Determination of Lipids Profile of Sudanese Chronic Renal Failure Patients - Khartoum State

(A dissertation submitted in a partial fulfillment of the requirement for the master degree in clinical chemistry)

By:

Sadia Alamin Yousuf Yahia

B.Sc Clinical Chemistry – College of Medical Laboratories Science (SUST 2013)

Supervisor:

Dr. Nuha Elgaily Abobaker

Assistant Professor of Clinical Biochemistry

August 2015
بسم الله الرحمن الرحيم

قال الله تعالى:

(ويسألونك عن الروح قل الروح من أمر ربي وما أوتيتم من العلم إلا قليلاً)

صدق الله العظيم

سورة الإسراء (الآية رقم 85)
إلى من أكنّه لما شكل موهدتي ونشمرها بآلام الخال يحول
شكل هويتي ترتجه متنية واختار فضري... هامذا أقول؟
لسعادة ثوابي عاشت جاهدة متأل رحال الفائز المامل
أمي الحبيبة

إلينا يا من أغطيتني منذ الصغر يا وغطاء وبركان
وتواصل بذاك العجرار لي ومفضلت اليوم براده إنسان
فالآن عاملا احترامي وتقديري لأتا وص한다는 حموها على مر الزمن
أبي الحبيب

إلينا يا من علمتني معنى المهبة والصو...
وزرعت في قلبي شتولا لتي... شتول عيني وعلى أرواحنا قطر النهدي
فرويتها من أجلها ولتي أوصريه وواصي لم ما يلم شدني
حبيبي نور
Acknowledgment

Firstly all thanks to ...

ALLAH
For his gifts which never ends .

Then I want to thank …

MY SUPERVISOR
Dr. Noha Aljaily for her great helpfulness .

MY PARENTS
Hawa and Alamin for their patience and continuous contribution .

MY SISTERS AND BROTHERS
For their encouraging and supporting me .

MY FRIENDS AND COLLEAGUS
For their honesty and lovely time we spend together .

PATIENTS AND HEALTHY CONTROLS
For their cooperation .

Lastly I thank the laboratory staff of clinical chemistry department of Alnaw hospital for their valuable help and support.
Abstract

This study was conducted to measure serum levels of plasma lipids (TG, TC, HDL-c and LDL-c) in patients with chronic renal failure. Seventy five random samples were collected from patients who already attended ALnaw Teaching Hospital during the period between January to March 2015 chosen randomly and seventy five apparently healthy individuals were selected as controls.

Enzymatic method was used to estimate serum lipid profile levels manually using Biosystem kits and by using Mindary, and results were analyzed using (SPSS) computer program (T-test and ANOVA test).

The results showed that serum levels of TG, TC, and LDL were significantly increased (p-value = .000) (p-value = .001) (p-value = .000) respectively and the serum levels of HDL were significantly decreased (p-value = .000) in the Sudanese patients group.

TG serum level increased between (101.5±35.8) in control to (132.2±56.3) in patients, TC also increased to (138.0±42.0) compared to control (121.6±23.0). LDL showed the same pattern and significantly increased to (133.8±43.1) in comparison to control (92.8±37.8). HDL of patients decreased to (31.8±4.0) while in control was (37.0±5.4).

According to causes of renal failure the results of this study showed that; hypertension, diabetes and family history are the most common causes in Sudan.

The results of this study showed that there is a weak correlation between TG levels and duration of hemodialysis at (r = .223, p-value =.054). No correlation between TC (r=.166, p-value =.154), HDL-c (r=.166, p-value =.156) and LDL-c (r=.133, p-value =.254) levels and duration of dialysis was observed.

In conclusion: the serum levels of TG, TC, and LDL significantly increased in Sudanese all patients, but serum levels of HDL significantly decreased in all patients subjected them to risk of many complications.
المستخلص

أُجريت هذه الدراسة لمعرفة مستوى الدهون في بلازما مرضى الفشل الكلوي الذين يخضعون للغسيل الدموي. تم جمع 75 عينة دم من المرضى في الفترة مما بين يناير وحتى نهاية مارس 2015. تم اختيارهم بطريقة عشوائية من مستشفى النرو مع 75 عينة من الأشخاص الأصحاء كمجموعة ضابطة أو تحكم لقياس مدى تأثير الغسيل الدموي على مستويات الدهون المصلية.

تم قياس مستويات الدهون باستخدام طريقة إنزيمية باستخدام جهاز ميندري، وتم تحليل البيانات بواسطة برنامج الحزمة الإحصائية للعلوم الاجتماعية.

توصلت النتائج إلى أن هناك ارتفاع ملحوظ في مستويات كل من الكولسترول والجليسيريدات الثلاثية، وكولسترول الدهون البروتينية منخفضة الكثافة في المرضى الذين يخضعون للفحص الدموي وكان الإحتمال الإحصائي للمقارنة (0.01، 0) على التوالي. كما أوضحت النتائج أن هناك انخفاض ملحوظ في مستوي كولسترول الدهون البروتينية مرتفعة الكثافة وكان الإحتمال الإحصائي للمقارنة (0.001).

وكانت النتائج كالتالي:

ارتفع مستوى الجليسيريدات الثلاثية بين 101.5±35 و138±42، مقارنة بواحدة التحكم 121.6±23، كما أظهرت مستوى الكولسترول الدهون البروتينية منخفضة الكثافة في المرضى بين 8،37.8±4.5، بينما انخفض مستوى كولسترول الدهون البروتينية مرتفعة الكثافة لدى المرضى 31.3±4.0، مقارنة بواحدة التحكم 37.0±5.4.

وتفقا لأمراض الكلى المزمنة. نتائج هذه الدراسة خصبت إلى أن أمراض الضغط والسكري والعامل الجيني هما من أكثر الأسباب شيوعًا في السودان.

كما أوضحت الدراسة أنه هناك علاقة ضعيفة بين ارتفاع الغسيل الدموي لفترة طويلة وتركيز جليسيريدات الثلاثية (معامل بيرسون للإيثراتن=0.223، مستوى المعنوية=0.054) وأنه لا علاقة بين ارتفاع الغسيل الدموي لفترة طويلة وتركيز الكولسترول، (معامل بيرسون للإيثراتن=0.15، مستوى المعنوية=0.166).

كولسترول الدهون البروتينية منخفضة الكثافة (معامل بيرسون للإيثراتن=0.16، مستوى المعنوية=0.133) وكولسترول الدهون البروتينية مرتفعة الكثافة (معامل بيرسون للإيثراتن=0.254، مستوى المعنوية=0.133).

الخلاصة: تركز مستويات الجليسيريدات الثلاثية والكولسترول وكولسترول الدهون البروتينية منخفضة الكثافة يحدث بهم زيادة ملحوظة في مرضى الفشل الكلوي بينما يعانون من انخفاض ملحوظ في مستوى كولسترول الدهون البروتينية مرتفعة الكثافة مما يعرضهم لخطر الإصابة بالعديد من المضاعفات.

ووفقا لأمراض الكلى المزمنة، نتائج هذه الدراسة خصبت إلى أن أمراض الضغط والسكري والعامل الجيني هما من أكثر الأسباب شيوعًا في السودان.
List of contents

<table>
<thead>
<tr>
<th>No</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verse</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Dedication</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>English abstract</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>Arabic abstract</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>List of contents</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>List of tables</td>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>List of figures</td>
<td>IX</td>
<td></td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Chapter one
Introduction

1.1. Introduction 1
1.2. Rationale 2
1.3. Objectives 3
1.3.1. General objectives 3
1.3.2. Specific objectives 3

Chapter two
Literature review

2.1. The kidneys 5
2.2. Renal anatomy 5
2.3. Renal function 5
2.3.1. Renal failure 5
2.3.1.1. Acute renal failure 5
2.3.1.2. Chronic renal failure 6
2.1.4. Dialysis 8
2.1.4.1. Types of dialysis 8
2.2. Plasma lipids 9
2.2.1. Fatty acids 9
2.2.2. Triglycerides 10
2.2.3. Phospholipids 10
2.2.4. Cholesterol 11
2.2.5. Plasma lipoprotein 11
2.2.5.1. Chylomicron 12
2.2.5.2. VLDL 12
2.2.5.3. IDL 12
2.2.5.4. LDL 12
2.2.5.5. HDL 13
2.2.6. Lipid disease, prevention, diagnosis and treatment 14
2.2.6.1. Arteriosclerosis 14
2.2.6.2. Dyslipidemias 15
2.3. Relationship between plasma lipids and renal failure 16

Chapter three
Materials and methods

3.1. Materials 18
3.1.1. Study design 18
3.1.2. Study area and Study population 18
3.1.3. Sample size 18
3.1.4. Ethical consideration 18
3.1.5. Data collection 19
3.1.6. Sample collection and processing 19
3.1.7. Requirements 19
3.2. Methods 20
3.3. Quality control 20
3.4. Statistical analysis 20

Chapter four
Results

4. Results 22

Chapter four
Discussion, conclusion and recommendations

5.1. Discussion 31
5.2. Conclusion 32
5.3. Recommendations 33

References

References 35

Appendices

Appendix I 38
Appendix II 40
Appendix III 41
Appendix IV 42
Appendix V 43
List of tables

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table(2-1)</td>
<td>Composition of the lipoproteins</td>
<td>16</td>
</tr>
<tr>
<td>Table(4-1)</td>
<td>Ages, gender and family history of patients with renal failure disease</td>
<td>35</td>
</tr>
<tr>
<td>Table(4-2)</td>
<td>Mean of body mass index (BMI) of patients with renal failure group and control group</td>
<td>35</td>
</tr>
<tr>
<td>Table(4-3)</td>
<td>Distribution of patients according to other associated disease</td>
<td>36</td>
</tr>
<tr>
<td>Table(4-4)</td>
<td>The mean of plasma TG, TCHO, HDL, LDL (mg/dl) in patients with renal failure group and control group</td>
<td>36</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure(4-1)</td>
<td>Scatter plot of correlation between TG level and duration of dialysis</td>
<td>37</td>
</tr>
<tr>
<td>Figure(4-2)</td>
<td>Scatter plot of correlation between TC level and duration of dialysis</td>
<td>38</td>
</tr>
<tr>
<td>Figure(4-3)</td>
<td>Scatter plot of correlation between HDL level and duration of dialysis</td>
<td>39</td>
</tr>
<tr>
<td>Figure(4-4)</td>
<td>Scatter plot of correlation between LDL level and duration of dialysis</td>
<td>40</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARF</td>
<td>Acute renal failure</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>BUN</td>
<td>Blood urea nitrogen</td>
</tr>
<tr>
<td>CHD</td>
<td>Chronic heart disease</td>
</tr>
<tr>
<td>CRD</td>
<td>Chronic renal disease</td>
</tr>
<tr>
<td>CRF</td>
<td>Chronic renal failure</td>
</tr>
<tr>
<td>FCH</td>
<td>Familial combined hyperlipidemia</td>
</tr>
<tr>
<td>FH</td>
<td>Familial hypercholesterolemia</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>HDL-c</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate density lipoprotein</td>
</tr>
<tr>
<td>LDL-c</td>
<td>Low density lipoprotein cholesterol</td>
</tr>
<tr>
<td>LPL</td>
<td>Lipoprotein lipase</td>
</tr>
<tr>
<td>TC</td>
<td>Total Cholesterol</td>
</tr>
<tr>
<td>TG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
</tbody>
</table>
Chapter I

Introduction
1.1. Introduction

Kidneys are paired, bean shaped organs located retro-peritoneally on either side of spinal column (Porveen and Michael 2000). Macroscopically each kidney is enclosed by fibrous capsule of connective tissue, when dissected longitudinally; two region can be clearly discerned: the outer region called the cortex and the inner one is named medulla. The pelvis of the kidney is a basin like cavity at the upper end of the ureter into which newly formed urine passes (Bishop et al.; 1982).

Acute renal failure is a sudden sharp decline in renal functions due to acute toxic or hypoxic insults to the kidneys (Bishop et al.; 1982).

Chronic renal failure is a clinical syndrome that occurs when there is gradual decline in renal functions over time (Porveen and Michael 2000).

The major forms of plasma lipids are: Fatty acids which are straight chain carbon compounds of variety lengths, they are be saturated, mono unsaturated or poly unsaturated (Williams and Braun 1995).

Triglycerides are molecules consist of one molecule of glycerol with three fatty acid molecules (Williams and Braun 1995).

Phospholipids are polar, ionic lipids composed of 1,2 diacylglycerol and phosphodiester bridge link the glycerol back bone to some base usually nitrogenous such as choline, serine or ethanol amine (Williams and Braun 1995).

Cholesterol is saturated steroid of high molecular weight in it is esterifies form, it contain one fatty acid molecule (Williams and Braun 1995).

Lipoprotein are core of insoluble (non polar) cholesterol ester and triglycerides, surrounded by shell of protein, phospholipids and free cholesterol with their soluble (polar) group (Norbet and Tietz 1986).

Dyslipidemia is a very common complication of chronic renal failure (CRF) and are actively participate in the deterioration of renal function (Dipika et al.; 2013).

In Sudan feeding products which constitutes high amounts of calories beside low physical exercise are main factors which subjects Sudanese individuals to diseases as CRF.
1.2. Rationale:
Renal failure is a devastating medical, social and economic problem in Sudan and it is fatal unless treated properly. Recent studies were done in Sudan to determine the mortality rate causes of morbidity, they found that the mortality rate was 7.4% per year and the leading causes of death was infections (45%) and cardiovascular (22%) diseases.

According to the latest WHO data (2011) kidney disease deaths in Sudan reached 8.7% of total deaths, ranked the renal failure in 7th top 20 causes of death in Sudan.

Patients with renal failure under hemodialysis are impairment in plasma lipids levels which raises the question of whether the impairment are related to chronic kidney disease or to the hemodialysis treatment.

This study was conducted to highlight the effect of hemodialysis on TG, TC, HDL-c and LDL-c in Sudanese patients with renal failure under hemodialysis since few published data concerned this lipid profile state of Sudanese patients with CRF are available.
1.3. **Objectives**:

1.3.1. **General objectives**:
To estimate the plasma lipids levels in renal failure patients under hemodialysis.

1.3.2. **Specific objectives**:
1- To assess the concentration of plasma lipids (TG, TC, HDL and LDL) in renal failure patients compared to control group.
2- To correlate the levels of plasma lipids with duration of dialysis.
Chapter II

Literature Review
2. Literature Review

2.1. The kidneys:

2.1.1. Renal anatomy:

The kidneys are paired, bean shaped organs located retroperitoneally on either side of spinal column (Porveen and Michael 2000). Macroscopically each kidney is enclosed by fibrous capsule of connective tissue, when dissected longitudinally; two region can be clearly discerned: the outer region called the cortex and the inner one is named medulla. The pelvis of the kidney is a basin like cavity at the upper end of the ureter into which newly formed urine passes (Bishop et al., 1982).

2.1.2. Renal function:

The kidneys are the body filtering system, they remove waste materials and every day the two kidneys processes approximately 190 liters of blood by passing it around 225 kilometers of tubes and millions of mini-filters. The kidneys also help to maintain the body's balance of chemicals, including sodium and potassium, and produce some hormones and the active of vitamin D in addition to maintenance of water and acid-base balance (Bishop et al., 1982).

2.1.3. Renal failure:

2.1.3.1. Acute renal failure (ARF):

Acute renal failure is a sudden sharp decline in renal functions due to acute toxic or hypoxic insults to the kidneys. This has been defined as occurring when the GFR reduced to less than 10ml-min. this syndrome is subdivided into three types depending on the location of precipitation defect. In pre renal failure the defected lies in the blood supply before it reach the kidney (Porveen and Michael 2000). causes can include cardiovascular system failure, sever dehydration and consequent hypovolemia (Porveen and Michael 2000).

In primary renal failure the defect involves the kidney itself, the most common cause is acute tubular necrosis; other etiologies include vascular obstruction,
inflammation, glomerulonephritides. In post-renal failure the defect lies in the urinary tract after it exist the kidneys (Porveen and Michael 2000).

Toxic insult to the kidney may initiate acute renal failure. This include hemolytic transfusion reaction, heavy metals, solvent poisonings and analgesic and amino glycoside toxicities (Bishop et al.; 1982).

These conditions directly damage the renal tubules. Hypoxic insults include conditions that severely compromise renal blood flow, such as septic and hemorrhagic shocks, burns and cardiac failure (Bishop et al.; 1982).

The outcome of acute renal failure is either recovery or, in the case of irreversible renal damage, progression to chronic renal failure (Bishop et al.; 1982).

2.1.3.2. Chronic renal failure (CRF):

Chronic renal failure is a clinical syndrome that occurs when there is a gradual decline in renal functions over time (Porveen and Michael 2000).

Chronic renal failure is classified into four progressive stages. The first stage is marked by a period of silent deterioration in renal status (kidney function decrease but BUN and creatinine values stay within normal limits) (Porveen and Michael 2000).

The second stage is characterized by development of slight renal impairment (Bishop et al.; 1982). a 50% reduction in normal function is necessary before BUN and creatinine values reflect the pathologic changes by increasing above reference ranges. The third stage is typified by impeding renal failure. Anemia begin to develop (due to the constant deficient in erythropoitin production), and systemic acidosis commences (due to the faulty clearance of endogenous metabolic acids) (Willand et al; 2000). The fourth and the last stage commences with the onset of the classic symptoms of the uremic syndrome (Bishop et al.; 1982).
- **Signs and symptoms of chronic renal failure:**

Chronic renal failure (CRF) usually produces symptoms when renal function which measured as glomerular filtration rate (GFR) fall below 30 millimeters per minute (<30 ml/min). This is approximately 30% of the normal value. When glomerular filtration rate (GFR) drop to below 30 ml/min, signs of uremia may become noticeable. When the GFR falls below 15 ml/min most people become increasingly symptomatic (Willand and Ganong 2000).

Uremic symptoms can affect every organ system, most noticeably are the following:

- Neurological system: cognitive impairment, personality changes, and seizures.
- Gastrointestinal system: nausea, vomiting and food disaste.
- Blood forming system: anemia due to erythropoietin deficiency, easy bruising and bleeding due to abnormal platelets.
- Pulmonary system: fluids in the lungs, with breathing difficulties.
- Cardiovascular system: chest pain due to inflammation of the sac surrounding the heart and pericardial effusion.
- Skin: generalized itching (Willand and Ganong 2000).

- **Stages of Chronic renal failure (according to GFR):**
 1- Renal impairment (GFR falls to 30-70 ml/min).
 2- Chronic renal failure (GFR less than 30 ml/min).
 3- End stage renal (GFR less than 5 ml/min). (usually associated with signs and symptoms of ureamia (Chesley 1938).

- **Laboratory diagnosis of chronic renal failure:**

Chronic renal failure is diagnosed by the observation of combination of symptoms and elevated blood urea and creatinine levels in addition to other biochemical abnormalities; these abnormalities include:
Anemia, high level of parathyroid hormone, hypocalcaemia, hyperphosphatemia, hyperkalemia, hyponatraemia, low level of bicarbonate and low blood plasma pH, with low creatinine clearance (Bleiler and Scredl 1972).

2.1.4. Dialysis:
Dialysis cleans the body of waste products in the body by use of filter system (Benjamin and Longo 2015).

2.1.4.1. Types of dialysis:
There are two types of dialysis; 1) hemodialysis and 2) peritoneal dialysis. (Benjamin and Longo 2015).

A- Hemodialysis:
Uses a machine filter called a dialyzer or artificial kidney to remove excess water and salts, to balance the other electrolytes in the body, and to remove waste products of metabolism. Blood is removed from the body and flows through tubing into the machine, where it passes next to a filter membrane. A specialized chemical solution (dialysate) flows on the other side of the membrane. The dialysate is formulated to draw impurities from the blood through the filter membrane. Blood and dialysate never touch in the artificial kidney machine (Benjamin and Longo 2015).

For this type of dialysis access to the blood vessels needs to be surgically created so that large amount of blood can flow into the machine and back to the body. Surgeons can build a fistula, a connection between a large artery and vein in the body, usually in the arm that allow a large amount of blood flow into the vein. This makes the vein swell or dilate, and its walls become thicker so that it can tolerate repeated needle sticks to attach tubing from the body to the machine. Since it takes many weeks or months for a fistula to mature enough to be used, significant planning is required if hemodialysis is to be considered as an option (Benjamin and Longo 2015).
If the kidney failure happens acutely and there is no time to build a fistula, special catheters may be inserted into the larger blood vessels of the arm, leg or chest. These catheter may be left in place for weeks. In some diseases the need for dialysis will be temporary, but if the expectation is that dialysis will continue for a prolonged period of time these catheters act as a bridge until a fistula can be planned, placed and mature. (Benjamin and longo 2015)

B- Peritoneal dialysis:

Uses the lining of the abdominal cavity as the dialysis filter to rid the body of waste and to balance electrolyte levels. A catheter is placed in the abdominal cavity through the abdominal wall by a surgeon and it is expected to remain in place for the long term. The dialysis solution is then dripped in through the catheter and left the abdominal cavity for a few hours and then is drained out. In that time waste products leech from the blood flowing through the lining of the abdomen (peritoneum) and attach themselves to the fluid that has been instilled by the catheters. Often patients instill the dialysis fluid before bedtime and drain it in the morning (Benjamin and longo 2015).

2.2 Plasma lipids:

The major forms of plasma lipids are:

2.2.1 Fatty acids:

Are straight chain carbon compounds of variety lengths, they are be saturated containing no double bonds, mono unsaturated with one double bond or poly unsaturated with more than one double bond. may be esterifies with glycerol to form triglycerides or non esterifies or free (Williams and Broun 1995).

Plasma free fatty acids liberated from adipose tissue are transported mainly bound to albumin to the liver and muscle where they are metabolized. they provide a significant proportion of energy requirement of the body (Williams and Broun 1995).
2.2.2. Triglycerides :

Triglycerides are molecules consist of one molecule of glycerol with three fatty acid molecules, it contain saturated fatty acids without bend, pack together closely and tend to solid at room temperature. The source to triglycerides in the body either exogenous (triglyceride molecule which constitutes 95% of fats stored in dietary) or endogenous (synthesized in the liver and other tissues). Triglyceride molecules allow the body to compactly store long carbon chain fatty acids for energy that can be used during fasting status between meals (Williams and Broun 1995).

The high energy tissue are transported in plasma mostly in the form of large triglyceride rich lipoprotein called chylomicrons and very low density lipoprotein (VLDL) when triglycerides are metabolized their fatty acids are released to the cells and converted into energy. The breakdown of triglycerides is facilitated by hormone sensitive lipoprotein lipase (LPL) as the triglycerides rich protein (chylomicrones and VLDL) are carried through circulation, the triglycerides are hydrolyzed as they come in contact with LPL hormones sensitive lipase which acts inside adipose (fat) cell to release free fatty acids from triglyceride stores for energy when dietary sources are unavailable or are insufficient for the body energy needs. Epinephrine and cortisol promotes triglycerides breakdown when the cell needs energy and glucose stored have been depleted (Williams and Broun 1995).

2.2.3. Phospholipids:

Phospholipids are polar, ionic lipids composed of 1,2 diacylglycerol and phosphodiester bridge link the glycerol back bone to some base usually nitrogenous such as choline, serine or ethanol amine. The most abundant phospholipids in human tissue are lecithin, phosphatidly-ethanol amine and phosphatidly serine. Phospholipids are important of cell membrane and also in lipoprotein (Williams and Broun 1995).
2.2.4. Cholesterol:
Cholesterol is saturated steroid of high molecular weight in it is esterified form, it contain one fatty acid molecule. Cholesterol is found almost exclusively in animals virtually all living cells and body fluids contain some cholesterol is used for manufacture and repair of cell membrane, for synthesis of bile acids and vitamin D, and the precursor of five major classes of steroid hormones. As with triglycerides there are both exogenous (dietary) and endogenous (primary) source of cholesterol, in the body about 70% of cholesterol is located in stationary pools located in the skin, adipose tissue and muscles cells, the remaining 30% or so forms a mobile pool that is transported in the form of lipoprotein and circulated through the liver. In the blood circulation two thirds of cholesterol is through the liver. In the blood circulation two thirds of cholesterol is esterified and one third is in a free form. (Williams and Broun 1995)

The risk factors for the blood vessels disease are strongly related to the fats (lipids) in the blood made up mainly of cholesterol and triglycerides individuals with abnormally high levels of the blood fats are at high risk for developing atherosclerosis (hardening of the arteries that supply blood to the heart or brain are narrowed) these organs are potentially deprived blood and hence deprived of oxygen, this will lead to serious defect in heart, the patient may be develop abnormal rhythms that may become lethal. Inadequate blood supply to the brain causes stroke. (Williams and Broun 1995)

2.2.5. Plasma lipoprotein:
Lipoprotein are core of insoluble (non polar) cholesterol ester and triglycerides are surrounded by shell of protein, phospholipids and free cholesterol with their soluble (polar) group.

Lipids is relatively water insoluble, so they carried in body fluids as soluble protein complex, known as lipoprotein.
Lipoprotein is classified by their density which turn reflect the size. There are five major classes:

2.2.5.1. Chylomicron: Chylomicrons are the largest of the lipoproteins particles which transport exogenous lipid from intestine to all cells. They are rich in triglycerides and it's clearance time from the body is about 6 hours. (Bishop et al; 2000)

2.2.5.2. VLDL (very low density lipoprotein): Like chylomicrons they rich in triglycerides which transport endogenous lipid, elevation in VLDL are evidenced by increased serum triglyceride concentration. (Bishop et al.; 2000)

2.2.5.3. IDL-c (intermediate density lipoprotein cholesterol): Are usually un detectable in plasma it normally transient intermediate lipoprotein, forming conversion of VLDL to LDL-c (Norbet and Tietz 1986).

2.2.5.4. LDL-c (low density lipoprotein cholesterol): LDL-c often called the bad cholesterol because it sticks to the walls of the blood vessels (Norbet and Tietz 1986).

Serum LDL-c is characterized by their high cholesterol, particularly in the form of cholesterol ester, this class of molecule is derived mainly from the breakdown of VLDL (Norbet and Tietz 1986).

The chemical composition of LDL-c is approximately 25% protein, 10% triglycerides, 8% unesterified cholesterol, 37% cholesterol ester and 22% phospholipids. LDL-c is small cholesterol rich lipoprotein containing only apoB, it has a longer life than its precursors. VLDL and IDL-c account for about 70% of the total cholesterol in plasma, it is taken up by specific receptors located on cell surface (LDL-c receptors or apoB/E receptors) (Norbet and Tietz 1986).

Although these are present on all cells, they are most abundant in the liver, they recognize apoB and apoE and so can take up either LDL-c or IDL, after
entering cells IDL particles are broken down by lysosomes. Much of the released cholesterol contributes to membrane formation or in the adrenal cortex and gonads to steroid synthesis, most cells can synthesize cholesterol but several feedback mechanisms prevent its intracellular accumulation. If plasma LDL-c concentration are high some may also enter cells by a passive unregulated route, because of their small size LDL-c particles can infiltrate tissues such as those of the arterial wall and cause damage (Norbet and Tietz 1986).

The physiological function of LDL-c appears to be related to cholesterol transport, it has been suggested that the development of atherosclerosis, is significantly related to: increased LDL-c level, cigarette smoking, high blood pressure (PB above 140/90 mm/hg), low HDL-c cholesterol, family history of early heart disease, age men 45 or older (Norbet and Tietz 1986).

2.2.5.5. High density lipoprotein cholesterol (HDL-c):
It is the smallest and most dense lipoprotein particle, it is important to transport cholesterol from cells to the liver. It is synthesized by both the liver and intestine it can exist as either disk shaped particles or more commonly spherical particles. Discoidal HDL-c typically contains two molecules of apo A-1 which form a ring around a central lipid bilayer of phospholipid and cholesterol. Discoidal HDL-c is represent nascent or newly secreted HDL-c and is the most active form in removing excess cholesterol from cells called reverse cholesterol transport, and is one of the main mechanisms proposed to explain the antiatherogenic property of HDL-c (Bishop and Edward 2005).

When discoidal HDL-c has acquired additional lipid, cholesteryle esterase and triglycerides form a core region between its phospholipids bilayer, which transforms discoidal HDL-c. HDL-c is highly heterogeneous separable into as many as 13 or 14 different subfractions. There are two major types of spherical HDL-c based on density differences: HDL₂ and HDL₃. HDL₂ particles are larger in size and richer in
lipid than HDL₃ and may reflect better efficiency in delivering lipids to the liver (Bishop et al.; 2000).

Table (2-1) shows the composition of the lipoprotein: (Philip et al.; 1994)

<table>
<thead>
<tr>
<th>Lipoprotein</th>
<th>Source</th>
<th>Protein</th>
<th>Cholesterol</th>
<th>TG</th>
<th>Phospholipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chylomicron</td>
<td>Intestine</td>
<td>1%</td>
<td>4%</td>
<td>90%</td>
<td>5%</td>
</tr>
<tr>
<td>VLDL</td>
<td>Liver</td>
<td>8%</td>
<td>25%</td>
<td>55%</td>
<td>12%</td>
</tr>
<tr>
<td>LDL</td>
<td>ViaVLDL</td>
<td>20%</td>
<td>55%</td>
<td>5%</td>
<td>20%</td>
</tr>
<tr>
<td>HDL</td>
<td>Liver</td>
<td>50%</td>
<td>20%</td>
<td>5%</td>
<td>25%</td>
</tr>
</tbody>
</table>

2.2.6. Lipid disease, prevention, diagnosis, and treatment:

Diseases associated with abnormal lipid concentration are referred to as dyslipidemia; they can be caused directly by genetic abnormalities or through environmental/lifestyle imbalance or they can develop secondarily as a consequence of other disease. Dyslipidemia are generally defined by clinical characteristic of the patient and the result of blood tests and do not necessarily defined the specific defect associated with the abnormality. Many dyslipidemia however regardless of etiology are associated with chronic heart disease or arteriosclerosis (Bishop et al; 2000).

2.2.6.1. Arteriosclerosis:

The relationship between heart disease and lipid abnormality stems from the deposition of lipids, mainly in the form of esterified cholesterol in the walls of the arteries which starts with thin layers called fatty streaks, under certain condition the fatty streaks develop overtime into plaque which partially block blood flow (Bishop et al.; 2000).

Deposits in vessele wall are frequently associated with increased serum concentration of LDL-c or decreased HDL-c cholesterol, high levels of cholesterol and triglycerides are caused by genetic abnormalities or due to
increased consumption of foods rich in fats and cholesterol, smoking, lack of exercise or other disease that have effects on lipids metabolism such as diabetes, hypertension, obesity and others (Bishop et al., 2000).

2.2.6.2. Dyslipidemias:

Lipoproteins are complex transported vesicles for moving cholesterol, cholesterol esters, and triglycerides in the blood, disease starts associated with normal serum lipids are generally caused by malfunction in the synthesis, transport or catabolism of lipoprotein (Bishop et al., 2000). Dyslipidemia can be divided into:

A- hyperlipoproteinemias:

which are diseases associated with elevated lipoprotein levels.

I- Hypercholesterolemia:

Is the lipid abnormality most closely linked to heart disease, one form of disease which is associated with genetic abnormalities that predispose affected individuals to elevated cholesterol levels is called familial hypercholesterolemia (FH), homozygotes for FH patients can have total cholesterol concentration as high as 800-1000mg/dl (20-26mmol/L), while heterozygotes for FH tend to have total cholesterol concentration in the range of 300-600mg/dl (8-15mmol/L) (Bishop et al., 2000).

II- Hypertriglyceridemia:

Hypertriglyceridemia can drive from a genetic abnormality and is then called familial hypertriglyceridemia or from secondary cause such as hormonal abnormality. Hypertriglyceridemia is generally due to an imbalance between synthesis and clearance of VLDL in the circulation.
sever hypertriglyceridemia is generally caused by deficiency of LPL or by deficiency in lipoprotein c-II which is necessary cofactor for LPL activity (Bishop et al., 2000).

III- Combined hyperlipidemia:

Combined hyperlipidemia is generally defined as the presence of elevated level of both serum total cholesterol and triglyceridemia, in the genetically derived form called familial combined hyperlipidemia (FCH), another rare genetic form of combined hyperlipidemia is called dysbetalipoproteinemia or type III hyperlipoproteinemia, the disease stems from an accumulation of cholesterol rich-VLDL and chylomicrons remnant due to defective catabolism of those particles. Individual with type III will frequently have total cholesterol values of 200-300mg/dl (5-8mmol/L) and triglycerides of 300-600mg/dl (3-7mmol/L) (Bishop et al., 2000).

B- Hypolipoproteinemias:

Hyplipoproteinemia are abnormalities marked by decreased lipoprotein concentration they fall into two major categories: hypoalphalipoproteinemia which associated with chronic heart disease (CHD), and hypobetalipoproteinemia which associated associated with isolated low levels of LDL-c cholesterol and not associated with (CHD) (Bishop et al., 2000).

2.3. Relationship between plasma lipids and renal failure:

Dyslipidemia (disturbances in lipoprotein metabolism) is a very common complication of chronic renal failure (CRF) and are evident even at the early stages of CRF and may actively participate in the deterioration of renal function. CRF Patients on hemodialysis have abnormalities in lipoprotein structure and metabolism and subsequently they associated with cardiovascular diseases which causes nearly 50% of all deaths in chronic hemodialysis patients. The underlying
pathophysiologic mechanisms of the relationship between dyslipidimia and progression of CRF are not yet fully understood but does not appear to be due to just one factor (Dipika et al., 2013).
Chapter III
Materials and methods
3. Materials and Methods

3.1. Materials:

3.1.1. Study design:

This is a cross-sectional, control, and hospital case based study.

3.1.2. Study area and Study population:

The study was conducted in Alnaw hospital in Khartoum State. The study included patients with renal failure (males and females) under hemodialysis.

3.1.3. Sample size:

This study included 75 patient with chronic renal disease under hemodialysis as cases and 75 apparently healthy subjects serve as control with normal kidney function.

Inclusion criteria:

Sudanese patients with renal failure and apparently healthy volunteers were included in this study.

Exclusion criteria:

Patients with renal failure and other disease that may affect the parameters under study were excluded from this study.

3.1.4. Ethical consideration:

Consent was taken regarding acceptance to participate in the study and reassurance of confidentiality. Before the sample was collected, the donors knew that this specimen was collected for research and the purpose of the research was explained to each patients.
3.1.5. **Data collection:**

The clinical data were obtained from history. Clinical examinations and hospital follow up records and were recorded on a questionnaire sheet.

3.1.6. **Sample collection and processing:**

About 2.5 ml of venous blood were collected from each participant (both cases and control). The samples collected under aseptic conditions and placed in sterile heparin containers, and after mixing centrifuged for 5 minutes at 3000 RPM to obtain plasma, then The obtained plasma were kept at º20°C till the time of analysis.

3.1.7. **Requirements:**

- Colorimeter, model JENWAY.
- Centrifuge
- Sterile heparin containers
- Disposable syringes
- 70% alcohol
- Tourniquets
- Cotton
- Micropipettes (automatic pipettes)
- Graduated pipettes
- Test tubes with different sizes
- Mindary
3.2. Methods:

3.2.1. Estimation of total cholesterol level using Mindary (Appendix I)

3.2.2. Estimation of triglycerides level using Mindary (Appendix II)

3.2.3. Estimation of HDL cholesterol using BIOSYSTEM (Appendix III).

3.2.4. Estimation of LDL-c using BIOSYSTEM (appendix V).

3.3. Quality control:

The precision and accuracy of all methods used in this study were checked by commercially prepared control sample before its application for the measurement of test and control samples.

3.4. Statistical analysis:

Data obtained from this study was analyzed using statistical package for the social science (SPSS).
Chapter IV

Results
4. Results

Table (4-1): Illustrated the ages, sex and family history of patients with renal failure. The results showed that the patients whose ages over fifty years were more susceptible for renal failure with the percentage of 73% compared to those with age below fifty years (27%).

The number of males in patients was (60%) and females was (40%).

Patients were with family history disease constitute 37% while those who has no family history of disease constitute 62%.

Table (4-2): Represents the mean of body mass index (BMI) in both the study groups. BMI indicated that most of patients under dialysis are obese (29±4.1Kg /m²), while the mean of control group is (25±31Kgm²).

Table (4-3): Show that Hypertension and diabetes were significantly related to chronic renal failure the frequencies were renal failure patients is (48%), while diabetes was found in (32%).

According to **Table (4-4)** the levels of TG,TC, and LDL-c were significantly increased (p-value = .000) (p-value = .001) (p-value =.000) respectively and the serum levels of HDL were significantly decreased (p-value =.000) in the Sudanese patients under hemodialysis group compared to control group.

TG serum level increasd between (101.5±35.8) in control to (132.2±56.3) in patients, TC also increased to (138.0±42.0) compared to control (121.6±23.0). LDL showed the same pattern and significantly increased to (133.8±43.1) in compare to control (92.8±37.8). HDL of patients decreased to (31.8±4.0) while in control was (37.0±5.4).

Figure (4-1): The scatter showed that there is a weak correlation between TG levels and duration of dialysis at (r=.223, p-value=.054).
Figure (4-2): The scatter showed that no correlation between TC levels and duration of dialysis at ($r=.166$, p-value=.154).

Figure (4-3): The scatter showed that no correlation between HDL levels and duration of dialysis at ($r=.166$, p-value=.156).

Figure (4-4): The scatter showed that no correlation between LDL levels and duration of dialysis at ($r=.133$, p-value=.254).
Table (4-1): Ages, gender and family history of patients with renal failure disease:

<table>
<thead>
<tr>
<th>Age of patients</th>
<th>Gender</th>
<th>Family history disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 – 50</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>51 – 80</td>
<td>55</td>
<td>73</td>
</tr>
</tbody>
</table>

Table (4-2): Body mass index(BMI) of patients with renal failure group and control group:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients group</th>
<th>Control group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=75</td>
<td>N=75</td>
<td>=0.02</td>
</tr>
<tr>
<td>BMI(Kg/m²)</td>
<td>29±4.1 Kg/m² (19-30)</td>
<td>25±3 Kg/m² (19-30)</td>
<td></td>
</tr>
</tbody>
</table>

Table (4-3): Distribution of patients according to other Associated Disease:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>36</td>
<td>48%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>24</td>
<td>32%</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>15</td>
<td>20%</td>
</tr>
</tbody>
</table>
Table (4-4): The mean of plasma TG, TC, HDL and LDL levels in study groups.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case Mean ± SD</th>
<th>Control Mean ± SD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>132.2±56.3</td>
<td>101.5±35.8</td>
<td>.000</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>138.0±42.0</td>
<td>121.6±23.0</td>
<td>.001</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dl)</td>
<td>31.8±4.0</td>
<td>37.0±5.4</td>
<td>.000</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dl)</td>
<td>133.8±43.1</td>
<td>92.8±37.8</td>
<td>.000</td>
</tr>
</tbody>
</table>
Figure (4-1): Scatter plot of correlation between TG level and duration of dialysis ($r=.223$, p-value=.054).
Figure (4-2): Scatter plot of correlation between TC level and duration of dialysis (r=.166, p-value=.154).
Figure (4-3): Scatter plot of correlation between HDL level and duration of dialysis.
\(r=0.166, \text{p-value}=0.156\).
Figure (4-4): Scatter plot of correlation between LDL level and duration of dialysis ($r=.133$, p-value=.254).
Chapter V
Discussion, conclusion and recommendation
5.1. Discussion

From the finding of this study it appears that serum levels of TG, TC, and LDL were significantly increased and the serum levels of HDL were significantly decreased in patients under hemodialysis group in compare to control group.

This results agreed with a study carried by (Sathyian et al., 2013) which showed that; Plasma TG, TC and LDL concentration frequently elevated in patient with CRF under hemodialysis because heavy proteinuria alone or in combination with chronic renal insufficiency results in acquired LDL receptor deficiency, which play a central role in the genesis of the associated hypercholesterolemia (Sathyian et al.; 2013).

Also the results was in agreement with another studies carried by many authers (Dipika et al; 2013), (Weam; 2008), (Nzere et ai; 2012) which finding confirmed that Chronic renal failure patients with hemodialysis are at greater risk of development of dyslipidemia characterized by hypertriglyceridemia, elevated TC and LDL-c levels and decreased HDL-c levels generated during the course of CRD which place them at risk of developing cardiovascular diseases.

According to figure (4-1) showed that, there was a weak correlation between TG levels and the duration of hemodialysis this result disagreed with another result, which showed that, there was a strong between TG levels and the duration of dialysis (Weam, 2008).

Also the findings of this study showed that there were no correlation between duration of dialysis and concentration of TC, HDL-c and LDL-c as appeared in figure (4-2) (4-3) (4-4). This results agreed with previous results which revealed that no significant correlation between serum lipid profile levels and the duration of hemodialysis (Weam, 2008).
5.1. Conclusion:

According to the results of this study it is concluded that:

1- Triglycerides, total cholesterol and LDL cholesterol concentration are significantly increased in patients with renal failure under hemodialysis.
2- HDL cholesterol concentration is significantly decreased in patients with renal failure under hemodialysis.
3- No significant correlation between serum lipid profile and duration of hemodialysis.
5.2. Recommendations:

From the findings of this study it is recommended that:

1- Hypertensive and diabetic patient should be monitored regularly to avoid complications of disease.

2- Overweight individuals should follow special diet to prevent themselves from the risk of diseases associated with obesity.

3- Chronic renal disease patients must monitor regularly their lipid profile to avoid developing of kidney disease

3- More studies should be carried out on the effect of hemodialysis on TG, TC, HDL-c and LDL-c Cholesterol concentration with large sample size and to cover area with high population.
References
References

Appendices
Questionnaire

Sudan University of Sciences and Technology
Collage of graduate studies

Number ()

Topic: The effect of hemodialysis on plasma lipids (TG, TC,HDL-c and LDL-c) in renal failure patients under hemodialysis.

A: General information:-

1- Name: 3- Hospital:

2- Age: 4- Sex:

B: Type of renal failure:-

1- Acute renal failure () 2- Chronic renal failure ()

C: Hemodialysis:-

1- Yes () 2- No ()

- If yes duration of dialysis:

- Body mass index (BMI):

D: Present history of disease:-
- Liver disease ()
- Heart disease ()

- Bone disease ()
- Others ()

E: Past history of disease:

1- Hypertension ()
2- Liver disease ()
3- Renal disease ()
4- Diabetes ()

F: Family history of renal failure:

1- Yes ()
2- No ()

G: Investigations:

1- Serum TG ………… mg/dl.

2- Serum TC ………… mg/dl.

3- Serum HDL …………. mg/dl.

4- Serum LDL …………. mg/dl.