Sudan University of Science and , Technology
College of Science
Department of Mathematics

Rings And Linear

Transformation's
A project Submitted in fulfillment for the degree of B.Sc. (Honor) in Mathematics

By :

1- Ayat Mohmmed Hassan
2- Somia Musa Idress
3- Heba Musa Idress

Supervisor:

Dr. Belgiss

Abdelaziz

Ilelicitition

To our mothers and fathers To our family and my tribe

 To our teachersTo our colleagues and my colleagues

To our burn candles that illuminate for others

He taught me to each the characters

But above all to my prophet MOHAVED

Icknowledggment

First I would like to thank without end

 to our greater ALLAH, then I would like to express about my appreciation and thanks to ourSupervisor: Dr. BelgissAbdelaziz and thanks for everyone help me...

lieseurldrers...

Abstract

First we study some basic concept of ring and homomorphism of ring, we prove some theorem's of ring's and ideal and we give an example of subring.

Also we study the characteristic of ring. Also we study the idempotent and nilpotent elements. We study the vector space,field's. Final we study inner product space and nor of vector.

The Contains

| subject | Page |
| :---: | :---: | :---: |
| Dedication | I |
| Acknowledgments | III |
| Abstract | IV |
| The Contains | V |
| Chapter 1
 The Rings
 Chapter 2
 Vector Space
 Chapter 3
 Fields | 1 |
| Reference | 51 |

Def (1.1):

Anon empty set R from a ring if the following axioms are satisfied:
(i) $a+(b+c)=(a+b)+c$ for all $a, b \in R$
(ii) $a+b=b+a$ for all $a, b \in R$
(iii) \exists some element 0 in R, s.t $a+0=0+a=a$ for all $a \in R$
(iv) For each $a \in R, \exists$ an element $(-a) \in R$, s.t $a+(-a)=(-a)+a=0$
(v) $a .(b . c)=(a . b) . c$ for all $a, b, c \in R$
(vi) $a .(b+c)=a \cdot b+a \cdot c(b+c) \cdot a=b \cdot a+c$. afor all $a, b, c \in R$

Remarks :

Since we say that + and . are binary compositions on R under stood that the closure properties w.r.t these hold in R . in other words ,for all $a, b \in R, a+b$ and $a . b$ are unique in R .
-In fact the statement that R in a ring would mean that R has two binary composition + and . defined on it and satisfied the above axioms .
-The ring $(R,+)$ forms an abelian group .
Def (1.2):
A ring R is called a commutative ring if $a b=b a$ for all $a, b \in R$.
If \exists an element $\quad e \in R \quad$ s. tae $=e a \quad$ for all $a, b \in R \quad$ it is also called unit element or multiplicative identity.

Remark:

We recall that in a group by a^{2} we mean a. a was binary composition of the group .

Theorem (1.3):

In a ring R the following results hold
(i) $a .0=0 . a=0$ for all $a, b \in R$
(ii) $a(-b)=(a) b=-a b$ for all $a, b \in R$
(iii) $(-a)(-b)=a b$
(iv) $a(b-c)=a b-a$

Proof:

(i) $a .0=a .(0+0) \Longrightarrow a .0=a .0+a .0 \Rightarrow a .0+0=a .0+a .0$
using cancelation w.r.t + in the group $(R,+)$
(ii) $a .0=0 \Rightarrow a(-b+b)=0 \Rightarrow a(-b)+a b=0 \Rightarrow a(-b)=-(a b)$
similarly $(-a) b=-a b$.
(iii) $(-a)(-b)=-[a(b)]=-[-a b]=a b$
(iv) $a(b-c)=a(b+(-c)=a b+a(-c)=a b-a c$

Remark:

if n, m are integers and a, b elements of a ring then it is easy to see that
$n(a+b)=n a+n b$
$(n+m) a=n a+m a$
$(n m) a=n(m a)$
$a^{m} a^{n}=a^{m n}$
$\left(a^{m}\right)^{n}=a^{m n}$

We are so much used to the property that we every $a b=0$ then either $a=0$ or $b=0$ but the convincing is not true ,"these property holds" in the ring of integers we have
$A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \neq 0 B=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right] \neq 0$ but $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$

Def (1.4):

Let R be a ring. An element $0 \neq a \in R$ is called a zero-divisor if there exist an element $a \neq b$ such that, $a b=0$ or $b a=0$.

Def (1.5):

A commutative ring R is called an integral domain if $a b=0$ in ether $a=0$ or $b=0$, if a ring has no zero divisor .
Theorem (1.6):
A commutative ring R is an integral domain iff for all $a, b, c \in R, a \neq 0$

$$
a b=a c \Rightarrow b=c
$$

Proof:

Let R be an integral domain
$a b=a c \quad(a \neq 0) \quad$ then $\quad a b-a c=0 \quad \Rightarrow a(b-c)=0$
$\Rightarrow a=0$ or $b-c=0$ since $a \neq 0 \Rightarrow b=c$
Conversely, let the given condition hold.
Let $a, b \in R \quad$ be any elements with $\quad a \neq 0$
suppose $a b=0, a b=a .0 \Rightarrow b=0$
hence $a b=0 \Rightarrow b=0$ whenever $a \neq 0$ or that R is integral domain .
Def (1.7):
A ring R is the said to satisfy left cancellation law if for all $a, b \in R$ $a b=a c \quad \Rightarrow \quad b=c \quad$ and $\quad b a=c a \quad \Rightarrow \quad b=c$

Def (1.8):

(1) A ring R an element a in a ring with unity called invertible (or a unity) w.r.t multiplication if there exist $b \in R$ such that $a . b=b . a=1$
(2) A ring R whose non zero element of R from a group under multiplication is a called a division ring, a commutative division ring is afield.
Now we get example to division ring which is not a field. let M be the set of all 2×2 matrices of the type $\left[\begin{array}{cc}a & b \\ -\bar{b} & \bar{a}\end{array}\right]$ where a, b are complex number and \bar{a}, \bar{b} are their conjugate. But M will not be a field as it is not commutative as

$$
\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]=\left[\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right]
$$

But

$$
\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right] \neq\left[\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right]
$$

Theorem (1.9):

A field is an integral domain .

Proof :

Let $(R,+,$.$) be a field then \mathrm{R}$ is commutative ring . now let $a . b=0$ in R we want to show that either $a=0$ or $b=0$ suppose $a \neq 0$ then exists $a . b=0 \Rightarrow a^{-1}(a . b)=a^{-1} 0 \Rightarrow b=0 \Rightarrow R$ is an integral domain

Theorem (1.10):

A non zero finite integral domain is a field .

Proof:

Let R be a non zero finite integral domain, and let R' be the subset of containing non zero elements of R .
Since a associativity hold in R, it will hold in R^{\prime} thus R^{\prime} is a finite semi group Hence R^{\prime} is a finite semi group w.r.t multiplication in which cancellation laws hold.
$\therefore\left(R^{\prime},.\right)$ forms a group
In other words ($R,+,$.) is a field (it being commutative as it is an integral domain).

Remark :

An infinite integral domain which is not a field is the ring of integers .

Problem(1) :

Show that a Boolean ring is commutative .

Solution:

Let for $a, b \in R$ be any elements then $a+b \in R$ by given condition

$$
\begin{aligned}
& (a+b)^{2}=a+b \\
\Rightarrow & a^{2}+b^{2}+a b+b a=a+b \\
\Rightarrow & a+b+a b+b a=a+b \\
\Rightarrow & a b+b a=0 \quad \rightarrow(1) \\
\Rightarrow & a b=-b a \\
\Rightarrow & a(a b)=a(-b a) \\
\Rightarrow & a^{2} b=-a b a \\
\Rightarrow & a b=-a b a
\end{aligned} \quad \rightarrow(2)
$$

From (1) and (2) we get

$$
\begin{aligned}
&(a b) a=(b a) a \\
& \Rightarrow a b a=-b a^{2}=-b a \quad \rightarrow(3)
\end{aligned}
$$

From (2) and (3) we get

$$
a b=b a=-a b a
$$

$\Rightarrow R$ is commutative ring .

Problem (2):

Show that an element a in z_{n} is a unity iff a and n are relatively prime.

Solution :

$z_{n}=[0,1,2, \ldots ., n-1] \bmod n$
Let $a \in z_{n}$ be a unit,then there exist $b \in z_{n}$ s. $t a \otimes b=1$
i.e when $a b$ is divided by n, in other words

$$
a b=n q+1 \text { or } a b-n q=1
$$

$\Rightarrow a$ and n are relatively prime
Now let $(a, n)=1$ then there exists integers u,v s.t $a u+n v=1$ or $\Rightarrow a u=n(-v)+1$
Suppose $u=n q+r, \quad 0 \leq r<n, r \in z_{n}$ i.e $a \otimes r=1 \quad r \in z_{n} \Rightarrow a$ is unit .

Problem (3):

If in a ring R , with unity $(x y)^{2}=x^{2} y^{2}$ for all $x, y \in R$ then show that R is commutative .

Solution :

Let $x, y \in R$ be any elements . then $y+1 \in R$ as $1 \in R$
By given condition

$$
\begin{gathered}
\quad(x(y+1))^{2}=x^{2}(y+1)^{2} \\
\Rightarrow(x y+x)^{2}=x^{2}(y+1)^{2} \\
\Rightarrow(x y)^{2}+x^{2}+\frac{1}{2} y x+x x y=x^{2}\left(y^{2}+1+2 y\right) \\
\Rightarrow x^{2} y^{2}+x^{2}+x y x+x x y=x^{2} y^{2}+x^{2}+2 x^{2} y \\
\Rightarrow x y x=x^{2} y \quad \rightarrow \text { (1) }
\end{gathered}
$$

Since (1) holds for all x, y in R we get

$$
\begin{gathered}
(x+1) y(x+1)=(x+1)^{2} y \\
\Rightarrow(x y+y)(x+1)=\left(x^{2}+1+2 x\right) y \\
\Rightarrow x^{2} y+x y+y x+y=x^{2} y+y+2 x y \\
\Rightarrow y x=x y \quad \text { using }(1)
\end{gathered}
$$

Hence R is commutative.

Problem (4):

Show that the ring R of real valued continues function on $[0,1]$ has zero divisors .

Solution:

Consider the functions f and g defined on $[0,1]$ by
$f(x)=1 / 2-x, \quad 0 \leq x \leq 1 / 2 \quad, \quad f(x)=0 \quad, \quad 1 / 2 \leq x \leq 1$
And

$$
g(x)=0 \quad, \quad 0 \leq x \leq 1 / 2 \quad, \quad g(x)=x-1 / 2 \quad, \quad 1 / 2 \leq x \leq 1
$$

Then f, g are continues functions and $f \neq 0 \quad, \quad g \neq 0$

$$
\begin{aligned}
\Rightarrow g f(x)= & g(x) f(x)=0 \cdot(1 / 2-x) & & \text { if } 0 \leq x \leq 1 / 2 \\
& =(x-1 / 2) \cdot 0=0 & & \text { if } 1 / 2 \leq x \leq 1
\end{aligned}
$$

i.e $g f(x)=0 \quad$ for all x

$$
\Rightarrow g f=0 \text { but } f \neq 0 \quad, \quad g \neq 0
$$

Sub Ring

Def (1.11):

A non empty subset S of a ring R is a said be a subring of R if S form a ring under the binary compositions of R .
The ring $\langle z,+,$.$\rangle of integers is a subring of the ring \langle R,+,$.$\rangle of real$ number.
if R is a ring then $\{0\}$ and R are always subring of R, called trivial subring of R.

Theorem (1.12):

A non empty subset S of a ring R is a subring of R iff $a, b \in S \Rightarrow a b, a-$ $b \in S$

Proof:

Let S be a subring of R then
$a, b \in S \Rightarrow a b \in S$ (closure)
$a, b \in S \Rightarrow a-b \in S$
as $\langle S,+\rangle$ is a subgroup of $\langle R,+\rangle$
conversely, since $a, b \in S \Rightarrow a-b S$,we fined $\langle S,+\rangle$ forms a subgroup of $\langle R,+\rangle$ A gain for any $a, b \in S$ since $S \subseteq R$
$a, b \in R \Rightarrow a+b=b+a$
And so we a fined S is abelian.
In other words, S satisfies all the axioms in the definition of a ring Hence S is a subring of R.

Sum of Two sub Rings

Def (1.13):
Let S and T be two subring of a ring R .we define

$$
S+T=\{s+t \mid s \in S, t \in T\}
$$

Def(1.14):

let R be a ring, the set $Z(R)=\{x \in R \mid x r=r x$, for all $r \in R\}$ is called centre of the ring.

problem(1) :

if R is a division ring then show that the centre $Z(R)$ of R is a field .

Solution:

$Z(R)$ is a ring (as it is a subring)
$Z(R)$ is commutative by its definitions.
$Z(R)$ has unity as $1 . x=x .1=x$ for all $x \in R$.
Thus we need show that every non zero element of $Z(R)$ has multiplicative inverse (in $Z(R)$).
Let $x \in Z(R)$ be any non zero element.
Then $x \in R$ and since R is a division ring, $x^{-1} \in R$.
Let $y \in R$ be any non zero element ,then $y^{-1} \in R$. Now

$$
x^{-1} y=\left(y^{-1} x\right)^{-1}=\left(x y^{-1}\right)^{-1}=y x^{-1}
$$

$\Rightarrow x^{-1}$ commutes with all non zero elements of R

Again as $\quad x^{-1} .0=0 . x^{-1}=0$
We fined $\quad x^{-1} r=r . x^{-1} \quad$ for all $r \in R \Rightarrow x^{-1} \in Z(R)$
Showing $Z(R)$ is a field
Problem(2) :
If in a ring R the equation $a x=b$ for all $a, b(a \neq b)$ has a solution, show that R is a division ring .

Solution :

We first show that are has no zero division, suppose

$$
a b=0, a \neq 0, b \neq 0
$$

As $a \neq 0, a x=a$ has a solution, say $x=e_{1}$ then $a e_{1}=a$
Again $b x=e_{1}$ has a solution, let $x=e_{2}$ be a solution of this $b e_{2}=e_{1}$
Now

$$
\begin{aligned}
a b & =0 \Rightarrow(a b) e_{2}=0 . e_{2}=0 \\
& \Rightarrow a\left(b e_{2}\right)=0 \Rightarrow a e_{1}=0 \\
& \Rightarrow a=0, \text { but } a \neq 0
\end{aligned}
$$

Hence R without zero divisor
Now for any $a \neq 0 a x=a$ has solution, let $x=e$ be solution then $a e=a \Rightarrow a e x=a x \quad$ for all $x \quad \Rightarrow a(e x-x)=0$ for all $x \quad$ or that e is left identity
Again $(x e-x) e=x e e-x e=x(e e)-x e=x e-x e=0$ (as e is left identity), but $e \neq 0$, thus $x e-x=0$ or $x e=x$ for all x i.e e is right identity .
now equation $a x=e$ has a solution for all $a \neq 0 \Rightarrow \exists b$ s.t $a b=e$ hence a has right invers . since right identity also exists, $\langle R,$.$\rangle Forms a$ group or the R is a division ring .

Remark:

In continuation to the above problem we make the following observations.
(a) $\langle Z,+,$.$\rangle Has same unity 1$ as that of its parent ring $\langle E,+,$.$\rangle .$
(b) Finally, we notice we can have a ring without unity which has a subring with unity. Take for instance, the ring

$$
R=\left\{\left.\left[\begin{array}{cc}
a & b \\
0 & 0
\end{array}\right] \right\rvert\, a, b \in Z\right\}
$$

Now if $\left[\begin{array}{cc}a & b \\ 0 & 0\end{array}\right]$ is unity of this ring then $\left[\begin{array}{cc}a & b \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}a & a \\ 0 & 0\end{array}\right]$ should be $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ i.e $a=1$
Also $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]$ should be $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ i.e $a=1=b$
Therefor if R has unity then it must be $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ but
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ hence R has no unity

It is easy to check that $S=\left\{\left.\left[\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right] \right\rvert\, a \in Z\right\}$ is a subring of R and has unity $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

Characteristic of a Ring

Def(1.15):

Let R be a ring . if there exists a positive integer n such that $n a=0$ for all $a \in R$ then R is said to have finite characteristic and also the smallest such positive integer is called the characteristic of R
If no such positive integer exists then R is said to have characteristic zero (or infinity).
If ch of a ring is n then ch of any subring or extension ring is also n.

Theorem (1.16):

Let R be a ring with unite. if $\mathbf{1}$ is of additive order n then ch $R=n$. If 1 additive order infinity then $c h R$ is 0 .

Proof:

Let additive order of 1 be n .then $n .1=0$ and n is such last +iv integer now for any $x \in R$.

$$
\begin{aligned}
n x & =x+x+\cdots+x=1 \cdot x+1 \cdot x+\cdots+1 \cdot x \\
& =(1+1+\cdots+1) x=0 \cdot x=0
\end{aligned}
$$

Showing $\operatorname{ch} R=n$.
Has infinite order under addition then \exists no n s.t $n .1=0$ and thus .

Remark:

(i) The above result can be stated as. If R is a ring with unity then R has ch $n>0$ iff n is the smallest positive integer s.t $n .1=0$
(ii) Ch of Z_{n} ring of integers modulo n is n .

Problem :

If D is an integral domain then characteristic of D is ether zero or a prime number.

Proof :

If $\operatorname{ch} D$ is the zero, we have nothing to proof . suppose D has finite characteristic then $\exists a+\mathrm{ve}$ integer m s.t $m a=0$ for all $a \in D$
Let k be least +ve integer then $c h D=k 0$, we show k is a prime .Suppose k is not a prime, then we can write

$$
k=r s, 1<r, s<k
$$

Now

$$
\begin{gathered}
k a=0 \quad \text { for all } a \in D \\
\Rightarrow(r s) a^{2}=0 \quad \forall a \in D \\
\Rightarrow a^{2}+a^{2}+\cdots+a^{2}=0 \quad(r s \text { times }) \\
\Rightarrow(a+a+\cdots+a)(a+a+\cdots+a)=0 \\
\quad \Rightarrow(r a)(s a)=0 \quad \forall a \in D
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow r a=0 \text { or } s a=0 \quad \forall a \\
& \in D(D \text { is integral domain })
\end{aligned}
$$

In either case it will be a contradiction as $r, s<k$ but k is the ieast +ve integer s.t $k a=0$.

problem :

If D is an integral domain and if $n a=0$. For sum $0 \neq a \in D$ and some integer $n \neq 0$ then show that the characteristic of D is finite.

Solution :

Since $n a=0$

$$
\begin{aligned}
& \quad(n a) x=0 \text { for all } x \in D \\
& \Rightarrow(a+a+\cdots+a) x=0 \\
& \Rightarrow a x+a x+\cdots+a x=0 \text { (} n \text { times }) \\
& \Rightarrow a(x+x+\cdots+x)=0 \text { for all } x \in D \\
& \Rightarrow x+x+\cdots+x=0 \text { for all } x \in D \text { as } a \neq 0 \\
& \Rightarrow n x=0 \text { for all } x \in D, n \neq 0 \\
& \Rightarrow \text { ch } D \text { is finite }
\end{aligned}
$$

Def (1.17):

An element e in a ring R is called idempotent if $e^{2}=e$. An element $a \in R$ is called nilpotent if $e^{n}=0$ for some positive integer n .
If R is a ring with unity ,then 0 and 1 are idempotent element. Also 0 is nilpotent element of R .

Problem:

a non zero idempotent cannot be nilpotent .

Solution:

let x be non zero idempotent, then $x^{2}=x$ if x is also nilpotent then \exists integer $n \geq 1$ s. $t x^{n}=0 \quad$ But

$$
\begin{aligned}
x^{2}=0 & \Rightarrow x^{3}=x^{2}=x \\
& \Rightarrow x^{4}=x^{2}=x
\end{aligned}
$$

$\Rightarrow x^{n}=x \Rightarrow x=0$ a contradiction.

Problem:

In an integral domain R (with unity) the only idempotent are the zero and unite.

Solution :

Let $x \in R$ be any idempotent then

$$
x^{2}=x \Rightarrow x^{2}-x=0 \Rightarrow x(x-1)=0 \Rightarrow x=0 \text { or } x=1
$$

As R is an integral domain.

Product of Ring

Let R_{1} and R_{2} be two ring. Let $R=\left\{(a, b) \mid a \in R_{1}, b \in R_{2}\right\}$, then it is easy to verify that R forms a ring under addition and multiplication defined by

$$
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+a_{2}, b_{1}+b_{2}\right)
$$

$$
\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right)
$$

problem :

if R and S are two ring, then
$\operatorname{ch}(R \times s)=0$ if $\operatorname{ch} R=0$ or ch $S=0$
$=k$ where $k=l . c . m(c h R, c h S)$

Solution :

Let $\operatorname{ch} R=0$ and suppose $\operatorname{ch}(R \times S)=t \neq 0$ then

$$
t(a, b)=(0,0) \forall a \in R, b \in S
$$

$\Rightarrow(t a, t b)=(0,0) \Rightarrow t a=0 \forall a \in R$, a contradiction as $c h R=0$ thus ch $(R \times S)=0$
Similarly, if $\operatorname{ch} S=0$, then $\operatorname{ch}(R \times S)=0$.
Let now $\operatorname{ch} R=m$, ch $S=n$ and let $K=$ l.c. $m .(m, n)$
Then $k(a, b)=(k a, k b)=(0,0) \forall a \in R, b \in S$ as m, n divide k
Suppose $p(a, b)=(0,0)$, then $(p a, p b)=(0,0)$

$$
\begin{aligned}
& \Rightarrow p a=0=p b \Rightarrow m|p, n| p \\
& \Rightarrow k \mid b \Rightarrow k \leq p \Rightarrow \operatorname{ch}(R \times S)=k
\end{aligned}
$$

Def(1.18):
A non empty subset I of a ring R is a called a right ideal of R if
(i) $a, b \in I \Rightarrow a-b \in I$
(ii) $a \in I, \Rightarrow r \in R \Rightarrow a r \in I$

I is a called a left ideal R if
(i) $a, b \in I \Rightarrow a-b \in I$
(ii) $a \in I, \Rightarrow r \in R \Rightarrow r a \in I$

For example let $\langle Z,+,$.$\rangle Be the ring of integers . then E=$ set of even integers in an ideal of $\mathrm{Z} a, b \in E \Rightarrow a=2 n, b=2 n$ thus

$$
a-b=2(n-m) \in E
$$

Again, if $2 n \in E, r \in Z$ then as $(2 n) r$ or $r(2 n)$ are both in E, E is an ideal.

Problem :

Let S be a non empty subset of a ring R . show that $r(s)=\{x \in R \mid S x=0\}$ and $l(s)=\{x \in R \mid S x=0\}$ are respectively right and left ideal of R .

Solution :

$r(s) \neq \varphi$ as $0 \in r(s)$, again $x, y \in r(s) \Rightarrow s x=0, s y=0$ now

$$
S(x-y)=S x-S y=0-0=0 \Rightarrow x-y \in r(s)
$$

Again if $r \in R$ by any element then

$$
S(x r)=(s x) r=0 . r=0 \Rightarrow x r \in r(s)
$$

Hence $r(s)$ is a right ideal. Similarly, $l(s)$ will form a left ideal . $r(s)$ and $l(s)$ are called right and left annihilators of S, respectively .
$r(s)$ and $l(s)$ would both be ideal of R if S is an ideal .(verifty!)

problem :

let R be a ring such that every subring of R is an ideal of R. further $a b=0$ in $R \Rightarrow a=0$ or $b=0$. show that R is commutative.
Solution :
Let $0 \neq a \in R$ be any element.
Then $N(a)=\{x \in R \mid x a=a x$ is a subring of R and therefore an ideal of R . let $r \in R$ be any element Since $a \in N(a), r \in R$ we find $r a \in$ $N(a)($ def. of ideal) also then $a(r a)=(r a) a$ and so

$$
(a r-r a) a=0 \Rightarrow a r-r a=0 \text { as } a \neq 0
$$

Thus $a r=r a \forall r \in R, \forall 0 \neq a \in R$ and as $0 . s=r .0=0$ we find

$$
A r=r a \quad \forall a, r \in R
$$

Hence R is commutative.

Sum of Two Ideal

Let A and B be two ideals of a ring R . we define $A+B$ to be the set $\{a+b \mid a \in A, b \in B\}$ called sum of the ideal A and B .
Theorem (1.19):
if A and B are two ideals of R then $A+B$ is an ideal of R, containing both A and B .
proof:
$A+B \neq \varphi$ as $0+0 \in A+B \quad$ Again $x, y \in A+B \Rightarrow x=a_{1}+b_{1}$
$y=a_{2}+b_{2}$ for some $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$ since

$$
x-y=\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right)
$$

we find $\quad x-y \in A+B$
let $x=a+b \in A+B, r \in R$ be any element then
$x r=(a+b) r=a r+b r \in A+B$ as A, B are ideals

$$
r s=r(a+b)=r a+b a \in A+B
$$

Thus $\mathrm{A}+\mathrm{B}$ is an ideal of R .
Again for any $a \in R$, since $a=a+0 \in A+B$ and for any $b \in B$, since $b=0+b \in A+B$. we fined $A \subseteq A+B \quad, \quad B \subseteq A+B$.

Remark:

we can show that A is an ideal of $\mathrm{A}+\mathrm{B}$.
$a_{1}, a_{2} \in a \Rightarrow a_{1}-a_{2} \in A$ as A is an ideal of R .again if $a \in A$ and $s \in$ $A+B$ be any element then $s=a_{1}+b_{1}$ for some $a_{1} \in A, b_{1} \in B$ also

$$
\begin{gathered}
a s=a\left(a_{1}+b_{1}\right) \\
=a a_{1}+a b_{1} \in A \text { as } a, a_{1} \in A \xlongequal{\Rightarrow} a a_{1} \in A \\
a \in A, b_{1} \in B \subseteq R \Rightarrow a b_{1} \in A \xlongequal{\Rightarrow} a a_{1}+a b_{1} \in A
\end{gathered}
$$

Similarly $s a \in A$ showing that A is an ideal of $\mathrm{A}+\mathrm{B}$
Def(1.20):
Let S be subset of a ring R . An ideal A of R is the said to be generated by S if
(i) $\mathrm{S} \subseteq A$
(ii) For any ideal I of $\mathrm{R}, S \subseteq I \Rightarrow A \subseteq I$

We denote it by writing $A=\langle S\rangle$ or $A=(s)$

In fact $\langle S\rangle$ will be intersection of all ideals of R that contain S , and is the smallest ideal containing S . if S is finite, we say $A=<S>$ is finite generated.
Theorem (1.21):
if a and B two ideal of R , then $A+B=\langle A \cup B\rangle$.
Proof:
We have already proved that $\mathrm{A}+\mathrm{B}$ is an ideal of R , containing A and B thus $\mathrm{A}+\mathrm{B}$ is an ideal containing $A \cup B$.
Let I be any ideal of R s.t $A \cup B \subseteq I$
Let $x \in A+B$ be any element then $x=a+b$ for some $a \in A, \quad b \in B$ since

$$
\begin{aligned}
& a \in A \subseteq A \cup B \subseteq I \\
& b \in B \subseteq A \cup B \subseteq I
\end{aligned}
$$

We fined $a+b \in I$ as I is an ideal

$$
\Rightarrow x \in I \text { or that } A+B \subseteq I
$$

Example :

Let ($\mathrm{E},+$, .) be the ring of even integers. It is commutative ring without unity. let $a=4 \in E$. Then

$$
\begin{aligned}
<4> & =\{4 n+(2 m) 4 \mid n, m \in Z\} \\
& =\{4 n+8 m \mid n, m \in Z\}
\end{aligned}
$$

Whereas $4 E=\{4(2 k) \mid k \in Z\}=\{8 k \mid k \in Z\}$
We notice then $<4>\neq 4 E$ as $4 \in<4>$ but $4 \notin 4 E$.

Problem :

If A is an ideal of a ring R with unity such that $I \in A$ then show that $A=R$.

Solution :

Since $A \subseteq R$ always ,all we need show is that $R \subseteq A$. Let $r \in R$ be any element.
Since $I \in A$ and A is an ideal $\quad r=1 . r \in A \Rightarrow R \subseteq A$ or that $\mathrm{A}=\mathrm{R}$.

Problem :

Show by means of any example that we can fined $A \subseteq B \subseteq R$ where A is an ideal of B, B is an ideal of R, but a is not an ideal of R.
Solution :
Let R be the set containing matrices of the type $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ 0 & 0 & g\end{array}\right]$ over integers then R forms a ring under matrix addition and multiplication. Take

$$
A=\left\{\left.\left[\begin{array}{lll}
0 & 0 & x \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \right\rvert\, x \text { an integer }\right\}
$$

$$
B=\left\{\left.\left[\begin{array}{lll}
0 & 0 & u \\
0 & 0 & v \\
0 & 0 & 0
\end{array}\right] \right\rvert\, u, v \text { integers }\right\}
$$

It would be easy to verify that A is an ideal of B, B is an ideal of R. to see that A is not an ideal of r , we notice

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \notin A
$$

Product of Two Ideal

Let A, B be two ideal of a ring R. we defined the product AB of A and B by $A B=\left\{\sum a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B\right\}$
Where summation is finite
Theorem(1.22):
The product $A B$ of any two ideals $A \& B$ of a ring R is an ideal of R.

Proof:

Let, $\mathrm{y} \in \mathrm{AB} \neq \varphi$ as $0=0.0 \in A B$
Then $x=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}$

$$
y=a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m}^{\prime} b_{m}^{\prime}
$$

For some $a_{i}, a_{i}^{\prime} \in A, b_{i}, b_{j}^{\prime} \in B$

$$
x-y=\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)-\left(a_{1}^{\prime} b_{1}^{\prime}+\cdots+a_{m}^{\prime} b_{m}^{\prime}\right)
$$

Which clearly belongs to A,B as the R.H.S can written as

$$
x_{1} y_{1}+x_{2} y_{2}+x_{k} y_{k}(k=n+m)
$$

Where $x_{i} \in A, y_{i} \in B$
Again for any $x=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \in A B \quad$ and $r \in R$ $r x=r\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}\right)$

$$
=\left(r a_{1}\right) b_{1}+\left(r a_{2}\right) b_{2}+\cdots+\left(r a_{n}\right) b_{n} \in A B
$$

Because $r a_{i} \in A$ as $a_{i} \in A, r \in R$, and A is an ideal
Similarly $x y \in A B$
Showing there by that $A B$ is an ideal of R.

problem :

if A as a left and B is a right ideal of a ring R then show
that $A B$ is a two sided ideal of R whereas $A B$ need not be even a one - sided ideal of R.

Solution :

That AB will be a two sided ideal of R follows by the theorem above. We show by an example that BA need not be even a one-sided ideal
Take

$$
\begin{aligned}
A= & \left\{\left.\left[\begin{array}{ll}
a & 0 \\
b & 0
\end{array}\right] \right\rvert\, a, b \in Z\right\} \\
& B=\left\{\left.\left[\begin{array}{cc}
c & d \\
0 & 0
\end{array}\right] \right\rvert\, c, d \in Z\right\}
\end{aligned}
$$

In the ring R of 2×2 matrices over integers then as seen earlier A is left and B is a right ideal of R.

BA would have members of the type $\left[\begin{array}{ll}c & d \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right]$
i.e. of the type $\left[\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right], \mathrm{x} \in \mathbf{Z}$

Now if we type $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ in BA and $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ in R
Then $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right] \notin B A$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right] \notin B A$
Hence BA is nether a left nor a right ideal of R.

The motivating factor in rings was set -of integers and in groups the set of all permutations of a set. A vector space originates from the notion of a vector that we are familiar with in mechanics or geometry. Our aim in this volume is not to go into details of that. Reader would recall that a vector is defined as - a directed line segment, which in algebraic, terms is defined as an ordered pair (a, h), being coordinates of the terminal point relative to a fixed coordinate system. Addition of vectors is given by the rule- $\left(a_{1}, b\right)+\left(a_{2}, b_{2}\right)=\left(a_{1}+\boldsymbol{a}_{1}, b_{1}+b_{2}\right)$ One can easily verify that set' of vectors• under this forms an a belian group.
Also scalar multiplication is defined by the rule $\mathrm{a}(a, b)=(a a, a \beta)$ which satisfies certain properties. This concept is extended similarly to three dimensionS. We generalise the whole idea through definition of a vector space and vary the scalarsnot only in the set of real's but in any field F. A vector space thus differs from groups and rings in as much as it also involves elements from outside itself.

$\operatorname{Def}(2.1)$:

Let $<V,+>$ be an abelian group and $<F,+.>$ be a field. Define a function (called scalar multiplication) from $F \times V \rightarrow V$,s.t., for all $a \in F, v \in$ $V, a . v \in V$. Then V is said to form a vector space over F if for all $x, y \in V, a \beta \in F$, the following hold
(i) $(a+\beta) x=a x+\beta x$
(ii) $a(x+y)=a x+a y$
(iii) $(a \beta) x=a(\beta x)$
(iv) $1 . x=x, 1$ being unity of F.

Also then, numbers of F are called scalars and those of V are called vector S .

Remark:

We have used the same symbol + for the two different binary compositions of V and F, for convenience.Similarly same symbol . is used for scalar multiplication and product of the field F.
Since $\langle V$, $+>$ is a group, its identity element is denoted by 0 . Similarly the field F would also have zero element which will also be represented by 0 . in case of doubt one can use different symbols like 0_{v} and 0_{F} etc.. Since we generally Workwith afixed field we hall only ho writing V isa space (or Sometimes $V(F)$ or V_{F}) I would always be understood that it is a vector space over F (unless stated otherwise).
We defined the scalar multiplication from $F \times V \rightarrow V$. One can also define it from $F \times V \rightarrow V$ and have a similar definition. The first one is .called a left vector space and the second a right vector space. it is easy to
show that if V is a left vector space over F then it is a right vector space over F and conversely. In view this result it becomes redundant to talk about left or right vector spaces. We shall thus talk of only vector spaces over F.
One can also talk about the above system when the scalars are allowed to take values in a ring instead of a field, which leads us to the definition of modules
Theorem (2.2):
In any vector space $\mathrm{V}(\mathrm{F})$ the following results hold
(i) $0 . x=0$
(ii) $a .0=0$
(iii) $(-a) x=-(a x)=a(-x)$
(iv) $(a-\beta) x=a x-\beta x$

Proof:
$0 . x=(0+0) \cdot x=0 . x+0 . x \Longrightarrow 0+0 . x=0 . x+0 . x \Longrightarrow 0=0 . x x$ (cancellation in V)
(i) $a .0=a(0+0)=a .0+a .0 \Rightarrow a .0=0$
(ii) $(-a) \cdot x+a x=[(-a)+a] x=0 \cdot x=0$
(iii) follows from above

Example :

If $<F,+, .>$ be a field, then F is a vector space $<F,+>=<V,+>$ is an additive abelian group. Scalar multiplication can be La as the product of F. All properties are seen to hold. Thus $F(F)$ is a vector space \boldsymbol{S}.

Example:

Let $P=$ set of all polynomials over a field F, then P forms a vector space under addition and scalar multiplication defined by

$$
\begin{aligned}
& f(x)+g(x)=(f+g) x \\
& a(f x))=(a f)(x) \text { a } a F
\end{aligned}
$$

Subspaces:

$\operatorname{Def}(2.3)$:
A non empty subset W of a vector space $V(F)$ is said to form a subspace of V if W forms a vector space under the operations of V .

Theorem (2,4):

necessary and sufficient condition for a non empty subset W of a vector space $\mathrm{V}(\mathrm{F})$ to be a subspace is that W is closed under addition and scalar multiplication.

Proof:

If W is a subspace, the result follows by definition.
Conversely, let W be closed under addition and scalar multiplication.

$$
\begin{aligned}
& \text { Let } x, y \in W \text {, since } I \in F,-1 \in F \\
& -1, y \in W \Rightarrow y \in W \\
& x,-y \in W=x-y \in W
\end{aligned}
$$

$\Rightarrow<W,+>$ forms a subgroup of $<V,+>$
Rest of the conditions in the definition follows trivially.

Theorem (2.5):

A non empty subset W of a vector space $\mathrm{V}(\mathrm{F})$ is a subspace of V
iff $a x+\beta y \in W$ for $a, \beta \in F, x, y \in W$.

Proof:

If W is a subspace, result follows by definition.
Conversely, let giver condition hold in W.
Let $x, y \in W$ be any elements. Since $1 \in F$

$$
\text { 1. } x+1 . y=x+y \in W
$$

$\Rightarrow W$ is closed under addition.
Again, $\boldsymbol{x} \in W, a \in F$ then

$$
a x=a x+0 . y \quad \text { for any } y \in W, 0 \in F
$$

which W. (Note here 0 may not be in W)
Hence W is closed under scalar multiplication. The result thus follows by previous theorem.

Problem:

Show that union of two subspaces may not be a subspace

Solution:

$W_{1} \cup W_{2}$ will be the set containing all pairs of the type ($a, 0$), ($0, b$) In particular $(1,0),(0,1) \in W_{1} \cup W_{2}$ But,$(1,0)+(0,1)(1,1) \notin W_{1} \cup W_{2}$. Hence $W_{1} \cup W_{2}$ is not a subspace. Reader is referred to exercises for more results pertaining to intersection, union of subspaces.

Sum of Subspaces

If W_{1} and W_{2} be two subspaces of a vector space $V(F)$ then, we define

$$
\begin{aligned}
& W_{1}+W_{2}=\left\{w_{1}+w_{2} \mid w_{1} \in W_{1}, \quad w_{2} \in W_{2}\right\} \\
& W_{1}+W_{2} \neq \varphi \text { as } 0=0+0 \in W_{1}+W_{2} \\
& \text { Again, } x, y \in W_{1}+W_{2}, a, \beta \in \text { Fimplies }
\end{aligned}
$$

$$
\begin{aligned}
& x=w_{1}+w_{2} \\
& \boldsymbol{y}=w_{1}^{\prime}+w^{\prime}{ }_{2} w_{1}, w_{1}^{\prime} \in W_{1}, \quad w_{2}, w^{\prime}{ }_{2} \in W_{2} \\
& a x+\beta y=a\left(w_{1}+w_{2}\right)+\beta\left(w_{1}^{\prime}+w^{\prime}{ }_{2}\right)
\end{aligned}
$$

$$
=\left(a w_{1}+\beta w_{1}^{\prime}\right)+\left(a w_{2}+\beta w_{2}^{\prime}\right) \in W_{1}+W_{2}
$$

Showing thereby that sum of two subspaces is a subspace.

Def(2.6):

We say a vector space V is the direct sum of two subspace W_{1} and W_{2} if
(i) $V=W_{1}+W_{2}$
(ii) every $v \in \boldsymbol{V}$ can be expressed uniquely as the sum $w_{1}+$
$w_{2} \in$ Fand $\quad w_{2} \in W_{2}$
and in that case we write $V=W_{1} \oplus W_{2}$
Theorem(2.7):

$$
V=W_{1} \oplus W_{2} \Leftrightarrow V=W_{1}+W_{2}, W_{1} \cap W_{2}=(0)
$$

Proof:

Let $V=W_{1} \oplus W_{2}$
We need prove $W_{1} \cap W_{2}=(0)$
Let

$$
\begin{aligned}
& x \in W_{1} \Rightarrow x \in W_{1} \text { and } x \in W_{2} \\
& \Rightarrow x=0+x \in W_{1}+W_{2}=V \\
& \quad \Rightarrow x=x+0 \in W_{1}+W_{2}=V
\end{aligned}
$$

Since x has been expressed as $x=x+0$ and $0+x$ and the representation has to be unique, we get $x=0 \Rightarrow W_{1} \cap W_{2}=(0)$
Conversely, let $v \in V$ be any element an suppose

$$
\begin{gathered}
v=w_{1}+w_{2} \\
v=w_{1}^{\prime}+w_{2}{ }_{2}
\end{gathered}
$$

are two representations of v then,

$$
w_{1}+w_{2}=w^{\prime}{ }_{1}+w^{\prime}{ }_{2}(=v) \Rightarrow w_{1}-w^{\prime}{ }_{1}=w^{\prime}{ }_{2}-w_{2}=0
$$

Now L.H.S. is in W_{1} and RH.S belongs, to W_{2}, i.e each belongs to

$$
\begin{aligned}
& W_{1} \cap W_{2}=(0) \\
\Rightarrow & w_{1}-w_{1}^{\prime}=w^{\prime}-w_{2}=0 \\
\Rightarrow & w_{1}=w_{1}={ }_{1}, w_{2}=w_{2}^{\prime}
\end{aligned}
$$

Hence the result.

Example :

Consider the space $V(F)=F^{2}(F)$ where F is a field.

solution :

Let $W_{1}=\{(a, 0) \mid a \in F\} \quad, \quad W_{2}=\{(0, b) \mid b \in F\}$
then V is direct sum of W_{1} and W_{2}

$$
v \in V \Rightarrow v=(a, b)=(a, 0)+(0, b) \in W_{1}+W_{2}
$$

thus $V \subseteq W_{1}+W_{2}$, or that $V=W_{1}+W_{2}$
Again if $(x, y) \in W_{1} \cap W_{2}$ be any element then

$$
\begin{gathered}
(x, y) \in W_{1} \text { and }(x, y) \in W_{2} \Rightarrow y=0 \text { and } x=0 \Rightarrow(x, y)=(0,0) \\
\quad \Rightarrow W_{1} \cap W_{2}=(0)
\end{gathered}
$$

Hence $V=W_{1} \oplus W_{2}$

Problem :

Let V be the vector space of all functions from $\boldsymbol{R} \rightarrow \boldsymbol{R}$ Let $V_{e}=\{f \in$ $V \mid$ fis even $\} V_{0}=\{f \in V \mid$ fis odd $\}$.Then V_{e} and V_{0} are subspaces of V and $=V_{e} \oplus W_{2}$.

Solution :

Addition and scalar multiplication in V are given by the rule

$$
(f+g) x=f(x)+g(x) ;(a f) x=a f(x)
$$

$\mathrm{Now}_{e} \neq \varphi$ as $0(-x)=0(-x)=0 \Rightarrow 0(x)=0(-x) \Rightarrow 0 \in V_{e}$
Again for $a, \beta \in R, f, g \in V_{e}$ we have

$$
\begin{gathered}
(a f+\beta g)(-x)=(a f)(-x)+(\beta g)(-x)=a(f(-x)+\beta(g(-x)) \\
=a f(x)+\beta g(x)=(a f+\beta g) x \\
\Rightarrow a f+\beta g \in V_{e}
\end{gathered}
$$

$\Rightarrow \mathrm{V}$ is a subspace of V
Similarly, $V_{e}+V_{0}$ is a subspace of V .
Thus $V_{e}+V 0$ is a ubspace of V . We show $V \subseteq V_{e}+V_{0}$. Let $f \in V$ be any member ,Let $\mathrm{g}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ e such that $g(x)=f(-x)$, then $g \in V$, Also then

$$
f=\left(\frac{1}{2} f+\frac{1}{2} g\right)+\left(\frac{1}{2} f-\frac{1}{2} g\right)
$$

Since

$$
\begin{aligned}
\left(\frac{1}{2} f+\frac{1}{2} g\right) & (-x)=\frac{1}{2} f(-x)+\frac{1}{2} g(-x)=\frac{1}{2} g(x)+\frac{1}{2} f(x) \\
& =\left(\frac{1}{2} f+\frac{1}{2} g\right) x
\end{aligned}
$$

We fined $\quad \frac{1}{2} f+\frac{1}{2} g \in V_{e}$
Similarly , $\frac{1}{2} f-\frac{1}{2} g \in V_{0} \Rightarrow f \in V_{e}+V_{0} \Rightarrow V \subseteq V_{e}+V_{0} \quad$ or that $V=V_{e}+V_{0}$
Finally $f \in V_{e} \cap V_{0} \Rightarrow f \in V_{e}, f \in V_{0}$

$$
\begin{gathered}
f(-x)=f(x) \text { and } f(-x)=-f(x) \\
\Rightarrow f(x)=-f(x) \Rightarrow f(x)+f(x)=0=0(x) \\
\Rightarrow 2 f(x)=O(x) \text { for all } x \\
\Rightarrow 2 f=O \Rightarrow f=V_{e} \cap V_{0}=(0)
\end{gathered}
$$

Hence the result .

Problem :

If $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are three subspaces of a vector space V , such that $M \subseteq L$ then show that

$$
L \cap(M+N)=(L \cap M)+(L \cap N)=M+(L \cap N) .
$$

Also give an example, where the result fails to hold when $\mathrm{M} \nsubseteq \mathrm{L}$.

Solution :

We Jeave the first part for the reader to try. Recall a similar result was proved for ideals in rings. The equality is- called modular equality.
Consider now the vector space $V=R^{2}$
Let

$$
\begin{aligned}
L & =\{(a, a) \mid a \in R\} \\
M & =\{(a, 0) \mid a \in R\} \\
N & =\{(0, b) \mid b \in R\}
\end{aligned}
$$

It is a routine matter to cheek that $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are subspaces of V . indeed

$$
\begin{aligned}
& a(a, a)+a(a, . a)\left(, a^{\prime}, a^{\prime}\right)=(a a, a a)+\left(\beta a^{\prime}, \beta a^{\prime}\right) \\
& \left(a a+\beta a^{\prime}, a a+\beta a^{\prime}\right) \in L \text { etc }
\end{aligned}
$$

$\operatorname{Now}(x, y) \in L \cap M \Rightarrow(x, y) \in L$ and $(x, y) \in M \Rightarrow y=x$ and $y=0$

$$
x=O=y \Longrightarrow(x, y)=(0,0)
$$

Similarly, $L \cap N=\{(0,0)\}$

$$
L \cap N=\{(0,0)\}
$$

Again,

$$
M+N=\{(a, b) \mid a, b \in R\} \text { and } a s(1,1) \in M+N,(1,1) \in L
$$

we find $(1,1) \in L \cap(M+N)$, but $(1,1) \notin L \cap M+L \cap N$
Hence

$$
L \cap(M+N \neq(L \cap M)+(L \cap N), \text { when } M \nsubseteq L
$$

Quotient Spaces

If W be a subspace of a vector space $\mathrm{V}(\mathrm{F})$ then since $<\mathrm{W},+>$ forms an abelian group of $<\mathrm{V},+>$, we can talk of cosets of W in V . Let be the set of all $\operatorname{cosets} W+v, v \in V$, then we show that $\frac{V}{W}$ also forms a vector space over F , under the operations defined by

$$
\begin{gathered}
(W+x)+(W+y)=W+(x+y) \quad x, y € V \\
a(W+x)=W+a x \quad a \in F
\end{gathered}
$$

Addition is well defined, since,

$$
\begin{aligned}
& W+x=W+x^{\prime} \\
& w+y=W+y^{\prime} \\
\Rightarrow & x-x^{\prime} \in W, y-y^{\prime} \in W \\
\Rightarrow & \left(x-x^{\prime}\right)+\left(y-y^{\prime}\right) \in W \\
\Rightarrow & (x+y)-\left(x^{\prime}+y^{\prime}\right) \in W \\
\Rightarrow & W+(x+y)=W+\left(x^{\prime}+y^{\prime}\right)
\end{aligned}
$$

Again $W+x=W+x^{\prime}$

$$
\begin{aligned}
& \Rightarrow x-x^{\prime} \in W \\
& \Rightarrow a(x-x) \in W, a \in F \\
& \Rightarrow a x-a x^{\prime} \in W \\
& \Rightarrow W+a x=W+a x^{\prime} \\
& \Rightarrow a(W+x)=a\left(W+x^{\prime}\right)
\end{aligned}
$$

$W+0$ will be zero of $\frac{V}{W} W-x$ will be inverse of $W+x$ Also

$$
a((W+x)+(W+y))=a(W+(x+y))=W+a(x+y)
$$

$$
\begin{aligned}
& =W+(a x+a y) \\
& =(W+a x)+(W+a y) \\
& =a(W+x)+a(W+y) \text { etc. }
\end{aligned}
$$

Hence, V / W forms a vector space over F , called the quotient space of V by W.

Homomorphism Or Linear Transformations

We are already familiar with the concept of a homomorphism in case group and rings. We introduce the same in vector spaces.

Def(2.8):

Let V and U be two vector spaces over the same field F , then a mapping
$T: V \rightarrow U$ is called a homomorphism or a linear transformation if

$$
\begin{gathered}
T(x+y) T(x)+T(y) \text { for all } x, y \in V \\
T(a x)=a T(x) \quad a \in F
\end{gathered}
$$

One can combine the two conditions to get a single condition

$$
T(a x+\beta y)=a T(x)+\beta T(y) \quad x, y \in V, \quad a, \beta \in F
$$

It is easy to see that both are equivalent. If a homomorphism happens to be one - one onto also we call it an isomorphism, and say the two spays are isomorphic.
(Notation $V \cong U$)

Example :

(i) Identity map : $V \rightarrow V$ s.t $I(v)=v$
and the zero map $O: V \rightarrow V$ s.t $O(v)=0$ are clearly linear transformations.
(ii) For a field F , consider the vector spaces F^{2} and. Define, a map $: F^{3} \rightarrow F^{2}$, by $T(a, \beta, \gamma)=(a, \beta)$.
then T is a linear transformation as
for any $x, y \in F^{3}$, if $x=\left(a_{1}, \beta_{1}, \gamma_{1}\right) \quad, \quad y=\left(a_{2}, \beta_{2}, \gamma_{2}\right)$ then

$$
\begin{aligned}
T(x+y)= & T\left(a_{1}+a_{2}, \beta_{1}+\beta_{2}, \gamma_{1}+\gamma_{2}\right)=\left(a_{1}+a_{2}, \beta_{1}, \beta_{2}\right) \\
& =\left(a_{1}, \beta_{1}\right)+\left(a_{1}, \beta_{2}\right)=T(x)+T(y)
\end{aligned}
$$

And

$$
\begin{gathered}
T(a x)=T\left(a\left(a_{1}, \beta_{1}, \gamma_{1}\right)\right)=T\left(a a_{1}, a \beta_{1}, a \gamma_{1}\right)=\left(a a_{1}, a \beta_{1}\right) \\
=a\left(a_{1}, \beta_{1}\right)=a T(x)
\end{gathered}
$$

(i) Let V be the vector space of all polynomial \square in x over a field F . Define

$$
\begin{gathered}
T: V \rightarrow N \text {, s.t. } \\
T(f(x))=\frac{d}{d x} f(x)
\end{gathered}
$$

then $T(f+g)=\frac{d}{d x}(f+g)=\frac{d}{d x} f+\frac{d}{d x} g=T(f)+T(g)$

$$
T(a f)=\frac{d}{d x}(a f)=a \frac{d}{d x} f=a T(f)
$$

show that T is linear transformation. In fact, if $U: V \rightarrow V$ be defined such that $\int_{0}^{x} f(t) d t$,then U will also be a linear transformation.
In the theorems that follow, we take V and U to be vector spaces
Theorem(2.9):
Under a homomorphism $T: V \rightarrow U$
(i) $T(0)=0$
(ii) $T(-x)=-T(x)$.

Proof:

$T(0)=T(0+0)=T(0)+T(0) \Rightarrow \mathrm{T}(0)=0$
Again

$$
T(-x)+T(x)=T(-x+x)=T(0)=-T(x)=T(-x) .
$$

$\operatorname{Def}(2.10):$

Let $T: V \rightarrow U$ be a homomorphism, then kernel of T is a subspace of F .

Proof:

Ker $T \neq \varphi$ as $0 \in \operatorname{ker} T$ by any elements then

$$
\begin{gathered}
T(a x+\beta y)=a T(x)+\beta T(y)=a \cdot 0+\beta .0=0+0=0 \\
\Rightarrow a x+\beta y \in \operatorname{ker} T
\end{gathered}
$$

Theorem(2.11) :

Let $T: V \rightarrow U$ be a homomorphism, then
$\operatorname{Ker} T=\{O\}$ iff T is one-one.

Proof:

Let $\operatorname{Ker} T=\{0\}$. If $T(x)=T(y)$
then $T(x)-f l y)=0$

$$
\begin{aligned}
& \Rightarrow T(x-y)=0 \\
\Rightarrow & (x-y) \in \operatorname{Ker} T=\{0\} \\
\Rightarrow & x=y
\end{aligned}
$$

Conversely, let T be one - one
if $x \in \operatorname{Ker} T$ be any element, then $T(x)=0$

$$
\begin{aligned}
& \Rightarrow T(x)=T(0) \\
& \Rightarrow x=O \\
& \Rightarrow \operatorname{Ker} T=\{0\} .
\end{aligned}
$$

Def(2.12):
Let $T: V \rightarrow U$ be a linear transformation then range of T is defined to be.

$$
T(V)=\left\{T(x) \mid x \in V=\text { Range } T=R_{T}=\{u \in U \mid u=T(v), v \in V\}\right.
$$

Theorem(2.13):

Let $T: V \rightarrow U$ be a LT. (linear transformation) then range of T is a subspace of U.

Proof:

Since $T(0)=0,0 \in V \quad, T(0) \in$ Range T i.e. Range $T \neq \varphi$
Let $a, \beta \in F, T(x), T(x) \in T(V)$ be any elements then $x, y \in V$ Now $a T(x)+\beta T(y)=T(a x+\beta y) \in T(V)$ as $a x+\beta y \in V$
Hence the result.

Note : $\mathrm{T}(\mathrm{V})=\mathrm{U}$ iff T is onto.

Theorem(2.14):

Let $T: V \rightarrow U$ be a L.T. then

$$
\frac{V}{\operatorname{ker} T} \cong \text { Range } T=T(V)
$$

Proof:
Let $T: V \rightarrow U$ and put $\operatorname{Ker} T=K$, then K being a subspace of V , we can talk of V / K.
Define a mapping $\theta: V / K \rightarrow T(V)$, s.t $\theta(K+x)=T(x), x \in V$
Then θ is will defined one-one map as

$$
\begin{aligned}
& K+x=K+y \\
\Leftrightarrow & x-y \in K=\operatorname{Ker} T \\
\Leftrightarrow & T(x-y)=0 \\
\Leftrightarrow & \Leftrightarrow T(x)=T(y) \\
\Leftrightarrow & \theta(K+x)=\theta(K+y)
\end{aligned}
$$

If $T(x) \in T(V)$ be any element, then $x \in V$ and $\theta(K+x)=T(x)$, showing that θ is onto .
Finally

$$
\begin{gathered}
\theta((K+x)+(K+y))=\theta(K+(x+y)) \\
=T(x+y)=T(x)+T(y) \\
=(K+x)+\theta(K+y) \\
\theta(a((K+x))=\theta(K+a x)=T(a x)=a T(x)=a \theta(K+x)
\end{gathered}
$$

shows θ is L.T. and hence an isomorphism. .

Note :

The above is called the Fundamental Theorem of homomorphism vector spaces.
If the map T is also onto, then we have proved $\frac{V}{\operatorname{ker} T} \cong U$.

Theorem(2.15):

If A and B be two subspaces of a vector space $V(F)$

$$
\frac{A+B}{A} \cong \frac{B}{A \cap B}
$$

Proof:

A being a subspace of $A+B$ and $A \cap B$ being a subspace of B , we can talk of

$$
\frac{A+B}{A} \text { and } \frac{B}{A \cap B}
$$

Define a map $\theta: B \rightarrow \frac{A+B}{A}$ st. $\theta(b)=A+b, b \in B$
Since $b_{1}=b_{2}$, we find θ is well defined.
Again as $\theta\left(b_{1}+b_{2}\right)=A+\left(a b_{1}+\beta b_{2}\right)$

$$
\begin{aligned}
&=\left(A+a b_{1}\right)+\left(A+\beta b_{2}\right) \\
&=a\left(A+b_{1}\right)+\beta\left(A+b_{2}\right) \\
&=a \theta(\theta)+\beta \theta\left(b_{1}\right)
\end{aligned}
$$

θ is a L.T
For any $+x \in \frac{A+B}{A}$, we find $x \in A+B$

$$
\begin{gathered}
x=a+b, a \in A, b \in B \\
A+x=A+(a+b) \\
(A+a)+(A+b)=A+(A+b)=A+b=\theta(h)
\end{gathered}
$$

Showing that 1 , is the required pre image of $A+x$ under O and thus O is onto. Hence by Fundamental theorem

$$
\frac{A+B}{A} \cong \frac{B}{\operatorname{ker} \theta}
$$

We claim $\operatorname{Ker} \theta=A \cap B$
Indeed

$$
\begin{gathered}
x \in \operatorname{ker} \theta \Leftrightarrow \theta(x)=A \Leftrightarrow A+x=A \\
\Leftrightarrow x \in A, \quad \text { also } x \in \operatorname{Ker} \theta \subseteq B \Leftrightarrow x \in A \cap B
\end{gathered}
$$

Hence

$$
\frac{A+B}{A} \cong \frac{B}{A \cap B}
$$

Note :
By interchanging A and B , we get. $\frac{B+A}{B} \cong \frac{A}{B \cap A}$ i.e $\frac{A+B}{A} \cong \frac{B}{A \cap B}$
Corllory : If $\mathrm{A}+\mathrm{B}$ is the direct sum then as $A \cap B=\{0\}$ we get

$$
\frac{A}{(0)} \cong \frac{A \oplus B}{B}
$$

But $\frac{A}{(0)} \cong A$ gives us $A \cong \frac{A \oplus B}{B}$.

Theorem (2.16):

Let W be a subspace of V then an onto L.T. $\theta: V \rightarrow \frac{V}{W}$ such that
$\operatorname{Ker} \theta=W$ '

Proof:

Define $\theta: V \rightarrow \frac{V}{W}$ s.t $\theta(x)=W+x$.
then θ is clearly well defined .Also

$$
\begin{gathered}
\theta(a x+\beta y)=W+(a x+\beta y) \\
=(W+a x)+(W+\beta y) \\
=a(W+x)+\beta(W+y)=a \theta(x)+\beta \theta(y)
\end{gathered}
$$

Shows θ is a L.T.
θ is dourly onto.
Again $x \in \operatorname{Ker} \theta \Leftrightarrow \theta(x)=W \Leftrightarrow W+x=W \Leftrightarrow x \in W$
Hence $\operatorname{Ker} \theta=W$.
T is called the natural homomorphism or the quotient map.

Remark :

In case $\mathrm{W}=(0)$ in the above we find θ will be $1-1$ also as

$$
\theta(a)=\theta(b) \Rightarrow W+a=W+b
$$

$$
\begin{aligned}
& \quad \Rightarrow a-b \in W=(0) \\
& \Rightarrow a-b=0 \\
& \Rightarrow a=b .
\end{aligned}
$$

Hence in that case $V \cong \frac{V}{W}$ or $V \cong \frac{V}{(0)}$
Note $W=(0)=\operatorname{Ker} \theta=(0)=\theta$ is one - one.
Problem :
Let W and U be subspaces of $\mathrm{V}(\mathrm{F})$ such that $W \subset U \subset V$ let $V: V \rightarrow \frac{V}{W}$ be the quotient map. Show that $\theta: V \rightarrow \frac{V}{W} f(U)$ is a proper subspace of $\frac{V}{W}$

Solution :

Since f is a L.T., $\mathrm{f}(\mathrm{U})$ is a subspace of V / W.
If $f(U)=0$ then $f(x)=0$ for all $x \in U$

$$
\begin{aligned}
& \Rightarrow W+x=W \text { forall } x \in U \\
& \Rightarrow x \in W \text { forall } x \in U
\end{aligned}
$$

$\Rightarrow U \subseteq W$, a contradiction
Again since $U \neq V, \exists v_{0} \in V$ s.t $\quad v_{0} \notin U$
If $f\left(v_{0}\right) \in f(U)$ then $f\left(v_{0}\right)=f(x)$ for some $x \in U$

$$
\begin{gathered}
\Rightarrow f\left(v_{0}-x\right)=0 \\
\Rightarrow W+\left(v_{0}-x\right)=W \\
\Rightarrow x+v_{0}-x \in W \\
\Rightarrow x+w \text { for some } w \in W
\end{gathered}
$$

$\Rightarrow 0 \in U$, a contradiction of hence $f\left(v_{0}\right) \in f(U) \Rightarrow f(U) \neq \frac{V}{W}$ or that $f(U)$ is proper subspace of V / W.
Theorem (2.17):
Let $V \rightarrow U$ be an onto homomorphism with $\operatorname{Ker} T=W$ then there exists a one-one onto mapping between the subspaces of U and the subspace of V which contain W
Proof:
Let $\mathbf{A}=$ set of all subspaces of V , which contain W
$R=$ set of all subspaces of U
Define a mapping $\theta: \mathbf{A} \rightarrow \mathrm{R}$ s.t

$$
\theta\left(W_{1}\right)=T\left(W_{1}\right)
$$

Since $T: V \rightarrow U, T\left(W_{1}\right)$ will be a subspace of U as for any $T(x), T(y) \in T\left(W_{1}\right)$ and $a, \beta \in F$

$$
a T(x)+T(y) \in T(a x+\beta y) \in T\left(W_{1}\right), \text { as } x, y \in W_{1}
$$

Again $W_{1}=W_{1}^{\prime} \Rightarrow T\left(W_{1}\right)=T\left(W_{1}^{\prime}\right) \Rightarrow \theta$ is well define
Now if $\quad \theta\left(W_{1}\right)=\theta\left(W_{1}{ }^{\prime}\right)$.
Then $T\left(W_{1}\right) T\left(W_{1}{ }^{\prime}\right) \Rightarrow W_{1}=W_{1}$
As $x \in W_{1} \Rightarrow T(x) \in T\left(W_{1}\right)=T\left(W_{1}^{\prime}\right)$

$$
\begin{aligned}
\Rightarrow T(x) \in T\left(W_{1}^{\prime}\right) \Rightarrow & T(x)=T(y), \quad y \in W_{1} \\
& \Rightarrow T(x-y)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x-y \in \operatorname{Ker} T=W_{1} \subseteq W_{1}^{\prime} \\
& \Rightarrow W_{1} \in W_{1}^{\prime} \text { as } y \in W_{1}^{\prime}
\end{aligned}
$$

$W_{1} \subseteq W_{1}{ }^{\prime}$ Similarly $W_{1}{ }^{\prime} \subseteq W_{1}$
Hence θ is $1-1$.
Let U_{1} e be any member.
Define $T\left(U_{1}\right)=\left\{x \in V \mid T(x) \in U_{1}\right)$
Then $0 \in T^{-1}\left(U_{1}\right)$ as $T(0)=0 \in U_{1}$ For $a, \beta \in F, x, y \in T^{-1}\left(U_{1}\right)$, we have $T(x) \in U_{1}, T(y) \in U_{1}$

$$
a T(x)+\beta T(y) \in U_{1} \Rightarrow T(a x+\beta y) \in U_{1} \Rightarrow a x+\beta y \in T^{-1}\left(U_{1}\right)
$$

Or that $T^{-1}\left(U_{1}\right)$ is subspace of V .
Let $x \in \operatorname{Ker} T \Rightarrow T(x)=0 \in U_{1}$

$$
\begin{aligned}
& \Rightarrow x \in T^{-1}\left(U_{1}\right) \Rightarrow W \subseteq T^{-1}\left(U_{1}\right) \\
\Rightarrow & T^{-1}\left(U_{1}\right) \in A
\end{aligned}
$$

also

$$
T\left(T^{-1}\left(U_{1}\right)\right)=\left\{T(x) \in V \mid T(x) \in U_{1}\right\} \subseteq U_{1}
$$

let

$$
y \in U_{1} \Rightarrow y \in U \Rightarrow \exists x \in V \text { s.t } T(x)=y
$$

$$
\text { as } \left.\mathrm{T} \text { is onto } x \in T^{-1}\left(U_{1}\right) \Rightarrow y=T(x) \in T^{-1}\left(U_{1}\right)\right)
$$

$$
\begin{gathered}
\Rightarrow T\left(T^{-1}\left(U_{1}\right)\right)=U_{1} \\
\theta\left(T^{-1}\left(U_{1}\right)\right)=U_{1}
\end{gathered}
$$

$$
\Rightarrow \theta \text { is onto }
$$

Hence the theorem is proved.

Liner Span

$\operatorname{Def}(2.18)$:
Let $\mathrm{V}(\mathrm{F})$ be a vector space, $v_{i} \in V, a_{i} \in F$ be elements of V and F respectively. Then element of the type $\sum_{i=1}^{n} a_{i} v_{i}$ are called linear othina of $v_{1}, v_{2}, \ldots v_{n}$ over F.
Let S be a non empty subset of V , then the set

$$
L(S)=\left\{\sum_{i=1}^{n} a_{i} v_{i} \mid v_{i} \in V, \quad a_{i} \in F, v_{i} \in S, \quad a_{i} \in F, n \text { finite }\right\}
$$

i.e the set of ail linear combinations of finite sets of elements of S is called linear span of S. It is also denoted by $\langle S\rangle$.
Theorem (2.19):
$\mathrm{L}(\mathrm{S})$ is the smallest subspace of V , containing S .
Proof :

$$
L(S) \neq \varphi \text { as } v \in S \Rightarrow v=1 . v, 1 \in F \Rightarrow v \in L(S) .
$$

thus, in fact, $S \subseteq L(S)$.
Let $x, y \in L(S), \quad a, \beta \in F$ be any elements then

$$
\begin{gathered}
x=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \\
y=\beta_{1} v_{1}^{\prime}{ }_{1}+\beta_{2} v_{2}^{\prime}{ }_{2}+\cdots+\beta_{m} v_{m}^{\prime}
\end{gathered}
$$

Thus

$$
\begin{aligned}
a x+\beta y= & a a_{1} v_{1}+a a_{2} v_{2}+\cdots+a a_{n} v_{n}+\beta \beta_{1} v_{1}^{\prime}+\beta \beta_{2} v_{2}^{\prime}+\cdots \\
& +\beta \beta_{m} v^{\prime}{ }_{m}
\end{aligned}
$$

R.H.S. being a liner combination belongsto $\mathrm{L}(\mathrm{S})$.Hence $L(S)$ is a subspace.V containing S.
Let now W be any subspace of V containing S
We show $L(S) \subseteq W$

$$
x \in L(S) \Rightarrow x=\sum a_{i} v_{i}, \quad a_{i} \in F, v_{i} \in S
$$

$v_{i} \in S \subseteq W$ for all i and W is a subspace

$$
\Rightarrow \sum a_{i} v_{i} \in W \Rightarrow x \in W \Rightarrow L(s) \subseteq W
$$

Hence the result follows.
Theorem(2.20):
If S_{1} and S_{2} are subsets of V then
(i) $S_{1} \subseteq S_{2} \Rightarrow L\left(S_{1}\right) \subseteq L\left(S_{2}\right)$
(ii) $L\left(S_{1} \cup S_{2}\right) L\left(S_{1}\right)+L\left(S_{2}\right)$
(iii) $L\left(L\left(S_{1}\right)\right)=L\left(S_{1}\right)$

Proof:

(i) $x \in L\left(S_{1}\right) \Rightarrow x=\sum a_{i} v_{i} v_{i} \in S_{1}, a_{i} \in F$ thus $v_{i} \in S_{1} \subseteq S_{2}$ for all i

$$
\begin{aligned}
& \Rightarrow \sum_{i} a_{i} v_{i} \in S_{1} \Rightarrow x \in L\left(S_{2}\right) \\
& \Rightarrow L\left(S_{1}\right) \subseteq L\left(S_{2}\right)
\end{aligned}
$$

(ii) $S_{1} \subseteq S_{1} \cup S_{2} \Rightarrow L\left(S_{1}\right) \subseteq L\left(S_{1} \cup S_{2}\right)$

$$
S_{2} \subseteq S_{1} \cup S_{2} \Rightarrow L\left(S_{2}\right) \subseteq L\left(S_{1} \cup S_{2}\right)
$$

$$
\Longrightarrow L\left(S_{1}\right)+L\left(S_{2}\right) \subseteq L\left(S_{1} \cup S_{2}\right)
$$

Again $S_{1} \subseteq L\left(S_{1}\right) \subseteq L\left(S_{1}\right)+L\left(S_{2}\right)$

$$
S_{2} \subseteq L\left(S_{2}\right) \subseteq L\left(S_{1}\right)+L\left(S_{2}\right)
$$

hence $S_{1} \cup S_{2} \subseteq L\left(S_{1}\right)+L\left(S_{1}\right)$

$$
L\left(S_{1} \cup S_{2}\right) \subseteq L\left(S_{1}\right)+L\left(S_{1}\right)
$$

as $L\left(S_{1} \cup S_{2}\right)$ is the smallest subspace containing $S_{1} \cup S_{2}$ and
$L\left(S_{1}\right)+L\left(S_{2}\right)$ is a subspace, being sum of two subspaces (and contains $S_{1} \cup S_{2}$).
Thus $L\left(S_{1} \cup S_{2}\right)=L\left(S_{1}\right)+L\left(S_{2}\right)$
(iii) Let $L\left(S_{1}\right)=K$ then we show $L(K)=L\left(S_{1}\right)$

Now $K \subseteq L(K)$
$\therefore L\left(S_{1}\right) \subseteq L\left(L\left(S_{1}\right)\right)$
Again $x \in L\left(L\left(S_{1}\right)\right) x$ is linear combination of members of $\mathrm{L}\left(S_{1}\right)$ which are linear combinations of members of S_{1}.
So x is a linear combination of members of $S_{1} \Rightarrow x \in L\left(S_{1}\right)$
Thus $L\left(L\left(S_{1}\right)\right) \subseteq L\left(S_{1}\right)$ hence $L\left(L\left(S_{1}\right)\right)=L\left(S_{1}\right)$.

Theorem (2.21) :

If W is a subspace of V then $\mathrm{L}(\mathrm{W})$ and conversely.

Proof:

$W \subseteq L(W)$ by definition and since $\mathrm{L}(\mathrm{W})$ is the smallest subspace of containing W and W is itself a subspace

$$
L(W) \subseteq W
$$

$$
L(\mathrm{~W})=\mathrm{W}
$$

Hence
conversely let $L(W)=W$, let $x, y \in W, a, \beta \in F$ then $x, y \in L(W)$
$\Rightarrow x, y$ are liner combination of members of W .
$\Rightarrow a x+\beta y$ is liner combination of members of W .

$$
\begin{aligned}
& \Rightarrow a x+\beta y \in L(W) \\
& \Rightarrow a x+\beta y \in W
\end{aligned}
$$

$\Rightarrow \mathrm{W}$ is a subspace.

Def(2.22):

If $\mathrm{V}=\mathrm{L}(\mathrm{S})$, we say S spans (or generates) V . The vector space V is said to be finite - dimensional (dyer F) if there exists a finite subset S of V . such that $\mathrm{V}=\mathrm{L}(\mathrm{S})$. We use notation F.D. V.S. for a finite dimensional vector space.
It now follows, from the results we proved that, if S_{1} and S_{2}. are two subspaces of V , then $S_{1}+S_{2}$ is the subspace spanned by $S_{1} \cup S_{2}$
Indeed, $L\left(S_{1} \cup S_{2}\right)=L\left(S_{1}\right)+L\left(S_{2}\right)=S_{1}+S_{2}$

Problem:

Let $S=\{(1,4),(0,3)\}$ be a subset of $\boldsymbol{R}^{2}(\boldsymbol{R})$ Show that (2.3) belongs to L(S).

Solution:

$(2,3) \in L(S)$ if it can be put as a linear combination of $(1,4)$ and $(0,3)$
Now

$$
\begin{aligned}
(2,3)=a(1,4)+\beta(0,3) & \Rightarrow(2,3)=(a+0,4 a+3 \beta) \\
& \Rightarrow 2=a, 4 a+3 \beta=3 \beta \Rightarrow a=2, \beta-\frac{5}{3}
\end{aligned}
$$

hence $(2,3)=2(1,4)-\frac{5}{3}(0,3)$ Showing that $(2,3) \in L(s)$

Linear Dependence and Independence

let $\mathrm{V}(\mathrm{F})$ be a vector space. elements $v_{1}, v_{2}, \ldots v_{n}$ in V are said to be linearly dependent (over F) if \exists scalars $a_{1}, a_{2}, \ldots, a_{n} \in F$. (not all zero) such that

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0
$$

($v_{1}, v_{2}, \ldots v_{n}$ are finite in number, not essentially distinct).
Thus for linear dependence $\sum a_{i} v_{i}=0$. and at least one $a_{i} \neq 0$. If $v_{1}, v_{2}, \ldots v_{n}$ are not linearly d'pendent (L.D.) these are called linearly independent(L.I).
In other words, $v_{1}, v_{2}, \ldots v_{n}$ are L.I. if

$$
\sum a_{i} v_{i}=0, a_{i}=0 \text { for all } i
$$

A finite set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is said to be L.D. or L.I. according as its n members are L.D. or L.I.
In general any subset Y of $\mathrm{V}(\mathrm{F})$ is called L.I, if every finite non empty subset of Y is L.I, otherwise it is called L.D.
So, if some subsets are L.I. and some are L.D. then Y is called L.D.

Observations:

(i) A non zero vector is always L.I. as $v \neq 0, a v=0$ would mean $a=0$.
(ii) Zero vector is always L.D. , $1.0=0 \quad 1 \neq 0,1 \in F$.

Thus any collection of vectors to which zero belongs is always L.D
In other words, if $v_{1}, v_{2}, \ldots v_{n}$ are L.I then none of these can be zero. (But not conversely, see example ahead).
(i) V is L.I iff $v \neq 0$
(ii) Empty set φ is L.I. since it has no non empty finite subset and consequently it satisfies the condition for linear independence. In other words, whenever $\sum a_{i} v_{i}=0$ in φ then as there. is no i for which $a_{i} \neq 0$, set is L.I. We sometimes express it by saying that empty set is L.I. vacuously.

Examples:

(i) Consider $\boldsymbol{R}^{2}(\boldsymbol{R}), \boldsymbol{R}=$ reals.

$$
\text { as } \begin{aligned}
& v=(1,0), \quad v_{2}=(0,1) \in \boldsymbol{R}^{2} \text { are L.I } \\
& a_{1} v_{1}+a_{2} v_{2}=0 \text { for } a_{1}, a_{2} \in \boldsymbol{R} \\
& \Longrightarrow a_{1}(1,0)+a_{2}(0,1)=(0,0) \\
& \Rightarrow\left(a_{1}, a_{2}\right)=(0,0) \Longrightarrow a_{1}=a_{2}=0
\end{aligned}
$$

(ii) Consider the subset $S=\{(1,0,0),(0,1,0),(0,0,1),(2,3,4)\}$ in the vector space $\boldsymbol{R}^{3}(\mathrm{R})$.
Since $2(1,0,0)+3(0,1,0)+4(0,0,1)-1(2,3,4)=(0,0,0)$ we find S is L.D .
In the vector space P of polynomials the vectors $(x)=1-x, g(x)=$ $x-x^{2}, h(x)=1-x^{2}$ are L.D. since $f(x)+g(x)-h(x)=0$.

Problem :

Show that the vectors

$$
\begin{array}{cl}
v_{1}=(1,1,2,4) & v_{2}=(2,-1,-5,2) \\
v_{3}=(1,-1,-4,0) & \text { and } \\
v_{4}=(2,1,1,6)
\end{array}
$$

are L.D in $\boldsymbol{R}^{4}(\mathrm{R})$.

Solution :

Suppose $a v_{1}+b v_{2}+c v_{3}+d v_{4}=0, \quad a, b, c, d \in R$ then

$$
\begin{gathered}
a(1,1,2,4)+b(2,-1,-5,2)+c(1,-1,-4,0)+d(2,1,1,6) \\
=(0,0,0,0) \\
\Rightarrow a+2 b+c+2 d=0 \\
a-b-c+d=0
\end{gathered}
$$

$$
\begin{gathered}
2 a-5 b-4 c+d=0 \\
4 a+2 b+0 c+6 d=0 \\
\Rightarrow\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
1 & -1 & -1 & 1 \\
2 & -5 & -4 & 1 \\
4 & 2 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
R_{1} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-2 R_{1}, R_{4} \rightarrow R_{4}-4 R_{1} \\
{\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & -3 & -2 & -1 \\
0 & -3 & -2 & -1 \\
0 & -3 & -2 & -1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
R_{4} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow \frac{1}{3} R_{3} \\
{\left[\begin{array}{llll}
1 & 2 & -1 & 2 \\
0 & -3 & -2 & -1 \\
0 & -1 & -\frac{2}{3} & -\frac{1}{3} \\
0 & -\frac{3}{4} & -1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
R_{4} \rightarrow R_{4}-R_{2}, R_{3} \rightarrow R_{3}-R_{2} \\
{\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
0 & -3 & -2 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
\Rightarrow a+2 b+c+2 d=0 \\
-3 b-2 c-d=0 \\
3 b+2 c++d=0
\end{gathered}
$$

$a=1, b=1, c=1, d=1$ satisfy the equations.
Since coefficients are non zero, the given vectors are L.D.

Problem:

If two vectors are L.D. then one of them is the scalar multiple of the other

Solution :

Suppose v_{1}, v_{2} are L.D. then $\exists a_{i} \in F$ s.t

$$
a_{1} v_{1}+a_{2} v_{2}=0 \quad \text { for some } a_{i}=0
$$

Without loss of generality we can take $a_{1} \neq 0$ then a_{1}^{-1} exists and $a_{1} v_{1}=\left(-a_{2} v_{2}\right) \Longrightarrow v_{1}=\left(-a_{1}^{-1} a_{2}\right) v_{2}=\beta v_{2}$
which proves the result.

Problem:

If x, y, z are L.I. over the field C of complex nos. then so are $x+y, y+z$ and $z+x$ over C .

Solution :

Suppose $a_{1}(x+y)+a_{2}(y+z)+a_{3}(z+x)=0, \quad a_{i} \in C$
Then $\left(a_{1}+a_{3}\right) x+\left(a_{1}+a_{2}\right) y+\left(a_{2}+a_{3}\right) z=0$

$$
\Rightarrow a_{1}+a_{3}=a_{1}+a_{2}=a_{2}+a_{3}=0, \quad \text { as } x, y, z \text { are L.I. }
$$

Solving we find.

$$
a_{1}=a_{2}=a_{3}=0
$$

Hence the result.
Note :
Linear dependence depends not only upon the vector space, but the field as well.
Consider, for instance, $\mathbf{C}(\mathbf{C}), \mathbf{C}(\mathbf{R}), \mathbf{C}=$ complex, $\mathbf{k}=$ real's .
Take 1, $i \in C$, if $a, \beta \in$ R.then $a .1+\beta . i=0=0+i 0$ $\Rightarrow a=0 \quad, \beta=0 \quad \Rightarrow 1$, I are L.I. in $\mathbf{C}(\mathbf{R})$
Now if we take a, β In C , then as we can take $a=1$ ، $\beta=-1$, so that

$$
i .1+(-1) i=0 \text { we fined } \exists a, \beta \neq 0
$$

s.t sums of the type $\sum a_{i} v_{i}=0$
i.e1, i are L.D iv $\mathbf{C}(\mathbf{C})$.

Def(2.23):
Let $\mathrm{V}(\mathrm{F})$ be a vector space. A subset S of V is called a basis of V if S consists of L.I. elements (i.e., any finite number of elements in S are L.I.) and $V=L(S)$, i.e S spans V .
Theorem(2.24):
let $S=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is a basis of V , then every element of V can be expressed uniquely as a linear combination of $v_{1}, v_{2}, \ldots v_{n}$

Proof:

Since, by definition of basis, $V=L(S)$ each element $v \in V$ can be expressed as n linear combination of $v_{1}, v_{2}, \ldots v_{n}$ Suppose

$$
\begin{gathered}
v=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} a_{i} \in F \\
v=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{n} v_{n} \beta_{i} \in F
\end{gathered}
$$

Then $a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{n} v_{n}$

$$
\Rightarrow\left(a_{1}-\beta_{1}\right) v_{1}+\left(a_{2}-\beta_{2}\right) v_{2}+\cdots+\left(a_{n}-\beta_{n}\right) v_{n}=0
$$

$\Rightarrow a_{i} \beta_{i}=0$ for all I ($v_{1}, v_{2}, \ldots v_{n}$ are L.I)

$$
\Rightarrow a_{i}=\beta_{i} \text { for all } i
$$

Theorem(2.25):

Suppose S is a finite subset of a vector space V such that $V=L(S)$ [i.e., V is a F.D.V.S] then there exists a subset of S which is a basis of V .

Proof:

If S consists of L.I. elements then S itself forms basis of V and we've nothing to prove.
Let now T be a subset of S , such that T spans Vof S (Existence of T is ensured as S is finite)

Suppose $T=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$
we show T is L.I.
Suppose $a_{i} \neq 0$ for some i Without any loss of generality we can take $a_{1} \neq 0$ Then a_{1}^{-1} exists.

$$
\begin{gathered}
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}=0 \\
\Rightarrow a_{1}^{-1}\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}\right)=0 \\
\Rightarrow v=\left(-a_{1}^{-1} a_{2}\right) v_{2}+\left(-a_{1}^{-1} a_{3}\right) v_{3}+\cdots+\left(-a_{1}^{-1} a_{n}\right) v_{n} \\
=\beta_{2} v_{2}+\beta_{3} v_{3}+\cdots+\beta_{n} v_{n} \beta_{i} \in F
\end{gathered}
$$

If $v \in V$ be any element then

$$
\begin{aligned}
& v=\gamma_{1} v_{1}+\gamma_{2} v_{2}+\cdots+\gamma_{n} v_{n} \gamma_{i} \in F \text { as } V=L(T) \\
& \Rightarrow v=\gamma_{1}\left(\beta_{2} v_{2}+\cdots+\beta_{n} v_{n}\right)+\gamma_{2} v_{2}+\cdots+\gamma_{n} v_{n}
\end{aligned}
$$

i.e any element of V is a linear combination of $v_{1}, v_{2}, \ldots v_{n}$.
$\Rightarrow v_{1}, v_{2}, \ldots v_{n}$ spans V , which contradicts our choice of T (as T was such minimal)
Hence $a_{1}=0$ or that $a_{i}=0$ for all $i \Rightarrow v_{1}, v_{2}, \ldots v_{n}$ are L.I
And thus t is a basis of F.
Def(2.26):
A F.D.V.S V is said to have dimension n if n is the number of elements in any basis of V . we use the notation $\operatorname{dim}_{F} \mathrm{~V}=\mathrm{n}$ or simply $\operatorname{dim} \mathrm{V}$ and say V is n -dimensional vector space.
In view of an example done earlier $\operatorname{dim} R^{2}=2$
In fact, $\operatorname{dim} R^{n}=\mathrm{n}$.
Theorem(2.27) :
A F.D.V.S V has dimension n iff n is the maximum number of L.I. .vectors in any subset of V

Proof:

Let $\operatorname{dim} V=n$ and let $\left\{v_{1}, v_{2}, \ldots \ldots . v_{n}\right\}$ be a basis of V, then these are L.I..
Let $\mathrm{S}=\left\{w_{1}, w_{2}, \ldots \ldots . w_{m}\right\}$ be a subset of V where $\mathrm{m}>n$. we show S must be L.D. set .
Since $w_{1}, w_{2}, \ldots \ldots \ldots \ldots . w_{m}$ all belong to V and $\left\{v_{1}, v_{2}, \ldots \ldots . v_{n}\right\}$ is a basis of V ; we can write
$w_{1}=a_{11} v_{1}+a_{21} v_{2}+\ldots \ldots+a_{n 1} v_{n}$
$w_{2}=a_{12} v_{1}+a_{22} v_{2}+\ldots \ldots+a_{n 2} v_{n} a_{i j} \in \mathrm{~F}$
$w_{m}=a_{1 m} v_{1}+a_{2 m} v_{2}+\ldots \ldots+a_{n m} v_{n}$
Consider the following system of n equations in m unknowns
$a_{11} x_{1}+\ldots \ldots+a_{1 m} x_{m}=0$

$$
a_{n 1} x_{1}+\cdots \ldots+a_{n m} x_{m}=0
$$

Since $\mathrm{n}<\mathrm{m}$, the above system has a non-zero solution α_{1}, $\ldots . . \alpha_{m} \in$ F (i.e., some $\alpha_{i} \neq 0$).

$$
\begin{gathered}
a_{11} a_{1}+\cdots \ldots+a_{1 m} \alpha_{m}=0 \\
\ldots \ldots \ldots \ldots \\
a_{n 1} \alpha_{1}+\cdots \ldots+a_{n m} \alpha_{m}=0 \\
\Rightarrow a_{11} \alpha_{1} v_{1}+\cdots \ldots+a_{1 m} \alpha_{m} v_{1}=0 \\
\ldots \ldots \ldots \ldots . \\
a_{n 1} \alpha_{1} v_{n}+\cdots \ldots+a_{n m} \alpha_{m} v_{n}=0 \\
\Rightarrow \alpha_{1}\left(a_{11} v_{1}+\cdots+a_{n 1} v_{n}\right)+\cdots . .+\alpha_{m}\left(a_{1 m} v_{1}+\cdots .+a_{n m} v_{n}\right) \\
=0 \\
\Rightarrow \alpha_{1} w_{1}+\ldots . .+\alpha_{m} w_{m}=0, \text { where some } \alpha_{i} \neq 0 \\
\Rightarrow w_{1}, w_{2}, \ldots \ldots, w_{m} \text { are L.D. } \\
\text { Which proves our result . }
\end{gathered}
$$

Conversely, let the maximum number of L.I. elements in any subset of V be n the there exists a subset, $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots \ldots v_{n}\right\}$ of V such that S is L.I. we claim S forms a basis of V .
Let $v \in \mathrm{~V}$ be any element.
Let $\mathrm{T}=\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}$ than as it contains $\mathrm{n}+1$ elements, it is L.D. $\Rightarrow \exists \alpha_{1} \alpha_{2}, \ldots, \alpha_{n}, \alpha$ in F such that
$\alpha_{1} v_{1}+\ldots \ldots+\alpha_{n} v_{n}+\alpha v=0$ with some coefficients not zero.
Suppose $\alpha=0$ then $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$
$\Rightarrow \alpha_{i}=0$ for all i as $v_{1}, v_{2}, \ldots, v_{n}$ are L.I.
i.e. all α_{i} and α are zero, which is not true. Hence $\alpha \neq 0 \Rightarrow \alpha^{-1}$
exists in F . now $\alpha v=-\alpha_{1} v_{1}-\alpha_{2} v_{2}-\ldots-\alpha_{n} v_{n}$

$$
\Rightarrow v=\left(-\alpha^{-1} \alpha_{1}\right) v_{1}+\left(-\alpha^{-1} \alpha_{2}\right) v_{2}+\cdots .+\left(-\alpha^{-1} \alpha_{n}\right) v_{n}
$$

Or that v is linear combination of $v_{1}, v_{2} \ldots \ldots, v_{n}$ and v being any element, we find S spans V or that S forms basis of V .
Hence $\operatorname{dim} \mathrm{V}=\mathrm{n}$.
Theorem(2.28):
If V is a F.D.V.S. and $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ is a L.I. subset of V , then it can be extended to form a basis of V .

Proof :

If $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ spans V , then it itself forms a basis of V and there is nothing to prove
Let $S=\left\{v_{1}, v_{2}, \ldots, v_{r}, v_{r+1}, \ldots, v_{n}\right\}$ be maximal L.I. subset of V . we show S is a basis of V, for which it is enough to prove that S spans V. Let $v \in V$ be any element.
Then $\mathrm{T}=\left\{v_{1}, v_{2}, \ldots, v_{n}, v\right\}$ is L.D. by choice of S
$\Rightarrow \exists \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \alpha \in \mathrm{~F}$ (not all zero) such that
$\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}+\alpha v=0$
We claim $\alpha \neq 0$. Suppose $\alpha=0$
Then $\alpha_{1} v_{1}+\cdots \ldots+\alpha_{n} v_{n}=0$
$\Rightarrow \alpha_{i}=0$ for all i as $v_{1}, v_{2}, \ldots, v_{n}$ are L.I.
$\therefore \alpha=\alpha_{i}=0$ for all i which is not true

Hence $\alpha \neq 0$ and so α^{-1} exists.
Since $=\left(-\alpha^{-1} \alpha_{1}\right) v_{1}+\left(-\alpha^{-1} \alpha_{2}\right) v_{2}+\ldots \ldots . .+\left(-\alpha^{-1} \alpha_{n}\right) v_{n} \mathrm{v}$ is a linear combination of $v_{1}, v_{2}, \ldots \ldots \ldots \ldots v_{n}$.
Which proves our assertion.
Theorem(2.29):
if $\operatorname{dim} V=n$ and $\mathrm{s}\left\{v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}.\right\}$ spans V then S is a basis of V.

Proof:

since $\operatorname{dim} \mathrm{V}=\mathrm{n}$, any basis of V has n elements. By theorem 17, a subset of S will be a basis of V but as S contains n elements, it will itself form basis of V .
Theorem(2.30):
if $\operatorname{dim} \mathrm{V}=\mathrm{n}$ and $\mathrm{S}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots . v_{n}\right.$. $\}$ is L.I. subset of V then S is a basis of V .

Proof:

since $\left\{v_{1}, v_{2}, \ldots \ldots \ldots . . v_{n}.\right\}=\mathrm{S}$ is L.I. it can be extended to form a basis of V , but $\operatorname{dim} \mathrm{V}$ being n , it will itself be a basis of V .

Problem:

If $\left\{v_{1}, v_{2}, \ldots \ldots \ldots . . v_{n}\right.$. $\}$ is a basis of F.D.V.S. V of $\operatorname{dim} \mathrm{n}$ and $\mathrm{v}=$ $\sum \alpha_{i} v_{i} \alpha_{n} \neq 0$ then prove that $\left\{v_{1}, v_{2}, \ldots \ldots \ldots . . v_{r-1}, v, v_{r+1}, \ldots . v_{n}\right\}$ is also a basis of V .

Solution :

we have
$\mathrm{V}=\alpha_{1} v_{1}+\ldots . .+\alpha_{r} v_{r}+\ldots . .+\alpha_{n} v_{n} \alpha_{r} \neq 0 \quad \therefore \alpha_{r}^{-1}$ exists
$\Rightarrow v_{r}=\left(-\alpha^{-1} \alpha_{1}\right) v_{1}+\ldots . .+\left(-\alpha_{r}^{-1} \alpha_{r-1}\right) v_{r-1} \quad+\alpha_{r}{ }^{-1} \mathrm{v}+\ldots .+$
$\left(-\alpha_{r}{ }^{-1} \alpha_{n}\right) \alpha_{n}$

$$
=\beta_{1} v_{1}+\cdots+\beta_{r-1} v_{r-1}+\beta_{r} v+\beta_{r+1} v_{r+1}+\cdots+\beta_{n} v_{n}
$$

If $x \in V$ be any element, then

$$
x=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n} \alpha_{i} \in F
$$

$\Rightarrow x=\alpha_{1} v_{1}+\cdots+\alpha_{r-1} v_{r-1}+\alpha_{r}\left(\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right)+$
$\cdots+\alpha v_{n}$ or that is a linear combination of

$$
v_{1}, \ldots, v_{r-1}, v, v_{r+1}, \ldots, v_{n}
$$

And x being any element, we find V is panned by $\left\{v_{1}, \ldots, v_{r-1}, v, v_{r-1}, \ldots, v_{n}\right\}$ and it forms a basis of V , using theorem done above .
Theorem(2.31):
Two finite dimensional vector spaces over F are isomorphic iffthey same dimension.

Proof:

Let V and W be two isomorphic vector spaces over F and let θ $: V \rightarrow W$ be the isomorphism .
Let $\operatorname{dim} \mathrm{V}=\mathrm{n}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis of V.

We claim $\left\{\theta\left(v_{1}\right),\left(v_{2}\right), \ldots ., \theta\left(v_{n}\right)\right\}$ is a basis of W .
Let $\quad \sum_{i=1}^{n} \alpha \theta\left(v_{1}\right)=0 \alpha_{i} \in \mathrm{~F}$,

Again, if $w \in W$ is any element, then as θ is onto, ヨ some $v \in V$ s.t θ (v) $=w$

Now $\quad \boldsymbol{v} \in V \Rightarrow \boldsymbol{v}=\sum_{i=1}^{n} \alpha_{i} v_{i}$ for some $\alpha_{i} \in F$

$$
\Rightarrow w=\theta(v)=\theta\left(\sum \alpha_{i} v_{i}\right)
$$

$$
\Rightarrow \quad w=\sum \theta\left(\alpha_{i} v_{i}\right)=\alpha_{1} \theta\left(v_{1}\right)+\alpha_{2} \theta\left(v_{2}\right)+\ldots . .+\alpha_{n} \theta\left(v_{n}\right)
$$

or that wis a linear combination of $\theta\left(v_{1}\right), \theta\left(v_{2}\right), \ldots \ldots, \theta\left(v_{n}\right)$ Hence $\theta\left(v_{1}\right), \theta\left(v_{2}\right), \ldots \ldots, \theta\left(v_{n}\right)$ span W and therefore, form a basis of W showing that $\operatorname{dim} W=n$.
Conversely, let $\operatorname{dim} V=\operatorname{dim} W=n$ and suppose $\left\{v_{1}, v_{2}, \ldots . . v_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots . . w_{n}\right\}$ are basis of V and W respectively .
Define

$$
O: V \rightarrow W \text { s.t. }
$$

then θ is easily seen to be well defined (Indeed any $v \in V$ is a linear combination of members of basis)
If $v, \dot{v} \in V$ be any elements then

$$
v=\sum \alpha_{i} v_{i}, \dot{v}=\sum \beta_{i} v_{i} \alpha_{i}, \beta_{i} \in F
$$

$$
\begin{aligned}
& \text { map } \\
& \theta(v)=\theta\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{3} v_{3}\right) \\
& =\alpha_{1} w_{1}+\alpha_{2} w_{2}+\cdots+\alpha_{n} w_{n}
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow \quad \sum \theta\left(\alpha_{i} v_{i}\right)=0=\theta(0) \\
& \Rightarrow \quad \sum \alpha_{i} v_{i}=0=(\theta \text { is } 1-1) \\
& \Rightarrow \alpha_{i}=0 \text { for all } i \text { as } v_{1}, v_{2}, \ldots \ldots, v_{n} \text { are L.I. } \\
& \Rightarrow \quad \theta\left(v_{1}\right), \theta\left(v_{2}\right), \ldots \ldots, \theta\left(v_{n}\right) \text { are L.I }
\end{align*}
$$

$$
\begin{aligned}
& \theta\left(v+v^{\prime}\right)=\theta\left(\sum \alpha_{i} v_{i}+\sum \beta_{i} v_{i}\right) \\
&= \theta\left(\sum\left(\alpha_{i}+\beta_{i}\right) v_{i}\right. \\
&==\sum\left(\alpha_{i}+\beta_{i}\right) w_{i} \\
&=\sum \alpha_{i} w_{i}+\sum \beta_{i} w_{i} \\
&=\theta(v)+\theta\left(v^{\prime}\right)
\end{aligned}
$$

Also

$$
\begin{gathered}
\theta(\alpha v)=\theta\left(\alpha \sum \alpha_{i} v_{i}\right)=\theta\left(\sum \alpha \alpha_{i} v_{i}\right)=\sum\left(\alpha \alpha_{i}\right) w_{i} \\
=\alpha \sum \alpha_{i} w_{i}=\alpha \theta(v)
\end{gathered}
$$

Thus θ is a homomorphism.
Now if $\mathrm{v} \in \operatorname{Ker} \theta$ then

$$
\begin{aligned}
& \theta(\mathrm{v})=\mathbf{0} \\
& \quad \Rightarrow \theta\left(\sum \alpha_{i} v_{i}\right)=0
\end{aligned}
$$

$\Rightarrow \sum \alpha_{i} w_{i}=0 \Rightarrow \alpha_{i}=0$ for all $i \quad w_{1}, w_{2}, \ldots \ldots, w_{n}$ being L.I.
$\Rightarrow v=0 \Longrightarrow \operatorname{ker} \theta=\{0\} \Longrightarrow \theta$ is one-one
That θ is onto is obvious. Hence θ is an. Isomorphism

Corollary :

Under an isomorphism, a basis is mapped onto a basis
Follows by first part of the theorem.

Problem :

Show that the set of all real valued continuous functions $y=f(x)$ sati sing the differential equation $\frac{d^{3} y}{d x^{3}}+6 \frac{d^{2} y}{d x^{2}}+11 \frac{d y}{d x}+6 y=0$ is a vector space over R. Find a basis of this

Solution :

One can check that $V=\{f \mid f: \boldsymbol{R} \rightarrow \boldsymbol{R}, f$ cont. $\}$ is a vector space, over R, under $(f+g) x=f(x)+g(x)$

$$
(\alpha f) x=\alpha(f(x))
$$

Let $W=\{f \in V \mid f$ is a solution of given differential equation $\}$
The given differential equation is.

$$
\begin{gathered}
\left(D^{3}+6 D^{2}+11 D+6\right) y=0 \\
(D+1)(D+2)(D+3) y=0 \\
D=-1,-2,-3
\end{gathered}
$$

and this general solution is

$$
y=A e^{-x}+B e^{-2 x}+C e^{-3 x}
$$

If $\mathrm{S}=\left\{e^{-x}, e^{-2 x}, e^{-3 x}\right\}$ then clearly S spans W
Let $\mathrm{Ae}^{-\mathrm{x}}+\mathrm{Be}^{-2 \mathrm{x}}+\mathrm{Ce}^{-3 \mathrm{x}}=0$
Then $-A e^{-x}+(-2) \mathrm{Be}^{-2 x}+(-3 D) e^{-3 x}$

$$
\mathrm{Ae}^{-\mathrm{x}}+(4 D) e^{-2 x}+(9 D) e^{-3 x}=0 \quad \forall x
$$

Put $x=0$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -2 & -3 \\
1 & 4 & 9
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=0 \Rightarrow M\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=0
$$

Where

$$
\operatorname{det} M=1(-18+12)-1(-9+3)+1(-4+2)=-2 \neq 0
$$

Thus M^{-1} exists and so $A=B=C=0$
$\Rightarrow \mathrm{S}$ is L.I. and hence a basis of W.
Note:
W is a vector space as it is a subspace of V.
$\left[y_{1}, y_{2}, \in W \Rightarrow \alpha_{1} y_{1}+\alpha_{2} y_{2}\right.$ is asolution of the given
differential equation $\left.\Rightarrow \alpha_{1} y_{1}+\alpha_{2} y_{2} \in \mathrm{~W}\right]$.

Problem:

If $S=\left\{v_{1}, v_{2}, \ldots . ., v_{r}\right\}$ is a L.l. subset of V and $\mathrm{v} \in \mathrm{V}$ be such that $v \notin L(S)$, then $S \cup\{v\}$ is a L.I., subset of V .

Solution:

$S \cup\{v\}=\left\{v_{1}, v_{2}, \ldots . ., v_{r}, v\right\}$
Let $\alpha_{1} v_{2}+\alpha_{2} v_{2}+\cdots+\alpha_{r} v_{r}+\alpha v=0 \alpha_{i} \in F, \alpha \in \mathrm{~F}$
If $\alpha \neq 0$ then α^{-1} exists and we get

$$
\alpha^{-1}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{r} v_{r}+\alpha v\right)=0
$$

$\Rightarrow v=\left(-\alpha^{-1} \alpha_{1}\right) v_{1}+\left(-\alpha^{-1} \alpha_{2}\right) v_{2}+\cdots \cdot+\left(-\alpha^{-1} \alpha_{r}\right) v_{r}$
$\Rightarrow \mathrm{v} \in \mathrm{L}(\mathrm{S})$, a contradiction
Thus $\quad \alpha=0$
$\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots+\alpha_{r} v_{r}=0$
$\Rightarrow \alpha_{i}=0$ for all i as $v_{1}, v_{2}, \ldots . ., v_{r}$ are L.I.
$\Rightarrow \alpha=\alpha_{i}=0$ for all i.
$\Rightarrow v_{1}, v_{2}, \ldots \ldots, v_{r}$, vare L.I..
Hence the result follows.

Problem:

$(1,1,1)$ is L.I. vector in $\mathbf{R}^{3}(\mathbf{R})$. Extend it to form a basis of \mathbf{R}^{3}.

Solution:

$(1,1,1)$ is non zero vector and is therefore L.I. in \mathbf{R}^{3}.
Let $S=\{(1,1,1)\}$, then $L(S)=\{\Rightarrow \alpha(l, 1,1) \mid \alpha \notin R\}$
Now $(1,0,0) \in \boldsymbol{R}^{3}$, but $(1,0,0) \notin L(S)$
thus by above problem $S_{1}=\{(1,1,1),(1,0,0)\}$ is L.I.
Now $L\left(S_{1}\right)=\{\alpha(1,1,1)+\beta(1,0,0) \mid \alpha, \beta$ R $\}$

$$
=\{(\alpha+\beta, \alpha, \alpha) \mid \alpha, \beta \in \mathrm{R}\}
$$

Again $(0,1,0) \notin L\left(S_{1}\right)$ and by above problem
$S_{2}=\{(1,1,1),(1,0,0),(0,1,0)\}$ is L.I. subset of \mathbf{R}^{3} Since $\operatorname{dim} \mathbf{R}^{3}$
$=3$, we find S_{2} will be a basis of \mathbf{R}^{3}.

Problem:

A finite set of non zero vectors $\left\{v_{1}, v_{2}, \ldots . ., v_{n}\right\}$ in a vector space $\mathrm{V}(\mathrm{F})$ is L.D. iff $\exists v_{k}, 2 \leq k \leq n$, s.t., v_{k} is a linear combination of $v_{1}, v_{2}, \ldots ., v_{k-1}$

Solution:

$\operatorname{Let} v_{1}, v_{2}, \ldots . ., v_{n}$ be L.D. Then $\exists \alpha_{i} \in \mathrm{~F}$, not all zero s.t

$$
\sum_{i=1}^{n} \alpha_{i} v_{i}=0
$$

Let k be the largest integer s.t $\alpha_{k} \neq 0$
then $\mathrm{k} \neq 1$ as if $\mathrm{k}=1$,
then $\alpha_{1} v_{1}=0, \alpha \neq 0\left(\alpha_{i}=0\right.$ for all $\left.i \geq 2\right) \Rightarrow v_{1}=0$, not true as v_{i} are non zero. Hence, $2 \leq k \leq n$
thus $\alpha_{i} \neq 0$ and $\alpha_{i}=0$ for all $\mathrm{i} \geq k+1$. Also then $\alpha_{k}{ }^{-1} 1$ exists
$\Rightarrow \alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots+\alpha_{k} v_{k}=0$
$\Rightarrow \alpha^{-1}{ }_{k}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots \ldots+\alpha_{k} v_{k}\right)=0$
$\Rightarrow v_{k}=\left(-\alpha_{k}{ }^{-1} \alpha_{1}\right) v_{1}+\left(-\alpha_{k}^{-1} \alpha_{2}\right) v_{2}+\ldots \ldots .+\left(-\alpha_{k}{ }^{-1} \alpha_{k-1}\right) \alpha_{k-1}$
which proves the result.
Conversely, suppose $\exists k, \quad 2 \leq k \leq n$ s.t v_{k} is a linear combination of $v_{1}, v_{2}, \ldots ., v_{k-1}$.
Let $v_{k}=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k-1} v_{k-1} \alpha_{i} \in F$
Then $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{k+1} v_{k+1}-1 . v_{k}=0$
$\Rightarrow v_{1}, v_{2}, \ldots \ldots, v_{k}$ are L.D. as $(-1) \neq 0$
$\Rightarrow v_{1}, v_{2}, \ldots . ., v_{k}, v_{k+1}, \ldots \ldots, v_{n}$ are L.D. as any super set of a L.D. set is L.D. Hence the result follows.
Theorem(2.32):
Let W be a subspace of a F.D.V.S. V , then W is finite dimension and $\operatorname{dim} W \leq \operatorname{dim} V$. In fact, $\operatorname{dim} V=\operatorname{dim} W$ iff $V=W$.

Proof:

Let $\operatorname{dimV}=n$, then n is the maximum number of L.I. elements in any subset of V. Since any subset of W will be a subset of V, n is the maximum number of L.I. elements in W.
Let $w_{1}, w_{2}, \ldots . ., w_{m}$, be the maximum number of L.L elements inW then $m \leq n$
We show $\left\{w_{1}, w_{2}, \ldots . ., w_{m}\right\}$ is a basis of W. These are already L.I.
If $w \in W$ beany element then the set $\left\{w_{1}, w_{2}, \ldots \ldots, w_{m}, \mathrm{w}\right\}$ is L.D.
$\Rightarrow \exists \alpha_{1}, \alpha_{2}, \ldots . ., \alpha_{n}, \alpha$ in F (not all zero) s.t
$\alpha_{1} w_{1}+\ldots \ldots \ldots+\alpha_{m} w_{m}+\alpha w=0$.
If $\alpha=0$, we get $\alpha_{i}=0$ for all i as $w_{1}, \ldots \ldots, w_{m}$ are L.L. which is not true
Thus $\alpha \neq 0$ and so α^{-3} exists.
The above equation then gives us
$\left.\mathrm{w}=\left(-\alpha^{-1} \alpha_{1}\right) w_{1}+\cdots+\left(-\alpha^{-1} \alpha_{m}\right) w_{m}\right)$
Showing that $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ spans W (and thus w is finite dimensional) $\Rightarrow \quad\left\{w_{1}, w_{2}, \ldots ., w_{m}\right\}$ is a basis of $\mathrm{W} \Rightarrow \operatorname{dim} w=$ $m \leq n=\operatorname{dim} V$ Finally, if $\operatorname{dim} V=\operatorname{dim} W=n$ and $\left\{w_{1}, w_{2}, \ldots . ., w_{m}\right\}$ be .a basis of W then as $\left\{w_{1}, w_{2}, \ldots . ., w_{m}\right\}$ is
L.I. in W , it will be L.I. in V.
and as $\operatorname{dim} \mathrm{V}=\mathrm{n},\left\{w_{1}, w_{2}, \ldots ., w_{m}\right\}$ is a basis of V . Now if $\mathrm{v} \in \mathrm{V}$
be any element the $\mathrm{v}=\alpha_{1} w_{1}+\alpha_{2} w_{2}+\ldots \ldots .+\alpha_{n} w_{n} \in W$
$\Rightarrow \mathrm{v} \subseteq W \Rightarrow \mathrm{~V}=\mathrm{W}$
Conversely, of course, $V=W \Rightarrow \operatorname{dim} V=\operatorname{dim} W$.
Remark:
If W is a subspace of V where $W=(0)$ then dimension of W is taken to be zero .
Theorem (2.33):
LetW be subspace of a F.D.V.S.V then

$$
\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W
$$

Proof:

Let $\operatorname{dim} W=m$ and let $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be a basis of W . $w_{1}, w_{2}, \ldots, w_{m}$ being L.I in W will be L.I in V and thus $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ can be extended to form a basis of V .
Let $\left\{w_{1}, w_{2}, \ldots, w_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the extended basis of. V then

$$
\operatorname{dim} V=n+m
$$

Consider the set $=\left\{W+v_{1}, W+v_{2}, \ldots, W+v_{n}\right\}$, we show it form a basis of $\frac{V}{W}$
Let $a_{1}\left(W+v_{1}\right)+\cdots+a_{n}\left(W+v_{n}\right)=W, a_{i} \in F$ then

$$
W+\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=W \Rightarrow a_{1} v_{1}+\cdots+a_{n} v_{n} \in W
$$

$\Rightarrow a_{1} v_{1}+\cdots+a_{n} v_{n}$ is a linear combination of w_{1}, \ldots, w_{m}

$$
\Longrightarrow a_{1} v_{1}+\cdots+a_{n} v_{n}=\beta_{1} w_{1}+\cdots+\beta_{m} w_{m} \beta_{j} \in F
$$

$$
\Rightarrow a_{1} v_{1}+\cdots+a_{n} v_{n}-\beta_{1} w_{1}-\cdots-\beta_{m} w_{m}=0
$$

$$
a_{i}=\beta_{i}=0 \text { for all } i, j
$$

$$
\Rightarrow\left\{W+v_{1}, W+v_{2}, \ldots, W+v_{n}\right\} \text { is L. I }
$$

Again for any $, v \in \frac{V}{W}, \quad v \in V$ means v is a linear combination of $w_{1}, w_{2}, \ldots, w_{m}, v_{1}, v_{2}, \ldots, v_{n}$
i.e $a_{1} w_{1}+\cdots+a_{m} w_{m}+\beta_{1} v_{1}+\cdots+\beta_{n} v_{n} a_{i}, \beta_{j} \in F$
again $W+\left(a_{1} w_{1}+\cdots+a_{m} w_{m}\right)+\left(\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right)$

$$
=W+\left(\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right)
$$

$$
=\beta_{1}\left(W+v_{1}\right)+\cdots+\beta_{n}\left(W+v_{n}\right)
$$

Hence s space $\frac{V}{W}$ and is therefore a basis $\operatorname{dim} \frac{V}{W}=0$ thus

$$
\operatorname{dim} \frac{V}{W}=\operatorname{dim} V-\operatorname{dim} W
$$

Theorem (2.34):

If A and B are two subspace of a F.D.F.S. V then

$$
\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B-\operatorname{dim}(A \cap B)
$$

Proof:

We have already proved that

$$
\begin{gathered}
\frac{A+B}{A} \cong \frac{B}{A \cap B} \\
\operatorname{dim} \frac{A+B}{A}=\operatorname{dim} \frac{B}{A \cap B} \\
\Rightarrow \operatorname{dim}(A+B)-\operatorname{dim} A=\operatorname{dim} B-\operatorname{dim}(A \cap B)
\end{gathered}
$$

Remark:

The reader should try to give an independent proof of the above theorem an exercise .

Corllory :

If $A \cap B=(0)$ then $\operatorname{dim}(A+B)=\operatorname{dim} A+\operatorname{dim} B$

$$
\operatorname{dim}(A \oplus B)=\operatorname{dim} A+\operatorname{dim} B
$$

Problem:

Le p_{n} be the vector space of all polynomial of degree $\leq n$ over R exibit a basis of $\frac{P_{4}}{P_{2}}$. hence verify that $\operatorname{dim} \frac{P_{4}}{P_{2}}=\operatorname{dim} \mathrm{P}_{4}-\operatorname{dim} \mathrm{P}_{2}$.

Solution:

It is easy to see $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ is a basis of P_{4} and thus $\operatorname{dim} \mathrm{P}_{4}=5$.
Similarly $\operatorname{dim} \mathrm{P}_{2}=3$ as $\left\{1, x, x^{2}\right\}$ will be a basis of P_{2}.
Let $S=\left\{\mathrm{P}_{2}+x^{3}, \mathrm{P}_{2} x^{4}\right\}$ then S is a basis of $\frac{\mathrm{P}_{4}}{\mathrm{P}_{2}}$ as

$$
\begin{gathered}
\mathrm{P}_{2}+f \in \frac{\mathrm{P}_{4}}{\mathrm{P}_{2}} \Rightarrow \mathrm{P}_{2}+a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}=\mathrm{P}_{2}+f \\
\Rightarrow \mathrm{P}_{2}+f=a_{3}\left(\mathrm{P}_{2}+x^{3}\right)+a_{4}\left(\mathrm{P}_{2}+x^{4}\right) \\
\Rightarrow S \text { spans } \frac{\mathrm{P}_{4}}{\mathrm{P}_{2}}
\end{gathered}
$$

Again $\quad a\left(\mathrm{P}_{2}+x^{3}\right)+\beta\left(\mathrm{P}_{2}+x^{4}\right)=$ zero $=\mathrm{P}_{2}$

$$
\begin{gathered}
\Rightarrow \mathrm{P}_{2}+a x^{3}+\beta x^{4}=\mathrm{P}_{2} \\
\Rightarrow a x^{3}+\beta x^{4}=a+b x+c x^{2} \in \mathrm{P}_{2}
\end{gathered}
$$

$\Rightarrow a=b=c=\alpha=\beta=0$ as polynomial is zero, if each coefficient is zero thus S is a basis of $\frac{\mathrm{P}_{4}}{\mathrm{P}_{2}}$
Hence $\operatorname{dim} \frac{\mathrm{P}_{4}}{\mathrm{P}_{2}}=2=5-3=\operatorname{dim} \mathrm{P}_{4}-\operatorname{dim} \mathrm{P}_{2}$

Theorem (2.35):

Let W be a subspace of F.DV.S. V , then there exists a subspace W^{\prime} of V such that $V=W \oplus W^{\prime}$.

Proof:

Let $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be a basis of W , then $w_{1}, w_{2}, \ldots, w_{m}$ being L.I in W will be L.I in V . we extend these L.I elements to form a basis of V , say $\left\{w_{1}, w_{2}, \ldots, w_{m}, v_{1}, v_{2}, \ldots, v_{n}\right\}$
Let $W^{\prime}=L\left(\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right)$, i.e., W^{\prime} be the subspace spanned by $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
We show $W \oplus W^{\prime}=V$,Let $v \in \mathrm{~V}$ be any element, then
$\mathrm{V}=\left(\alpha_{1} w_{1}+\cdots+\alpha_{m} w_{m}\right)+\left(\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right), \quad \alpha_{i}, \beta_{i} \in F$
where the first bracket term belongs to W and the second to W^{\prime} and the second to W^{\prime}
$\therefore v \in W+W^{\prime}$ and thus $V \subseteq W+W^{\prime}$

$$
\Rightarrow V=W+W^{\prime}
$$

Again, if $x \in W \cap W^{\prime}$ be any element then $x \in W$ and $x \in W^{\prime}$

$$
\begin{gathered}
\Rightarrow x=\alpha_{1} w_{1}+\cdots+\alpha_{m} w_{m} \alpha_{i}, b_{j} \in F \\
x=b_{1} v_{1}+\cdots+b_{n} v_{n} \\
\Rightarrow \alpha_{1} \mathrm{w}_{1}+\ldots .+\alpha_{m} w_{m}+\left(-\mathrm{b}_{1}\right) \mathrm{v}_{1}+\ldots \ldots+\left(-\mathrm{b}_{\mathrm{n}}\right) v_{n}=0 \\
\Rightarrow \alpha_{i}=\mathrm{b}_{\mathrm{j}}=0 \text { for all } i, j \quad \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}} \text { being L.I. }
\end{gathered}
$$

Hence $x=0$

$$
W \cap W^{\prime}=(0)
$$

or that $V=W \oplus W^{\prime}$
Note :
W ' is called complement of W . Thus we have proved that every subspace of a F.D. V.S. has a complement.

Corllory :

If W^{\prime} is any complement of W in V then $\operatorname{dim} W^{\prime}=\operatorname{dim} V-$ $\operatorname{dim} W$
. Since $V=W \oplus W^{\prime} \Rightarrow \operatorname{dim} V=\operatorname{dim}\left(W \oplus W^{\prime}\right)=\operatorname{dim} W+$ $\operatorname{dim} W^{\prime}$
$=\operatorname{dim} W^{\prime}=\operatorname{dim} V-\operatorname{dim} W$.
Although every complement of a subspace has same dimension it does not mean. that a subspace has a unique complement.
Consider

Example :

Let $V=R^{2}(R)$ and let
$W=\{(\alpha, 0) \mid \alpha \in \mathbf{R}\}$
$W_{1}=\{(0, \mathrm{~b}) \mid \mathrm{b} \in \boldsymbol{R}\}$

$$
W_{2}=\{(c, c) \mid c \in \boldsymbol{R}\}
$$

it is easy to see that W, W_{1}, W_{2} are subspaces of V
We show $\mathrm{V}=\mathrm{W} \oplus W_{1}$ and $\mathrm{V}=\mathrm{W} \oplus W_{2}$
Now $\quad v \in V \Rightarrow v=(x, y)=(x, 0)+(0, y) \in W+W_{1}$

$$
\Rightarrow V \subseteq W+W_{1} \Rightarrow V=W+W_{1}
$$

again $x \in W \cap W 1 \Rightarrow x \in W$ and $x \in W_{1}$

$$
\begin{aligned}
& \Rightarrow x=(a, 0), x=(0, b) \\
& \Rightarrow(a, 0)=(0, b) \Rightarrow a=b=0 \Rightarrow x=0
\end{aligned}
$$

Hence $W \cap W_{1}=(0)$
or that $\mathrm{V}=\mathrm{W} \oplus W_{1}$.
Also $v \in V \Rightarrow v=(x, y)=(x-y, 0)+(y, y) \in W+$ W_{2}

$$
\Rightarrow V \subseteq W+W_{2} \Rightarrow V=W+W_{2}
$$

Now $x \in W \cap W_{2} \Rightarrow x \in W$ and $x \in W_{2} \Rightarrow x=(a, 0), x=$ $(c, c) \Rightarrow(a, 0)=(c, c) \Rightarrow c=0, \Rightarrow x=(0,0)$.
Thus $\mathrm{W} \cap W_{2}=(\mathrm{O})$ or that $V=W \oplus W_{1}$.
\therefore Notice that W, W_{1}, W_{2}, are spanned by $\{(1 ; 0)\},\{(0,1)\},\{(l, l)\}$
respectively d as each of these is L.I. (they are non zero). These
subsets form bases of
W, W_{1}, W_{2} respectively.
Hence $\operatorname{dim} W=\operatorname{dim} W_{1} \operatorname{dim} W_{2}=1$.

Inner Product Spaces

In general a vector space is defined over an arbitrary field F and this is what We did earlier. In this' section .we restrict F the field of real or complex numbers. In the first case, the vector space is called real vector space and in the second case it is called a complex vector space. We study real vector spaces in analytical geometry and vector analysis. There we discuss the concept of length and orthogonality. We also have dot or scalar product of two vectors which among other things satisfies the following
(i) $\vec{v} \cdot \vec{v} \geq 0$ and $(\vec{v} \cdot \vec{v})=0 \Leftrightarrow \vec{v}=0$
(ii) $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$
(iii) $\vec{v} \cdot(\alpha \vec{v}+\beta \vec{v})=\alpha(\vec{u} \cdot \vec{v})+\beta(\vec{u} \cdot \vec{w})$
where $\vec{u}, \vec{v}, \vec{w}$ are vectors and $\alpha \beta$ real numbers. We wish to extend the concept of dot product to complex vector spaces also. We define a map on $V \times V$ of (where $V=$ vector space over F) with same property as dot product, called inner product and study the concept of length and orthogonality.

Def(2.36) :
Let V be a vector space over field F (where $F=$ field of real or complex numbers). Suppose for any two vectors $u, v \in V \exists$ an element $(u, y) \in F \operatorname{s.t}[(u, v)$ here is just an element of F and should not be confused with the ordered pair.]
(i) $(u, v)=\overline{(v, u)}($ i.e .,comblex conjugate of $(v, u))$
(ii) $(u, u) \geq 0$ and $(u, u)=0 \Leftrightarrow u=0$
(iii) $(\alpha u+\beta v, w)=\alpha(u, w)+\beta(\boldsymbol{v}, w)$
for any $u, v, w \in V$ and $\alpha, \beta \in \mathrm{F}$.
Then V is called an inner product space and the function satisfying (i), (ii) and., (iii) is called an inner product. Thus inner product space is a vector space over the field of real or complex numbers with an inner product function.

Remarks :

1. Property (ii) in the definition of inner product space makes sense in as much as $(u, u)=\overline{(u, u)} b y(i) \Rightarrow(u, u)=$ real.
2. Property (iii) can also be described by saying that inner product is a linear map in 1st variable.
3. Can we say that inner product is linear in and variable?

Let's evaluate

$$
\begin{aligned}
(u, \alpha v & +\beta w) \overline{(\alpha v+\beta w, u)} \text { by }(i) \\
& =\bar{\alpha} \overline{(v, u)}+\bar{\beta} \overline{(w, u)} \\
& =\bar{\alpha}(u, v)+\bar{\beta}(u, w)
\end{aligned}
$$

So, it need not be linear in 2nd variable.

1. If $\mathrm{F}=$ field of real numbers, then the function inner product satisfies same properties as dot product seen earlier.
2. Inner product space over real field is called Euclidean space and over complex field is called Unitary space.

Example:

Let $\mathrm{V}=R^{(2)}, \mathrm{u}=\left(\left\{\alpha_{1}, \alpha_{2}\right) \quad v=\left(\beta_{1}, \beta_{2}\right)\right.$.
$\operatorname{Defin}(u, v)=\alpha_{1} \beta_{1}-\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}+4 \alpha_{2} \beta_{2}$
Then
(i) $(u, v)=(v, u)=\overline{(v, u)}$
(ii) $(u, u)=\left(\alpha_{1}-\alpha_{2}\right)^{2}+3 \alpha_{2}^{2} \geq 0$
(u, u) $=0 \Leftrightarrow \alpha_{1}=\alpha_{2}, \alpha_{2}=0 \Leftrightarrow \alpha_{1}=0=\alpha_{2}$

$$
\Leftrightarrow u=\left(\alpha_{1}-\alpha_{1}\right)=(0,0)=0
$$

(iii) $(\alpha u+\beta u, w)=\alpha(u, w)+\beta(v, w)$
can be easily verified. Thus, (u, v) defines an inner product.

Example:

Let , W_{1}, W_{2} be two subspaces of a vector space V If W_{1}, W_{2} are inner product spaces, show that $W_{1}+W_{2}$ is also an inner product space.

Solution:

Let $x . y \in W_{1}+W_{2}$.
Then $\quad x=u_{1}+u_{2}$
$y=v_{1}+v_{2} u_{1}, v_{1} \in W_{1} ; u_{1}, v_{2} \in W$
Define $\langle x, y\rangle=\left(u_{1}, v_{1}\right)+\left(u_{2}, v_{2}\right)$
Then $\mathrm{x}=\mathrm{u}_{1}+\mathrm{u}_{2}$
$\mathrm{y}=\mathrm{v}_{1}+\mathrm{v}_{2}, \mathrm{u}_{1}, \mathrm{v}_{1} \in \mathrm{~W}_{1}, u_{2}, v_{2} \in W_{2}$
Define $\langle x, y\rangle=\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)+\left(u_{2}, v_{2}\right)$
Then
(i) $\overline{\langle y, x\rangle}=\overline{\left(v_{1}, u_{1}\right)+\left(v_{2}, u_{2}\right)}$

$$
\begin{aligned}
& \left.=\overline{\left(v_{1}, u_{1}\right.}\right)+\left(\overline{\left(v_{2}, u_{2}\right.}\right) \\
& =\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)+\left(u_{2}, v_{2}\right)=<\mathrm{x}, \mathrm{y}>
\end{aligned}
$$

(ii) $\langle x, x\rangle=\left(\mathrm{u}_{1}, \mathrm{u}_{1}\right)+\left(\mathrm{u}_{2}, \mathrm{u}_{2}\right) \geq 0$ And $\langle x, x\rangle=0 \Leftrightarrow\left(\mathrm{u}_{1}, \mathrm{u}_{1}\right)$ $=0=\left(u_{2}, u_{2}\right) \Leftrightarrow u_{1}=0=u_{2} \Leftrightarrow x=0$
(iii) $\langle\alpha x+\beta y, z\rangle=\alpha\langle x, z\rangle+\beta\langle y, z\rangle$ can be easily verified.
$\therefore<x, y\rangle$ defines an inner product on $W_{1}+W_{2}$
So , $u_{1}+u_{1}$ is an inner product space.
Norm of a vector
Let V be an inner product space. Let $\mathrm{v} \in \mathrm{V}$. Then norm of v (or length of v) defined as $\sqrt{(v, v)}$ and is denoted by $\|\mathrm{v}\|$.

Problem:

$$
\|\alpha \mathrm{v}\|=|\alpha|\|\mathrm{v}\| \text { for all } \alpha \in \mathrm{F}, \mathrm{v} \in \mathrm{~V}
$$

Solution:

$\|\alpha v\|^{2}=(\alpha \mathrm{v}, \alpha \mathrm{v})=\alpha \bar{\alpha}(v, v)=|\alpha|^{2}\left\|\left.\alpha\right|^{2} \Rightarrow| | \alpha v\right\|=|\alpha|\|v\|$
We now prove an important inequality known as Cauchy Schwarz inequality

Theorem(2.37):

Let V be an inner product space.
Then $\quad|(\mathrm{u}, \mathrm{v})| \leq\|\mathrm{u}\|\|\mathrm{v}\|$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}$
Proof:
If $u=0$, then $(u, v)=(0, v)=0$ and $\quad\|u\|=\sqrt{(u, u)}=$
$\sqrt{(0,0)}=0$
\therefore LH.S. $=$ R.H.S.
Let $\mathbf{u} \neq 0$. Then $\|\mathbf{u}\| \neq 0$
(as $\|u\|=0 \Rightarrow \sqrt{(0,0)}=0 \Rightarrow(u, u)=0 \Rightarrow u=0)$
Let $\quad W=\frac{(u, v)}{\|u\|^{2}} u$
Then $(w, w)=\left[\frac{(u, v)}{\|u\|^{2}} u, v-\frac{(v, u)}{\|u\|^{2}} u\right]$

$$
\begin{aligned}
& =(u, v)-\frac{(v, u)}{\|u\|^{2}}(u, v) \\
& =\|v\|^{2} \frac{\overline{(u, v)}(u, v)}{\|u\|^{2}}=\|u\|^{2}-\frac{|(u, v)|^{2}}{\|u\|^{2}} \\
& =\frac{\|u\|^{2}\|v\|^{2}-|(u, v)|^{2}}{\|u\|^{2}}
\end{aligned}
$$

Since $(w, v) \geq 0 .|(u, v)|^{2} \leq\|u\|^{2}\|v\|^{2}$

$$
|(u, v)| \leq\|u\|\|v\| .
$$

Remark :

The above inequality will be an equality if and only if
Proof:
suppose $|(u, v)|\|u\|\|V\|$
If $u=0$, then $u=0, v \Longrightarrow u, v$ are linearly dependent. Let u
$\neq 0$. Then from above

$$
\begin{gathered}
(w, w)=0 \Rightarrow w=0 \\
V-\frac{(v, u)}{\|u\|^{2}} u=0 \\
\Rightarrow v=\frac{(v, u)}{\|u\|^{2}} u \Rightarrow u, v \text { are linearly dependent. }
\end{gathered}
$$

Conversely, Let $u=a v, a \in F$
Then $|(u, v)|=|a(v, v)|=|a|| | v \|^{2}$
$\|u\|\left|\left|v\|=|a|| | v| || | v| |=|a|| | v\|^{2}\right|(u, v)\right|=\|u\|\|v\|$
Theorem(2.38) :
Let V be an inner product space. Then
(i) $\|x+y\|=\|x\|+\|y\|$ for all $x, y \in V$
(Triangle inequality)
(ii) $\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)($ parallelogram law $)$

Proof:

(i) $\|x+y\|^{2}=(x+y, x+y)$

$$
\begin{gathered}
=(x, x)+(y, x)+(x, y)+(y, y) \\
=\|x\|^{2}+(x, y)+(x, y)+\|y\|^{2} \\
=\|x\|^{2}+2 \operatorname{Re}(x, y)+\|y\|^{2} \\
\leq\|x\|^{2}+2|(x, y)|+\|y\|^{2} \\
\leq\|x\|^{2}+2\|x\|^{2}\|y\|^{2}+\|y\|^{2} \\
=\left(\|x\|^{2}+\|y\|^{2}\right)^{2}
\end{gathered}
$$

Hence $\|x+y\| \leq\|x\|+\|y\|$
This is called triangle inequality as $\|x\|^{2}+\|y\|^{2}=$ sum of the lengths of two sides of a triangle
$\|x+y\|=$ length of the third side of the triangle showing that sum of two of a triangle is less than. its third side.
(ii) $\|x+y\|^{2}+\|x-y\|^{2}=(x+y, x+y)+(x-y, x-y)=$ $\|x\|^{2}+\|y\|^{2}+(x, y)+(y, x)+\|x\|^{2}+\|y\|^{2}-(x, y)-$ $(y, x)=2\left(\|x\|^{2}+\|y\|^{2}\right)$

Note :

$\|x+y\|^{2}+\|x-y\|^{2}=$ sum of squares of lengths of diagonals a parallelogram
$2\left(\|x\|^{2}+\|y\|^{2}\right)=$ sum of squares of sides of a parallelogram.
\therefore sum of squares of lengths of diagonals of a parallelogram is equal to sum of squares of lengths of its sides. For this reason (ii) is called parallelogram law.

Problem:

Using Cauchy Schwarz inequality, prove that cosine of an angel is of absolute vale at most 1 .

Solution:

Let $\mathrm{F}=$ field of real numbers and $\mathrm{V}=\mathrm{F}$ (3)
Consider standard inner product on V .
Let $u=\left(x_{1}, y_{1}, z_{1}\right), \quad v=\left(x_{2}, y_{2}, z_{2}\right) \in F, O=(0,0,0)$
Let θ be an angle between OU and OV.
Then

$$
\begin{gathered}
\cos \theta=\frac{x_{1} x_{2}+y_{1} y_{1}+z_{1}+z_{2}}{\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}} \sqrt{x_{2}^{2}+y_{2}^{2}+z_{2}^{2}}}=\frac{(u, v)}{\|u\|\|v\|} \\
|\cos \theta|=\frac{(u, v)}{\|u\|\|v\|} \leq \frac{\|u\|\|v\|}{\|u\|\|v\|}=1
\end{gathered}
$$

Orthogonality

Let V be an inner product space. Two vectors $u, v \in V$ are said to be orthogonalif $(u, v)=0 \Leftrightarrow(v, u)=0$. So, u is orthogonal to v iff v is orthogonal to u. Since $(0, v)=0$ for all $v \in V, 0$ is orthogonal to every vector in V.

Conversely , if $u \in V$ is orthogonal to every vector in V then $(u, v)=$ $0 \Rightarrow u=0$. Let W be a subspace of V.
Define $W^{\perp}=\left\{v \in V \mid(v, w)=0\right.$ for all $w \in W\left(W^{\perp}\right.$ is read as W perpendicular).
Then W^{\perp} is a subspace of Vas $0 \in W^{\perp} \Rightarrow W^{\perp} \neq \varphi$ and

$$
\begin{aligned}
\left(a v_{1}+\beta v_{2}, w\right)=a\left(\mathrm{v}_{1}, w\right)+\beta\left(\mathrm{v}_{2}, w\right) & =0 \text { for all } w \in W \\
\Rightarrow a \mathrm{v}_{1}+\beta \mathrm{v}_{2} & =W^{\perp}
\end{aligned}
$$

W^{\perp} is called orthogonal complement of W. The reason for calling it thus is because we shall prove later that $V=W \oplus W^{\perp}$

Problem:

Let V be an inner product space. Let $x, y \in V$ s.t. $x \perp y$ Then show that $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$ (This is Pythagoras Theorem when $F=R$ as in triangle $A R C$ with $A B \perp B C, A B^{2}=\|x\|^{2}, B C^{2}=\|y\|^{2}, A C^{2} l=$ $\left.\|x+y\|^{2}\right)$

Solution:

$$
\begin{aligned}
& \|x+y\|^{2}=(x+y, x+y)=(x, x)+(y, y)+(x, y)+(y, x) \\
= & \|x\|^{2}+\|y\|^{2} \text { as }(x, y)=0=(y, x)
\end{aligned}
$$

Orthonormal Set

A set $\left\{u_{i}\right\}_{i}$ of vectors in an inner product space V is said to be orthogonal if $\left(u_{i}, u_{j}\right)=0$ for $i \neq j$.If further $\left(u_{i}, u_{j}\right)=1$ for all i then the set $\left\{u_{i}\right\}$ is called an orthonormal set.

Example:

Let V be the real vector space of real polynomials of degree less than or equal to n. Define an inner product on V by

$$
\left[\sum_{i=1}^{n} a_{i} x^{i}, \sum_{j=1}^{n} b_{j} x^{i}\right]=\sum_{1}^{n} a_{i} b_{j}
$$

Then $\left\{1, x, \ldots, x^{n}\right\}$ is an orthonormal subset of V.

Theorem (2.39):

Let S be an orthogonal set of non zero vectors in an inner product space V . Then S is a linearly independent set.

Proof:

To show S is linearly independent, we have to show that every finite subset of S is linearly independent.
Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a finite subset of S .
Let $a_{1} v_{1}, \ldots, a_{n} v_{n}=0, a_{i} \in F$

$$
\begin{aligned}
& \left(a_{1} v_{1}+\cdots+a_{n} v_{n}, a_{1} v_{1}, \ldots, a_{n} v_{n}\right)=0 \\
& \Rightarrow\left|a_{1}\right|^{2}\left\|v_{1}\right\|^{2}+\cdots+\left|a_{n}\right|^{2}\left\|v_{n}\right\|^{2}=0
\end{aligned}
$$

$\Rightarrow\left|a_{i}\right|^{2}\left\|v_{i}\right\|^{2}=0$ for all $i=1, \ldots n$
$\Rightarrow\left|a_{i}\right|^{2}=0$ for all I I as $\left\|v_{i}\right\|^{2}=0 \Rightarrow\left\|v_{i}\right\|=0 \Rightarrow v_{i}=0$
Which is not true
$\Rightarrow a_{i}=0$ all $i=1, \ldots, n$
$\Rightarrow S$ is linearly independent.

Corllory:

An orthonormal set in an inner product space is linearly independent

Proof:

Let S be an orthonormal set in an inner product space V. Let $v \in S$,then $v \neq 0$ as $v=0 \Longrightarrow(v, v)=0 \neq 1$, a contradiction. Therefore, S is an orthogonal set of non zero vectors and so linearly independent.
Theorem (2.40):

(Gram-Schmidt Orthogonalistion process)

Let V be a nonzero inner product space $u /$ dimension n. Then V has an orthonormal basis.

Proof :

It is enough to construct an orthogonal basis .of V. For let $S \subseteq V$ be orthogonal set. Then $T=\left\{\left.\frac{x}{\|x\|} \right\rvert\, x \in S\right\}$ a is an ortlnormal set.
Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V.
Let $w_{1}=v_{1}$ Define $w_{2}=v_{2}-\frac{\left(v_{2}, w_{1}\right)}{\left(w_{1}, w_{1}\right)} w_{1}$
then

$$
\begin{gathered}
=\mathrm{v}_{2}-\frac{\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)}{\left(\mathrm{v}_{1}, \mathrm{v}_{1}\right)} \mathrm{v}_{1} \\
\left(w_{2}, w_{1}\right)=\left(w_{2}, v_{1}\right) \\
\left(v_{2}, v_{1}\right)=\frac{\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)}{\left(\mathrm{v}_{1}, \mathrm{v}_{1}\right)}\left(v_{1}, v_{1}\right)=0
\end{gathered}
$$

Also

$$
v_{2}=a_{1} v_{1}+w_{2}=a_{1} w_{1}+w_{2}
$$

Where $\quad a_{1}=\frac{\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right)}{\left(\mathrm{v}_{1}, \mathrm{v}_{1}\right)} \in F$
Note v_{1}, is linearly independent $\left.v_{1} \neq 0 \Longrightarrow\left(v_{1}, v_{1}\right) \neq 0\right)$
Define $\mathrm{w}_{1}=\mathrm{v}_{3}-\frac{\left(\mathrm{v}_{3}, \mathrm{w}_{1}\right)}{\left(\mathrm{w}_{1}, \mathrm{w}_{1}\right)} \mathrm{w}_{1}-\frac{\left(\mathrm{v}_{3}, \mathrm{w}_{1}\right)}{\left(\mathrm{w}_{1}, \mathrm{w}_{1}\right)} w_{1}$

Then $\left(w_{3}, w_{2}\right)=0=\left(w_{3}, w_{1}\right)$
Also where
In this way, we can construct an orthogonal set $\left\{w_{1}, \ldots, w_{n}\right\}$ where each

$$
v_{i}=a_{1} w_{1}+\cdots+w_{i}, \quad a_{i} \in F
$$

$\therefore\left\{\frac{W_{1}}{\left\|W_{1}\right\|}, \ldots \ldots, \frac{W_{n}}{\left\|W_{n}\right\|}\right\}$ is an orthonormal set which is linearly independent by
Problem :
Obtain an orthonormal basis, w.r.t. the standard inner product for the subspace of \boldsymbol{R}^{3} generated by $(1,0,3)$ and $(2,1,1)$.

Solution:

Let $v_{1}=(1,0,3), \quad v_{1}=(2,1,1)$.
Then $\quad w_{1}=v_{1}, w_{2}=v_{2}-\frac{\left(v_{1}, w_{1}\right)}{\left(u_{1}, u_{1}\right)} w_{1}$
Now $\quad\left(w_{1}, w_{1}\right)=\left(v_{1}, v_{1}\right)=2+0+3=5$

$$
\left(w_{1}, w_{1}\right)=\left(v_{1}, v_{1}\right)=1+0+9+10
$$

$\therefore\left\|w_{1}\right\|=\sqrt{10}$
So , $w_{2}=(2,1,1)-\frac{5}{10}(1,0,3)=\left(\frac{3}{2}, 1, \frac{1}{2}\right)$

$$
\therefore\left\|w_{2}\right\|=\sqrt{\frac{9}{4}+1+\frac{1}{4}}=\sqrt{\frac{7}{2}}
$$

\therefore required orthonormal basis is

$$
\left\{\frac{w_{1}}{\left\|w_{1}\right\|}, \frac{w_{2}}{\left\|w_{2}\right\|}\right\}=\left\{\frac{1}{\sqrt{10}}(1,0,3), \frac{\sqrt{2}}{7}\left(\frac{\sqrt{3}}{2}, 1,-1\right)\right\}
$$

Theorem(2.41): (Bessel's inequality)

If $\left(w_{1}, w\right)$ is an orthonormal set in V. then

$$
\sum_{i=1}^{m}\left|\left(w_{i}, v\right)\right|^{2} \leq\|v\|^{2} \quad \text { for all } v \in V
$$

Proof :

Let $x=v-\sum_{i=1}^{m}\left(v, w_{i}\right) w_{i}$
$\left(x, w_{j}\right)=\left(v, w_{j}\right)-\left(v, w_{j}\right)=0$ for all $j=1, \ldots, m$. Let

$$
w=\sum_{i=1}^{m}\left(v, w_{i}\right) w_{i}=\sum_{i=1}^{m} a_{i} w_{i}, a_{i}=\left(v, w_{i}\right)
$$

$\therefore \quad v=x+w$
Also

$$
\begin{aligned}
& (w, x)=\left(a_{1} w_{1}+\cdots+a_{m} w_{m}, x\right) \\
& \quad=a_{1}\left(w_{1}, x\right)+\cdots+a_{m}\left(w_{m}, x\right)=0
\end{aligned}
$$

Now $\quad\|v\|^{2}=(v, v)$

$$
=(w+x, w+x)=(w, w)+(x, x)=\|w\|^{2}\|x\|^{2} \geq\|w\|^{2}
$$

But $\|w\|^{2}=(w, w)$

$$
\begin{gathered}
=\left(a_{1} w_{1}+\cdots+a_{m} w_{m}, a_{1} w_{1}+\cdots+a_{m} w_{m}\right) \\
=a_{1} \overline{a_{1}}\left(w_{1}, w_{1}\right)+\cdots+a_{m} \overline{a_{m}}\left(w_{m}, w_{m}\right) \\
=\left|a_{1}\right|^{2}+\cdots+\left|a_{m}\right|^{2}
\end{gathered}
$$

as $\left\{w_{1}, \ldots, w_{m}\right\}$ is an orthonoal set

$$
\begin{aligned}
& \sum_{\substack{i=1 \\
m}}^{m}\left|a_{i}\right|^{2}=\sum_{i=1}^{m}\left|\left(v, w_{i}\right)\right|^{2}=\sum_{i=1}^{m}\left|\overline{\left(w_{l}, v\right)}\right|^{2}=\sum_{i=1}^{m}\left|\left(w_{i}, v\right)\right|^{2} \\
\therefore & \sum_{i=1}^{m}\left|\left(w_{i}, v\right)\right|^{2} \leq\|v\|^{2} \text { for all }\|v\|^{2} v \in V
\end{aligned}
$$

Corllory:

Equality holds if and only if $v=w$

Proof:

Suppose $v=w$
Then

$$
\|v\|^{2}=\|w\|^{2}=\sum_{i=1}^{m}\left|\left(w_{i}, v\right)\right|^{2}
$$

conversely ,suppose equality holds . then

$$
\begin{aligned}
\|v\|^{2}=\|w\|^{2} & \Rightarrow\|x\|^{2}=0 \Rightarrow(x, x)=0 \Rightarrow 0 \\
& \Rightarrow v=w+x=w
\end{aligned}
$$

Fields play an important role algebra with applications to Number theory of equations and geometry .
$\operatorname{Def}(3.1)$:
Let L be a field and suppose K is a subfield od F, then K is called an extension of F.
Suppose S is a non empty subset of K, let $F(S)$ denote the smallest subfield of K which contains both f and s.(in fact $F(S)$ would be the inter section of all subfields of K that contain F and S f and s.)
The following theorem is then an easy consequence.
Theorem (3.2):
If S, T are non empty subset of afield k and K is an extension of afield F then $F(S \cup T)=F(S)(T)$ (Where of course , if $\mathrm{F}(\mathrm{S})=\mathrm{E}$, then by $\mathrm{F}(\mathrm{S})(\mathrm{T})$ we men $\mathrm{E}(\mathrm{T})$

Proof:

$F(S \cup T)$ is the smallest subfield of k containing $(S \cup T), F$
i.e $S, T, F \subseteq F(S \cup T) \Longrightarrow F(S) \subseteq F(S \cup T), \quad T \subseteq F(S \cup T)$

$$
\Rightarrow F(S)(T) \subseteq F(S \cup T)
$$

again $F, S, T \subseteq F(S)(T) \Longrightarrow F, S \cup T \subseteq F(S)(T)$

$$
\Longrightarrow F(S \cup T) \subseteq F(S)(T)
$$

or that $F(S \cup T)=F(S)(T)$

Remark:

If s is finite subset $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \mathrm{K}$ we write $F(S)=F\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.
The order in which a_{i} appear is immaterial in view of the next lemma as

$$
\begin{gathered}
F\left(a_{1}, a_{2}, \ldots, a_{n}\right)=F\left(\left\{\boldsymbol{a}_{i}\right\}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=F\left(\left\{a_{2}, a_{3}, \ldots, a_{n}\right\}\right) \\
=F\left(a_{2}, a_{3}, \ldots, a_{n}, a_{1}\right)
\end{gathered}
$$

Also then

$$
F(a)(b)=F(a, b)=F(b, a)=F(b)(a)
$$

Again if $K=F(a) \mathrm{k}$ is called simple extension of F and we say K is got by adjoining the element a to F .
Lemma (3.3):
$F(S \cup T)=F(T \cup S)=F(S)(T)$ follows clearly as $S \cup T=T \cup S$.

Problem:

Let Q be the field of rationales then show that $Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})$.

Solution :

By definition

$$
\begin{aligned}
\sqrt{2}, \sqrt{3} \in Q(\sqrt{2}, \sqrt{3}) & \Rightarrow \sqrt{2}+\sqrt{3} \in Q(\sqrt{2}, \sqrt{3}) \quad \text { (closure) } \\
& \Rightarrow Q(\sqrt{2}+\sqrt{3}) \subseteq Q(\sqrt{2}, \sqrt{3})
\end{aligned}
$$

Now $\quad \sqrt{2}+\sqrt{3} \in Q(\sqrt{2}+\sqrt{3}) \Rightarrow(\sqrt{2}+\sqrt{3})^{2} \in Q(\sqrt{2}+\sqrt{3})$
Also $5 \in Q(\sqrt{2}+\sqrt{3})$

$$
5+2 \sqrt{2} \sqrt{3}-5=2, \quad \sqrt{2} \sqrt{3} \in Q(\sqrt{2}+\sqrt{3})
$$

Also $2 \in Q(\sqrt{2}+\sqrt{3})$

$$
2 \times \frac{1}{2} \sqrt{2} \sqrt{3}=\sqrt{2} \sqrt{3} \in Q(\sqrt{2}+\sqrt{3})
$$

Also $\quad \sqrt{2}+\sqrt{3} \in Q(\sqrt{2}+\sqrt{3})$

$$
\begin{gathered}
\Rightarrow 3 \sqrt{2}+3 \sqrt{3}-2 \sqrt{3}-3 \sqrt{2}=\sqrt{3} \in Q(\sqrt{2}+\sqrt{3}) \\
\Rightarrow 2 \sqrt{3}+3 \sqrt{2}-2 \sqrt{2}-\sqrt{3}=\sqrt{2} \in Q(\sqrt{2}+\sqrt{3}) \\
\therefore Q(\sqrt{2}, \sqrt{3}) \subseteq Q(\sqrt{2}+\sqrt{3}) \\
\therefore Q(\sqrt{2}, \sqrt{3})=Q(\sqrt{2}+\sqrt{3})
\end{gathered}
$$

If k is an extension of F , then we know that K can be regarded as a vector space over F . in that case dimension of K over F is called degree of K over F and we denote it by $[\mathrm{K}: \mathrm{F}]$.
Our next theorem is about the degree of extension fields. If [K:L]is finite ,we say k is finite extension of F .
Theorem (3.4):
Let L be a finite extension of K and F , a finite extension of K . then L is a finite extension of F and $[\mathrm{L}: \mathrm{F}]:[\mathrm{L}: \mathrm{K}][\mathrm{K}: \mathrm{F}]$.

Proof:

Let $[\mathrm{L}: \mathrm{K}]=\mathrm{m}, \quad[\mathrm{K}: \mathrm{F}]=\mathrm{n}$
Let $\left\{a_{1}, \ldots, a_{m}\right\}$ be a basis of L over K and $\left\{b_{1}, \ldots, b_{n}\right\}$ be be a basis of k over F . we show that $\left\{a_{i} b_{j} \mid 1 \leq i, j \leq n\right\}$ is a basis of L over F .
$a_{i} \in L \quad, \quad b_{j} \in K \Rightarrow b_{j} \in L \quad \therefore a_{i} b_{j} \in L$ for all i, j

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} a_{i} b_{j}=0 \quad a_{i j} \in F
$$

Then

$$
\sum_{i=1}^{m} \sum_{j=1}^{n}\left(a_{i j} b_{j}\right) a_{i}=0 \quad, \sum_{j=1}^{n} a_{i j} b_{j} \in K
$$

Since $\left\{a_{1}, \ldots, a_{m}\right\}$ are linearly independent over K,

$$
\sum_{j=1}^{n} a_{i j} b_{j}=0 \text { for all } i=1, \ldots, m
$$

Also $\left\{b_{1}, \ldots, b_{n}\right\}$ are linearly independent over $\mathrm{F} . a_{i j}=0$ for all $\mathrm{i}=1, . ., \mathrm{m}$, $\mathrm{j}=1, \ldots .1, \mathrm{n}$
$\therefore\left\{a_{i} b_{j} \mid 1 \leq m, 1 \leq j \leq n\right\}$ is linearly independent subset of L over F .
Let $a \in L$ since $\left\{a_{1}, \ldots, a_{m}\right\}$ is a basis of L over K

$$
a=a_{1} a_{1}+\cdots+a_{m} a_{m} \quad, a_{i} \in K
$$

$a_{i} \in K$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of K over F .

$$
\Longrightarrow \beta_{i 1} b_{1}+\cdots+\beta_{i n} b_{n}, \beta_{i j} \in F
$$

$a=\sum_{i=1}^{m} a_{i} a_{i}=\sum_{i=1}^{m}\left(\beta_{i 1} b_{1}+\cdots+\beta_{i n} b_{n}\right) a_{i}=\sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{i j} b_{j} b, \beta_{i j} \in F$
$\therefore\left\{a_{i} b_{j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ spans L over F and so forms a basis of
L over F.
$\therefore \quad[L: F]=m n=[L: K][K: F]$
Remark :
if $[L: K]$ is finite then $[L: K]$ is also finite because $[L: K]=r \Rightarrow$ every subset of L having $r+1$ elements is linearly dependent over F. since [L:K] is infinite, $\exists a_{1}, \ldots, a_{r+1} \in K$ which are linearly independent over F as $1 \neq 0$. As in theorem (3.4), $a_{1}-1, a_{2}-1, \ldots, a_{2}+1,1$ are linearly independent over F .we fined $a_{1}, \ldots, a_{r+1} \in L$ are linearly independent over F , a contradiction .
$\therefore[L: K]$ is infinite . similarly,$[K: F]$ is infinite .

Lemma(3.5):

If f is finite extension of f , then $\mathrm{K}: \mathrm{F}$ if and only if $[K: F]$ divides $[L: F]$.

Proof:

By remark above $[K: F]$ is finite as $[K: F]=$ finite also $[L: K]$ is finite .
By theorem (3.4)

$$
[L: K]=[L: K][K: F]
$$

$[K: F]$ divides $[L: F]$
Lemma(3.6):
If k is an extension of F , then $\mathrm{K}=\mathrm{F}$ if and only if $[K: F]=1$.

Proof:

If $K: F$, then $[K: F]=[K: K]=1$
If $[K: F]=1$ let $\{\mathrm{a}\}$ be a basis of K over F .
$\therefore 1 \in K \Rightarrow a a, a \in F, a \neq 0$ as $1 \neq 0 \Rightarrow a=a^{-1} \in F$
Let $b \in K \Rightarrow b=\beta a, \beta \in F, \beta \in F, a \in F \Rightarrow b \in F \Rightarrow K \subseteq$ $F \Rightarrow K=F$.
Lemma(3.7):
If L is an extension of f and $[L: K]$ is a prime number p, then there is no field K s.t $F \subset K \subset L$.
Suppose \exists a field K s.t,$F \subset K \subset L$ then $p=[L: F]=[L: K][K: F]$ By theorem(3.4)

$$
\Rightarrow[L: K]=1 \text { or }[K: F]=1
$$

$\Rightarrow K=L$ or $K=F$ by lemma (3.7) acontradiction.
Hence the result Trivially then, if K is an extension of F of prime degree then for any $a \in K, F(a)=F$ or $F(a)=K$
Theorem(3.8):
Let k be a finite extension of F . let $[\mathrm{K}: \mathrm{F}]=\mathrm{n}$, let $a \in K$. Then a, \ldots, a^{n} are linearly independent over F. thus $\exists a_{0}, a_{1}, \ldots, a_{n} \in F$ s.t $a_{0} .1+a_{1} a+$ $a_{n} a^{n}=0$ for some $a_{i} \neq 0$.

Let $F(x)=a_{0}+a_{1} x+a_{n} x^{n}$, then $F(x)$ is non zero polynomial in $\mathrm{f}[\mathrm{x}]$ as some $a_{i} \neq 0$, also

$$
F(a)=a_{0}+a_{1} a+a_{n} a^{n}=0
$$

$\therefore \mathrm{a}$ is algebraic over F .
$\therefore \mathrm{k}$ is algebraic over F .
Note:
Convers of theorem (3.8) is not true.
Lemma(3.9):
$a \in K$ is algebraic over F if $[F(a): F]=$ finite

Proof:

By theorem (3.8), $\mathrm{F}(\mathrm{a})$ is algebraic over F .
$\therefore a \in F(a)$ is algebraic over F .
Converse of above lemma is also true.

Corllory 1:

If $a_{1}, \ldots, a_{n} \in K$ are algebraic over F then $F\left(a_{1}, \ldots, a_{n}\right)$ is finite extension of and so is algebraic over F.

Proof:

We proof the result by indication on n if $n=1$, result follows from cor 1. assume it to be true for naturals less than n .let $a_{1}, \ldots, a_{n} \in K$ be algebraic over F . Now a_{n} is algebraic over $\mathrm{F} \Rightarrow a_{\mathrm{n}}$ is algebraic over $F\left(a_{1}, \ldots, a_{n}\right)$
By cor 1. $\left[F\left(a_{1}, \ldots, a_{n-1}\right)\left(a_{\mathrm{n}}\right) ; F\left(a_{1}, \ldots, a_{n}\right)\right.$ is finite by indication hypothesis,
$\left[F\left(a_{1}, \ldots, a_{n}\right): F\right]$ Is finite
$\left[F\left(a_{1}, \ldots, a_{n}\right) F\right]=\left[F\left(a_{1}, \ldots, a_{n}\right): F\left(a_{1}, \ldots, a_{n}\right)\right][F(a 1, \ldots . a n-$
1): $F]=$ finite

Result is true for n also
By indication is true for all $\mathrm{n} \geq 1$.
Def(3.10):
A complex number is said to be an algebraic number if it is algebraic over the field of rational numbers.

Roots of polynomials

Let F be a field and $\mathrm{f}(x) \in F[X]$.we ask whether there exists an extension K of containing a root.

Theorem(3.11):

A polynomial of degree n over a field can have at most n roots in any extension field.

Def(3.12):

Let E and L be tow extensions of a field K . An isomorphism $f: E \rightarrow L$ is called a K-isomorphism if $\mathrm{f}(a)=a$, and in that case we say E and L
are K-iosmorphic. similarly we talk of K-homomorphism or K-automorphism.
Theorem(3.13):
Suppose $\sigma: K_{1} \rightarrow K_{2}$ is an isomorphism from a field K_{1} to a field K_{2}.
Let α_{1} be a zero an irreducible over polynomial $f_{1}(x)$ over K_{1} and α_{2} be zero of the corresponding polynomial $f_{1}(x)=\sigma\left(f_{1}(x)\right)$ over K,then there exists a unique isomorphism θ from $\mathrm{K}_{1}\left(\alpha_{1}\right)$ to $\mathrm{K}_{1}\left(\alpha_{1}\right)$ such that $\theta\left(\alpha_{1}\right)=\alpha_{2}$ and $\sigma(\alpha)=\alpha$
Proof:
Now $\varphi_{1}: K_{1}[x] \rightarrow K_{2}\left[\alpha_{1}\right]$
With $\varphi_{1}\left(g_{1}(x)\right)=g_{1}\left(\alpha_{1}\right)$
Is an onto homomorphism such that $\operatorname{Ker} \varphi_{1}=<f_{1}>$.

Prime subfields

Def(3.14):
Let F be a field .The intersection of all subfield of F is the smallest subfield of F and is called prime subfield of F.

Theorem(3.15):

Let P be the prime subfield of a field F . Then either $P \cong Q$ or $P \cong \frac{Z}{(P)}$ for some prime p, Z being the ring of integers.

Proof:

Define $\theta: Z \rightarrow p \subseteq F$ such that
$\theta(n)=n e$, where e denotes the unity of F
Then θ is a homomorphism.

Problem:

Show that regular pentagon is constructible.

Solution:

It would be possible to construct a pentagon if we can construct

$$
\alpha=2 \cos \frac{2 \pi}{5}=2 \cos 72^{\circ}=2 \sin 180^{\circ} \text {. }
$$

Since $\sin 180^{\circ}=\frac{-1+\sqrt{5}}{4}$ which is constructible we fine it is possible to construct a regular pentagon.

Problem:

Every automorphism of a field F leaves the prime subfield P of F,element wise fixed

Solution:

Let θ be an automorphism of F
Let $K=\{a \in F \mid \theta(a)=a\}$
Then K is a subfield of F.
Since P is the smallest subfield of $\mathrm{F}, P \subseteq K$.let $b \in P$.then $b \in K$, $\Rightarrow \theta(b)=b \Rightarrow, \theta$ fixes element of P .

Separable Extensions

In the next we have a polynomials which have a simple roots and the field generated by these roots.

Def(3.16):

A polynomial is said to be a separable if all roots are simple.
Theorem(3.17):
A polynomial $\mathrm{f}(x) \in F[x]$ is seperable if and only if f and f^{\prime} are relatively prime.
Def(3.18):
A field K is called perfect field if every algebraic extension of K is separable.

Theorem(3.19):

Let char $K=p$. then every algebraic extension of K is seperable if and only if $K=K^{P}$.

Proof:

Let $a \in K$.let $f(x)=x^{\mathrm{p}}-a$ and b be a zero of $f(x)$.then

$$
0=f(b)=b^{\mathrm{p}}-a, a=b^{\mathrm{p}}
$$

, $f(x)=x^{\mathrm{p}}-b^{\mathrm{p}}=(x-b)^{\mathrm{p}}$.then $f(x)$ is irreducible over k .
Now α is root of $p(x), \Rightarrow x-\alpha$ divides $\mathrm{p}(\mathrm{x})$ in $E[x]$

$$
\Rightarrow P(x)=(x-a) q(x), \quad q(x) \in E[X]
$$

Since $\operatorname{deg} p(x)=2, \operatorname{deg} q(x)=1$.
So $q(x)=(x-\beta), \beta \in F$
Therefore $p(x)=(x-\alpha)(x-\beta)$ splits in $E[x]$.
Problem:
Let F be a perfect field .show that the set of elements fixed under all automorphisms of F is a perfect subfield.

Solution:

Let char $F=p, K=\{a \in F \mid \sigma(a)=a \forall \sigma \in G\}$,where G is a group of F . then K is a subfield of F.
Define $\quad \theta: F \rightarrow F$ such that,

$$
\theta(\alpha)=\alpha^{\mathrm{p}}
$$

Then θ is a homomorphism, since F is perfect, θ is onto, So $\theta \in G$, let $\alpha \in K$.then $\sigma(\alpha)=\alpha$

$$
\Rightarrow \theta(\alpha)=\alpha \Longrightarrow \alpha^{\mathrm{p}}=\alpha \Rightarrow \alpha \in K^{\mathrm{p}} \Rightarrow K \subseteq K^{P}
$$

$\Rightarrow K=K^{\mathrm{p}}, K$ is perfect.

Normal Extensions

As seen earlier if $f(x) \in K[x]$ is irreducible over K , then there extension E of K containing a root of $f(\mathrm{x})$.
Def(3.20):

An extension $L: K$ is called a normal extension if every irreducible polynomial in $K[x]$ have any at least one root in L .
Theorem(3.21):
A finite normal extension is a minimal splitting field of some polynomial.
Theorem(3.22):
Let K be an algebraic closed field such that K is an extension of K .
Let $F=\{a \epsilon K \mid a$ is algebraic over K$\}$

Proof:

We now that $\subseteq \subseteq F \subseteq K$ is tower of field
By definition of $\mathrm{F}, \mathrm{F} / \mathrm{K}$ is algebraic
Thus F is algebraically closed
Hence F is an algebraic of K.

Lemma(3.23):

Let E be an algebraic extension of K and let $\sigma: E \rightarrow E$ be a Khomomorphism. then σ is a K -automorphism .

Proof:

Let $\alpha \in E, p(x)=\operatorname{Irr}(K, \alpha)$,
Let $\alpha_{1}=a, \alpha_{1}, \ldots . ., \alpha_{r}$
Let $E^{\prime}=K\left(\alpha_{1}, \ldots . ., \alpha_{r}\right) \subseteq E$
Then E^{\prime} / K is finite
Let $p(x)=\left(x-\alpha_{\mathrm{i}}\right) q_{\mathrm{i}}(x), q_{\mathrm{i}}(x) \in K\left(\alpha_{\mathrm{i}}\right)[x]$
Since $\sigma(a)=a$ for all $a \in K, \sigma(p(x))=p(x)$.
Theorem(3.24):
Let K be an algebraic extension of K , then following are equivalent.
(i) K / k is normal .

There fore $p(x)=\sigma(p(x))=\left(x-\sigma\left(\alpha_{\mathrm{i}}\right)\right) \sigma\left(q_{\mathrm{i}}(x)\right)$
But $\sigma: E \rightarrow E \Rightarrow \sigma\left(\alpha_{\mathrm{i}}\right) \in E$ for all i
So $\sigma\left(\alpha_{\mathrm{i}}\right) \in E^{\prime}$ for all i ,
$\Rightarrow \sigma: E \rightarrow E^{\prime}$ is a K-homomorphism
Also E^{\prime} / K is finite
Since σ is also 1-1
So $\sigma: E^{\prime} \rightarrow E^{\prime}$ IS on to, σ is a K-automorphism of E .

Galois Extensions

Def(3.25):
An extension E of F is called a Galois extension if E / F is finite .f is the fixed of a group of automorphisms of E.

Theorem(3.26):

Let E / F be a finite extension .then E / F is a Galois extension if and only if it is both normal and seperable.

Note:

When E / F is Galois, the group of all F -automorphisms of E is denoted by $\operatorname{Gal}(E / F)$ or $G(E / F)$ called the Galois group of E / F.
Corllory 2:
Let char $K=0$.then K is contained in some Galois extension of K .

Proof:

Let $f(\mathrm{x})$ be a non constant polynomial in $K[x]$. Let E be a minimal splitting field of $f(\mathrm{x})$ over K .then E / K is finite normal .Since is perfect, $\Rightarrow \mathrm{E} / \mathrm{K}$ is seperable ,
So, E / K is Galois.

Theorem (3.27):

Let E / F be a finite extension .then E / F is contained in Galois extension if and only if it is seperable.

Proof:

Let E / F be contained in Galois extension E^{\prime} / F.then $F \subseteq E \subseteq E^{\prime}$ Now E^{\prime} / F is Galois $\Rightarrow E^{\prime} / F$ is seperable E / F^{\prime} is seperable Conversely, Let E / F be seperable. since E / F is finite, $E=F\left(a_{1}, \ldots, a_{n}\right)$ Let $\quad p_{\mathrm{i}}=\operatorname{Irr}\left(F, \alpha_{\mathrm{i}}\right), \alpha_{\mathrm{i}} \in E . \alpha_{\mathrm{i}} \in E \Rightarrow \alpha_{\mathrm{i}}$ is seperable over $\mathrm{F} \Rightarrow \alpha_{\mathrm{i}}$ is a simple zero of $p_{\mathrm{i}} \Rightarrow$ each zero of p_{i} in a splitting field is simple.

Reference

(1) A First course in ABSTRACT ALGEBRA. Johb. Fraleigh Department of Mathematics, university of Rhode Island.
Copyright 1982,1976,1967, by Addison-wesley publishing company.Inc
(2) BELL, ERIGT. Men of Mathematics. NewYork: Simon and Schuster, 1986.
(3) BURTON, DAVID M. The History of Mathematics, $4^{\text {th }}$ ed. New York:Mc Graw Hill, 1998.

