenuous/unrealistic to obsess about fault avoidance and fault removal 

[8]. 

At the very least, the goal of fault-free software, by whatever means it is achieved, 

was to be combined with the goal of ensuring that the program is adequately 

equipped to prevent residual faults from causing failure. The study presented a new 

set of semantic metrics based on entropy to measure program ability to be fault 

tolerant with respect to its specification. The proposed metrics are: state redundancy, 

functional redundancy, non-injectivity and non-determinacy metric. Both empirical 

and analytical validations were done to assess their fitness to the goal. Empirical 

validation was used to find correlation between proposed metrics and other syntactic 

metrics such as: McCabe, Halstead and Fault density. Analytical validation used 

measure probability of failure by using semantic metrics. The reached results 

confirmed the ability of these metrics to predict software reliability. Finally, data 

mining based classification model were done to find out which of the measured 

metrics has more effect on measuring probability of failure. The main obstacle here 

is the number of programs that are used as a input sample to classification model. 

The reason is that lack of available documented programs specifications that can be 

used to measure non-determinacy metric. Results of this section show that 2 metrics 

could be used to give indicator to probability of failure, metrics are: function 

redundancy and non-determinacy. 

 
8.2 Future Work 

 
A number of extensions to the current work could be done in future work: 

 

1. Consolidate the analytical validation by applying estimation techniques to 

more sample product, for what we have:  

 Source code. 

 Usable specifications. 
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 An estimated reliability. 

2. Consolidate the empirical validation by extending/ broadening the software 

for more samples.                   

3. Explore the possibility of automating the calculation of some semantic 

metrics by analyzing source code. 

4. Study the concept of bandwidth of assertions related to our semantic metrics.  
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