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Abstract

The Wireless Sensor Network (WSN) is becoming increasingly popular as it enables sensor

nodes to measure the surrounding environment, communicate and process measured data.

WSN has been directed from military applications to various civil applications, especially in

hostile areas. Medical, industrial and smart energy applications is still in need for extensive

research due to various challenges encountered. Energy consumption is one of the vital

challenges that face WSNs research. The problem is: nodes are supplied with batteries that

cannot be recharged or replaced in the field of operation. Management of WSN’s energy

helps increasing the network lifetime. Clustering is an efficient technique that is used for

enhancing the energy consumed by WSN. However, the dynamic nature of the network made

it inappropriate for applying traditional clustering techniques.

In this thesis, we investigate the issue of applying Particle swarm optimization (PSO) as

a powerful technique which can handle the WSN clustering problem providing a solution

that can prolong the network lifetime. This thesis explores the advantages of hybrid clus-

tering approaches to provide efficient and effective clustering technique that co-op with the

dynamic nature of the network. Two problems have to be solved to cluster WSN. They are:

the number of clusters to be produced and the cluster head (CH) for each cluster. Three

approaches are presented. The first approach is a Hybrid K-means PSO clustering approach,

’KPSO’, that clusters the network into predefined number of clusters. K-means searches for

the best number of clusters, and then groups the network into the selected clusters. PSO

selects the best CH for each cluster. KPSO reduced the complexity on the way we are han-

dling the problem and improved the network lifetime by an order of magnitude compared to

the well-known Low Energy Adaptive Clustering Hierarchy protocol, LEACH. In the sec-

ond approach, PSO task was to solve the whole clustering sub-problems. The second PSO

Variable Clustering approach, PSO-VC, provides the optimum number of clusters as well as

the best cluster layout. PSO-VC enhanced the network lifetime compared to LEACH and

KPSO. The last approach, named KPSO-PSO, is an evolution of the first one. KPSO-PSO

added a new PSO phase that perform clustering based on controlling the antenna power and

thereby prolong the network lifetime. Experimental results showed that this approach can

provide improved WSN lifetime over LEACH, KPSO and PSO-VC. Moreover to investigate

the effectiveness of using PSO in the proposed clustering approaches, the same approaches
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are re-implemented using Genetic Algorithm (GA) instead of PSO. PSO proved to converge

to better fitness values and resulted in an enhanced WSN lifetime over GA. Finally, We were

able to develop a WSN Clustering Aided Toolbox (WSN-CAT) which can significantly help

in simulating various WSN environments and helps exploring many tuning parameters for

the proposed approaches.
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Chapter One

Introduction

Wireless networking is an emerging technology that allows users to access information and

services electronically, regardless of their geographic position. The use of wireless commu-

nication between devices has become increasingly popular due to recent performance ad-

vancements in computer and wireless technologies which led to lower prices and higher data

rates. Moreover, the evolution and advance in micro electro-mechanical systems (MEMS)

has led to development of reliable, low cost, small size micro sensors [2]. Nowadays, hun-

dreds or thousands of these heterogeneous micro sensors, called nodes, are deployed over a

geographical area of interest, and communicate together forming a wireless sensor network,

as shown in Figure 1.1. Figure 1.2 shows that the global industrial wireless sensor network

market size is estimated to grow from $401 Million in 2013 to $945 Million by 2020, [3].

The benefits of using WSNs are:

• Ease of Deployment: Nodes are deployed without cables or wires. Thus, the labor

effort for deploying WSN is minimized.

• Reliability: Nodes can self-organize to perform the network. Also, broken links can

be quickly repaired. They have the ability to dynamically adapt to changing environ-

ment.

• Scalability: Nodes can join or leave the group without affecting the entire network.

Figure 1.1: Wireless Sensor Network
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Figure 1.2: Estimated wireless sensor network market size

• Reduced Cost: WSN results in saving wire costs, saving installation time, and less

labors used.

• Efficient Use: Efficiently used for hostiles areas where wired networks are impossible

to use, as mountains, forests, oceans ..etc.

WSNs are deployed in land, underground and underwater [4]. It is designed to work for

months and years according to the application. The nodes deployment need not be central-

ized, or with fixed infrastructure. The wireless sensor nodes in the network sense external

data from the surrounding environment, process the sensed data locally, and then send the

data to a base station for further processing through wireless communication. The nodes

may also be stationary or moving. There are two variations of wireless sensor deployment:

structured and unstructured. While in Structured WSN the nodes are deployed in a pre-

planned manner, the deployment of nodes in unstructured WSN is random (e.g. dropped by

an airplane).

WSN was first inspired by the US military for enemy surveillance and object tracking.

Recently, it is applied to diverse civil applications as: environment monitoring and envi-

ronmental disaster detection. WSN deployment and operation are application-specific. The

massive evolution of sensor nodes encouraged applying it in harsh environments that oppose

the presence of humans. However, many applications are not ready for real world. Nowa-

days, researchers are adopting three important areas: medical health care, smart energy, and

industrial automation. For medical health care, WSN is objected to monitor the patient’s

physical condition and alert the doctor in case of danger. Smart energy WSN is designed

to monitor and regulate the energy consumption. Industrial WSN is used for process mon-
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itoring rather than process automation because any failure in its functionality could lead to

severe circumstances. These new emerging applications motivated for applying extensive

research to make it applicable for real world.

1.1 Design Goals of WSN

WSN consists of hundreds or thousands of nodes that are probably deployed in remote areas

which makes maintenance and organization of the network not feasible. In order to design a

reliable WSN, it is important to understand their challenging parameters facing the design.

Some of these challenges are:

• Deployment: Deployment is concerned with the design of WSN in many perspectives.

It can specify the minimum number of sensor nodes needed to construct the network.

It can also specify the sensor placement criteria that satisfy the predetermined lifetime

and coverage requirement. An alternative design specifies how large an area can this

sensor network cover for a given the number of sensor nodes, and a desired life time

of the sensor network. Deployment answers a question like: what is the maximum

network lifetime and what is the deployment scheme for a given the number of nodes

and coverage area.

• Security: Security is vital to the acceptance and use of sensor networks for many

applications. Resource constrained wireless sensor nodes cause the network to be

highly vulnerable to different kinds of attacks; passive and active. Some of the major

attacks includes: denial of service, attacks on data transferred, black-hole attacks and

sybil attacks [5], [6]. Therefore, securing the network should consider availability,

integrity, authenticity and confidentiality [7].

• Coverage: One of the challenges is how to cover the monitoring region perfectly [8].

It can be considered as a measurement of quality of service (QoS) that can be provided

by a particular network. Coverage specifies how efficiently an event can be detected

within a given time frame. Moreover, Coverage includes modifying the deployment

scheme due to weakness in some sensor fields.

• Quality of Service: Successful QoS solutions have been developed for traditional

networks. However, WSN architectures and features differ from traditional networks.
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This makes it unfeasible to apply traditional QoS solutions to WSNs. QoS require-

ments for WSN is mainly application dependent. Common QoS requirements for

WSNs are data accuracy, data aggregation, coverage, fault tolerance and network life-

time. The main opposing factor in QoS for WSN is the sensor’s limited resources and

dynamic topology of the network. This imposes a great challenge on implementing

efficient QoS solutions while preserving the energy of the network. A lot of research

work is still needed in this issue.

• Energy and Lifetime: The expected lifetime is a critical factor in the network de-

ployment. It is requested that the WSN operates for months or years. The primary

limiting factor for the lifetime of a sensor network is the energy supply. Each sensor

is equipped with a limited battery. Since the nodes are deployed in hostile areas, it

may be impossible to replace or recharge the nodes’ batteries. Any network operation

consumes part of the sensor battery capacity. The network is known to have a certain

lifetime. Then designing a network should consider maximizing the network lifetime

and minimizing the energy consumption.

1.2 Energy Consumption

Energy consumption is considered the main challenge for WSN operation. The nodes are

equipped with limited batteries. They are deployed in hostile areas; making recharging or

replacing the battery unfeasible [9]. Recently, some nodes are equipped with renewable

energy, or energy harvesting module [10, 11]. However, their expensive cost almost ceased

their deployment. The death of the node was preferred economically. Energy consumption

is managed at different levels [12]. For example, in technology level research is made to

produce low duty cycles, minimize delays, handle data redundancy and implement short

range transmission. In network layer, energy efficient routing protocols are developed to

prolong network lifetime.

1.3 WSN Lifetime

WSNs are very sensitive to energy consumption and its performance affects the network life-

time. The WSN lifetime is defined as the time when the first node dies [13]. Others consider
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this definition optimistic because the death of one node does not oppose the functionality of

the remaining nodes. Other definitions are introduced in [14]. The most common WSN life-

time definition is when a certain percentage of the nodes die. However, there is no agreement

on the percentage that should be used in the definition. The network lifetime is important

since it is an indication of the network performance degradation. The death of one node is

soon succeeded by the death of others, and node isolation occurs. Therefore, a critical aspect

to concern is how to reduce the energy consumption of nodes in WSN to prolong the network

lifetime.

Figure 1.3: A Clustered WSN

1.4 Clustering in WSN

Clustering is found to be an effective technique to solve energy consumption problem for

WSN [15]. The nodes are divided into disjoint groups called ’clusters’. The nodes within

each cluster can intercommunicate, or communicate with only one node in the group, named

Cluster Head (CH). The CH is responsible for gathering data from all nodes in the group,

then sending the data to the base station, directly or indirectly, after processing it [16, 17].

Figure 1.3 shows a clustered WSN. Clustering has many advantages such as grouping sensors

and saving energy losses. These advantages can be summarized as follows [18]:

• Reduce the number of nodes responsible of sending data.

• Reduce communication overhead.
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• Communicate collected data to the base station.

• Increase energy saving.

• Allow scalability by increasing the number of nodes.

• Provide a better use of network resources.

1.5 Thesis Contribution

WSN is highly dynamic and sensitive to energy consumption. The dynamic nature of the

network makes the clustering problem a complex task. Although many clustering protocols

and algorithms have been implemented, developing a low computational and high perfor-

mance clustering algorithm is still a challenge. The objective of this thesis is to prolong the

WSN lifetime using Clustering to manage energy consumption. Clustering is an NP hard

optimization problem that can’t be solved effectively by traditional methods [16]. In case of

non-hybrid approach, finding the optimal number of clusters and the optimal cluster head is

a complex task. For a WSN with n nodes, the search space will consist of 2n − 1 solutions

to search in.

Soft Computing paradigms are suitable to adapt for WSN dynamic nature. This can be

achieved by adopting hybrid clustering approach for WSN. The hybrid approach integrates

two or more technique to solve the problem efficiently. This can be done using a two-phase

approach. The first phase performs clustering the nodes into groups. Then the second phase

selects the optimal cluster head for each cluster. With hybrid approach, the problem will be

easily managed and less computation will be applied. By knowing the number of clusters

required, the first phase will simply divide the search space into, say, k clusters. If we assume

uniform cluster size, then each cluster will have n
k nodes. Now the search space is divided

into n
k

solutions for each cluster, which is considerably lower than the non-hybrid scheme.

In this thesis three solutions are proposed for clustering problem for WSN to prolong the

network lifetime. They are: ’KPSO’ hybrid K-means and PSO approach, ’PSO-VC’ PSO

Variable Clustering approach and ’KPSO-PSO’ hybrid K-means and PSO approach. The re-

sults are analyzed and compared with the famous LEACH protocol. Moreover, performance

of PSO is explored by comparing results of the same solutions but with using GA instead.

6



1.5.1 Solution 1: ’KPSO’ Hybrid K-Means PSO Clustering Approach

This proposed solution consists of two-phases. In the first phase we use K-means clustering

to search for the best number of clusters and then cluster the network. The next phase selects

the best CH for each cluster using PSO having a new proposed fitness. Simulation results

are recorded and analyzed.

1.5.2 Solution 2: ’PSO-VC’ PSO Variable Clustering Approach

In this solution, PSO is developed to perform complete WSN clustering. It outputs the

optimal number of clusters, optimal CHs and members of each cluster. A new fitness is

proposed. Simulation results showed improvement over the KPSO solution.

1.5.3 Solution 3: ’KPSO-PSO’ Hybrid K-Means PSO Antenna Pattern

Based Clustering Approach

This proposed solution is an evolution to the hybrid KPSO approach. The first phase applies

our first proposed solution to produce the best CHs and proposed clusters. A new extended

phase developed a PSO model that obtains the best antenna pattern dimension and the op-

timal cluster members for each cluster based on the wireless antenna pattern. The results

showed improvement in the WSN lifetime.

1.5.4 WSN-CAT Toolbox

A MATLAB Wireless Sensor Network Clustering Aided Toolbox (WSN-CAT) is designed

and implemented to develop and simulate the WSN clustering solutions. The toolbox is

provided with a simple GUI that is user friendly.

1.6 Thesis Structure

This thesis consists of nine chapters. Chapter 2 gives a detailed discussion about the wire-

less sensor network; its technology, applications, types, and previous WSN clustering work

is described and commented. Chapter 3 explains the SC techniques used in the proposed
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solutions. Chapter 4 explains in details the proposed solutions. Chapters 5,6 and 7 shows

and discusses the simulation results of the three proposed solutions, respectively. Chapter 8

describes the developed toolbox. Finally, we state our conclusion and recommended future

work in Chapter 9.
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Chapter Two

Wireless Sensor Networks

WSN is a group of wireless nodes deployed in a geographic area. The deployment and

operation of WSN are application dependent. The operation of WSN is very sensitive to

the energy consumed by the nodes. This chapter states some WSN applications and WSN

types. The components of the wireless node are described. A mathematical model for energy

consumption is derived. Finally, a literature review on WSN is discussed.

2.1 Applications of WSN

In [19], the applications were grouped according to their objectives. With respect to the

type of WSN operation, the applications were classified into two categories: event detection

and periodic sensing [20]. In event detection applications, the network is designed to warn

about the occurrence of a specific event. The area of interest is monitored by sensors that

communicate with each other, process data and reach important conclusions. This category

includes: fire-forest detection, earthquake detection. In the second category, data is sensed

periodically and sent to the base station for further analysis. Education monitoring, inventory,

industry, traffic are examples of periodic sensing applications. This section describes some

WSN applications. Figure 2.1 shows example of WSN applications.

Figure 2.1: Wireless Sensor Network Applications
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Table 2.1: Wireless Sensor Network Applications

Deployed Applications Potential Applications
Military Medical Healthcare
Environmental Smart Energy
Agricultural Industrial Automation
Home and Office Buildings
Structural Health monitoring

In this thesis, the applications are categorized according to its current state. Table 2.1

lists the categories and the applications. Two main categories are proposed:

• Deployed: the deployed category contains the actual applications that are imple-

mented in real-world.

• Potential: this category contains the applications that are not yet mature, and are

viewed as vital and promising.

2.1.1 Military Applications

It was the first motivation for development of WSN. In 1980, the Defense Advanced Re-

search Projects Agency (DARPA) adopted the Sensor Information Technology (SENSIT)

and National Science Foundation (NSF) Programs on WSN for more tracking capabilities

[21]. Other applications included battle field surveillance, and intrusion detection. The nodes

were programmed to take measurements, communicate with each other, and send notifica-

tion in case of object movement detection. More recent military projects aimed to detect

nuclear, chemical and biological toxins as well as calculation of their concentration levels

[22].

2.1.2 Environmental Applications

As nodes are deployed in a natural hostile area, long term environmental data is gathered

either for future research, monitoring, or disaster detection (as fire, flood or earthquake fore-

cast, etc.) [23]. In 1970s, the earliest real world project founded was the Automated Local

Evaluation in Real Time, (ALERT). It was designed to detect the existence of flood using

sensors that take measurements as: temperature, humidity, rain, and water level. The data

was transmitted to a station using Laser technology.
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In 2002, Intel Research Laboratory and University of California founded the Great Duck

Island project, North Atlanta [22], to monitor the behavior of Petrel bird. The project started

with 32 nodes that collected millions of data, and till now there are about hundred well

equipped nodes, some of them have cameras for video monitoring. The project was not

only beneficiary to monitoring, but it also reported the network operation and functionality

problems that needed more research.

2.1.3 Home and Office Buildings

Started in late 1980s, smart buildings are those equipped with systems that do some intelli-

gent actions, as door opening. Wireless nodes are used to monitor the employees, students,

etc. In 1990s, research has been adopted to use smart buildings to disabled people. Smart

Kindergarten deploys wireless nodes for childhood education and monitoring [24]. WSN is

recently incorporated in smart building for more quality of life.

2.1.4 Agriculture Applications

Precision agriculture is applying the right amount of input (water, fertilizer, etc.) at the right

location and at the right time to enhance production and improve quality, while protecting

the environment [25]. It is accomplished with WSN that monitors parameters as: soil mois-

ture and air temperature, and calculates the amount of water and fertilizers needed. Also,

irrigation management is another application adopted by WSNs that help farmers to prevent

damages to their crops and increasing crop production. WSN is also used to control the green

house temperature and humidity levels starting from messaging to using controller [26].

2.1.5 Structure Health Monitoring

Structured Health Monitoring (SHM) systems have been proposed in 1990s to assess civil

buildings as dams, bridges, hydroelectric power plants and pipes. Its main objective is to

extend the building lifetime by detecting and localizing damages. However, the deployment

of wired SHM is rare due to high installation cost. Recently, WSN is expected to be the next

generation for SHM that will avoid the high cost wired-installation [27].
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2.1.6 Health Applications

Health care is considered a very potential application whose research is dominant [28]. Most

medical applications are tele-monitoring physiological data, tracking patient locations and

patient drug management [29]. WSN will allow the patient to be under constant supervision

without hospital admission. The Code Blue project is an example of patient monitoring on-

going projects [30]. Gluco Watch G2 project focuses on diabetic patients. Two promising

applications are being investigated: glucose level and artificial retina [31, 32]. The diabetic

patient can be implanted with glucose meter that monitors the sugar level and alerts the pa-

tient in case of serious condition detection. The second project under investigation considers

implanting a chip of micro-sensors in the human eye to enhance vision. Reliability, commu-

nication, and safety are challenging issues. This field is a great motivation to enhance the

quality of life and decrease medical cost.

2.1.7 Smart Energy

Energy production and consumption is an extremely critical problem worldwide. Research

on producing smart building has gained great interest. Energy improvement solution incor-

porated the use of wireless nodes for improving home utilities, such as lighting, water and

gas [33]. Studies are in-process to design the network to monitor the energy consumption

parameters, analyze them and finally regulate consumption. Recent studies are working on

controlling the devices automatically. WSN is expected to be the next generation for smart

home and buildings by improving energy distribution and consumption. In the United States,

it is expected that WSN will result in saving about 50 billion dollars yearly and reduce 35

million metric tons of carbon emissions [34].

2.1.8 Industrial Automation

WSN is promising in replacing wired industrial control process. The process of cooling a

reactor is an example of a process control that can use WSN technology [35]. However, any

miscellaneous WSN functionality could lead into severe catastrophic circumstances. WSN

industrial process automation is not yet mature to be applied due to many challenges that

still need extensive research work. Challenges include: energy-limitation, QoS, and security

[36]. Recent commercial industrial WSN products are only used for process monitoring.
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Table 2.2: Wireless Sensor Network Types
Terrestrial Underground Underwater Multimedia Mobile
WSN WSN WSN WSN WSN

Cost inexpensive expensive expensive inexpensive expensive
Deployment structured/ unstructured structured/ structured initial

unstructured unstructured spreading
Node high low low application application
density (100-1000s) specific specific

Energy Energy, Energy, Energy Energy,
Challenges signal loss, bandwidth, high deployment,

attenuation delay, bandwidth, localization
signal high data navigation
fading rate, QoS

2.2 Types of WSN

There are five types of WSNs: Terrestrial, Underground, Underwater, Multimedia, and Mo-

bile WSNs [4]. Each type has its architecture, characteristics and challenges. Table 2.2

summarizes the major difference between the network types.

• Terrestrial WSN: The Terrestrial WSN deploys 100-1000s of inexpensive nodes that

must reliably communicate with the base station. The nodes can be randomly de-

ployed , or deployed in structured manner. Its main challenge is to conserve energy

because the nodes have limited battery power. Energy can be saved by reducing the

communication consumption.

• Underground WSN: Underground WSN nodes are more expensive than terrestrial

WSN. The nodes are highly equipped and deployed in mines, caves or buried in

ground. Sink nodes over the ground collect the measured data from the sensor nodes

and send them to the base station. The nodes are carefully deployed in a structured

manner. This network faces challenges of signal loss and attenuation. Also, the batter-

ies cannot be recharged or replaced. This makes energy consumption a great challenge.

• Underwater WSN: Underwater WSN, like Underground WSN, consists of expensive

nodes, and vehicle nodes that collect data from the nodes and connect to the base sta-

tion. Due to its high cost, underwater applications use deployment of few nodes. Wire-

less communication is performed by means of acoustic waves. Different challenges

faced are: limited bandwidth, delay, signal fading and again energy conservation.
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• Multimedia WSN: In Multimedia WSN, nodes are equipped with cameras and micro-

phones. Multimedia WSN is less expensive than underground and underwater WSNs.

The nodes communicate with each other to process, correlate, and compress data.

This network demands high bandwidth, high data rate and QoS. The challenge here

is to support for both high bandwidth and low energy consumption, since both are

competing.

• Mobile WSN: Mobile WSN differs than the above in that the nodes are initially de-

ployed, and then move with the surrounding to gather and explore information. Mobile

nodes communicate with others within its range. Mobile nodes are self-organizing;

they perform dynamic routing techniques and achieve better coverage than static net-

work. Mobile WSN faces challenges like deployment, localization, self-organizing,

navigation and also energy.

2.3 Components of a Wireless Sensor Node

The wireless sensor node is mainly composed of: sensing unit, processing unit, transceiver,

and a power supply [19]. Famous manufactured sensor nodes are (Figure 2.2): Smart Dust

sensor, and MOTE (abbreviation of remote) [37, 38]. Figure 2.3 shows the block diagram of

the wireless sensor node.

Figure 2.2: (a) Smart Dust Wireless Sensor Node (b) Imote2 Wireless Sensor Node

Each node in a WSN consists of:

• Sensing Unit: It contains at least one sensor that measures data from its surround-

ing. Different sensing units exist according to the application deployed. For example:
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Figure 2.3: Block diagram of a wireless sensor node

environmental monitoring node is equipped with temperature, wind and humidity sen-

sors. The analog signal sensed by the sensors is then digitized by an analog-to-digital

converter (ADC) adapted to the processing unit. The attached sensors should also be

small in size and consume extremely low energy.

• Processing Unit: With the help of embedded memory, the processing unit processes

the data measured by the sensing unit as well as data gathered from neighbor nodes.

Also, the processor schedules tasks, and controls the functionality of other hardware

components. The processor and all hardware components are controlled by an operat-

ing system that is specially designed for WSNs. One of the earliest operating systems

designed for WSN is TinyOS [39]. WSN operating systems are simpler than general-

purpose operating systems to overcome energy and resource constraints.

• Transeiver: The data is sent and received by means of a transceiver. The nodes

communicate by laser, infrared, or radio waves. WSN communication using radio fre-

quency (RF) is the most commonly used. The operational states of a transceiver are

Transmit, Receive, Idle and Sleep. The transceiver is equipped with an antenna that is

responsible for transmitting and receiving messages. Antennas types include: omnidi-

rectional, and directional. Every antenna is described by its antenna pattern. In case

of omni-directional antennas, the antenna pattern is a circle; the energy is radiated and

received equally in all directions. Antenna patterns for directional antennas have vari-

ous shapes depending on the antenna design. They usually focus energy in a particular

direction.
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• Battery: Batteries are the main source of power supply for sensor nodes. For exam-

ple, Mica2 Mote runs on 2 AA batteries [39]. The battery has limited lifetime, and

this makes energy consumption a key concern during WSN operations. The energy

that the node consumes could be useful (sensing, receiving, transmitting, processing)

or unuseful (idle listening, overhearing).

2.4 Major Sources of Energy Consumption

Although different challenges face WSN, they all share one main challenge, ’Energy’. En-

ergy consumption is considered the main challenge for WSN operation. The sensor nodes

are equipped with limited batteries. They are deployed in hostile areas; making recharging

or replacing the battery unfeasible [9].

Every node operation consumes energy. Energy is consumed in sensing, processing and

communicating. Sources of energy consumption include:

• Idle: It reflects the time during which the node keeps listening to the channel waiting

to receive data. The idle process consumes energy which we call passive. The node

could be designed to sleep during passive time and wake-up to receive data. Designing

node’s duty cycle to sleep and wake-up at the right time is still a challenge.

• Data Aggregation: Sending data messages from all sensors to the base station over-

heads the traffic. Aggregating data can reduce communication traffic. This is done

by combining data messages into one. Data aggregation requires the node to have

sufficient memory, processor capabilities and energy for processing.

• Communication: Most of the node’s energy is consumed during communication

[40]. The consumed energy during communication is affected exponentially by the

distance between the communicating nodes; the more communication distance be-

tween two nodes the more energy consumed. In order to save energy, communication

should be minimized. Moreover, designing a suitable pattern for the antenna help re-

ducing energy waste. It was reported that the energy required for an antenna pattern to

reach all hosts is proportional to the area it covered [41].
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2.5 Energy Consumption Model

A wireless sensor node consists of: sensing unit, processing unit, transceiver and power

supply. The power supply provides energy to all other sensor components. The sensed

measurements are converted to a digital signal by means of the analog-to-digital converter

(ADC) of the sensing unit. The processing unit aggregates the digitized data into one single

message to be sent by the transceiver. Typical operations of the transceiver are: sleep, idle,

transmit and receive. The energy consumed by a wireless sensor node can be modeled as:

EWsens = ESU + Eaggreg + ETrans (2.1)

EWsens = ESU + Eaggreg + Esleep + Eidle + ETx + ETr (2.2)

where:

• EWsens is the total energy consumed by a wireless node,

• ESU is the energy consumed by the sensing unit,

• Eaggreg is the energy consumed in aggregating measured data,

• ETrans is the total energy consumed by the transceiver,

• Esleep is the energy consumed by the transceiver during sleep operation,

• Eidle is the energy consumed by the transceiver while in the idle state,

• ETx is the energy consumed by the transceiver to send a data message, and

• ETr is the energy consumed by the transceiver in receiving a data message

Figure 2.4 shows typical values of current consumed for a Tmote Sky wireless sensor that

is based on IEEE 802.15.4 WSN mote [42], [43]. It can be seen that the energy consumed to

transmit and receive is the most; energy consumed in idle and sleep states and sensing unit

can be neglected. Then the energy consumption model can be approximated to:

EWsens ≈ Eaggreg + ETx + ETr (2.3)

17



Tx
Rx

Sleep
Iddle

Sensor

0

5

10

15

20

Figure 2.4: Current Draw of Tmote Sky wireless sensor (mA)

2.5.1 Radio Model

We adopted the radio model described in [44]. Figure 2.5 shows the block diagram of the

radio model. The energy consumed in aggregating data depends on the message size. Then

the energy for aggregating an m-bit message is modeled in Equation 2.4. This RF model

uses either the free space model, or the multipath model according to the distance between

the transmitter and the receiver. When the distance between the transmitter and the receiver

lies within a threshold, d0, the free space model is used. But when the distance exceeds the

threshold, then the multipath model is used. The energy consumed in transmitting an m-bit

message is given in Equation 2.5. The energy consumed in receiving an m-bit message is

given in Equation 2.6. Typical values of constant coefficients are given in Table 2.3.

Figure 2.5: Block diagram of Transceiver Radio Model
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Eaggreg = m ∗ EDA (2.4)

ETx =

mEe + ϵfsd
2 for d < d0

mEe + ϵmpd
4 for d ≥ d0

(2.5)

ETr = mEe (2.6)

d0 =

√
ϵfs
ϵmp

(2.7)

where:

• m is the number bits in a data message,

• EDA is the energy consumed in aggregating one bit,

• Ee is the energy consumed in the electronic circuit of the transceiver to transmit or

receive the signal,

• ϵfs is the energy consumed by the amplifier to transmit using the free space model,

• ϵmp is the energy consumed by the amplifier to transmit using the multipath model,

• d is the distance between the transmitter and receiver.

Table 2.3: Radio model parameter values

Parameter Value
EDA 5nJ/bit
Ee 50nJ/bit
ϵfs 10pJ/m2

ϵmp 0.0013pJ/m4

d0 87 m
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2.6 Traditional Clustering Protocols

Several traditional clustering protocols were implemented. In this section, three famous

clustering techniques are mentioned: Low Energy Adaptive Clustering Hierarchy (LEACH),

Hybrid Energy-Efficient Distributed clustering (HEED), and Energy Efficient Unequal Clus-

tering (EEUC).

2.6.1 LEACH Protocol

LEACH Protocol is an early proposed single hop clustering protocol in WSN [45]. It is now

one of the most famous conventional clustering protocols that is now used as a benchmark for

testing clustering algorithms. LEACH implements clustering by the rotation of CHs during

transmission rounds [46]. LEACH repeats a two-phase round: setup phase and steady-state

phase. In the setup phase, each node elects itself to be a CH with a probability Pi(t) as

follows:

Pi(t) =


k

N−k∗(r.modN
k )

i ∈ Gr

0 otherwise

(2.8)

• r: round number

• k: expected number of clusters

• N: number of nodes

• Gr: nodes that haven’t been CHs in the last r.modN
k

rounds

When the node’s probability is less than LEACH’s random number, the node becomes

a CH. The CH then advertises itself to the network, and non CH nodes join their nearest

CH. In the steady-state phase, every CH gathers the data from its member nodes and sends

the aggregated data message to the base station. The election probability prevents the node

from being a CH once more unless all the nodes have been chosen as CHs. The process of

election repeats again when all the nodes performed as CHs. Figure 2.6 shows the operation

of LEACH protocol.
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LEACH claims to balance energy consumption of the sensor nodes. However, the ro-

tation of CHs can cause more energy loss [47]. Moreover, clustering does not ensure even

best distribution of clusters [48]. It also assumes that the CH consumes the same energy as

the member node. It is expensive and not applicable to be deployed in large geographic re-

gion. Another problem with LEACH is that it is highly stochastic; its response is not robust

because the algorithm mainly depends on randomly generated numbers.

Figure 2.6: LEACH phases

The authors in [49] modified LEACH’s threshold equation Pi(t) to include the energy of

the nodes. The proposed algorithm, named LEACH-E, runs in three phases. The first phase

selects the CHs, then the second phase forms the clusters, and the last phase is responsible

for collecting data and sending it to the sink. The problem with LEACH-E, as the authors

state, is its non-uniformity in CH distribution and ignoring nodes location in CH selection.

Similarly, the authors in [50] modified the threshold equation Pi(t) to include two factors.

One factor aims to choose the CH among dense node distribution. The other factor focuses

on the distance between nodes and CHs. However, the improvement in the results shown is

not significant.

The authors in [51] proposed a new version of LEACH, named LEACH-G. LEACH-G

is based on a formula derived for the optimal number of clusters. The base station selects

candidate CHs based on ”maximum return time” of the received messages. Then each CH se-

lects its members using ”minimum return time”. After the clusters are formed, final CHs are

chosen for each cluster based on the residual energy. The results showed slight improvement

in the lifetime, making the algorithm non-significant.
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2.6.2 HEED Protocol

HEED protocol [52] is an extension of LEACH protocol. It depends on residual energy in the

election of CH. Each node sets its probability of becoming a CH according to the following

equation:

CHprob = Cprob ×
Eresid.

Emax

(2.9)

where:

• Cprob is the initial percentage of CHs. The initial value is set to 5%.

• Eresid. is the node’s residual energy.

• Emax is the node’s maximum energy.

If CHprob is more than HEED’s random number, the node becomes a CH. This protocol

minimizes the communication overhead with less costly algorithms. It extends the network

lifetime and forms compact cluster with better distributed CH. The problem with HEED is

that it consumes high energy for local communication and also for communication between

CH and base station.

2.6.3 EEUC Protocol

EEUC protocol adopts variable cluster size architecture and multihop routing [53]. It adopts

the rotation of CHs while considering the residual energy. Based on the fact that CHs placed

near the base station will contribute in routing communication more than far CHs, theses CHs

will consume more energy than far CHs. In order to balance the energy consumption among

the nodes, the algorithm distributed smallest clusters to be the nearest to the base station.

In each round, every node generates a random number. Compared with the algorithm’s

threshold, the algorithm decides which nodes become possible candidates. Then CHs are

chosen from the possible candidates according to their residual energy levels. CHs near the

BS will contain lower members than far CHs. The problem with EEUC algorithm is that it

is not practical for real world because it assumes circular distribution of nodes.
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2.7 Clustering based K-Means

K-means was applied to perform WSN clustering in [54, 55, 56]. In [57], the authors pro-

posed using K-means central clustering algorithm to cluster an indoor WSN. The proposed

algorithm first run K-means to calculate the best number of clusters based on the following

formula:

Kopt =

√
N

2π

√
ϵfs
ϵmp

M

d2toBS

(2.10)

where N is the number of nodes in the network, M is the side of the squared-geographical

area. ϵfs and ϵmp are the amplifier energy values based on the RF energy dissipation model.

The K-means clustering was used to select the CH and cluster members. However, the

proposed algorithm was neither simulated nor tested.

Sasikumar and Khara [58] developed two K-means clustering models: centralized and

distributed. The centralized K-means model was run on the base station. The distributed

model is processed in each node. The information needed was gathered from messages

broadcasted by every node. Simulation results showed that the distributed processing time

was considerably less. However, there was no difference in the energy consumed. Moreover,

the distributed algorithm imposed communication overhead because broadcasting consumes

the node’s energy.

2.8 Clustering WSN using Soft Computing

Clustering is an NP hard problem that is ineffectively solved by traditional techniques. The

dynamic nature of the WSN makes the problem more complex due to repetitive change in the

clusters and CHs which can’t be modeled by the traditional mathematical methods. Tradi-

tional clustering algorithms suffer from non-uniformity in clusters and CH distribution [59].

They are expensive algorithms. The following subsections discuss previously implemented

clustering algorithms based on SC techniques: GA and PSO. These techniques are explained

in the next chapters.
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2.8.1 Clustering based GA

In [60] the authors have proposed a GA clustering algorithm for optimizing the number

of CHs. The chromosome is a simple 9-bit binary representation where the bit value of 1

represents a CH, and a 0 represents an ordinary node, as shown in Table 2.4. The fitness

function is defined as:

Fitness = w ∗ (D − distancei) + (1− w) ∗ (N −Hi) (2.11)

where D is the total distance from all nodes to sink, distancei is the total distances from

regular nodes to their cluster head, N is the total number of nodes, Hi is the number of

cluster heads, and w is preset weight. The results showed that the cluster layout depends

on the location of the base station. More cluster heads are elected when the base station is

around the center of the network.

Table 2.4: 9-bit Binary Chromosome Representation
1 0 1 1 0 0 1 0 1

The authors in [48] used the same model as [60], but with different mutation factor and

sink location. They showed that better fitness value is reached when CH saturated to 25

percent of the total nodes. However, the choice of CH was not based on its residual energy.

This could lead to network disconnection because if the optimal CHs have at least one CH

with low energy, it will fade quickly and disconnect part of the network.

Mehr improved the previous work of [60], and [48] by adding the residual energy in the

fitness function calculation [61]. The Fitness function used is shown in Equation 2.12

Fitness = RE + SE + (w ∗ (D − distancei)) + ((1− w) ∗ (N −Hi)) (2.12)

where RE is the total cluster heads’ energy, and SE total energy needed to send data

from cluster heads to sink. The results were compared with LEACH and showed proper

distribution of clusters and improvement in the network lifetime.

In [40], the authors used GA to optimize the clustering problem based on minimizing

the energy consumption. In their model, the radio transmission technology is used in their

calculations. The fitness calculation depended on the distance between nodes, CHs and sink.

The GA’s outcome was the optimal Cluster Heads. The base station then identifies the clus-

ter members and the transmission schedule. The results have been applied on a simulator
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in [62]. Each CH is assumed to send directly to the sink. Multiple hop communication be-

tween CHs was not considered. Although their algorithm performed better than LEACH, the

improvement was not significant. This is because of the complexity of the fitness function.

Many parameters have been taken into consideration and each one is assigned a weight that

is updated at each generation.

In [1], the authors proposed a GA approach to minimize the communication distance.

Moreover, a two-dimensional chromosome representation is used. The chromosome mapped

the actual node layout of the deployment area. The gene’s value is either zero indicating

non-existing node, or one for sensor node or two for CH. The algorithm used the result of

the LEACH as an initial condition to GA algorithm. The fitness function used is as follows:

Fitness =
∑
i

∑
j

d2CH(ij) +
∑
i

d2SN(i) (2.13)

where i is the number of CHs and j is the member number in cluster i.

Figure 2.7: 2D crossover [1].

The chromosome is divided into sectors, and crossover is performed by exchanging sec-

tors between parents to ensure that the genes move with their neighbors, as shown in Figure

2.7. The results proved better performance than LEACH.

The authors in [63] applied GA to perform WSN clustering. The algorithm optimizes the

number of clusters, CHs and members according to the following fitness:

Fitness =
100

E
+
TD −RCSD

TD
− 10(N − TCH)

N
(2.14)

where E is the total energy consumed during one transmission, TD is the total distance

from every node to the base station, RCSD represents the total clustered communication
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distance, N is the number of nodes, and TCH is the number of clusters. Simulation results

showed improvement over LEACH

In [64] the authors proposed dividing the network into clusters. But instead of sending the

measured data from the node to CH, they used mobile agent with each cluster that migrated

through its nodes. The mobile agent collects the data and sends it to the base station. The

authors divided the chromosome into two arrays: group array and sequence array (see Table

2.5 ). The group array contains the number of member in each cluster. The sequence array

identifies the nodes that belong to each cluster. Crossover only exchanges the nodes in the

same group. The mutation changes the number of nodes in two groups to ensure consistency.

They used GA to calculate the optimum number of mobile agents (i.e. clusters) and the

cluster layout. The authors’ objective criterion was based on the network latency. The energy

condition was not included. Analysis of simulation results showed that the sensor nodes

traversed by the mobile agent will result in energy depletion.

Table 2.5: Group array and sequence array Chromosome Representation
Sequence Array 7 4 1 6 8 5 3 2
Group Array 3 1 2 2 0 0 0 0

In [65] the authors implemented GA to optimize CH selection. The algorithm applies

two phases: the first phase divides the network into optimal number of clusters, then the

second phase applies GA to select the best CH for each cluster based on the node’s energy

and the location of the CH with respect to other nodes in the cluster. Simulation results

showed improvement over LEACH.

The authors in [66] implemented GA hierarchical clustering. It optimizes the number

of clusters and the CHs using the same fitness of Equation 2.11. The algorithm sets the

population size and number of generations to be the same as the network size. Once the

optimum network topology is selected, a multihop protocol is set up. Each CH sends the

message to either a nearest CH, or to the base station if closer than the nearest CH. Results

were compared with [60] rather than LEACH, and showed better results.

2.8.2 Clustering based PSO

In [67], the authors’ objective was to group the network into equal sized clusters using PSO.

The clustering algorithm consists of two main phases. The first phase divides the network
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into equal clusters using a recursive PSO algorithm. This phase mainly searches for the best

line that divides the area into two equal regions. Then recursive PSO division is made where

each region is divided into equal regions, and so on till the required number of clusters in

obtained. The second phase applies PSO to select the best CH in every cluster based on

minimizing the communication distance. Compared with the K-means clustering algorithm,

the application successfully formed equal clusters (which is not guaranteed by K-means).

However, K-means produced lower communication distance since the CHs are in the middle

of the clusters. The application is computationally expensive since PSO is run recursively.

Also, no comparison with any protocol has been addressed.

Guru et. al. applied PSO to obtain the optimum cluster layout using a fitness function

based on distance calculations, as shown in Equation 2.15 [68]. Residual energy calculations

were not included.

F =
k∑

j=1

nj∑
i=1

(d2ij +
D2

j

nj

) (2.15)

where dij is the distance between node i and its cluster head j, Dj is the distance from cluster

head j to the base station, and nj is the number of nodes in the cluster j. The authors applied

the PSO algorithm while varying inertia weight, or the acceleration constant. Analysis of the

results are discussed in details in [69].

The authors in [70] used a centralized PSO algorithm to minimize inter-cluster distance

and maximize the average energy level. The radio model is used in calculations. The nodes

were assumed to have from 2J−5J initial energy. The authors preset the number of clusters

to 5% of the total nodes. Results showed improvement over LEACH.

In [59], the authors proposed using improved PSO algorithm to solve the uneven cluster-

ing. They chose the number of clusters to be 5 percent of the total nodes, and each cluster

has the same number of nodes. Their fitness was based on the communication distance. The

particle structure used contains the ID of the cluster head followed by the IDs of its members,

as shown in Table 2.6.

Table 2.6: PSO Particle Structure
Cluster 1 Cluster 2 Cluster 3

12 8 7 1 4 10 6 11 3 5 9 2
CH members CH members CH members

Moreover, the PSO dynamic inertia weight was modified to include the particles’ diver-

sity. The CHs resulted from the PSO algorithm is then checked for their energy level. If their
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energy level falls below a threshold, then they are replaced by the nearest node whose energy

is more than the threshold. Compared with LEACH and improved LEACH, the proposed

PSO algorithm showed better results. However, the overall nodes’ remaining energy and

lifetime is not considered.

In [71], the authors adopted a distributed algorithm that selects two CHs for each cluster:

a master CH (MCH) and a vice CH (VCH). The MCH collects, aggregates and sends the

aggregated data message to the VCH. The role of VCH is to only send the message to the base

station. Similar to LEACH protocol, the algorithm consists of setup phase and steady state

phase. In the setup phase, PSO selects the best MCHs and VCHs based on a fitness function

that includes both the residual energy and the cluster communication distance, as shown in

Equation 2.16. The results showed improvement over the LEACH protocol. However, the

algorithm is computationally expensive, since the PSO algorithm runs periodically in the

setup phase. Also, the value of the constant factor ϵ in the fitness function can affect the

optimum CHs selected; this makes the choice of the factor itself an optimization problem.

F = ϵ× CHenergy

ClusterEnergy
+ (1− ϵ)× ClusterMemebersCount

ClusterDistance
(2.16)

The authors in [72] modified the LEACH protocol to apply PSO in the setup phase to se-

lect the optimal CHs. The PSO algorithm adopted the square of the communication distance

as the fitness function. The dataset are randomly deployed and the radio model is adopted.

The simulation results outperformed LEACH protocol. However, applying PSO algorithm

in the setup phase rather than applying it only when CH topology changes forces complexity

in WSN operation.

In [47] the authors proposed using an embedded PSO-Cuckoo search algorithm to min-

imize the communication distance and energy consumed. The fitness was based on mini-

mizing both the communication distance and the energy consumed. The model used for the

energy calculation is the radio model. The authors assumed uniformly distributed nodes, a

predefined number of clusters and predefined nodes that have more energy than others. The

fitness function adopted is as follows:

F = c ∗ f1 + (1− c) ∗ f2 (2.17)

f1 =

∑
E(n)∑
E(CH)

(2.18)

f2 =
∑

d(n,CH) (2.19)
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f1 is the ratio between the total nodes’ energies to the total CHs energies. f2 is the total

distances from each node to its CH. The proposed algorithm is aimed to speedup conver-

gence. Instead of abandoning discovered nests, the proposed algorithm used PSO on those

nests to move them to an acceptable and best solution. These new solutions replaced the

abandoned ones in the cuckoo search individually. The results showed faster convergence

when compared with GA, PSO, and CS seldom. The lifetime considerably increased com-

pared to LEACH. However, this model considered only the global distance between the

nodes and its cluster head. The communication distance between the cluster head and the

sink is not considered. Also, the new proposed algorithm is more complex because PSO runs

inside each CS iteration to get the best PSO result.

PSO is used in [73] to cluster the WSN based on minimizing the communication distance

and energy consumption, as shown in the following equations:

F = ϕ1f1 + ϕ2f2 + (1− ϕ1 − ϕ2)f3 (2.20)

f1 =
∑ D(n, p)

Ncountp
(2.21)

f2 =
∑ E(p)

E(Cluster)
(2.22)

f3 =
1

H(p)
(2.23)

D(n, p) is the Euclidean distance between the node n and the CH p,and Ncountk is the

number of members belonging to the CH p. E(p), E(Cluster) are the energy of the selected

CH and the total energy of the cluster respectively. H(p) is the head count associated with

the CH p. The algorithm was compared with the famous LEACH protocol. The results

showed improvement over LEACH.

The authors in [74] proposed non uniform clustering mechanism using PSO. The square

geographic area is divided into four quarters. Each quarter is then divided into square layers

where each layer is a cluster, as shown in Figure 2.8. The base station is located in the center

of the region. The network adopts multihop routing; every layer’s CH sends aggregated data

to its neighbor layer’s CH. PSO searches for the layers best CH based on minimization of an

energy fitness proposed. However, there is no guarantee on the reliability of this mechanism

since it is not evaluated with a benchmark.

29



Figure 2.8: 2D crossover.
[74]

2.9 Clustering based Multi-Objective Optimization

The authors in [75] proposed a centralized protocol having two phases per round: setup and

steady state. The PSO works in rounds, specifically in the steady state phase to select the

optimal number of clusters and the optimal CHs based on two objective functions. The first

objective function is the energy consumption , while the second fitness is the intracluster

distance. PSO algorithm adopts binary particle values. The particle position is either 0

or 1. The velocity, after calculation, is changed to a binary value using a special sigmoid

function compared to a random threshold value. Although the results showed improvement

over LEACH protocol, the algorithm adds complexity to the protocol since PSO is run during

every round.

[16] proposed a multi-objective genetic algorithms (MOGA) approach for achieving two

objectives: cluster membership and routes-to-sink. They aimed to maximize the coverage

while minimizing the battery usage. Each sensor node is selected to be one of four options:

inactive node, cluster-head, inter-cluster router (ICR), sensor node. Each cluster is managed

by a cluster-head, and cluster-members are represented by inactive/active nodes and ICRs.

Cluster-head performs data-fusion from various nodes while ICR routes cluster data to the

sink. The MOGA fitness functions are the Total Node Fitness (TNF) and the Total Route

fitness (TRF). The total node fitness is a weighted sum Cluster-Head Fitness (CHF), Node

Communication Fitness (NCF), Battery Status Fitness (BF),and Router Load Fitness (RLF).

The total route fitness contains the battery fitness, the node communication fitness and the

inter cluster routing data. The results showed convergence to optimal fitness. However, this

was done at the expense of convergence time.
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The authors in [76] proposed an adaptive PSO (APSO) for selecting the CHs. They in-

troduced modification to the PSO algorithm to calculate the cognitive and social factors ϕ1

and ϕ2 respectively. The new values of these factors depend on the local and best positions

achieved pid, and pgd described in Section 3.2. Moreover, the algorithm replaces 25% of the

particles that remain stationary, for a fixed number of iterations, with new initialized parti-

cles. The algorithm uses two objective functions that represent the energy and communica-

tion distance respectively. The results outperformed LEACH in 60 % of the whole network

lifetime, while LEACH outperformed the proposed algorithm in the remaining rounds.

Zahmatkesh and Yaghamaee proposed a multi-objective GA solution to clustering prob-

lem [77]. They depended on uniformly distributed heterogeneous nodes. They also assumed

that the nodes communicate with each other. The authors used the same model in [16], but

in a simpler form. The first fitness function used is aimed decide the optimal number of

clusters to avoid cluster overhead. The same first fitness function is used without routing cal-

culations. The second fitness function decides the cluster layout. However, the transmission

cost function proposed assumed small distance between the cluster head and the base station.

2.10 Literature Review Summary

Although traditional approaches focused on improving LEACH protocol, non-significant re-

sults were reported. The problem with K-means algorithm is that it does not guarantee reach-

ing to an optimum solution. It is most likely to get stuck in local optima. Techniques such as

GA and PSO were presented to handle the clustering problem of WSN in number of ways.

Some research work focused on developing a suitable fitness function that minimize energy

loss or communication distance. While other research, focused on refining the presentation

of GA or PSO techniques to obtain better clustering outcomes. Some authors proposed hy-

bridizing techniques to minimize the communication distance and energy consumed. Still,

developing a low-computational and high performance clustering algorithm is a challenge.

Deciding the number of clusters to be produced is an important issue. If low clusters are to

be produced, then cluster overloading occurs. If the number of clusters is high, then more

nodes will connect to the sink. In both cases, the CH nodes will deplete faster which will

result in sub-network disconnection. Finding the relation between the acceptable number of

the clusters and the node density is still and open issue.
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Chapter Three

Soft Computing

Clustering is an NP hard problem that can’t be solved efficiently using traditional methods.

Soft Computing paradigms are suitable to adapt for WSN dynamic nature. SC has proved to

solve successfully NP hard problems. SC was introduced by Lotfi Zadeh in 1992. SC is a

family of methods that imitate human intelligence, biological evolution and social behavior

of species. SC mainly constituted fuzzy logic, neural networks and probabilistic reasoning.

Recent trends of SC included evolutionary algorithms and swarm intelligence. This chapter

explains the SC techniques used in this thesis. They are: Genetic Algorithm, and Particle

Swarm Optimization.

3.1 What is GA?

GA is an adaptive search algorithm which was presented by J. Holland [78], and extensively

studied by Goldberg [79, 80], De Jong [81, 82, 83], and others. GA successfully handled

many areas of applications and was able to solve a wide variety of difficult numerical opti-

mization problems. GA have been applied successfully in many optimization problems as

pattern recognition [84], [85], and [86]. It has been applied for robotics path planning [87],

[88] and [89]. An interesting field that used GA is software engineering problems as in [90],

[91], [92], and [93].

GA is much less likely to get trapped in local minima on multi-modal search spaces.

GA found to be quite insensitive to the presence of noise [94]. GA is inspired from Charles

Darwin’s theory of evolution: ’the survival of the fittest” where only the best individuals are

able to survive in harsh biological conditions. Thus as generations run, better individuals are

obtained by reproduction genetic operations as crossover and mutation of chromosomes.
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3.1.1 Encoding the Problem

The main challenge in solving the problems using GA is encoding the problem into a set

of chromosomes; each representing a solution to the problem. A possible solution is repre-

sented by an encoded version of parameters. The solution is a concatenated string of genes

of the same value type: binary digits, numbers, characters,...etc. A single solution is named

’chromosome’ or ’individual’. A population is a set of chromosomes that represent possible

solutions of the encoded problem. An example of a chromosome that is a string of binary

digits is shown in Table 3.1

Table 3.1: Example of a GA chromosome
1 0 1 1 0 0 1 0

3.1.2 Fitness Function

In order to evaluate the quality of the proposed solution, i.e. chromosome, a fitness function

is used. The fitness function generates a number that indicates if the corresponding solution

is better or worse. The fitness formula depends on the encoded problem.

3.1.3 Selection

This operation selects the parents that will be used to create the next population (individu-

als). Examples of the population selection methods are: Random Selection, Roulette Wheel

Selection, and Tournament Selection [79]. In Roulette Wheel Selection each chromosome is

denoted by the ratio of its fitness to the sum of all chromosomes’ fitness. Thus the individuals

with better fitness are more likely to be chosen. The Tournament Selection randomly selects

k individuals, (k ≥ 2), and then the one with best fitness is chosen.

3.1.4 Crossover

Crossover forms new chromosomes from the selected parents by exchanging genes from the

selected parent pairs. Figure 3.1 shows an example of a 1-point crossover. The crossover

point is chosen randomly and the genes after this point are exchanged between parents. Fig-
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ure 3.2 shows a 2-point crossover. In Uniform crossover, each gene of one pair is separately

exchanged by a randomly chosen gene from the other pair.

Figure 3.1: Example of One-point crossover

Figure 3.2: Example of Two-point crossover

3.1.5 Mutation

Mutation is important since it prevents being trapped in local minima. This is done by mak-

ing a minor change in the chromosome. Mutation changes one or more genetic element in

the produced offspring. Table 3.2 shows a simple 1-point mutation. In binary chromosomes

representation, the digit is inverted. In numeric chromosomes representation, non-uniform

mutation is an example. It changes one of the parameters of the parent based on a non-

uniform probability distribution.

Table 3.2: Example of Mutation
Before Mutation: 1 1 0 0 1 0 1 1
After Mutation: 1 0 0 0 1 0 1 1
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3.1.6 How does GA work

Algorithm 1 summarizes the basic steps of GA [80, 95]. GA starts by first encoding the

problem into a set of chromosomes. First, an initial population is performed randomly.

Then for each generation a group of parents are selected, based on their fitness value, to

be parents for the next generated population. Then crossover and mutation are applied on

them, to produce a new set. This process is repeated until no best solution is discovered. GA

algorithm ensures that, in most cases, the fittest individuals are chosen to participate in the

next generation, and eventually the best solution is obtained [96].

Algorithm 1: Basic steps of GA

1 begin GA

2 g = 0 generation counter

3 Initialize population

4 Compute fitness for population F (P (g))

5 Repeat

6 g = g + 1

7 Select P (g) from P (g − 1)

8 Crossover P (g)

9 Mutate P (g)

10 Compute fitness for population F (P (g))

11 Until (Terminating condition is reached)

12 end GA

3.2 What is PSO?

Particle Swarm Optimization was developed in 1995 [97] by James Kennedy and Russell

Eberhart. PSO is a robust stochastic nonlinear- optimization technique based on movement

and intelligence of swarms. It is inspired from social behavior of flock of birds or fish, where

a group of birds randomly search for food in an area by following the nearest bird to the food.

They interact with each other to identify which bird is the nearest. Then, the birds explore

the area around that nearest one to locate another nearest place to the food. And so on, all

the birds eventually reach the source of the food.
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The PSO algorithm has been applied successfully in many different application areas

such as training neural networks [98], [99], [100], [101], and [102]. It has been applied in

various electric power system optimization problems [103], [104], [105]. It has also been

used in designing electronic circuits [106], [107].

PSO consists of number of individuals, called particles. The group of particles constitutes

the swarm. Each particle represents a possible solution. The particles move in the search

space looking for the optimal solution. Every particle is characterized by three properties:

1. the position of the particle in the search space

2. the best position it has individually reached

3. the velocity of the particle

Moreover, each particle exchanges information with its neighborhood particles to mem-

orize the best position reached by the swarm. Using these properties, each particle updates

its position. Similar to GA, a fitness function is used to evaluate the quality of the solution

denoted by the particle’s current position. The fitness value obtained helps in directing the

particles to the right direction towards the optimal solution.

3.2.1 PSO Basic Equations

In implementation of PSO, each particle is represented by its position in the search space, x.

Then the position of the particle i at time t, xi(t), is represented as:

xi(t) = xi1(t), xi2(t), .....xid(t) (3.1)

where xid(t) is the position of particle i in dimension d.

Each particle tries to modify its position using information as: its current position, its

current velocity vi(t), the distance between the current position and best solution individu-

ally found, and the distance between the current position and the best solution found in its

neighborhood [108]. The basic PSO equations are given as follows:

xi(t+ 1) = xi(t) + vi(t+ 1).δt (3.2)
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Standard implementations of PSO use δt = 1, then the PSO equations used are given in

Equations 3.3 and 3.4 as follows:

vid(t+ 1) = vid(t) + ϕ1 ∗ r1 ∗ (pid − xid) + ϕ2 ∗ r2 ∗ (pgd − xid) (3.3)

xid(t+ 1) = xid(t) + vid(t+ 1) (3.4)

where:

vid represents the velocity of particle i in dimension d,

xid represents the position of particle i in dimension d,

ϕ1, ϕ2 are positive constants,

r1, r2 are random numbers

pid represents the best position reached so far by the particle, and

pgd represents the global best position reached by the neighborhood.

As shown from the Equation 3.3, the velocity update equation is influenced by two com-

ponents: (pid − xid) represents the cognitive component, and (pgd − xid) represent the social

component. Figure 3.3 shows the influence of the PSO equation components on the move-

ment of the particle.

Figure 3.3: A 2D representation of PSO mechanics
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3.2.2 PSO Neighborhood Topology

The choice of subgroups of particles communicating with each other is called ’neighborhood

topology’. Two famous topologies are shown in Figure 3.4. They are:

• Star topology: In this topology, all particles in the swarm communicate with each

other. In this case there is only one neighborhood and only one pgd, called ’gbest’, is

obtained in each generation.

• Ring topology : Each particle communicates only with only two neighborhoods. Ev-

ery neighborhood contains only three particles and each particle is a member in three

neighborhoods. In this case there is no global best position for all particles; each

particle has its own pgd, called ’lbest’ value, pld.

Figure 3.4: (a) PSO Ring topology (b) PSO Star topology

The Star topology has the advantage of fast convergence. However, this fast convergence

is misleading in some cases, where premature convergence is reached. The Ring topology

is characterized by having slower and less premature convergence and performs better on

multimodal problems. Different topologies are discussed in [109, 110]

3.2.3 Maintaining PSO Particles within Search Space

The velocity of PSO is prune to reach infinity which causes the particles to reach a state of

instability and go beyond the search space. Therefore, the velocity of the particle should

not exceed a maximum value, vmax. The performance can suffer if maximum velocity is

inappropriately set. If it is too high, the particles can fly past optimal solutions, and if it is

too low, they can get stuck in local minimal.
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Also the distance of the particles should not go beyond the search space limits. Therefore,

the position of the particle is subjected to the following limiting equation:

xid(t+ 1) =

xdmin if xid(t+ 1) < xdmin

xdmax if xid(t+ 1) > xdmax

(3.5)

where xdmin and xdmax are the lower and upper limits in dimension d.

3.2.4 Inertia Weight PSO Model

A newly implemented model has been developed and named the Inertia Weight PSO model

[108]. The inertia weight equation added a slight modification to the standard PSO model

presented in Equation 3.3. The modification was introduced by [111]. An inertia weight w

is added that controls the velocity of the particle. The PSO Equation is described as:

vid(t+ 1) = wi(t).vid(t) + ϕ1 ∗ r1 ∗ (pid − xid) + ϕ2 ∗ r2 ∗ (pgd − xid) (3.6)

Experiments have been made to explore the effect of the inertia weight value on the

performance of PSO particles. Setting inertia value to less than 1 can cause particle poor

exploration due to jumping in the search space. When values of inertia weight exceed 1, the

particles rarely change its direction and may lead to velocity explosion. Experiments lead

to adjusting the inertia to be linearly decreasing from value w = 0.9 to w = 0.4 during the

iterations. This helps the particles perform exploration at earlier stages and focus the search

in later stages.

3.2.5 Clerc PSO Model

Another model is explored that added a constriction factor to the standard PSO model [112].

The Clerc PSO equation is denoted as follows:

vid(t+ 1) = ψ[wi(t).vid(t) + ϕ1 ∗ r1 ∗ (pid − xid) + ϕ2 ∗ r2 ∗ (pgd − xid)] (3.7)

where constriction factor ψ is defined as:

ψ =


2

ϕ−2+
√

ϕ2−4ϕ
for ϕ > 4, ϕ = ϕ1 + ϕ2

1 otherwise
(3.8)
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Setting inappropriate coefficient values can cause particle explosion or local optima entrap-

ment. Extensive experimentation has been performed to identify the best coefficient values.

Empirical results showed that setting ϕ = 4.1, ϕ1 = ϕ2 = 2.05 and ψ = 0.72984 ensure

particle convergence.

3.2.6 Trelea PSO Model

There are two Trelea PSO models: Trelea-1 and Trelea-2 [113]. They use the same standard

PSO model, but with specified values used for the constant factors. Trelea-1 is denoted by:

vid(t+ 1) = 0.6 ∗ vid(t) + 1.7 ∗ r1 ∗ (pid − xid) + 1.7 ∗ r2 ∗ (pgd − xid) (3.9)

Trelea-2 is denoted by:

vid(t+ 1) = 0.7296 ∗ vid(t) + 1.494 ∗ r1 ∗ (pid − xid) + 1.494 ∗ r2 ∗ (pgd − xid) (3.10)

3.2.7 PSO- Time Varying Acceleration Coefficients Model

The authors in [68] provided the PSO- Time Varying Acceleration Coefficients Model (PSO-

TVAC) by modifying the Inertia Weight PSO model. The authors used Equation 3.6 and

modified the values of the ϕ1 and ϕ2 to change by iteration. ϕ1 decreases from 2.5 till 0.5,

while ϕ2 increases from 0.5 till 2.5. Thus, at earlier stages, the algorithm gives more weight

to cognitive component in order to explore the search space thoroughly. Then at later stages

the social component focuses on the promising region to get the best result. The values of ϕ1

and ϕ2 change according to the following equations:

ϕ1 = 2.5− 2× iterationNumber

MaxIterations
(3.11)

ϕ2 = 0.5 +
2× iterationNumber

MaxIterations
(3.12)
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3.2.8 How PSO Works

The PSO algorithm is straightforward (see Algorithm 2). First, initialize particles with ran-

dom position and velocity vectors. For each particle: evaluate the fitness and if it is better

than the best individual fitness then update it. After that, update the best global fitness.

Then obtain the new velocity and position for each particle. This procedure is repeated for a

number of iterations or until convergence is beyond a certain limit.

Algorithm 2: Basic steps describing the PSO algorithm

1 begin PSO

2 Randomly initialize the position and velocity of the particles: Xi(0)andVi(0)

3 while (While terminating condition is not reached) do

4 for for i = 1 to number of particles

5 Evaluate the fitness:= f(Xi)

6 Update pi and gi

7 Update velocity of the particle Vi

8 Update position of the particle Xi

9 Next for

10 end while

11 end PSO

3.3 PSO versus GA

PSO and GA are very similar [108]. Both are population based stochastic optimization

that starts with a group of randomly generated populations. They have fitness values to

evaluate their population, and update the population and search for the optimum with random

techniques. Also, both include random components to overcome local minima. However,

they differ in the type of operators used to reach the optimal solution. PSO differs from GA

in that there is no selection, crossover and mutation. PSO uses the velocity component as the

main operator. PSO particles do not die; the same particle changes its position in the search

space. The information sharing mechanism in PSO is significantly different; PSO applies

neighborhood topology while GA applies crossover. Finally, PSO proved computational

efficiency and simplicity [114], [115].
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Chapter Four

Research Overview

The main objective of our proposed WSN clustering approaches is to increase the network

lifetime by grouping the sensor nodes into a number of clusters. To cluster n nodes WSN, an

exhaustive algorithm has to go through 2n−1 solutions to find the optimal clustering layout.

Solving such problem is known to be NP hard. We propose three approaches to achieve

efficient and effective clustering for WSN, on assumption that the network communication

is established. This chapter describes in details our proposed approaches.

4.1 Solution 1: Hybrid K-Means PSO Clustering

Approach ’KPSO’

We proposed a Hybrid K-means PSO Clustering Approach ’KPSO’ to solve the energy con-

sumption problem based on clustering. Figure 4.1 shows the phases of our proposed ap-

proach.

• Phase 1: The first phase applies K-means to partition the network into k clusters.

• Phase 2: Next, the PSO searches for the best CH within each cluster obtained by K-

means.

• Phase 3: Finally, the last stage evaluates the obtained cluster layout.

Our proposed hybrid approach decreases the computational effort; the search space will

be reduced to about n
k

solutions for each cluster.

4.1.1 Phase 1: Clustering based K-Means

K-means is a simple unsupervised clustering algorithm. It was successfully used to solve a

variety of clustering problems. It is heuristic in nature, and proved to be effective in deter-

mining clusters of spherical shapes [116, 58]. It classifies a given data set into a predefined
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Figure 4.1: K-means PSO Hybrid clustering

number of clusters, k. Its main idea is to define k centroids, one for each cluster. It was

initially proposed by Stuart Lloyd in 1982 [117]. It partitions a set of data points into prede-

fined number of clusters [118], [119]. It mainly maximizes the inter-cluster distance while

minimizing the intra-cluster distance. The algorithm for obtaining the centroids aims at min-

imizing an objective cost function which is a squared error function [120]. The objective

function can be simply defined as:

D =
k∑

j=1

n∑
i=1

∥∥xji − µj

∥∥2 (4.1)

where
∥∥xji − µj

∥∥2 is the Euclidean distance measure between a data point xji and the

cluster center µj , D is an indicator of the distance of the n data points from their respec-

tive cluster centers. Different matrices, other than Euclidean distance, that can be used as

objective function for K-means is stated in [121, 122].

The selection of the number of clusters in our approach is not arbitrary. This phase runs

a module that decides the number of clusters to be produced based on the distribution of the

generated nodes. The module computes the total computed clustered distance for different

number of clusters. Then the number of clusters producing the minimum computed distance

is selected. Algorithm 3 shows the steps for selecting the best number of clusters.

In our proposed approach, the base station will select k nodes as CHs, then each node

joins its nearest CH. A new CH is chosen as the middle of the cluster. These steps are
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Algorithm 3: Algorithm for selecting the best number of clusters

1 begin

2 n = number of nodes

3 For i=5 to 30

4 k = i×n
100

5 Form k clusters using K-means

6 Calculate the computed clustered distance

7 next i

8 Find k for minimum computed distance

9 end

repeated until no new CH is selected. The distance between two nodes s1, s2 is computed

based on the following Euclidean distance calculation:

D(s1, s2) =
√

(xs1 − xs2)2 + (ys1 − ys2)2 (4.2)

Where x and y are the node’s x-coordinate and y-coordinate, respectively. This phase

will divide the network to disjoint clusters. The base station will save information about each

cluster’s sensor node ID, location and energy level. The steps of WSN K-means clustering

is summarized as follows:

1. Arbitrarily choose k nodes to be CHs.

2. Join each node to the closest CH.

3. Calculate the new cluster center by calculating the mean distance between each CH

and all sensors in its cluster.

4. If at least one new CH is changed then go to step 2, else stop the process.

4.1.2 Phase 2: Cluster Head Selection using PSO

PSO is then applied to select the optimal cluster head from each cluster obtained by the K-

means phase. For instance, if the K-means partitioned z nodes to 3 clusters with l, m, and n
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nodes, respectively, then the PSO model will select three cluster heads; one from the l nodes,

the second from the m nodes and the third from the n nodes. PSO will search the space of

all possible CHs and provide a convergence to the best solution.

Encoding the Problem

The size of the PSO particle is fixed. It consists of k entries, where k is the number of

WSN clusters, as shown below. It represents an array containing the indices of each node,

for every cluster, elected as CH.

CH1 CH2 ...... CHk

Fitness Function

The objective of the PSO phase is to maximize the fitness function in order to achieve the

maximum lifetime of the cluster head. Maximizing the WSN lifetime is done by maximizing

the nodes residual energy and minimizing the dissipated energy. According to the RF model,

the dissipated energy is proportional to the square of the distance between the transmitter

and receiver, d. But when d exceed the threshold (d0), the dissipated energy is proportional

to d4. Thus, we proposed a novel fitness function given in Equation 4.3. It represents an

indicator to the number of transmissions a CH can perform during its lifetime.

F =



∑k
i=1

Ei

d2i
for di < d0

∑k
i=1

Ei

d4i
for di ≥ d0

(4.3)

where

• k represents the number of clusters,

• Ei represents the CH’s actual energy,

• di is the Euclidean distance between the cluster head and the base station, and

• do = 87m [46]

45



4.1.3 Phase 3: Model Evaluation

This phase simulates the energy consumed by every node in the network during each trans-

mission. In a transmission cycle, each node sends a data message to its CH , then the CH

aggregates the received data into one message and sends it to the base station. The dead nodes

are identified along with the alive nodes after each transmission. This phase also counts for

dead and remaining alive nodes. Each node’s consumed energy is simulated based on the

RF model provided in Section 2.5. The dissipated energy (DE) by a CH (DECHi
) is given

in Equation 4.4. It calculate the energy consumed in receiving the messages from the mem-

ber nodes, aggregating data plus transmitting an m-bit message to short and long distances,

respectively. Equation 4.5 shows the dissipated energy by a non-CH (DEnonCHi
) node. The

member node only sends the data to the CH.

DECHi
=

nimEe + nimEDA + ϵfsd
2
toBS for di < d0

nimEe + nimEDA + ϵmpd
4
toBS for di ≥ d0

(4.4)

DEnonCHi
=

mEe + ϵfsd
2
toCH for di < d0

mEe + ϵmpd
4
toCH for di ≥ d0

(4.5)

where:

• ni is the number of nodes belonging to CHi,

• m is the size of the message in bits,

• dtoBS is the Euclidean distance between the CH and the base station,

• dtoCH is the Euclidean distance between the node and its CH,

• Ee = 50nJ/bit, EDA = 5nJ/bit, ϵfs = 10pJ/m2, and ϵmp = 0.0013pJ/m4.

4.2 Solution 2: PSO Variable Clustering

Approach ’PSO-VC’

PSO is implemented to evolve complete clustering for WSN. The approach is aimed to obtain

the optimal number of clusters, optimum CHs and optimum clusters layout; i.e. the members

in each cluster. Figure 4.2 shows the phases of our proposed approach.
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Figure 4.2: PSO variable clustering block-diagram

4.2.1 Phase 1: Clustering using PSO

In this phase, PSO is applied to select the optimum WSN cluster layout. PSO outputs the

following optimum parameters:

• Number of clusters,

• Cluster Heads, and

• Members in each cluster.

Encoding the Problem

In this approach the PSO particle structure consists of the number of clusters, followed by

the CH index for each cluster. The PSO particle representation will be as follows:

k CH1 CH2 ...... CHk

where k is the number of clusters, CHi is the index of the CH of cluster i. The particle

structure is of variable size depending on the number of clusters obtained by the PSO particle

during each iteration. For example, if PSO particle choose 5 clusters (k = 5) then the particle

size will be 6 entries. PSO particle structure should include unique CH entries. If a CH index

is repeated in multiple entries, then repeated indices are removed and the number of clusters

entry is updated to include only the number of unique entries of the PSO particle structure.
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Fitness Function

PSO-VC aimed to maximize the number of transmissions which a CH can perform before

the node depletes its energy. The number of transmissions can be defined as:

Number of Transmissions =
Residual Energy

Dissipated Energy
(4.6)

The dissipated energy depends on the distance between the node and its CH, and the distance

between the CH and the sink. However, another attribute that has to be considered is the

number of member nodes in a cluster. Excluding this attribute from the fitness leads PSO

to select nodes close to the sink to be CHs, and thus uniform cluster distribution will not

be achieved. Moreover, adding this attribute helps in obtaining balanced cluster density.

The authors in [68] proved that the dissipated energy based on the distance and number of

members can be represented as:

Energy Loss =
k∑

i=1

( q∑
j=1

d2CH(i,j) +
d2SN(i)

ni

)
(4.7)

where:

• k represents the number of CHs,

• q represents the number of members,

• dCH is the distance from a node to its CH,

• dSN is defined as the distance between node to the base station,

• Ei represents the CH’s residual energy,

• ni represents the number of members in cluster i, and

• d0 is 87 meters.

Thus we proposed a fitness function as shown in Equations 4.8 and 4.9.

F =
k∑

i=1

Ei∑q
j=1 d

p
CH(i,j) +

dp
SN(i)

ni

(4.8)

p =


2 for d < d0

4 for d ≥ d0

(4.9)
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4.2.2 Phase 2: Model Evaluation

This phase simulates the energy consumed by every node in the network, as explained in

Section 4.1.3.

4.3 Solution 3: Hybrid K-means PSO

Clustering Approach ’KPSO-PSO’

We propose a Hybrid K-means PSO Clustering approach to solve for clustering WSN in or-

der to increase the network lifetime. It is an extension to KPSO, the first proposed approach.

Figure 4.3 shows the phases of our proposed approach. This approach outputs the best CHs,

the best CH’s antenna pattern, and the best members. It has the following phases:

1. Phase 1: apply the KPSO approach to partition the network into k clusters and select

the best CH for each cluster.

2. Phase 2: obtain the optimal antenna pattern radius, and the optimal member distribu-

tion of CHs using PSO.

3. Phase 3: evaluate the resulting cluster layout.

Figure 4.3: KPSO-PSO block-diagram
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4.3.1 Phase 1: KPSO

This phase runs the first approach ”KPSO” provided in 4.1. This phase will output the

optimal CHs for the selected number of clusters. The KPSO phase consists of two sub-

phases:

• First: K-means for partitioning the nodes into clusters.

• Second: PSO for selecting the best CH from each cluster

4.3.2 Phase 2: Antenna Pattern Optimization and Member Selection

In this phase, PSO is applied to assign the optimal members to its corresponding CH ob-

tained by KPSO phase by optimizing the antenna pattern shape radius. The idea behind this

approach is that a symmetric round shape is virtually assigned for each CH. The approach

particularly works on two shapes: circle and ellipse. For each CH selected, the approach

assigns a value, r, that is the radius of the virtual shape whose center is the CH. Sensors that

fall within the shape will be chosen as the members for this cluster. The approach specifies

the following rules:

1. A CH is not permitted to be a member inside another cluster. The maximum allowable

shape radius of every CH does not exceed the Euclidean distance to the nearest CH

neighbor.

2. A sensor that falls in more than one shape will be assigned to the nearest CH.

3. A sensor that does not fall in any shape will be assigned to the nearest CH.

Encoding the Problem

Our objective is to find the best antenna pattern which provides the best region for clustering.

The gain of the antenna, G, is given in Equation 4.10 [123].

G =
S

A
(4.10)

where S is the Area of isotropic sphere, and A is area of the antenna pattern.

Approximation of an elliptical antenna pattern is shown in Figure 4.4. Assuming the

antenna pattern is uniform, the gain of the antenna G in this case is computed as a function
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of the parameters a and b. Given that: D is the distance from antenna location to the main

antenna pattern, a and b are the ellipse radii. Thus, the gain G is computed as:

A = πab (4.11)

S = 4πD2 (4.12)

Thus:

G =
4πD2

πab

=
4D2

ab
(4.13)

Figure 4.4: Approximating the antenna pattern as an elliptical area

As shown, the developed gain equation is a function of the elliptic dimension a and b.

Thus, finding the optimal values of these parameters can help in developing a better pattern

which leads to energy saving. In case of circular antenna pattern, where a = b = r, the gain

is a function of the circle radius r as shown in the following equation:

G =
4D2

r2
(4.14)

It is assumed that the size of PSO particle is fixed. Thus, we adopted the following rep-

resentation for PSO. In case of applying the circle pattern with k clusters, the representation

will be encoded as follows:

r1 r2 ...... rk

where r1 represents the radius of the circle whose center is CH1. In case of applying the

ellipse pattern, horizontal and vertical radius parameters, a and b, need to be optimized. The

PSO representation will be as follows:

a1 a2 ...... ak b1 b2 ...... bk
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Fitness Function

The goal of the fitness function is to reduce the energy consumed by the network and prolong

the network lifetime. The fitness function has also to consider many conditions that could

appear during the evolutionary process. That is why we consider a penalty term which helps

minimizing the cluster overlapping, as shown in Equation 4.15. We adopted the fitness

function introduced in [68]. Thus, we need to minimize the communication distance and

provide the optimal radius for each CH.

F = Edd + En0 ∗ (0.7n0 + 0.3n≥2) (4.15)

Edd =
k∑

i=1

ni∑
j=1

(d2CH(i,j) +
d2SN(i)

ni

) (4.16)

where

• Edd represents the communication distance,

• k is the number of clusters,

• ni is the number of nodes belonging to CHi,

• dCH(i,j) is the Euclidean distance between the sensor and its CH,

• dSN(i) is the Euclidean distance between the cluster head and the base station,

• n0 is the number of nodes that do not belong to any CH,

• n≥2 is the number of nodes that belong to more than one CH, and

• En0 is sum of square of Euclidean distance of all n0 nodes to their nearest CH.

4.3.3 Phase 3: Model Evaluation

In this phase, the WSN cluster layout obtained from phase 2 is evaluated as explained in

Section 4.1.3.
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4.4 Comparing the Proposed Solutions with other Cluster-

ing Approaches

In order to evaluate the effectiveness of our proposed solutions, it has to be compared with

previous well known benchmark clustering mechanism. LEACH protocol (Section 2.6.1) is

a common benchmark clustering protocol used to evaluate previously proposed clustering

approaches. Moreover, in order to ensure the effectiveness of using the PSO technique, we

have to compare it with another soft computing technique. GA is used to compare with

PSO. Thus, the same three proposed approaches are re-implemented using GA instead of

PSO. The GA chromosomes used are identical to the PSO particle structures. Also, the same

fitness functions are used. The typical three GA approaches implemented are:

• KGA: Hybrid K-means GA Approach

• GA-VC: GA Variable Clustering

• KGA-GA: Hybrid K-means GA Clustering Approach

53



Chapter Five

Hybrid K-Means and PSO Clustering Approach

In this chapter, our proposed hybrid K-means PSO approach, named KPSO, is evaluated and

compared with two clustering approaches. KPSO consists of three phases. The first phase

partitions the network into predefined number of clusters using K-means. In the second

phase, PSO selects the optimum CH for each cluster. Evaluation of the obtained cluster

layout is performed in the last phase. PSO selects the CHs based on our novel fitness function

that aims to maximize the number of transmissions a CH performs. Evaluation of the network

layout is based on the RF communication model.

KPSO approach was used over number of experiments with various layouts in order to

test it efficiently. It is compared with K-means and the LEACH protocol. Also, KPSO is

compared with KGA approach, where the same approach is implemented with GA rather

than PSO. We explore the effect of varying: the number of nodes, the energy of the nodes,

and the base station location. Also, we explore the effect of our developed hybrid model on

the WSN lifetime on two conditions: 1) When the first node dies, 2) When 10% of nodes

dies.

5.1 Experimental Setup

5.1.1 Assumptions

For proper operation of our proposed approaches, some assumptions were made. We as-

sumed a fixed number of static nodes that are randomly deployed in a two dimensional

geographical area. The nodes are assumed to have an initial energy level. The base station

has no constraints on its energy and computing resources. It has an updated record of each

node’s location and energy level. It is assumed that the communication in the network is

established. There are no communication problems between the nodes and the base station,

and also between the nodes and their CHs. Within each cluster, each pair of sensor nodes is
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guaranteed to be within the effective transmission range. So each two nodes in the cluster

can communicate with each other directly. The energy dissipated due to environmental dis-

turbances (e.g. signal fading, packet loss) is ignored. These assumptions are also adopted

for the remaining approaches.

5.1.2 Experimental WSN Data

Table 5.1 lists the values of the WSN parameters adopted in our experiments. We adopted

100 nodes to be randomly generated in a geographic area of 100 × 100m2. Since in the

field heterogeneous nodes are used, we adopted nodes that have different energy levels. We

chose the base station to be the corner of the geographic area. The dataset is generated by

a ’Random Node Generator’ implemented in WSN-CAT toolbox (Chapter 8). Figure 5.1

shows the dataset generated by the Random Node Generator. The nodes marked with ’red

star’ are those having high energy.

Table 5.1: WSN simulation parameters

Parameter Value
Field Size 100× 100m2

Number of Sensor nodes 100
Energy of Sensor nodes 80% have 2J ; 20% have 5J
Base Station location (0,0)
Size of message 4000 bits
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Figure 5.1: 2D Layout of 100 Sensor nodes
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5.2 Selecting the Number of Clusters

A pretest was made to discover the number of clusters producing the minimum communi-

cation distance. Figure 5.2 shows the total communication distance versus the number of

clusters for the data shown in the above table (Table 5.1). The graph showed 9 clusters as the

best number to be used.
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Figure 5.2: Communication distance vs. number of clusters

5.3 Selection of best PSO Equation

A pretest was made to choose the most suitable PSO equation. Figure 5.3 shows the fitness

values for the five PSO models. Although both PSO-Inertia and PSO-TVAC models converge

to the best fitness value, TVAC model converges faster. Therefore, the PSO-TVAC model is

adopted. Table 5.2 lists the parameters of the PSO model used. Figure 5.4 shows the fitness

conversion curves with various numbers of particles. In our case, 20, 40, 60 and 80 PSO

particles were used, respectively, and the best result is chosen.

Table 5.2: PSO simulation parameters

Parameter Value
PSO model TVAC
Inertia weight [0.1:0.9]
ϕ1 [0.5:2.5]
ϕ2 [0.5:2.5]
No. of particles {20,40,60,80}
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Figure 5.4: PSO fitness function conversion

5.4 Comparison between the Proposed Fitness Function

and other Fitness Functions

In order to evaluate our proposed fitness, we explored previously used fitness functions.

The proposed fitness is shown in Equation 5.1 (Section 4.1.2). Equations 5.2 and 5.3 were

explored and compared with our proposed fitness function, F . F1 represents the distance

fitness; i.e. sum of the distances between member node to CH plus the distance from CH to

Sink. F2 represents the distance square fitness; sum of the square of the distances between

member node to CH plus the square of the distance from CH to Sink. Figure 5.5 shows the

simulation results of our proposed fitness as well as F1 and F2. The graph shows that our

proposed fitness produces more number of transmissions than F1 and F2 given a number of

nodes are alive.
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F =



∑k
i=1

Ei

d2i
for di < d0

∑k
i=1

Ei

d4i
for di ≥ d0

(5.1)

F1 =
∑
i

∑
j

dCH(i,j) +
∑
i

dSN(ij) (5.2)

F2 =
∑
i

∑
j

d2CH(i,j) +
∑
i

d2SN(ij) (5.3)
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Figure 5.5: Total number of alive nodes vs. number of transmissions

5.5 Developed Cluster Layout

The developed cluster layout of K-means and the layout after applying our KPSO approach

are presented in Figure 5.6. Figure 5.7 shows the clusters layout formed by the LEACH

protocol. The nodes marked with ’red star’ are those having high energy. The LEACH

distribution shows higher number of randomly chosen clusters. The cluster head selected

from the K-means is the center of the cluster. However, the cluster head selected from our

KPSO approach is not necessarily the center of the cluster. Our KPSO approach selects the

cluster head that can survive for maximum number of transmissions.
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Figure 5.6: (a) K-means clusters (b) KPSO clusters
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Figure 5.7: LEACH clusters
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5.6 Comments on Energy Computation

In this section, we discuss some observations on our developed results. It is essential to

increase the network life time by managing the network remaining energy and the total num-

ber of alive nodes during the simulation. The total remaining energy based on the three ap-

proaches studied in this research (i.e. K-means, LEACH protocol and our KPSO approach)

are presented in Figure 5.8(a). Figure 5.8(b) shows the number of alive nodes versus the

number of transmissions. We concluded the following facts:

• LEACH protocol consumes the highest energy between the three approaches.

• K-means consumes less energy than our KPSO approach because its CH is the center

of the cluster leading to minimum communication distance.

• The CH as presented in our proposed KPSO approach is not always the center of the

cluster. Thus, the communication distance is greater or equal to that of the K-means

communication distance, in some cases.

• Our proposed approach shows a higher number of alive nodes than the other cases

of K-means and LEACH. To show how we made the comparison, we considered a

threshold of 30% of the total WSN nodes as a guide for comparison. Above this level,

our KPSO approach performs better than the K-means, and LEACH protocol.

• KPSO approach has a longer life time compared to both LEACH protocol and the K-

means. The reason is our adopted fitness has the advantages of considering both the

node’s actual energy and the communication distance at the same time.
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Figure 5.8: (a)Total remaining energy vs. number of transmissions (b)Total number of alive
sensor nodes vs. number of transmissions

60



Table 5.3 shows the simulated number of transmissions performed by the network given a

fixed number of nodes are alive and the percentage improvement of KPSO over LEACH and

K-means. The percentage improvement over LEACH is calculated as follows:

Improvement =
KPSOTransmissions − LEACHTransmissions

LEACHTransmissions

∗ 100% (5.4)

Table 5.3: Simulated number of transmissions

Number of Simulated transmissions KPSO Improvement over
Alive Sensor nodes LEACH K-means KPSO LEACH K-means

100 425 555 604 42.20% 8.83%
90 2582 2251 3518 36.23% 56.29%
80 3422 3223 4708 37.57% 46.08%
70 4006 4606 5350 33.54% 16.15%
60 4620 5264 5955 28.90% 13.13%
50 5235 5720 6897 31.73% 20.58%
40 5901 6623 7193 21.90% 8.61%
30 6660 7675 7550 13.37% -1.63%
20 7888 8920 8084 2.48% -9.37%
10 10071 10726 8903 -11.59% -17.00%

Average KPSO Percentage Improvement over 23.63% 14.17%

5.7 Computing WSN Lifetime

WSN lifetime is defined as the time at which the first sensor dies [13]. It was also defined

[14] as the time at which a fraction of nodes die. In this section, we explore the effect of our

developed hybrid model on the WSN lifetime on two conditions:

1. When the first node dies,

2. When 10% of nodes dies.

Figure 5.9 shows the simulated number of transmissions for the cases mentioned above.

KPSO improved the WSN lifetime than LEACH protocol and K-means in both cases.
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Figure 5.9: WSN lifetime

5.8 Measuring the Effect of Variation of the Number of

Sensor Nodes

Network layouts with different number of sensors are examined to evaluate our KPSO ap-

proach. Two network layouts explored in our study: 200 nodes WSN and 400 nodes WSN.

The base station location was arbitrary fixed at point (0,0). The two networks are assumed

to be in the same geographic area of 100m × 100m. We assumed that 80% of the nodes

are having 2J energy, while the rest of nodes are having 5J energy. Figure 5.10 shows the

number of alive nodes for the two network layouts having total number of nodes equals 200,

and 400, respectively.
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Figure 5.10: Total number of alive nodes for (a) 200 nodes-WSN (b) 400 nodes-WSN

The results show that our KPSO approach performs more transmissions than LEACH

protocol when the number of alive nodes in the network is more than 30% of the total nodes
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in the network. When the number of alive nodes fall below 30% of the total number of nodes

in the network, KPSO nodes deplete faster than LEACH and K-means. However, the data

gathered with only 30% of the of the total nodes does not give detailed information on the

region. Table 5.4 lists the average improvement in the KPSO performance compared to the

LEACH approach. The performance improvement of KPSO over K-means is almost not

affected by the number of sensors.

Table 5.4: Average performance improvement

No. of Sensor nodes Average improvement
in the No. of transmissions (%)

Improvement over Improvement over
K-means LEACH

100 14.17 % 23.63 %
200 20.25 % 9.98 %
400 19.58 % 9.07 %

5.9 Measuring the Effect of Variation of Energy of Sensor

Nodes

Varying the node’s energy is always essential for WSN performance and it affects the net-

work life time. That is why, we decided to explore the effect of having sensors with various

energy distributions on the three approaches. We changed the energy of the randomly gen-

erated nodes. Three situations were considered. They are:

• Case 1: all sensor nodes have the same energy of 2J.

• Case 2: 80% of the sensor nodes has 2J and 20% of sensor nodes have 5J.

• Case 3: 50% of the sensor nodes has 2J and the other 50% have 5J.

Figure 5.11 shows the alive nodes graph for cases 1 and 3 respectively, while case 2

is already discussed in Figure 5.8. Studying Case 1 and Case 3, our proposed approach

performs slightly better than the other two approaches. In Case 2, our KPSO approach

outperforms both the K-means, and LEACH protocol. This is more likely to be the case in

practice. There is no guarantee that all the sensors shall have the same energy distribution in
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the field. Figure 5.12 shows the WSN lifetime for the layouts of cases 1 and 3. The lists of

the average improvement of KPSO compared to both the K-means, and LEACH protocol is

presented in Table 5.5.
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Figure 5.11: Total number of alive sensors with energies of (a) 2J each (b) 50% with 2J and
50% with 5J.
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Figure 5.12: WSN lifetime (a) all nodes have 2J (b) 50% of nodes have 2J and 50% 5J

5.10 Measuring the Effect of Variation of the Base Station

Location

Of course, the location of the base station is an essential element which can affect the WSN

operation lifetime. To study its effect, we have arbitrary chosen two different locations for a

base station simulation. We chose one location to be within the field, and the other far from

the field. The locations are the point (50,50) and the point (50,175) in the work environment.
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Table 5.5: Average performance improvement

Energy of Sensor nodes Average improvement
in the No. of transmissions (%)

Improvement over Improvement over
K-means LEACH

2J each 8.0251 % 5.26 %
80% have 2J and 20% have 5J. 17.1305 % 23.63 %
50% have 2J and 50% have 5J. 9.0486 % 6.68 %

The performance is simulated, as shown in Figure 5.13. The KPSO approach performs more

transmissions than the other two approaches when the number of alive nodes is greater than

40% of the total network nodes. The results show that our KPSO approach performs better

than K-means algorithm and LEACH protocol. Our KPSO approach was able to select the

CHs that performs more number of transmissions based on the fitness criteria; not based

on the random process as in LEACH protocol. Figure 5.14 shows that KPSO prolongs the

lifetime of the network. Table 5.6 lists the average improvement in the KPSO performance

compared with both the K-means algorithm, and LEACH protocol.
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Figure 5.13: Total number of alive sensor nodes when the base station located at point (a)
(50,50) (b) (50,175) in the environment
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Figure 5.14: WSN lifetime for 100 nodes-WSN with base station location at(a) (50,50) (b)
(50,175)

Table 5.6: Average performance improvement

Base Station Location Average improvement
in the No. of transmissions (%)

Improvement over Improvement over
K-means LEACH

(0,0) 14.17% 23.63%
(50,50) 5.93% 4.63%

(50,175) 19.04% 28.67%

5.11 KPSO Results versus KGA Results

In this section, we evaluate using PSO in our proposed approach. The hybrid K-means GA

approach ”KGA” results are recorded and compared with KPSO. The results of applying

our hybrid approaches for WSN Layout stated in Table 5.1 are discussed. The following

subsections explore the effect of varying: 1) the number of nodes 2) the node’s energy and

3) the base station location.

Figure 5.15 shows the GA and PSO fitness conversion. The graph shows that PSO con-

verges to higher (i.e. better) fitness than GA, with higher number of generations. In Figure

5.16, we show the developed cluster layout for the by the KGA approach. The cluster head

selected by KGA approach is, like KPSO, not necessarily the center of the cluster. KGA

adopted the same proposed fitness that selects the cluster head that can survive for maximum

number of transmissions.
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Figure 5.15: PSO and GA fitness conversion graphs
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Figure 5.16: KGA clusters Layout

67



The total remaining energy based on the two approaches studied in this chapter (i.e.

KPSO and KGA approaches) are presented in Figure 5.17. Figure 5.18 shows the number of

alive nodes versus the number of transmissions. Both KPSO and KGA approaches preserve

the same total energy during the first half of the network lifetime. In the second half, KPSO

consumes more energy than KGA. However, KPSO performs more transmissions than KGA.

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

 No. of Transmissions

 E
ne

rg
y 

(J
.)

 

 
KPSO
KGA

Figure 5.17: Total remaining energy vs. number of transmissions
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Figure 5.18: Total number of alive sensor nodes vs. number of transmissions

Figure 5.19 shows the WSN lifetime when the first node dies and when 10% of the nodes

die. The simulated results show that KPSO performs more transmissions than KGA. For

example, if we consider the network lifetime as when 10% of the sensors die: the number

of KPSO transmissions is more than KGA transmissions by about of 47%; thus the WSN

lifetime using KPSO is more than WSN lifetime using KGA. The calculated the average

percentage improvement of KPSO over KGA was 8.46%.
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Figure 5.19: WSN lifetime

5.11.1 Measuring the Effect of Variation of the Number of Nodes

The two network layouts examined in Section 5.8 are used to evaluate our KGA and compare

with KPSO approaches. The two networks use the same simulation parameters of Table 5.1,

except for the number of sensors. Figure 5.20 shows the number of alive nodes for the two

network layouts having total number of nodes equals 200, and 400, respectively.
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Figure 5.20: Total number of alive nodes for (a) 200 nodes-WSN (b) 400 nodes-WSN

Table 5.7 lists the average improvement in the KPSO performance compared to the KGA

approach. The results show that KPSO approach achieved more transmissions than KGA

when the number of alive nodes in the network is more than 20% of the total nodes in the

network. When more than 80% of the total nodes depletes their energy, the KGA approach

performs more transmissions than KPSO. However, the data gathered from the network in

this case does not give full information about the region of interest. Figure 5.21 show that

using PSO instead of GA resulted in more WSN lifetime.
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Table 5.7: Average performance improvement

No. of Sensor nodes Improvement over KGA
100 8.46 %
200 11.6282 %
400 11.3039 %
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Figure 5.21: WSN lifetime for (a) 200 node-WSN (b) 400 node-WSN

5.11.2 Measuring the Effect of Variation of the Nodes Energy

In this subsection, we explore the effect of having nodes with various energy distributions

on KGA approach and compare it with the results of KPSO approach. Specifically, we will

explore the three cases that were explored with KPSO in Section 5.9. Figure 5.22 shows the

performance graph for cases 1 and 3, case 2 is already shown in Figure 5.18. The lists of

the average improvement of KPSO over KGA are presented in Table 5.8. When the nodes

have the same energy, both KPSO and KGA approach perform nearly similar. However, with

varying energy, which is the practical situation, KPSO provide better performance. Figure

5.23 shows the lifetime of the WSN for cases 1 and 3. Thus using KPSO resulted in more

lifetime than using KGA.

Table 5.8: Performance Improvement of KPSO over KGA

Energy of Sensor Nodes Improvement over KGA
2J each 2.8232%
80% have 2J and 20% have 5J. 8.46%
50% have 2J and 50% have 5J. 10.367%

70



0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

100

 No. of Transmissions

 N
o.

 o
f S

en
so

rs

 

 
KPSO
KGA

0 2000 4000 6000 8000 10000 12000 14000
0

10

20

30

40

50

60

70

80

90

100

 No. of Transmissions

 N
o.

 o
f S

en
so

rs

 

 
KPSO
KGA

Figure 5.22: Total number of alive sensors with energies of (a) 2J each. (b) 50% with 2J
and 50% with 5J.
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Figure 5.23: WSN lifetime (a) all nodes have 2J (b) 50% of nodes have 2J and 50% have 5J
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5.11.3 Measuring the Effect of Variation of the Base Station Location

KGA approach results are recorded when the base station is at (50,50) and the point (50,175)

in the work environment. The results are compared with that of KPSO approach. Figure

5.24 shows the simulated number of alive nodes for both base station locations. Figure 5.25

shows the WSN lifetime for both approaches. KPSO lifetime is slightly better than KGA

when the first node dies. When 10% of the nodes die, KPSO lifetime increased by 6%

at base station (50,50) and 31.8% when the base station is located at (50,175).The graphs

show that the KPSO approach performs better than KGA especially when the base station

is located away from the geographical area. Table 5.9 lists the average improvement in the

KPSO performance compared with KGA approach.
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Figure 5.24: Total number of alive sensor nodes when the base station located at point (a)
(50,50) (b) (50,175) in the environment

Table 5.9: Average performance improvement

Base Station Location Improvement over KGA
(0,0) 8.46%

(50,50) 3.59%
(50,175) 13.42%
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Figure 5.25: WSN lifetime (a) all nodes have 2J (b) 50% of nodes have 2J and 50% have 5J
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Chapter Six

Clustering Based Variable Structure PSO

PSO Variable Clustering approach, named PSO-VC, develops a clustering approach using

PSO. PSO-VC outputs the optimum number of clusters, optimal CHs and optimal members

for each cluster. The PSO particle structure contains the number of clusters followed by CHs

ID for each cluster. Therefore, PSO particle size is not fixed. Its size is always varying from

PSO iteration to another depending on the number of clusters selected by PSO particles. A

novel fitness function is adopted that aims to maximize the number of transmissions a CH

performs during its lifetime.

In this chapter, our second proposed approach, PSO-VC, is evaluated and compared with

traditional LEACH protocol. Moreover, we re-implemented this approach but using GA

instead of PSO, named GA-VC (GA Variable Clustering). Finally, PSO variable Clustering

is compared with our first approach KPSO.

6.1 Selection of best PSO Equation

A pretest was made to choose the most suitable PSO equation for our simulation. Fig-

ure 6.1 shows the fitness values after applying the PSO models. The graph shows that

PSO − Inertia equation converges fastest (with convergence value of 0.8990). The PSO-

Trelea1 equation converges best (with convergence value of 0.8997), but at the expense

of convergence time. Figure 6.2 shows that the PSO-Inertia and PSO-Trelea-1 equations

produce results almost with the same performance. Therefore, the PSO-Inertia equation is

adopted since it produces fast convergence and almost best performance results. Table 6.1

shows the values of PSO parameters adopted in our experiments.

74



100 200 300 400 500 600 700 800 900 1000
 Iteration  No.

 

Inertia
Trelea1
Trelea2
Clerc

Figure 6.1: PSO Conversion with different PSO models
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Figure 6.2: Total Remaining Energy using different PSO Equations

Table 6.1: PSO simulation parameters

Parameter Value
Inertia weight from 0.9 to 0.4

No. of particles 20, 40, 60, and 80
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6.2 Comparison between the Proposed Fitness Function

and other Fitness Functions

In this study we explored number of fitness functions to improve our results. In Equations

6.1 and 6.2, we introduce two other fitness function which shall be explored in the results

section. F1 represents the sum of the square of the distances between member node to CH

plus the distance from CH to base station [1]. F2 represents the sum of the square of the

distances between member node to CH plus the distance between CH to sink divided by the

number its members [68]. Our Novel Fitness adopted is shown in Equations 6.3 and 6.4

(Section 4.2.1).

F1 =
k∑
i

q∑
j

d2CH(i,j) +
l∑
i

d2SN(i) (6.1)

F2 =
k∑

i=1

(

q∑
j=1

d2CH(i,j) +
d2SN(i)

ni

) (6.2)

F =
k∑

i=1

Ei∑q
j=1 d

p
CH(i,j) +

dp
SN(i)

ni

(6.3)

p =


2 for d < d0

4 for d ≥ d0

(6.4)

Figure 6.3(a) shows the total energy for the fitness functions over various transmissions,

and Figure 6.3(b) shows the total alive nodes over the number of transmissions. The graphs

show that our fitness is superior over F1 and F2. The reason is our proposed fitness consid-

ered 3 attributes: 1) node’s residual energy, 2) dissipated energy, and 3) number of member

nodes within each cluster. F1 included only the communication distance, and ignored both

the CH energy and number of member per cluster. F2 included the communication distance

and the number of nodes within each cluster, and excluded the CH energy from its calcu-

lation. Excluding the CH’s energy from fitness leads PSO to select a CH with low residual

energy and thus the CH depletes fast leading to poor WSN lifetime. The dissipated energy
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is an important attribute that affects the clustering organization. Finally, the third attribute

helps in obtaining balanced cluster density and uniform cluster distribution.
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Figure 6.3: Comparison of different fitness functions (a) Total remaining energy (b) Total
number of alive nodes: for 100-nodes with variable energy

6.2.1 Developed Cluster Layout

In this section we will explore and discuss the simulation results of the randomly generated

WSN as specified in Table 5.1. The proposed PSO approach runs several times with different

number of particles (20, 40, 60 and 80) and the best results were chosen. Figure 6.4 shows a

sample of fitness value for different number of particles. Figure 6.5 shows the cluster layout

after applying our proposed approach. The layout resulted in more clusters than KPSO

clusters. Some nodes that are close to the base station send to it directly; they are considered

as one cluster.
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Figure 6.4: PSO fitness conversion with various numbers of particles

77



0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

 x−Coordinate

 y
−C

oo
rd

in
at

e

Figure 6.5: Developed cluster layout based our PSO approach

Figures 6.6 (a) and (b) show the total number of alive nodes, and the total remaining

energy vs. the number of transmissions. PSO-VC approach proved preserving higher energy

than LEACH protocol. PSO-VC also preserved more energy than GA-VC approach when

more than 30% of the total nodes are alive. Below this threshold the nodes of PSO-VC loose

energy faster than GA-VC. PSO-VC alive nodes outperformed LEACH protocol during the

whole operation of the network. Above the threshold of 30% of the total alive nodes, the

nodes of PSO-VC performed more number of transmissions than GA-VC. Figure 6.7 shows

the WSN lifetime for the two cases studied in KPSO. PSO-VC improved WSN lifetime than

LEACH and GA-VC. PSO-VC doubled the LEACH-lifetime when the first node dies. When

10% of nodes die, PSO-VC increased the WSN lifetime by about 37%. PSO-VC slightly

increased the lifetime over GA-VC by about 4%-10%.
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Figure 6.6: (a) Total number of alive nodes (b) Total remaining energy: for 100-nodes with
variable energy
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Figure 6.7: WSN Lifetime for 100 Nodes with variable energy

6.2.2 Measuring the Effect of Variation of the Number of Sensor Nodes

We examined the PSO-VC approach on the network layouts of sizes 50, and 200 randomly

generated nodes with variable energy. The base station is fixed at the corner of the geo-

graphic area; (0,0). Figure 6.8 showed that PSO-VC performed more number of simulated

transmissions given a fixed percent of nodes are alive. Thus, PSO-VC increased the network

lifetime. Table 6.2 shows the average improvement of PSO-VC over LEACH and GA-VC.

Table 6.2: Average performance improvement

WSN data PSO-VC Improvement over
No. of nodes Energy Base Station LEACH GA-VC

50 80% 2J ; 20% 5J (0,0) 37.62 % 8.65 %
200 80% 2J ; 20% 5J (0,0) 31.64 % 9.33 %
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Figure 6.8: Total number of alive nodes vs. number of transmissions for (a) 50 nodes-WSN
(b) 200 nodes-WSN
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6.2.3 Measuring the Effect of Variation of Energy of Sensor Nodes

To explore the effect of nodes’ energy on the performance of our PSO-VC approach, we

considered the cases mentioned in Section 5.9. Case 2 has already been reported in Figures

6.6 and 6.7. Figure 6.9(a) shows the total number of alive nodes vs. the simulated trans-

missions when equalizing the initial energy of the 100 node WSN to 2J each, while Figure

6.9(b) shows the number of alive nodes when half nodes with 2J and the second half with 5J.

PSO-VC outperformed LEACH in both cases when the alive nodes are above a threshold of

20%, and below this threshold the LEACH nodes survived for more transmissions. PSO-VC

alive nodes are more than GA-VC nodes until a threshold of 30%. Figure 6.10 reports the

WSN lifetime for the two network layouts. PSO-VC improved WSN lifetime than LEACH

by 77-82%, while slightly improved over GA-VC. When 10% of the nodes die, PSO-VC

improvement over LEACH exceeded 25% for layout with same energy and 40% for layout

with varying energy. PSO-VC resulted in prolonging lifetime when compared with GA-VC.
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Figure 6.9: Total number of alive nodes vs. number of transmissions for 100 node WSN
with energy (a) 2J each (b) 50% 2J and 50%5J
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Figure 6.10: WSN Lifetime for 100 Nodes with (a) 2J each (b) 50% 2J and 50% 5J
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6.2.4 Measuring the Effect of Variation of the Base Station Location

In this section, the effect of changing the base station location of the WSN lifetime is studied

on two locations: (50,50) and (50,175). Figure 6.11(a) shows the total number of alive nodes

vs. the simulated number of transmissions for base station at (50,50), while Figure 6.11(b)

shows the results for (50,175). The graphs show that PSO-VC results in more simulated

number of transmissions than LEACH protocol, and thereby better WSN lifetime. PSO-VC

also provides better performance than GA-VC especially when base station is not within the

nodes region. Figure 6.12 shows the WSN lifetime. PSO-VC considerably increased the

WSN lifetime than LEACH and GA-VC.
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Figure 6.11: Total number of alive nodes vs. number of transmissions for 100 node WSN
with base station located at (a) (50,50) (b) (50,175)
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Figure 6.12: WSN Lifetime for 100 Nodes at base station of (a) (50,50) (b) (50,175)
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6.3 PSO-VC versus KPSO

In this section we compare between the results of the first proposed approach (KPSO), and

this second proposed approach (PSO-VC). We explain the results w.r.t energy and lifetime.

Figure 6.13(a) shows the total remaining energy of the 100-node WSN having 80% 2J and

20% 5J. The base station is located at the corner (0,0). Figure 6.13(b) shows the number of

alive nodes versus the simulated number of transmissions.
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Figure 6.13: (a) Total remaining energy, and (b) Total number of alive nodes vs. number of
transmissions for 100 node WSN with varying energy

PSO-VC, has the flexibility to search for optimal number of clusters and CHs for each

cluster based on the CH’s residual energy and estimated consumed energy. This resulted

in more clusters with considerable less member nodes than KPSO. The graphs show that

PSO-VC saved more energy than KPSO approach. PSO-VC resulted in more number of

alive nodes given a fixed time. This means that the nodes survived for more number of

transmissions and thus WSN lifetime is increased.

Figure 6.14 shows the WSN lifetime values of KPSO and PSO-VC when the first node

dies, and Figure 6.15 shows the WSN lifetime values when 10% of nodes die. The graphs

proved that PSO-VC resulted in more WSN lifetime. WSN lifetime is reported for the fol-

lowing WSN setup:

• 100: 100 nodes, 80% 2J and 20% 5J, BS (0,0)

• 2J: 100 nodes, 2J , BS (0,0)

• 50% 5J: 100 nodes, 50% 2J and 50% 5J, BS (0,0)

• (50,50): 100 nodes, 80% 2J and 20% 5J, BS (50,50)
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• (50,175): 100 nodes, 80% 2J and 20% 5J, BS (50,175)

• 200: 200 nodes, 80% 2J and 20% 5J, BS (0,0)

• 200-2J: 200 nodes, 2J, BS (0,0)
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Figure 6.14: Comparison between KPSO and PSO-VC WSN Lifetime when the first node
dies

100 Nodes 2 J 50% 5J (50,50) (50,175) 200 Nodes 200−2J
0

1000

2000

3000

4000

5000

6000

7000

8000

 W
SN

 L
ife

tim
e

 

 
KPSO
PSO−VC

Figure 6.15: Comparison between KPSO and PSO-VC WSN Lifetime when 10% of the
nodes die
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Chapter Seven

Clustering Based Extended Hybrid K-Means and

PSO

The main objective of this thesis is to prolong the WSN lifetime using clustering techniques,

which is shown in the previously implemented approaches. Another approach to save the

consumed energy, and thereby prolong the network lifetime, is to control the power of the

nodes’ antenna. We proposed KPSO-PSO approach that optimizes antenna pattern radius

and network clustering. KPSO-PSO is a hybrid K-means PSO approach that is an extension

to the first approach (KPSO), where another PSO phase is added. This approach first selects

the best CH using KPSO. Then the role of the extended PSO phase is to optimize the antenna

pattern radius and cluster members.

In this chapter, the results of applying our hybrid approach KPSO-PSO are described and

evaluated. KPSO-PSO is compared with LEACH protocol, KPSO and PSO-VC approaches.

Also the same approach is re-implemented using GA instead of PSO, named KGA-GA. The

results are compared with KPSO-PSO results. KPSO-PSO approach is evaluated according

to the following three perspectives:

1. KPSO-PSO vs. KGA-GA,

2. KPSO-PSO vs. KPSO, and PSO-VC

3. Circle-shaped criteria vs. Ellipse-shaped criteria

4. Variations in WSN setup

7.1 Selection of best PSO Equation

In order to select the PSO model for the extended PSO phase, PSO models were explored.

Figure 7.1 shows the conversion of PSO models. Trelea-1 shows the best convergence. Table

7.1 lists the parameters of the PSO parameters adopted for the extended phase of KPSO-PSO.
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Figure 7.1: PSO conversion of KPSO-PSO phase 2

Table 7.1: PSO simulation parameters

Parameter Value
PSO model Trelea-1
Inertia weight 0.6
a 1.7
b 1.7
No. of particles {20,40,60,80}

7.2 Developed Cluster Layout

In this section, we report the results of applying KPSO-PSO on the WSN layout dataset

specified in Table 5.1. Two cases are adopted in exploring the proposed approach. They are:

• Case 1: KPSO-PSO using circle pattern

• Case 2: KPSO-PSO using ellipse pattern

Figure 7.2 shows the developed cluster layout for the KPSO approach. The cluster layout

formed by our proposed KPSO-PSO using circle shape criteria is shown in Figure 7.3, and

Figure 7.4 shows the cluster layout formed by the KPSO-PSO using ellipse shape criteria.

In Figures 7.2 and 7.3(a), the node labeled ’node a’ is belonging to two clusters. Thus

our proposed KPSO-PSO caused a change in the cluster layout distribution. Figures 7.3(a)

and 7.4(a) show that the ellipse criteria layout differs from the circle criteria layout; the node

labeled ’node b’ is a sample of the difference.
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Figure 7.2: KPSO WSN Clustering Layout
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Figure 7.3: KPSO-PSO Clustering Layout for (a) Circle shape (b) with corrected radius
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Figure 7.4: KPSO-PSO Clustering Layout for (a) Ellipse shape (b) with corrected radii
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Inspite of selecting the optimal antenna pattern radius, some of the nodes are shown out-

side the antenna pattern range. The KPSO-PSO approach assigns nodes that are not within

the antenna pattern range to connect to the nearest cluster. In this case, the KPSO-PSO ap-

proach corrects the optimum antenna pattern radius to include those nodes. The corrected

antenna pattern radius is the Euclidean distance between the CH and the farthest member

node. Figures 7.3(b) and 7.4(b) show the corrected circle and elliptical antenna pattern radii.

Figure 7.5(a) shows the total remaining energy for KPSO-PSO circle and ellipse pattern,

and LEACH protocol. Figure 7.5(b) shows the total number of alive nodes versus simu-

lated number of transmissions. Both pattern criteria outperformed LEACH protocol; they

preserved the network’s energy and more nodes survived during the network operation.
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Figure 7.5: (a) Total remaining energy (b) Total number of alive nodes vs. number of trans-
missions for 100 nodes WSN with varying energy

7.3 WSN Lifetime Results

Figure 7.6 shows the WSN lifetime for the two patterns and LEACH protocol. Comparing

with LEACH, KPSO-PSO ellipse criteria showed the best WSN lifetime improvement over

LEACH. The number of alive sensors was doubled when the first node dies. When 10% of

nodes die the KPSO-PSO WSN lifetime improved about 45-62%.
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Figure 7.6: WSN Lifetime for 100 nodes-WSN with varying energy

7.4 KPSO-PSO vs. KGA-GA

Figure 7.7 shows the GA and PSO fitness conversion. PSO converges to a better fitness value

than GA but with larger number of iterations. Figures 7.8, 7.9 and 7.10 show the developed

cluster layouts for KGA approach, KGA-GA using circle shape criteria, and KGA-GA using

ellipse shape criteria respectively. It can be shown that the three result in different clustering

layouts; nodes labeled (a) and (b) are examples of the difference.
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Figure 7.7: PSO and GA fitness conversion graphs for Circle Shape Criteria

We recorded the simulated number of transmissions along with the number of alive nodes

ranged from 100 nodes to 10 nodes. Table 7.2 shows the simulated results for our KGA-GA

and KPSO-PSO approaches. The simulated results showed that our proposed KPSO-PSO

produced more transmissions than LEACH protocol and KGA-GA for both shape criteria:

circle and ellipse by a given number of alive sensors. We also calculated the percentage
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Figure 7.8: KGA WSN Clustering Layout
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Figure 7.9: KGA-GA Clustering Layout for Circle shape
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Figure 7.10: KGA-GA Clustering Layout for Ellipse shape
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Table 7.2: Simulated number of transmissions

Number of Simulated number of transmissions
Alive Sensor LEACH KGA-GA KPSO-PSO

nodes Circle Ellipse Circle Ellipse
100 610 633 736 877 1087
90 2183 2803 2748 3699 4196
80 2858 4035 3807 4843 5022
70 2858 5009 4899 5614 5364
60 3572 5539 5711 6296 5892
50 3572 6019 6978 6600 6436
40 4822 6749 7238 6856 6796
30 5655 7206 7679 7447 7202
20 6995 8440 8452 7813 7841
10 7549 10590 11179 8491 8950

of improvement of KPSO-PSO over KGA-GA. The average improvement of KPSO-PSO

over KGA-GA is 10.27% using the circle-shaped criteria, while the ellipse-shaped criteria

resulted in 11.82% improvement of KPSO-PSO over KGA-GA.

7.5 KPSO-PSO vs. KPSO and PSO-VC

In this section, we analyze the results of the work compared to our developed KPSO and

PSO-VC approaches. Figure 7.11 shows the WSN lifetime of the three proposed approaches

on the test case network layout. KPSO-PSO prolonged the WSN lifetime than KPSO and

PSO-VC. Thus controlling the antenna pattern resulted in more enhancement in the WSN

lifetime by readjusting the members to be within the optimum antenna range.
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Figure 7.11: WSN Lifetime for 100 nodes-WSN with varying energy
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7.6 Circle-shaped criteria vs. Ellipse-shaped criteria

The proposed approaches produced the best evolved radius of the virtual shapes adopted in

this research. Table 7.3 shows the results of the best radii according to Equations 4.13 and

4.14. In case of ellipse pattern, the developed virtual ellipse of some CHs found to be similar

to the network coverage in the case of a circle; i.e. the output radii of the ellipse are equal.

The calculated average performance improvement of the ellipse-pattern over circle-pattern

is 2.17% using KGA-GA approach, while KPSO-PSO resulted in 2.93% improvement.

Table 7.3: Antenna Pattern Circle and Ellipse Radii

CH KGA-GA KPSO-PSO
No. Circle Ellipse Circle Ellipse

r a b r a b
CH 1 10.05 12.19 7.13 27.02 22.33 24.09
CH 2 9.34 14.35 11.55 18.42 22.64 19.21
CH 3 29.78 26.32 33.15 21.75 22.96 24.30
CH 4 23.94 29.06 28.92 22.44 23.57 16.08
CH 5 2.96 3.53 10.13 14.09 14.09 14.09
CH 6 27.43 24.13 27.24 21.52 22.04 23.21
CH 7 28.46 20.74 13.39 24.03 24.03 20.54
CH 8 9.98 4.54 4.46 14.09 11.37 6.56
CH 9 10.82 23.36 10.85 23.25 6.42 24.71

7.7 Variations in WSN setup

This section explored the effect of varying WSN setup on the results of KPSO-PSO. WSN

lifetime is reported for the following WSN setups:

• 50: 50 nodes, 80% 2J and 20% 5J, BS (0,0)

• 100: 100 nodes, 80% 2J and 20% 5J, BS (0,0)

• 200: 200 nodes, 80% 2J and 20% 5J, BS (0,0)

• (50,50): 100 nodes, 80% 2J and 20% 5J, BS (50,50)

• (50,175): 100 nodes, 80% 2J and 20% 5J, BS (50,175)

• 50% 2J: 100 nodes, 50% 2J and 50% 5J, BS (0,0)
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Figure 7.12 shows the WSN lifetime when the first nodes dies, and Figure 7.13 shows

the WSN lifetime when 10% of the nodes die. The graphs report the WSN lifetime for

both shape criteria adopted; circle and ellipse. The graphs proved that KPSO-PSO improved

WSN lifetime compared to LEACH protocol and our KPSO approach.
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Figure 7.12: KPSO-PSO lifetime for various network layouts when the first node dies
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Figure 7.13: KPSO-PSO lifetime for various network layouts when 10% of the nodes die
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Chapter Eight

WSN Computer Aided Design Toolbox

We implemented a WSN Clustering Aided Toolbox, named WSN-CAT, to develop and sim-

ulate our proposed approaches. The toolbox was designed such that it is simple and easy to

be used with novice user. Our Matlab WSN-CAT toolbox is composed of the four modules.

They are: WSN Data module, Clustering Data module, Clustering module and Simulation

module. The PSO software tool is inspired from [124]. The chapter describes the modules

of WSN-CAT, and how it works.

8.1 WSN-CAT Graphical User Interface

Figure 8.1 shows the graphical user interface (GUI) of the developed toolbox implemented

by MATLAB program. The upper part of the GUI represents the WSN data that the user has

to input. The input parameters of the WSN-CAT toolbox are:

• Length of the geographic area,

• Width of the geographic area,

• Base Station Location: X, and Y coordinates,

• Number of sensor nodes

• WSN nodes generation criteria,

• Nodes energy option,

• Clustering approach to be used,

• Fitness function to be used,

• Number of clusters required.
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The WSN-CAT outputs the obtained clustering and the simulation results, as shown in

the lower part of the figure. The graph on the left shows the developed cluster layout resulted

from running one of our proposed approaches. The remaining graphs show the simulation

resulting from the developed cluster layout. The graphs in the middle and on the right show

the total number of alive nodes and the total remaining energy respectively.

Figure 8.1: WSN-CAT Toolbox GUI

8.2 Components of WSN-CAT

Figure 8.2 shows the block diagram of Our developed MATLAB toolbox. It consists of the

following components:

1. WSN Data Module

2. Cluster Data Module

3. Clustering Module

4. Simulation Module
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Figure 8.2: WSN-CAT Toolbox Operational Structure

8.2.1 WSN Data Module

The WSN Data module allows the user to enter the simulation parameters: length and width

of the geographical area, the base station location and the number of sensor nodes. The

user also decides whether the nodes’ data are generated randomly using ’Random Node

Generator’, loaded from a MATLAB workspace, or entered manually. In case the user decides

to generate data using our Random Node Generator, the nodes’ energy has to be chosen.

Figure 8.3 shows the GUI when the user can load WSN data from a MATLAB workspace

file. Figure 8.4 shows how to enter WSN data manually. The user enters three types of

information: the X-coordinates, the Y-coordinates, and finally the nodes energy.

Figure 8.3: WSN-CAT Toolbox: Load from workspace
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Figure 8.4: WSN-CAT Toolbox: Enter WSN data manually

Random Node Generator

A ’Random Node Generator’ is implemented to generate randomly deployed nodes in a 2D

rectangular geographic area. The random generator requires input data as : length and width

of the simulated geographic area and number of sensor nodes. The user also specifies the

criteria for assigning energy to the generated nodes: all nodes have the same or different

energy values. Specifically, three criteria are implemented in the random node generator as

follows:

1. All nodes are assigned the same energy level. A value of 2 joule is adopted in the

toolbox.

2. Nodes are assigned random energy value between two levels, emin and emax. The

toolbox adopted default values of emin = 2J and emax = 5J .

3. Nodes are assigned one of two energy levels, such that 80% of the nodes are assigned

an energy level e1, and 20% of the nodes are assigned another energy level e2. The

toolbox default values are: e1 = 2J , e2 = 5J .
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8.2.2 Cluster Data Module

In this module, the user decides one of our proposed approaches to be used. Figure 8.5 shows

how the user chooses the approach. For each approach, at least one fitness function is given.

Figure 8.6 shows the possible fitness for the KPSO approach. The toolbox uses the KPSO

approach as the default choice, and our novel fitness is the default.

Except for PSO-VC and GA-VC, the user can specify the number of clusters. For KPSO,

KGA, KPSO-PSO, and KGA-GA, the user can enter the number of clusters for simulation.

If the number of clusters is not specified, the toolbox triggers a ’Test-Clusters’ module that

tests the nodes layout and calculates the best number of clusters based on K-means.

Figure 8.5: WSN-CAT Toolbox: Proposed approaches options

Figure 8.6: WSN-CAT Toolbox: Fitness functions
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8.2.3 Clustering Module

This module is triggered only after all the simulation data are entered by the user. It runs

one of our proposed approaches according to the user selection (or default approach if the

user didn’t select any). Figure 8.7 shows the detailed clustering modules for the first three

approaches: KPSO, PSO variable clustering, and KPSO-PSO. The clustering modules of the

remaining three approaches are the same as those except that GA is used instead of PSO.

The output of this module is the cluster layout: CHs and their members.

Figure 8.7: Clustering Module of the WSN-CAT Toolbox

8.2.4 Simulation Module

This module is triggered by the clustering module. In this module, we developed our own

simulator to evaluate our proposed clustering approach. Our developed simulator reports

the WSN data during each transmission. It calculates the total consumed energy for every

sensor node, the WSN remaining energy and the total alive nodes based on the radio model

described in [44] and modeled in Section 4.1.3. This module displays the total number of

alive nodes vs. the number of transmissions, as shown in the middle graph of Figure 8.1.

The graph in the right displays the total energy vs. the number of transmissions.
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Chapter Nine

Conclusion

9.1 Thesis Contribution

WSN has become an essential component in many real life applications as military, envi-

ronmental, industrial and many others. Factories, machine commands and control systems

are estimated to switch over to rely on wireless sensor nodes. Now, the trend is to replace

buildings control and automation systems by WSN. The sensor nodes will become common

as light switches and thermostats. However, WSN face some challenges as deployment, se-

curity, QoS, and energy. The main constraint faced WSN operation is the limited energy

resource during operation in field far away from base station. In most cases, nodes are

equipped with batteries that can’t be replaced or recharged.

In this thesis, we proposed number of clustering optimization approaches to prolong

the WSN lifetime. Clustering is an NP-hard problem that can’t be solved using traditional

techniques. Two sub-problems have to be solved to cluster WSN. They are: the number of

clusters to be produced and the CH for each cluster. The research presented in this thesis

investigated WSN clustering using PSO technique to overcome many problems associated

with traditional techniques. PSO showed many advantages on handing complex optimization

problems by finding solution not have been presented in the past. Three contributions were

developed: 1) Hybrid K-means PSO approach, named KPSO, 2) PSO variable clustering,

named PSO-VC, and 3) Hybrid K-means PSO approach, named KPSO-PSO. The first con-

tribution, KPSO, designed a three phase approach where each phase of the first two phases

solved one clustering sub-problem. In the first phase, K-means investigates for the best

number of clusters and then performs clustering. Then the PSO phase selects the best CH

according to our novel fitness that maximizes the number of transmissions a CH performs

before its energy depletes. In the second contribution, PSO-VC, PSO is tasked to solve the

complete clustering sub-problems in one phase. It outputs the best number of clusters, CHs

and the cluster members. The cluster layout is performed based on maximizing a novel fit-
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ness that concentrates on the network lifetime. Then we decided to perform clustering based

on the antenna pattern, leading to our third contribution. The third contribution, KPSO-PSO,

is an evolution of the first approach (KPSO) where a new phase is added. The third contribu-

tion optimizes the antenna pattern radius and re-arranges the member nodes per cluster to be

in the region of the antenna. In order to test the developed approaches, dataset was generated

randomly. The RF model was implemented and the network operation was simulated by our

own implemented simulator. The approaches were compared with the famous LEACH pro-

tocol that is used as benchmark for clustering approaches. In order to test the effectiveness of

the proposed approaches, the same solutions were re-implemented with GA instead of PSO,

and the results were compared. The following points have been observed:

• The problem with K-means is that it performs clustering based on inter cluster and

intra cluster distance. It is independent of the WSN field data environment, as base

station location, and assigns the center of the cluster to be CH. Integrating PSO with

K-means enabled selecting the CH that proved prolonging the WSN lifetime.

• KPSO showed significant improvement of WSN lifetime compared with traditional

LEACH protocol. It also showed promising results when changing: the number of

nodes, energy of the nodes, and base station location.

• The second approach (PSO-VC) showed more flexibility in obtaining clusters.

• Although PSO-VC produced considerably more clusters than KPSO approach, the

WSN lifetime was improved than KPSO and LEACH. PSO-VC showed promising

results to varying network data.

• Optimizing the antenna pattern range re-arranged the cluster members. The approach

removed the nodes that were mis-belonged to the clusters produced by K-means and

corrected its relation to belong to better CHs.

• KPSO-PSO resulted in enhancement of the WSN lifetime over KPSO and PSO-VC.

• Choosing the base station within the field leads to more number of transmissions due

to the decrease of the communication distance between the CH and the base station.

• Setting the nodes with various energy levels, which is more realistic, enabled our ap-

proaches to discriminate in its search and converge to the best CH resulting in better

enhancement in WSN lifetime.
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• Using PSO in our approaches showed better convergence than using GA and better

lifetime is reached.

Finally, a WSN clustering aided toolbox, named WSN-CAT, was developed to investigate

our proposed approaches. The tool box is user friendly; the user can simply enter the WSN

information and clustering data. The toolbox then runs the selected approach to produce the

clustering layout. Then our developed simulator is triggered to show the estimated operation

of the network.

9.2 Recommended Future Work

We recommend the following ideas that can be used for future:

• The approaches are applied on stationary nodes. We recommend re-implementing the

approaches to work as mobile nodes WSN.

• Our solutions were based on a single objective fitness function that maximizes the

number of CH transmissions. The approaches can be re-implemented to be multi-

objective that adds more criteria, as coverage.

• Some applications require the nodes to be uniformly distributed (e.g. Agriculture),

not randomly distributed. We suggest testing the approaches on uniformly distributed

data.

• There are different types of directional antenna patterns. The third contribution aimed

to optimize the antenna pattern while clustering the WSN. This contribution investi-

gated two shapes: circle and ellipse. New investigations can be made on other antenna

pattern shapes.

• Some applications may deploy heterogeneous sensor nodes. Thus, in the same WSN,

different antenna patterns may occur. The third contribution could be modified to

investigate the use of different antenna patterns within the same network.
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Appendix 1

WSN-CAT MATLAB Source code

function varargout = WSN CAT(varargin)

% WSN CAT MATLAB code for WSN CAT.fig

gui Singleton = 1;

gui State = struct(’gui Name’, mfilename, ...

’gui Singleton’, gui Singleton, ...

’gui OpeningFcn’, @WSN CAT OpeningFcn, ...

’gui OutputFcn’, @WSN CAT OutputFcn, ...

’gui LayoutFcn’, [] , ...

’gui Callback’, []);

if nargin && ischar(varargin{1})

gui State.gui Callback = str2func(varargin{1});

end

if nargout

[varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});

else

gui mainfcn(gui State, varargin{:});

end

% End initialization code - DO NOT EDIT

% — Executes just before WSN CAT is made visible.

function WSN CAT OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

set(handles.Rand RadBtn,’Value’,1);

set(handles.WrkSpace rdBtn,’Value’,0);

set(handles.EntrData RdBtn,’Value’,0);

%=============================================

% — Outputs from this function are returned to the command line.

function varargout = WSN CAT OutputFcn(hObject, eventdata, handles)
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varargout{1} = handles.output;

%=============================================

% — Executes on selection change in Fitness pop.

function Fitness pop Callback(hObject, eventdata, handles)

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ....

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

% — Executes during object creation, after setting all properties.

function Fitness pop CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

set(hObject, ’String’, {’CH round fitness’, ’Sq dist fitness’, ’dist fitness’});

% Default fitness

Fitness Selection = ’CH round fitness’;

%=============================================

% — Executes on selection change in CI popupmenu.

function CI popupmenu Callback(hObject, eventdata, handles)

CI Selection = get(hObject,’Value’);

% control the fitness function options according to the algorithm

switch CI Selection

case 1 %KPSO

set(handles.Fitness pop, ’String’, {’CH round fitness’, ...

’Sq dist fitness’, ’dist fitness’});

case 2 % PSO Variable Cluster
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set(handles.Fitness pop, ’String’, {’Ech DistSq N fitness’,...

’Dist Square fitness’,’DistSq N fitness’,});

case 3 % KPSO-PSO

set(handles.Fitness pop, ’String’, {’CH round fitness’,...

’Sq dist fitness’, ’dist fitness’});

case 4 % KGA

set(handles.Fitness pop, ’String’, {’GA CH round fitness’});

case 5 % GA Variable Cluster

set(handles.Fitness pop, ’String’, {’GA Alg2 fitness’});

case 6 % KGA-GA

set(handles.Fitness pop, ’String’, {’GA CH round fitness’});

end

%————————————-

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

% — Executes during object creation, after setting all properties.

function CI popupmenu CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

% Default Selection is the KPSO

CI Selection = ’KPSO’;

%=============================================

function Clust Txt Callback(hObject, eventdata, handles)
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% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

% — Executes during object creation, after setting all properties.

function Clust Txt CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function SensNo Txt Callback(hObject, eventdata, handles)

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

% — Executes during object creation, after setting all properties.

function SensNo Txt CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...
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get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function BSx Txt Callback(hObject, eventdata, handles)

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

function BSx Txt CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function BSy Txt Callback(hObject, eventdata, handles)

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end
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%=============================================

function BSy Txt CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function Len Txt Callback(hObject, eventdata, handles)

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ....

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

function Len Txt CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function Wdth Txt Callback(hObject, eventdata, handles)

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)
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set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

function Wdth Txt CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’), ...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function Energy popMenu Callback(hObject, eventdata, handles)

Energy Selection index = 1;

%============================================

function Energy popMenu CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,’BackgroundColor’),...

get(0,’defaultUicontrolBackgroundColor’))

set(hObject,’BackgroundColor’,’white’);

end

%=============================================

function WrkSpace rdBtn Callback(hObject, eventdata, handles)

set(handles.Rand RadBtn,’Value’,0);

set(handles.EntrData RdBtn,’Value’,0);

%————————————-

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================
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function Rand RadBtn Callback(hObject, eventdata, handles)

set(handles.WrkSpace rdBtn,’Value’,0);

set(handles.EntrData RdBtn,’Value’,0);

%————————————-

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth) && ...

isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

function EntrData RdBtn Callback(hObject, eventdata, handles)

set(handles.Rand RadBtn,’Value’,0);

set(handles.WrkSpace rdBtn,’Value’,0);

%————————————-

% Check to Enable the Create Button

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); % number of sensors

Wdth = str2num(get(handles.Wdth Txt,’String’)); % number of sensors

BSx = str2num(get(handles.BSx Txt,’String’)); % number of sensors

BSy = str2num(get(handles.BSy Txt,’String’)); % number of sensors

if isempty(Nsensors) && isempty(Len) && isempty(Wdth)...

&& isempty(BSx) && isempty(BSy)

set(handles.Create Btn,’Enable’,’on’);

end

%=============================================

% — Executes The Clustering Algorithm

%=============================================

function Create Btn Callback(hObject, eventdata, handles)

% get WSN data entered by the user
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%——————————————–

Nsensors = str2num(get(handles.SensNo Txt,’String’)); % number of sensors

Len = str2num(get(handles.Len Txt,’String’)); %

Wdth = str2num(get(handles.Wdth Txt,’String’)); %

BSx = str2num(get(handles.BSx Txt,’String’)); %

BSy = str2num(get(handles.BSy Txt,’String’)); %

CI Selection = get(handles.CI popupmenu,’Value’);

Fitness Selection = get(handles.Fitness pop,’Value’);

Fitness Items = get(handles.Fitness pop,’String’);

WSNfitness = char(Fitness Items(Fitness Selection));

% Ensure the fitness for GA

switch CI Selection

case 4 %KGA

WSNfitness = ’GA CH round fitness’;

case 5 %GA alg2

WSNfitness = ’GA Alg2 fitness’;

case 6 %KGA-GA

WSNfitness = ’GA CH round fitness’;

end

%———————————————

% generate random data or read from workspace or write data

%———————————————–

if get(handles.Rand RadBtn,’Value’)==1 % generate random data

Energy Selection index = get(handles.Energy popMenu,’Value’);

SensorsData = GenerateData (Nsensors, Len, Wdth, Energy Selection index);

save generatedData SensorsData;

elseif get(handles.WrkSpace rdBtn,’Value’)==1 % load workspace

[filename,path] = uigetfile(’*.mat’);

eval([’load ’, filename])

save generatedData SensorsData;

elseif get(handles.EntrData RdBtn,’Value’)==1 % write data

SizeFlag = 0;

D=inputdlg({’Enter X-coordinates of sensors separated by spaces’, ...

’Enter Y-coordinates of sensors separated by spaces’, ...
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’Enter X-Energy of sensors separated by spaces’},’Sensors Location and Energy’);

x= length(D(1));

Lx = str2num(D{1});

Ly = str2num(D{2});

E = str2num(D{3});

SensorsData = [Lx’,Ly’,E’];

save generatedData SensorsData

% check that the parameters of written data is consistent with input

s = size(SensorsData,1);

if s = Nsensors

Nsensors = s;

set(handles.SensNo Txt,’String’,Nsensors);

set(handles.SensNo Txt,’BackgroundColor’,’y’);

end

if Len < max(Lx); % sensor outside written range

Len =floor(max(Lx));

set(handles.Len Txt,’String’,Len);

set(handles.Len Txt,’BackgroundColor’,’y’);

end

if Wdth < max(Ly); % sensor outside written range

Wdth =floor(max(Ly));

set(handles.Wdth Txt,’String’,Wdth);

set(handles.Wdth Txt,’BackgroundColor’,’y’);

end

end % if

%—————————————————————–

% get number of clusters or generate the best number of clusters

%——————————————————————

ClusterNo = str2num(get(handles.Clust Txt,’String’)); % number of Clusters

if isempty(ClusterNo)

switch CI Selection

case {2,5} % do nothing

otherwise

ClusterNo = K Test no Clusters (SensorsData, Len, Wdth,[BSx,BSy]);
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set(handles.Clust Txt,’String’,ClusterNo);

set(handles.Clust Txt,’BackgroundColor’,’y’);

end % switch

end % if

%————————————————————————–

% get min/max based on the Selected Algorithm and fitness

%————————————————————————–

switch CI Selection

case {1,3} %KPSO or KPSO-PSO

min max = 1; % for thr first three choices

if Fitness Selection >1

min max = 0;

end % if

case 2 % PSO Variable Cluster

if Fitness Selection == 1

min max = 1;

else

min max = 0;

end % if

otherwise

min max = 1;

end

%————————————————————————-

% Now Run the Algorithm

%————————————————————————–

switch CI Selection

case 1 %KPSO

PSOfig = figure;

KPSO Algorithm (SensorsData,Nsensors, Len, Wdth, ...

[BSx,BSy],ClusterNo,WSNfitness,min max);

close(PSOfig);

Layout title=sprintf(’ K-PSO Clustering for %i sensors into %i

...

clusters’, Nsensors, ClusterNo);
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case 2 % PSO Variable Cluster

PSOfig = figure;

ClusterNo = Var No Cluster PSOalgorithm(SensorsData, ...

Nsensors,Len,Wdth,[BSx,BSy],WSNfitness,min max,5,50);

close(PSOfig);

Layout title=sprintf(’PSO Variable Clustering for %i ...

sensors into %i clusters’,Nsensors, ClusterNo);

case 3 % KPSO-PSO

PSOfig = figure;

KPSO PSO (SensorsData,Nsensors, Len, Wdth,[BSx,BSy], ...

ClusterNo,WSNfitness,min max,2); % Ellipse

close(PSOfig);

Layout title=sprintf(’ KPSO-PSO Clustering for %i ...

sensors into %i clusters’,Nsensors, ClusterNo);

case 4 % KGA

KGA algorithm (SensorsData,Nsensors, Len, Wdth,...

[BSx,BSy],ClusterNo,WSNfitness,min max);

Layout title=sprintf(’ KGA Clustering for %i ...

sensors into %i clusters’,Nsensors, ClusterNo);

case 5 % GA Variable Cluster

ClusterNo = WSN GA algorithm (SensorsData,Nsensors,...

Len,Wdth,[BSx,BSy],WSNfitness,min max,5,50);

Layout title=sprintf(’GA Variable Clustering for %i ...

sensors into %i clusters’, Nsensors, ClusterNo);

case 6 % KGA-GA

KGA GA 2 (SensorsData,Nsensors, Len, Wdth, ...

[BSx,BSy],ClusterNo,WSNfitness,min max,2); % Ellipse

Layout title=sprintf(’ KGA-GA Clustering for %i ...

sensors into %i clusters’, Nsensors, ClusterNo);

end

%——————————————————————

load WSN CAT results

%————————————————————————-

% Now Plot the Cluster Layout
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%————————————————————————–

axes(handles.Layout axes);

%clf

Draw Clusters( SensorsData,WSN CAT membership,Len, Wdth,

...

WSN CAT CHx,WSN CAT CHy,[BSx,BSy],Layout title );

if CI Selection==3 % KPSO-PSO Ellipse

for ik=1:ClusterNo

hold on;

draw Ellipse(WSN CAT CHx(1,ik),...

WSN CAT CHy(1,ik),WSN CAT Radius(ik),...

WSN CAT Radius(ik+WSN CAT ClusterNo),Len,Wdth);

end % for

end % if

%——————————————————————

% Plot the alive nodes graph vs. Rounds

%——————————————————————

axes(handles.Alive axes);

%clf

plot(WSN CAT alive nodes,’r-’,’LineWidth’,2);

grid;

xlabel(’{\bf No. of Transmissions}’);

ylabel(’{\bf No. of Sensors}’);

axis([0 WSN CAT rounds 0 WSN CAT alive nodes(1)]);

AliveSen title=sprintf(’ Total Number of Alive Sensors ’);

title(AliveSen title,’fontweight’,’bold’);

%——————————————————————

% Plot the Energy graph vs. Rounds

%——————————————————————

axes(handles.Energy axis);

%clf

grid;

plot(WSN CAT Energy,’b-’,’LineWidth’,2);

xlabel(’{\bf No. of Transmissions}’);
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ylabel(’{\bf Energy (J.)}’);

axis([0 WSN CAT rounds 0 WSN CAT Energy(1)]);

Energy title=sprintf(’ Total Remaining Energy ’);

title(Energy title,’fontweight’,’bold’);
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