Chapter 1
Selfadjoint Analytic Operator and Spectral Functions
The, properties of the local spectral function of a selfadjoint analytic operator function A(z) on
A, and a so-called inner linearization of the operator function A(z) in the subspace H (4, ) are
established. Given two possibly unbounded selfadjoint operators A and G such that the resolvent sets
of AG and GA are non-empty, it is shown that the operator AG has a spectral function on R with
singularities if there exists a polynomial p # 0 such that the symmetric operator Gp(AG) is non-
negative. This result generalizes a wellknown theorem for definitizable operators in Krein spaces.
Section (1.1) : Local Spectral Function and Inner Linearization
Let H be a Hilbert space with inner product (-,-), and denote by L(H) the set of all bounded
linear operators in H'. We consider a bounded simply connected domain D < C, that is symmetric with
respect to the real axis R, and an L(H) —valued function A(z) on D which is analytic and selfadjoint,
1e. A(Z) = A(z)",z € D; in particular, A(1) = A(1)",4 € D N R. The spectrum g(A), the point
spectrum o, (A), and the resolvent set o(A) of the operator function A(z) are defined in the usual way
(see [208], [210]). A real point 4, € g(A) is said to be a spectral point of positive type of the operator
function A(z), if for each sequence (x,), satisfying |[x,|| = 1 and ||A(Ag)x,l| = 0 if n - oo, we
have
liminf,_ ., (A'(Ay)xp, Xn) > 0;
(see [208]). The set of all spectral points of positive type of A(z) is denoted by g, (A).
We fix some real interval Ay = [, fo] € D and suppose that
Ay N o(A) € a,.(A), (D
and that ay, Sy € 0(A). Because of (1) we can choose a complex neighborhood U(< D) of A, such
that U \ Ay € d(A) (see [207]). According to [207], [208] (see also [205]), A(z) admits a linearization
A in a Krein space F. Here
F = L4 (o, H)/A@) LA (vo, H) (2)
where y,(c U) is a sufficiently smooth simple positive oriented curve which surrounds A, and passes
through the points a, . The inner product in F is defined by the relation

1
(f,9) = AR (), 9(®)dt f,g € Li(yo, 3), 3)
Yo
followed by the factorization (2). The condition (1) implies that the Krein space F with the inner
product induced by (3) is even a Hilbert space.

In the space L% (yo, H) we consider the operator A, of the multiplication by the independent
variable. The corresponding operator A in the factor space F is called linearization of the operator
function A(z); this operator A is selfadjoint in the Hilbert space F.

Let P denote the mapping of the space H into the space F which associates with the element
g € H the equivalence class in F which contains the vector function u(t) = g € L3 (y,, H), and let
P* be the adjoint operator from F into H. The basic relation which connects A(z) and A is

A(z)™r — B(z) = —P*(A-2)"'P,z € U\o(4), (4
where B(z) is an analytic in U operator function which is uniquely defined by the condition that the
expression on the left hand side is the principal part of the operator function A(z)~! with respect to y,.
The linearization is minimal in the sense that (see [207])
F = span(A— z)"'PH : z € UN p(A), (5)
where U N p(A) can be replaced by any of its nonempty open subsets, and the spectrum of the
operator A coincides with 0(4) N A, (see [207]). The relation

PA=2) (A= = —mpr § BT DT A(t)'dt
( z)( @) T 2mi (t — 2)(t — () Zm (t — 2)(t — ),

z,{ € U and outside of y,, implies for these z, ¢ the formula




1 (A) 1x,y) dt
2mi J (¢ — 2)(t - ),
Yo

for the inner product in F. Because of (5), in the Krein space situation (without assumption (1)) this
implies that the linearization A is uniquely determined up to a weak isomorphism (see [207]), in our
situation (with assumption (1)) this implies the uniqueness of the linearization A in the Hilbert space F
up to unitary equivalence. It is worth to mention that the quintuple {A, P, P*; F, H} is a spectral node in
the sense of [206].

Since the spectrum of the selfadjoint operator A is contained in Ay, the operator A has a spectral
function E which is supported on A, and is defined for all Borel subsets I' of R. In [208] the L(H)-
valued function

(A = 2)7'Px, (A = O)7'Py) = —

Q) := P*E(I')P,I" Borel set in A,
was called the local spectral function of the operator function A(z) on A, (in fact, in [208] this notion
was used for the function Q; := Q([a,,t]),t € Ap); in the following we call the range ranQ(I') the
spectral subspace of A(z) corresponding to I'. Clearly, the values Q(I") of the local spectral function
are nonnegative operators in H but in general not projections.

Under the general assumption (1) the local spectral function does not have some of the
properties that one usually associates with the term ‘spectral function’, e.g. its ranges on disjoint
intervals can have nonempty intersection. This is excluded if instead of (1) on A, the Virozub—Matsaev
condition (VM) is imposed:

(VM)3,,8 > 0: A€ Ay f € H,IIfl = LIAWS, I <& = (ADS.f) > 6.
In [208] it was shown that (VM) is a natural condition for a comprehensive spectral theory of the
selfadjoint operator function A(z). We also assume that A(a,), A(B,) are boundedly invertible. It was
shown in [208] that under the condition (VM) the operator Q (A,) has closed range and hence it has the
remarkable property that it is uniformly positive on its range. In particular, the spectral subspace
ranQ(Ay) =:H(Ay) of A(z) corresponding to the interval A, is a closed subspace of H, which
admits the decomposition (see [208])
H = ran A(By) — + H(Ay) + ranA(ay),.

We mention that the condition (VM) in the case of a finite dimensional space H reduces to the
simpler condition (vmm) (see [331]):

(vm) Ay € Ay, (A(Ao)f,f) = Oforsomef €H,f + 0= (A'(Ap)f,f) > O.

The basic result of the present note is that if the condition (VM) is satisfied on A, and A(z) is
boundedly invertible in the endpoints of A, then always

ran P = F,and P* is a bijection from F onto H (A,). (6)
This implies that the spectral subspaces ranQ(I") of A(z) for any Borel set I' © A, are closed. It also
allows us to show Theorem 7.11in [208] and the following results of [208] in a more compact way and
sometimes in a more general form. Moreover, we construct a so-called inner linearization of the
analytic operator function A(z), which acts in the subspace H (A, )of the originally given Hilbert space
H.

We have already mentioned that the space F and the linearization A were intoduced in [206]
without the restriction (1), i.e. for an arbitrary selfadoint analytic operator function A(z) such that its
spectrum is a compact subset of the domain D. In general the space F is a Krein space and it is ‘much
larger’ than the given space H (with respect to the mapping P). E.g. for a selfadjoint monic selfadjoint
operator polynomial A(z) of degree n and D = C, the space F can be chosen to be H ™ (and A can be
choosen to be the companion operator of A(z)). By enlarging the space H we gain that the linear
operator A in F represents in D the spectral properties of the analytic operator function A(z). However,
under the operator function A(z) satisfies the condition (VM) on the interval [y, o] and that the
operators A(ay) and A(f,) are boundedly invertible, the subspace H (Ay) of H, which is mapped by P
bijectively onto F, can be even smaller than 7, that is, also F can be ‘smaller’ than J; in this situation
P will have a nontrivial kernel. In the particular case that A(ay) << 0,A(By) > 0, the space F is of the
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‘same size’ as H, that is, the mapping P is a bijection between H and F. Clearly, ifmathcal H is
finite—dimensional, F ‘smaller’ than H means dimF < dimH.

The claims (6) are showed in this Section . And we establish some properties of the local
spectral function and of the spectral subspaces of A(z). Finally, we introduce in H (4,) the inner
linearization S of the operator function A(z) corresponding to the interval Ay, which is just an
isomorphic copy of the linearization A in F. As an application, in the case H (4,) = H, which is
equivalent to A(ay) < 0and A(B,) > 0, we give a simple proof of a factorization result of Virozub-
Matsaev from [211] and explicit expressions for the factors in terms of the local spectral function of
A(z).

Theorem (1.1.4) below is the crucial result of this section. In its proof we need some lemmata
which we show first. Recall that the condition (VM) is supposed to hold on the interval A, and that the
endpoints of A, are regular points for the operator function A(z). For an interval Ac A, we introduce
the following subspaces of H:

H, := P'E(A)F,H(A) := P*E(A)PH. (7)
If A= A, the closure in the last relation is superfluous (see [208]); later we will see that all closures are
superfluous. From the definition in (7) it follows immediately that
H (D) € Hy; ®)
below (Corollary (1.2.5)) it will be shown that in (8) always equality holds.
Lemma (1.1.1)[204] If Ac A, then
Hpy = Span {P*E(AYPH : A’ c Ay} 9
Proof. Clearly,
P*E(AYPH c P*E(A)F c P*E(A)F,
and hence for the two sets in (9) the inclusion O follows.
Conversely, from the minimality (5) of the linearization A we have
P*E(A"F = span {P*E(A)F(A — 2)"PH : z € U n p(A)}

Observing that
P*E(A)F(A — 2)71P = f(A — 2)71P* dE(A)P
A

and approximating the integral by finite Riemann-Stieltjes sums, we see that each element x € E(A)F
belongs to the set on the right hand side of (9), and the inclusion C for the two sets in (9) follows.
The following lemma is a partial extension of [208], where it was showed for x € H (A).

Lemma (1.1.2)[204] Let A= [a,B] < A,. If x € H,, then

(A(x)x,x) <0,(A(L)x,x) = 0. (10)
Proof. Consider two intervals Aj = [a;,f;],j = 1,2,suchthata < a; < fB; < a, < B, <, and an
element

x = P'E(A)Px'y + P'E(Ay))Px'y, =: x1 + Xp,x'1,x, € H.
By [208] we have (A(B1)x,,x;) = 0, and hence, by [330] (A(az)x;,%x;) = 0. According to [208]
this implies
(Alaz)xy + x1), %+ %) =0,
and, again by [208], the relation (A(8)(x; + x1),x; + x;) = 0 follows.
By induction, we obtain the second inequality in (10) for all x € H of the form

n
x =ZP*E(Aj)Px’j,x'j €H,j=12..n (11)
j=1

J
where A; = [aj , Bj ],a <apBi<aj,j =1...,n— 1B, < B.If an element x of the form (11)
with arbitrary closed intervals A; is given, we can choose a new decomposition of the set Uj-; 4; into

closed intervals such that not any two of them have common inner points, and obtain a representation
of x as required in the line after (11). By Lemma (1.1.1) the set of elements x of the form (11) with
arbitrary closed intervals A; is dense in H), and the second inequality in (10) follows. The proof of the
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first inequality in (10) is analogous.
Lemma (1.1.3) [204]. Let A =: [a, B] < A,, denote by P, the orthogonal projection onto 4 and set
ApQ) = PAA(/DIJ-[A- (12)

If H is separable, then a;,(A,) is at most countable.
Proof. We can suppose that A lies strictly inside A, i.e.

ay, <a,fy > p. (13)
Indeeed, if e.g. @, = a, we replace the point @, by a point a’y such that ay < @, [agy, ag] © p(A)
and (VM) holds on [ag, a].

By Lemma 1.1.2, Ap(a) <0, Ap(By) = 0, and then from (13) and [208] it follows that
Ap(ag) < 0, Ap(B) >» 0. Since (VM) holds for Ap(A) on A, and @y, By € p(An), the operator
function Ap(4) on Aq has a linearization A, which is a selfadjoint operator in a Krein space F, (see
[207]), and since the whole spectrum of A, is of positive type (see [207]), the space F, is uniformly
positive, i.e. it is in fact a Hilbert space (see [13]). The separability of H, implies the separability of
the space F,, and hence the point spectrum of the selfadjoint operator A, is at most countable. By
[207], p(Ap) = p(Aa) -

Theorem (1.1.4)[204]. If the condition (VM) holds on the interval A, and the endpoints of A, are
regular points for the operator function A(z), then the operators P : H = F and P* : F +— H have the
properties

ranP = F,ran P* = Hpy s
and P* is a bijection between F and H,,, .
Proof. Since ran P* is closed (see [208]) and since E(Ay) = I, from the definition of }, we have ran
P* = H,,. If we show that ran P = F, then it follows that P* is injective and the Theorem is
showed.

According to the definition of F and P, ran P = F means that for any vector function f(t) €
L% (v, I) there exists an element g € H such that

f(©) = g € ADLA (Yo H). (14)
In the first step of the proof we show that without loss of generality we can suppose that the space H is
separable. To this end we choose a dense countable subset T = {t; : j = 1,2,...} of D and, with the
given function f(t) in (14), we consider the closure # of the linear span of all elements

A(tjl )A(tjz ) tee A(t]n )f(t]), t] , t]l !th Yy t]n ET ,j,n € N.
It is easy to check that f(z) € H for all z € D and that H is an invariant subspace of the operators
A(2),z € D. So the restriction A(z) of A(2) to the separable Hilbert space H is an operator function
A(2) in H with the same properties as A(z) in #, and the Hilbert space L2 (¥, ) can be considered
in a natural way as a subspace of L2 (v, ). Therefore, if we find an element bg in  such that
f(©) — g € AL (o, H),

then for the element g in (14) we can choose g = g. So we suppose in the rest of this proof that the
space H is separable.

The relation ran P = F will be proved if we show that ker P* = {0}. Assume X, € F,P*Xy =

0. Choose a point g € 0,(4,,) that is close to the point M, and set Ay ; := [ag, o] and Ay, =

2
[/10, ﬁo] Denote X1 = P*E(Al,l)f()'
The relation P*X, = 0 implies
P*E(A12)%0 = —PE(A1,1)%0,

hence x; N H,, , N Hy, , . By Lemma (1.1.2), (A(4o)x1, x1) = 0 and (A(Ag)x1,x1) < 0, ie.

(A(Ao)x1, %1 = 0. (15)
Since, according to Lemma (1.1.2), Aj,, (49) = 0, relation (15) implies that

AAL1 (A0)x1 = 0.

Using x; € Hjy,, , we obtain by precisely the same argument that Ay ,(4o)x; = 0. So, the vector
A(Ag)x, is orthogonal to both H 5 b =12, and therefore it is orthogonal to H, . Hence
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Apy (Ao)xy = 0,
and the condition x; € H}, , implies that x; = 0. This means that
P*E(A11)Xg = P*E(A12)%, = 0.

Now choose points A';,A', which are close to the middle points of A;; and A, , respectively,
and such that A'; & 0,,(4x Y ),Jj = 1,2. We denote the corresponding subintervals of Ag by A, ;,j =
1,2,3,4. By the same arguments as above we find P*E(4; )%, = 0,j = 1,2,3,4. Continuing this
procedure we obtain a sequence of partitions {4, ; ,j = 1,2,...,2"}of A, ; = 1,2,..., such that

P*E(Ay )% = 0,j = 1,2,...,2"n = 1,2,....
Hence with ¢, ; € A, jandz € C\ A, we find

271
(%o, ) (tnj = D E@ PH =) (0}
j=1

Passing to the limit n — oo we obtain
(%o, (A — 2)7'PF) = {0},

and the minimality of the linearization (see (5)) implies that X, = 0. Thus, ker P* = {0}, and hence
ranP = F.
Corollary (1.1.5)[204]. For all intervals A c A,,

P*E(A)F = P*E(A)PH, (16)
and these sets are closed; in particular H, = H (A).
Proof. The equality (16) follows from the relation ran P = F. Since P* is an isomorphism and the
spectral subspace E(A)F is closed, the subspace on the left hand side in (16) is closed as well.
Recall that

Q) = P*E(T) P,T Borel set of A, (17)
is the local spectral function of the analytic operator function A(z), the range ranQ(I') is the spectral
subspace of the analytic operator function A(z) corresponding to I'. Clearly, Q(I') is a nonnegative
operator in ' which, because of Corollary (1.1.5), is uniformly positive on its range. If A © A, is an
interval such that the endpoints a, f of A are not eigenvalues of the operator function A(z), then the
operator Q(A) can be expressed directly through A(z) as follows:

1 -1
QM) = 5 f A(z) ' dz, (18)
14

where y(A) is a smooth contour in U which surrounds A and crosses the real axis in a and
orthogonally, the prime at the integral denotes the Cauchy principal value at @ and . The relation (18)
follows from the representation of the spectral function of the linearization A by means of the resolvent
of A and the relation (20) (see also [208]).

The properties of the operator valued set function Q(I') are summarized in the following
theorem.
Theorem (1.1.6) [204]. Let [, T}, I,...C A, be Borel sets. Then:
(a) Q) = P*E()F, and ranQ(T) is closed.
(b)) If T} c T, thenranQ(I;) < ranQ(Iy).
() IfQ(y n I) = 0, then

ranQ(ly) N ranQ(T,) = {0},ranQ(l}) + ranQ(l,) = ranQ(l; U I,).

(d) If (T})7” is an infinite sequence such that Q(I; N T}) = O forallj # k,j,k = 1,2,..., then

o

el )= eap.
j=1 j=1

where the sum on the right hand side converges strongly and unconditionally.

(e) The point A, € A, is a regular point of the operator function A(z) if and only if there exists a
neighbourhood I' of 44 such that Q(I') = 0.



(f) The point 4y, € A, is an eigenvalue of the operator function A(z) if and only if Q({4¢}) # 0; in
this case

kerA(4y) = ranQ({Aq}). (19)
(g) For an open interval A the following two statements are equivalent:
(i) dim ranQ(A) = n;
(i1) A contains only a finite number of points of (A), all of them are eigenvalues and the sum of their
multiplicities is n.
In this case

ranQ(d) = span {kerA(A;): A €A Na(A)}.
(h) The eigenvectors of the operator function A(z), corresponding to different eigenvalues in A, are
linearly independent. If there is an infinite number of such eigenvalues, then the corresponding
eigenvectors form a Riesz basis in their closed linear span.
(1) If A is a subinterval of Ay and A, is the operator function in H (A) (= H,) defined by (12), then
d(4,) NA, © A

Proof. The first equality in (a) is a consequence of (16). All the other statements in (a)—(1) follow from
the fact that ran P = F and that P* is an isomorphic embedding of F into #, see Theorem (1.1.4), and
the corresponding properties of the spectral function E of the selfadjoint operator A in F.
For the proof of (1) we observe that with A =: [a, f] by Lemma (1.1.2) we have Ax(a) < 0,4,(B) =
0.
Then, by [208], Ax(a’) K 0 for all @' € [ay, @) and Ap(B") > 0 for all B’ € (B, B,], therefore the
intervals [@g, @) and (3, fy], belongto p(A4a) .

Indeed, multiply (20) by z, — z and let z — z,. Then the left hand side converges strongly to
Q({zo}), and we can also apply it to elements y(z) which converge strongly for z — z,. Now for any x
we find

P E(A})Px = lim, (2 — 20)A(2)'x,
and the limit on the right hand side exists; it is easy to check that this element is in kerA(z,). The

. . - . A(z)x
converse inclusion follows if in the above reasoning we choose y(z) = Z—O

A(zg)xy = 0.

In this section it is convenient to consider P* as an operator which acts from F to H (4,). We
will use for this operator the special notation P;. By Theorem (1.1.4), the operator Pj is boundedly
invertible, and it is easy to see that

(Py)'x = Px, x EH(A). (20)

Furthermore, in this section also the operators Q (I') will be considered as operators in H (A).
Then Q(4A,) is a positive and boundedly invertible operator.

Under the bijection P; from F onto H (4,) the linearization A in F of the operator function
A(z) becomes an operator S which is selfadjoint in H (4,) with respect to a suitable Hilbert inner
product (+,-)o. More exactly, we equip H (4,) with the positive definite inner product

with x, such that

(x,}/)() = (Q(AO)_lx;y)' X,y € H(AO)' (21)
and define in H (4,) the operator
S:= Py AP (22)

Since S acts in a subspace of the originally given space H (equipped with the inner product

(21)) we call S the inner linearization of A(z).
Theorem (1.1.7) [204]. The operator S in (22) is selfadjoint in H (A,) with respect to the inner
product (-,-)o from (21),and, if Es denotes the spectral function of S, for each Borel subset T'of A, we
have

Es(T) = Q(MQo)™"  ranEs(T) = ranQ(I). (23)
Proof. Under the mapping P* the (positive definite) inner product (.,.) on F becomes a positive
definite inner product (-,)y on H(4y). In fact, if X,y € F, P*X = x,P*y = y withx,y € H(4,),
then, observing (20), we find

(x¥)o = (&5 = ()7 'x, (g )~y) = ((P5 )" (P ) ™%, y)
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= ((PoP)'%,¥) = Q(A0) ™ 'x, ).
Further, Q(A,) = P*P implies (P§)™! = PQ(Ay)™ %, and we obtain

= PAR) = fhwummal @4)

Clearly, S is selfadjoint in the inner product (,;)o and for any Borel subset I' c A, the spectral
projection Eg(I") of S in H (4,) is given by

Eg(I) = P"A(P;)™'PR(8o) ™ = Q(DQ(An) ™Y
and also the second equality in (23) follows.
The relation (23) yields also the following corollary.
Corollary (1.1.8)[204]. If I',,T, are Borel subsets of Ajand Q(I; NT,) = 0, then the spectral
subspaces ranQ(I;) and ranQ (I,) are orthogonal in the inner product (-,-), .

Finally we show that a factorization result from [211] can be obtained in a simple way from the
above considerations, and we obtain an explicit form of the factors in terms of the spectral function of
A(2).

Theorem (1.1.9)[204]. Suppose that, additionally to the above assumptions, A(a,) <« 0and A(S,) >
0. Then, in a neighbourhood of A, the operator function A(z) admits the unique factorization

A(z) = A1 (2)(S — 2). (25)
Here the operator S € L(H) is selfadjoint with respect to the inner product (:,-), on H and such that

o(S) = a(4) NnA,,

the operator function A;(z) is boundedly invertible in a neighbourhood of A, and such that A;(z) and
its inverse A;(z)~! are analytic there. The operator S and the operator function A;(z) admit the
representations

1 A - A(2) .
AdQ(MQBo)™" ,A1(2) = | ——F———— dQ(HQ(A0)”
Ao
Proof. According to [208] H(Ay) = H. Hence P is an invertible operator from H to F,P* is an
invertible operator from F to H, and Q(4,) is an invertible operator in . Consider the operator
S = P*AP™" from (24) . The relation (4) and the invertibility of P* imply

A(z2)™r = —=(S — 2)"P*P + B(=2). (26)
forallz € U\ Ay, where U is a neighbourhood of A,. Multiplying (26) from the left by A(z) gives
—A(2)(S-2)71P*P = I — A(2)B(=2). 27)
On the other hand, multiplying (26) from the left by S — z implies
(S — 2)A(z)™t = —=P*P + (S — 2)B(2). (28)

Denote A;(z) := A(z)(S — z)~!. Taking into account that P*P is an invertible operator we see from
(27) and (28) that A,(z) is invertible in a neighbourhood of A, and that A;(z)~? is analytic there.
Moreover,

A1(2) = A@)(S — 2)' = A(2) f(/l — 2)7dQ()Q(Ay) ™!
A

A(z) — ALY _
- [ FE=22 domeor .
-z
Ao
To show the uniqueness of the factorization we consider another factorization A(z) = A,(2) (S —

z) with the same properties as in (25). It follows that

(S-S -2 =L@ 4@,
The operator function on the left hand side is analytic outside A, the function on the right hand side is
analytic in a neighbourhood of A,. Thus both operator functions can be extended by analytic
continuation to the whole complex plane.



If z - oo the left hand side tends to the identity operator, and the claim S = §, A,(2) = b 4,(2)
follows from Liouville’s theorem.

Section (1.2): Products of Selfadjoint Operators

Let A and G be two selfadjoint operators in a Hilbert space (3, (- ,-)) such that either 4 or G is
bounded and boundedly invertible. Then the product AG is selfadjoint in a Krein space. Indeed, if G(A4)
is bounded and boundedly invertible, then AG is selfadjoint in the Krein space (H,[-,-]¢) ((H, [
'] 4-1 ), respectively), where

[, ¥l = (Gx,¥),[x,¥]4r = (A7'x,y),x,y € H.
Conversely, a selfadjoint operator in a Krein space can be written as a product of two selfadjoint
operators in a Hilbert space one of which is bounded and boundedly invertible.

The spectrum of a selfadjoint operator in a Krein space is symmetric with respect to the real
axis. But even simple examples show that the spectrum of such operators can be empty or cover the
entire complex plane. However, some classes of selfadjoint operators in Krein spaces are well-
understood. Among those are the definitizable operators. A selfadjoint operator T in the Krein space
(H, [-,-]) is called definitizable if its resolvent set p(T) is non-empty and if there exists a polynomial
p # 0 with real coefficients such that

[p(T)x,x] = 0 forall x € domp(T).
This definition goes back to H'. Langer who showed that the spectrum of a definitizable operator 7 —
with the possible exception of a finite number of non-real eigenvalues which are poles of the resolvent
of T — is real and that T possesses a spectral function on R with a finite number of singularities, see
[33]. Definitizable operators appear in many applications including differential operators with
indefinite weights (see, [184], [185], [187], [198], [199], [201]), selfadjoint operator polynomials (see,
[189], [32]) and Sturm-Liouville equations with floating singularity (see, [196], [197], [202]).

We extend the spectral theory of definitizable operators from selfadjoint operators in Krein
spaces to products T = AG of selfadjoint operators A and G in a Hilbert space which are both allowed
to be unbounded and non-invertible. Instead of p(T) # @ as in the above definition of definitizability
we will have to assume that both resolvent sets p(AG) and p(GA) are non-empty. If this holds, we say
that the ordered pair (4, G) of selfadjoint operators A and G is definitizable if there exists a polynomial
p with real coefficients such that

(P(AG)x,Gx) = 0 forallx € dom(AG)m**{Ldeg(®)},
In the Krein space case the condition that p(AG) and p(GA) be non-empty is equivalent to p(T) # @
since in this situation the operators AG and GA are similar. For example, we have GA = G(AG)G ™! if
G is bounded and boundedly invertible. Moreover, in this case the ordered pair (4, G) is definitizable
according to our definition if and only if T = AG is a definitizable operator in the Krein space
@, (G ).

In our first main theorem Theorem (1.2.20) we show that the non-real spectrum of a
definitizable pair (4, G) of selfadjoint operators A and G consists of a finite number of poles of the
resolvent of AG and that its real spectral points can be classified into the so-called spectral points of
positive and negative type and a finite set of critical points. This classification is then used in the proof
of our second main result Theorem (1.2.22) to shown the existence of a spectral function for the
operator AG. This spectral function behaves similarly as a spectral measure in Dunford’s sense
(see,[26]) but might have a finite set of singularities which is a subset of the above-mentioned critical
points. Our Theorems show that the class of definitizable operators is in fact a subclass of a much
larger class of operators with the same spectral properties. We mention that in the special case when
both A and G are bounded, A > 0 and 0 & op (A) the existence of a spectral function of AG was
already showed in [188].

The techniques used in our proof of the existence of the spectral function are different to those
in [33] where an analogue of Stone’s formula for selfadjoint operators in Hilbert spaces was used to
define the spectral function. Here, we make use of the concept of the spectral points of positive and
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negative type of symmetric operators in inner product spaces which was introduced by Langer, Markus
and Matsaev in [13], see also [2], [22], [11] for the Krein space case. As mentioned above, in Theorem
(1.2.20) we show that if the pair (4, G) is definitizable, then there exists a finite number of real points
which divide the real line into intervals which are either of positive or negative type with respect to AG.
Due to a theorem in [13] this implies the existence of local spectral functions of AG on these intervals.
In the proof of Theorem (1.2.22) we “connect” those local spectral functions and thus obtain a spectral
function of AG on R with a finite number of singularities.

In the preliminaries section following this introduction we introduce the spectral points of
positive and negative type of a symmetric operator in a (possibly indefinite) inner product space and
show that such an operator has a local spectral function on intervals of positive or negative type. We
consider products AG of selfadjoint operators A and G in a Hilbert space (#,(-,")) such that both
p(AG) and p(GA) are non-empty. The operator AG is then symmetric with respect to the inner product
(Gy +,*), where G, is the bounded selfadjoint operator given by

Go:= G(AG — Ay)"Y(AG — A9)™ L2, € p(AG)\R,
and we analyze the spectra of positive and negative type of AG (corresponding to the inner product
(Gy +,+)). For example, it turns out that these spectra do not depend on the choice of 4, . In this Section
we particularly make use of the results to show the main Theorems on definitizable pairs of selfadjoint
operators, and we apply our results to Sturm-Liouville problems.

Let S be a linear operator in a Banach space X. If S is bounded and everywhere defined, we
write S € L(X). By the resolvent set p(S) of S we understand the set of all A € C for which ran(S —
A = X, ker(S —2) = {0} and (S —2)"! € L(X). With this definition of p(S), the operator S is
closed if p(S) is non-empty. The operator S is called boundedly invertible if 0 € p(S). The set
a(§) := C\p(S) is called the spectrum of S. The approximate point spectrum g, (S) of S is defined
as the set of all A € C for which there exists a sequence (x,) < domS with ||x,|| = 1 and
(§ — Dx, > 0asn - oo. A point 1 € C does not belong to o, (S) if and only if there exists
¢ > 0 and an open neighborhood U of A1 in C such that ||(S — w)x|| = cl|x|| holds for all x €
domSandallu € U.

Throughout this section (#,(-,")) denotes a Hilbert space and G, a bounded selfadjoint
operator in H. The operator G, induces a new inner product [-,-] on H via

[x,y] :== (Gox,y), x,y€ H.

The pair (%, [-,-]) is often referred to as a G,-space. If G is boundedly invertible, (¥, [-,-]) 1is called
a Krein space. A subspace L of H is called uniformly positive (uniformly negative) if there exists
6 > 0 such that

[x,x] = 8llx||1?([x,x] < —8]|x||?,respectively)
holds for all x € L.If L is closed, then £ is uniformly positive (uniformly negative) if and only if
(L, [-'D ((L, =" ,]), respectively) is a Hilbert space. The orthogonal companion of a subspace L is
defined by

L= (x € H: [x,£] = 0 forall £ € L}.
The subspace L is called ortho-complemented if H = L+ LI | If the sum is direct, we write
H = L[+]£M] . The symbol [+] thus denotes the direct [-,-]-orthogonal sum. The following Lemma
will be used frequently, cf. [3].
Lemma(1.2.1)[183]. Let L € H be a closed subspace. If (£,[-,:]) is a Krein space, then L is ortho-
complemented. More precisely, we have

H = L[+]LH]
A closed and densely defined linear operator T in H will be called Gy-symmetric (or [-,]-
symmetric) if
[Tx,y] = [x,Ty] holds forallx,y € domT.
This is equivalent to the symmetry of the operator G,T in the Hilbert space (#,(-,")), i.e., GoT C
(GyT).
The Riesz-Dunford spectral projection of a closed linear operator T in H with respect to a
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spectral set o of T will be denoted by E(T; o).1f o = {A}, we write E(T; A) instead of E(T; {1}).
Lemma(1.2.2)[183]. Let T be G,-symmetric. If A € Cand A are isolated points of the spectrum of T,
we have
[E(T; Dx,y] = [x,E(T; )_L)] forallx,y € H.

Proof. Let ¢ > 0 be a number such that the deleted discs {u € C: |u — 1] < ef\{A}andu € C:
| u— A1 | < ¢&\4 are contained in p(T). Define the curves
v, ¥+ [0,2n] - Cby

y(®):= A + get and Y(t):= 1 + e, t € [0,2m].
Then for x,y € H we have

1
(BT Dxy) = = 5 [ 107 075, y1du
14

1
= f 6, (T — D)~'yldu
y-1

2 21
= LJ [x, (T — 2 — ee®® ) ty] (—i)ee dt = [x,— if e’ (T — () lydt
21i ’ ©2mi
0 0

= [x, E(T; /T)y],

where y 1 (t) := 1 + ge”¥,t € [0,2m].

In [13] the spectral points of positive and negative type of a bounded G,-symmetric operator
were introduced. In the following definition these notions are extended to unbounded operators.
Definition(1.2.3)[183]. Let T be a Go-symmetric operator in H. A point A € gy, (T) is called a
spectral point of positive (negative) type of T if for every sequence (x, ) € dom T with ||x,|| = 1
and (T — )x, — 0asn — oo we have

lrllrilg [Xp,xp]> 0 (l;lm_)szg)[xn, X, 1< 0, respectively).

The set of all spectral points of positive (negative) type of T will be denoted by o, (T) (o_(T),

respectively). A set A < C is said to be of positive (negative) type with respect to T if
AN oy (T)C a+(T)(A N 0q4p (T) © a_(T),respectively).

The following statements were showed in [13] for bounded operators. However, the proofs can
be adopted without difficulties in the unbounded case.

Proposition(1.2.4)[183]. The spectral points of positive and negative type of a Gy-symmetric operator
T are real. Moreover, 0, (T) and o_(T) are open in o4, (T). In particular, if A is a compact interval
which is of positive (negative) type with respect to T, then there exists a C -open neighborhood U of A
such that (U\R) N o,, (T) = @ and U NR is of positive type (negative type, respectively) with
respect to T. Moreover, there exists C > 0 such that for allA € U we have

(T — Dx|| = C| ImAl||x]||, x € domT.
Definition(1.2.5)[183]. Let ] c R be a bounded or unbounded open interval and let s < ] be a finite
set. The system consisting of all bounded Borel subsets 4 of J with A c ] the boundary points of
which are not contained in s will be denoted by R, (J).If s = @, we simply write R(J). Let S be a
closed and densely defined linear operator in the Banach space X. A set function E mapping from
R, (J) into the set of bounded projections in X is called a local spectral function of S on | (with the set
of critical points s = s(E)) if the following conditions are satisfied for all 4,4, ,4, € R; (J):
D) EMyn 4;) = E(41)E(4y).
(i) Ifa,n 4, = @,then E(4; U 4,) = E(4,) + E(4,).
(ii1) E (4) commutes with every operator B € L(H) for which BS < SB.
(iv) a(S|IE(ADH) < a(S) n A.
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V)o(S|(I — E(A)H) < a(S)\ 4.
The points A € s(E) for which the strong limits
s —limioE([A — &4 — thands — limeoE(JA + t, A + €])

do not exist for sufficiently small ¢ > 0 are called the singularities of E.

Let S be a closed operator in a Banach space and let 4 be a compact set in C. A closed subspace
L, € dom S is called the maximal spectral subspace of S corresponding to A if the following holds:
(a)SLy, c L,.
(b) o(S|£Lp) < o(S) N A.
(c) If L € dom S is a closed subspace such that (a) and (b) hold with £, replaced by Lthen L c L,.
By C* (C™) we denote the open upper (lower, respectively) halfplane. The following Theorem has
been shown for bounded G,-symmetric operators in [13].
Theorem(1.2.6)[183]. Let J be a bounded or unbounded open interval in R which is of positive
(negative) type with respect to the G,-symmetric operator T. If each of the sets C* N p(T) and C™ N
p(T) has an accumulation point in J, then T has a local spectral function E without critical points on |
with the following properties
4 € RY)):
(i) The subspace E(A)H is uniformly positive (uniformly negative, respectively).
(i1) The operator E(A) is Gy-symmetric.
(iii) If A is compact, then E(A)J is the maximal spectral subspace of T corresponding to A.
Proof. Let J be of positive type with respect to T. As a consequence of the uniqueness of a local
spectral function (see [310]) it is sufficient to show that the operator T has a local spectral function on
each compact subinterval of J. Let /' be such an interval. By assumption, it is no restriction to assume
that /' contains accumulation points of both C* N p(T) and C~ N p(T). Due to Proposition (1.2.4)
there exists an open neighborhood U of J' in C such that (U\R) N o, (T) = @. Hence, for each
A € U\R the operator T — A is semi-Fredholm with ker(T — A1) = {0}. Since the sets U N C* N
p(T) and U N C™ N p(T) both are non-empty, it follows from [200] that in fact U \R c p(T).
Moreover, by Proposition (1.2.4) there exists C > 0 such that

-1
T = DI < e

holds for all 2 € U\R. By [34] the maximal spectral subspace £ of T corresponding to /" exists and
T|L is bounded. As T|L is also [-,-]-symmetric and ¢(T|L) = o + (T|L) it follows from [34] that
(L,[-,-]) is a Hilbert space. Denote by E, the spectral measure of the selfadjoint operator T|L in
(L,[- /] and by P, the projection onto £ with ker P, = L] which exists due to Lemma (1.2.1).
Then E(-) := E(-)P; defines a local spectral function of T on J'.

Throughout this section let A and G be selfadjoint operators in the Hilbert space (#, (- ,")).
Each of the statements in the following proposition follows from or is an easy consequence of [192]
and [192], see also [193], [203].
Proposition(1.2.7)[183]. Let A and G be selfadjoint operators in H. If’

(29)

p(AG) # @ and p(GA) # 0, (30)
then both operators AG and GA are closed and densely defined and
(AG)" = GA. (31)
Moreover,
a(AG)\{0} = a(GA)\{0}. (32)

In addition, for A € p(AG)\{0} the following relations hold:
A(GA — D)™ = (AG — )14,
G(AG — )71 = (GA — 1)71G.
In our main results (Theorems (1.2.20) and (1.2.22) below) we require that (30) is satisfied.
Since in applications this condition might be hard to verify, the following sufficient conditions for (30)
may be helpful.
Lemma(1.2.8)[183]. The following conditions are sufficient for (30) to hold:
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(a) G is bounded and p(GA) # Q.
(b) G is boundedly invertible and p(AG) # @.
(¢) (AG)" = GAand p(AG) # 0.
(d) p(AG) # @, GA is closed and for some A € p(AG)\{0} the operator G(AG — A)~1A is bounded on
dom A.
Proof. If (¢) holds, then a(GA) = o((AG)") = {/1_ : A€ G(AG)} and hence p(AG) # @. Hence, (c)
implies (30). If (b) holds, then AG and GA are closed and (AG)* = GA. If (a) holds, then AG and GA
are closed and (GA)* = AG. Therefore, (b) implies (c) and (a) implies (c) with 4 and G interchanged.
Consequently, both (a) and (b) imply (30). Assume now that (d) holds. Then the operator GA — A is
injective. Moreover (see also [307]), for x € domA we have G(AG — A) " 1Ax — x € dom(GA)
and

(GA — D)(G(AG — V) 1Ax — x) = Ax.
This shows that domA < ran(GA — 1) and that (GA — 1)1 | domA is bounded. As the closure of
(GA — 1)~ | domA coincides with (GA — A1)~ ! (on ran (GA — 1)), it follows that (GA —A)™! €
L(3).

Indeed, if AG € L(H), then domG = H yields G € L(H). Suppose that (30) holds. Then,
according to Proposition (1.2.7), we have GA = (AG)" € L(H) andthus A € L(H).
Proposition(1.2.9)[183]. If(30) is satisfied, then the following conditions are equivalent.

(a) AG is boundedly invertible.
(b)ran(AG) = H.
(c) GA is boundedly invertible.
(d) ran(GA) = H.
(e) A and G are boundedly invertible.
In particular, 6(AG) = o(GA).
Proof. Clearly, (a) implies (b). Assume that (b) holds. Then ran A = H (which implies kerA =
{0}) and domA = A ' (AGH) c ranG which implies rG = (ranG)t c (domA)t = {0}
Hence, ker(AG) = {0} and (a) follows. By interchanging the roles of A and G it is seen that (c¢) and
(d) are equivalent. The equivalence (a) © (c) is a consequence of (31). Since (a) implies that A is
boundedly invertible, (c) implies that G is boundedly invertible and (e) implies both (a) and (c), the
proposition is showed.
Corollary(1.2.10)[183] Assume that (30) holds. Then for each A € C the following statements hold.
()1 € 0(AG) & 1 € a(AG).
(i) A € 0(AG)\ggpy (AG) = 1 € g, (AG).
Proof. From Propositions (1.2.7) and (1.2.9) it follows that 1 € p(AG) implies

T € p((AG)") = p(GA) = p(AG).
This showes (i). Let us show (ii) for A # 0. If 1 € d(AG)\ogy (AG), A # 0, then it is well-known
that 1 € o, ((AG)") = o0, (GA). Hence, there exists x € dom(GA)\{0}such that GAx = Ax.
Therefore, GAx € domA and (AG — A)Ax = A(GA — A)x = 0. Since Ax # 0 (otherwise,
GAx = 0 and thus x = 0), we conclude that A € o, (AG). But (ii) also holds for A = 0 as in this
case the left-hand side of the implication (ii) is never true. To see this, note that 0 /€ o, (AG)
implies that there is a neighborhood U of zero such that U N g4y, (AG) = @. Now, from (ii) for 4 # 0
it follows that U\{0} < p(AG). Hence, the Fredholm index of AG — A for A € U is constantly zero.
And as ker (AG) = {0}, it follows that also 0 € p(AG).

If (30) is satisfied, by Corollary (1.2.10) there exists A, € c\R such that 1y, 1, € p(AG), and

thus, the operator
Go:= G(AG — A)™ (4G — 7)™ (33)
is bounded. Moreover, due to Proposition (1.2.7) we have
Go = (GA- A )"HG(AG - 29)7Y)"
= (GA — 2)7'((GA — 2)7'6)"
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= (GA — 2)7'G(AG — 2o)7"

= G(AG — 4)7'(AG — 2)™" = Gy

and
GoAG = G (GA — 15) ' (GA — 2y)tAG
C GAG(GA — 25) Y (GA — 2,)!
= GAG, = (GyAG)".

This shows that G is selfadjoint and that AG is Gy-symmetric. Equivalently, AG is symmetric with
respect to the inner product

[x,¥] := (Gox,¥),x,y € H. (34)
Note that the inner product [-,-] is in general not a Krein space inner product. It might even be
degenerate.

For the rest of this section we assume that (30) holds and fix 4, € p(AG)\R, the operator G,
in (33) and the inner product [-,-] in (34). The spectra of positive and negative type of AG are
connected with the inner product [-, -] which itself depends on 4, € p(AG)\R. The following Lemma
shows that g, (AG) and 0_(AG) are in fact independent of A, .

Lemma(1.2.11)[183]. Let A € C. Then A € 0,.(AG) (A € 0_(AG)) if and only if for each sequence

(X, ) € dom AG with ||x,, || = 1and (AG — A)x, — 0asn — cowe have
lim in lim su .
Tll—>lo<])c (Gxn, 20 ) > 0 Tll_, Of(Gxnrxn) < 0, respectively.

Proof. Assume that the condition in the lemma on the approximate eigensequences of AG holds and let
(x, ) © dom AG with ||x, || = 1 and
(AG — Mx, - 0 asn— oo, Set
Yoi= (A = 20)(AG — 29) 'xyp .
Then we have
(AG = Dyn = A = A)(xn + (o — DAG = 2)7 xp) = (4 = 20)(Xn — Yu)-
On the other hand,
(AG — Dy, = (A — )G —2,) 1 (AG — Dx, - 0
asn — o, Hence ||y, || = 1 and since

1
[%n, %] = G(AG - 1) %, , (AG - 29)"'x,, = FEENE GV Yn)
0

we conclude

liminf _ 1 liminf

n_)oo[xnfxn] _ll’{_ﬂ-o |2 n_)oo(Gynfyn) > 0.
Conversely, let A € 0,(AG) and let (x, ) < domAG with||x, || =1and (AG — Dx, -
0as n— oo.Since (Gx,,%x, ) = [(AG — Ay)x, ,(AG — Ap)x, ],
we obtain from (AG — A)x,, —» 0 asn — oo:

limin limin
S Goyxn) = 1= 20 P 3] > o,

which shows the assertion.
Corollary(1.2.12)[183] Assume that (30) holds and that 0 € 0,(AG) U 6_(AG). Then G is
boundedly invertible.
Proof. Suppose that, e.g., 0 € 0,(AG) and that there exists a sequence
(x, ) © domG with||x,|| = 1forn € Nand Gx, — 0asn — oo. Define
VY = =g (AG — Ay) " x, € dom(GAG)
as in the proof of Lemma (1.2.11) (with A = 0). Then AGy, = Ay (, —x,) and AGy, =
—A0A(GA — Ay)"Gx,, > 0 asn > o as A(GA — A,)~! is bounded. Therefore, ||y,|]| = 1 and

since 0 € 0,(AG), from Lemma (1.2.11) we conclude l;lm_)”g(Gyn,yn) > 0. But this contradicts

Gy, = =y (GA— 1) 1Gx, » Oasn - oo.
Lemma(1.2.13)[183]. Assume that (30) is satisfied. Let L € domAG be a closed subspace such that
AGL c Land 0 € p(AG|L).IfH = L + LI then (£, [-,-]) is a Krein space.
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Proof. Let P, be the orthogonal projection (with respect to (-,)) onto £ inH. Then, with G, :=
P;(Gy|L) € L(L) we have
[€1,€2] = (Gcty,42) for €1,4;, € L.
Hence, (£,[-,7]) is a Krein space if and only if G, is boundedly invertible. Let £ € ker G;. By
assumption, for any x € Hwe find x; € Land x, € LIt suchthatx = x; + x,. It follows that
(GO {)' X) = [f, X1 + x2] = [f, xl] = (GL‘E' xl) = 0)
= 0. From
0 = G(AG — 25) Y(4G — 25) ™ 2= (GA — 2,) (4G — A,)7'G?
we conclude G¢ = 0 and hence AGY = 0 which implies € = 0as 0 € p(AG|L). Therefore we have
H = L[+]LM (since kerG, = £ n L),
Now, suppose that there exists a sequence (£,,) < £ with ||€,]| = 1 and ||G;€,]|| = 0asn — oo. If
by P we denote the (G,-symmetric) projection onto L with r P = LI | we obtain
1Gc8all2 = (Gobns PGols) + (Gobn,(I — P)Goln)
= (PGoln, PGoly) + [€n,(I — P)Goty ]
= (Gbn, PGoty)
< NGetnll - NIP A= 11Goll
Hence, Gof,, = 0asn — oo. It is easy to see that LI*] is AG-invarant. Hence, £ is (AG — 1,)7 " -
invariant. And since AG|L is bounded, we conclude
1Go?nll < ICAG = 2)ILIl - II(AG - 29 )T AG, ]|
= I(AG = A0)ILIl - 1A(GA — 2A9) ™ Gotnll
< I(AG = AQIL |- IAGA = 20)7M ]I - 11Gonll.
Thus, we have (AG — 19) Y(AG — A, ) tAG¢, = AGyf,, — 0, which implies AG¢, > 0asn —
oo, which is a contradiction to 0 € p(AG|L). The Lemma is showed.
Proposition(1.2.14)[183]. Assume that (30) is satisfied. Then for each A € C the following statements
hold.
(1) If A # 0 is an isolated point of the spectrum of AG , then the inner product space
(E(AG; {A, /T}) H,[ ,-]) is a Krein space.
(i) If A is a pole of the resolvent of AG of order v then A is a pole of the resolvent of AG of order v.
Proof. For the proof of (i) set E := E(AG;{A, /i}) As E is [+, ]-symmetric by Lemma (1.2.2), it
follows that (I — E)H < (EH)M . And since = EH + (I — E)H, Lemma (1.2.13) yields the
assertion.
By [305] the fact that A & R (the statement for A € R is trivial) is a pole of the resolvent of AG
of order v is equivalent to
(AG — DVE(AG; 1) = 0and (AG — )V E(AG; 1) # 0.
Letx,v € E (AG ; /T) H be arbitrary. From Lemma 1.2.2 we obtain
[(46 — 1)'x,v] = [E(AG; 2)(4G — 1)"x,v] = (AG — 1)"x, E((AG; )v) = 0.

Furthermore, foru € E(AG; A)H we have

[(AG — 2)"x,u] = [x,(AG — 1" u] = O.
Hence, [(AG — /T)vx,y] = 0 for all y € E((AG;{/L/T})}[). And as (E(AG;{/L/T})%, [ ,]) 1S a

Krein space by (i), we obtain (AG - /T)vx = 0.

Proposition(1.2.15)[183] Let A, be a bounded selfadjoint operator in H and assume that GoA,G, =
0. Then the following statements hold for the bounded G,-symmetric operator A,G,, :

(1) 0(AoGo) © R,

(i) (0,0) N d(AeGo) < 04(ApGo),

(iii) (=0,0) N 0 (ApGo) < 0_(AeGp ).

Proof. Let 1 € gy, (AgGo )\{0} and let (x,,) © H with [Ix, | = L,n €N, and (4yG, — Dx,, —
0 asn — oco. We claim that it is not possible that lim,_ . (GoAgGoXxn, X,) = 0. Suppose the
contrary. Then, from the Cauchy-Bunyakowski inequality we obtain

and thus G, £

14



1GoAoGoxpll* < (GoAoGoXn, X )((GoAoGo )?xn, GoAgGoXy),

and hence GyAyGox, = 0asn — . As (A,Gy — )x, — 0, this implies Gyx,, = 0 and hence
AyGox, — 0asn — o. A contradiction.

Assume that there exists A € 04, (AgGo )\R. Then there exists (x, ) € Hwith ||x,|| = 1and
(ApGy — V)x,, = 0asn — oo. Since [AgGoXn, Xn ] — A[xp, X, ] tends to zero as n — oo and
[A9Goxp, X, | and [x,,, X, ] both are real for each n, it follows from A /€ R that [AyGyxy,, X, ] tends to
zero which contradicts the statement showed above. Hence ag),, (AgGy ) \ R = @, and from Corollary
(1.2.10) (ii) we obtain a(4yG, ) < R.

LetA € a(A¢Gp),A > 0.Then A € g,y (AgGy ) by Corollary (1.2.10) (ii). Let
liminf [

— ©0

(xp) € H with||x, || = 1 and (AyGy — A)x,, = 0asn — co. Suppose X Xn ] < 0.

Then from
liminf liminf
= — >
A N — oo [xn, %0 ] N — oo [(A — AoGo )xn, xn] + (GoAoGoXpn, Xn) = 0
it is seen that there exists a subsequence (X, ) such that GoAoGyXpk , Xni tends to zero as k — oo. But
this is a contradiction to the statement showed above, and it follows that

limin
Tll_:o:[xn,xn] > 0.

This shows (ii), and (iii) can be shown similarly.

As a corollary of Proposition (1.2.17) we give another proof of a Theorem of Radjavi and
Rosenthal (see [16]). Recall that a closed subspace is hyperinvariant for T € L(X), X a Banach space,
if it is invariant for any operator in L(X) which commutes with T
Corollary(1.2.16)[183]. Let S,T € L(H) be selfadjoint such that STS > 0. If 7S is not a constant
multiple of the identity, then TS has a non-trivial hyperinvariant subspace.

Proof. If a(TS) # {0}, then the assertion follows from Proposition (1.2.15) and Theorem (1.2.6) (see.
[23]. Hence, suppose that a(TS) = {0}. It is no restriction to assume that S and T are injective.
Otherwise, ker(TS) or ranTS = ker(ST)* is hyperinvariant for TS or TS = 0. Hence, T is a non-
negative operator and Proposition (1.2.7) yields (¢TY/2ST/2) = {0}. But T*/2ST*/? is selfadjoint
and thus coincides with the zero operator. This yields T = § = 0, a contradiction.

In the following we extend the notion of definitizability of selfadjoint operators in Krein spaces
to products (or pairs) of selfadjoint operators in a Hilbert space. As in the previous section let A and G
be selfadjoint operators in the Hilbert space (3, (-,-)). Again, if (30) is satisfied for A and G we fix
Ao € p(AG), define the bounded selfadjoint operator G as in (33) and set [-,-] := (G, ).
Definition(1.2.17)[183]. An ordered pair (A4, G) of selfadjoint operators is called definitizable if the
resolvent sets of AG and GA are non-empty and if there exists a polynomial p # 0 with real
coefficients such that

(P(AG)x,Gx) = 0 forall x € dom(AG)™**{Ld}
where d := deg(p). The polynomial p is called definitizing for (4, G).

If G is bounded and boundedly invertible, then AG is selfadjoint in the Krein space (¥, (G -,+))
and Definition (1.2.17) coincides with the definition of definitizability of the operator AG in this Krein
space. The next Lemma shows that the definitizability of (4, G) can also be expressed by means of the
inner product [+ ,].

Lemma(1.2.18)[183]. Assume that (30) is satisfied. Let p # 0 be a polynomial with real coefficients.
Then the following statements are equivalent.
(1) (A, G) is definitizable with definitizing polynomial p.
(1) [p(AG)x,x] = 0 holds for all x € dom p(AG).
Proof. Let d be the degree of p. If (i) holds and € dom(AG)? , then with x := (AG — A,) 'y €
dom(AG)?*! we have
[p(AG)y,y] = (P(AG)(AG — Ag)x, Gy (AG — A¢)X)
= ((AG — 29)p(AG)x, (GA — Z5)™'Gx)
= (p(AG)x,Gx) = 0.
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Conversely, assume that (ii) holds and let x € dom(AG)%*!. Then with y := (AG - Ao )x €

dom(AG)? the following holds:
(p(AG)x, Gx) = (p(AG)(AG — {to )71y, G(AG — A9)7y)
= (p(46)y, (6GA — %) G(AG — 20)7y)
= (p(AG)y, Goy) = [p(AG)y,y] = 0.
Hence, the proof'is finished ifd = 0.Letd > 0and x € dom(AG)%. As p(AG) # 0, there exists a
sequence (x,) © dom(AG)%*! such that for k = 0,1,...,d we have (AG)*x,, - (AG)*xasn -
00, Moreover, due to domAG < domG and the closedness of AG and G there exists ¢ > 0 such that
|Gull < cllull] + || AGul|| for allu € dom AG.

Therefore, from x, — x and AGx,, — AGx we conclude Gx, — Gxasn — o. This gives
(p(AG)x,Gx) = lim,_» (p(AG)x,,Gx, ) = 0. The Lemma is showed.
The proof of the following Lemma is similar to that of Lemma (1.2.18) and is therefore omitted.
Lemma(1.2.19)[183]. Let p # 0 be a polynomial with real coefficients and degree d. Then the
following holds:
(a) If (A, Q) is definitizable with definitizing polynomial p, then (G, A) is definitizable with definitizing
polynomial Ap(A).
(b) If G is boundedly invertible, then (A, G) is definitizable with definitizing polynomial p if and only if
the relation (p(GA)x, G™1x) = 0 holds for all x € dom(GA)™*{L.d},

It is well-known (see [33]) that the spectrum of a definitizable operator T in a Krein space is
real — with the possible exception of a finite number of non-real poles of the resolvent of T — and that T
has a spectral function on R with a finite number of singularities. The following two theorems
generalize this result to definitizable pairs of selfadjoint operators.
Theorem(1.2.20)[183]. If (A, G) is definitizable, then the following statements hold.
(a) The non-real spectrum of AG consists of a finite number of points which are poles of the resolvent
of AG. Each such point is a zero of every definitizing polynomial for (A, G).

(b) If A € o(AG) N (R\{0}) and p(A) > 0 for some definitizing polynomial p for (A, G),thenA €
0. (AG).
() If A € o(AG) N (R\{0}) and p(A) < O for some definitizing polynomial p for (A, G),thenA €
o_(AG).
Proof. Let p be a definitizing polynomial for (4, G) and set m := deg(p) + 1. Let z; € C\R such
that p(z, ) # O. First of all let us show that there exists some A; € p(AG) such that
o —\—m-1
75 p(20) (20 — A )" 1(20 - 11) € R.
To see this, choose two open intervals J; and], such that 0 & J, ,z, € J; X J, and J; X J, € p(AG).
Withd = x + iy € J; XJ;and zy = ag + i, we have
(2o — A)(Zo - /1) = (@ — 0)* = B30 + y* + 2iBy (@p — x) =:f(x,¥).
The function f : J; X J, — R? has the derivative
) _ (—2(a — x) 2)’)

f (x' y) - ( _Zﬂo O '
Its determinant equals 45,y and does therefore not vanish as 0 € J, and z, € R. Hence, f(J; X J,) is
an open set in C \ {0}, and thus also

(@)@ = 1) ™M zo = B) s A€y xJo} =12 p(20)z Vs z € f(h X))
is open. By Lemma (1.2.18) it is no restriction to assume 1, = A; (# z; ).
For k = 1,2 define the rational functions
e () == 2pDA- )™ (A - Xy
Thenr; (zp) € R. Define the bounded operator
Ao := AGAP(GA)(GA- 29)™(GA — Zo) . (36)
It is not difficult to see that A, is selfadjoint. Moreover, we observe that

(35)

)—m—k
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Gry, (AG) = GAGAGp(AG)(GA- 29) ™ 2(GA — ,1_0)"“‘2

= GoAGP(AG)AG(GA - 2)™ 1(GA — Tp) "
= GyAoGy -
Similarly, one showes that
r (AG) = AyG,.
In addition, GyAyGy = 0 holds as for x € H we have
y = AG(AG — 1y) ™ x € domp(AG)
and

(GoAoGox,x) = (GAGAGP(AG)(AG — o)™ %(AG —To)'m‘zx,x)
= (646(A6 - Z) "7 (4G — 29)'p(4G)y, x)
= (6A(4G — 1) ™ Gop(AG)y, x)
= (Gop(AG)y,y) = [p(AG)y,y] = 0.
By virtue of Proposition (1.2.15) we obtain o(r; (AG)) = d(AyGo) < R. And since 7y () is analytic
in a neighborhood of a(AG) U {0}, it is a consequence of the spectral mapping theorem [191] that
11 (0(AG)) < Randthus z, € p(AG). To complete the proof of (a) it remains to show that each
A € d(AG)\R is a pole of the resolvent of AG. To this end we show that
p(AG)E(AG; {2, 2} = 0). (37)
From this it follows that also p(AG)E(AG; A) = 0. And since the spectrum of AG|E(AG; A)H
coincides with {4}, we have (AG — A)*E(AG; A) = 0, where « is the order of A as a zero of p. This
and [191] imply the assertion. So, let us show (37). Let y € E(AG; )H and z € E(AG; /T)iH” be
arbitrary. By Lemma (1.2.2) we have [p(AG)y,y] = [E(AG; D)p(AG)y,y] = [p(AG)y, EAG; /Ty] =
0,[p(AG)z,z] = 0 and thus
[p(AG)y,z] + [p(AG)z y] = [p(AG)y,y + z] + [p(AG)zy + Z]
= [p(AG)(y + 2z),y + z] = 0.
But at the same time,
—[p(AG)y,z] — [p(AG)z y] = [p(AG)y,—z] + [P(AG)(—2), Y]
= [p(AO)(y - 2),y — z] 2 0.
Hence, [p(AG)(y + 2),y + z] = 0 and thus [p(AG)x,x] = 0 holds for all x € E(AG;{A,1})H By
polarization we obtain [p(AG)x,y] = Oforallx,y € E(AG; {/1, /T})}[ But (E(AG; {A, /T})}f, [ ,]) 1S
a Krein space by Proposition (1.2.14) (i), and p(AG)x = 0 for all x € E (AG;{A, /T})}[ follows.
Hence, (a) is showed.
For the proof of (b) we observe that by (a) there exists a definitizing polynomial p for (4, G)
such that p(4y) # 0. Define the rational function r; as in (35). Let ; € R\{0} such that p(4; ) > 0.
Then also r; (A; ) > 0, and there exists a function g which is analytic on U := C \{/10 , A_O} such that
n) —nM) =gWA - 4),1€ U
It is obvious that g is a rational function with the poles A, and 4, , both of order m + 1. Therefore,
there exists a polynomial g with q(4y) # 0) such that
g = gD = )™ A - Z) "
From the identity
Pp@) = 1 DA — )™ A = Z)" = @ - &)
we see that deg(q) = 2m + 1. Hence, the operator g(AG) is bounded. Let (x,, ) € domAG be a
sequence with ||x,, || = 1 and (AG — 1, )x,, = 0 as n = oo. With the operator A, from (36) we have
(AoGo — (4 ))xn = (11 (AG) — 11 (A))xn = g(AG)(AG — A1 )x, > O
asn — oo, And since GyAyG, = 0 it follows from r;(1; ) > 0 and Proposition (1.2.15) that
lim inf[x x,] > 0.
n—-o W
This shows that A; € 0,(AG). The assertion (c) is showed similarly.
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The following example shows that the condition (30) is essential for Theorem (1.2.20) to be
valid.

Example(1.2.21)[183]. Let T be a closed and densely defined symmetric operator in the Hilbert space
H which is uniformly positive but not selfadjoint. Then T has a uniformly positive selfadjoint
extension A (e.g., the Friedrichs extention). Since for x € dom(T*T) we have (T*Tx,x) = || Tx||? =
S|l x]|* with some & > 0, the selfadjoint operator |T| := (T*T)'/? is boundedly invertible. We set
G := |T|”! . Then AG = T|T|™! and hence (AGx,Gx) = 0 for x € domAG. But since AG is
bounded while A is unbounded, it follows from Remark (1.2.10) that (30) is not satisfied. Let us now
see that the statements (a)—(c) of Theorem (1.2.20) do not apply. For this we note that for x €
dom |T|and y € H we have

(TIT| "' x, TIT| " y) = ((T*T) %, (T*T)?y) = (x,)

which shows that the operator AG is an isometry with domAG = H and ranAG = ranT # H. The
spectrum of AG therefore coincides with the closed unit disk.

Assume that (4, G) is definitizable. Theorem (1.2.20) shows that there is only a finite number
of real points which are not contained in p(AG) U 0,(AG) U o_(AG). In analogy to definitizable
operators in Krein spaces these exceptional points will be called the critical points of (A,G). By
Theorem (1.2.20) each non-zero critical point of (A4, G) is a zero of every definitizing polynomial for
(4, G). Moreover, if G is not boundedly invertible, then due to Propsition (1.2.9) and Corollary (1.2.12)
zero is a critical point of (4, G). The set of the critical points of (4, G) is denoted by c(4, G).
Theorem(1.2.22)[193]. Assume that (A, G) is definitizable. Then the operator AG possesses a spectral
function on R with the set of critical points s := c(4, G).

Proof. The proof is divided into several steps. In step 1 we define the spectral projection E'(4) for sets
A which have a positive distance to s. In step 2, E(4) is defined for compact intervals. This will be
used in step 3 to define E(4) forall 4 € R (R).

(a) By R (R) we denote the system of all sets 4 in Rg (R) with4 N s = @. In this first step
of the proof we define E (4) for A € R, (R) and show that the set function E on R (R) satisfies (i)—
(v) in Definition (1.2.5). Let p be a definitizing polynomial for (4, G) and let Z be the set of zeros of p.
By Theorem (1.2.20) the points in Z divide the real line into intervals which are of either positive or
negative type with respect to AG. The set Z contains the critical points of (4, G), but there might be
spectral points of AG in Z which are not critical. However, a slight modification of the set Z leads to a
finite set Z' of real points which divide R into intervals J;,...,J, of positive or negative type with
respect to AG, respectively, such that Z' N d(AG) = s. By Theorem (1.2.6), on each interval J; the
operator AG has a local spectral function Ej. For 4 € Ry (R) weset 4 := A N J, N d(AG), k =
1,...,n,and

E(8) 1= ) Ei(4y).
k=1

As A, € R(Jy )fork = 1,...,n, this is a section definition. Each of the subspaces L :=
Ex(4x ),k =0,...,n,is contained in domAG and is AG-invariant. In the following we shall show that
Ly N L; = {0}fork # j. LetAd € Cbearbitrary. Then 1 € A or A € A, . Assume A ¢ 4, . Then
L€ p(AG|L; ) and thus ker(AG|L, NnLj-2)= {O})Lety € L, NL; .
hen,asy € L; ,the vector

x:= (AGIL; — M)ty :nhﬁ)(“‘(" — @+ i)ty
exists and is contained in both £; and £ . Hence, we have 4 € p(AG|Ly, N L;). As this is similarly
showed for 1 & A,, it follows that o(AG|L; N L;) = @ and hence £ N L; = {0}. Therefore, as
E(4y) and E;(4; ) commute, we obtain

Ex(4x)Ej(4;) = Ej(4;)Ex(4x) = 0.

This shows that £, + L; is a subspace and that £, C L][l] . In fact, we have shown that
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E(W)H = Eg(lo)H[H] -+ [HEn(dn)H.
With the help of this decomposition it is easily seen that the function E, defined on R;, (R), satisfies
(1)—(v) in Definition (1.2.5).

(b) In this step we define the spectral projection E([a,b]) for a compact interval [a,b] €
R, (R). To this end choose a’, b’; witha < a’ < b’ < b such that there is no critical point of AG in
[a,a’] U [, b]. We set

4, := [a,a']l and 4, := [b',b].
Define the spectral subspaces L; := E(4;)H,j = 0,1. As these are both uniformly definite, on
account of Lemma (2.1.1) we have
H = Ly [+H)L, [+] H, (38)
where H = (Lo [+]£,)* = (I — E(4p U 4,))H. We set T;:= AG|L;,j = 0,1,and T :=
AG|H . With respect to the decomposition (38) the operator AG decomposes as AG = T, [+] Ty [+
] T. As a consequence of the results in step 1 we have
a(T) c a(AG) (4, U 4,). (39)
This implies (a,a’) U (b’,b) < p(T).Set A:= [a’,b'] and denote by E, the Riesz-Dunford spectral
projection of T (in H) corresponding to A. Similarly as in the proof of Lemma (1.2.2) it is seen that
E, is [- ,-]-symmetric. With respect to the decomposition (38) we now define
E(la,b]) := Ig, [+] 1z, [+] En.
This is obviously a [-,-]-symmetric projection in H which commutes with the resolvent of AG.
Moreover, 6 (AG|E([a,b])H) < |a,b].

In the following we show that the above definition of E([a, b]) is independent of the choice of

a’ and b". To this end we show the following claims.
(a) The subspace E ([a, b])H is the maximal spectral subspace of AG corresponding to [a, b].
(b) E([a, b]) commutes with every bounded operator which commutes with the resolvent of AG.

For the proof of (a) let K € domAG be an AG-invariant (closed) subspace such that
0(AG|K) < [a,b]. By Theorem (1.2.6) the maximal spectral subspaces K of AG|XK corresponding to
4j exist, j = 0, 1. These are uniformly definite with respect to the inner product [-,]. Hence,

K = Ko [+]K: [+] X,
where K = (K, [+]K; [+])™ n KX and 6AG|X < [a',b']. From 0(AG|¥;) c 4; and the
maximality of £; we conclude X; < L;,j = 0,1, and set

M:= (Lo [+]£,) + XK.
This sum is direct (and hence o(AG|M) < [a,b]): Set L := L, [+]L; . By [16], cAG|L n K c
(4o U 47) n [d,b'] = {a',b'}. From the maximality of X, and X, it follows that a',b’ &
a,AG|L N K. And as the resolvent of AG|L N K satisfies a growth condition (29) in neighborhoods
of Ay and 4, , we conclude LN K = {0}.

Now, with M: = (£, [+]£; ) N M we have

M = Lo [+]L, [+] M.
As L, and £; are maximal, the spectrum of AG|M is contained in [a’,b']. Since M ¢ H and E, H is
the maximal spectral subspace of AG|H corresponding to [a’, b'], this implies M c E, H and hence
K cM c E([a, b])H. (a) is showed.

Let B be a bounded operator in ' which commutes with the resolvent of AG. Then BAG C
AGB and hence E(4;)B = BE(A ) j = 0,1, see (iii) in Definition (1. 2.5). Hence, L, and £; and

also their orthogonal companions L I'and L[J'] are B-invariant. And as H = L[l] N LL[ , it follows
that with respect to the decomposmon (38) the operator B decomposes as B = BO[ ]Bl [+] B.
Hence, BT c T B which implies that B commutes with E,. Finally, we conclude that B commutes
with E([a, b]), and (b) is showed.

Now, let a”,b” € Rwitha < a" < b" < b such that [a, a”] and [b", b] do not contain
any point from s and construct a spectral projection of AG corresponding to [a, b] as in step 1 with a’
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and b" replaced by a” and b". Denote this projection by P. As the maximal spectral subspace of AG
corresponding to [a,b] is unique, we have PH = E([a,b])H by (a). Therefore, PE([a,b]) =
E([a,b]) and E([a,b])P = P. But (b) yields that P and E([a,b]) commute. Therefore, P =
E([a,b])P = PE([a,b]) = E([a,b]).

Above, it was shown that E([a,b]) commutes with any bounded operator in H which
commutes with the resolvent of AG and that ¢(AG|E([a, b])H) < a(AG) N [a, b] holds. Hence, the
projection E([a, b]) has the properties (iii) and (v) in Definition (1.2.5). It also satisfies (iv) as due to
(a,a’) U (b',b) c p(T) and (39) we have

d(AG|(I — E([a,b))H) = oT|l — E,3 = oT\(a,b)
c g(AG)\(4y U 4:)\(a,b) = a(AG)\[a, b].
Moreover, similarly as the proof of Ei(4;)Ej(4;) = 0 in step 1, it is showed that
E([a,b])E([c,d]) = 0 for compact intervals [a, b], [c,d] € R (R) with [a,b] N [c,d] = ©.

(c) In this last step of the proof we define the spectral projection E(4) for every 4 € R (R)
and show that the function E, defined on R (R), has the properties (i)—(iv) in Definition (1.2.5). Let
A4 € R, (R). Theneach @ € A4 N s is contained in the interior 4; of A. Hence, there exists a compact
interval A4, < A such that A%, N's = {a}. Choose these intervals such that 4, N Ag = @ fora,p €
ANs,a # B, and define the projection E(4) by

E(4): = Z E(4,) + E| 4\ U 4, ). (40)
a€eANs aEANS
Let @ € s and let [a,b] € Rs (R)such that (a,b) N's = {a}. Furthermore, let a’,b’ € (a,b) such
thata' < a < b".
From the construction of E([a, b]), E([a’, b]) and E([a, b']) in step 2 it is seen that
E([a,a") + E([a,b]) = E([a,b']) + E((b",b]) = E([a,b]).

With the help of this property it is shown that E (4) in (40) is well-defined.

It remains to verify that E satisfies the conditions (i)~(v) in Definition (1.2.5). Let 4,4, €
Rs (R). Then 4; = Aj U A7, where A} U A7 = @,47 € Ry (R) and

Af = U 4,

a€ljns

with compact intervals A7, as above, j = 1,2. We may choose the intervals 47, such that the following
holds:

(@) 42N A2 = Al n A3 = @,

()AL, = A% fora € A; N 4, N s,

(4N A5 =0 ifa # p.

Then we have
E(4; n 4y) = E((41u 42)n (43 v 43))
= E((Aluad)u (4in 43)

> E@Y+ E@HEMED).
aeAlnAan

On the other hand,

EAOE@) = ) ) EUDE(4E) + ELHE@)).

a€Aq Ns BEA, NS
And as E(AL)E (Aé) = 84pE(4}), where 8, is the Kronecker delta, (i) follows.

The proof of (ii) is straightforward and (iii) follows from the facts showed in steps 1 and 2. For
the proofs of (iv) and (iv) let 4 € Rg (R). Then 4 = A; U 4, where 4; N 4, = 0,4, € Ry (R),
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and 4, is the union of mutually disjoint compact intervals A, ;€ R (R),j = 1,...,r, withAg,;N
s = {a; }. Due to the definition of E(4) we have
E(M)H = E(de)H[H] -+ [HE@Aer YH[HE ().
Hence,
0(AGIE(A)H) < (6(AG) N Ay4y) U---U (6(AG) N 4,1) U 0(AG) N 4,
= (6(AG) N 41) U 0(AG) N 4, c o(AG) N A.
From (I — E(4))H c (1 — E(44; ))7{ forj =1,...,rand I — EQ)H c (I — E(4,)H
we conclude

a(AG|(I — E(A)H) < o(AG|(I — E(4q; ))H),

o(AG|(I — E(A))H) < a(AG|(I — E(42))H),
and therefore

o(AG|(I — E(A)H) € c(AG)\ A1 N...n 0(AG)\ Ay N 0(AG) \ 4,
c o(AG)\ 4, N a(AG)\ 4,
c og(AG)\ A v 044,
where 04 is the real boundary of 4, . This is a finite set which depends on the choice of the 4,; ’s.
Hence, the theorem is showed.
Let w,p and q be real-valued functions on a bounded or unbounded open interval (a, b) such

thatw,p™1,q € L},. (a,b) andw > 0 almost everywhere. The differential expression

1
() =5, @f + af)
is then called a Sturm-Liouville differential expression. Usually, the differential operators associated
with T are considered in the weighted L2-space L2, (a, b) which consists of all measurable functions
f: (a,b) - Cfor which f2w € L! (a,b).If
essinf
x € (a,b
then the topologies of L2, (a, b) and L?(a, b) coincide, and the selfadjoint realizations of 7 in L2, (a, b)
are similar to selfadjoint operators in L?(a, b). In the following we use the abstract results from the
previous section to show that also in more general cases it can make sense to consider differential
operators associated with 7 in L2(a, b).
By 4 denote the operator of multiplication with the function w1 in the Hilbert space L?(a, b).
The operator 4 is selfadjoint and non-negative (in L?(a, b)). In addition, define the operator
Gmax in L2(a,b)by G f = —(pf")' + qf,f € dom Gp,qy, where
domGmq, = {f € L*(a,b): f,pf' € ACioc — (a,b),—(pf")' + qf € L?(a,b)}.
The selfadjoint realizations of the differential expression
7o (f) == =(f)' + af
in L2(a, b) are well-known to be restrictions of G4, In what follows let G be a selfadjoint realization
of 7y in L% (a, b).
Proposition(1.2.23)[183]. If w € L*(a,b) and G is boundedly invertible, then the spectrum of the
operator AG is real, and AG has a spectral function without singularities on R.
Proof. From w € L*(a,b) it follows that the operator A = w™1! is boundedly invertible in L?(a, b).
Hence, 0 € p(4) N p(G) which implies that both AG and GA are boundedly invertible. Therefore,
(30) is satisfied for the selfadjoint operators A and G. Furthermore, for f € domAG we have
(AGf,Gf) = 0 as A is non-negative. Hence, the pair (4,G) is definitizable with definitizing
polynomial p(1) = A, and the assertions follow directly from Theorems (1.2.20) and (1.2.22).

ess sup
)w(x) >0 andx € (a b)w(x) < oo,
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Chapter 2
Finite Rank Perturbation and Lipschitz Functions
We obtain more general results about the behavior of double operator integrals of the form

Q= Fx) — fO))(x — y) *dE,(x)TdE,(y) , where E; and E, are spectral measures. We
show that if T € S;, then Q € S and if rank T =1, then Q € S; . Finally, if T belongs to the
Matsaev ideal S, then Q is a compact operator. It is the aim of this note to show a more general
variant of this perturbation result where the assumption on p(B) is dropped. As an application a class
of singular ordinary differential operators with indefinite weight functions is studied.

Section (2.1): Definitizable Operators

Let (X, [-]) be a Krein space, i.e., K can be written as the direct [-,-]-orthogonal sum K, [+
|K_ of Hilbert spaces (¥, [,']) and (X_,—[-,-]), and let 4 be an operator in K which coincides with
its adjoint A* with respect to the indefinite inner product [-,-]. In general such selfadjoint operators may
have unpleasant spectral properties, e.g., the spectrum may cover the whole complex plane. we
consider the special class of definitizable operators. A selfadjoint operator A in X is called
definitizable if the resolvent set of 4 is nonempty and there exists a polynomial p # 0 such that p(A)
is a nonnegative operator in the Krein space X, cf. [176,177]. Definitizable operators arise in various
applications and have been studied extensively in the last decades, see,
[159,160,161,162,163,170,171,172,173,175,176,177,178,179,180]. In connection with spectral
problems for Sturm—Liouville operators with indefinite weights definitizable operators were studied in
[157,159,160,162,171,172]. In these applications the particular operator of interest can be regarded as a
perturbation of a definitizable operator A, X A_ in K, where A, and A_ are selfadjoint operators in
K, and K_, respectively. Therefore general perturbation results for definitizable operators are very
useful and of great importance.

A classical well-known result on finite rank perturbations of definitizable operators was showed
by P. Jonas and . Langer in [169]. Assume that A is a definitizable selfadjoint operator in the Krein
space K, let B be a selfadjoint operator in K with nonempty resolvent set p(B) and suppose that

dimran(B =A™ — (A - D H <o

holds for some, and hence for all, A € p(4A) N p(B). Then it was shown in [169] that also the
perturbed operator B is definitizable. However, in applications it is often difficult to verify the
condition on p(B), e.g., for ordinary differential operators with indefinite weights, cf. [162], so that
there is a strong desire to have a perturbation result of the above type available without any
assumptions on the resolvent set of B. It is the aim of Theorem (2.1.2) in the present note to fill this
gap. Instead of a finite rank perturbation in resolvent sense we suppose that the symmetric operator
S = A n B is of finite defect, i.e., the (graphs) of A and B by finitely many dimensions. Under this
assumption we show the following equivalence for two selfadjoint operators A and B in a Krein space:
A is definitizable if and only if B is definitizable.

In this Section new variant of the perturbation result from [169] is applied to ordinary
differential operators with an indefinite weight function. We consider singular differential expressions
of order 2n on R and generalize some of the results in [162].

Let (¥, [-,-]) be a Krein space and let A be a linear operator in K. The symbols domA, kerA,
and rand stand for the domain, kernel and range of A, respectively. Suppose that A is a selfadjoint
operator in X, i.e., A coincides with its adjoint A* with respect to the indefinite inner product [-,].
Then A is said to be definitizable if its resolvent set p(A) is nonempty and there exists a real
polynomial p,p # 0, such that

[p(A)x,x] =0  forallx € domp(A).

It was shown by H. Langer that a definitizable operator A has a spectral function which is
defined on all real intervals with boundary points which are not critical points of A, see [176,177].
Moreover, for a definitizable operator A the nonreal spectrum g(A) N (C\ R) consists of at most
finitely many pairs of eigenvalues which are symmetric with respect to the real line. Note that a
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selfadjoint operator A with p(A) # @ and the property that the hermitian form [A -,-] defined on
domA has finitely many negative squares is definitizable, cf. [177].

Definitizability of selfadjoint operators in Krein spaces can also be characterized in a different
form, see Theorem (2.1.1) below. Recall that for a selfadjoint operator A in KX a point A from the
approximative point spectrum is said to be a spectral point of positive type (negative type) of A if for

each sequence (x,) © domAwith ||x,|l=1,n = 1,2,...,and |[(A — Vx|l = 0 for n - oo,
limin lim su ,
BN OZ:[xn, Xn] >0 (n N Of[xn, xX,] <0, respectwely)

holds, cf. [168,178]. The selfadjointness of 4 implies that the spectral points of positive and negative
type are real. An open set 4 C R is said to be of positive type (negative type) with respect to A if 4 N
o (A) consists of spectral points of positive type (negative type, respectively). We say that an open set
A c Ris of definite type with respect to A if A is either of positive or negative type with respect to A.
The next Theorem follows from [167] and [168] where the concept of local definitizability of
selfadjoint operators in Krein spaces is investigated in details.We shall use the equivalent
characterization of definitizable operators from Theorem (2.1.1) in the proof of Theorem (2.1.4). The
one-point compactifications of the real line and the complex plane are denoted by R and C,
respectively.
Theorem(2.1.1)[156]. Let A be a selfadjoint operator in the Krein space K. Then A is definitizable if
and only if the following holds:
(i) Every point p € R has an open connected neighborhood U, in Rsuch that both intervals Uy, \ {1}

are of definite type with respect to A;
(i) o(A) N (C\ R) consists of at most finitely many isolated points which are poles of the resolvent of
A;
(iii) there exist m > 1,M > 0 and an open neighborhood O of R in C such that
(A =D Y <MA + AP 2| ImA|™  forallA € O\ R
In this section a classical result from [169] on finite rank perturbations of definitizable operators
is generalized, see Theorem (2.1.2) below. Roughly speaking we drop the assumption from [169] that
the perturbed operator has a nonempty resolvent set. In order to formulate our variant of the
perturbation result we remind the reader that a (possibly nondensely defined) operator S in the Krein
space (X, [-]) is called symmetric if [Sx,x] is real for all x € domS. Recall also that a closed
symmetric operator S in K is said to be of defect m € Nif there exists a selfadjoint extension A of
S in K such that dim(graph(A)/ graph(S)) = m. Note that m is independent of the choice of the
selfadjoint extension 4 of S.
Theorem( 2.1.2)[156]. Let A and B be selfadjoint operators in the Krein space K and assume that
A N B is of finite defect. Then A is definitizable if and only if B is definitizable.
Proof. Assume that 4 is definitizable and let S := A N B, i.e.,
domS = {f € domA n domB: Af = Bf},

Sf = Af = Bf,f € domS. (D
We will show in the following that p(B) is nonempty. Then the assumption that the defect of S is finite
implies that

dim(dom(A — N)™1/dom(S — 1)) = dim(dom(B — 1)"t/dom(S — 1))

is finite forall A € p(A) N p(B)and (A —A)~f =B —D)7f, fedom(S — )71, yields

dimran(B —2)1—A — ) 1< forall2 € p(A) n p(B). (2)
Therefore the statement of Theorem (2.1.2) follows from [169].
Let p # 0 be a definitizing real polynomial for the selfadjoint operator A, that is, p(4) is a
nonnegative operator in K and with the exception of at most finitely many points the set C\ R belongs
to p(A). It is clear that p(A) is symmetric in the Krein space K and it follows from a(p(4)) =
p(c(A4)) (see, [166]) that p(p(A)) N (C\ R) is nonempty. Therefore p(A) is a selfadjoint operator in
K and as p(A) is nonnegative we have

Q\Rc p(p(4). (3)
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Observe that domsS in (1) is in general not a dense subspace in K and therefore the adjoint of S

has to be defined in the sense of linear relations, i.e., S* is the linear subspace

ST :={f.f} € K2:[Sg,f] = [9.f] forallg € domS}
of K X XK cf, e.g., [164]. Here and in the following the elements of a linear relation are written in
curly brackets. Operators are regarded as linear relations via their graphs. Note that the definition of S*
extends the usual definition of the adjoint of a densely defined operator and, moreover, S*is an
operator if and only if domS is dense in K.

We claim that for each 1 € C\ R the linear relation p(S*) (see, e.g., [165,189]), can be

decomposed in the form

p(S™) = p(A) +{h Ah}: h € ker(p(S™) — D)}, (4)
Where + denotes the direct sum of subspaces. In fact, S € Aand A = A* implies A < S*, and
hence also p(4) © p(S™). Therefore the inclusion

p(A) + {h,Ah}: h € ker(p(ST) — D)} c p(ST)
holds and the sum is direct since by (3) we have ker(p(4) —A) = {0} forany 4 € C\ R. In order to
verify the reverse inclusion let {f, '} € p(S*). By (3) we have ran(p(4) — 1) = K,2 € C\R,
and hence there exists {g,g'} € p(A) such that f' — Af = g' — Ag. This, together with {f, f' —
Af} € p(ST) — Aand{g,g' — g} € (p(4) — A) < (p(S*) — ) implies
f-90=1{f-A}—{9,9 —24g9} € p(§T) -2,

ie, f —g € ker((S*) —A). Thus {f,f'} = {9.9'} + {f —9,A(f —g)} is decomposed as in
4.

Next it will be shown that p(S*) is a finite dimensional extension of p(A4). According to (4) it
is sufficient to check that ker(p(S*) — A,) is finite dimensional for some A, € C\ R. Observe first
that the polynomial q(u) := p(u) — A, has no real zeros since p is a real polynomial and 4, € C\ R.
Hence there existm € N, kq,...,ky, € N,S4,...,0n € C\Rand a € C\ {0} such that

a = a| [ =Bk
i=1

Furthermore we can assume that 4, € C\ R was chosen in such a way that none of the nonreal
eigenvalues of the definitizable operator A is a zero of q. According to [189]
m

ker q(S™) = ker(p(S™) — ) = Z ker(S™ — B )k ()
i=1
holds. As the defect of S is finite, ST is a finite dimensional extension of A and from the fact that each
B; belongs to p(A) we conclude from
St = A+ {{g.Bi9}: g € ker(ST — )}
that the dimension of ker(S* — f;),i = 1,...,m, is also finite. In a similar way as for operators one
then verifies
dim(ker(S*t — B; )k;) <

and thus (4) and (5) imply

n:= dimp(ST/p(4)) = dim(kerp(S* — 1)) < oo. (6)
Hence, p(S*) is a finite dimensional extension of p(A4). From (6) we conclude that the closed
symmetric operator (p(S*))* in K has finite defect n and (p(S*))* < p(A) implies that (p(S*))* is
nonnegative. Since p is a real polynomial it follows that p(B) is a symmetric operator in K. From
B = B*¥and S € B we obtain B c S*, hence p(B) is a restriction of p(S*) and an extension of
p(S),p(S) € p(B) € p(ST).As (p(§*))* and p(S) have finite defect and p(B) is a symmetric
operator, it follows that p(B) admits selfadjoint extensions in K which are operators. Then it follows in
the same way as in the proof of [162] that such a selfadjoint (operator) extension T of p(B) has a
nonempty resolvent set. In fact, by (3) we have ran(p(4) — 1) = K for all A € C\ R, hence the
ranges of p(S) — A are closed and the same holds for the ranges of the finite dimensional extensions
p(B)—Aand T — A, 1 € C\ R. Suppose now p(T ) = @. Then it follows that in at least one of the
halfplanes there are infinitely many points belonging to 0,(T ).Let fy,..., fn41 be eigenvectors
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corresponding to n + 1 different eigenvalues of T in that halfplane. Choose vectors gy, ..., gn4+1 10 the
dense subspace domT such that [Tf;, g;] = 6;;,i,j = 1,...,n+ 1, holds, cf. [162]. Then the Krein
space
L= (spanfy,..., fa+1, 91, G+ b [T D)
contains an (n + 1)-dimensional neutral subspace. Hence L contains also an (n + 1)-dimensional
negative subspace, which contradicts the fact that T is an n-dimensional extension of the nonnegative
operator p(S). Therefore
p(T) + 0.

Since [T - ,-] has finitely many negative squares and p(T ) # @ it follows that T is a
definitizable operator, cf. [177]. In particular, the set C\ R with the possible exception of at most
finitely many points belongs to p(T ). Therefore, up to a finite set eachA € C\ R is a point of regular
type of the finite dimensional restriction p(B) of T , that is, ker(p(B) — 1) = {0} and ran(p(B) —
A) is closed. This together with o,,(p(B)) = p(o; (B)) and the fact that the range of B — A is closed
for all A € p(A) implies that there exists a pair {,u, i}, u € C\ R, of points of regular type of B, i.e.,
ran(B — p)and ran(B — 1) are closed and ker(B — u) = ker(B — ) = {0}. But this is
possible only if ran(B — pu) = ran(B — 1) = XK, therefore {¢, u} € p(B). Thus p(B) # @ and
the statement of Theorem (2.1.2) follows from (2) and [169]. We note for the sake completeness that
p(B) # @ implies p(p(B)) # @ and hence p(B) is selfadjoint, coincides with T and is an extension of
(P(S*)*. (See [158,168,162].

Corollary(2.1.3)[156].. Let S be a closed symmetric operator of finite defect in the Krein space K and
assume that there exists a selfadjoint extension of S in K which is definitizable. Then the following
holds:

(1) every selfadjoint extension of S in K which is an operator has a nonempty resolvent set and is
definitizable;

(i1) if S is densely defined, then every selfadjoint extension of S in K has a nonempty resolvent set and
is definitizable.

We consider the formal differential expression of order 2n on R given by

1 ™ (n-1)
() = Z(ED"pof ™)™ + O S OD)T 4 tpaf), ™
where 7,p51,p1,...,Pn € Li,.(R) are assumed to be real functions such that r # 0andp, > 0
a.e. on R. With the help of the quasi-derivatives

d*f
f _ff d k’ k:]-lzl-'-ln_l;
dr avkf d
f[n] = Dy dxn,f[""'k] = Dk dxnk - _f[n+k_1]: k=12..n
cf. [174,181], the formal expression (7) can be written as
1
(F) = -t @)

Following the lines of [157,162] we show that under suitable assumptions definitizable selfadjoint
operators in a Krein space can be associated to the differential expression ¢

For the weight function r the following condition (I) is supposed to hold (cf [157] and [162]):
(I) There exist a,b € R,a < b, such that the restrictions 7, := 7_ (b,0) and r_:=r [ (—,a)
satisfyr, > 0Oa.e.on (b,0)andr. < 0a.e.on (—x,a).
In the following we agree to choose a,b € R in such a way that the sets {x € (a,b): r(x) > 0} and
{x € (a,b):r(x) < 0} have positive Lebesgue measure. This is no restriction. We note that the case
r, < 0and r_. > 0 can be treated analogously. We do not consider the case that r, and r_ have the
same signs. Under suitable assumptions these cases are contained in the considerations in [162], cf.
Remark (2.1.5). below.

Let L|T|(R) be the Hilbert space of all equivalence classes of measurable functions f defined

on R for which f If (x)|?|r(x)|dx is finite. We equip L|r| (R) with the indefinite inner product
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vgk=ff@EG%@mL f.g € I2,(R), ©)

and denote the corresponding Krein space (Lm(]R) [,-D by L|r|(IR1) . The maximal operator S,,,,f =
£(f ) associated to (8) is defined on the dense subspace D,,,,, consisting of all functions f € L2(R)
which have absolutely continuous quasi derivatives fL0, fI11, . f[27=1] gquch that f € L2(R). The
restriction S5, of S,4, to functions with compact support is a densely defined symmetric operator in
the Krein space L2(R). The minimal operator S, is the closure of S2.;,, . It is a symmetric operator in
LZ(R) of defect m,0 < m < 2n, and S,};, = Spax holds, cf. [162,181]. In particular, the selfadjoint
realizations of £ in L%(R) are finite dimensional extensions of S,,;, in L2(R) .

Denote by ¢_,%,, and £, the differential expressions on the intervals (—oo,a), (a, b)and
(b, ), respectively, which are defined in the same way as £, except that the functions 7,pg, p1,---,Pn
in (7) are replaced by their restrictions onto (—oo,a), (a, b) and (b, o), respectively. By condition (I)
the inner product (9) is positive definite on functions with support in (b, ) and negative definite on
functions with support in (—oo,a). Furthermore, (9) is indefinite on functions with support in (a, b).
Therefore

L7, (b, ) := (L., (b, ), [/])
is a Hilbert space,
12 ((~,a)) = (L (=0, ), [])

is an anti-Hilbert space, i.e., (L|r (=, ), [ ) is a Hilbert space, and

rw«am)—(%w|wﬁn,,) rap = 11 (@,b),
is a Krein space with infinite positive and negative index. Since a and b are regular endpoints, the
minimal closed symmetric operators Sy, + and Sp,;, — associated to £, and £_ have defect m,n <
m < 2n, cf. [181], and the selfadjoint realizations of ¢, and £_ in L%Jr((b, ®)) and L% ((—0, a)) are
finite dimensional extensions of S,,,;, + and Sy, — , respectively.
Theorem(2.1.4)[156]. Suppose that the weight function r satisfies condition (I) and assume that
A, and A_ are selfadjoint brealizations of ¢, and #_ in the spaces L2 ,((b,)) and L2 ((—,a)) ,
respectively, such that the following holds:
(1) A, is semibounded from below and A_ is semibounded from above;
(i) thesete := o(A,) N o(A_) is finite;

(ii1) there exist disjoint open intervals Tl, ..., Jh0 € Rand some j, € {1,...,ny + 1} such that
n0+1

MAQ\&}CLJ% ando(a)\ (e} < | ] %
k=jo+1
Then every selfadjoint realization of the differential expression ¢ in the Krein space L2(R) has a
nonempty resolvent set and is a definitizable operator.
Proof. Denote the minimal closed symmetric operator associated to £, in the Krein space Lrab((a, b))
by Siinap- The defect of Syin qp 15 2n, cf. [181]. Let A, be a selfadjoint extension of Sy, qp 1n the
Krein space Liab ((a,b)). Then according to [258] the spectrum o(A,,) is discrete, p(A,p) 1S
nonempty, the hermitian sesquilinear form [4,;, -,-] defined on dom A, has finitely many negative
squares and A, is definitizable. Let A, and A_ be selfadjoint realizations of £, and #_ in L2 (b, ®))
and L2_((—o, a)) , respectively, such that (i)—(iii) hold. We claim that the direct sum
A= A_ XAy, XAy, domA = domA_ X domA,, X domA, (10)
is a definitizable operator in the Krein space
7 ((—w,a) x L7, ((a,b)) x L} ((b,®)) = Li(R).

This will be Verlﬁed with the help of Theorem (2.1.1). First of all A, are selfadjoint operators in
Hilbert or anti-Hilbert spaces and thus their spectrum o(Ay ) is real. Therefore a(4) N (C\R) =
o(Aap) N (C\R). As A, is definitizable, condition (ii) in Theorem (2.1.1) is satisfied. Similarly the
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definitizability of Ay, together with the growth properties ofthe resolvents (Ay —A)71,1 € C\R, in
L%, ((b,)) and L?_((—o0, a)), respectively, implies (iii) in Theorem (2.1.1).

It remains to check that each point 4 € R has an open connected neighborhood U, such that
both intervals U, \{u} are of definite type with respect to A. Assume first 4 € R.As A, (A_) is a
selfadjoint operator in a Hilbert space (anti- Hilbert space, respectively) o(A,) (6(A_)) consists only
of points of positive type (negative type, respectively). Now (ii) and (iii) imply that U, can be chosen
such that both intervals U, \{u} are of definite type with respect to A_ X A,. Since g(Ayp) is discrete
we can assume U, \ {#} < p(Agp) and hence both intervals U, \ {u} are also of definite type with
respect to A. Let us now consider the case u = co. As the hermitian sesquilinear form [A,, - ,-] has
finitely many negative squares it follows that there exist u, € (0,0) and u_ € (—o0,0) such that the
interval (i, ,0) is of positive type with respect to A, and the interval (—oo, u_) is of negative type
with respect to A,,. Since by (i) A, and A_ are semibounded from below and above, respectively, u,
and y_ can be chosen such that (u,,©) € p(A_) and (—oo,u_) < p(A,). As a(A,) is of positive
type and a(A_) is of negative type we conclude that (u, , 00) is of positive type with respect to A and
(—oo,u_) is of negative type with respect to A. Thus (i) in Theorem (2.1.1) holds and it follows that A
is a definitizable operator in the Krein space L2(R).

Since A, are selfadjoint extensions of the operators S,,,;, + and A, is a selfadjoint extension of

Sminap it 1s clear that A is a selfadjoint extension of the closed symmetric operator S = Sp;, — X
Sminap X Smin+ in L#(R) . Furthermore, domS is dense and S has finite defect m,4n <m < én.
Hence by Corollary (2.1.3) (ii) every selfadjoint extension of S is definitizable. Since each selfadjoint
realization of £ in L2(R) is an extension of the minimal operator S,,,;,, associated to € and S C S,
the assertion of Theorem (2.1.4) follows.
Remark(2.1.5)[156]. The case that the weight function r is positive (negative) on (—oo,a) and (b, o)
is not considered in Theorem (2.1.4). We note that, e.g., the positivity of 7,7~ and the
semiboundedness of A, and A_ from below imply that for some ¢ € R the selfadjoint operator
A — a, where A = A_ X Ay, X A, is as in (10), has a finite number of negative squares and
o(A) N (—oo,7n) is discrete for some 7 € R. Then the same is true for all selfadjoint realizations of ¢
in L2(R) , cf. [162].

Definitizability of selfadjoint realizations of indefinite Sturm—Liouville differential expressions
of the form (7)-(8) was already studied in [162]. In addition, the selfadjoint differential operators
arising in [162] have finitely many negative squares. The following two corollaries connect Theorem
(2.1.4) with the results in [162].

Corollary(2.1.6)[156]. Suppose that the weight function r satisfies condition (I) and assume that A,
and A_ are selfadjoint realizations of £, and £_ in Lﬁ+ ((b,)) and L2 ((—, a)) , respectively, such
that 6(A;) N (—,0) and 6(A_) N (0, ) consist of finitely many eigenvalues.

Then every selfadjoint realization B of the differential expression £ in the Krein space LZ(R)
has a nonempty resolvent set and the form [B - ,-] has finitely many negative squares.

Proof. The assumption that o(4,) N (—,0) and o(A_) N (0,00) consist of finitely many
eigenvalues implies that conditions (i)—(iii) in Theorem (2.1.4) hold. Hence every selfadjoint
realization of in L2(R) has a nonempty resolvent set and is definitizable. Furthermore, it is not
difficult to see that the selfadjoint operator A, X A_ in L7 ((—0,a)) X L7 ((b,)) has finitely many
negative squares (cf., e.g., [160]) and the same holds for the selfadjoint operator A = A_ X Ay, X
A, in L%(R), cf. (10). Therefore the symmetric operator S = Spin— X Sminap X Smin+ also has
finitely many negative squares and hence every selfadjoint realization B of ¢ in L2(R) has finitely
many negative squares.

Corollary(2.1.7)[156]. Suppose that the weight function r satisfies condition (I) and let S;, + and
Smin be the minimal closed symmetric operators associated to ¢, and ¢_ in L2 ,((b,»)) and
L% ((—,a)), respectively. Assume that there exist b’ € (b,o0)anda’ € (—,a) such that
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[ Smin+ -] and [ Spin— -] are positive on the set of functions from dom Sy;, + and dom Sy, —
which have compact support in (b’, ) and (—, a"), respectively.

Then every selfadjoint realization B of the differential expression ¢ in the Krein space LZ(R)
has a nonempty resolvent set and the form [B - ,-] has finitely many negative squares.
Proof. As in the proof of [162] one verifies that the inner product [ S,,;, + -,-] has a finite number of
negative squares on dom Sy,;, +. Hence, if A, is an arbitrary selfadjoint extension of S,,;, ;+ in
L2 . ((b, ®)), then also the form [A, -,-] defined on domA, has a finite number of negative squares, so
that 0(A;) N (—,0) consists of finitely many eigenvalues. Analogously it follows that for any
selfadjoint extension A_ of S;,;, - the form —[A_ -,-] has finitely many positive squares, hence the
positive spectrum of A_ in L2 ((—o0,a)) = (L|2T_| ((=00,a))), —[,]) consists of at most finitely many
eigenvalues. Therefore the statement follows from Corollary (2.1.6).

Section (2.2): Perturbed Operators

In this section we study the behavior of Lipschitz functions of perturbed operators. It is well
known that if f € Lip, i.e., f is a Lipschitz function and A and B are selfadjoint operators with
difference in the trace class Sy, then f(4A) — f(B) does not have to belong to S;. The first example of
such f, A and B was constructed in [154]. Later in [85] a necessary condition on f was found under
which the condition f(4A) — f(B) € S; implies that f(A) — f(B) € S;. That necessary condition
also implies that the condition f € Lip is not sufficient.

On the other hand, Birman and Solomyak showed in [81] that if A — B belongs to the Hilbert—
Schmidt class S,, then f(A) — f(B) € Syand ||[f(A) — f(B)lls, <l fllLip | A — Blls, , where
| fllLip & supysy If(x) — fFO)] - |x — y|™'. Moreover, it was shown in [81] that in this case
f(A) — f(B) can be expressed in terms of the following double operator integral

r - 1@ = [[ P22 a5, 000 - 51y 0) an

where E, and Eg are the spectral measures of A and B. We refer the reader to [79], [80], and [81] for
the beautiful theory of double operator integrals. Note that the divided difference (f(x) —
f(¥))/(x — y) is not defined on the diagonal. Throughout this note we assume that it is zero on the
diagonal.

In this section we study properties of the operators f(A) — f(B) for selfadjoint operators
A and B such that A — B hasrank oneor A — B € §;. Actually, we consider more general operators
of the form

1) # [[ B2 an or aro, (12)

where E; and E, are Borel spectral measures on R and rank T = 1 or T € §;. Duality arguments also
allow us to study double operator integrals (12) in the case when T belongs to the Matsaev ideal S,.
Recall the definitions of the following operator ideals:

S1e0 & {T : IITlls, ,, & supjzes;(TI(L + ) < oo},

n
SEdT: ITlls & (log(2 + n))‘lzsj(T) < w!
7=0

and

o 5i(T)
S;
Se 4T+ |ITlls, & » -— <
w ITlls, 'Eol-l_j ®
]:

It is well known that S, , is not a Banach space and its Banach hull coincides with S,. Also recall that
the dual space to S, can be identified in a natural way with Sg,.

In [73] contains results on properties of f(A4) — f(B) for f in the H'older class A, 0 < a <
1, and selfadjoint operators A and B with A — B in Schatten—von Neuman classes S,,.
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Theorem(2.2.1)[153]. Let f € Lip and let E; and E, be Borel spectral measures on R. If rank T =
1,thenJg, g, (f,T) € Sy and

||7E1'E2(f’T)”sm < const ||flliplITIl-
Theorem (2.2.1) immediately implies the following result.

Theorem(2.2.2)[153]. Let f € Lip and let E; and E, be Borel spectral measures on R. If T € S,
then Jg g, (f,T) € Sand

196, £, (. Tl < const lIfllip IT.
By duality, we obtain the following theorem.
Theorem(2.2.3)[153]. Let f € Lip and let E;andE, be Borel spectral measures
on R. Then the transformer T & Jg g (f,T) defined on S, extends to a bounded
linear  operator from S, to the ideal of all compact operator and,
”jEl,Ez(f'T )” < const ||fllipllT s, -

Using interpolation arguments, we can easily obtain from Theorem (2.2.2) the following fact.
Theorem(2.2.4)[153]. Let f € Lip and let E; and E, be Borel spectral measures on R. Suppose that
1<p<owande > 0.IfT € §,, then
Ie,5,(fiT) € Spye -

Birman—Solomyak formula (11) allows us to deduce straightforwardly from Theorems (2.2.1), (2.2.2),
and (2. 2.3) the following theorem.
Theorem(2.2.5)[153]. Let A and B be selfadjoint operators on Hilbert space and let f € Lip. We
have

(Dif rank(A — B) = 1,then f(A) — f(B) € Sy and ||[f(4) = f(B)ll's,,

< const |fll.pllA — Bll;

(i) if A — B € Sy, thenf(A) — f(B) € Sand|l f(4A) — f(B)lls, < const||Ifll.ipllA — Blls, ;
(iii) if A — B € S,,then f(A) — f(B)is compact and ||f (A) — f(B)Il < const ||fllipllA —
B ”sw;
(iv)if1 < p < o,e> 0,andA — B € S,,then f(A) — f(B) € Spy¢.

It is still unknown whether the assumption T € S; implies that Jg g, (f,T ) € Sy . If this is
true, then the condition A — B € S, would imply that f(A) — f(B) € S, forl < p < o,

To show Theorem (2.2.1), we obtain a weak type estimate for Schur multipliers.

For a kernel function k € L?(u X v), we define the integral operator
T+ L*(v) > L*(u ) by

(9:9) () = f k(e Y)g)dv(y), g € L2W).

As in the case of transformers from S; to S; (see [81]), Theorem (2.2.1) reduces to the
following fact.
Theorem(2.2.6)[153]. Let u and v be finite Borel measures on R, @ € L?(u),y € L?(v). Suppose that
f € Lip and the kernel function k is defined by
fO)- )
k(x,y) = <P(x)ﬁ ), xyeR

Then the integral operator 7, : L*( v) — L?(u )with kernel function k belongs to S; o, and
1Tells,.. < constllollzq Wl 2,
Proof. Without loss of generality we may assume that [|@|[;2(,y = [Pll2py =1 and|l fllp = 1.
Let us fix a positive integer n.
Given N > 0, we denote by Py multiplication by the characteristic function of [—N, N] (we
use the same notation for multiplication on L?(u )and on L?( v) . Then for sufficiently large values of
N,

1
T — PyTiPulls, < iz (13)
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Clearly, PyJ,Py is the integral operator with kernel function ky, ky(x,y) = xy(x)k(x, v)xn (),
where yy = x[—N, N] is the characteristic function of [-N, N].We fix N > 0, for which (13) holds.
Consider now the points x; ,1 < j < r,andy;,1 < j < s, at which u and v have point masses and

1 _ 1 .
lp ()17 ufx; 3 z-lsj=m and [Y(y;)1*v{y; } z-lsjs=s (14)

Clearly,r < nand s < n. We define now the kernel function k, by

ks, y) = u@ky(x,)v»), xy €R,
where

u®) = 1 = Yy 3 andv(@y) £ 1 — xqy, 53 @).
Obviously, the integral operators 7y, and Jy, coincide on a subspace of codimension at most r +s <
2n.
We can split now the interval [N, N] into no more than n subintervals I,I € 3, such that

LR

4
fl(P(X)Izu(X) du(x) +f ¥ O IPv() dv(y) =—, I€
I I

This is certainly possible because of (14).
We have 7, = IO 4+ 9@ 4 363) where

(19 9)) = [ | D0 ety i) | 90) v,

R \I€J

290 = [| D 0@k |90 dvw),
R \LJE3I#]|I]2|]]|
and

029 = [| Y 1@k s dvo),
R \LJEJIII<|/I
(we denote by |I| the length of T). It is easy to see that |7 || g < 4n~Y2 Let us estimate 7 . The
2

integral operator 73 can be estimated in the same way.
Suppose that I,] € 3,1 # J,and |I| = |J|.Forx € Iandy € ], we have
1 1 y—c(J) 1
X —y x - c(])+x —c(D'x -y’
where c(J) denotes the center of J.
Suppose that L 1/3)(] andg 1 (ﬁf)(] . ThenJ,g9 =7y, g, where

ky(oy) = Z u@)ex)ay; (x, )% )vy)

Lje3 1] |12|]|
a6 y) = 1 (02— E((gf - jyc(y )

Thus 7@ and 7, , coincide on a subspace of codimension at most 2n.
To estimate the Hilbert-Schmidt norm of Jy , , we observe that

|71
dist(1,])) '’

and

X ).

|a11 (x;Y)l < (|]|+ x €I,y € ].

Thus
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Il < Y [torude || [wrvay | ayl.
Lje3 1=/ M1zIJI \1 I

4 /12

=7 ) 2
n Lje3, 12,1121 (Ul + dlSt(I']))

Let us observe that for a fixed ] € §,

/12

. 2

LIESI=L 1|21 (U1 + dist(,)))

Indeed, we can enumerate the intervals | € J satisfying I # J and |I| = |/| so that the resulting
intervals Ik satisty dist(I,]) < dist(Ii+4,/). Since the intervals [, are disjoint, we have

3
U1-

< const. (15)

dlSt(Ik,]) 2 2

This easily implies (15). It follows that

2 4 4C
1y ||52 SC.n=—.
Similarly, 7®) coincides on a subspace of codimension at most 2n with an operator whose Hilbert—
Schmidt norm is at most 2 (C/n)*/2.
If we summarize the above, we see that [, coincides on a subspace of codimension at most 6n
with an operator whose Hilbert—Schmidt norm is at most Kn~='/2, where K is a constant. Hence, on a
subspace of codimension at most 7n the operator I, coincides with an operator whose norm is at most

K/n,ie.,
K
Son(ly) SZ, n =1,

Note that in the case of operators on the space L?(T) with respect to Lebesgue measure on the
unit circle T, the following related fact was obtained in [155] (see also [89]): if the derivative of f
belongs to the Hardy class H2, ¢ and 1 belong to L®(T), and the kernel function k is defined by
f@- @
k(f,T)=<P(Oﬁ1/J(T), {,t €T,
then the integral operator Ik on L*(T)belongs to S; 5 i. e., X150 (5j(I))*(1 + j) < oo.
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Chapter 3
A class of J-Selfadjoint Operators

We show that for each selfadjoint operator A in an S-space we find an inner product which turns
S into a Krein space and A into a selfadjoint operator therein. As a consequence we get a new simple
condition for the existence of invariant subspaces of selfadjoint operators in Krein spaces, which
provides a different insight into this well-know and in general unsolved problem. Here an extension has
stable C-symmetry if it commutes with a fundamental symmetry and, in turn, this fundamental
symmetry commutes with S. Such a situation occurs naturally in many applications, here we discuss the
case of indefinite Sturm—Liouville operators and the case of a one-dimensional Dirac operator with
point interaction.

Section (3.1) : S-spaces

A complex linear space H with a Hermitian sesquilinear form [ -, —] is called a Krein space if
there exists a fundamental decomposition

H =H, OH- €Y
with subspaces H, being orthogonal to each other with respect to [ -, —] such that (H,,£[-,—]) are

Hilbert spaces. If H_ or H, is finite dimensional, then (},[-,—]) is called a Pontryagin space. To
each decomposition (1) there correspond a Hilbert space inner product ( -, —) and a selfadjoint operator

J with JJ* = I, ] = J* such that

[x,y] = Ux,y) forx,y €, (2
see, e.g., [98,105,139].

Conversely, every bounded and boundedly invertible selfadjoint operator G in a Hilbert space (H, ( -
,—)) defines an inner product via

[+, =]:=(G-,—) (3)
and (H, [ -,—]) becomes a Krein space. In particular, if the spectrum of G consists on the positive (or
negative) semiaxis only of finitely many isolated eigenvalues of finite multiplicity, then (#,[ -, —])is a
Pontryagin space.

Eq. (3) is the starting point for various generalizations. E.g., if G is a bounded selfadjoint
operator in H such that d(G) N (—o0,¢) consists of finitely many eigenvalues of G with finite
multiplicities for some € > 0, then (H,[-,—]),where [-,—] is defined by (3), is called an Almost
Pontryagin space, see [134]. Observe that in this case zero is allowed to be an eigenvalue of G with
finite multiplicity. Almost Pontryagin spaces and operators therein were considered in various
situations, we mention only [128,134,135,136,137,142,146,151,152]. The more general case that G is a
bounded selfadjoint operator in I such that zero is an isolated eigenvalue of G with finite multiplicity
gives rise to Almost Krein spaces, see [129]. Spaces with an inner product given by an arbitrary

bounded selfadjoint operator were studied, in [141,147]. For applications we refer to
[130,131,133,134,135,136,137,140,142,143,144,145,151,152].

In all the above-mentioned generalizations of (1) the selfadjointness of the operator G in H is
maintained and the bounded invertibility is dropped. Obviously, this is the same as generalizing (2) by
dropping J/* = I and preserving /] = J*. From this point of view, it seems natural to generalize (2) the
other way: dropping selfadjointness and preserving unitarity of /. The inner product space (H,[ -, —]),
where [-,—] is defined by (2) with a unitary operator J is called an S-space, cf. [148] and also
Definition 3.1.1 below. Moreover, the pair ((-,—),/ ) is called a Hilbert space realization of the S-
space (H,[ -, —]). Evidently, by definition every Krein space is a special case of an S-space.

We continue the study of S-spaces and operators therein started in [148,149]. It is known from
[149] that the inner products of two Hilbert space realizations (( -,—)4,U;) and ((-,—),, U,) define
the same topology. Here, we show in particular that U; and U, are similar operators with respect to this
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topology, cf. Proposition (3.1.4). The notion of selfadjoint operators in S-spaces. We show that their
spectrum is symmetric with respect to the real axis. As a main result we show that to each selfadjoint
operator A in an S-space (S, [ -, —]) we find an inner product (-, —) on S such that (S, (-, —))is a Krein
space with the same topology as (S,[ -, —]) and 4 is a selfadjoint operator in the Krein space (S, (-
, —)), cf.Theorem (3.1.15).

Moreover, if ((-,—), U) is a Hilbert space realization, we show in Theorem (3.1.15) below that
each spectral subspace of U related to a Borel subset A of the unit circle which is symmetric with
respect to the origin (i.e.x € Aimplies —x € A) is invariant under A. Hence, in this section we
obtain the rather unexpected result: Each selfadjoint operator in an S-space is a selfadjoint operator in
a Krein space with many invariant subspaces, showided the spectrum of the operator U from some
Hilbert space realization ((-,—),U) of (S,[-,—]) is sufficiently rich, i.e., if it consists of more than
two points.

The following definition is taken from [148].

Definition (3.1.1)[127]. A complex linear space © with an inner product [ -, —], that is a mapping from
S X & into € which is linear in the first variable and conjugate linear in the other, is said to be an S-
space if there is a Hilbert space structure in & given by a positive definite inner product (-, —) and if
there is a unitary operator U in the Hilbert space (S, (-, —)) such that

[f.g] = (Uf,g9) forallf,g € G.
We refer to [ -, —] as the inner product of S. The pair (( -, —), U) is called a Hilbert space realization of
& [,=D.
Note, that the inner product [ -, —] is not Hermitian, in general. An S-space is a Krein space if

and only if the operator U in Definition (3.2.1) is in addition selfadjoint in the Hilbert space (S, ( -
,—)). For the theory of operators in Krein spaces we refer to [98,105].

Proposition (3.1.2)[127]. Let S be a complex linear space with an inner product [ -, —]. Then the pair
(&,(-,—)) is an S-space if and only if there exist a Hilbert space inner product (-,—) on S and a
bounded and boundedly invertible normal operator T in (S, (-, —)) such that

[f.g] = (Tf,g) forallf,g € &.
Proof. We define the operator U := T (T*T )~%/2 and the inner product

(x,y) := ((T'T)"%x,y),x,y € &.

Since T is bijective, this is a Hilbert space inner product on S. From the relation (T (T*T )~/2T*)? =
TT* it follows that

(IT*)z = (T*T)% T (T 2T, 4)

Hence, for x,y € & we obtain
1 1 1
(Ux,y) = ((T*T V2T (T*T ) 2x, y) - (T (T*T Y 2T*T(T*T ) 2x, y) = [xy]
and
1 1 1
(Ux,Uy) = ((T*T )2T (T*T ) 2x,T (T*T) 2y>
1 1 1
- (T (T*T ) 2T*T(T*T ) 2x, T(T*T )‘5y)
1 1
= (Tx, T(T*T )_7y> = ((T*T ) 2T*Tx, y)

1
= (1Y y) = (),
which shows that U is unitary in (S, (-,-)) and (S, [ -, —]) is an S-space.
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Lemma (3.1.3)[127]. Let (S,[-,—]) be an S-space. Then there exists a uniquely defined linear
operator D : & — & such that

[x,y] = [y,Dx] forallx,y € G. (5
If ((-,—),U) is a Hilbert space realization of (S,[ -,—]) ,then D = U? .
Proof. Let ((-,—),U) be a Hilbert space realization of (&,[-,—]). Then it is easily seen that U?
satisfies the relation (5) (with D replaced by U?). Let D : & — & be a linear operator satisfying (5).

Then from [y, Dx] = [y,U%x] forall x,y € & we conclude (Uy,Dx — U?x) = 0 forallx,y € G.
And since U is bijective, it follows that D = UZ.

The topology of an S-space (S, [ -, —]) is given by the topology induced by the Hilbert space
inner product (-, —) of some Hilbert space realization of (S, [ -, —]). The following proposition states
in particular that it does not depend on the choice of the Hilbert space realization, see also [149].

Proposition (3.1.4)[127]. Let (S,[ -, —]). be an S-space and assume that there are two Hilbert space
realizations ((+,—);,) and (( -, —),, U,) with
[f.9] = (Uif,9)1 = (Uzf,9)2 forall f,g € G
Then (-,—); and ( -, —), are equivalent and the Gram operator S, defined by
(f,9)2 = (Sf,9)1 for f,g €G,

is bounded, boundedly invertible and selfadjoint with respect to (-, —); and with respect to (-, —),.
Moreover, the following statements hold:

() U? = UZ.
(i1) The spectral measures of S in (S, (-,—)1) and (S, (-, —),) coincide and we have
S=U,U; =070, and U;lSU, = St =U;1sU,. (6)
Hence, the operator S is unitarily equivalent to its inverse.
(ii1) The operators U;and U, are similar. We have
Uy = SY2U,571/2,
Hence
o(Uy) = o(Uy).

Proof. Denote by || .||l; and || .]|, the norms induced by (-,—),) and (-, —),, respectively, and set
B; := {y € S:||lyll; = 1}. Then, fory € B; the linear functional

o= [,y] = (Uy-,y)1 = (Uz+,Y):;
is continuous on both (S,(-,—);)and (S, (-,—),). For its corresponding operator norms

”Fy”L((G,(«,—)l),(C) and ”Fy”L((G,(-,—)z),(C)’ respectively, we obtain ||F3’||L((e,(~,—)1),«:):1 and

”Fy”,c((e,(-,—)z)m) = |lyll; . For all x € & we have supyep, |F,(x)| <|lyll; < . Due to the

principle of uniform boundedness there exists some ¢ € (0, ) with

SUPyep, ”Fy ”L((G,( +,—=)2),0) =c

This yields |[y|l, < cllyll;1 for all y € &. By interchanging the roles of || . ||;and || .||, we obtain that
these two norms are equivalent. Hence, by the well-known Lax—Milgram Theorem there exists a
unique bounded linear operator S, selfadjoint in (S, (-, —)1), such that

(f,9)2 = (Sf,g)1 forf,g € G.
It is boundedly invertible since ||Sfyll; = 0 and ||fyll; = 1 would imply ||fll3 = (Sf fi)1 = 0
which contradicts the above showen fact that ||.||;and || .||, are equivalent. For f,g € & we have

(Sf.9)2 = (S*f,9)1 = (5£.59)1 = (f,59)..
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Thus, § is also selfadjoint with respect to (-,—),. Moreover, as (-,—);and (-,—), are positive
definite, the operator S is uniformly positive.

Now we will show (i)—(iii). Statement (i) follows directly from Lemma (3.2.3). The equality of
the spectral measures E; and E, of S'in (S, (-,—);) and (S, (-, —),)follows from the equivalence of

the norms ||.||; and ||. ||,and Stone’s formula (see, [175]),
b-8
1
Ei((a, b)) = lim5_>0lim+e_>0+ﬁ f - A+e)N™ - —@A-€i)tdr= E((ab)), (7)
a+Ss

where the limit is taken in the strong operator topology. As
Sf.91 = (£,9)2 = UU3* f,9)2 = U3 f, 9] = (ULU3 f, 91,
we have S = U,U; ! and, with (i), we conclude S = U7t U2U;! = Ut U,. We will denote the

adjoint with respect to (+,—); by the symbol *; and the adjoint with respect to (-, —), by *,. For
f,g € S we have

Uaf,9)2 = (SU2f,9)1 = (Uzf,S9)1 = (f,U3' Sg)1 = ST, U3'Sg2 = (f,S7'U;* S9).,
thus
Us2 = STsLS. (8)
This implies
S = 51 = (UUYH" = (UyH Ut = (sUp s7) Ut = su,sTiupt,
hence, with § = U,;U;! we get S~ = U;SU,. Replacing U; by U, and U, by U, also S71 =
U5 1SU, holds and formula (6) and (ii) are showed.

By (ii) the square root of S in (S, (+,—);) and in (S, (., —);,)coincide.We denote the unique
positive square root of the operator S by /2. Since, by (6),

1
(U1 S72U,)? = U S71U; = S, we have the relation

1
SY?2 = Ut sT2U,)3,
which yields
1 1

1 1 1
STW,S872 = §287',; 8572 = §2U, 572 = Uy
and (iii) is showed.

For the rest of this section let (S, [ -, —]) be an S-space and let ((-,—),U) be a fixed Hilbert
space realization of (S, [ -, —]). In the following all topological notions are related to the Hilbert space
topology given by (-,—). Its topology is independent of the particular choice of a Hilbert space
realization (see Proposition (3.1.4)).

Let T be a densely defined operator in a Hilbert space with a Hilbert space inner product ( -, —).
As usual, we denote by T™ the adjoint of T with respect to (-, —). As T is denselydefined, T* is unique.
If T'is, in addition, a closed operator, then T *is densely defined, see, [138].

Definition (3.1.5)[127]. Let A be a closed, densely defined operator in an S-space. An adjoint A with
respect to [ -, —] is defined via the following relations:

dom A* :={g € S:3h € Swith[Af,g] = [f,h] forall f € domA},
[Af,g] = [f,A*glforallf € domAand g € domA* .
Analogously, we define A* via
dom A* :={g € S:3h € Swith[f,Ag] = [h g] forallg € domA},
[f,Ag] = [#Af,g] forallg € domAand f € dom *A.

35



In the following proposition (see [149]) we collect some of the properties of ¥4 and A*. We
showide here a short proof in order to make this exposition self-contained.

Proposition (3.1.6)[127]. The operators  *A and A* are closed, densely defined and satisfy
dom A* = UdomA* = dom (A*U*) and A* = UA*U* (9)
and
dom *A = U* domA* = dom (A*U) and %A= U*A*U (10)

Proof. Obviously, we have f € dom(A* U*) if and only if U*f € domA™ which in turn holds if and
only if f € UdomA*. Hence U domA* = dom(A*U™).

Letg € domA* . By Definition (3.1.5) we have forall f € domA
(f, U A*g) = (f,A*g) = [Af,g] = (Af,U"g).
Thus U*g € dom A* and U*A* < A*U".
Ifg € dom(A*U"), then we have for all f € domA
[f, UA"U g] = (f,A"U"g) = (Af,U"g) = [Af, 9]

Hence g € domA* and A* c UA*U*. This gives U*A¥ = A*U*and (9) is showed. The proof of (10)
is similar and we omit it here.

Recall that for a densely defined operator T and a bounded operator X in a Hilbert space we
have (see [150])

(XT)* = T*X" and, if X is boundedly invertible,
(TX) =X"T". (11)

Proposition (3.1.7)[127].If * A= A*then AD = DAwhereD = UZ.
Proof. If * A = A* | then from Proposition (3.1.7) and (11) we conclude

At = FAaun) = U (UA U U = A,
and hence, with # 4 = A% |

A="4 = U (*A)U = U'(U"AU)'U = (U)2AU? = D*AD.

And since D is unitary, the assertion follows.

Corollary (3.1.8)[127]. If *A = A* and U has no eigenvalues, then A does not have eigenvalues
with finite geometric multiplicity.

Proof. By Proposition (3.1.7) we have AD = DA. Assume that A1 is an eigenvalue of A with
finitegeometric multiplicity. From AD = DA it follows that ker(A — A)is invariant under D.
Therefore, D (and hence U) has eigenvalues.

Definition (3.1.9)[127]. A densely defined operator A in the S-space (S, [ -, —]) is called selfadjoint if
A = A%,
We have the following characterization for selfadjointness of operators in S-spaces.

Proposition (3.1.10)[127]. For a densely defined operator A in & the following assertions are
equivalent:

(i)A = A,i.e., Aisselfadjoint in (S, [ -, —]).
(i) U*A = A*U".
(i) UA = A"U.
(iv) A = A.
If one of these equivalent statements holds true we have
f € domA & U'f € domA* & Uf € domA”. (12)
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Proof. The equivalence of (i) and (ii) follows from (9), the equivalence of (iii) and (iv) follows from
(10).

Assume that (ii) holds. For f € domA we conclude Uf € domA*. This implies for f,g €
domA:

(f,.UAg) = (A"U’f,9) = (U"Af,g) = (Af,Ug)
and we have Ug € domA”*, hence UA < A*U.For the other inclusion, we observe by (ii) that
domA* = U*domA.ForUg € domA* and f € domA we have U"f € domA™ and

(U f,U"A"Ug) = (f,A’Ug) = (Af,Ug) = (U"Af,g) = (A"U"f, 9),
thus g € dom(A4*)" = domA. This givesU*A*Ug = Ag and A*
U c UA. This showes (iii).

Assume that (iii) holds. For f € domA we conclude Uf € domA”*. This gives for f,g €
domA

(U*Ag.f) = (Ag,Uf) = (9,A’Uf) = (9, UAf) = (U"g,Af)
and we have U*g € domA*, hence U"A < A*U”. For the other inclusion, we observe by (iii)
that domA* = U domA. ForU*g € domA™ and f € domA we have Uf € domA™ and

(Uf,UAU"g) = (f,A"U"g) = (Af,U"g) = (UAf,g) = (A"Uf,9),
thusg € dom(A4*)* = domA. This gives A*U*g = U*Ag and A*U* c U*A. This showes (ii).
Moreover, we have shown that (12) holds.

Proposition (3.1.11)[127]. Let A be a selfadjoint operator in the S-space (&,[:,—]). Then the
spectrumof A is symmetric with respect to the real axis.

Proof. Since *A4 =A% = vA4*U* , cf. Proposition (3.1.6), the operator 4 is unitarily equivalent to its
adjoint. Hence, 6(4) = a(4") = {A: 1 € ad(4)}.

Let A be a selfadjoint operator in the S-space (S, [ -, —]). If (&, [ -, —]) is a Krein space, then U
is selfadjoint and thus o(U) = 0,(U) < {—1,1}. It is well known that the spectrum of A may be
rather arbitrary. For example, it can happen that 0(4) = C.

Example (3.1.12)[127]. Assume that — in contrast to the Krein space case — a(U) consists of two
eigenvalues 1,1, with 1, # —1,, e.g, o(U) = {1,i}. Then o(U?) = {1,—1}, and since A
commutes with D = U? by Proposition (3.1.7) the spectral subspaces of D are A-invariant. Since these
coincide with the eigenspaces of U corresponding to 1 and i, respectively, we have A = A; @ A; and
U =1 @il with respect to the decomposition S = ker(U —1) @ ker(U —1i). From the
selfadjointness of 4 in (S, [ -, —]) we conclude that both 4; and A4; are selfadjoint with respect to the
Hilbert space scalar product(-,—) inker(U — 1) and ker(U — i), respectively. Hence, A is
selfadjoint in (S, (-, —)). In particular its spectrum is real.

This simple example shows that it is not necessarily “better” to know that an operator is
selfadjoint in a Krein space than in an S-space. In fact, we will show in the following that every
selfadjoint operator in an S-space is also selfadjoint in some Krein space. However, in general
(ifa(U) # {e',—e't} for some t € [0,m)) the selfadjointness in the S-space gives us more
information about the operator. E.g., we automatically know a whole bunch of invariant subspaces of
the operator — namely the spectral subspaces of D.

Definition (3.1.13)[127]. Let G be a bounded selfadjoint operator in the Hilbert space (6, (-, —)).

A closed and densely defined linear operator T in S will be called G-symmetric if GT < (GT)*. The
operator T is called G-selfadjoint if GT = (GT).

In the following we will deal with the operators
1, . .
G():= Z(e“fU — e74yU*), te [0,m).
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It is easily seen that all these operators are bounded selfadjoint operators in the Hilbert space (S, ( -
,—)). Wehave G(0) = ImU and G(r/2) = RelU.Moreover, the operator G (t) can be factorized in
the following way
elt . elt , .
G(t) = EU*(UZ — e?it) = EU*(U —e ) (U +e7%),

Therefore, G (t) is boundedly invertible if and only if e~ ,—e~% € p(U). In this case (S, (G(t) -
,—)) is a Krein space.

Proposition(3.1.14)[127]. Let A be a selfadjoint operator in the S-space (S, [ -, —]). Then A is G(t)-
symmetric for all ¢ € [0, ). If for some t € [0,m) we have e™® ,—e~ € p(U), then the operator A
is G (t)-selfadjoint.

Proof. Lett € [0,m). Then by Proposition (3.1.10) we have
1, . 1, . . 1, . .
GOA = > (etU-e~U*A) = Z(e‘tUA — e UyrA) = % (AU — e~ *A"U)
C A'G(t) =G(H)A".
This shows that A4 is G (t)-symmetric.
We have by Proposition 3.1.7 AD = DA, therefore for each complex number 4

(D —DA c A(D — Q). (13)
We will show that for A € p(D) equality holds,
(D —A)A = A(D —2). (14)

Let A € p(D). We have to show dom(A(D — A)) € domA. Consider the Hilbert space &, :=
(domA, (-, —)4), where the inner product ( -, —), is defined by

(f,9A:= (f.9) + (Af,Ag),  f.g € domA.
Due to AD = DA the linear manifold domA is D-invariant. Hence, define
Dy: Gy > Sy, DAf := Df, f € domA.
Forf,g € S, we have
(Daf,Dag)s = (Df,Dg) + (ADf,ADg) = (f,g) + (ADf,DAg) = (f,9)s

and DA is an isometric operator in S4. Assume that there exists z € S, with (D4f, z), = 0 for all
f € D,. That gives

~(f, D"z = )(Daf, Az) = (Af,D"A2)
forall f € &, and, hence, D*Az € domA* with A*"D*Az = —D"*z.
By (11) and AD = DA we obtain

—D*z = (DA)*Az = (AD)'Az = D*A™Az.
It follows A*"Az = —z and 0 < (A*Az,z) = —(z,z) < 0. Therefore z = 0 and D, has a denserange in
S,4. The operator Dy is a unitary operator in Sy .

For A € p(D) \ {0}, we have
ran(D, — )4 = ker(Di' — 1) = ker (Df{1 2T - DA)) = {0},
where L A denotes the orthogonal complement in S, with respect to (-, —),. Hence, for 1 € p(D),

the operator D, — A has a dense range in S .

In order to show (14) let f € dom(A(D — A)).Then (D — A)f € domA. Asran(Dy, — A)
is dense in S, there exists a sequence (f;,) in dom A such that

N(Dy =Vfn, =D —=Dflla—>0 as n- o,
From this we conclude
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fa=>f and A(D-A) f, 2 AD-A)f as n—- o
(in S). But f,, € domA and from (13) it follows that

fao—o fand Af, > (D —2)"TAD —ADf asn > oo,
Now, it is a consequence of the closedness of A that f € domA and (D — V)Af = A(D — A)f .
This shows (14).

The selfadjointness of A in (S, [ -, —]) is equivalent to A*U* = U™A, cf. Proposition (3.1.10).
With +e~% € p(U) we have e 72 € p(D) This and (14) yield
lt
A*G(t) = TA U (D — e72it) = U *A(D —e7?) = U (D —e 2t)A = G(t)A,

which is the G (t)-selfadjointness of A.

Note that in general the operator A in Proposition (3.1.15) is not G (t)-selfadjoint. For example
let U := il and suppose that A is unbounded. Then G (r/2) = 0 and G(1r/2)A is the restriction of the
zero operator to domA, whereas (G(m/2)A)* equals the zero operator on S. Hence, in this case, A is
not G (rr/2) —selfadjoint.

If G(t) is boundedly invertible, then the space S equipped with the inner product (G(t) -,—) is
a Krein space. The following theorem follows immediately from Proposition (3.1.14).

Theorem(3.1.15)[127]. Let A be a selfadjoint operator in the S-space (S,[-,—]). If for some t €
[0, ) we have e™* ,—e~ € p(U), then the operator A is selfadjoint in the Krein space(S, (G(t) -
=)
If in the situation of Theorem (3.1.15) the operator U satisfies some additional assumptions,

more can be said about the spectrum of A.
Theorem(3.1.16)[127]. Let A be a selfadjoint operator in the S-space (S, [ -, —]) and assume that there
is some t € [0,7) such that e, —e~* € p(U). Let T = T, UT, be a decomposition of the unit
circle, where

T,:={e®: —t <s <—t +7n} and

T,:={eS:—t +n<s <—t +2n}.
IfT; N o(U)y=0orT, Nn g(U) = O then A is selfadjoint in the Hilbert space (S, (G(t) -,—)). In
particular,

o(A) c R

If T, Nna(U)orT, Nn o(U) consists of finitely many «x isolated eigenvalues (counted with
multiplicity) of U, then the non-real spectrum of A in the open upper half-plane consists of at most k
isolated eigenvalues with finite algebraic multiplicities,

o(A\R = {43, A1, 22,23, ..., A, , A} € 0,(A),
for some ky with 0 < k5 < k.
Proof. We define
U:= e'tl.
Then +1 € p(U). The operator A is selfadjoint in the S-space (S, [ -, —].), where [ -, —].. is given by
[f, gl == (Uf,g) forallf,g € G.
By Theorem (3.1.15), A is selfadjoint in the Krein space (S,(Im U -,")). If T, n o(U) = @ then
Im U is a uniformly negative operator in the Hilbert space (S, (-,—)), and hence A is a selfadjoint

operator in the Hilbert space (S, —(Im U - ,-)). A similar argument holds for the case T, N a(U) =@
and the first assertion of the theorem is shown.
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If T, N o(U) consists of finitely many isolated eigenvalues of U with finite multiplicity then
Im U is a bounded and boundedly invertible selfadjoint operator in the Hilbert space (S, (-, —)).
Moreover, the spectral subspace of Im U corresponding to the positive real numbers is finite
dimensional. Therefore A is a selfadjoint operator in the Pontryagin space (S,(Im U -,-)) and the
second assertion of the Theorem follows from well-known properties of selfadjoint operators in
Pontryagin spaces, see, [98,105]. Similar arguments apply if T, N a(U) consists of finitely many
isolated eigenvalues of U.

The following Theorem is the main result of this section. It shows that the notions of S-space
selfadjointness and Krein space selfadjointness coincide.

Theorem(3.1.17)[127]. Let A be a selfadjoint operator in the S-space (S, [ -, —]). Then there exists a
Krein space inner product (-, — ) such that A is selfadjoint in the Krein space (&, (-, — ) Moreover, if
E; denotes the spectral measure of U and if A is a Borel subset of the unit circle T with the property
that A € A implies —4 € A, then the spectral subspace E;(A)S is an invariant subspace for A.

Proof. We choose some ¢ € (0,7/2) and define

Ap={et: t € (—ge)}u{—e: t € (—¢¢) }, A= T\A,.
Let S; and S, be the spectral subspaces of U corresponding to A; and A,, respectively, i.e.

S, = Ey(A))S and G, = Ey(A,)6.
Then we have
S =6, ©6,.

We define the sets

A2:={e: t € (—2¢,2¢)} and A= T\Ai={z%:z € A,}.

2

If E2 denotes the spectral measure of U? and h : € - C denotes the function given by h(z) = z2,
then we deduce from the properties of the functional calculus for unitary operators forj = 1, 2

Ep2(8f) = 12 (U2 = (1" MU) = 1)) = Eu(8)),

where 1, is the indicator function corresponding to a Borel set A and h'l(AjZ) denotes the pre-image of
Aj2 under h. Therefore, the spectral subspace of D = U? corresponding to Af coincides with &; ,j =
1,2.

For A € p(D) the operator (D —A)~! commutes with A, cf. (14). With some obvious
modifications due to the fact that U is a unitary operator, the projector E;(4;),j = 1,2, can be written
in a similar form as in (7). From this, we conclude

Ey(Aj)A © AEy(4;). (15)

Hence, for x € domA we have Ey(Aj )x € domA and
domA = (&; N domA) @ (S, N domA).
Moreover, if x € &; N domA then with (15)
Ax = Ey(4j)Ax,

which implies that the subspaces S; and &, are A-invariant. Thus, with respect to the decomposition
S = S @ G, the operators A and U decomposeas A = A; @ A, and U = U; @ U,, where
Aj = AlS; and U; = U|G; ,j = 1,2.1tis easy to see that A, is selfadjoint in the S-space (S,, (U; -
,—)) and that A, is selfadjoint in the S-space (S,, (U, -,—)). Since i,—i € p(U;)and 1,—1 €
p(U,), it follows from Theorem (3.1.15) that there are Krein space inner products (-, —); and (-, —),
in ©; and &,, respectively, such that A; is selfadjoint in the Krein space (&; (0, ) i»ji =12
Hence, A is obviously selfadjoint in the Krein space (S, (-, —)), where (-, —) is given by
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(x,v) = (x1, 711 + (X2,¥2)2
X = X1t XYy = Y1 T Ya,X1,X2 € G1,Y1,Y2 € G
Example(3.1.18)[127]. As an illustration of Theorem (3.1.17) we consider a simple example with
2 X 2 matrices. Let U be unitary in C? and choose an orthonormal basis of C? such that the

corresponding matrix is diagonal with entries z;,z, € T. A matrix with entries a, b,c,d € C which is
selfadjoint in the S-space given by U has to satisfy

s e 8-l ol 2
0 Zylle d ¢ dllo Zy1’

cf. Proposition (3.1.10), part (iii).We assume cb # 0. From this we see that a and d are real, z; =

+z, and b = +¢. Hence, either the matrix is selfadjoint (in the case z; = z,) or, if z; = —z,, we have
b = —C and the matrix is selfadjoint in the (finite dimensional) Krein space with fundamental
symmetry
_Mn o
!

Corollary (3.1.19)[212]. Let &,, be a complex linear space with an inner product [ -, —]. Then the pair
(S, (-,—)) is an §,,_;-space if and only if there exist a Hilbert space inner product ( -,—) on &,, and
a bounded and boundedly invertible normal operators T,,_; in (&, (-, —)) such that

[zn: fi-1 Zn: gi—l] = (Zn: Ti—1fi-1» Zn: gi_1>
=1 =1 =1 i=1

forall ¥i_y fi1,2i=19i-1 € Gy
1
Proof. We define the operators U,_; := T,,_; (T5_1Tp—1 ) 2 and the inner product
1
<xn' xn+1) = ((Try;—lTn—l )an, xn+1> » Xy Xny1 € 6n-

Since T,_; is bijective, this is a Hilbert space inner product on S,_;. From the relation
1
(Tp—q (Tp_1Tp_1 ) 2T;_1)? = T,_,T;_; it follows that

1 1 1
(Th-1Tn-1)2 = (Th-1Tn-1)2 =Tp1 (Tn1Tn-1) 2T (16)
Hence, for x,,, x,41 € S, we obtain

1 1
(Un—1Xn, Xp41 ) = ((T;—lTn—l )2Th—q (Th-1Tn—1) Zxp, xn+1)
1 1
= (Tn—l (Trt—lTn—l) ZT;—lTn—l(Tr’:—lTn—l ) anﬂxn+1) = [xn' xn+1]
and
. 1 . 1 . 1
(U130, Un - %ns2) = (TiaTad V2T (TiaTad) 2t Ty (T T ) 2 )
* —1 * * —1 * —l
= (Tn—l (Tn—lTn—l ) 2Tn—lTn—l(Tn—lTn—l ) an, Tn—l(Tn—lTn—l ) 2xn+1)
1 1
= (Tn—lxn' Tn-1(Ta—1Th-1) an+1> = ((Tn*—lTn—l ) 2Ty 1Th—1Xn, xn+1>

1
= ((T;lk—lTn—l )2xp, xn+1> = Xp, Xns1),
which shows that U,,_; is unitary in (&, (:,)) and (S,,,[ -, —]) is an S,,_; -space.

Corollary (3.1.20)[212]. Let (S,,,[ -, —]) be an S,,_; -space. Then there exists a uniquely defined linear
operator D,,_; : &,, — &, such that

[%n Xn+1] = [Xn41, Dno1xn] forallxy, x4, € G (17)
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If ((-,=),Un_y) is a Hilbert space realization of (S, [+, —]) ,then D,_; = U}*l.

Proof. Let ((+,—),U,-1) be a Hilbert space realization of (S,,[:,—]). Then it is easily seen that
Ultl satisfies the relation (17) (with D,_; replaced by UM1). Let D,_, : S,, » S, be a linear
operator satisfying (17). Then from [x,iq1, Dp_1%n] = [Xpe1, UMtlx,] for all x,,x,41 € S, we
conclude (Up_1Xp41, Dp_1%, — UMix,) = 0, for all x,,, x,,.; € S,,. And since U,_, is bijective, it
follows that D,,_; = U1,

Corollary (3.1.21)[212]. Let (S,,[-,—]). be an S,,_;-space and assume that there are two Hilbert
space realizations (( -, =), ) and ((*, —)n+1, Uns1) With

[Zfl 1’291 1] (ZUfz 1;291 1) = (zn:Uiﬂfi—l’zn:gi—l)
i=1 i=1
forall Zfl 1,291 1 € G,

Then (-, —)n and ( *, —)n+1 are equivalent and the Gram operator S,,_;, defined by

n n n n n n
(Z fi—llzgi—l) = (Z Si—lfi—liZQi—l) for Zfi—l'zgi—l € Gp,
i=1 i=1 i=1 i=1 r i=1 i=1

is bounded, boundedly invertible and selfadjoint with respect to ( -, —),, and with respect to (*, =), 41-
Moreover, the following statements hold:

(1) UrrlHl — Un+1 .
(i1) The spectral measures of S,,_; in (S, (-, —),) and (&, (-, —),+1) coincide and we have
Sne1 = UpURif = Up 2 Upypyand - UL Sp_qUp = Sply = URif Spo1Unss. (18)

Hence, the operator S,—1 1s unitarily equivalent to its inverse.

r+1

r+1

(ii1) The operators U,, and U, are similar. We have

1
Up = Srzl Un+15,

-1 -1°

Hence

U(Un) = O-(Un+1)-
Proof. Denote by || .|, and || .||;,+1 the norms induced by (-,—), and (-, —),4+1, respectively, and
set By = {Xn41 € Sn—1: l|Xps1lln = 1} Then, for x,,,; € B, the linear functional

(Fn)xn+1 = [, x%n41] = WUn %04y = (Ung1 s Xns)rsa

is continuous on both (&,,(-,—),) and (S, (+,—)r+1). For its corresponding operator norms

|| (F)xpys ||L((Gn'( NS and || (F)xpey ”L((@n,( DO’ respectively,  we  obtain

”(F")xnﬂ”L((Gn,(-,—)n),(C) =1 and ”(F”)xnﬂ||L(((5n,(-,—)n+1),<C) = [[Xn41llnss - For all x, € S, we

have supy . ep, |(Fo)x,,, (Xn)| < l|Xn41lli < oo. Due to the principle of uniform boundedness there
exists some ¢ € (0,0) with

SUPxp41€By ” (Fn)xn+1 ”L((Sn-( )

This yields ||%p41lly+1 < cllXpsqell, for all x,,, € G,. By interchanging the roles of ||.||,and
| .|l,+1 we obtain that these two norms are equivalent. Hence, by the well-known Lax—Milgram
Theorem there exists a unique bounded linear operator S,,_;, selfadjoint in (S, (-, —),), such that

n n n n n n
(2 fi-1 ‘Z gi—1> = (Z Sicafi-1, Z gi—l) for Z fi-1 ‘Z Jgi-1 € ©p1.
i=1 i=1 1 i=1 i=1 - i=1 i=1
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It is boundedly invertible since |[|Si_ifxll; =0 and||f,ll, =1 would imply
) = (S;_1fw fi)r = 0 which contradicts the above showen fact that ||.||,and ||.]|l,.; are
equivalent. For 31, fi_1, 21 gi-1 € S, we have

n n n n n n
(Z Si-1fi-1» Z gi—l) = (Z Si2—1fi—1 ) Z gi—1) = (Z Si—1fi-1, Z Si—lgi—1)
n n
= (Z fi-1, Z Si—lgi—1>
i=1 i=1

Thus, S,,_; is also selfadjoint with respect to (-, —),;1. Moreover, as (-,—),and (-,—),,; are
positive definite, the operator S,,_; is uniformly positive.

Now we will show (i)—(iii). Statement (i) follows directly from Lemma (3.1.3). The equality of
the spectral measures E,, and E,,; of S;,_1 in (&,,(-,—),) and (&,_1,(*,—);+1)follows from the
equivalence of the norms ||. ||, and ||.]||,4; and Stone’s formula (see, e.g., [132]),

r+1

a+e-48
Bn((@a+ ) = limgolimyesgs e | (pa = Guat €)™
a+Sn 1
- (Sn—l - (An—l —€ i))_ldln—l = En+1((a' a+ 5))' (19)

where the limit is taken in the strong operator topology. As

(i 5i—1fi—1»zn:gi—1> = (ifi—vzn:giﬂ) <Z U1+1U1+1f1 1’291 1)
i=1 4l
ZUL+1fl 1:291 1] (ZUU1+1fl 1’291 1) )

we have S,,_; = U,U % and, with (i), we conclude S,_; = U} 2 UMIUN2 = UL 2 U, ... We will
denote the adjoint with respect to (-,—), by the symbol *. and the adjoint with respect to (-
= )r+1 bY *ry1- For Xty fi 1, XiZ1 gi-1 € Spwe have

n n n n n n
(Z Uis1fi-1 Z Ji-1 ) = (Z Si—1Uis1fi-1 Z gi—l) = (Z Ui+1fi—1'z Si—lgi—1>
i=1 i=1 r i=1 i=1 T

+

i= r+1
n n n
= <zfz 1) Ui Si—lgi—l) = (Z Si_—llfi—lﬂz Uﬂlsi—lgi—1>
i=1 l r i=1 i=1 r+1
n
=< fi- 1' Siz 1U1+1Sz—19i—1) )
i=1 i= r+1
thus
Usiit = SptyUsly Sps. (20)

This implies
Spo1 = Spla = WU = (Ui UR2 = (Spoq Uit Sit ) Up~? = Sp_qUns1S321 U2,

n+1

hence, with S,,_; = U, UM ? we get S;%, = UF2S,_,U,. Replacing U,, by U, and U,,, by U,
also S;t; = UM;2S,_,1Up4q holds and formula (18) and (ii) are showed.

By (ii) the square root of S,,_; in (&,(-,—),) and in (&,, (., —),4+1)coincide.We denote the
1 1
unique positive square root of the operator S,_; by S>_,. Since, by (18), (UF72S 2 U,)* =
Ur-2s;4, U, = S,_1, we have the relation
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1

S N

S -1 = U,?_ZSnEIUn)Z,
which yields
1 1 _1 _1 1
SitiUpisS, 2, = SZ_ SptU,S 2 =S 2 UpS 2 = U,

and (iii) is shown.
Corollary (3.1.22)[212]. The operators A* _; and *A,,_; are closed, densely defined and satisfy

dom A}_y = Uy_y domd;_; = dom (A;_1Us_y) and A}, = Up 145 1Us_, (21)
and

dom *A,_, = Uj_, domA};_; = dom (A},_1Un_y) and *A,_ = U;_ A5 U,y (22)

Proof. Obviously, we have }i-,fi_1 € dom(4,_,U,h_y) if and only if Y}, U",f 1€
domA;j,_; which in turn holds if and only if )}, f;_; € U,_; domA;,_;. Hence U,_, domA;_; =
dom(Ay-1Un_4).

LetY™,gi-1 € domA¥_, . By Definition (3.1.5) we have forall ¥, f;_; € domA,_,

n n n n n n
(2 fi-1 ‘Z Ui*—1A?—1gi—1) = (Z fi-1 'Z A?—19i—1) = Z Ai_1fica :Z gi—1 ]
i=1 i=1 i=1 i=1 i=1 i=1
n n
= (Z Ai_1fi-1, Z Uﬁ—lgi—l) .
i=1 i=1

Thus ¥, Uyi_1gi—1 € dom A, and U;_ A%_, c A;_ U;i_,.
IfY,9i.1 € dom(4;_,U;_,), then we have forall Y, g;_; € domA,_;

n n n n n n

[Z fi-1, Z Ui—1A:z—1U;—1gi—1] = (Z fi-1 Z Ay Ui*—lgi—1> = (Z Ai_1fica 'Z Ui*—1.9i—1>
i=1 i=1 i=1 i=1 i=1 i=1

n n

Z Ai_1fi-1 Z Ji-1 ]

i=1 i=1

Hence Y, gi1 € domA?_, and A%_| ¢ U,_1A;_1U;_,. This gives U;_ A% |, = A;_,U;_jand
(9) is showed. The proof of (22) is similar and we omit it here.

Recall that for a densely defined operator T,,_; and a bounded operator X,,_; in a Hilbert space
we have (see [150])

(Xpn-1Tho1 )" = Tp_1X,_1 and, if X;,_; is boundedly invertible,

(Th-1Xn-1)" = Xq1Th-1- (23)
Corollary (3.1.23)[212]. If #A,,_, = A*_, then A,_,D,_; = D,_1A,_, where D,_, = UP*1
Proof. If #A,,_; = A*_, , then from Proposition (3.2.6) and (23) we conclude

#(A#) = #(Un—lA:l—lUr*l—l) = Up1(Un-147-1Up_1)"Unq = An-y,
and hence, with #An_1 = A% | ,
Apq = A = U;{—1( #An—l) Upn-1 = Upq(Un_145_1Up_1) " Up_y = (Up_1)?Ap_1U?

= Dp_14n-1Dp-1.

And since D,,_; is unitary, the assertion follows.

Corollary (3.1.24)[212]. If  #A,._, = A¥_,and U,_, has no eigenvalues, then A,_; does not have
eigenvalues with finite geometric multiplicity.
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Proof. By Proposition (3.1.7) we have A,,_1D,,_; = D,,_1A,_;. Assume that 1,,_; is an eigenvalue of
A,_, with finitegeometric multiplicity. From A,_,D,_; = D,_1A4,_, it follows that ker(4,_; —
An_41) is invariant under D,,_;. Therefore, D,,_; (and hence U,,_,) has eigenvalues.

Corollary (3.1.25)[212]. For a densely defined operator A,,_; in &, the following assertions are
equivalent:

()A,_, = A%_,,i.e., A,_; is selfadjoint in (S,, [ -, —]).
(ii) Up-14n-1 = Ap-1Un1.

(iii) Up-14n-1 = Ap-1Un-1.

(iV) Apoy = Af_s.

If one of these equivalent statements holds true we have

n n n
Z fiL € domA, |, & ZU;"_lf . € domdAi_, = ZUi_lf € domAi_,. (24
i=1 i=1 i=1

Proof. The equivalence of (i) and (ii) follows from (21), the equivalence of (iii) and (iv) follows from
(22).

Assume that (ii) holds. For };i~, f ;_1 € domA,_, we conclude },i~, U/, fi_1 € domA;,_;. This
implies for Y/~ fi_1, 2219 i—1 € dom Ap_;:

n n n n n n
(Z fi-1 'Z Ui—lAi—lgi—l) = (Z Ai_1Ui_1fia 'Z gi-1 ) = (Z Ui_1Ai—1fi-1, Z Ji-1 )
i=1 i=1 i=1 i-1 i-1 i=1
n n
= (Z Ai_1fi-1, Z Ui—lgi—l)
i-1 i=1

and we have XL, U; 19,1 € domAy_;, hence Xi_ U; 14; 1 C Xi-1A;_1Ui_y.For the other
inclusion, we observe by (i1) that domA;,_,; = U,_; domA,_;. For
i Ui_19i-1 € domA;_,and }i-, fi_1 € domA,_; we have ). ; U/ fi_1 € domA;_,and

n n n n
(Z Ui—1fi-1, z U?—1A;—1Ui—19i—1> = (Z fi-1, Z A4 Ui—19i—1>
i=1 i=1 i=1 i=1
n n n n
= <z Ai_1fi-1 ;Z Ui—19i—1> = (Z Ui_1Ai—1fi—1 ’Z gi—l)
i—1 i=1 i=1 i=1
n n
= (Z A1 Ui fia 'Z gi—1> )
i=1 i=1

thus 3iL; gi—1 € dom(Ay_1)" = domA,_;. This gives XiLy Ul_14;_1U;19i-1 = Xi=14i-19i1
and Y7, Aj_; Uiy € Y™ U;_1A;_1. This showes (iii).

Assume that (iii) holds. For I, fi_; € domA,,_; we conclude 7", U;_1f;_; € domAj_,.
This gives for )X, fi_1,Xi=1 9i—1 € domA,_;

n n n n n n
(Z Ui_1Ai-19i-1, Z fi—1) = (Z Ai—19i-1, Z Ui—1fi—1) = (Z Ji-1, Z A4 Ui—1fi—1)
i=1 i=1 L =l =1 i=1 i=1
= (2 91‘—1.2 Ui—lAi—lfi—1> = (2 Ui_19i-1 ,Z Ai_1fica )
i=1 i=1 i=1 i=1

and we have Y-, U/_,9,_1 € domA;_;, hence U,_,A,_, < A;,_,U,_;. For the other inclusion, we
observe by (iii) that domA;,_; = U,_; domA,_,. For U,_1gn_1 € domA;_; and
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Yieqifi.1 € domA;_, wehave )., U;_1f;_, € domA;,_, and

n n n n
<Z Ui—1fi-1 :Z Ui—1A;—1Ufk—1gi—1) = <z fi-1 ‘Z A;—1U;—1gi—1>
i=1 i=1 J =1

=1

n n n n
= (Z Ai_1fiaa 'z Ufk—1gi—1> = (Z Ui14i—1fi—1 :Z gi—l)
=1 =1 im1 i=1
n n
= (Z Ai_1Ui_1fia ,Zgiq):
=1 =1

thus \7v; gi—1 € dom(4;_,)" = domA,_;. This gives
n

n
ZA;—lUi*—lgi—l = Zui*—1Ai—19i—1
i=1 i=1

and >, U/ U, c )i, U/ ;A;_. This showes (ii).Moreover, we have shown that (24) holds.
Corollary (3.1.26)[212]. Let A,_, be a selfadjoint operators in the S,,_;-space (S, [ -, —]). Then the
spectrumof A,,_ is symmetric with respect to the real axis.
Proof. Since A4, = A*_, = U,_,A4;_,U}_,, cf. Proposition (3.1.6), the operator A is unitarily
equivalent to its adjoint. Hence, 0 (4,,_1) = 0(45-1) = {Ap_1: A1 € 0(4,-1)}

Let A,,_; be a selfadjoint operators in the S,_;-space (S,,,[-,—]). If (&,,,[-,—]) is a Krein
space, then U,_; is selfadjoint and thus 0(Uy—1) = 0,(Up—1) © {—1,1}. It is well known that the
spectrum of A,,_; may be rather arbitrary. For example, it can happen that 6(4,,_;) = C.

Corollary (3.1.27)[212]. Let A,,_; be a selfadjoint operators in the S,,_;-space (S,,,[ -, —]). Then 4,,_4
is G,,_1 (t)-symmetric for all t € [0, ). If for some t € [0,) we have e™"t, —e~1"t € p(U,_,), then
the operator A,,_; is G,,_1 (t) —selfadjoint.
Proof. Lett € [0, m). Then by Proposition (3.1.10) we have
1 . . 1 :
Gn—l(t)An—l = 2_ (ethn— - _th* 1An 1 ) By (ethn lAn 1 _thr*l—lAn—l)

= S5 (emtA:z 1Un-1 — _mtA;—1Ur>;—1)

c A*G(t) = G(v)A™.
This shows that A,,_; is G,,_; (t)-symmetric.
We have by Proposition (3.1.7) A,,_1D,_1 = D,_1A,_1, therefore for each complex number A ,,_

(Dn—l - An—l)An—l c An—l(Dn—l - An—l)- (25)
We will show that for 1,,_; € p(D,_1) equality holds,

(Dpt —An-)Apq = Ap_1(Dpoy — Apoq)- (26)
Let 1,,_4 € p(D,-1). We have to show dom(4,,_1(Dp_-1 —An_-1)) © domA,_;. Consider the
Hilbert space (&,)4, , := (domA,_q,(+,—)a,_,), Where the inner product (-, —),,_, is defined by

(Zfz 1'291 1)21‘11 1= <ifi—1'igi—1)+<i‘4i—1fi—1'i‘4i—lgi—l>r
=1 i=1 i=1
Zfl 1,291 1 € domA.

Dueto A,_1Dp_1 = Dn—lAn—l the linear manifold domA,,_; is D,_; -invariant. Hence, define
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n n
Dn-1)a,_, * Gpla,_, = (6n)An_1'z Di 1 Ai1fi = z Di_1 fi-1
i=1 i=1

n
Zfi_l € domA,,_;.
i=1

ForEELIfLJIExglgFﬂ,E Osn)An_l“thaVe

n n
(Z(Di_l )Ai_1 fi1 'Z(Di_l )Al-_1 gi—l)

i=1 i=1 Ap—1

n n n n
= (Z Di_1fi-1 Z Di—lgi—l) + (Z Ai_1Di_1fi—1, Z Ai—lDi—lgi—l)

i=1 i=1 i=1 i=1

n n n n n n

= (Z fi-1 Z gi—l) + (Z Ai_1Di_1fi—1, z Di—lAi—lgi—1> = (Z fi-1 Z gi—l)
i=1 i=1 i=1 i=1 i=1 i=1 Aps

and A,_1D,_4 is an isometric operator in (S,),, _,. Assume that there exists z, € (S,)4, , With
((Dn-1)a,_,fn-1» Zn)a,_ , = Oforall f,_; € (Dp_1)4,_,. That gives

n n n n n
- (2 fi-1, D1z ) = <z(Di—1)Ai_1fi—1 ) Z Ai—lzi> = <z Ai1fi1, Z D;—1Ai—1zi>
i=1 i=1 i=1 i=1 i=1

for all i, fi=1 € (&4, , and, hence, D;_;A,_1z, € domA;_; with A}_,D; 1A, 1z, =
_D:l_lzn.
By (23) and A,,_1D,,_; = D,,_1A,,_; weobtain

n n *n n *n n
_ZDi*—lzi = (Z Di—lAi—1> ZAi—lzi = (ZAi—lDi—l) ZAi—lzi :ZD;—lA;—lAi—lzi :
=1 =1 =1 i=1 i=1 =1

It follows Ay_1An_1Zn = —2z, and 0 < (Ay-14n-1Zn,Zn) = —(Zn, 2,) < 0. Therefore z, = 0 and
(Dn—1)a,_, has a denserange in (S,),4,_,. The operator (D,,_1)4,_, is a unitary operator in (S,) 4, _,.

For A,_1 € p(D,_1) \ {0}, we have
7’5171((Dn—1)An_1 — Apog) -t = ker((Dn—l)Z}l_l - m)
= ker ((Dn-D)il, Tns(Aats = Puoila,,)) = {0}
where L A,,_; denotes the orthogonal complement in (S,), _, with respect to (-, —)4 _,. Hence, for
An-1 € p(D,,_1), the operator (Dn—l)An_l — A,—4 has a dense range in (Gn)An_l.

In order to show (26) let >, fi_.1 € dom(Ay_1(Dp_1 — An_1)).-Then X7 (Di_; —
Ai-)fi-1 € domAy,_;. As ran((Dp_1)4, , — An-1) is dense in (S,),,_,, there exists a sequence
(fn) in domA,,_; such that

n
(On-Dapy = A= Y Py = Ai)fis
i=1
From this we conclude

n n
fom D fir and Ay Dny = ) fa ) AaDis -Ai)fia as nooo
i=1 i=1
(in S). But f,, € domA,,_; and from (25) it follows that
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n n
fom D fier and Ay afy > ) Dy =2i)™ Ay (Dioy A i s~ o
i=1 i=1

Now, it is a consequence of the closedness of A,,_4 that )7, fi_; € domA,_, and
i=1(Di1 = Aim)Ai—afimr = Xiz1 Ai-1(Di—1 - A1) fi-1 . This shows (26).
The selfadjointness of A,,_; in (S,,[:,—]) is equivalent to Ay_Up_; = Up_1An_q1, cf.
Proposition (3.1.10).
With +e~™ € p(U,_,) we have e 2™ € p(D,,_;). This and (26) yield

int emt
* * —2int) —
An—lUn—l(Dn—l - e )—

Ap_1Gnq(t) = Ur*L—1An—1(Dn—1 _e_zmt)

2in 2in
gint '
= ﬂU;:—l(Dn—l —e72mt )An—l = Gp_1(H)An_1,

which is the G,,_; (t)-selfadjointness of 4,,_;.

Corollary (3.1.28)[212]. Let A,,_; be a selfadjoint operator in the S,,_;-space (S, [ -, —]) and assume
that there is some t € [0, ) such that e, —e~™ € p(U,_;). Let

T,_, = T, UT,,; be adecomposition of the unit circle, where
T,:={e™: —t <s <—t +n} and
Tpiy i= {€™:—t + 7 <s < -t +2n}.
If T, N oU,.1)=0orTyy; N o(U,_1) =0 then A,_; is selfadjoint in the Hilbert space
(S, (Gpq(t) +,—)). In particular,
o(4,-1) € R

IfT, Nn o(U,_1)or T,y; N o(U,_,) consists of finitely many « isolated eigenvalues (counted with
multiplicity) of U, _;, then the non-real spectrum of A,,_; in the open upper half-plane consists of at
most k isolated eigenvalues with finite algebraic multiplicities,

0(An-D\R = {4, 1, An+1;m,---,(/1n—1)xo y(An-1)i,} € 0p(An-1),
for some Kk, with 0 < K, < k.
Proof. We define
Upy = e™Uy,_;.

Then +1 € p(U,,_,). The operator A,,_; is selfadjoint in the S,_;-space (S, [ -, —].), where [ -, —].is

given by
n n n n n n
[Z fi-1 ;Z gi-1| = (Z Ui-1fi-1 :Z gi—l) forall Z fi-1 'Z gi-1 € Gy
i=1 i=1 ~ i=1 i=1 i=1 i=1
By Theorem (3.1.15), A,_; is selfadjoint in the Krein space (S,,(ImU,_;-,)). If T, n
0(Uy,-1) = O then Im U,_; is a uniformly negative operator in the Hilbert space (S, (+,—)), and
hence A,,_; is a selfadjoint operator in the Hilbert space (S,,_1, —(Im U,,_; - ,-)). A similar argument

holds for the case T,,.; N 0(U,—1) = O and the first assertion of the theorem is showed.

If T, N o(U,_;) consists of finitely many isolated eigenvalues of U,_; with finite
multiplicity then Im U,_, is a bounded and boundedly invertible selfadjoint operator in the Hilbert
space (S, (+,—)). Moreover, the spectral subspace of Im U,_; corresponding to the positive real
numbers is finite dimensional. Therefore A,_; is a selfadjoint operator in the Pontryagin space
(S,, Im U,_; -,)) and the second assertion of the Theorem follows from well-known properties of
selfadjoint operators in Pontryagin spaces, see, [98,105]. Similar arguments apply if T,,,; N o(U,_1)
consists of finitely many isolated eigenvalues of U,,_;.
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It shows as [128] that the notions of S,,_;-space selfadjointness and Krein space selfadjointness
coincide.

Corollary (3.1.29)[212]. Let A,,_; be a selfadjoint operator in the S,,_;-space (S, [ -, —]). Then there
exists a Krein space inner product (-, — )such that A,_, is selfadjoint in the Krein space (S,,, (-, —)
Moreover, if Ey, _, denotes the spectral measure of U,_, and if A,_; is a Borel subset of the unit

circle T,,_; with the property that A,,_; € A,_; implies —A4,,_; € A,_;, then the spectral subspace
Ey,_,(An_1)Sy 1s an invariant subspace for A,,_;.
Proof. We choose some ¢ € (0,7/2) and define
Api={e™: t € (—ge)fu{—e™: t € (=& ¢€) },Any1i= Tnog \Ap.
Let G,41 and G,,,, be the spectral subspaces of U,_; corresponding to A, and A, ;, respectively, i.e.
Gnsy1 = Ey,_, (A)Sp-1 and S,y = Ey, , (Ar41)Gy.
Then we have
Gn = Gni1 O Gpya
We define the sets
AZ:={e™mt: t € (=2¢,2¢)} and A% ;:= T, \A2={z2:z, € Ay}

If E yn denotes the spectral measure of Ul and h,_,: C— C denotes the function given by
hn_1(z,) = z2, then we deduce from the properties of the functional calculus for unitary operators for
j =12

Eu;}:fll((An—ﬂ?) = 1(An_1)§(Urrzl:r11) = (I(An_l)Jz.ohn—ﬂ(Un—l) = 1h,—111(An_1)§(Un—1)

= EUn_l((An—l)j )

where 1, is the indicator function corresponding to a Borel set A,,_; and h{lll(An_l)? denotes the
pre-image of (An_l)f under h,,_,. Therefore, the spectral subspace of D,,_; = U*! corresponding to
(A,_1)% coincides with (S,);,j = 1,2.

For A,_; € p(D,_,) the operator (D,,_; — A,_1)~! commutes with A,_;, cf. (26). With some
obvious modifications due to the fact that U,_; is a unitary operator, the projector
Ey, ,((An-1);),j = 1,2, can be written in a similar form as in (19). From this, we conclude

Ey, ,((An-1)j)An-1 € An1Ey,  ((Bp-1)j). (27)
Hence, for x, € domA,_; wehave E;; _ ((A,—1)j)x € domA,_; and

domAn_1 = ((Sp)1 N domd, 1) @ (&), N domA, ,).
Moreover, if x, € (S,); N domA then with (15)

Ap_1xy = EUn_l((An—l)j JAn_1%n,

which implies that the subspaces (S,); and (S,), are A,_;-invariant. Thus, with respect to the
decomposition &, = (S,); @ (S,), the operators A,_; and U,,_; decompose as A, ; =
(Ap-1)1 @ (Ap-1)2and Uy y = (Up-1)1 @ (Up_1)z,where

(An-1); = 4,11(Sn)j and (Up—1); = Up1(S,); ,j = 1,2. It is easy to see that (A,_1); is
selfadjoint in the S,,_;-space ((S,)1, ((Up—1)1 *, —)) and that (4,,_;), is selfadjoint in the S,,_;-space
((&,)2, ((Up—1)2 ~—)). Since i,—i € p((Uy—1)n)and 1,—1 € p((Up—1)n+1), it follows from
Theorem (3.1.15) that there are Krein space inner products (-, —), and (-, —),.4+1 in (&,); and (S,),,
respectively, such that (4,,_;); is selfadjoint in the Krein space ((&,);,{-,—);),j = 1,2. Hence,
A,,_4 is obviously selfadjoint in the Krein space (S,,, (-, —)), where (-, —) is given by

(xn 'xn+1) = (xn+1 !xn+2>1 + (xn+2 ,Xn+3)2,
Xn = Xn41 T Xnt2,Xnt1 = Xnt2 T Xp43 Xns1, Xnt2 € (Gn)lrxn+2'xn+3 € (611)2-
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Corollary (3.1.30)[212]. For A%rmﬂnr—l be a series of selfadjoint operators in the Sym , _,-space

(621" gL —]) Then there exists a Krein space inner product (-, — ) such that A*Z?Lmr—l is a series
ofselfadjoint in the Krein space (Sym (-, —) . Hence, if Ey ST s denotes a series of the spectral

measures of Uym , _; and if Aym , _; are series of Borel subsets of the unit circle Tym , _; with
r=1Mr r=1Mr r=1Mr

the property that Aym , _, € Agym ., _; implies —Aym , _; € Aym . _4,then the series of the

spectral subspaces E Usm s (Aym . _1)Gym ,_are an invariant subspaces for A*Z;nz -1

Proof. We choose some ¢ € (0,7/2) and define
Azyélnr:: {eit2§"=1nr it E (—S, 8)} U {_eitZ?lnnr 1t € (_g, g) }’Azﬁlnr+1;
= TZLn:ﬂlr—l \AZ;n:Nlr'
Let Sym 41 and Sym . ., be the spectral subspaces of Uym , _; corresponding to Aym . and
Aym 5 41, TESpectively, i.e.

6Z1Tfn=1nr+1 EU ( Z’r’imr)SZ’r’Llnr—l and 62?:1”r+2 = Ey

monr-1

RN O, IR

Then we have
62;”:17% = 62?21”1”‘“1 ©® 62?’=1nr+2'
We define the sets
AZr 1Tlr = {eitZTZInT: t e (_28’ 28)} and A%;n:1nr+1:= Tz;nzlnr_l \Agj;-n:ﬂlr

{er 1y’ P2y n, € AZ?”:ﬂlrﬂ}'

ny+1
IfE IRyt denotes the series of spectral measures of Usm, Zr= o
7"_1 T
Zr 1Mr—1

function given by hym , _i(zgm , ) = ZZZ:;nzlnr, then we deduce from the properties of the

and hym , _,: C— Cdenotes the

functional calculus for unitary operators forj =1, 2

> ny+1
E Zr—lnr“ ((Azr 1nr—1) ) - (Z;«n:ﬂlr—l)? (UZ: 1111:—1) (1( )2 hzr—ﬂlr_l)(uzr 1”r‘1)
Er 1nr-1 Zr 1nr=1/;

=1 Z(Uzmlnr—l) =1nr—1(( Z?Llnr—l)j ),
j

-1

hZ;n:Nlr 1( YIL g np— 1)

where 1 Bym is the indicator function corresponding to a Borel set Aym ,, _; and

r=1Mr—
_ 2 . 2 )
hzr%l: 1nr—1(AZI«”=1nr—1)j denotes the pre-image of (Aﬂ":lnr—l)j under hym , ;. Therefore, the series

UZT 1TLT+1

of spectral subspaces of Dym , 4 = -1
L m

(GZ?‘L:]_TLT)]. Fj = 1,2

For Aym .4 € p(Dgm_ n,1) the operators (Dym , 1 —Aym 1nr—1)_1 commutes with
Asm ., cf. (14). With some obvious modifications due to the fact that Uym , _, is a unitary
Zr:ln‘r 1 Zr_l ny

. 2 e .
corresponding to (Az;nzlnr_l)j coincides with

operator, the projector E Ugm 1((Azm_ 0 _1)j ),J = 1,2, can be written in a similar form as in (19).
r=1Mr— r=1"r
From this, we conclude
(Agpin,-1),)- (28)
Hence, for x € domAZ;nzlnr_1 we have Euzﬂélnr—l(( Z?Llnr—l)j )x € domAZ'r”:lnr—l and
domAsm , , = ((<5Z;n=1nr)1 N domAgm , 1)@ ((6mlnr)2 N domAsm , ;).
Moreover, if x,, € (Gz;n:lnr)j N domA then with (28)
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AE;n:ln‘r_lxn = EUZﬂlnr((A* 1T”n=1nr_1)j )Ag;ilnr_lxn'
which implies that the subspaces (6Z$"=1nr)1 and (Gz;n:lnr)z are A*Z;nzlnr_l—invariant. Thus, with
respect to  the  decomposition Sym , = (625’21%)1 @ (6Z$"=1nr)2 the  operators
Agm ., _, and Uym , decompose as Aym , _; = (AE;‘HzlnT_l)l @ (AE;‘HzlnT_l)z and U,_, =

(Un-1)1 @ (Up_y),, where (A*mlnr_l)j = A o 1|(80); and (Un—y); = Una|(Sy);
j=1,2. It is easy to see that (A%":lnr—l)l is selfadjoint in the Sym , _;-space

((Gz;n:lnr)l, ((UZ?Lmr—l)l ,—)) and that (A*Zﬁilnr—l)z is selfadjoint in the Sym , _,-space
((621"=1nr)2'((U2¥;1nr—1)2 -,=)). Since i,—i € p((UZ;nzlnr_l)l) and 1,—1 € p((Umlnr_l)z), it
follows from Theorem (3.1.15) that there are Krein space inner products (-,—); and (-,—), in
(6Z$"=1nr)1 and (GZ?LMr)Z’ respectively, such that (A*Zﬁilnr—l)j is selfadjoint in the Krein space
((Gz;n:lnr)j,(y—)j ),j = 1,2. Hence, A*ZL’Llnr—l is obviously selfadjoint in the Krein space
(Sym n,. (-, —)), where (-, —) is given by
<x2;~n=1nr ’xZ;'n=17lr+1> = <x2¥1=171r+1 ’x2¥1=171r+2>1 * <x2:~n=1nr+2 ’xZ;p:lnr'B)z’
Xymane = Xgmine+1 T X5 nr2 X5 k1 = X5tz T X k3 XS npa 1 XSTL 2
€ (6Z7rn=1nr)1’x21rfn=1nr+2’xz7rn=1nr+3 € (62;@1711*)2'

Section (3.2) : J -Selfadjoint Operators with Empty Resolvent Set

Let (S,[-]) be a Krein space with a non-trivial fundamental symmetry | (i.e.,]? = 1,] #
+I[, and (S, [] +,]) is a Hilbert space) and corresponding fundamental decomposition

c=6, &6, (29)

where &, = %(I + ] )S. Let A be a linear operator in G which is J -selfadjoint with respect to the
Krein space inner product [-,-]. In general, ] -selfadjoint operators A are non-selfadjoint in the Hilbert
space (S,[] +,]) and their spectra a(A) are only symmetric with respect to the real axis:

u € o(A)ifandonly if u € a(A). Moreover, the situation where a(A) = C is also possible.

It is simple to construct infinitely many ] -selfadjoint operators with empty resolvent set. For
instance, let K be a Hilbert space and let L be a closed symmetric (non-self-adjoint) operator in K

Consider the operators
a=(5 )7 =G o)

in the product Hilbert space © = K @ K. Then J is a fundamental symmetry in S and A is a J -
selfadjoint operator. As p(L) = @, it is clear that p(A) = @.

This example shows that the property p(A) = @ is a consequence of the special structure of A.
It is natural to suppose that this relationship can be made more exact for some special types of J -
selfadjoint operators.

We investigate a closed symmetric operator S in the Hilbert space ' with inner product
G =1 ]

We assume the deficiency indices of S to be (2,2) and we assume that S commutes with the
fundamental symmetry J ,
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S] =]S. (30)
Hence, S is simultaneously symmetric and /-symmetric.

Our aim is to describe different types of ] -selfadjoint extensions of S. For this let X, be the set
of all J -selfadjoint extensions of S and let us denote by U the set of all fundamental symmetries which
commute with S, by X ]St we denote the set of all ] -selfadjoint extensions of S which commute with a
fundamental symmetry in U, by ¥; the set of all J -selfadjoint extensions of § which commute with ]

and by 1y, the set of all J -selfadjoint extensions which commute with all operators in U. By definition
we have ] € Uand

Yy c ¥, c 5. (3D

Operators from X ]St are said to have the property of stable C-symmetry, see [118]. In particular,

they are fundamentally reducible and, hence, similar to selfadjoint operators in Hilbert spaces.
Therefore, | -selfadjoint operators with stable C-symmetries admit detailed spectral analysis, see also

[96,114], and the set X}  may be useful for the explanation of exceptional points phenomenon in PT -
symmetric quantum mechanics (see [103,112,123,124] and the references therein).

In the case of a simple symmetric operator S, we show in this section that the existence of at
least one ] -selfadjoint extension of S with empty resolvent set leads to the quite specific structure of
the underlying symmetric operator S. Namely, we have in (31) strict inclusions,

Yucl; 5t Yy =Y, #5Y).

and it follows from the definition of the classes Yy, ¥; J and ¥ ft that we have a rich structure of

different extensions of S. Moreover, in Corollary (3.2.16) and Theorem (3.2.17) below we give a full

parametrization of the sets Yy, ¥; J and £7* in terms of four real parameters.

If, on the other hand, all J -selfadjoint extension of S have non-empty resolvent set, we show
(cf. Theorem (3.2.10) below) equality in (31),

Yy =Y = It

Moreover, we have U = {J}. This is in particular the case, if there exists at least one
definitizable extension (see Corollary (3.2.11) below).

We show that the existence of at least one ] -selfadjoint extension of S with empty resolvent set is
equivalent to one of the following statements.

* There exists an additional fundamental symmetry R in & such that
SR = RS,JR =—-R]J.

* The operator S, := S [g, is unitarily equivalent to S_:= S[lg_, where G are from the
fundamental decomposition (29) corresponding to J .

* The characteristic function s, of S, (see [126]) is equal to the characteristic function s_of S_.

If, in addition, the characteristic function of S is not identically equal to zero, we showide a
complete description of the set U in terms of R and | . More precisely (see Theorem (3.2.15) below), U
consists of all operators C of the form

C = (coshy)] + (sinhy) ] R[cosw + i(sinw)]]
withy € Rand w € [0,2m).

The operators J and R can be interpreted as basis (generating) elements of the complex
Clifford algebra Cl,(J,R) := span{l,],R,] R} and they give rise to a ‘rich’ family Z']St .
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The section is structured as follows. And contains auxiliary results related to the Krein space
theory and the extension theory of symmetric operators. In the latter case we emphasize the usefulness
of the Krein spaces ideology for the description of the set X; of ] -selfadjoint extensions of S in terms
of unitary 2 X 2-matrices U and the definition of the characteristic function of S.

We establish a necessary and sufficient condition under which X, contains operators with empty
resolventset (Theorem (3.3.7) and Corollary (3.3.9)) and explicitly describe these operators in terms of
unitary matrices U (Corollary 3.3.8).

We establish our main result (Theorem (3.2.12)) about the equivalence between the presence of
J-selfadjoint extensions of S with empty resolvent set and the commutation of S with a Clifford algebra
Cl,(J,R).This enables one to construct the collection of operators Cy, w realizing the property of
stable C-symmetry for extensions A € X directly in terms of Cl,(J,R) (Theorem (3.2.15)) and to
describe the corresponding subset X ft of extensions A € X, with stable C-symmetry in terms of
matrices U (Corollary (3.2.16) and Theorem (3.2.17)).

In the case of a degenerated Sturm—Liouville expression on a finite interval we describe all J -
selfadjoint extensions with an empty resolvent set. Moreover, we consider the case of an indefinite
Sturm— Liouville expression on the real line. Imposing an additional boundary conditions at zero, the
symmetric operator S is obtained as the orthogonal sum of two symmetric operators related to two
differential expressions defined on R, and R_, respectively. We are able to show that all J -selfadjoint
extensions of S have nonempty resolvent set. This extends some results from [101,102,106,115].
Finally, we consider a one-dimensional impulse and a Dirac operator with point perturbation.

Throughout the section, the symbols D(A) and R(A) denote the domain and the range of a
linear operator A. A [y, is the restriction of A onto a set D. The notation o(A4) and p(A) are used for the
spectrum and the resolvent set of A. The sign denotes the end of a proof.

Let © be a Hilbert space with inner product (-,-) and with non-trivial fundamental symmetry
J(i.e.,] =] *%J%=1,and J] # +I). The space S endowed with the indefinite inner product
[] := (J -) is called a Krein space (&, [,]). For the basic theory of Krein spaces and operators
acting therein we refer to the monographs [98] and [105].

The projectors P, = % (I £ J) determine a fundamental decomposition of S,

&=6, PS_,6_ = P.&, &, = PG, (32)

where (S, [+,]) and (&_, —[-,]) are Hilbert spaces. With respect to the fundamental decomposition
(32), the operator ] has the following form
_(I 0
) = (0 —1)'

A subspace £ of G is called hypermaximal neutral if
g =gl =x € G[x,y] =0Vy €&

A subspace L c & is called uniformly positive (uniformly negative) if
[x,x] = a?||x||* (resp.—[x,x] = a?®||x]|*)a € R,a # 0jfor all x € L. The subspaces S, in (32)
are examples of uniformly positive and uniformly negative subspaces and, moreover, they are maximal,
i.e., S, (S_) is not a proper subspace of a uniformly positive (resp. negative) subspace.

Let £,(# &,) be an arbitrary maximal uniformly positive subspace. Then its J -orthogonal
complement £_ = 8[+J'] is Maximal uniformly negative and the direct J -orthogonal sum

S =g, [+]e (33)

gives a fundamental decomposition of S.
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With respect to (33) we define an operator C via

(I 0
¢= (0 —1)'
We have C 2 = I and C is a selfadjoint operator in the Hilbert space (&, (,-)C ), where the inner

product (+,-)C is given by
(x,y)C = [Cx,y] = (JCx,¥),x,y € C.

Note that (:,-)C and (-,-) are equivalent, see, [121]. Hence, one can view C as a fundamental
symmetry of the Krein space (&, [+,-]) with an underlying Hilbert space (S, (+,-)C).

Summing up, there is a one-to-one correspondence between the set of all decompositions (33)
of the Krein space (H, [-,']) and the set of all bounded operators C such that

c2=1 JC >0, (34)

Definition (3.2.1)[94]. An operator A acting in a Krein space (&, [+,-]) has the property of C-symmetry
if there exists a bounded linear operator € in & such that:

@Hc?=1;
(i) Jjc > 0;
(iii) AC = C A.

In particular, if A is a J -selfadjoint operator with the property of C-symmetry, then its counterparts
Ay = ATy 8 = 1(1 £ O)G

are selfadjoint operators in the Hilbert spaces £, and £_ endowed with the inner products [-,-] and — [-
-], respectively. This simple observation leads to the following statement, which is a direct
consequence of the Phillips theorem [98].

Proposition (3.2.2)[94]. A ] -selfadjoint operator A has the property of C-symmetry if and only if 4 is
similar to a selfadjoint operator in &.

In conclusion, we emphasize that the notion of C-symmetry in Definition (3.2.1) coincides with
the notion of fundamentally reducible operator (see, [113]). However, in the context of this section and
motivated by [96,97,103,104,111,123,124], we prefer to use the notion of C-symmetry.

Here and in the following we denote by C, (C_) the open upper (resp. lower) half plane. Let S
be a closed symmetric densely defined operator with equal deficiency indices acting in the Hilbert

space (S, (+,°)).
We denote by 0, = ker(S* — ul),u € C\ R, the defect subspaces of S and consider the
Hilbert space M = N; + N_;
with the inner product
Co )M = 2[(x;,y) + (2=, y-)], (35)
wherex =x;+ x_;andy =y; +y_;withx;,y; €W, ,x_;,y_; € N_;.

The operator Z which acts as identity operator I on Jt; and minus identity operator —I on Jt_; is
an example of a fundamental symmetry in .

According to the von-Neumann formulas (see, [125,117]) any closed intermediate extension
AofS (i.e.,S € A c §%) in the Hilbert space (&, (+,-)) is uniquely determined by the choice of a
subspace M c M-

A = S Ipw ,D(A) = D) + M. (36)
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LetussetM = M, (u € C,) in (36) and denote by
Ay = S"Tpay ,D(4,) = D)+ R, VueEC, (37)
the corresponding maximal dissipative extensions of S. The operator-function
Sh(w) = (A, —iDA, +iD gty >N ,u €Cy (38)
is the characteristic function of S defined by A. Straus, see [168].

The characteristic function Sh(-) is connected with the Weyl function of the symmetric operator
S constructed in terms of boundary triplets (see [107], [110]). For instance, if M(-) is the Weyl function
of § associated with the boundary triplet (N;, Iy, [7), where

Lif =fi+tViuhf=ifi=—WVf,f=u+fi+f,; €DS) (39)
and V : Jt_; —» N, is an arbitrary unitary mapping, then
. -1
M) = i(I + VShRW)(I -V Sh(w)) ,pu € C,. (40)

The function V Sh(+) in (40) coincides with the characteristic function of S associated with the
boundary triplet (N;, I, [7), cf. [109].

Another (equivalent) definition of Sh(-) (see [126]) is based on the relation
D(A,) = D(S)+ T = D(S) + (I - SAGW)Ry, 1 € C,, (41)
which also allows one to uniquely determine Sh(-).

The characteristic function Sh(-) can be easily interpreted in the Krein space setting. Indeed,
according to the von- Neumann formulas, D(A4,) = D(S) + Ly, where Ly < M is a maximal
uniformly positive subspace in the Krein space (I, [-,-]Z ). Using (41), we conclude thatLy = (I —
Sh(u))N; and hence, —Sh(u) is the angular operator of Ly with respect to the maximal uniformly
positive subspace J; of the Krein space (I, [+,-]Z ) (see [140] for the concept of angular operators).

In what follows we assume that S satisfies (30), where | is a fundamental symmetry in (9, (-,-)).
The condition (30) immediately leads to the special structure of S with respect to the fundamental

decomposition (32):

S =(SJ 59_),5+ =5S1ls, ,S. = Sls, (42)

where S are closed symmetric densely defined operators in &..
Denote by Z; the collection of all ] -selfadjoint extensions of S and set
Y, ={A€eX|A] =]A} (43)

It is clear that ¥; < X, and an arbitrary A € Y} is a simultaneously selfadjoint and | -
selfadjoint extension of S. The set ¥} is non-empty if and only if each symmetric operator S, in (42) has
equal deficiency indices. We always suppose that ¥, # @.

Since S satisfies (30) the subspaces Jty; reduce J and the restriction J [ 9t gives rise to a
fundamental symmetry in the Hilbert space 9. Moreover, according to the properties of Z mentioned
above, ] Z = Z ] and ] Z is a fundamental symmetry in It. Therefore, the sesquilinear form

¥,z = (JZx,y);m = 2[(J x;,y)-(J x_;, y-i)] (44)
defines an indefinite metric on IN.

It is known (see, [96]) that an arbitrary J -selfadjoint extension A of S is uniquely determined
by (36), where M is a hypermaximal neutral subspace of the Krein space (0, [-,'] J Z ).
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In comparison with selfadjoint extensions in the sense of Hilbert spaces, we remark that

selfadjoint extensions of S in (&, (+,+)) are also determined by (36) but then subspaces M are assumed
to be hypermaximal neutral in the Krein space (I, [-,-]; ) with the indefinite metric (cf. (44))

(X, y]z = Zx,y);m = 2[(xi,y) — (-, y-)]

Denote by U the set of all possible C-symmetries of the closed symmetric operator S. By
Definition (3.2.1), this means that

CeUs C*=1, JC >0, SC = CS.

The next result follows directly from [138]. We repeat principal stages for the reader’s
convenience.

Lemma (3.2.3)[94]. The set U is non-empty and C € Uifand only if C* € U.
Proof. It follows from (30) that ] € U. Therefore, I # @.

Let C € U. The conditions C2> = I and JC > 0 are equivalent to the presentation C = JeY ,
where Y is a bounded selfadjoint operator in S such that JY = —Y ], see [96]. In that case C* =
Je~Y and, obviously, C* satisfies the relations C*2 = [ and JC* > 0.

Since S commutes with J and C one gets Se¥ = e¥ S. But then SC* = Se¥] = e¥ ]S =
C* S.Hence, C* € U.

Definition (3.2.4)[94]. (See [118].) An operator A € X; has the property of stable C-symmetry if

A and S have the property of C-symmetry realized by the same operator C, i.e., there exists C € U
with AC = C A.

Denote

it = {A € 2,|13C € Usuchthat AC = C A}. (45)

Due to Definition (3.2.4), X ]St consists of | -selfadjoint extensions A of S with the property of
stable C-symmetry. It follows from (43) and (45) that £7* > ¥;. Hence, Z7* is non-empty.

Denote

Yu = {4 € 2 |[AC = CA ,vC € u}. (46)

[tis clear that
YucY citc . (47)
The next Theorem gives a condition for the non-emptiness of the left-hand side of the chain (47).

Theorem (3.2.5)[94]. If the characteristic function Sh(:) of S is boundedly invertible for at least one
u € C,, thenYy # 0.

Proof. Let C € U.ThenS*C = C S* (see the proof of Lemma (3.2.3)) and, hence,
C: Nu-%u ,vu € C\R (48)

Therefore, AuC = C Ap for maximal dissipative extensions Au of S (see (37)). This means that the
characteristic function Sh(-) defined by (38) commutes with an arbitrary C € U, i.e.,

Sh(u)C = CSh(uw),vu € C,,VC €. (49)
It follows from Lemma (3.2.3) and (49) that Sh(u) = C*Sh(u). Therefore,
Sh*(u)C = CSh*(u), Yu € C,,VvC € W (50)
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Let Sh(u) be boundedly invertible for a certainu € C, andlet V : 9t; - Jt_; be the isometric

factor in the polar decomposition of Sh(u). Then V € = CV for all C € U (since (49) and (50)). This
means that the operator

belongs to Yy,

According to (47), an arbitrary € € U determines two operators C Iy, acting in 9N;.

Lemma (3.2.6)[94]. If S is a simple closed symmetric operator, then the correspondence C € U —
{C Mg, C Tg_,} is injective.

Proof. Assume the existence of an operator pair {C Iy, ,C y_} for two different operators C, C e w
Then (C — C)D(S*) € D(S). Therefore, (C — C)I, < D(S). On the other hand, (C —C )N,
9, by (47); The obtained relations yield C f, = C fu forany f, € R, and p € C\ R. This means
that C = C.

In what follows we assume that the deficiency indices of the operators Sy in (42) are (1,1). In
that case, the defect subspaces Jt.;(S,) of S are one-dimensional and

Ni(Se) = U+ 20U + I N_(Sy) = U — 20U + )W
NS)=U+2U )W N (S)=U—- 20U - J)M
Hence, 9t,;(54) are orthogonal in the Hilbert space (I, (-,")gn) (see (35)).
Let{e,,,e,_, e_,,e__} be an orthogonal basis of M such that
N;(Sy) = ker(S; — i) = span{e,,},
N, (S.) = ker(SX — il) = span{e,_},
N_i(S;) =ker(S; + il) = span{e_,},
N_;(S.) =ker(S*+ il) = spanfe__}, (51)
and the elements e, ,,e,_,e_,,e__ have equal norms in M. It follows from the definition of e, that
Ze,, = e,,, Ze,_=e,_,Ze_, =—e_,, Le__ =—e__,
Jerr = ey, Jero =—ep,  Je, = e, Je_ =-—e__. (52)

Relations (52) mean that the fundamental decomposition of the Krein space (M, [-],z ) has
the form

W=M_ M, M_ = spanfe,_,e_,},M, = span{e,,, e__}. (53)

According to the general theory of Krein spaces [98], an arbitrary hypermaximal neutral
subspace M of (M, [-];z) is uniquely determined by a unitary mapping of MM _onto M,.. Since
dimgy, = 2 the set of unitary mappings ft_ — M, is in one-to-one correspondence with the set of
unitar}; matrices

i qe” ret 2 2
U=ce _; _wac+re =1 qr € Ry,py,§ € [0,2m). (54)
—re i qe”

In other words, formulas (53), (54) allow one to describe a hypermaximal neutral subspace M
of (M, [-,-],z) as alinear span

M = span{d,,d,} (55)

of elements
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di = ery +qel@)e, +rel@tde_,
d, = e_._ —rel® e, _ +qgel@V)e_,, (56)

This means that (54)—(56) establish a one-to-one correspondence between domains D(A) = D(S) +
M of ] -selfadjoint extensions A of S and unitary matrices U. To underline this relationship we will use
the notation A for the corresponding J -selfadjoint extension A.

It follows from (49) (with C = ] ) that the characteristic function Sh(-) : N; = N_; commutes
with J . Combining this fact with the obvious presentations

N = (S D N(S-) = spanfesy, e}

N = N(S) @ N_(S-) = spanfe_,,e__} (57)
and relations (41), (52), we arrive at the conclusion that
Sh(wey, = sy(We_,, Sh(ple+—= s_(we__, (58)

where s; are holomorphic functions in C,. Moreover, it is easy to see that relations in (58) determine
the characteristic functions

Shy (@): R;(S4) = N (S4), Sho(p): I (S-) —» N_;(S-) (59
of the symmetric operators S, and S_, respectively.
We will use the notation
S, = S_

if the identity e'*S,(u) = S_(u) holds for all 4 € C,and for a certain choice of a unimodular
constant e'?, i.e., the sign = means equality up to the multiplication by a unimodular constant.

Theorem(3.2.7)[94]. Assume that the deficiency indices of operators S, in the presentation (42) of S
are (1,1). Then J -selfadjoint extensions of S with empty resolvent set exist if and only if S, =~ S_.

Proof. It follows from (41) that a J -selfadjoint extension Ay of S with the domain D(Ay ) = D(S) +
M has a non-real eigenvalue u € C, if and only if U has a non-trivial intersection with the subspace
L, = (I —Sh(u)N; . Therefore,

o(Ay) 2 Cyifandonlyif M n L, # {0}vVu € C,.
Since Ay is a J -selfadjoint operator, the inclusion (4, ) D C, is equivalentto (4 ) = C,.

In view of (57) and (58), L, = (I — Sh(u))9; = span{c,(u), c;(1)}, where

a(w) = ey — sy(We_y, (1) = ero — s_(we——. (60)
Therefore, the relation M N L, # {0} holds if and only if the equation
x1dy + xdy = yie,(U) + a0 () (61)

has a non-trivial solution x4, x,,v,,¥, € C forallu € C,. Substituting (56) and (60) into (61) and
combining the corresponding coefficients for e, we obtain four relations

X = Y129 @) — xyrel@T = ),
Xy = —Yo5_ (W), x,7e' @)+ x,qe’ @Y = —s, (Wy,
or
qel @)y — (1 —rel@Hs_(w))y, = 0,
ref@* + s, Wy —qe' s (wy, = 0.

The last system has a non-trivial solution y;,y, forall u € C, if and only if its determinant

58



qei((p"'y) -1+ rei((/’+f)s_(u)

i(p+y) =
1 rel@+) + 5. (w) —qe'®7r) OV €
This is the case if and only if
e?Ps_(u) = re'®* + s, () —re'®Ds_(Ws, (W), vu € C,. (62)

Further, Sh(i) = 0 by the construction (see (38) or (41)). Hence s,(i) =s_(i) = 0 and
relation (62) takes the form rei®*$) = 0 (foru = i) which means that r = 0. Therefore, an
operator Ay € X has empty resolvent set if and only

e??s_(u) = s, (W), vu € C,. (63)
Corollary (3.2.8)[94]. If s, ~ s_, then the operators A, € X, with empty resolvent set are
determined by the matrices:

U = el® (e(’)y 891']/>’ v € [0,2m), (64)

where ¢ € [0,2m) is uniquely determined by (63) if Sh Z 0 and ¢ is an arbitrary parameter if
Sh = 0.

Corollary (3.2.9)[94]. Let S be a simple closed symmetric operator. Then X; contains operators with
empty resolvent set if and only if the operators S, in (42) are unitarily equivalent.

Proof. Assume that X, contains operators with empty resolvent set and Sh # 0. Then s, # 0 and
(63) holds for a certain ¢ € [0,2m). Consider unitary mappings Vi : 9_;(S;) = J;(S4) defined by
the relations

Vie, = e,,, V.e__= e’?Pe,_.
By virtue of (58) and (59), we get
ViShy(Weyy = s (Weyy,
V.Sh_ (e, = e**s_(u)e, = s,(u)e,_. (65)

Then V,Sh, (. )and V_Sh_(.) are the characteristic functions (see, [161]) of S; associated with
the boundary triplets 9t;(Si), (I, [7) of S§  defined by (39). Identifying the defect subspaces
N, (S,) = spanfe,,} and N;(S_) = span{e,_}with C and using (65) we arrive at the conclusion
that the characteristic functions of S, associated with the boundary triplets (C, I, [7) coincide.

The same is true when Sh = 0. In that case, s, = s_ = 0 and the characteristic functions
Shy of S, are equal to zero.

Since S is a simple symmetric operator, Sy are also simple symmetric operators. In that case,
the equality of characteristic functions of S implies the unitary equivalence of S, see, [115,119].

Conversely, if S; are unitarily equivalent then s, = W~'s_W, where W is a unitary mapping
of S, onto S_. Therefore,

W, (sy) = Ny(s-) and WSh (u) = Sh_(w). (66)
Assuming y = +i in the first identity of (66) and using (57), we find w;, w, € C with
We,y = wie, We_, = wye_, |lwy| = |wy| = 1. (67)
It follows from (58) and (67) that
WSh,(Weyy = s,(WWez = wys (We__
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and s_(W)We,, = wiSh,(uw)e,_ = w;s_(u)e__. Combining the last two identities with the second

relation in (66) we obtain e?®s_(u) = s,(u), where e?® = w;/w,. The statement of Corollary
(3.2.9) follows now from Theorem (3.2.7).

As above the deficiency indices of operators S, in the presentation (42) of S are supposed to be
(1, 1). In the following we discuss the different situations which can occur:

* no member of X; has non-empty resolvent set;
» there are members of X; with empty resolvent set. We discuss the cases Sh(-) # 0 and Sh(-) = 0
Theorem (3.2.10)[94]. If X; contains no operators with empty resolvent set, then
Yuy=Y =t
in (47). Moreover, if S is a simple closed symmetric operator, then U = {] }.

Proof. Let C € U. It follows from (48) that the operator C g, acts in N,; and satisfies the relations
(C Fmii)2= I, ]C rmii> 0 (68)
Denote by C; and C, the 2 X 2-matrix representations of C Iy, and C I'y_, with respect to the
orthogonal bases e, ,e,_and e_,,e__ of N; and N_; , respectively. Then (68) takes the form
2_(1 0y (1 0. .

Gj _(0 1)'(0 —1)C1>0’] =12 €9
(since C Ty, are determined by (52)). The Hermiticity of the matrix in the second relation of (69)
enables one to deduce that a matrix C; satisfy (69) if and only if

Ci=2C

_ coshyj (sinhyj)e —'«J
J XJjwj "

- X ER wj € [0,2m). 70
—(sinhyj)e'®’ —coshyj )XJ wj € [0,2m) (70)

Combining (49) with (58) and (70) we get
<s+ (w) 0 ) ( coshy; (sinh)(l)e‘i“’1>

0 s-(W)/) \ —(sinhy,)e'®: —coshy;
coshy, (sinhyy)e™'*2\ (s, (1) 0
_( ¢ | ( ) (71)
—(sinhy,)et®2 —coshy, 0 s-(w)

for matrix representations C,; ,; of the operators C [y, 4

If X; has no operators with empty resolvent set, then s, # s_ (Theorem (3.3.7)). In that case

10 ) . Therefore, if

identity (71) holds only in the case y; = y, = 0, i.e.,Cy, w1 = Cp,w, = (O _1

sy # s_ then

C Fmﬂ: ] l‘mﬂ,VC € 11 (72)

Let us consider an arbitrary A, € Z']St . Then Ay C = CAy for some choice of C € U. It is
known that A;; C = CAy ifand only if CM = M, where M is defined by (55) and (56), cf. [138]. This
and (72) give CM = M if and only if [M = M. Therefore, Ay ] = JAyand Ay € Y ;. Thus

— yst
Y ] - Z] .
The identity ¥ ; = Y, is verified in a similar manner.

If S is a simple symmetric operator, then U = {] } due to Lemma (3.2.6) and relation (72).
Recall, that a ] -selfadjoint operator A4 in a Krein space (&, [+,-]) is called definitizable (see [163]) if
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p(A) # @ and there exists a rational function p # 0 having poles only inp(A4) such that
[p(A)x,x] =0, forallx € G.

Corollary (3.2.11)[94]. If X} contains at least one definitizable operator, then
Y U= Y] = th .

Proof. If A € X, is definitizable then an arbitrary operator from J; is also definitizable, see [99,100].
Therefore, X; has no operators with empty resolvent sets.

In that case two quite different arrangements for the sets ¥ , Y ; , and X7 are possible and
they will be discussed in this Section.

We recall that X; contains operators with empty resolvent set if and only if es, (W) = s_(u),u €
C,, for a certain parameter eio (Theorem (3.2.6)). Here, the functions s, (-) are defined in (58) with the
help of the elements {e,.,} which are determined up to the multiplication with a unimodular constant.
Therefore, without loss of generality, we may assume

Sy = S_. (73)

Theorem (3.2.12)[94]. Let S be a simple closed symmetric operator. Then the set X, contains operators

with empty resolvent set if and only if there exists a fundamental symmetry R (i.e.,R%2 = Iand R =
R*) in H such that

SR =RS, JR =-RJ. (74)
Proof. By virtue of Corollary (3.2.7), the existence of J-selfadjoint extensions of S with empty
resolvent set implies that the symmetric operators Sy in (42) are unitarily equivalent. Hence, s, =
W~1s_W, where W is an isometric mapping of S, onto &_. It is clear that the operator

rR=( Wo‘l) (75)

determined with respect to the fundamental decomposition (30) is a fundamental symmetry in S and
satisfies (74). Conversely, if (75) hold, then S, = RS_R. Therefore S, are unitarily equivalent and X
contains elements with empty resolvent set (Corollary (3.2.8)).

Remark (3.2.13)[94]. If the relations in (74) hold then the existence of J -selfadjoint extensions of S
with empty resolvent set can be established without the assumption of simplicity of S in Theorem
(3.2.12). Indeed, the operator S is reduced by the decomposition

S =6, S, G, = ﬂ R(S — u), (76)
VueC\R

where &; is the maximal subspace invariant for S on which the operator S ; = S I'g, is selfadjoint;

the subspace S, coincides with the closed linear span of all ker(S* — ul) and the restriction S, :=
S T'g, is a simple closed symmetric operator in &, see, [151].

If (74) hold, then the restrictions J, := J I'g, and R, := R [ g are fundamental symmetries in
Sy and they satisfy (74) for S,. Applying Theorem (3.3.12), we establish the existence of J,-selfadjoint
extensions of S, with empty resolvent set. Since an operator A € X, has the decomposition A =
Ao @ S; with respect to (75), where A is a Jy-selfadjoint extension of S, the set X; contains J -
selfadjoint operators with empty resolvent set.

However, we cannot drop the condition of simplicity of S in Theorem (3.2.11) for the inverse
implication. In that case, the existence of a fundamental symmetry R, satisfying (74) for S, in S is
easily deduced from Theorem (3.2.11) but it is not clear how to extend R, to & with preservation of
the relations in (74).
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From (74) one concludes that the four operators I,]/, R,and J R are linearly independent.
Hence, the operators J and S can be interpreted as basis (generating) elements of the complex Clifford
algebra

ClZ = Span{I!];R;] R}
Corollary(3.2.14)[94]. Let S satisfy (74) and let | € Cl, be a non-trivial fundamental symmetry in .
Then there exists J -selfadjoint extensions of S with empty resolvent set.
Proof. It is easy to see that an operator | € Cl, is a non-trivial fundamental symmetry in S (i.e.,j? =
1,] =J*, and J # I)ifand only if

J=a1] + &R + aziJR, af+ai+ai=1 q

Denote R = B;] + PR + P3iJR, where ¥ B} = 1, B; € R. By virtue of (4.10), R is a
fundamental symmetry in & which commutes with S. Assuming a;8; = 0, we obtain JR=-RJ.

Since ] is a fundamental symmetry in © which commutes with S, the statement follows from Theorem
(3.2.11).

€ R (77)

Theorem (3.2.15)[94]. Let S be a simple closed symmetric operator with non-zero characteristic
function Sh(-) and let the set X; contains operators with empty resolvent set. Then all operators C € U
have the form

C:= Cyo = Jl(coshy)l + (sinhy)Rw], (78)
where R satisfies (74), R, = Re'®’/ = R[cosw + i(sinw)]],andy € R, w € [0,2m).

Proof. First, we will show C, , € U. Since X, contains operators with empty resolvent set, there

exists a unitary mapping W : &, — &_ such that S, = W™t S_W (Corollary (3.2.9)). This allows
one to determine a fundamental symmetry R in S with the help of formula (75).

By construction, the operator R satisfies (74). Therefore, the subspaces Jt; reduce R.Let R; =
(rl%-)izl j=1 and R, = (7”5')1?, j=1 be the matrix representations of R Iy, and R Ty_, with respect to the
bases e, e,_ande_,,e__ of N; and N_; , respectively. It follows from (67) and (75) that R; =

0 wt . .
( J > , where |w;| = |w,| = 1. Moreover, since we assume (73), the parameter ¢ in the proof

of Corollary 3.2.8 is equal to zero and, hence, w := w; = w,. The exact value of the unimodular
constant w depends on the choice of W. Without loss of generality we may assume that w = 1. Then

Ri=R, =R, = (01 (1)) (79)
Let us consider the collections of all operators Cy , determined by (78) It is known that

Cyw = JeXRe | where R, = Re'® ] = R[cosw + i(sinw)]] is a fundamental symmetry in S,

which anticommutes with J (i.e.,R, ] = —J R, ), see [138].

Such a representation leads to the conclusion that C)?,w = [ and JC,, > 0. Moreover SC,, =

SCy , due to (30) and (74). Therefore, an arbitrary C,, ,, belongs to U.

Rewriting (78) as follows
Cyw = (coshy)] + (sinhy)(cosw)] R — i(sinhy)(sinw)R

and using (79) we obtain that both matrix representations of C,,,, Iy, and of C, ,, y_; coincide with

coshy (sinhy)e™ @
Crw = ; iw :
—(sinhy)e —coshy
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Let C € U. Then the matrix representations of its restrictions C 'y, and C Iy_, coincide with
Cy o, and C, defined by (70). Furthermore, since Sh(u)C = CSh(u) (see (49)), the identity (71)

holds. That is equivalent to the relations y; = y, and e™!¥1 = e~®2 (since (73) is true and
sy £ 0).

2,02

Setting ¥ = y; = x» and w = w;, one concludes that the matrix representations Cx,-.wj

coincides with C,, . Therefore, C = C, ,due to Lemma 3.2.6. Thus, the collection of operators {Cy ,}
defined by (78) coincides with .

Combining Theorem (3.2.15) with [138], we immediately derive the following statement.

Corollary (3.2.16)[94]. Let S and X, satisfy the condition of Theorem (3.2.15) and let A; € X; be
defined by (54)—(56). Then the strict inclusions

Yy € ¥, c It
hold and the following relations are true.
(i) Ay belongs to Yy if and only if
T i§
v=e3(_0, ), ¢eo2m;
(ii) Ay belongs to ¥} if and only if
, i§
U = e (_eo_ig e(l) ),(p, £ € [0,2m);
(ii1) Ay belongs to th\ Y; if and only if
, iy i§
U =e? <_q:e—if qree—i)’> ’ Y 'f € [0' 2”)' qr > 0, qz + r? = 1,

where 0 < g < | cos@|. In that case the operator Ayhas C, ,, -symmetry, where w = y and x is
determined by the relation ¢ = —tanhy cos ¢.

If Sh = 0, then s,(u) = s_(u) = 0 foralluy € C,. Therefore, by Theorem (3.2.7), %,
contains operators with empty resolvent set and Theorem (3.2.12) and Corollary (3.2.14) hold.
However Theorem (3.2.15) is not true due to the fact that the set of all stable C-symmetries U is much
more greater then the formula (78) provides. That is why the commutation condition (71) is vanished
for s; = 0 and we cannot establish the relationship between parameters y;,wiand Y, w, of
matrices C 0, (s€e the proof of Theorem (3.2.15)).

Theorem (3.2.17)[94]. Let S be a simple closed symmetric operator with zero characteristic function
and let Ay € X be defined by (54)—(56).

Then ¥y = @ and the strict inclusions
Yy Y c It
hold.
(1) Ay belongs to ¥; if and only if
U = e (_g_if e(;'f), 0,& € [0,2m);
(ii) Ay belongs to 27\ ¥} if and only if

) iy i&
U= e“l’(qe _is re_iy>, e,v,§ €10,2m), qr >0,q¢*+7r* =1
—re qe
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Proof. (i) follows from [138].

In order to show (ii) let Ay € Z']St . Then AyC = C Ay for some choice of C € U. This is
equivalent to the relation CM = M,

where M = span{d,, d,} is defined by (55) and (56) (see the proof of Theorem (3.2.10)). Moreover,
it follows from the proof of Theorem (3.2.10) that the operators C Iy, and C ly,_, actsin 9N; and N_; ,

and C defined by formula (70).

respectively and they have the matrix representations € e

X1,W1

Combining [160] with Lemma (3.2.6) we conclude that the correspondence

CeU->{Chuw Croo, ) X ER  w € [0,2m) (80)
is bijective for the case of a zero characteristic function (Sh = 0).
It follows from (56) and (70) that

Cdl = CX

w s Tqel@tIC, e +rel@tc, e
= ke, — [sinhy €1 + qe'®*V) coshy e, + [ret@*9) coshy,le_, koe__,
where
k, = coshy,; +qe'®*Y) sinhy,e” !k, = —re'®*+9) sinhy,el®2 . (81)

Taking the definition (56) of d; into account we conclude that Cd; € M if and only if Cd; =
kid; + k,d;, where k; are defined by (81). A direct calculation shows that the last identity holds if
we set

X = X1 = X, =—tanh™!q, W, = (82)

A similar reasoning shows that Cd, € M if we choose parameters y; and w; according to (82).
Note that y can be defined in (82) only in the case 0 < q < 1.

Thus, if Ay € X is defined by (54)—(56) with 0 < g < 1, then choosing parameters y; , w; due
to (82) and using the bijection (70), we establish the existence of C € U such that A; C = C Ay .
Therefore Ay € X ft .Since J € ¥; whenq = 0 (see (i)) and the spectrum of A; coincides with C

when g = 1, we show (ii).
Let us assume that Ay € Yy. In that case Ay C = C Ay for all € € U. Taking (80) into

account, we conclude that the element Cd; = C,, , ey + qe'@*VIC, , e, + re'@*C, e,

belongs to M (i.e.,Cdy = kyd; + kyd;, where k; are defined by (81)) for all values of parameters
xj and w; . This is impossible. Hence, ¥y = @.

The next statement is a direct consequence of Proposition (3.2.2) and Theorem (3.3.17).

Corollary(3.2.18)[94]. (See [118].) If S is a simple closed symmetric operator with zero characteristic
function, then an operator A; € X, has real spectrum if and only if Ay, has stable C-symmetry and,
hence, Ay is similar to a selfadjoint operator. Otherwise, the spectrum of A;; coincides with C.

The necessary and sufficient conditions for the Dirichlet eigenvalue problem associated with the
Sturm—Liouville equation

p((x)y’)’ = Ar(x)y, —o<a<x<b <o (83)
to be degenerate were established in [122]. We consider one of the simplest cases where
p(x) = r(x) = (sgnx)and [a,b] = [-1,1].

Define the closed symmetric operator S associated with the expression —(sgn x)((sgn x)y")’
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and boundary conditions y(—1) = y(1) = 0via
Sy ==y",
with domain
D) ={y € W7 (-1,00® W7 (0,Dy(0+) = y(0+) = y(+1) = 0}. (84)
Then (83) takes the form Sy = Ay.

The operator S has deficiency indices (2,2) and it commutes with the fundamental symmetry
Jy(x) = (sgnx)y(x) in © = L,(—1,1). The corresponding closed symmetric operators S,y =
—y"" (see (42)) with the domains

D(Sy) ={y € W7 (0,DIy(0+) = ¥'(0+) = y(1) = 0},
D(S-) ={y € W7 (-1,0)ly(0-) = y'(0-) = y(-1) = 0}
actin S, = L,(0,1) and &_ = L,(—1,0), respectively.

Consider the parity operator Py(x) = y(—x)andsetR := P. It is clear that R is a
fundamental symmetry in L,(—1,1) and it satisfies (74). To describe these operators we observe that
solutions yl;—" (x) of the equations

Siy —uy =-y"(x)— uy(x) =0, y(*1) = 0,u € C,

have the form

+ _ sin\/ﬁ(x— 1), x € [0,1],
Y (%) _{0, x € [-1,0],
i 0, x € [0,1],]
Vi (%) :{ —sin\/ﬂ(x+ 1), x € [-1,0

Here denotes the branch of the square root defined in € with a cut along [0, ) and fixed by Imv2A >
0 if A & [0,0). Moreover, V. is continued to [0,0) via 1 =» 1 > 0 for A € [0,). According
to (51), the elements e, 4 can be chosen as follows:

ey = Vi, er— = Vi, e_y =y4, e__ =y
and the functions s (u) in (58) can be calculated immediately by repeating the arguments in [168]. For
completeness we outline the method.

The characteristic function Sh, (1) of S, is determined by the first relations in (58) and (59).
Employing here (41)

we get
Vi () = u(x) + cepy —csp(We_y,u € D(S,),x € [0,1], (85)

where c is a constant which is easily determined by setting x = 0 and taking into account the relevant
boundary conditions:

siny 1
" sinvi — s. () sinV—=i
Differentiating (85) with a subsequent setting x = 0 we obtain
Jicosp = cicosVi —cs, (uV—i cosV—i.

The last two relations leads to the conclusion:
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W Vi sin /i cos i — i cos\Ju sinvi
s = .
+H V—i siny/ pcosvV—i — +Jucos/usiny—i
Considering the characteristic function Sh_ of S_ we obtain the same expression for s_(u).
Thus s, =s_ # 0. By Theorem (3.2.7), the set X, of ] -selfadjoint extensions of S contains operators

with empty resolvent set. Applying Corollary (3.2.8) and taking the explicit form of elements e, into
account we derive the following description of ] -selfadjoint extensions of S with empty resolvent set.

Proposition(3.2.19)[94]. Let S be a symmetric operator in L,(—1,1) defined by (84) and let ] y(x) =
(sgnx)y(x) fory € L,(—1,1)Then the collection of all possible ] -selfadjoint extensions A, of S
with empty resolvent set is determined by the formulas

Ayy=y"

e y(0+) = y(0-)
D(4y) =1y € WF(-1,0) ® W} (0,1) [e” y'(0+) = =y'(0-) ¢,
y(x1) =0
where y € [0, 2m) is an arbitrary parameter.

Consider the indefinite Sturm—Liouville differential expression

a)(x) = (sgnx)(y"(x) +q(x)y(x)),x € R
with a real potential ¢ € L} .(R) and denote by & the set of all functions y € I,(R) such that y and
y' are absolutely continuous and a(y) € [,(R). On G we define the operator A as follows:
Ay =a(y), D@ = 6. (86)
Assume in what follows the limit point case of a(y) at both —co and + oo. Then the operator A
is J -selfadjoint in the Krein space (I,(R), [-,-] ] ), where ] = (sgn x)I , see, [148].

The operator A is a J -selfadjoint extension of the symmetric operator S,

2

d
§ = (sgnx) <— W+Q>, D(S) =1y € Sly(0) = y'(0) = 0}. (87)

The operator S commutes with / and has deficiency indices (2, 2). Its restrictions onto the
subspaces [,(R;) of the fundamental decomposition I,(R) = [,(R;) @ [,(R_) coincides with the
symmetric operators

d? d?
Sp ==zt S- =574, D(S:) = PD(S),qx =q Tk,
with deficiency indices (1,1) acting in the Hilbert spaces S, = [,(R,)and G _ = [,(R_),
respectively. Here P, are the orthogonal projectors onto [,(R;)in I, (R).

Denote by ¢, (+), s,(-) the solutions of the equation
—f"+qf ) =ufx), xeR pecC
with boundary conditions
c,(0) = s',(0) = 1, c',(0) = s,(0) = 0. (88)

Due to the limit point case at oo there exist unique holomorphic functions M, (u) (u €
C \ R) such that the functions

l/)l-f (X) — {(‘;’iﬂ(x)_ Mi(ﬂ)ciu(x): xx EE ]R]lg; (89)
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belongs to I, (R). The functions M, (.) are called the Titchmarsh-Weyl coefficients of the differential
expression a(-) (see, [158]). They are Nevanlinna functions and they satisfy the following asymptotic
behavior

Mi(ﬂ)—+—+0<1>(u—>ooo<6<argu<7t o) (90)

NE

for & € (0,m2), see [150].

The asymptotic behavior (90) was used for justifying the property p(A) # @ for the concrete |
-selfadjoint extension A of S defined by (86), cf. [115]. We extend this result to all operators in ) .

Theorem(3.2.20)[94]. Let the symmetric operator S be defined by (87) and | = (sgn x)I . Then the
set X; of J -selfadjoint extensions of S does not contain operators with empty resolvent set.

Proof. The proof is divided into two steps. In the first one we calculate the characteristic function of S.
In the second step we apply Theorem (3.2.7).

Step 1. It follows from the definition of S, and (89) that the defect subspaces 9t;(S;)
coincides with span{i};} and the defect subspaces Jt.;(S_) coincides with span{i3;}. Therefore, we
can choose basis elements {e,. . } as follows:

=yf,  ex =Y, e =, e =cp,

where an auxiliary constant ¢ > 0 is determined by the condition || || = [ly; ||
(or, what is equivalent, by the condition ||p*;|| = |l¢pZ;]]) .This ensures the equality of the norms
leqsll = lles—Il = lle—ill = Ille—_]I.
By virtue of (88) and (89) we have
er4(0) = —M, (i), €'1,(0) = Les (0) = —cM_(£i),e's (0) = . (91)

Using these boundary conditions and, we arrive at the conclusion that the characteristic function
Sh of S is defined by the following functions s, (-) and s_(+) in (58):

M, ()- M. (D) 5. () = M_(p)- M_()
M, (- My (D)’ B M- (- M_(-)
Step 2. By Theorem (3.2.7) the set Z; contains operators with empty resolvent set if and only if

e?@s_(u) = s.(u), u € C,, for a certain choice of ¢ € [0,2m). Tending u — oo in this identity
and taking (90) and (92) into account, we obtain that

M, (OM - (=)
M, (—)M-()
Rewriting e?®s_(u) = s, (u) with the use of (92) and (93) we get
My (WM_(w)[e*? - 1] + ML (W)M_; -e**M_(0)
+ M = GOM, (W) — 29 M, (=) = 0. (94)
Denote M, (i) = e + |M, ()|, where 8, € (0,m) (since Im My (i) > 0). Then (93) takes
the form e?'? = 2{(9+=0-) and relation (94) can rewriting (after routine transformations) as follows:
M, (WM_(uw)sin(6, —0_) — M, (uWM_(i)sin0, + M_(uM,(i)sin6_ = 0 Vu € C+. (95)

Since the coefficients |M,.(i)| sin 8 £ of M, (u) are real, identity (95) cannot be true for the whole
C4 (due to the asymptotic behavior (90)). Therefore, X; does not contain operators with empty
resolvent set. (See [115]).

s+(u) = (92)

e2lp —

(93)
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By virtue of Theorems (3.2.10), (3.2.20) the set ~ ]St of ] -selfadjoint operators with stable C-
symmetry is reduced to the set ¥; of selfadjoint extensions of § which commute with | in the case of
indefinite Sturm-Liouville operators. The set ¥; consists of all selfadjoint extensions of S with
separated boundary conditions on 0, i.e.,

A €Y, & Ay =a(y), D) ={y €Clay f(0+)—b, f'(0+) = 0}.
Consider the closed symmetric operator
d
§=—i— D) ={y € W;(R,C)Iy(0) = 0}
in the Hilbert space L, (R, C?) := L,(R) ® C.

Lemma(3.2.21)[94]. The operator S has deficiency indices (2,2) and its characteristic function Sh is
equal to zero.

Proof. The operator S can be presented as § = S; + S, with respect to the decomposition
Ly(R,C?) = L,(R_,C?) @ Ly(R,,C?). The restrictions S1 = ST, 2 and S, =
S 1., (r,c?) are maximal symmetric operators in the Hilbert spaces L,(R_,C?) and L,(R,,C?),
respectively, with deficiency indices (0, 2) and ( 2, 0) , respectively. Therefore S has deficiency indices

(2,2)and M, (S) = N,(S,) forallp € C, (since S, has deficiency indices ( 2,0)). An arbitrary
fu € I, (S) admits the representation

f/L =u+ fi’ u € D(SZ)' fl € iRL(SZ)
Comparing the obtained formula with (41) we obtain Sh(u) = 0.

To achieve a non-empty set X}, we have to choose a fundamental symmetry J in such a way that
the deficiency indices of Sy in (42) are (1,1). To this end, we write an arbitrary element y €
L, (R, C?) as follows

y =(£)= 1 ®hy +y, b, hy =((1,). h_ =((1))

_y;,z) in L,(R,C?). In that case, the operators Sy in

(42) act in the Hilbert spaces L,(R,H,), where H, = span{h,} and they are determined by the
formulas

and consider the fundamental symmetry J y = (

d
Sy ==iz=, D@y ={y € WRHIY(O) = 0} (96)

Obviously, S have deficiency indices (1, 1). This means that the set X; is non-empty and its elements

can be parameterized by unitary matrices U in (54).

In order to describe the subset of | -selfadjoint extensions with empty resolvent set in X; we
have to calculate basis elements {e,.,} (see (51)) and to apply Corollary (3.2.8).
Denote by
e_x, XZO, _ 0; x = Ol
wo={5" ) =0 12,

)

the solutions of the equation -iy’ —puy = 0 (u € {i,—i}). Using the definition of S; and (51) we
obtain

ey = Vi Qhy, es- =y; Qh_, ey =Y i Qhye_ =y ; Qh..

Corollary (3.2.8) and equalities (55), (56) imply that an arbitrary | -selfadjoint extension Ay
with empty resolvent set has the domain D(A, ) = D(S) + M, where M is a linear span of elements
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di=e,, +e@Ve, _  d, =e__ +e@®Ve_,, @,y € [0,2n).

The obtained expression leads to the following description of | -selfadjoint extensions Ay (=
Agpy ) of S with empty resolvent set:

. Yy
Apy y = =1y, y = (yz) € D(Apy ),
where @,y € [0, 2m) are arbitrary parameters and

y2(0+) = !+ y, (0 +)
y,(0=) = =9 y,(0-) -

D(Agy ) = @;) € W;R\ {0} ® C?

Let us consider the free Dirac operator D in the space L,(R) ® C2:

— _j d c2 — wil 2
D ——lCa®O'1+?®O'3, D(D) - W2 (R)@(C,

where 0 = ((i (1)), 03 = ((1) _01) are Pauli matrices and ¢ > 0.

The closed symmetric Dirac operator
S=DM{u e W} (R) ®C?|u(0) = 0}

has deficiency indices (2, 2), see [95], and it commutes with the fundamental symmetry | = P &
o3 in L,(R) @ C?, where P is the parity operator Py(x) = y(—x). In that case, the operators Sy in
(42) are restrictions of S onto the Hilbert spaces

[L57™(R) ® H,] @ [L3* (R) ® H_],
[Lodd2 (R) ® H,] @ [L3"" (R) @ H_],

respectively, where . are as in this section and the closed symmetric operators S, have deficiency
indices (1, 1).

The defect subspaces N; and 9t_; of S coincide, respectively, with the linear spans of the
functions {y;, ¥, } and {y;_, y,_} where

71 = (L) @) = G0y, 97)

_ ’ﬂ it . S e | -1
T=-13 1, and e":= (2 )( 4‘+1) , see, e.g., [137].

Using the definition of S, and (51) we obtain

€+ = Vi €ir— = You €+ = Vi e =Y. (98)

The adjoint operator

dx

is defined on the domain D(S*) = W3 (R\ {0}) ® C? and an arbitrary J -selfadjoint extension
Ay € X is the restriction of S* onto D(Ay ) = D(S) + M, where M is defined by (55) and (56) with
ey determined by (98).

- d c?
S"=—ic—Q o + ?®03

It is easy to see that the fundamental symmetry R = (sgn x)I in L,(R) & C? also commutes
with § and J R = —RJ. Taking into account Remark (3.2.13) we establish the existence of ]| -
selfadjoint extensions of S with empty resolvent set.
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A routine calculation with the use of Corollary (3.2.8) gives that A; € X, has empty resolvent
set if and only if Ay (= A, ) is the restriction of §* onto the set

A, [y(0+) + y(0-)] = y(0+) — y(O—)}

— 1 2
D(4,) = {y € W;(R\{0}) ®C y'(04+) + y'(0-) = 4, [y'(04) - ¥'(0-)]

where A, = (ely 0 )

0 e~
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Chapter 4
Functions of Perturbed Normal and Selfadjoint Operators
We also study properties of the operators f (A) — f (B) for f € A,(R) and selfadjoint
operators 4 and B such that A — B belongs to the Schatten—von Neumann class Sp. We consider the
same problem for higher order differences. Similar results also hold for unitary operators and for
contractions. We show that if f belongs to the Besov class B, ; (R?),, then it is operator Lipschitz, i.e.,
If (V) = £ (NIl < const IIfllgs,, IN; — Nall. We also study properties of f (Ny) = f (N3)

in the case when f € A,(R?) and N; — N, belongs to the Schatten—von Neumann class S p- In
particular, we show that if a function f belongs to the Besov space By, ;(R™), then f is operator
Lipschitz and we show that if f satisfies a Hélder condition of order a, then ||f (A4,...,4,) —
f (By,...,Bp)ll < constmax<j<p ||Aj — B; ||a for all n-tuples of commuting selfadjoint operators
(A4,...,4;) and (By,..., B,). We also consider the case of arbitrary moduli of continuity and the case
when the operators A; — B; belong to the Schatten—von Neumann class S ,,.
Section(4.1): Functions of Perturbed Operators
It is well known that a Lipschitz function on the real line is not necessarily operator Lipschitz,
1.€., the condition,
If () =f W] <const|x —yl,x,y €R,
does not imply that for selfadjoint operators 4 and B on Hilbert space,
If (4) = f (B)Il < const ||A - B|.
The existence of such functions was proved in [82] (see also [90] and [92]). Later in [84] necessary
conditions were found for a function f to be operator Lipschitz. Those necessary conditions imply
that Lipschitz functions do not have to be operator Lipschitz. It is also well known that a continuously
differentiable function does not have to be operator differentiable, see [84] and [85]. Note that the
necessary conditions obtained in [84] and [85] are based on the nuclearity criterion for Hankel
operators, see [89].
It turns out that the situation dramatically changes if we consider Holder classes A, (R) with
0 < a < 1. In this case such functions are necessarily operator Holder of order , i.e., the condition:
If () = f D)lconst |x-y|*,x,y € R,
implies that for selfadjoint operators 4 and B on Hilbert space,
If (A) = f (B)II < const |4 — B €)
Moreover, a similar result holds for the Zygmund class 4, (R), i.e., the fact that
lf(x +t)=2f () +f(x —t)| <const]|t|xt € R,
and fis continuous implies that f is operator Zygmund, i.e., for selfadjoint operators A and K,
If (A+K) —2f () + f (A=K || < const |IK]. )
We also obtain similar results for the whole scale of Holder—Zygmund classes 4, (R)) for 0 < a < oo.
Recall that for &« > 1, the class 4, (R) consists of continuous functions f such that

n
Z(—l)”_k (Z)f (x + kt)| < const |t|%, wheren—1<a<n.
k=0

The same problems can be considered for unitary operators and for functions on the unit circle,
and for contractions and analytic functions in the unit disk.

To show(1), we use a crucial estimate obtained for trigonometric polynomials and unitary
operators in [84] and for entire functions of exponential type and selfadjoint operators in [85]. We state
here the result for selfadjoint operators. It can be considered as an analog of Bernstein’s inequality.

Let f be an entire function of exponential type o that is bounded on the real line R. Then for
selfadjoint operators A and B with bounded A — B the following inequality holds:

If (4) = f (B) Il < const & |If ll,qmll A — Bl ©
Inequality (3) was showed by using double operator integrals and the Birman—Solomyak formula:

71



%_];0’) dE,(x)(A — B)dEg(y),

fa-r® =
where E, and Ep are the spectral measures of selfadjoint operators A and B; we refer to [79], [80] and
[81] for the theory of double operator integrals. Note that 4 and B do not have to be bounded, but 4A—-B
must be bounded.

To estimate the second difference (2), we use the corresponding analog of Bernstein’s
inequality which was obtained in [93] with the help of triple operator integrals. To estimate higher
order differences, we need multiple operator integrals. We refer the reader to [93] for definitions and
basic results on multiple operator integrals.

We also consider in this section the problem of the behavior of functions of operators f (A)
under perturbations of A by operators of Schatten—von Neumann class §,, in the case when f €
Ag(R).

We start with first order differences. We use the notation by 4,,0 < a < oo, for the scale of
Holder—Zygmund classes on the unit circle T.

Theorem(4.1.1)[73]. Let 0 < a < 1. Then there is a constant ¢ > 0 such that for every f € A, and
for arbitrary unitary operators U and V on Hilbert space the following inequality holds:

If ) =f I <cll fll*= lU —V]|*.
Theorem(4.1.2)[73]. There exists a constant ¢ > 0 such that for every function f € A; and for
arbitrary unitary operators U and V on Hilbert space the following inequality holds:

1
If W) = f DI < clifla, (2+logzm)llu .

Note that this result improves an estimate obtained in [82] for Lipschitz functions in the case of
bounded selfadjoint operators.

Theorem(4.1.3)[73]. Let n be a positive integer and 0 < @ < n. Then there exists a constant ¢ > 0
such that for every f € A, and for an arbitrary unitary operator U and an arbitrary bounded selfadjoint
operator A on Hilbert space the following inequality holds:

n
k(M i
D 0 E () £ ™A < c Dl 14l
k=0
Let us consider now a more general problem. Suppose that w is a modulus of continuity, i.e., w
is a nondecreasing continuous function on [0,) such that w(0) = 0and w(x + y) < w(x) +
w(y),x,= 0. The space 4, consists of functions f on T such that

lf (O —f@I|=sconstw({ —7|),¢,7 € T.

With a modulus of continuity w we associate the function w* defined by:

. w(t)
w(x)=f 2 dt,x = 0 .
X
Theorem(4.1.4)[73]. Suppose that w is a modulus of continuity and f € A,.
If U and V are unitary operators, then
If W) = f Wl = const || fll 4, @™ (IU-VI).
In particular, if w* (x) < const w(x), then for unitary operators U and V
lf (U) = f Wl < const || fll 4, w (IU-VI]).
We have also showed an analog of Theorem (4.1.4) for higher order differences.
We denote here by (A4,), the set of functions f € A,, for which the Fourier coefficients f (n)
vanish forn < 0.
Recall that an operator T on Hilbert space is called a contraction if ||T|| < 1. The following result
is an analog of Theorem (4.1.3) for contractions.
Theorem(4.1.5)[73]. Let n be a positive integer and 0 < a@ < n. Then there exists a constant ¢ > 0
such that for every f € (A,), and for arbitrary contractions T and R on Hilbert space, the following
inequality holds:
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<cllflia, IT=RI*

D () (T = % (T - R))
k=0

Note that an analog of Theorem (4.1.4) also holds for contractions.
Theorem(4.1.6)[73]. Let 0<a <1land let f € A,(R). Suppose that A and B are selfadjoint
operators such that A — B is bounded. Then f (A) — f (B) is bounded and
If () = £ BI's const If liauqm 14— BII*
In this connection we mention the reference [82] where it was showed that for selfadjoint
operators A and B with spectra in an interval [a, b] and a function ¢ € A,(R), the following inequality
holds:

b —a 2
lo() = 9Bl < const lplla,e (log (Tr—pm+1) +1) llA— Bl

14 —Bll
(see also [91]).
Theorem(4.1.7)[73]. Suppose that n is a positive integer and 0 < a < n. Let A be a selfadjoint
operator and let K be a bounded selfadjoint operator. Then the map,
= n
J

£ o @gp) @ydef y 0 () F @+ K, )
2L 2,

has a unique extension from L* N A,(R) to a sequentially continuous operator from A,(R) to the
space of bounded linear operators on Hilbert space and

1A (A) || < const || f 1| apwy 1K NI

We use the same notation (A% f) (A) for the unique extension of the map (4).

We can also showe an analog of Theorem (4.1.4) for selfadjoint operators.

In this section we consider the behavior of functions of selfadjoint operators under perturbations
of Schatten—von Neumann class §,,. Similar results also hold for unitary operators and for contractions.

Recall that the spaces S, and S, ., consist of operators T on Hilbert space such that
1

P
IT lls, def (an(T)p) <o

n=0
1
and |IT lls, .def suppso (1 +n)P s,(T') < oo.
Theorem(4.1.8)[73]. Let 1 <p < o, 0<a < 1, and let f € A,(R). Suppose that A and B are
selfadjoint operators such that A — B € S,. Then

F@-fBE S,
and IIf (4) = f B)lls, _ < const IIf | ayqmy 14— Bl §,

Note that in Theorem (4.1.8). in the case p > 1 we can replace the condition A — B € S, with the
condition A — B € S .

Using interpolation arguments, we can deduce from Theorem (4.1.8) the following result:
Theorem(4.1.9)[73]. Let 1<p < 0,0 <a <1, and let f € Ay (R). Suppose that A and B are
selfadjoint operators such that A — B € S,. Then

fA-f(B)e Sp
and |If (A) — f (B)lls, < constllf |l 4, 114 — Bl g‘p.

Theorem(4.1.10)[73]. Suppose that n is a positive integer, a is a positive number such that n — 1 <
a <n,andn <p < oo,

Let A be a selfadjoint operator and let K be a selfadjoint operator of class S,,. Then the operator
(AR f) (A) defined in Theorem (4.1.7) belongs to Sp . and
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IARS) (lls, - < const |If || 4,y KIS, -

Theorem(4.1.11)[73]. Suppose that n is a positive integer, « is a positive number such thatn — 1 <
a <nf € Ay(R), and n < p < oo. Let A be a selfadjoint operator and let K be a selfadjoint
operator of class S;,. Then the operator (Ak f) (A) defined in Theorem (4.1.7) belongs to S» , and

1Ak Dlls, < constIf Il a,mwy KIS,

Section (4.2): Perturbed Normal Operators

In this Section we generalize results of the references [85,86,173,74], and [75] to the case of
normal operators.

A Lipschitz function f on the real line R (i.e., a function satisfying the inequality | f (x) —
f )| < const |[x — y|,x,y € R) does not have to be operator Lipschitz, i.e.,

If (A) — f (B)Il < const ||A — Bl

for arbitrary selfadjoint operators A and B on Hilbert space. The existence of such functions was
showed in [82]. Later in [85] and [86] necessary conditions were found for a function f to be operator
Lipschitz. In particular, it was shown in [85] that if f is operator Lipschitz, then f belongs locally to
the Besov space Bi;(R). This also implies that Lipschitz functions do not have to be operator
Lipschitz. Note that in [85] and [86] stronger necessary conditions are also obtained. Note also that the
necessary conditions obtained in [85] and [86] are based on the trace class criterion for Hankel
operators, see [89].

On the other hand, it was shown in [85] and [86] that if f belongs to the Besov class Bl (R),
then f is operator Lipschitz. We refer the reader to [84] for information on Besov spaces.

It was shown in [73] and [74] that the situation dramatically changes if we consider Holder
classes A, (R) with 0 < a < 1. In this case such functions are necessarily operator Holder of order
a, i.e., the condition | f (x) — f (y)| < const|x — y|* x,y € R, implies that for selfadjoint
operators A and B on Hilbert space,

If (A) — f B)Il < const ||lA — BJ|*.
Note that another proof of this result was found in [88].

This result was generalized in [73] and [74] to the case of functions of class A, (R) for arbitrary
moduli of continuity w. This class consists of functions f on R, for which | f (x) — f (y)| <
constw(|x — y|),x,y €R.

Finally, we mention here that in [75] properties of operators f (A) — f (B) were studied for functions
f in Ag(R) and selfadjoint operators A and B whose difference A — B belongs to Schatten—von
Neumann classes S |, .

We generalize the above results to the case of normal operators. Throughout the section we
identify the complex plane C with R2.

Our results are based on the following inequality:

Theorem(4.2.1)[77]. Let f be a bounded function of class L* (R?) whose Fourier transform is
supported on the disc {{ € C: |{| < g}. Then

lf (Ny) — f (NIl < const al[Ny — Nyl
for arbitrary normal operators N; and N, with bounded difference.

To show Theorem (4.2.1), we obtain a formula for f (N;) — f (N,) in terms of double operator
integrals. The theory of double operator integrals was developed in [85,87], and [81]. If E; and E, are
spectral measures on y; and y; and @ is a bounded measurable function on y; X y,, then the double
operator integral

| ous dmsor i)

X1XX2
is well defined for all operators T of Hilbert—Schmidt class S, and determines an operator of class S,.

For certain functions @ the transformer T ~ [[ & dE;T dE, maps the trace class S; into itself. For
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such functions @ one can define by duality double operator integrals for all bounded operators T . Such
functions @ are called Schur multipliers (with respect to the spectral measures E; and E,). We refer the
reader to [85] for characterizations of Schur multipliers.
In the following theorem E; and E, are the spectral measures of normal operators N; and N,. We
use the notation
Xj= Rezj,yj = Imz]-,Aj = ReN]- ,Bj = ImNj ,Jj = 1,2

Theorem(4.2.2)[77]. Let N; and N, be normal operators such that N; — N, is bounded. Suppose that
f is a function in L” (R?) such that its Fourier transform F has compact support. Then the functions

f G- f (X1, y2) fGxuy2) = f (%2,52)
(z1,2;) — and (zy,2;) —
Yi—DY2 X1 — X2
(are Schur multipliers with respect to E; and E,). and

f (e, y1)- f (x1,¥2) dE,(z)(B; — B,) dE,(z,)
Vi— Y2

Fowy - fov = |

c2

f (x4, — f(x,,
b [[ R g, - ) ds e 5)
(CZ
A continuous function f on R? is called operator Lipschitz if
If (N1) = f (NIl < const [Ny — Nl

for arbitrary normal operators N; and N, whose difference is a bounded operator.

Theorem(4.2.3)[77]. Let f belong to the Besov space Bl (R?) and let N; and N, be normal operators
whose difference is a bounded operator. Then (5) holds and

If (VD) = F (NIl < const [Ifllgg, oy INy — Nl

In other words, functions in BL ; (R?) must be operator Lipschitz.

As in the case of functions on R, not all Lipschitz functions are operator Lipschitz. In particular,
it follows from [85] that if f is an operator Lipschitz function on R?, then the restriction of f to an
arbitrary line belongs locally to the Besov space Bi;.

The next result shows that functions in B ; (R?) respect trace class perturbations.
Theorem(4.2.4)[77]. Let f belong to the Besov space Bl (R?) and let N; and N, be normal operators
such that N; — N, € §4. Then f (N;) — f (N,) € §;1 and

If (N2) = £ (N)lls, < const lIFllsy, uaylINs = Nolls, -

For a € (0,1), we consider the class 4,(R?) of Holder functions of order a:

A(Rdef {f 1 fllagcuty = Supryr, LN < oo)

|21—22|*
The following result shows that in contrast with the class of Lipschitz functions, a Holder function of
order « € (0, 1) must be operator Holder of order a.
Theorem(4.2.5)[77]. There exists a positive number ¢ such that for every @ € (0,1) and every
f € Aq(R?)
If V) = £ (NI < e(l = @) Il gy 1Ny — Nol®

for arbitrary normal operators N; and N,.

Consider now more general classes of functions. Let w be a modulus of continuity. We define

the class A,(R?) by
. _ | f (z1) — f (22)] o
DB def {F 41 sty = SWPnies, o 5= <)

As in the case of functions of one variable (see [73,74]), we define the function w, by

o.Codef x [ 257

t2
X

dt,y > 0.
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Theorem(4.2.6)[77]. There exists a positive number ¢ such that for every modulus of continuity w and
every f € A,(R?),
If V) = £ (NI cllfllg,@oyo. (N = Nyl

for arbitrary normal operators N; and N,.

Corollary(4.2.7)[77]. Let w be a modulus of continuity such that w,(y) < constw(y),x > 0, and let
f € A,(R?). Then

If (ND) = £ (NI < const [Iflly, wzy@ClIN; = Nl

for arbitrary normal operators N; and N,.

In this section we study properties of f (N;) — f (N,) in the case when f € A, (R?),0 <
a < 1, and N; and N, are normal operators such that N; — N, belongs to the Schatten—von Neumann
class S, . The following theorem generalizes (see [75]) to the case of normal operators.
Theorem(4.2.8)[77]. Let 0 < @ < land1 < p < oo.Then there exists a positive number ¢ such
that for every f € A, (R?) and for arbitrary normal operators N; and N, with N; — N, € Sy, the
operator f (N1) — f (N;) belongs to S/, and the following inequality holds:

If (N = f (N)ls, e < cllfllag w2y IIN2 = Nalls, -

For p = 1 this is not true even for selfadjoint operators, see [118]. Note that the construction
of the counterexample in [75] involves Hankel operators and is based on the criterion of membership of
S, for Hankel operators, see [89].

The following weak version of Theorem (4.2.8) holds:

Theorem(4.2.9)[77]. Let 0 < a < 1 and let f € A, (R?). Suppose that N; and N, are normal
operators such that N; — N, € §4. Then

fN) = F(N) € S1ie.,
5 (F (V) = f (N2)) < const IIfll 5, gy (L + )™ ,j 2 0

Here s;(T ) is the jth singular value of a bounded operator T .

On the other hand, the conclusion of Theorem (4.2.8) remains valid even for p = 1 if we
impose a slightly stronger assumption on f .
Theorem(4.2.10)[77]. Let 0 < a < 1 and let f belong to the Besov space B, (R?). Suppose that Ny
and N, are normal operators such that Ny — N, € S§;. Then f (N;) — f (N;) € S1 and

Ilf (N)) — f (NZ)”Sl/a < const||f]| B%(R?) INy — Nz”.%l .
We conclude this section with the following improvement of Theorem (4.2.8).
Theorem(4.2.11)[77]. Let 0 < a < land1 < p < oo. Then there exists a positive number ¢ such
that for every f € A, (R?) everyl € Z., and arbitrary normal operators N; and N, with bounded

N; — N,, the following inequality holds:
l !

> (501F (i) = £ 1)) < ellFI ey Z SN~ W)

Section (4.3): Perturbed Tuples of Selfadjoint Operators

In this section we study the behavior of functions of perturbed tuples of commuting selfadjoint
operators. We are going to find sharp estimates for f (44,...,4,) — f (By,...,B,), where
(A4,...,4;) and (By,...,B,) are n-tuples of commuting self-adjoint operators and f is a function
on R™. Our results generalize the results of [85,86,73,74,75,76,77,78] for selfadjoint and normal
operators.
Recall that a Lipschitz function f on the real line R does not have satisfy the inequality

If (4) — F(B)Il < const||A - B||

for arbitrary selfadjoint operators 4 and B on Hilbert space, i.e., it does not have to be operator
Lipschitz. This was showed in [82]. Later it was shown in [85] and [86] that if f is operator Lipschitz,
then f locally belongs to the Besov space B ; (R) (see [84]) which also implies that Lipschitzness is
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not sufficient for operator Lipschitzness.

On the other hand, it was shown in [85] and [86] that if f belongs to the Besov space B, ; (R)
, then f is operator Lipschitz.

The situation changes dramatically if instead of the Lipschitz class, we consider the Holder
classes A,(R),0 < a < 1, of functions f satisfying the inequality

| f (x) — f ()| < const |x— y|a,x,y € R.It was shown in [73] and [74] that a function f in
Aa(R) must be operator Holder of order ¢, i.e.
I£(4) = F(B)I| < constl|A - BJ|*

for arbitrary selfadjoint operators A and B. In [73] and [74] also contain sharp estimates of ||f(4) —
f(B)|| for functions f of class A,, for arbitrary moduli of continuity w.

It was also showed in [73] and [75] that if f € A,,p > 1, and Aand B are selfadjoint
operators such that A — B belongs to the Schatten—von Neumann class S,, then f (A) — f (B) €
Sp /o and

IF) = FB)ll5,, < constlla — B,

Later in [77] and [78] the above results were generalized to the case of functions of normal
operators. Note that the proofs given in [85,86,73,74,75] for selfadjoint operators do not work in the
case of normal operators and a new approach was used in [77] and [78].

In this section we consider a more general problem of functions of n-tuples of commuting
selfadjoint operators. The case n = 2 corresponds to the case of normal operators. It turns out that the
techniques used in [78] do not work for n > 3. We offer in this section a new approach that works for
alln > 1.

We are going to use the technique of double operator integrals developed in [79,80,81]. Double

operator integrals are expressions of the form

|| oGuspansoraes) (6)
X1XX2

where E; and E, are spectral measures on y; and y,, @ is a bounded measurable function on y; X xo,
and T is an operator on Hilbert space. It was observed in [79,80,81] that the double operator integral
(6) is well defined if T € s, and determines an operator of class s,. For certain @, the transformer
T » [[ ®dE,T dE, maps the trace class s;into itself. If so, one can define by duality the integral (6)
for all bounded operators T . Such functions @ are called Schur multipliers (with respect to the spectral
measures E; and E,). We refer the reader to [85] for characterizations of Schur multipliers.

If x; and y, are Borel subsets of Euclidean spaces, we use the notation M, . for the space of
Borel functions @ on x; X x, that are Schur multipliers for all Borel spectral measures E; and E, on x4
and x5.

The proofs of the results of [78] for normal operators were based on the following formula:

FON) — F(N,) = f (©f) (21, 2,)dE; (20) (By, By)dE; (23)

+ f (Df) (21, 22)dE; (21) (Ar, A)dE5 (23)

Here N; and N, are normal operators with bounded difference N;—N,, A; = Re N;,B;

ImN;,x; = Rezj,y; = Imz;, f is a bounded function on R? whose Fourier transform has compact

support,
(fDxf)(Zl;Zz) — f(Xl! yz) - f(XZ' 3’2) , and (Dyf)(zl;zz) _ f()(l! yl) - f(XlﬂyZ) ,
X1~ X2 Yi—= Y2
Z41,2,€ C
It was shown in [78] that D, f and D, f belong to the space of Schur multipliers Mp2 R2.
However, in the case n > 3 the situation is more complicated. Let (44, 4,, A3) and (B4, By, B3)
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be triples of commuting selfadjoint operators. Suppose that f is a bounded function on R3 whose
Fourier transform has compact support. It can be shown that

f(AlfAzfAs) - f(Bp B,, B3) = ff(blf)(x: Y)dE1(x)(A1 - B1)dE2(J’)
t f f (D) (6 Y)AE; (¥) (A — B,)dE, ()

+ [[ @peedn @@ - BiEw) |
whenever the functions D, f , D,f , and D3 f belong to the space of Schur multipliers Myz, r3. Here
f(x1, %2, %3) — f(y1, %2, %3)

@) x,y) = — ,

@)y = LX) T yw),
2 V2

(.Dgf)(x'y) — f(ylfyZ!x;) :f(ylfyZ'yS) '
37 Y3

x = (x1,%2,%3),y = (V1, Y2, ¥3)
The methods of [78] allow us to show that D; f and D5 f do belong to the space of Schur multipliers
Mpsx 3. However, as the next result shows, the function D, f does not have to be in Mys, g3 -
Theorem(4.3.1)[72]. Suppose that g is a bounded function on R such that the Fourier transform of g
has compact support and is not a measure. Let f be the function on R3 defined by
[y, x2,%3) = gy — x3).
Then D, f & Mp3y g3 -
Note that it is easy to construct such a function g, e. g.,
X

glx) = f t~lsint dt
0

We show that in the casen > 3 it is possible to represent f (44,...,4,) — f (By,...,By)in terms of
double operator integrals in a different way. Using such a representation, we obtain analogs of the
above results in the case of n-tuples of commuting selfadjoint operators.
The integral representation for f (Ay,...,4,) — f (By,..., By) is based on the following result:
We are going to derive Schur multiplier estimates from the following lemma.
Lemma (4.3.2)[72]. Let C = Q X R be a cube in R?" of sidelength L and let ¥ be a C* function on

ZC. [hen Y|C € Mg and
lal .
11| Mr < CONSt Max [L“ maxaE%CI(D“lP)(a)l. la| < 2n+ 2.

The lemma can be showed by expanding ¥ in the Fourier series.
Theorem(4.3.3)[72]. Let ¢ > 0 and let f be a function in L*(R™) whose Fourier transform is
supported on {§ € R": [[§]| < o}. Then there exist functions ¥j in Mgnygn,1 < j < n, such that

n
f(xll "-an) _f(yll "'lyn) = Z(xj - y])l]l] (x1, o X Y1 ""yn)ij’yj ER, (7)

Jj=1
and ||l1’]|| - < const o||f | o rn) -

proof. By rescaling, we may assume that ||f|[,c < 1 and ¢ = 1.

We consider the lattice of dyadic cubes in R?"® = R" x R™, i.e., the cubes whose sides are
intervals of the form [ j2%,(j + 1)2¥),j,k € Z. We say that a dyadic cube C in R?"® = R" x R", is
admissible if either its sidelength L(C) is equal to 1 or L(C) > 1 and the interior of the cube 2C, i.e.,
the cube centered at the center of C with sidelength 2L(C), does not intersect the diagonal {(x,x): x €
R™}. An admissible cube is called maximal if it is not a proper subset of another admissible cube. It is
easy to see that the maximal admissible cubes are disjoint and cover R?™. It can also easily be verified
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that if Q is a dyadic cube in R™, then there can be at most 6™ dyadic cubes R in R"™ such that @ X R is
a maximal admissible cube.
For | = 2m, we denote by DI the set of maximal dyadic cube of sidelength [ .
It follows that if 12 is a function on R™ X R™ that is supported on
Ucep, C, then
12 a1 < 6™ 5UPCeD, IXCAN 15

We have to define ¥; on each maximal admissible cube. Suppose that C € D;. We put
1

¥Yi(x,y) = f(fbjf)((l —t)x + ty)dt ,(,y) eC=QXR,
0
where D; f is the jth partial derivative of f . It follows from Lemma (4.3.2) that ||‘1’J|| o, = const.
QR

Suppose now that I = 2™ > land C = Q X R € D,. Let w be a C* nonnegative even function on
R such that w(t) = 0 for t € [—%,%], and w(t) = 1 for t ¢ [—1,1]. We put @;(x,y) =

W (xf—_l yf_) ,@ =X, ®; ,and define the functions Zj, 1 < j <n,by
_1 ey '
"’:']'(xIY) = {xj_y/" o(x,y) ' Xj * Yj
0 o X =Y
It follows easily from Lemma (4.3.3) that ||E]|| o, S const 2-™ . We put now
oR

Ui y) = (f) — f)E(x,y) ,(xy) €C.
Clearly, (7) holds for (x,y) € C and ||L|J J|| o, = const 27™ _ The functions y; are now defined on
QR

R™ x R™ and ”lIJ]” - < const Y=o 2~ ™. This implies the result.
R™,R™

Theorem(4.3.4)[72]. Let f be a function satisfying the hypotheses of Theorem (4.3.3) and let {5, 1 <
j < n, be functions in Mpn gn satisfying (7). Suppose that (A;,A,, ...,Ap) and (By, By, ..., By)are n-
tuples of commuting selfadjoint operators such that the operators A; — B; are bounded, 1 < j < n. Then

n

Fys oA = F BB = [ 9y )B4, - B)aE, )
Jj=1 RxR"
and
”f(Ali !An) - f(Bb ] B‘n)” < const O-”f”Lw([Rn) maxlsjsn”Aj - B]”

In this section we obtain operator norm estimates for (44, ...,4,) — f(By,...,B,) , where
(A4, ...,Ay) and (By, ..., B,) are n-tuples of commuting selfadjoint operators.
A function f on R" is called operator Lipschitz if
If(Ay, ..., Ap) — f(By, .., Bl < const maxy¢jen||4; — Bj|| for all n-tuples of commuting
selfadjoint operators (A4, ..., A,) and (By, ..., By) .

The following theorem can be deduced easily from Theorem (4.3.4):
Theorem(4.3.5)[72]. Let f be a function in the Besov space Bg, 1 (R™). Then f is operator Lipschitz.
Fora € (0,1), we define the Holder class 4, (R™) of functions f on R™ such that

If () = f )| <constllx —yllgn ,x,y € R™
For a modulus of continuity w, the space 4, (R™) consists of functions f on R™ such that
If &) — f )| < const w(llx —yllgn) ,x,y € R"

The following results are analogs of the corresponding results of [73] and [74] in the case n = 1. The
proofs of Theorems (4.3.6) and (4.3.7) are based on Theorem (4.3.4) and use the same methods as in
[74].
Theorem(4.3.6)[72]. Let ¢ € (0,1) and let f € A,(R™). Then f is operator Holder of order a, i.c.,
If(Ay, ..., An) = f(By, ..., BIl < const max;<j<n||4; — B]-||a for all n-tuples of commuting
selfadjoint operators (A4, ..., A,) and (B, ..., By).
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Theorem(4.3.7)[72]. Let ® be a modulus of continuity and let f € A,(R™)Then ||f(44,...,A,) —
f(By, ..., BY|| < constw, (maxlSanHAj — Bj|| ) for all n-tuples of commuting selfadjoint
operators (A4, ...,A,) and (By, ..., B,), where
w * (8) def 5'[
)

t
©® i s>
tZ

In this section we obtain estimates in §,, norms.
Theorem(4.3.8)[72]. Let f be a function in the Besov space B, ; (R™).. Suppose that (4, ..., A,) and
(By, ..., Bp) are n-tuples of commuting selfadjoint operators such that A; — B; € S§;. Then
f(44,...,4,) — f(By,...,B,) € Sy and
If(As, s An) = f(By, e, Blls, < constllfl gz | rmy max,<j<n||4; — B/||51 .

Theorem(4.3.9)[72]. Let f € A, (R™). and let p > 1. Suppose that (44, ..., 4,) and (B, ..., B,) are
n-tuples of commuting selfadjoint operators such that A;— B; € §,. Then f(44,..,4,)—
f(By,...,Bp) € Sp/q and

(24
lf (Ay, ..., An) — f(By, ---'Bn)”Sp/a < const||f|| Ag(R™) maxlsjsn”Aj - le'sp'

Note that the conclusion of Theorem (4.3.9) does not hold in the case p = 1 evenifn = 1, see [75].
Theorem(4.3.10)[72]. Let f be a function in the Besov space B, ; (R™) . Suppose that (44, ..., 4,) and
(By, ..., By) are n-tuples of commuting selfadjoint operators such that A ; — B; € ;. Then
f(Ay, .., Ay) = f(By, ..., By) € 81/ and
If (A, s An) = f(By, e, B)lls, o < comstllfl g1 | ) max<j<n||A; — Bj||;£1
The proofs of the above theorems are based on Theorem (4.3.4) and use the methods of [75].

In[75] more general results for other operator ideals were obtained in the case n = 1. Those
results can also be generalized to the case of arbitrary n > 1. (' see [83]) .
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Chapter 5
Operators and Functions in Krein Spaces

We study selfadjoint operators in Krein space. Our goal is to show that there is a relationship
between the following classes of operators: operators with a compact “corner,” definitizable operators,
operators of classes (H) and K(H) , and operators of class D, . Also, each J-frame induces an indefinite
reconstruction formula for the vectors in H', which resembles the one given by a J-orthonormal basis.

Section ( 5.1): Krein Space and Operators

Let k be a linear space equipped with an indefinite metric (or, which is the same, a sesquilinear
form) [ .,.] . We assume that k can be decomposed into the direct orthogonal sum

k =kt + k7, €Y
of a positive subspace k* and a negative subspace k. If {x*,[.,.]} is a Hilbert space and {k~[.,.]} is

an anti-Hilbert space (the latter means that {x~, —[.,.]} is a Hilbert space), then k is called a Krein
space.

By P*and P~ we denote the projection operators on k* and k~corresponding to the
decomposition (1) and introduce the operator ] = Pt — P~. Then k is a Hilbert space with respect to
the inner product (.,.) = [/.,.] . This implies that [.,.] = (J.,.) . The Krein space with the inner
product thus introduced is called a J-space, and the indefinite metric is called a J-metric. We note that
the decomposition (1) is orthogonal both with respect to the J-metric and with respect to the Hilbert
inner product.

A subspace L C kis said to be regular if
k= L[+]cH, (2)

where L] denotes the J-orthogonal complement of L. In contrast to the Hilbert case, for spaces with
indefinite metric, the subspace £, = £ N L) which is said to be isotropic, is not necessarily trivial,
but even if it is trivial, then it may be possible that relation (2) does not hold. We note that £ is regular
if and only if it is a Krein space. In particular, the Hilbert and anti-Hilbert subspaces are regular. The
latter are also said to be uniformly positive and uniformly negative subspaces, respectively.

It is said that a subspace £, (£_) belongs to the class h*(h™) if L9(L?) is finite-dimensional
and the quotient spacel, = L, /L3,(L_ = L£_/L%) is a Hilbert (anti-Hilbert) space with respect to the
induced indefinite metric. Or, equivalently, £, € h* (L_ € h7) if it can be decomposed into the sum
of a finite-dimensional isotropic subspace and a uniformly positive (uniformly negative) subspace.

We denote the set of maximal nonnegative subspaces and the set of maximal nonpositive
subspaces by M* and M~ , respectively.

The Krein space with k = min{dim k*,dim k~} < oo is called a Pontryagin space with x
positive or negative squares depending on whether = dim k* or k = dim k™, respectively.

One of the main problems of the theory of operators in Krein spaces is the problem of existence
of maximal nonnegative and maximal nonpositive invariant subspaces for J-selfadjoint and, which is
equivalent, J-unitary operators. Or, more generally, this is the problem of extending a given
nonnegative or nonpositive invariant subspace to an invariant subspace which is maximal in its class.
Finally, the same problems are posed for operator families. These problems have been solved to a
sufficient extent in the case of a Pontryagin space. In the case of a general Krein space, none of these
problems has been solved, but several sufficient conditions under which these problems have solutions
have been obtained (see [52,63,64], etc.); we refer to the same sources for details concerning the
geometry and the theory of operators in spaces with indefinite metric.

We distinguish the following four main classes of operators:
(i) operators with a completely continuous “corner”;

(i1) definitizable operators;
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(iii) operators of class K(H) ;
(iv) operators of class D;} .

Information on classes (i) and (ii) can be found, for example, in [52,63,64]; about the class K(H) and
the subclass H, see [64] and [65]; and about operators of class D;f, see [66,67]. In what follows, we
assume, unless otherwise specified, that all operators are bounded and defined on the entire space.

Definition (5.1.1)[62]. Suppose that k is a Krein space, T is a continuous operator, and
Ty, le]

= 3
T T 2

is its matrix representation with respect to the decomposition (1). We shall say that a continuous

operator T has a completely continuous corner and write T € G, 1, if there exists a decomposition of

the form (1) such that T;, is a completely continuous operator (T}, € G).

Definition (5.1.2)[62]. A selfadjoint operator A acting in the Krein space k is said to be definitizable if
there exists a polynomial p such that p(A) is a nonnegative operator, i.e., if [p(4)x,x] = 0 for all
x € k. We denote the set of definitizable operators by the symbol D.

Definition (5.1.3)[62] We shall say that an operator T belongs to the class H, and write T € H, if there
exist invariant subspaces L* € M+ for this operator and all such subspaces, respectively, belong to the
class h* .

Definition (5.1.4)[62]. A set U = {A} of selfadjoint linear operators acting in a Krein space belongs to
the class K(H) , U € K(H) , if in this space there exists a selfadjoint operator B € H such that
BA = AB for all A € U. If U consists of a single operator A, then we shall say that A belongs to the
class K(H) , and we shall write A € K(H) .

Definition (5.1.5)[62]. We shall say that a family U = {A} of selfadjoint linear operators acting in the
Krein space belongs to the class D, € D} , if, for this family, there exists a pair of invariant

subspaces LT € M* N h* and LT[L]L™ whose dimension is that of the subspace LT N L~ equal to
K,k < 00,

T

Let us find the relationship and distinctions between these operator classes. First, we note that it
follows from [107] that K(H) < D} . We shall show that a finite family of selfadjoint operators
belongs to Dif if and only if this family belongs to the class K (H) .

Let U € D;f be a commutative family of selfadjoint operators in a Krein space. It follows from
[64] that there exists a decomposition of the form (1) such that all the operators from A have
completely continuous corners. In the next section, we present several examples illustrating the
difference between these operator classes.

In what follows, in Examples (5.1.6) and (5.1.7), we assume that

H=6G®&¢ (4)
is the orthogonal sum of two copies of an infinite-dimensional Hilbert space G and the J-metric is
introduced in H by using the operator

0 I

J = [I 0]' ®)
Example (5.1.6)[62]. (8012 € (D UK(H)). Let A:G — G be a nonzero Volterra operator with
A = 0 in the continuous spectrum. Then the diagonal-with-respect-to-(4) operator A = diag{A, A*} is
a Volterra J-selfadjoint operator, A ¢ K(H) , and 4 is not definitizable. Indeed, if we had A € K(H) ,
then A would have a basis system of eigenvectors in the sense of Riesz (see [64]), and if it were
definitizable, then the system of its eigenvectors would be complete (see [64]). Either of these
properties contradicts the fact that Ais a Volterra operator.
Example(5.1.7)[62]. (D ¢ (K(H) U &4 13)). Now, let A: G — G be a positive completely continuous
operator. Then
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% 0 I

=l o] (6)
is a J-positive operator with a complete system of eigenvectors (see [64]), but in H there is no basis
composed of these vectors: otherwise, we would have A € &,,. Hence this operator does not belong to
the class (H) . Moreover, (6) gives an example of a definitizable (nonnegative) /-selfadjoint operator
for which there does not exist a decomposition of the form (1) such that, with respect to this
decomposition, the operator A would have a representation with a completely continuous corner, i.e.,
A & S ;. The latter follows from the relation A = A; + A, , where

0 0 0 I

A4 =1a ol A2=[0 0]
A, € G, A, isa J-nonnegative operator, and A3 = 0. If there were a decomposition of the form
(1) such that A had a completely continuous corner, then A, would also have a completely continuous
corner with respect to the same decomposition. In this case, we see that A3 = 0 and the operator A, is
completely continuous, which contradicts the fact that § is infinite-dimensional.

Example(5.1.8)[62] (H ¢ D). The desired example of A can be found rather easily: one can consider
a block-operator matrix A = { A;, A,} diagonal with respect to (1), with completely continuous
selfadjoint cyclic operators A; and A, , whose eigenvalues are nonzero and alternate. However, in this
case, K can be easily represented as a direct orthogonal sum of two A-invariant Krein subspaces such
that the restrictions of operator A to these subspaces are definitizable operators; moreover, these
subspaces can be chosen as Pontryagin spaces. Thus, studying A is reduced to studying definitizable
operators or operators in Pontryagin spaces, respectively.

We modify this example and present an operator A for which it is impossible to perform a
similar reduction to definitizable operators or, in particular, to operators in a Pontryagin space.

Let ¢ = LS{e} be a one-dimensional space, and let G be a separable infinite-dimensional space
(LS means the linear span). We form the Krein space K as the following J-space:

K= DG DG D ¢ (7)
with the operator
0 0 0 1
_10 I 0 0
J = 0 0 —I 0f ®)
0 0 0O

Let {f,} and {g,} be orthonormal bases in G. We set

=1 =1
f=)ofuand g=) g,
n=1 n=1

The operators

o 1 S
Ay = ) oo Coffpand Asy = ) =——(, 020
n=1 n=1

are completely continuous and selfadjoint, f € ran A,,, and

g & ran As; . We define the operator A as a block-operator 4 x 4 matrix with respect to (7):
0 Ay Az 0
0 0 Az A3
0 0 0 0
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where A;, = (.,f)e and A3 = (.,9)e . The operator A thus defined is completely continuous and
J-selfadjoint with respect to J in (8), belongs to the class H, and cannot be decomposed in a finite sum
of definitizable operators.

Example(5.1.9)[62]. (D;f # K(H)).Let {e)}r=—0s U {go} be an orthonormal basis in the Hilbert
spaceX . We set

]ek = ekﬂ]e—k = —é k = 1,2,...,]60 = Yo ]go = €y,

Apx = eilx,eq] + eolx, exl, wherex € H, +k =1,2,...
The operator family {4;}¥ -, belongs to the class Di , but does not belong to the class K (H) . Indeed,
all operators from {A;}¥ -, are J-selfadjoint, the subspace L, = CLS{ey};-, (from now on, CLS
means the closed linear span) is invariant with respect to {4;}¥ =, ,and L, € M* N At .

Moreover, dim(L, N LEFL] ) = 1sothat {4;}F-1 € Di . Next, the linear hull spanned by the vector
ey is the common kernel of the family {4,}T -, . We assume that a J-selfadjoint operator B commutes
with {A4;}7 =1 - Then the vector e is an eigenvector for B. Without loss of generality, we can assume
that Be, = 0. In this case, we have Bg, € CLS{ey}re—co-

Let us find e, for £k = 1,2,...: we obtain Be, = BArgy = AixBgo = Brey .- This implies
the following representation of the operator : Bx = [x,z]e, + [x,e9]z + &[x,ep]eq , Where
z = Z,‘;‘;_w,k_:(, Vi€, - But the rank of indefiniteness of the kernel of this operator is infinite, and
hence we have B € H.

In what follows, we show that, for a finite family of commuting operators, the fact that this
family belongs to the class D;f implies that it belongs to (H) .
Theorem(5.1.10)[62]. Let U = {A;}]* =1 be a finite family of bounded pairwise commuting J-
selfadjoint operators in a Krein space. Then the conditions U € D,/ and U € K(H) are equivalent.
Proof. The statement U € K(H) = U € D} follows from [64]. Let us prove that € D = U €

K(H) . We show that there exists a bounded J-selfadjoint operator X of class H commuting with each
of the operators A;,j = 1,...,k. By the definition of the class D;f , for the family U, there exist

invariant subspaces L* € M* such that L*[1]£~ and
L+ =r°pr,, (10)
where L° is a finite-dimensional neutral subspace and L, are uniformly definite subspaces. Without

loss of generality, we assume that £; < K* , where K* are components of (1). By X we denote the
angular operator of the subspace L*,i.e.,we have K: K* - K~, |X|| < 1, and L = {x =

x* + Kx*|x+€ K*}. LetA; = ”Aﬁ"”izk=1 be the matrix representation of the operators 4; ,j =
1,...,m, with respect to (1). We shall seek the operator X in the form of a matrix
X11 Xlz]
X = 11
X1 Xo (b
whose components satisfy the following conditions: X;; = X{;,Xy; = KX11,X1, = —X5, =
—X11K*, and X5, = X3, = —KX;,K*. Since we have L, c X* | the operator K is finite-

dimensional and partially isometric. Hence it follows from representation (11) that X € H if and only
if dim kerX;; < oo.The A; -invariantness of L is equivalent to the condition

KAjll + KA]lZK - Aj21 - AjzzK = 0, ]: 1,...,m. (12)

It follows from (12) that X commutes with A; if and only if (A4j1; + AA4j12K)Xq1 is a selfadjoint
operator in K* | which, in turn, is equivalent to the selfadjointness of the operator

[(PH LT (Ajnr + AjK)(PT I LDIPT | L) Xy, (PT L)) (13)

Since, by assumption, L* is invariant with respect to A; and, by construction, invariant with respect to
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X, it follows from (13) and the relations
A | L7 = (PT | LY) —1(Aj1; + AjK)(PT | LY)
that the fact that A; and X commute is equivalent to the existence of a selfadjoint operator Y : L* —
L* with dim kerY < oo such that
ZY = YZ;, whereZ; = A;|L*,j = 1,....m, (Y =(P*| L)X (P LD)™).

Let Z; = ”Zﬁk”iz,k=1 be the matrix representation of the operator Z; with respect to the
decomposition (10), j = 1,...,m. Then Zj;; = 0 and Z;,, is a selfadjoint operator. Suppose that
0(Zj11) = {Ajs}] s=1 is the spectrum of the operator Zj;; , P, is the orthoprojection from
LionHy =n{LS{ker(Zj; — Ajs)}Ys=1}j=1, and M is the minimal subspace containing
LS{POZ;‘12L°}}"=1 and invariant with respect to Zj,5,j = 1,...,m. Hence dimM < oo, the subspace
H, is invariant with respect to all operators Zj,, , and there exists a decomposition

L+=.7'[0 @}[1 @... @:}[m, ZjZZ}ka }[k,j, k= 1,...,m, (14‘)

such that
0(Zjn1 0 0p(Zppz |7) =0, j=1,...m, (15)
where the symbol g, denotes the set of eigenvalues of the corresponding operator. Let Y = |[|Yik||?;—,

be the matrix representation of the desired operator . Then Z;Y is a selfadjoint operator if and only if
the following relations hold:

(D ZjiYa + ZjoY 12 = Y1aZjiy + V12253055

(i) Y15 an + Yzzzfu = ZjY 12

(iii) ijz = Yzzzjzz .

This allows us to construct Y so that each of the subspaces in the decomposition (15) is invariant with
respect to Yp,. Weset ¥ = Y7L, Y; , where ¥; = ”ink”iz,k:l satisfy conditions (i) (iii) and Yj,,|H), =
0forj#k,j,k = 1,...,m. If we choose the operators Y, so that dim ker Yj,,|H; < oo, then the
operator Y thus constructed is the desired operator.

We define the operators Y;,j = 0,1,...,m, as follows: Yy: Y11 = 0,Y51, = 0,and Yy, is the
orthoprojection in H, on M~ ; and V;,j = 1,...,m.Let 71- = [Is=1(Z; — i) (Z; —/Tjs), and let

=, =, 2 . . . .
Z; = || Zjik ||l,'k=1 be its matrix representation with respect to (5.1.10). We set
Y}'11 = Zj12 Z;lZI Yj12 = Zj12 ijz »Yj21 = Y}‘k12'

and Y}'zz = 7j22 B ] = 1,...,m.

Definitizable operators and operators of class K(H) have several similar properties. In
particular, if a J-selfadjoint operator belongs to at least one of these classes, then the spectral function
of this operator has a finite set of spectral singularities. The character of these singularities is different
in the two cases mentioned above. Therefore, it is natural to study the spectral singularities of operators
contained simultaneously in both classes.

In what follows, in the statement of Theorem (5.1.13) and in its proof, we shall use the

standard terminology concerning the J-spectral function of a definitizable operator and its critical
points [68] (see also [64]).

The fact that an operator of class K(H) has a spectral function was first announced as an
exercise in [64]. We present the corresponding result in the form used in a detailed proof in [69].

Proposition (5.1.11)[62]. Let the spectrum of a J-selfadjoint operator A € D, be real,and let the
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subspace L, corresponding to Definition (5.1.5) be invariant with respect to A. Then the operator A has
spectral function E, with a finite set A < R of spectral singularities and

(a) Ey € AlgA foranyi € R\ A, o(A| gaysc) € 4 foranyd € Ry,and E(R) = I;
(b)if A €ERy and A N A = @, then EQA)K = K [+]HK; , AKX c

K, AK; Ky , K5 E(A)L, is a uniformly positive subspace, and X5 is a uniformly negative
subspace(each of the subspaces Ky and K5 can degenerate into {0});

(©)if A € Rpand A 0 A # @, then E(A)(L, n L) = {0},

where AlgA is the minimal weakly closed algebra generated by A and containing the identity, and R,
is the system of all Borel subsets of the real axis for which none of the points from A can be a tangency
point,although such point can be inner.

Theorem(5.1.12)[62]. For a J-selfadjoint operator A € K(H) with invariant subspaces Lt €
M and LY[L]L~ to be definitizable,it is necessary and sufficient that there exist a finite set
{1 © R of points such that the intervals (—oo, i1), (i1, U2) , - -+, (L, ) consist of definite-type
points of the J-spectral function E of the operator A.

Proof. The necessity follows from the general theory of definitizable operators [68]. Sufficiency. If a J-
selfadjoint operator A € K(H) has a nonreal spectrum, then the latter consists of finitely many
eigenvalues of finite multiplicity [64]. Let {4;, 4;}; -, be the set of nonreal eigenvalues of the operator

A if they exist. We introduce the notation
S
Ky = ) Ly (A) + L3 (),
j=1

where Llj (4) and L;j (A) are the root linear manifolds corresponding to A;jand A; , respectively,

j=1,...,5¥K, = 7(1[”. Then the subspaces K; and K, are invariant with respect to A and K =
Ki[+] K, . We write A; = A|X;,j = 1,2. The operator A, has the same properties as the operator
A and the additional property that its spectrum is real. This implies the existence of a polynomial p
such that its set of zeros contains the sets {4;, /T-}f -, and {y; }r=, and the operator B := p(A) has the
property that the negative half-axis contains points of negative type and the positive half-axis contains
points of positive type. Since the lengths of Jordan chains of the operator A are uniformly bounded
[64], it follows that we can choose p so that L,(B) = kerB. By assumption, the subspaces L% are
invariant with respect to A and hence with respect to B. We set L, = L* N L~. Then

K=Ly+L+ L+ L, (16)
where L are uniformly definite components of the decomposition of the subspaces L*. Withrespect to
(16), the operator B is represented by the matrix
0 By; Biz Bis
0 By, O By4
0 0 Bs3 B
0 0 0 0
Since L, is a uniformly positive subspace and £_ is a uniformly negative subspace, we have (B,,) €

[0,00) and 0(B33) € (—,0] . This implies that the operator B is a finite-dimensional perturbation
of the /-nonnegative operator

B =

0 0 0 0

g —|0 Bz 0 0
1™lo 0 Bsys O
0 0 0 O

In view of [70], the operator B, as well as the operator A, is definitizable.
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Now, we consider the difference between the spectral function of an operator of class H and the
spectral function of an operator of class D;} . First of all, we note the following assertion.
Proposition(5.1.13)[62]. Let A € H be a J-selfadjoint operator. Then to all its real eigenvalues, except
possibly finite many, there correspond uniformly definite eigensubspaces, and the eigensubspaces
corresponding toexceptional eigenvalues are regular or pseudoregular and have a finite rank of
indefiniteness and a finite-dimensional isotropic part.

Remark(5.1.14)[62]. Let E; be the spectral function of a J-selfadjoint operator A € D,} . A function
f (1) defined on the set Supp(E) \ A is said to be E-measurable if it is measurable with respect to any
Lebesgue—Stieltjes measure p, determined by a function of the form a(1) = [E;x, x],

x € K = CLSpe,ana=0E (DX, (17)

first defined on Supp(E) \ 4 and then extended continuously to points from A. If the space K is
separable, then the measurability of a function with respect to the above set of Lebesgue—Stieltjes
measures can be replaced by its measurability with respect to the unique measure p,; specified by the
function (1) = [E;x,y] determined by several specially chosen vectors x and y .

Proof. Indeed, in the quotient space X = K /( K n KM, a J-selfadjoint operator A € D7
generates an operator A, which is selfadjoint with respect to an appropriately chosen canonical inner
product, and g,(4) N A = @. For more details, see, for example, [71]. For our purposes, it is expedient
to choose the above vectors in the following special way. We set

7~C+ = CLSAEZRA,ADA=(D{-7(+(A)}J K_= CLSAERA,AOA=Q){‘7<:—(A)}' (18)
where K, (4) and K_(4) are chosen in accordance with conditions (a)—(c) in Proposition (5.1.11).
Then there is a vector x, € K, such that the measurability of the set X c R\ /4 with respect to the
measure U, , where o, (1) = [Ejx,,x,], implies the measurability of X with respect to the measure
Uy , where o(1) = [Eyy,y] for any y € K, ; and a similar vector x_ belongs to KX _. The desired
vectors x and y , which completely describe E;-measurability, can now be chosen in the form
X = x4y +x, y=xy— x_. (19)
It follows from Example (5.1.8) that operators of the class H are, in general, not definitizable,
but the next theorem shows that the operators of class H are in some sense similar to definitizable
operators.
Theorem(5.1.15)[62]. Suppose that the space K is separable, A € H is a J-selfadjoint operator, E; is
its spectral function with the set of critical points A. Then there exists a finite set A € R,4 < A, and
Ej-measurable sets X,, X_ € R, X, NX_ = @and X, UX_ = R\A ,such that,for any interval
A € B, N R,e ach of the subspaces
E(ANX)K and EA n X)X (20)
either degenerates into {0} or is, respectively, positive or negative.
Proof. We construct the set A by addingto A, € g, (A) for which the corresponding eigensubspace

is indefinite. By Proposition (5.1.13), the set A is finite. To simplify the calculations, we assume that
A = Aand, under the above assumption, show that the measures generated by the functions
0.(D) = [Exxy,xy] and  0_(A) = —[Ejx_,x_]

(x+ and x_ are the same as in (19)) are mutually singular. First, we note that, according to the
above assumption, the atomic components of these measures are mutually singular; hence we can
assume that the functions o, (1) and 0_(1) = are continuous.

In view of Remark (5.1.14) and the decomposition (19), we have a(1) = 0,(1) + 0_(4) , and
hence ps4 < Uy and ps_ < po (< isthe symbol of measure subordination), which implies
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A A

(1) = f pr(0)do(t) Lo (A) = f p_(t)do(z) do(r),

and p,(7),p_(t) € [0; 1] for any T € R. We set Y = {r:p,(t) # 0, p_(r) # 0}. The
statement of the theorem will be showed if we obtain u,Y = 0. We assume the contrary, i.e., we
assume that u,Y # 0, and introduce the following two functions:

1
pe(t) + p_(1)\ 2
fi(t) =+ 0. (1) fort €Y,

0 fort g Y,

1

pu(t) + p_()\ 2
o_(7) fort €Y,

0 fort € Y,
Now, we fix an interval € R,4 € B, , for which u,(Y n 4) # 0, and set

f-(®) =+

yo = [ f@dBx,, v = [ F@dBa
A A

Suppose that 4; ¢ 4 and z, = E(4,)(y+ +y-).Then we have

(70, 72) = [ £ @0 @ = [ P2@Ode @ = [ (010 +p©) do®
Ay Ay

A1ny

- [ (be® +p-©)do®) =
A1ny
We set L = CLSpcp,{24,}- It is clear that £ is a neutral subspace. And since p,(Y N 4) # 0 and the

set Y N4 is free of atomic measure, it follows that L is an infinite-dimensional subspace. So, the
operator A has an infinite-dimensional neutral invariant subspace; but this is impossibleby the
definition of the class H.

Section (5.2): Krein Spaces and Frames

Frame theory for Hilbert spaces has been thoroughly developed; see, [40,41,42,43]. For a fixed
Hilbert space (H,(,)), a frame for H is family of vectors F = {f;};;; in H which satisfies the
inequalities

AFIZ < D KE S < BIFIR, forevery f € 3¢, (21)
i€l
for positive constants 0 < A < B. The (bounded, linear) operator S : H — H defined by

SE= YL . fex 22)

i€l

is known as the frame operator associated to F . The inequalities in (21) imply that S is a (positive)
boundedly invertible operator, and it allows to reconstruct each vector f € H in terms of the family F
as follows:
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f=DUEST M = D A fIST, 23)
i€l i€l
The above formula is known as the reconstruction formula associated to F. Notice that if F is a
Parseval frame, i.e. if S = I, then the reconstruction formula resembles the Fourier series of f
associated to an orthonormal basis B = {by }yex of H :

f=fboby.

kEK
but the frame coefficients {( f, f; )}ie; given by F allow to reconstruct f even when some of these

coefficients are missing. Indeed, each vector f € H may admit several reconstructions in terms of the
frame coefficients as a consequence of the redundancy of F. These are some of the advantages of
frames over bases in signal processing applications, when noisy channels are involved; e.g., see
[44,45.46].

Given a Krein space (#,[,]) with fundamental symmetry J, a J -orthonormalized system is a
family € = {e;};c; such that [ei, ej] ==16;; ,fori,j€l . A J-orthonormal basis is a J-
orthonormalized system which is also a Schauder basis for . If € = {e;};¢; is a J-orthonormal basis of
H then the vectors in H can be represented as follows:

f= alf.elef e, (24)
iel
whereo; = [e;, e;] = 1.
J-orthonormalized systems are intimately related to the notion of dual pair. In fact, each J-
orthonormalized system generates a dual pair, i.e. a pair (£, L_) of subspaces of H such that £, is J-
nonnegative, L_ is J-nonpositive and L, is J-orthogonal to L_, i.e. [L,,L_) ] = 0. Moreover, if € is
a J-orthonormal basis of H, the dual pair associated to € is maximal and the subspaces £, and L_ are
uniformly /-definite, see [47]. Therefore the dual pair (£, L_) is a fundamental decomposition of # .
Notice that, considering the Hilbert space structure induced by the above fundamental decomposition,
the J-orthonormal basis £ turns out to be an orthonormal basis in the associated Hilbert space.
Therefore, each J-orthonormal basis can be realized as an orthonormal basis of .
Given a pair of maximal uniformly J-definite subspaces M, and M_ of a Krein space H,
where M, is J-positive and M_ is J-negative, if fy = {fi}ic;, is a frame for the Hilbert space

(M, £[,]), it is easy to see that

F=F, UF_,
is a frame for ', which produces an indefinite reconstruction formula:
f=> alf.glfi =) ailf.gilfi.f €3 25)
i€l i€l

where 0 ; = sgn| f;, f; ] and {g;}ie;i € I is some (equivalent) frame for H (see Example (5.2.10)).

The aim of this work is to introduce and characterize a particular family of frames for a Krein
space (#, [ ,]) — hereafter called J-frames — that are compatible with the indefinite inner product [, ],
in the sense that an indefinite reconstruction formula as in (25) holds (see Proposition (5.2.25)).

Some different approaches to frames for Krein spaces and indefinite reconstruction formulas are
developed in [48,49], respectively. As it will be seen along this work, neither of the definitions below is
comparable with the J-frame concept introduced here.

In [49], the authors studied when a set of vectors {¢;} ¢ in a Hilbert spaceH can be scaled to

obtain a tight frame {@;¢;};¢; , and hence a representation of the form

=) cif.ug; fes (26)

Jel
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It turns out that representations as in (26) can exist even when some of the ¢;’s are negative, and these
correspond to what they call “‘signed frames”’. Indeed, a Bessel family {1;};¢,in a Hilbert space 3 is
called a signed frame with signature 6 = (0;) j¢;,0; € {—1,1}, if there exist A,B > 0 with
2
AIFIZ < ) glf wpl” < BIFI? for every fest
jel
Then, each feH can be represented as

f= oo =) oif.e;,
jel jel

where {@;}¢ is the dual signed frame (see [49]). Observe that this idea can be interpreted as
introducing an indefinite inner product (associated to the signature o = (gj)jg; in €,(1)). But the
sampling space H does not need to be a Krein space.

On the other hand, in [48] the authors consider Krein spaces as sampling spaces. They say that a
family {f,}nen of vectors in H is a ‘“frame for the Krein space (H,[,])” if there exist constants
A, B > 0 such that

ANFIZ < Y NI £017 < BIFIZ ., for every fert

nenN

where || II; stands for the norm of the associated Hilbert space (3, (,)). Then, they show that a family
{fr}nen In H is a ““frame for the Krein space (H,[,])’” if and only if it is a frame for the Hilbert space
(#,(,)) . This is the major difference between J-frames and this concept, because there are frames for
the associated Hilbert space (#,(,)).
which are not /-frames for the Krein space (#, [, ]) (see Example (5.2.9)).

The section is organized as follows: Section contains some preliminaries results both in Krein
spaces and in frame theory for Hilbert spaces, and presents the motivation and what is meant by a J-
frame. Briefly, a J-frame for the Krein space (#,[,]) is a Bessel family F = {f;};,; with synthesis
operator T : £,(I) = H such that the ranges of T, := TP_ and T_:= T(1— P,)are maximal
uniformly J-positive and maximal uniformly J-negative subspaces, respectively, where [, =
{i € I:[f;, f;] > 0} and P, is the orthogonal projection onto £,(I,) .as a subspace of £,(I). It is
immediate that /-orthonormal bases are /-frames, because they generate maximal dual pairs [78].

Also, if F is a J-frame for H, observe that R(T ) = R(T,) + R(T.) and recall that the sum of
a maximal uniformly /-positive and a maximal uniformly J-negative subspace coincides with H [81].
Therefore, each J-frame is in fact a frame for ' in the Hilbert space sense. Moreover, it is shown that
Fi ={fi}ier, is a frame for the Hilbert space (R(T,),[,]) and F_ = {fi}ie;y;, 1is a frame for
(R(T-),—[, ], i.e. there exist constants B_ < A_ < 0 < A, < B, such that

ALLF. A< D NF AP < Bulf.f) forevery f €R(T) @7)
i€l
The optimal constants satisfying the above inequalities can be characterized in terms of T, and the
Gramian operators of their ranges.

This section ends with a geometrical characterization of J-frames, in terms of the (minimal)
angles between the uniformly /-definite subspace R(T;) and the cone of neutral vectors of the Krein
space.

This Section is devoted to study the synthesis operators associated to J-frames. Given a
bounded operator T : £,(I) — H, it is described under which conditions T is the synthesis operator of
a J-frame for the Krein space H.

And the J-frame operator is introduced. Given a J-frame F = {f;};;, the J-frame operator
S: H — H is defined by
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Sf=Y alfflfi, few,
i€l
where o; = sgn([f, f;]) .This operator resembles the frame operator for frames in Hilbert spaces (see
(22)), and it has similar properties, in particular § = TT* where T : £,(I) —» H is the synthesis
operator of F and T* denotes the J-adjoint of T (see Proposition (5.2.23)). Furthermore, each J-frame
F = {f;}ie; determines an indefinite reconstruction formula, which depends on the J-frame operator S:

f=) alf. ST =Y ailf, SISy, foreveryfe K. (28)
iel iel

In this case the family {S~1f;};c; turns out to be a J-frame too.

Finally, it will be shown that the J-frame operator of a J-frame F is intimately related to the
projection @ = Pg(r,y//r(r_y determined by the decomposition H = R(T,) + R(T.), see Theorem
(5.2.26).

Along this work ' denotes a complex (separable) Hilbert space. If K is another Hilbert space
then L(#,XK) is the algebra of bounded linear operators from H into X and L(H) = L(H,H). The
groups of linear invertible and unitary operators acting on H are denoted by GL(H) and U(H),
respectively. Also, L(H)* denotes the cone of positive semidefinite operators acting on H and
GL(H)* = GL(H) n L(H)™ .

T € L(H,X) then T* € L(X,H) denotes the adjoint operator of , R(T ) stands for its
range and N (T ) for its nullspace. Also, if T € L(H,%) has closed range, Tt € L(X,H) denotes
the Moore—Penrose inverse of T .

Hereafter, 8 + § denotes the direct sum of two (closed) subspaces 8 and § of H'. On the other
hand,s @ 3 stands for the (direct) orthogonal sum of them and 8 @ J := 8 N (8 NJ)* . The
oblique projection onto s along , denoted by P, /5 , is the unique projection with range & and
nullspace J . In particular, P := P, /1 is the orthogonal projection onto &.

The following result due to Douglas [51], characterizes operator range inclusions. It is quite
often used along the Section.

Theorem (5.2.1)[39]. Given Hilbert spaces H,K;, K, and operatorsA € L(¥;,H) andB €
L(¥,, H), the following conditions are equivalent:

(1) the equation AX = B has a solution in L(¥,, K;);

(i) R(B) < R(4);

(iii) there exists A > 0 such that BB * < A4A".

In this case, there exists a unique D € L(¥,,K;) such that AD = B and R(D) S R(A *);
moreover, N(D) = N(B) and I D ll= inf{1l > 0: BB* < AAA*}. The operator D is called the
reduced solution of AX = B.

Corollary(5.2.2)[39]. Let T € L(H)*.If R(T) = R(T'/?), then R(T) is closed.

In what follows we present the standard notation and some basic results on Krein spaces. For a
complete exposition on the subject see the books by Azizov and lokhvidov [47] and Bognr [52] and the
monographs by Ando [50] and by Dritschel and Rovnyak [53].

Given a Krein space (H,[,]) with a fundamental decomposition H = H, + H_, the direct
(orthogonal) sum of the Hilbert spaces (H,,[,]) and (H_, —[,])is denoted by (#, (,)).

Observe that the indefinite metric and the inner product of H are related by means of a
fundamental symmetry, i.e. a unitary selfadjoint operator /] € L(H') which satisfies:

[x,y] = (Jxy).x,y € .

If H and K are Krein spaces, L(H,XK) stands for the vector space of linear transformations
which are bounded respect to the associated Hilbert spaces (H,(,)y) and (K, (,)%). Given T €
L(H,X), the J-adjoint operator of T is defined by T+ = J;T* J5c, where J; and Ji are the
fundamental symmetries associated to H and XK, respectively. An operator T € L(H) is J-selfadjoint
ifT =TT,
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A vector x € H is J-positive if [ x,x] > 0. A subspace 8 of H is J-positive if every x €
S,x # 0, is a J-positive vector. A subspace 8 of H is uniformly J-positive if there exists a > 0 such
that
[x,x] = allx|? foreveryx € s,
where || || stands for the norm of the associated Hilbert space (#, (, )).
J-nonnegative, /-neutral, /-negative, /-nonpositive and uniformly J-negative vectors and subspaces are
define analogously.
Remark (5.2.3)[39]. If 8, is a closed uniformly /-positive subspace of a Krein space(H,[,]) , observe
that (84,[,]) is a Hilbert space. In fact, the forms,[,] and (,) are equivalent inner products on 3,,
because
allf IP< [f,fI1<If I3 foreveryf € s,.
Analogously, if 8_is a closed uniformly J-negative subspace of (H,[,]) , (8_,—[,]) is a Hilbert
space.
Proposition (5.3.4)[39]. ([47]). Let H be a Krein space with fundamental symmetry / and 8 a J-
nonnegative closed subspace of H. Then, &8 is the range of a J-selfadjoint projection if and only if 8 is
uniformly J-positive.
Recall that, given a closed subspace M of a Krein space ', the Gramian operator of M is defined by:
Gar = PPy, where Py, is the orthogonal projection onto M and J is the fundamental symmetry of
H . If M is J-semidefinite, then M N M coincides with M := {f € M : [f,f] = 0}. Therefore,
it is easy to see that
Given a subspace 8 of a Krein space H, the J-orthogonal companion to .8 is defined by
sl =(x € #: [x,s] = 0foreverys € s}.
A subspace S of H is J-non-degenerated if 8 N s 4] = {0}. Notice that if 5 is a J-definite
subspace of H then it is /-non degenerated.
Given closed subspaces 8 and J of a Hilbert space H, the cosine of the Friedrichs angle
between 8 and J is defined by
c(5,3) = sup{{xy)l: x € 8O0 3J.Ixll=1Ly eI S s,lyl=1}.
It is well known that
c(83) <1 e 8+ Jisclosede c(s4,3H) < 1.
Furthermore, if P and Py are the orthogonal projections onto 8 and , respectively, then c¢(8,J) < 1if
and only if (I — P;) Py has closed range. See [54] for further details.
The next definition is due to Kato, see [55].
Definition (5.2.5)[39]. The reduced minimum modulus y (T ) of an operator T € L(H,¥K) is defined
by
y(T) = inf{lTxl: x € N(T)4 Il x I = 1}.
Observe that y (T) = sup{C = 0: CllxI<ITx |l foreveryx € N(T)L Il x = 1}. Itis well
known that y (T) = y (T*) =y (T *T )'/2. Also, it can be shown that an operator T # 0 has closed
range if and only if y (T') > 0. Inthiscase,y (T) = ||TT||_1.
If H and K are Krein spaces with fundamental symmetries J;; and [y, respectively, and
T € L(H,X) then
YT =y UuT Ji) =y (@) =y (T),
because /3 (resp. Ji) is a unitary operator on H (resp. K).
Remark (5.2.6)[39]. If M, is a closed J-nonnegative subspace of a Krein space H then
v (Ga,) = a, (29)
where a* € [0,1] is the supremum among the constants a € [0,1] such that a |l f 1I? <
[f,f]foreveryf € M,. From now on, the constant a* is called the definiteness bound of M.
Notice that o+ is in fact a maximum for the above set and M, is uniformly J-positive if and only if
at > 0.
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Analogously, if M_ is a J-nonpositive subspace then y (Gp; ) = a~, where a~ is the
definiteness bound of M_, i.e.
a” = max{a € [0,1]: [f,f]1 < —a I f II*? foreveryf € M_}.
The following is the standard notation and some basic results on frames for Hilbert spaces, see
[40,41,43].
A frame for a Hilbert space H is a family of vectors F = {f;};c; € H for which there exist
constants 0 < A < B < oo such that

A”fHZSZKf:fiHZ <BIlIfl*,  foreveryf €. (30)
i€l
The optimal constants (maximal for A and minimal for B) are known, respectively, as the upper
and lower frame bounds.
If a family of vectors F = {f;}ie; satisfies the upper bound condition in (30), then F is a
Bessel family. For a Bessel family F = {f;};¢;, the synthesis operator T € L(¥£,(I),H) is defined by

Tx = Z(x, enfi

i€l
where {e;};¢; is the standard orthonormal basis of £,(I). It holds that F is a frame for  if and only if
T is surjective. In this case, the operator S = TT* € L(H ) is invertible and is called the frame
operator. It can be easily verified that

Sf= Y (f.fofi .forevery f € H. 3D
i€l
This implies that the frame bounds can be computed as: A = | S™* [I”1 and B = S |I. From (31), it
is also easy to obtain the canonical reconstruction formula for the vectors in H:

£ =Y ULST M= Y (LIS, for every f €%,
iel i€l
and the frame {S™1f;};; is called the canonical dual frame of F . More generally, if a frame g =
{gi}ie satisfies

f= .90 = ) ([ fdgi . forevery f €, (32)
i€l i€l
then G is called a dual frame of F .

Let (H,(,)). be a separable Hilbert space that models a signal space. A common task in signal
processing applications is to take samples of the signals x € H, for instance to save or to transmit
them. Mathematically, taking samples of a signal can be represented as follows: given a frame g =
{gi}iek that spans a closed subspace s (called the sampling subspace), the samples of x € H are given
by the family of coefficients {{x, g;)};cx » see [56] and the references therein.

Assume that the signals carrying the desired information are those containing only high
frequencies or only low frequencies. In order to clarify the idea, suppose that x € H is a piece of
music and it is intended to discriminate those fragments where high frequencies are predominant (a
trumpet) from those fragments where low frequencies are predominant (a bass).

It turns out that some filters for the signals can be modeled as orthogonal projections acting on
H. Hence, consider an ideal low pass filter, i.e. an orthogonal projection P € L(H),and the
complementary filter I — P. Therefore, the signals with the same energy at high and low band

frequencies {x € H : || Px || = Il (I — P)x |} are considered disturbances, see, [57,58].
For this particular application, given an arbitrary signal x € H, the filtered signals Px and
(I — P)x are sampled and x is discarded in case that the modulus of the difference || Px 12 — Il (I —

P)x |I? is small enough. Also, notice that sampling both filtered signals y; = Px and y, = (I — P)x
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with frames g1 = {g;}ie;, and g, = {h;}ier, , Which span R(P) and N(P) respectively, is equivalent
to samplingy = y; + y, € H with the frame
F ={fiier = {9itier, Y {hilicr,, for H

The space H can be endowed with an indefinite inner product in order to characterize the set of
disturbances as the cone of J-neutral vectors C of H. Indeed, ] = P — (I —P) = 2P —1 is a
fundamental symmetry which turns H into a Krein space. Furthermore, a signal is a disturbance if and
only if it is /-neutral with respect to the indefinite inner product given by

[y,2] = (Py,Pz) — (U = P)y,(I = P)z),
where y,z € H are arbitrary signals.

Observe that the vectors of the frame F are away from the disturbances set C, i.e. the sampling
vectors are not highly correlated with the disturbances (see Remark (5.2.18) ). However, once that the
cone of disturbances is determined, the following questions naturally arise: Are there other frames
whose sampling vectors are not highly correlated with the disturbances? Given an arbitrary frame
F' ={f"}ie; for H X H is F' good for this sampling scheme?. How correlated are the sampling
vectors in F' and the cone of disturbances C?

The above discussion motivates the following definition. Let ' be a Krein space with
fundamental symmetry J. Given a Bessel family F = {f;};,c; in H consider the synthesis operator
T € L&,(D,H).If I, ={i €l: [fi,fi]l=0}andI_= {i € 1: [f;,f;] < 0}, consider the
orthogonal decomposition of #,(I) given by

(1) =4,(1,) @ £,(10), (33)
and denote by P, the orthogonal  projection onto €,(15). Also, let
Ty = TP, }.If My = span{f;: i €1.}}, notice that span{f;: i €I1,} € R(T,}) € M.} and
R(T) = R(T,) + R(T.).

Definition (5.2.7)[39]. The Bessel family F = {f;};c; is a J-frame for H if R(T,) is a maximal
uniformly J-positive subspace of H and R(T-) is a maximal uniformly J-negative subspace of H .

Notice that, in particular, every J-orthogonalized basis of a Krein space H is a J-frame for H,
because it generates a maximal dual pair, see [47].

If F is a J-frame, as a consequence of its maximality, R(Ty) 1is closed. So, R(T}) = M and,
by [50], M, +M_ = H. Then, it follows that F is a frame for the associated Hilbert space (H,(,))
because

R(T) = R(T,) + R(T.)) = My + M_ =H.

Given a Bessel family F = {f;};¢; , consider the subspaces R(T,) and R(T_) as above. If
K, : D, — H, is the angular operator associated to R(Ty) , the operator of transition associated to
the Bessel family F is defined by

F=K,P+K({—-P): D, +D_ - H,
where P = % (I + J) is the J-selfadjoint projection onto H,and D, is a subspace of H (the domain
of K, see [59].
Proposition (5.2.8)[39]. Let F = {f;}ic; be a Bessel family in . Then, F is a J-frame if and only if
F is everywhere defined (i.e. D, + D_=H)and || F | < 1.
Proof. See [59].

It follows from the definition that, given a J-frame F = {f;};;for the Krein space #,
[fifi] # 0 for every 1 € I, ie. I L= {i € I: £[f;,f;] > 0}. This fact allows to endow the
coefficients space €,(I) with a Krein space structure. Denote o ; = sgn([ f;, f; ]) = £1 for every
i € I.Then, the diagonal operator J, € L(¥,(I)) defined by

J,e; = o;e,foreveryi € I, (34)
is a selfadjoint involution on #,(I). Therefore, £,(I)with the fundamental symmetry J, is a Krein
space. Now, if T € L(€,(I),H) is the synthesis operator of F , the J-adjoints of T , T, and T_can be
easily calculated, in fact if f € H: Tff =+ Yier, S, file; and
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THf = (T +T)'f =Tif +T7f = ) [f.flei— ) [f filer = ) ailf. file
i€l i€l_ i€l
Example(5.2.9)[39]. It is easy to see that not every frame of J-nonneutral vectors is a J-frame: given
the Krein space obtained by endowing C3 with the sesquilinear form [(xq,X;, x3), (V1, Y2, V3)] =

X1y1 + Xy, — Xx3Y3, consider f; = (1,0,\/%) o= (0,1,\%) and f 3 = (0,0,1). Observe that
F = {f1, [ f 3} is a frame for C3 because it is a (linear) basis for the space.

On the other hand, M, = span{f;, f,} and M_ = span{f ;}. If ( a, ,\/_,(a+b)) is an

arbitrary vector in M, then
[f.f1=1al? +1b|? = Sla+b> =>la—b]> 2 0,

so M, is a J-nonnegative subspace of C3. But M, is not uniformly J-positive, because (1,1, \/E) €E M,
is a (non-trivial) J-neutral vector. Therefore, F is not a J-frame for (C3,[,]).

The following is a handy way to construct /-frames for a given Krein space. Along this section,
it will be shown that every J-frame can be realized in this way.
Example(5.2.10)[39]. Given a Krein space H with fundamental symmetry J, let M, (resp. M_) be a
maximal uniformly J-positive (resp. J-negative) subspace of H. If F, = {f;};e;, is a frame for the

Hilbert space (M, £[,]) then F = F, U F_is a J-frame for .
Indeed, by Remark (5.2.3), F, and F_ are Bessel families in . Hence, F is a Bessel family
and, if I = I, U I_ (the disjoint union of I, and I_), the synthesis operator T € L(¥£,(I),H) of F is
given by
Tx = Tyx, + T_x_ ifx = x; + x_ € £,(I;) D £,(I0) =:£,(D),
where Ty:€,(Iy) - My is the synthesis operator of F,. Then, it is clear that R(TP;) = My is a
maximal uniformly /-definite subspace of H.

Proposition(5.2.11)[39]. Let F = {f}i; be a J-frame for . Then, F1 = {f;}ie;, is a frame for the
Hilbert space (M, £[, ]), i.e. there exist constants B_ < A_ < 0 < A, < B, such that

AIf 1< ) NIF A1 < BIf ) for f € M. (35)
i€l

Proof. If F = {f;}ie; is a J-frame for H, then R(T,) = M, is a (maximal) uniformly J-positive
subspace of H. So, T, is a surjection from #,(I) onto the Hilbert space (M4, [,]). Therefore,F, is a
frame for (M,, [, ])In particular, there exist constants 0 < A , < B, such that (35) is satistied for M,.
The assertion on F_ follows analogously.
Now, assuming that F is a J-frame for a Krein space (¥, [, ]), a set of constants {B_,A_, A ,,B,}
satisfying (35) is going to be computed. They depend only on the definiteness bounds for R(T), the
norm and the reduced minimum modulus of T’;.

Suppose that F is a J-frame for a Krein space (H,[,]) with synthesis operator T €
L(#¢,(I),H). Since R(T,) = M, is a (maximal) uniformly J-positive subspace of H, there exists
a,> Osuchthata . Il f 12< [f,f] foreveryf € M,. So,

leﬁﬁ-ll2 = ITEFI2 < NTENNFI? < Bylf, f1 . for every f € M,

Ir1* _ iren?

a 4 a4

DUE AN = U1 < TPy I 2 v TP FI = v P I |

iel,

. Furthermore, since N(T;})* = J(M,) ,if f € M,,

where B, =

=y (TG JF | =¥ T2 (Ga, ) IFIZ = ALLF, f]
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where A, = y(T+)2y(GM+)2 = y(T,)?a?, see Remark (5.2..6).
Analogously, A _ = —y (T_)%?a? and B_ = Iz satisfy Eq. (35) for every f € R(T_) = M_ ,if a_ is

a_

the definiteness bound of the (maximal) uniformly /-negative subspace M_.
Usually, the bounds Ay = +aZy(T4)? are not optimal for the J-frame F .
Definition(5.2.12)[39]. Let F be a J-frame for the Krein space H. The optimal constants B_ < A_ <
0 < A, < B, satisfying (35) are called the /-frame bounds of F .

In order to compute the /-frame bounds associated to a J-frame F = {f;};c; , consider the
uniformly /-definite subspaces M, and M_. Recall that F, = {f;};; is a frame for the Hilbert space
(M5, [, D- Then, if Gy = G, la, € GL(M,) the frame bounds for F, are given by A, =

Se.) ! ! and B, =1 S;, 4, where S;, = T,T %G, is the frame operator of Fyand || f Il , =
+ + + +

[f.f12 =16 -1+/2f I, f € My, is the operator norm associated to the inner product [, |. Therefore,
_1 _
Ap = Se) ML =06 VAT 60T I = 6 YA T T,

and B, = Il S¢, .= |G /T, T G4],
Analogously, it follows that F_ = {f;};;_ is a frame for the Hilbert space (M_., —[,]). So, the frame
bounds for F_ are given by

A_=IGY2(T_T=G)™ "t and B_ = || Y*T_TG_ ||
where G_ = Gy |pr. € GL(M_). Thus, the J-frame bound associated to F can be fully characterized
in terms of T, and the Gramian operators G, Given a Bessel family F = {f;};¢; in a Krein space H,,
the inequalities:

AL F1 < Y NIfFI < BIFS] for every f €M = span{fai€ T} (36)
iel

with B > A > 0, ensure thatMis a J-nonnegative subspace of H. However, they do not imply that M
is uniformly J-positive, i.e. (M, [, ]) is not necessarily a inner product space. See the example below.
Example (5.2.13)[39]. Consider again the Krein space (C3,[,]) as in Example (5.2.9). as it was
mentioned before, M = span {fl = (1,0,1/\/5),]“2 = (0,1, 1/\/5)} is a J-nonnegative but not
uniformly J-positive subspace of C3.

In this case, the orthogonal basis

11 1 1 -1 11
n=Ga) v (GE) ad = (a1,
is a basis of eigenvectors of G, , corresponding to the eigenvalues 1; = 0,4, = landi; = 0,
respectively. Moreover, M = span {v,, v,}. Thus, if f € M there exists a, 8 € C such that
f = av, + B, v, and then, since Gy, v; = 0 € C3, it is easy to see that
ILf AR+ LS 2117 = 1B12Uva, f)12 + Kvz, D = 1812 = [f.f ]

Therefore, (36) holds with A = B = 1, but{ f;, f, } cannot be extended to a J-frame, since M is not
a uniformly J-positive subspace.

The next result gives a complete characterization of the families satisfying (36) for B > A >
0. It is straightforward to formulate and show analogues of all these assertions for a family satisfying
(36) for negative constants B < A < 0.
Proposition (5.2.14)[39]. Given a Bessel family F = {f;};c; in a Krein space H, let M =

span{f;:i € I}, and N = M UM ] If there exist constants 0 < A < B such that

ALFf1< ) NUf il < BUSf Mforevery f € M, 37
iel
then M © IV is a (closed) uniformly J-positive subspace of M. Moreover, if F is a frame for the
Hilbert space (M, (, )), the converse holds.
Proof. First, suppose that there exist 0 < A < B such that (37) holds. So, M is a J-nonnegative
subspace of , or equivalently, (M, (, ))is a semi-inner product space.
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IfT € L(£,(I),H) is the synthesis operator of the Bessel sequence F and C = T* |2 > 0,

then TT* < CPy;. So, using (37) it is easy to see that:

AGocf, f) ST Pu I = ((Pa TTf, ), fEH . (38)
Thus, 0 < Gy < %(GM)Z. Applying Theorem (5.2.1) it is easy to see that R((Gp)'/?) <
R(Gy) € R((G)YD).
Moreover, it follows by Corollary (5.2..2) that R(G,) is closed because

R(Gy) = R((GM)UZ)-

Let M' = M © N and notice that M is a closed uniformly J-positive subspace of #{. In fact, since
R(Gyr) 1is closed, there exists & > 0 such that

[f, £ = (G, £) =N (Gp)*f 122 a Il f I for every f € N(Gpe) = M © N.
Conversely, suppose that F is a frame for (M, {, )), i.e. there exist constants B* > A’ > 0 such that
A'Pyy < TT* < B'Pyp, where T € L(€,(I), M) is the synthesis operator of F . If M' = M © N is
a uniformly J-positive subspace of H, then there exists @ > 0 such that aPyy, < Gy, < Py - As a
consequence of Theorem (5.2.1), R((GMr)l/Z) = M' = R(Gyp). Since G 3 = Gy, it is easy to see
that

A'(G 3)? = A(G p)? < PyJTTJPye < B'(G 3)* = B'(G u)*.
Therefore, R(PaeJT) = R(G 3r,) = R((G 3)'?), or equivalently, there exist B > A > 0 such
that
AG 3 = AG p < Py JTT*]Py < BG 3, = BG 3,

LeAlf,f] SZ:I[]C»fi]I2 < BIf.f] foreveryf € M.
i€l

Theorem(5.2.15)[39]. Let F = {f;}ie; be a frame for H. If I, ={i €1: £[f; f;] = 0} and M,

span{f;:i € I}, then, F is a J-frame if and only if My N M = 0 and there exist constants B_ <
A_ < 0 < A, £ B, suchthat

Alff1< ) NF RIS BLIff] - forevery f € M. (39)

l'EIi
Proof. If F is a J-frame, the conditions on M follow by its definition and by Proposition (5.2.11).
Conversely, if M is J-non degenerated and there exist constants 0 < A, < B, such that

ALf.f1 < ) NEAIR < BIff] forevery f € M, |
i€l
then, by Proposition (5.2.14), M, is a uniformly J-positive subspace of H. Therefore, there exist
constants 0 < A < B such that
Al Py, f 12<IT; Py, f I?°< B | Py, f I? foreveryf € H.
But these inequalities can be rewritten as
APy, <Py JTiTi{]Py, < B Py,.
Then, by Theorem (5.2.1), R(Py,JTy) = R(Py,) = M. Furthermore, P,y (R(Ty)) = J(M})
because
JM,) = J(R(Pr, JT+)) = R(UPr, DT4) = R(Pyany T+) = Py, (R(T)).
Therefore, taking the counterimage of Pjpr,y(R(T4)) by Pja,), it follows that
H = R(Ty) + Jmp)t ¢ m, + e = 30
Thus, R(T,) = M, and F, is a frame for M,. Analogously, 7. = {f;}ic;_ is a frame for M_.
Finally, since F is a frame for H, H = R(T ) = R(T,) + R(T-), which shows the maximality of
R(T). Thus, F is a J-frame for .
LetF = {f;}ic; be a J-frame for H and consider F = F, U F_ the partition of F into J-
positive and J-negative vectors. Moreover, let M, be the (maximal) uniformly /-definite subspace of
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H generated by F.
The aim of this section is to show that it is possible to bound the correlation between vectors in
F, (resp. F_) and vectors in the cone of neutral vectors C = {n € H : [n,n] = 0}, in a strong sense:
I(fon) < c If Ilinll,f €My,n €C, (40)

V2 : . . . .
for some constants — < c; < 1. In order to make these ideas precise, consider the notion of minimal

angle between a subspace M and the cone C.

Definition (5.2.16)[39]. Given a closed subspace M of the Krein space H, consider
coM,C)=sup{|(imn)|: me M,n € Clnll=Iml=1} 41)

Then, there exists a unique 6(M,C) € [0, %] such that cos(8(M,C)) = cy(M,C). In this case,

6(M, C) is the minimal angle between M and C.

Observe that if the subspace M contains a non-trivial J-neutral vector (e.g. if M is J-indefinite
or J-semidefinite) then cy,(M,C) = 0, or equivalently, 6(M,C) = 0. On the other hand, it will be
shown that the minimal angle between a uniformly J-positive (resp. uniformly /-negative) subspace M
and C is always bounded away from 0.

Proposition (5.2.17)[39]. Let M be a J-semidefinite subspace of H with definiteness bound a. Then,

co(M,C) = %(\/@ﬂ/@) . (42)

In particular, M is uniformly J-definite if and only if ¢, (M,C) < 1.
Proof. Let H = H, @ H_ be a fundamental decomposition of H and suppose that M is a J-
nonnegative subspace of .
Let m € M with | m || = 1. Then, there exist (unique) my € H, such that m = m* +
m~. In this case,
1=ImP=Im" 12 +Im |I> anda < [m,m] =l m* | 2= | m~ |I%. (43)
Claim. For a fixed m e M with Iml= 1Lsup{|(mn)|:n €Clnll= 1}= %(II mbt | +1

m~ ).

Indeed, consider n € Cwith || n |l = 1. Then, there exist (unique) ny € Hy such that n = n* +
n~. In this case,

0=[nn]=In"IP=In" I”7 and1 =ln>=In* I +1n" I
which imply that | n* | =In~ || = % . Therefore,

| (mn)| < ¥ )]+ [m,n) < A m* I+ lme 1),

On the other hand, if m™ # 0 then let n,, :

= ( m + ), otherwise consider n,, =
VZ S lmE T men m

1 .
\/—E(m+z),w1thz €E H_llzll= 1.
Now, it is easy to see that n,, € C and that |(m,n,, )| = % (I m* || +1l m~ |I) which together

with the previous facts show the claim.
Now, let My = {m = m* + m~ € M : m* € H,,llm |l = 1}. Using the claim above it
follows that

co(M,C) = %supmeMl(ll m* I+ m ). (44)
If @« = 1 then M is a subspace of H,. Also, it is easy to see that ¢, (M,C) = \/% Thus, in this

particular case,
1 1+a 1-a
CO(M,C)—E< /—2 + /—2 )

On the other hand, if & < 1, let k, € N be such that 1_Ta > i Observe that, by the definition of the
0

definiteness bound, for every integer k > kg there exists m, = mj + mj; € M such that a <||
_ 1 .
mi 12=lIm; 12< a + ;.Then, it follows that

98



a+1<20mil? <a+1+3,

. 1+a 1+a 1 — . .
or equivalently, /TS Imi I < -t - Moreover, || m; ll=+/1—=llm; 12 implies
0

that =% — L <imy Il < /1_—“
2 2k 2

Therefore, for every integer k > k, there exists m; € M such that

1+ 1+ 1-a
T—— J—a<||mk I+ 1 my ||<J—a+—+ <

2kg 2
Thus, CO(M, C’) = E( ’T‘l' /%) .

Assume now that M is a J-nonpositive subspace of (H,[,]) with definiteness bound a, for
0 < a < 1. Then, M is a J-nonnegative subspace of the antispace (H,—[,]), with the same
definiteness bound a. Furthermore, the cone of /-neutral vectors for the antispace is the same as for the
initial Krein space (#,[,]). Therefore, we can apply the previous arguments and conclude that (42)
also holds for J-nonpositive subspaces. Finally, the last assertion in the statement follows from the
formula in (42).

Let F be a J-frame for H as above. Notice that (40) holds for some constant \/; < cp < 1if

and only if co(M7,C) < 1,i.e. that the minimal angles 8 (M, C) are bounded away from 0. This is
intimately related with the fact that the aperture between the subspaces M, (resp. M_) and H,
(resp. H_) is bounded away from% , whenever H = H, @ H_is a fundamental decomposition.

Also, if a is the definiteness bound of M then || K || = ’1;—2 , see [78]. Therefore,

K|l

JIHIKIZ

between M and H,, it is easyto see that

(M, H,) = 1‘7“ Since ®(M,H,) = sin (M, H,) for an angle (M, H,) € [0,7]

1+a

cos p(M,H,) = /1 — sin2p(M,H,) = —~
Therefore, if ¢ = (M, H,),

cos(%—qo) =\/§(cos<p + sin @) =\/i§< /HT‘Z+ /I_Ta> = cos(6(M,C)),
Vs

ie. oM, Hy) + (M, C) = —
Remark (5.2.18)[39]. Regarding the discussion at the beginning of this section, consider any
(redundant) J-frame F = {f;};¢; for (},[,]). As usual, denote M, and M_ the maximal uniformly /-
definite subspaces generated by F . Since M is uniformly /-definite, Proposition (5.2.17) shows that
co(My,C) < 1. That is, J-frames showide a class of frames for H with the desired properties, namely
the correlation between the sampling vectors and the cone of disturbances is controlled by ¢, (M, C)
because

[{fin) < co(M4C) Nl filllnll wheneveri €l,.}andn € C. (45)
Moreover, later in Proposition (5.2.25), it will be shown that the /-frame F admits a (canonical) dual /-
frame that induces a linear (indefinite) stable and redundant encoding—decoding scheme in which the
correlation between both the sampling and reconstructing vectors and the cone of neutral vectors is
bounded from above. These remarks showide a quantitative measure of the advantage of considering J-
frames with respect to usual frames in this setting.

If F is a J-frame with synthesis operator , then QT = = TPy, where Q = Py, //n_
Therefore,
Q = QTTT = TP, TT.

So, given a surjective operator T : £,(I) — H, the idempotency of TP, TT is a necessary condition
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for T to be the synthesis operator of a /-frame.
Lemma (5.2.19)[39]. Let T € L(£,(I),H) be surjective. Suppose that P is the orthogonal projection
onto a closed subspace & of #5(I) such that c(8, N(T )*) < 1. Then, TP,TT is a projection if and only
if N(T) =8 n N(T) @ s n N(T).
Proof. Suppose that Q = TP,TT is a projection. Then, if P = Pycryt, E' = PPsP is an orthogonal
projection because it is selfadjoint and
E? = (PP,P)? = PP,PPP, = TT(TP,TT)?T =TT (TP,T")T = PP,P = E.

Therefore, (PP)* = E¥~1p, = EP, = (PP,)%foreveryk > 2. So, by [85], PP,= P, A P =
PP,. Then, since P, and P commute, it follows that N(T ) = 8 N N(T ) @ 8+ n N(T ) (see [85]).

Conversely, suppose that N(T ) = 8 N N(T) @ st n N(T). Then, P, and P commute and

(TP,TH? = TP, (T TT)PST' = TP,PP,TT = TPP,TT = TP,TT.
Hereafter consider the set of possible decompositions of H as a (direct) sum of a pair of maximal
uniformly definite subspaces, or equivalently, the associated set of projections:
Q={Q € L(H): Q% = Q,R(Q) is uniformly J-positive and N(Q) is uniformly J-negative}.
Proposition(5.2.20)[39]. Let T € L(£,(I),H) be surjective. Then, T is the synthesis operator of a J-
frame if and only if there exists I, < [ such that #,(I,) (as a subspace of #,(I) satisfies
c(N(T )1, ¢,(1,)) < 1and
TP,Tt € 0,

where P, € L(£,(I)) is the orthogonal projection onto ¢, (I,).
Proof. If T is the synthesis operator of a /-frame, the existence of such a subset I, has already been
discussed before.

Conversely, suppose that there exists such a subset I, of I. Then, since c(N(T )+, £,(I;)) < 1
and = TP,T T € Q, it follows from Lemma (5.2.19) that P, and P = PN(T )* commute. Therefore,
QT = TP,P = TPP, = TP,,

and (I — Q)T = T({ —P,).Hence,R(TP,) = R(Q) is (maximal) uniformly J-positive and

R(T (I —P,)) = N(Q) is (maximal) uniformly J-negative. Therefore F = {Te;};¢; is by definition a
J-frame for H.
Theorem(5.2.21)[39]. Given a surjective operator T € L(€,(I),H), the following conditions are
equivalent:
(i) There exists U € U(¥,(I)) such that TU is the synthesis operator of a J-frame.
(ii) There exists Q € Q such that
QTT*(I — Q)" = 0. (406)
(iii) There exist closed range operators T;,T, € L(£,(I),H) such that T =T; + T, R(T;) is
uniformly J-positive, R(T,)is uniformly /-negative and T, T, = T,T; =0 .
Proof. (i) = (ii): Suppose that there exists U € U(¥,(I)) such that V = TU is the synthesis
operator of a J-frame. If I, = {i € I: +[Ve;,Ve;] > 0}and Py € L(£,(I)) is the orthogonal
projection onto €,(I;), define Vo = VP,. Then, V =V , +V_ and My = R(Vy) is a maximal
uniformly J-definite subspace. So, considering @ = Py, ,/ac € Q, it is easy to see that QV =
V.- Q)V = V.and
QTT*(I — Q)*=QVV*I — Q)*=V, V> =VP_,PV* =0.
(it) = (iii): Suppose that there exists Q € Q such that QTT*(I — Q)" = 0. Defining T; = QT and
T, = (I — Q)T ,itfollowsthat T = T; + T,, R(T;) = R(Q) is uniformly J-positive, R(T,) = N(Q)
is uniformly /-negative and
T, T, =T,Tf = 0,

because (46) says that R(T,;) = R(T*(I — Q)*) €& N(QT) = N(T).
(iit) = (i): If there exist closed range operators Ty, T, € L(€,(I), H)satisfying the conditions of item
3, notice that T, T, = 0 implies that N(T,)* S N(T,), or equivalently, N(T;)* S N(T).

Consider the projection Q = Pr(r,),/r(r,) € Q and notice that QT =T; and (I — Q)T =T,.
If By = {u;}iey, is an orthonormal basis of N(T;)*, consider the family {f [ };¢;, in H given by f | =
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Tw;. But, ifi € I, f}=QTu;+ (I —Q)Tu; = Tyw;R(T;), becauseu; € N(T))* S N(Ty).
Therefore, {f {}ie;, & R(Ty). Since Ty is an isomorphism between N (T;)* and R(Ty), it follows that

R(T;) = span{f i+}i611 .

Analogously, if B, = {b;};¢,, is an orthonormal basis of N (T;)the family {fi" }ier, defined
by fi7 = Tb;(i € I,) lies in R(T5,).
Since T, is an isomorphism between N (T,)* and R(T5,), it follows that

R(T;) = To(N(Ty)) < span{f; }iel2 C R(Ty).
Finally, consider U € U(¥,(I)) which turns the standard orthonormal basis {e;};c; into B; U
B,.Then,if V.= TU and F = {Ve;}ie; = {f{ }ier, U {f 7 }iey, , it is easy to see that
I, ={i€l:[Ve,Ve;] >0}=LandI_ = {i € [ :[Ve;,Ve;] <0} = I,.

So, R(V,) = R(T,) is maximal uniformly J-positive and R(V.) = R(T,) is maximal uniformly J-
negative. Therefore, F is a /-frame for H with synthesis operator V = TU.
Definition (5.2.22)[39]. Given a J-frame F = {f;} ;¢;, the J-frame operator S: H — H is defined by

Sf = Zai[f,fi]fi, forevery f € H,
iel

where o; = sgn(| fi, fi -
The following proposition compiles some basic properties of the /-frame operator.
Proposition(5.2.23)[39]. Let F = {f;} ;c;, be a J-frame with synthesis operator T € L(¢,(I)),H).
Then, its J-frame operator S € L(H) satisfies:
S =TT
(i)S = S, — S_,where S, := T, T} and S_ := —T_T7 are J-positive operators;
(ii1) S is an invertible J-selfadjoint operator;
(iv) ind(S) = dimH,, where ind,.(S) are the indices of S.
Proof. If F = {f;}ie;, is a J-frame with synthesis operator T € L(£,(I)),H)., then T*f =

Yieroil f.f ilei for f € H . So,
T4 = T Y alf fidec|= ) alf fdf (= Sf.forevery f € 3.

iel iel
Furthermore, if I, = {i € I+ £[f;,f ;] > 0}, consider Ty = TP, as usual. Then,

TT = (T, + T_)(Ty + T)H)* =T, T} + T.-T* =T, T} — (—T_TH),
because T, T+ = T_T} = 0. Therefore,S = S, — S_if Sy := +T,T;. Notice that S is a J-
positive operator because
Sy = 2T,TE = 2Ty ;T3] = T Ti]

To show the invertibility of S observe that, if Sf = Othen S,f = S_f. But R(S;) NR(S_) &
R(T,) NR(T.) = {0}. Thus, S is injective. On the other hand, R(S) = S(MM) + sl )
becauseH = MP] + M But it is easy to see that Mi[l] S N(S4)-So, S(Mi[_l]}) = S;(Mi[_l]})
and R(S) = S_(MM) + s,y = R(S_) + R(S,) = M .+ M _ = #. Therefore, S is
invertible. B

Finally, the identities ind4(S) = dimH, follow from the indices definition. Recall that if
A € L(H) is a J-selfadjoint operator, ind, (A) is the supremum of all positive integers r such that

such r exists,ind_(A) = 0). Similarly, ind_(A) = ind,(—A) is the supremum of all positive
integers m such that there exists a negative invertible matrix of the form

Corollary(5.2.24)[39]. Let F = {f;} ie;, be a J-frame for H with J-frame operator S € L(H). Then,
(Sy) = My and N(Sy) = MM,

101



Furthermore, if Q = Pyry//m_,

S,=QSQ+andS_= - — Q)SU — Q. 47)
Proof. Recall that S, := T, T{ = T,(J,T{]) = T,.T;J. Then, R(S,) = R(T,T{]) = R(T,T{) =
R(T,) = M, because R(T,) is closed. Since S, is J-selfadjoint, it follows that N(S,) =
RS )M = MM | Analogously, R(S.) =M_ andN(S_) = M. Since S =S, —
S_,if @ = Pyryy/m_then

QS = Q(S+ — S-) = Sy,

by the characterization of the range and nullspace of S,. Therefore, SQ, = QS = QSQ,.

Analogously, SU— Q)" =U-Q)S=U — Q)SU - Q)™ .
The above corollary states that S is the diagonal block operator matrix

s=(v %) (48)

according to the (oblique) decompositions H = MM + M P]and H = M , +M _ of the domain
and codomain of S, respectively.
Given a J-frame F = {f;} ;¢; with synthesis operator , there is a duality between F and the

frame g = (g} s givenby g; = ST f: fi f € H.
f =SS = TTHSTf) = T(Z als7f ,fi]ei>

i€l

=Yl filf = ) alf, SIS

i€l i€l
Analogously,
f = STSf = STATH) = 57 (Zm[f;ﬁ-]ﬁ) =Y alS7 L filfy = ) alf, fi1S7 i
i€l i€l i€l
Therefore, for every f € H, there is an indefinite reconstruction formula associated to F :
f=>alf.gf =) alf.filg (49)

i€l i€l
The following question arises naturally: is ¢ = {S™1f;};¢; also a J-frame for J£?
Proposition(5.2.25)[39]. If F = {f;} ie; is a J-frame for a Krein space H with J-frame operator S, then
g = {S71f}ie is also a J-frame for H.
Proof. Given a J-frame F = {f;} ;; for  with J-frame operator S, observe that the synthesis operator
of ¢ = (S fi}ies is V := STIT € L(£,(I), ). Furthermore, by Corollary (5.2.24), S(ML) =
M. Then, S™1(M,) = M and it follows that [ S™1f;, S71f;] > 0 ifand only if [ f;, f; ] > 0.
Thus,V 4, = VPy = S7'T, and R(V,) (resp. R(V.)is a maximal uniformly J-positive (resp. J-
negative) subspace of . So, g is a J-frame for H.
If F = {f;} e is a frame for a Hilbert space H with synthesis operator T € L(€,(I),H)., then the
family {(TT*)™1f;};e; is called the canonical dual frame because it is a dual frame for F (see (32)) and
it has the following optimal property: Given f € H,

DUEATYI < ) il whenever f = cif, (50)
i€l i€l i€l
for a family (¢;);e; € €,(I). In other words, the above representation has the smallest £,-norm among
the admissible frame coefficients representing f (see [61]).
In a Hilbert space H, it is well known that every positive invertible operator S € L(H) can be
realized as the frame operator of a frame F = {f;} ;¢; for H, see [43]. Indeed, if B = {x;};¢; is an
orthonormal basis of #, consider T : £,(I) — H givenby T, = S /2%, fori € I.Then, for every

f e,
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f :Z<f’sl/2xi )1 2x; = S*? Z(Sl/zf,xi)xi = Sf.

i€l i€l

Therefore, F = {S'/2x; };¢; is a frame for H and its frame operator is given by S.
Theorem(5.2.26)[39]. Let S € GL(H) be a J-selfadjoint operator acting on a Krein space H with
fundamental symmetry J. Then, the following conditions are equivalent:

(i) S is a J-frame operator, i.e. there exists a J-frame F with synthesis operator T such that S = TT*.
(i1) There exists a projection Q € Q such that QS is /-positive and (I — Q)S is J-negative.

(ii1) There exist J-positive operators S;,S, € L(H) such that S = §; — S, and R(S;) (resp.R(S,)) is
a uniformly J-positive (resp. /-negative) subspace of H.

Proof. (i)—(ii): Follows from Proposition (5.2.23) and Corollary (5.2.24).

(i1)—(iii): If there exists a projection Q@ € Q such that QS is J-positive and (I — Q)S is J-negative,
consider the J-positive operators S; = QS and S, = —(I — Q)S. Then, S =§; — S, and, by
hypothesis, R(S;) = R(Q) is uniformly J-positive and R(S, ) = R(I — Q) = N(Q) is uniformly J-
negative.

(iii))—(i): Suppose that there exist J-positive operators S;,S, € L(H) such that § =S§; —§, and
R(S;) (resp.R(S;)) is a uniformly J-positive (resp. J-negative) subspace of H. Denoting K; =
R(Sj) forj = 1,2, observe that A; = S;/|y; € GL(K;)™.

Therefore, there exists a frame F; = {fi}iaj c X for X such that A; = T;T;" jif T; € L(€(11), %)

is the synthesis operator of F;, forj = 1, 2.
Then, consider £, (1) := £,(I;) @ €,(I;) andT € L(£,(I),H) given by
Tx = Tixy + Toxy, if x €€,(I1),x = x1 + X3, x; € £,(I)forj = 1,12

It is easy to see that T is the synthesis operator of the frame F = F, U F,. Furthermore F is a /-frame
suchthat/ , = [ and I _ = I,.

Finally, endow #,(I) with the indefinite inner product defined by the diagonal operator J, €
L(£,(I) ) given by

J2 e = o;e,
where o;,=1if i € I; and o;,= —1 ifi € I,. Notice that T;J, =T; and T,J, = —T,.
Furthermore, T;T; = T,T; = 0because R(T; ) = N(T,)* € ¢,(I;) = €,(I;) S N(T,). Thus,
TT =TLT ] = Ty + )7 —T;)] =TT ] —TT5] = AJ — Ay =5 -5, =S,

Given a J-frame F = {f;};¢; for H with J-frame operator S € L(H), it follows from Corollary

(5.2.24) that
s(M™) = M, and S(MP] ) = M_ (51)

1.e. S maps a maximal uniformly J-positive (resp. J-negative) subspace into another maximal uniformly
J-positive (resp. J-negative) subspace. The next proposition shows under which hypotheses the
converse holds.
Proposition(5.2.27)[39]. Let S € GL(H) be a J-selfadjoint operator. Then, S is a J-frame operator if
and only if the following conditions hold:
(i) there exists a maximal uniformly J-positive subspace T of H such that S(T ) is also maximal
uniformly J-positive;
() [Sf,f] = Oforevery f € T;
(iii) [ Sg,g] < O foreveryg € S(T)IH.
Proof. If S is a J-frame operator, consider 7 = M1 which is a maximal uniformly J-positive
subspace T of H. Then, S(T") = M, is also maximal uniformly J-positive. Furthermore,
[SF.f1=1[SQ*f,Q*f] = [QSQ*f.f] = [S+f .f1 20 for everyf € T ,where Q =
Pac, ;e Also, S(THM = Ml = N(@Q*) = R(U — @) So,

[S9.91 = [SU — @9, - D¥g] = [U - DSU - A'9.9] = [-S-g9.9]

< 0 foreveryg € S(T ).
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Conversely, suppose that there exists a maximal uniformly J-positive subspace T satisfying the
hypotheses. Let M' = S(J"), which is maximal uniformly J-positive. Then, consider = P, 7p1 . It

is well defined because T[] is maximal uniformly J-negative, see [91]. Moreover, Q € Q.
Notice that R(S(I — Q)") = S(M ) = ss@)HH) = s(s~1(TH)) = T, Therefore, QS(I —
Q)* = 0and

QS = QSQ* + Qs — @F = QsQ™.
Furthermore, if [Sf,f] = 0 for every f € T then QS is J-positive. Analogously, if [Sg,g] < 0
for every g € S(T)! then (I — Q)S is J-negative. Then, by Theorem (5.2.26),S is a J-frame
operator.

As it was proved in Proposition (5.2.23), if an operator S € L(H) is a J-frame operator then it
is an invertible J-selfadjoint operator satisfying ind,(S) = dim(H,). Unfortunately, the converse is
not true.

Example(5.2.28)[39]. Consider the Krein space obtained by endowing c? with the sesquilinear form

[(x1, %2), 1, ¥2)] = x1V1 — %252,
and the invertible J-selfadjoint operator S, whose matrix in the standard orthonormal basis is given by

s=(l)

Then, S satisfies ind,(S) = dim(H,) , but it maps each J-positive vector into a J-negative vector.
Then, by Proposition (5.2.27), S cannot be a /-frame operator.

Corollary (5.2.29)[212 Let the sequences F = {(f;);}ie;, be a Bessel family in 3. Then, F is a
sequences of J-frames if and only if F is everywhere defined (i.e. D, + D_=H)and || F I < 1.
Proof. See [59].

It follows from the definition that, given a sequences of /-frames F = {(f;.);}ie;, for the Krein
space H, [ (f;)i, (fy)i] # Oforeveryi € I, ie. (I,)y = {i € I, : [ (f,);, (fy); ] > 0}. This fact
allows to endow the coefficients space ¢,(I,) with a Krein space structure. Denote (o,); =
sgn([ ()i, (f); 1) = x1foreveryi € I,.. Then, the diagonal operator J, € L(#,(I,.)) defined by

]2 (er)i = (Gr) i (er)i! fOT‘ everyi € Ir: (52)
is a selfadjoint involution on #,(I,.). Therefore, €, (I, )with the fundamental symmetry /, is a Krein
space.

Now, if T € L(¢,(1,),H) is the synthesis operator of F, the J-adjoints of T , T, and T_ can be
easily calculated, in fact if f, € H:

DTEh =1 ) ) U e

. TER i€(ly) TER
An
DT =Y @ AT = ) T+ ) TP, =
TR reR TR reR
YD = Y D e (Bdedi= ) ) @lf ()ilen,
ie(l,)+ reR, ie(l,)-reR_ iel, reR

Corollary (5.230)[212]. Let F = {(f;)i}ic;, be a sequences of J-frames for H. Then, F, =
{(f-)i}ieq,), is a sequences of frames for the Hilbert space (My, %[, ]), i.e. there exist constants
A+¢e) < A_ <0< A, < (A+ ¢), such that

Yadffls Y DU ENIS Y U+ :lffi] for f €My, (53)

TER i€(Ir)+ TER+ TER
Proof. If F = {(f;)i}ie;, 1is a sequences of J-frames for #, then R(T,) = M, is a (maximal)
uniformly J-positive subspace of H. So, T, is a surjection from ¥,(l,) onto the Hilbert
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space (M4, [,]). Therefore, F, is a sequences of frames for (M, [, ])In particular, there exist constants
0 < A, < (A+ ¢€), such that (53) is satisfied for M. The assertion on F_ follows analogously.

Now, assuming that (see, [23]) F is a sequences of /-frames for a Krein space (¥, [, ]), a set of
constants {(A +¢)_,A_,A ,, (A + &)} satisfying (53) is going to be computed. They depend only on
the definiteness bounds for R(T.), the norm and the reduced minimum modulus of T}..

Suppose that F is a sequences of J-frames for a Krein space (#, [, ]) with synthesis operator
T € L(¢,(;),H). Since R(Ty) = M, is a (maximal) uniformly J-positive subspace of H, there
exists (1 — &) > Osuchthat Y, cx(L1—&) Il f 12 <X, rlf.fr] foreveryf. € M,.So,

D0 DU Gll? = D UTHLI? < D UTHPULIE < D (A+e),lfyfi] for every f, € M,

i€(l;)+ TER TER TER TER

112
where (A + &), = ”?_! ”E” . Furthermore, since N(T;)* = J(M,) ,if f. € M,,
2 2
D U G = Y UL < 3 T8 B el 2 D v @ [P £
i€(ly)4+ TER, TER TER TER
2 2 2
= > v @ PRI = D @G AT 2 )y @ (6w, I I?
TER TER TER
> Adff]
TER )
where A, = y(T)%(Gy,)” = v(T)*(1 - &)2.
Analogously, A_= —y (T_)?(e—1)? and (A+¢)_ = u satisfy Eq. (53) for every

_1)
Yrerfr € R(T.) = M_ ,if (¢ — 1) is the definiteness bound of the (maximal) uniformly J-negative
subspace M_.

Usually, the bounds A, = +(1 — &)?y(T,)? ,A_ = —(e = 1)?y(T_)? and (A + &), =+

_IT)?
, (A+¢e)_= 7=

Corollary(5.2.31)[212]. Given a Bessel family F = {f;}i; in a Krein space H, let M =
span{f;:i € I}, and N' = MUM ! If there exist constants 0 < A < (4 + ¢€) such that

T4 112
(1-¢)

are not optimal for the series of J-frames F .

DA SIS D DU Ui < ) A+l fufi ] forevery fo € M, (58

TER i€l TER TER
then M © WV is a (closed) uniformly J-positive subspace of M. Moreover, if F is a sequences of
frames for the Hilbert space (M, (, )), the converse holds.
Proof. First, suppose that there exist €, A > 0 such that (54) holds. So, M is a J-nonnegative subspace
of I, or equivalently, (M, (, ))is a semi-inner product space.
IfT € L(£,(I,),H) is the synthesis operator of the Bessel sequence F and C = || T* |2 > 0,
then TT* < CP%:. So, using (17) it is easy to see that:

2
> AGach £ < D I @RI = Y (PRITTf) , fr€ 3. (55)
TER c TER TER
Thus, 0 < Gy < - (Gyr)?. Applying Theorem (5.2.1) it is easy to see that
R((Ga)"?) € R(Gu) € R((Ga)'?).
Moreover, it follows by Corollary (5.2.2) that R(G,;) 1is closed because
R(Gy) = R((Ga)Y?).
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Let M' = M © NN and notice that M’ is a closed uniformly J-positive subspace of H. In
fact, since R(Gyr) is closed, there exists (1 — €) such that

Z[fr,fr] = Z(GMfr'fr> = Z I (Ga)Y2f 112 = Z A=e Il £ 117

TER TER TER TER
forevery f, E N(Gy) =M S N.
Conversely, suppose that F is a series of frames for (M, (,)), i.e. there exist constants (A + &)’ =
A" > 0 such that
AP < TT* < (A+¢)'Pk,
where T € L(£,(I,.), M) is the synthesis operator of F . If M’ = M & N is a uniformly J-positive
subspace of H, then there exists (1 — &) such that (1 — €)Pi, < Gy < Pi . As a consequence of
Theorem (5.2.1), R((G5)?) = = R(Gyp,). Since G 3y = Gy, it is easy to see that
AG )= A (GMI)Z < PYJTTJPy < (A+8)'(G a)* = (A+ €)' (G a)*
Therefore, R(P%JT) = R(G »)) = R((G 2,)"/?), or equivalently, there exist £, A > 0 such that
AG 30 = AG 3p < PZJTT* Py < (A+ )G 30y = (A +€)G yp,

i.e.ZA[fr,fr ZZ| fr (fr)il Z(A+€) frfr1, foreveryf, € M.

TER i€l TER TER

Corollary(5.2.32)[212]. Let F = {(f;)i}ie;, be a series of frame for H. If (I.)y ={i €1, :

+[ (f)o ()il = 0} and My = span{(f;);:i € (I,)+}, then, F is a series of J-frame if and only if
My n M = 0 and there exist constants (A +&)_ < A_ < 0 < A, < (A + &), such that

D Al f1 < D D N FIP < ) (A+oslfifi]  forevery f, € M. (56)

TER IEI4+ TER4 TER
Proof. If F is a sequences of J-frames, the conditions on My follow by its definition and by
Proposition (5.2.11). Conversely, if M, is J-non degenerated and there exist constants 0 < A, <
(A + €), such that

YAdff1< Y D IHEIP < Y U+eLlhfl,  foreveryf € M,

TER i€(ly)4 TERy TER
then, by Proposition (5.2.14), M, is a uniformly J-positive subspace of H. Therefore, there exist
constants £,4 > 0 such that

zA Il P fir 112 Sz I T3 Pie fr 17 < Z(A+£) I Py fr I?,for every f, € H.

TER TER TER
But these inequalities can be rewritten as

APy < Py T .Ti Py, < (A+¢)Py,.
Then, by Theorem (5.2.1), R(Pf,[+]T+) = R(Pf,ur) = M. Furthermore, P;pe,y(R(Ty)) = J(My)
because
J1,) = J(R(Pig,JT+)) = R(UPie NT+) = R(Pjtac,yT+) = Pliae,) (R(T4)).
Therefore, taking the counter image of PJZ(M+)(R (Ty)) by PJZ(M )» it follows that
= R(Ty) + Jm)*r € My +mHH = 7.
Thus, R(T,) = M, and .‘F+ is a frame for M. Analogously, 7~ = {(f;)i}ic,)_ is a sequences of
frames for M_. Finally, since F is a sequences of frames for #,
H = R(T) = R(T,) + R(T.),
which proves the maximality of R(T;). Thus, F is a sequences of J-frames for H.

Corollary(5.2.33)[212]. Let M be a J-semidefinite subspace of H with definiteness bound (1 — €).
Then,
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cO(M,C)=71§<\/%+\E>. (57)

In particular, M is uniformly J-definite if and only if ¢, (M,C) < 1.
Proof. Let H = H, @ H_ be a fundamental decomposition of H and suppose that M is a J-
nonnegative subspace of .

Let m € M with || m || = 1. Then, there exist (unique) m, € H, such that m = m* + m~. In

this case, - -
1=Iml*=Im* 12+ Im I and (1 —¢) < [m,m] =l m* || 2=l m~ 2. (58)
Claim. For a fixed me M with [mll= Lsup{|{(mn)|:n €Clnl= 1}= %(II mt il +1
m~ ).
Indeed, consider n € C with || n |l = 1. Then, there exist (unique) ny € Hy such that n = n* +
n~. In this case,
0=[nn] =Int12=lIn" I and1l =lnl>=In* 1> +1n" I

which imply that | n* = In~ || = % . Therefore,

| m,n)] < [m*,n )]+ [m™,n) < = (Um* 1l +1lm™ ).

On the other hand, if m™ # 0 then let n,,, :=
withz € H_llzIl= 1.
Now, it is easy to see that n,, € C and that |(m,n,, )| = % (I m* || +1l m~ |) which together with the

1 1
\/_E( e m) otherwise consider n,,, = 5 (m + 2),

previous facts prove the claim.
Now, let M; = {m = m* + m~ € M : m* € H,,llm | = 1}. Using the claim above it follows
that

co(M,C) = Supmej\/[l(" m* |l + 1 m” ). (59)
If € = Othen M is a subspace of H,. Also, it is easy to see that c,(M,C) = Thus in this

particular case,
1 2—¢ £
co(M,C) = ﬁ( /T-I_\/;) .

On the other hand, if € = 0, let k, € N be such that k, > i Observe that, by the definition of the

definiteness bound,
for every integerk > k, there exists m;, = m{ + my; € My such that (1 —¢&) < m} II%—|
my 12< (1—¢) + %.Then, it follows that

2—e< 20mf 12 <2-¢+-,

or equivalently, ’ <lImf Il < ’2—8 + — . Moreover, | m; ll=+/1—I mj |l % implies that

\/i<llmk II<\£

Therefore, for every integer k > k there exists m;, € M such that

e wt S v - 2=e 1 [t
N /2 <lmf I+ Il my ||<\/T2k()+\/;
Thus,Co(M,C):%< ’?_}_\/g)

Assume now that M is a J-nonpositive subspace of (#,[,]) with definiteness bound (1 — €), for
€ > 0. Then, M is a J-nonnegative subspace of the antispace (H,—[,]), with the same definiteness
bound a. Furthermore, the cone of J-neutral vectors for the antispace is the same as for the initial Krein
space (H,[,]). Therefore, we can apply the previous arguments and conclude that (58) also holds for
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J-nonpositive subspaces. Finally, the last assertion in the statement follows from the formula in (58).
Let F be a sequences of J-frames for H as above. Notice that (56) holds for some constant
V2

=S¢ < 1 if and only if cq(M7,C) < 1,i.e. that the minimal angles 8(M, C) are bounded away
from 0. This is intimately related with the fact that the aperture between the subspaces M, (resp. M_)
and H, (resp.H_) is bounded away from % , whenever H = H, @ H_is a fundamental

decomposition.
Corollary(5.2.34)[212]. Let T € L(#,(I,),H) be surjective. Suppose that P? is the orthogonal
projection onto a closed subspace & of #,(I,) such that c(8,N(T)*) < 1. Then, TP?TT is a
projection if and only if
N(T) =8N N(T) & 8+ n N(T).

Proof. Suppose that Q2 = TP2TT is a projection. Then, if PZ = PI\ZI
projection because it is selfadjoint and

E? = (P?P2P?)? = p2p2p?2p?p? =TY(TP2TH?T =TT(TP?TT)T = P?P?P? = E.
Therefore, (P?P2)* = E*=1p2 = EP? = (P?P2)%for everyk > 2.So,by[15],

P2p2 = p2 A P2 = p2p2.

Then, since P? and P2 commute, it follows that N(T ) = 8N N(T ) @ 8+ N N(T ) (see [15]).

Conversely, suppose that N(T ) = 8 N N(T) @ s+ n N(T). Then, P, and P commute and

(TPETT)? = TPZ (T TT)P2STt = TPZP?PTt = TP2P?T' = TPZTT.

Hereafter consider the set of possible decompositions of H as a (direct) sum of a pair of maximal
uniformly definite subspaces, or equivalently, the associated set of projections:
Q={Q?% € L(#): Q? = Q,R(Q?) is uniformly J-positive and N(Q?) is uniformly J-negative}.
Corollary(5.2.35)[212]. Let T € L(¥,(1,),H) be surjective. Then, T is the synthesis operator of a J-
frame if and only if there exists (I.), < I, such that £,((I),) (as a subspace of ¢,(I,.) satisfies
c(N(T)*, £2((1)+)) < land

ay E = P?PZP? is an orthogonal

TP?T 1 € Q?,
where P2 € L(£,(1,.)) is the orthogonal projection onto £, ((1,-),).
Proof. If T is the synthesis operator of a sequences of /-frames, the existence of such a subset (,-), has
already been discussed before.

Conversely, suppose that there exists such a subset (I.),of(l.). Then, since
c(N(T)4,£,((I))) <1 and = TP2T ' € Q? , it follows from Lemma (5.2.19) that P? and
P? = P2N(T)! commute. Therefore,

Q2T = TP2P? = TP2p? = TPZ,
and (I, — Q®)T = T (I, — P?).Hence,R(TP2) = R(Q?) is (maximal) uniformly J-positive and
R(T (I, —P})) = N(Q?) is (maximal) uniformly J-negative. Therefore F = {T(e,);}ie;,. is by
definition a sequences of J-frames for H.
Corollary(5.2.36)[212]. Given a surjective operator T € L(£,(I,),H), the following conditions are
equivalent:
(i) There exists U € U(¥,(1,)) such that TU is the synthesis operator of a sequences of J-frames.
(ii) There exists Q% € Q such that

QT (I, — Q¥)" = 0. (60)
(iii) There exist closed range operators T, T, € L(€,(I.),H) such that T =T, + T,, R(T;) is
uniformly J-positive, R(T,)is uniformly /-negative and T, T, = T,T; =0 .
Proof. (i) = (ii): Suppose that there exists U € U(¥,(I,)) such that V = TU is the synthesis
operator of a sequences of J-frames. If (I)y = {i € L.: £[V(e.);V(e,);] > 0}and Pi €
L(#,(I,)) is the orthogonal projection onto #5((I,);), define V. = VPZ Then, V =V , +V_
and My = R(V,) is a maximal uniformly /-definite subspace. So, considering Q = PJ%/& /. €9, it
is easy to see that Q2V = V ., (I, — Q*)V = V_and

Q*TT*(I, — Q*)* = Q?VV*(l, — Q»)* = V ,V* = VP{P?V* = 0.
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(ii) = (iii): Suppose that there exists Q2 € Q such that Q2TT*(I, — Q?)* = 0. Defining T; = Q2T
and T, = (I, — Q*)T , it follows that T = T; + T, R(T;) = R(Q?) is uniformly J-positive,
R(T,) = N(Q?) is uniformly J-negative and
T1T2* = Tsz = 0,

because (60) says that R(Ty) = R(T*(I, — Q%)*) € N(Q?T) = N(T,).
(iit) = (i): If there exist closed range operators Ty, T, € L(£,(I,), H)satisfying the conditions of item
3., notice that T; T, = 0 implies that N(T,)* S N(T;), or equivalently, N(T;)* S N(T,).

Consider the projection Q* = Pg(r,y//r(r,) € Q and notice that Q*T =Ty and (I, — Q)T =T,.
If (B),= {(ur)i}ie(,r) . is an orthonormal basis of N (T)?1, consider the family
{(f) Tlieq, in ¥ given by (f,) { = T(w,);. But, if i € (I),

(ﬁ") :- = QZT(ur)i + (Ir - QZ)T(ur)i = Tl(ur)iR(Tl)a
because (u,); € N(T;)* € N(T;). Therefore, {(f;) {}icr,), S R(T1). Since Ty is an isomorphism
between N (T;)* and R(Ty), it follows that R(Ty) = span{(f;) { }ieq,), -
Analogously, if (B,), = {(br)i}ie(lr)z is an orthonormal basis of N(T;)the family
{(f)i }ieup, defined by (f,); = Th;(i € (I);) lies in R(Ty).
Since T, is an isomorphism between N(T,)* and R(T,), it follows that
R(T,) = T,(N(Ty)) € span{(f;); }iE(IT)z C R(T).
Finally, consider U € U(£,(I,)) which turns the standard orthonormal basis {(e;);}ie;, into (B,), U
(B,)2- Then,if V.= TU and F = {V(e))i}ier, = {(F) 7 Yiewp, Y {F)i}ieq,, » it is easy to see
that
(Ir)+ = {i € Ir : [V(er)i; V(er)i] > O} = (Ir)l and (Ir)— = {i € Ir : [V(er)i' V(er)i] < O} =
(Ir)z-

So, R(V,) = R(T;) is maximal uniformly J-positive and R(V.) = R(T,) is maximal uniformly J-
negative. Therefore, F is a J-frame for H with synthesis operator V = TU.
Corollary(5.2.37)[212]. Let F = {(f;)i} ic1,» be a series of J-frames with synthesis operator T €
L(¢,(1,)),H). Then, its series J-frames operators S € L(H) satisfies:
S =TT
(i)S = S, — S_,where S, := T,T;} and S_ := —T_T7 are J-positive operators;
(i11) S is an invertible J-selfadjoint operator;
(iv) ind(S) = dimH,, where ind, (S) are the indices of S.
Proof. If F = {(f;)i} ic1,» is a series of J-frames with synthesis operator T € L(£,(1,)),%)., then

Yrer T fr = Lier, Zrer(0)il fr ()i 1(er); for fi € H . So,

DT = T DD @l e G | = ). D @il fe XD = SF 1 for every £,

TER i€l TER i€l TER
€ H.
Furthermore, if (I,); = {i € L : [ (f,);, (f;):] > 0}, consider Ty = TPZ as usual. Then,
TT* = (T, + T)(T, + T)* = T,Tf + T.T* =T,Tf — (- T_TH,
because T, T+ = T_T} = 0. Therefore,S = S, — S_if Sy := +T,T;. Notice that S, is a J-
positive operator because
Sy = 2Ty TE = 2Ty JoT5] = T, TiJ

To show the invertibility of S observe that, if Sf, = Othen S,f, = S_f,.. But R(5;) N
R(S.) € R(T,) NR(T.) = {0}. Thus, S is injective. On the other hand, R(S) = S(M ™) +
S(MIH ) because H = MP] + M But it is easy to see that Mi[l] C N(S4). So, S(Mi[l]}) =
St and R(S) = St + (M) = R(SL) + R(Sy) = M+ M _=H.
Therefore, S is invertible.

Finally, the identities ind, (§) = dim H follow from the indices definition. Recall that if
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A € L(H) is a J-selfadjoint operator, ind,(A) is the supremum of all positive integers r such that
such r exists,ind_(4A) = 0). Similarly, ind_(4) = ind,(—A) is the supremum of all positive
integers m such that there exists a negative invertible matrix of the form

Corollary (5.2.38)[212]. Let F = {(f;):} ici,» be a sequences of J-frames for } with sequences of /-
frames operators S € L(H). Then, (S1) = Myand N(Sy) = MP] .
Furthermore, if Q% = Piry /.,

S+=0Q%Q*+ and S _= —(I, — Q)SU, — Q*)* (61)
Proof. Recall that S, := T, T{ = T,(J,T{]) = T,.T;J. Then, R(S,) = R(T,T{]) = R(T,T{) =
R(T,) = M, because R(T,) is closed. Since S, is J-selfadjoint, it follows that N(S,) =
R(S O = MM | Analogously, R(S_) = M_ and N(S_) = M,

Since S = S, — S_,if Q* = Py, /. then
Q*S = Q*(Sy— S) = Sy,

by the characterization of the range and nullspace of S,. Therefore, SQ2 = Q2S = Q2SQ2.
Analogously,

Sy — Q2)+ =, — QZ)S =y — QZ)S(IT - Q2)+'
The above corollary states that S is the diagonal block operator matrix
_(S+ O
S—(O —S_)’ (62)

according to the (oblique) decompositions H = M 4+ M P]and H = M , + M _ of the domain
and codomain of S, respectively.
Corollary(5.2.39)[212]. If F = {(f,):} ie1, is a sequences of J-frames for a Krein space H with a
sequences of J-frames operator S, then g, = {S _1(ﬁ“)i}ielr is also are J-frames for H .
Proof. Given a J-frames F = {(f;);} ie;, for } with J-frames operator S, observe that the synthesis
operator of g, = {S7'(f,)i}ier, is V := S7'T € L(£,(I;),H). Furthermore, by Corollary (5.2.24),
S (]\/&m) = M. Then, S71(M,) = i[l] and it follows that
[ST A STH(il > 0 ifand only if [ (£)i, (£):]1 > 0.

Thus,V = VP2 = S7'T, and R(V,) (resp. R(V.)is a maximal uniformly J-positive (resp. J-
negative) subspace of . So, g, are J-frames for H.

If F = {(fy)i} ies, is a series of frames for a Hilbert space }{ with synthesis operator T €
L(£,(I;), H)., then the family {(TT*)™*(f;):}ie;, are called the canonical dual frames because it is a
dual frames for F (see (32)) and it has the following optimal property: Given f, € H,

D D AT < ) (el whenever D £ = > (e (63)

i€l TER i€l TER i€l
for a family ((c,);)ier, € €2(I). In other words, the above representation has the smallest £,-norm
among the admissible frame coefficients representing f (see [61]).
Corollary(5.2.40)[212]. Let S € GL(H) be a J-selfadjoint operator acting on a Krein space H with
fundamental symmetry J. Then, the following conditions are equivalent:
(1) S is a sequences of J-frames operator, i.e. there exists a sequences of J-frames F with synthesis
operator T such that S = TT*.
(ii) There exists a projection Q2 € Q such that QS is J-positive and (I, — Q?)S is J-negative.
(ii1) There exist J-positive operators S;,S, € L(H) such that S = S; — S, and R(S;) (resp.R(S,)) is
a uniformly J-positive (resp. /-negative) subspace of H.
Proof. (i)—(ii): Follows from Proposition (5.2.23) and Corollary (5.2.22).

(ii)—(iii): If there exists a projection Q% € Q such that Q2S is J-positive and (I, — Q?)S is J-

negative, consider the J-positive operators S; = Q2S and S, = —(I, — Q?)S. Then, S =S5; — S,
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and, by hypothesis, R(S;) = R(Q?) is uniformly J-positive and R(S, ) = R(I, — Q?) = N(Q?) is
uniformly /-negative.

(ii1))—(i): Suppose that there exist J-positive operators S;,S, € L(H) such that § =S§; — 5,
and R(S;) (resp.R(S;)) is a uniformly J-positive (resp. J-negative) subspace of H. Denoting K; =
R(Sj) forj = 1,2, observe that 4; = SjJ|y; € GL(K;)™.

Therefore, there exists a sequences of frames F; = {(fr)i}ie(,r)j c X; for X such that A; = T;T;" if
T; € L(£2((I;)1), X;) is the synthesis operator of F;, for j = 1,2.
Then, consider £, (1) := €,((1,);) @ €,((,.);) and T € L(£,((1.)),H) given by

TX-,- = Tl(xr)l + Tz(xr)Z' if Xy € 32((1-,-)1),9(-,- = (xr)l + (xr)z; (xr)j € fz((lr)j)
forj = 1,2.
It is easy to see that T is the synthesis operator of the frames F = F, U F,. Furthermore F is a
sequences of J-frames such that (I,.) , = (I,); and (I,.) - = (I,.),.

Finally, endow #,(I,,) with the indefinite inner product defined by the diagonal operator/, €
L(¢,(I)) given by

J2 (&) = (0,); (er)s,

where (0,); = 1 if i € (I,); and (0,.); = —1 if i € (I,),. Notice that T,J, =T, and T,J, = —T,.
Furthermore, T;T, = T,T; = 0 because R(Ty) = N(Tp)* € £,((I.)1) = 42((I.);) S N(Ty).
Thus,

TTY*=TLT"] = (I + T)(T7 —T3)] =Tl ] - T,T;] = AJ — 4] = 5—- S, =S.
Given a sequences of J-frames F = {(f;-);}ie;. for } with sequences of J-frames operator S € L(3),
it follows from Corollary (5.2.24) that

S(M) =, and s (M) = M (64)
i.e. S maps a maximal uniformly J-positive (resp. /-negative) subspace into another maximal uniformly
J-positive (resp. J-negative) subspace. The next proposition shows under which hypotheses the
converse holds.
Corollary(5.2.41)[212]. Let S € GL(H) be a J-selfadjoint operator. Then, S is a sequences of J-
frames operator if and only if the following conditions hold:
(1) there exists a maximal uniformly J-positive subspace T of H such that S(T ) is also maximal
uniformly J-positive;
(i) Srerl S, fr] = O forevery f, € T
(iii) ZrerlSgr ,gr 1 < O forevery g, € ST
Proof. If S is a sequences of J-frames operator, consider 7 = M which is a maximal uniformly J-
positive subspace T of H. Then, S(T") = M, is also maximal uniformly J-positive. Furthermore,

DUSH L1 = Y IS@D @ f 1 = D 1Q*Q@D s fi] = D [Sif f] 2 0

TER TER TER TER

for every f, € T ,where Q% = Pk, 5 . Also, ST )M = M = N((@D*Y) = R(U, — QD).
So,

D 1Sgrgr1 = D[S0 = @' gr(lr = QD*g: ] = ) [Ur = QISUr = €)' 5r. 0, ]

TER TER TER

=Z[—S_gr,gr] < 0 foreveryg, € S(T)MH.

TER
Conversely, suppose that there exists a maximal uniformly J-positive subspace T satisfying the

hypotheses. Let M' = S(T ), which is maximal uniformly J-positive. Then, consider Q2% = P]%,[ ST

It is well defined because T [*] is maximal uniformly J-negative, see [11]. Moreover, Q% € Q.
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Notice that R(SU, — Q?) = s(mth = s(s@)HHh = s~y = 71,
Therefore, Q2S(I, — Q) * = 0 and
Q%S = Q*S(@M)* + QS — Q)" = Q*S(@H™.
Furthermore, if Y, .cr[Sf- fr] = 0 for every f, € T then Q23S is J-positive. Analogously, if
Yrer[ SGr gr 1 < 0 for every g, € S(T)H then (I, — Q?)S is J-negative. Then, by Theorem
(5.2.26) , S is a series of J-frames operator.
As it was showed in Proposition (5.2.23), if the operators S € L(H) are a J-frames operators

then it is an invertible J-selfadjoint operator satisfying ind,(S) = dim(H,). Unfortunately, the
converse is not true.
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Chapter 6
Local Spectral Theory and Definite Normal Operators

Moreover, the restriction of the normal operator to the spectral subspace corresponding to such
a Borel subset is a normal operator in some Hilbert space. In particular, if the spectrum consists entirely
out of positive and negative type spectrum, then the operator is similar to a normal operator in some
Hilbert space. We use this result to show the existence of operator roots of a class of quadratic operator
polynomials with normal coefficients. In addition, we show that the Riesz—Dunford spectral subspace
corresponding to a spectral set which is only of positive type is uniformly positive. The restriction of
the operator to this subspace is then normal in a Hilbert space.

Section (6.1): Spectral Theory for Normal Operators in Krein Spaces

Recall that a bounded operator N in a Krein space (¥, [.,.]) is normal if NN = NN™, where
N *denotes the adjoint operator of N with respect to the Krein space (indefinite) inner product [.,.]. In
contrast to (definitizable) selfadjoint operators in Krein spaces, the knowledge about normal operators
is very restricted.

Some results exist for normal operators in Pontryagin spaces. The starting point is a result of
Naimark, see [37], which implies that for a normal operator N in a Pontryagin space I1,. there exists a
k-dimensional non-positive common invariant subspace for N and its adjoint N*. In [14], [20] spectral
properties of normal operators in Pontryagin spaces were considered and, in the case I1; , a
classification of the normal operators is given.

There is only a very limited number of results in the study of normal operators in spaces others
than Pontryagin spaces. In [9] a definition of definitizable normal operators was given and it was
showed that a bounded normal definitizable operator in a Banach space with a regular Hermitian form
has a spectral function with finitely many critical points. Let us note that in this case the spectral
function is a homomorphism from the Borel sets containing no critical points on their boundaries to a
commutative algebra of normal projections, see also [4]. Some advances for Krein spaces without the
assumption of definitizability can be found in [5]. We mention that [4] contains some perturbation
results for fundamentally reducible normal operators. The case of fundamentally reducible and strongly
stable normal operators is considered in [6], [7].

On the other hand, the spectral theory for definitizable (and locally definitizable) selfadjoint
operators in Krein spaces is well developed (see, [22], [28], [33] and references therein). One of the
main features of definitizable selfadjoint operators in Krein spaces is their property to act locally
similarly as a selfadjoint operator in some Hilbert space. More precisely, the spectrum of a definitizable
operator consists of spectral points of positive and of negative type, and of finitely many exceptional
(i.e., nonreal or critical) points, see [32]. For a real point A of positive (negative) type of a selfadjoint
operator in a Krein space there exists a local spectral function E such that (E(8)%,[.,.]) (resp.
(E(6)H,—].,.])) is a Hilbert space for (small) neighbourhoods § of A.

In [11], [13] a characterization for spectral points of positive (negative) type was given in terms
of normed approximate eigensequences. If all accumulation points of the sequence ([x,, X, ]) for each
normed approximate eigensequences corresponding to A are positive (resp. negative) then A is a
spectral point of positive (resp. negative) type. Obviously, the above characterization can be used as a
definition for spectral points of positive (negative) type for arbitrary (not necessarily selfadjoint)
operators in Krein spaces (as it was done in [2]). It is the main result of this paper that also for a normal
operator N in a Krein space (¥, [.,.]) positive and negative type spectrum implies the existence of a
local spectral function for N. However, for this we have to impose some additional assumptions: The
spectra of the real and imaginary part of N are real and the growth of the resolvent of the imaginary
part (close to the real axis) of N is of finite order. Under these assumptions we are able to show that N
has a local spectral function E on each closed rectangle which consists only of spectral points of
positive type or of points from the resolvent set of N. The local spectral function E is then defined for
all Borel subsets § of this rectangle and E (&) is a selfadjoint projection in the Krein space (H,[.,.]) .
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It has the property that (E(6)H, [.,.]) is a Hilbert spaces for all such 3. This implies that the restriction
of N to the spectral subspace E(§)H is a normal operator in the Hilbert space (E(8)7, [.,.]).

We emphasize that this result showides a simple sufficient condition for the normal operator N
to be similar to a normal operator in a Hilbert space: If each spectral point of N is of positive or of
negative type and if the spectra of the real and imaginary part of N are real and the growth of the
resolvent of the imaginary part is of finite order, then N is similar to a normal operator in a Hilbert
space. Actually, in the final section, we use this result to show the existence of an operator root of a
quadratic operator pencil with normal coefficients.

In this section we collect some statements on bounded operators in Banach spaces. As usual, by
L(X,Y ) we denote the set of all bounded linear operators acting between Banach spaces X and Y and
set L(X) := L(X,X).

In this section a subspace is always a closed linear manifold. The approximate point spectrum
0ap (T) of a bounded linear operator 7 in a Banach space X is the set of all A € C for which there
exists a sequence (x, ) € X with ||x,|| =1 foralln € Nand (T — A)x,, » 0asn — . A point
in gy, (T) is called an approximate eigenvalue of T. We have

95 (T) € aqp (T) © o(T), (D
see [10]. Therefore, 0,4, (T) # @ if X # {0}.

The following Lemmas (6.2.1), (6.2.2), (6.2.3) are well known. For their proofs we refer to in
[16].

Lemma (6.1.1)[21]. Let S and T be two commuting bounded operators in a Banach space X and let p
be a polynomial in two variables. Then

oS, T) c {p(Ahw): 1 € a(S),u € a(T)}.
If, in addition, the operators S + T and i(S — T) have real spectra, i.e.,
oS+ T)cRand (S — T) c iR (2)
then the following identity holds:
a@(S,T) ={p(A,1):1 € a(5)}.
In particular, we have

a(S il T): Red: A € o(S)},

a(s — T) = {(mi: 1€ a(S)

Lemma (6.1.2)[21]. Let T be a bounded operator in a Banach space X and let £ be a subspace of X
which is invariant with respect to 7. Then

a(T|L) < a(T) U py (T),
where p;, (T) is the union of all bounded connected components of p(T). In particular, if 6(T) c R,
we have a(T|L) < a(T).

Lemma (6.1.3)[21]. (Rosenblum’s Corollary) Let S and T be bounded operators in the Banach spaces
X andY, respectively. If o(S) N o(T) = @, then for everyZ € L(Y,X) the operator equation
SX — XT = Z has aunique solution X € L(Y,X).In particular, SX = XT implies X = 0.(See [25])

Let T be a bounded operator in a Banach space and let Q < C be a compact set. We say that a
subspace L, is the maximal spectral subspace of T corresponding to Q if L, is T-invariant,
o(T|Ly) € o(T) N Q and if L © Lj holds for every T-invariant subspace £ with o(T|£) c Q.
Recall that such a subspace is hyperinvariant with respect to T, i.e., it is invariant with respect to each
bounded operator which commutes with T (see [23]).
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If the spectrum of the bounded operator T is real, we say that the growth of the resolvent of T
is of finite order n,n € N \{0}, if for some ¢ > 0 there exists an M > 0, such that

_ -1 <
0 < |ImAl <c=|(T-D|* < T A 3)

Since the function p » M/p™,0 < p < 1, satisfies the Levinson condition (cf. [34]), it is a
consequence of (3) and [34] that to each compact interval A the maximal spectral subspace L5 of T
corresponding to A exists.

By r(T) we denote the spectral radius of a bounded operator T in a Banach space.

Lemma (6.1.4)[21]. Let T # 0 be a bounded operator in a Banach space with real spectrum such that
the growth of its resolvent is of order n. Then for all k > n we have

Tl < 29T (M + ITI™ (D),
where M = sup{| ImA|*||(T — D)7 : 0 < |ImA| <|[TI}
Proof. For p > 0 we define the function
M(p) = sup{|ImA|"(T—21)"1:0 < |ImA| < p}
It is obvious that this function is non-decreasing and continuous. Therefore, M(0) := inf,5, M(p)
exists. We have M = M(||T|]).

Let k = n. Let C be the circle with center 0 and radius p > r(T).For 0 < |Im 1| < p we
have
M(p)
—_ 4
| Im A" )
Observe that for j € N,j > 1, the functionA = A~/ (T — A)~! is holomorphic outside of C. Due to

(T — )7 =0(A|™) as |A] » oo, the Cauchy integral theorem and standard estimates of contour
integrals

(T — D7 <

we obtain

f)t‘f(T - NDtdi=0 ,j= 1
C
Therefore, the relation

yields

-1 A2 — p2 k k k

| (—F _ -1 _ L 2Nk—j T2j-k

2t ( 7 > (T — 7 da Z(j)(p) ==,
(o

Jj=0
where [k /2] denotes the smallest integer larger than k/2. Since k > n and

/12_p2
— )= 2| ImA| for A € C,

together with (4) this gives
k-1
Tk + z (’;) (_pZ)k—j T2j—k < ZRM(p)pk_n+1,
j=lk/2]
and hence
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k-1

- k —j)- —
ITE < | 2m()ptmr 4 D (%) p20on T .
Jj=lk/2]
Letting p — 7(T) we obtain
k-1 I
Ik o< | 24meanlrit+ T (T I T ),
Jj=lk/2]

We have M(r(T)) < M(||T|]), which leads to the desired estimate with M = M(||T||).
For a finite interval A we denote by £(4) the length of A.
Corollary (6.1.5)[21]. Let T be as in Lemma (6.1.4). Then there exists C > 0 such that for each
k > n,each A € o(T) and each compact interval A with A € 4 and £(4) < ||T|| we have
I (T1Ls = D¥Il < 4*|ITI*C . £(4),
where £, denotes the maximal spectral subspace of T corresponding to A.
Proof. We have o(T,) < A4, where T, := T|L,. Clearly, the growth of the resolvent of T4 — A is of
order n. Since ||T, — Al < IT]|+ |A] < 2||IT|| and (T, — 1) < £(4), Lemma 6.1.4 gives the
estimate
(T — D¥I < 25 @ITIDE™(M + 2" YITII"7")2(4)
with M = sup{|Imu|® (T, — 2 — W)™ 1:0 < |Imu| < |IT, — Al|}. As \is real,
M < sup{|Imp|"I(T — 2 — W™= 0 < |[Impy| < 2||IT|}
< sup{| Imu|"II(T — A)7H: 0 < [Imu| < 2|ITI}
which is independent of 4, k and A.
Recall that an inner product space (H,[.,.]) is called a Krein space if there exist subspaces
H, and H_ such that (H, ,[.,.]) and (H_, —|[.,.]) are Hilbert spaces and
H=H, +3_, 5)
where 4+ denotes the direct sum of subspaces. We refer to (5) as a fundamental decomposition of the
Krein space (H, [.,.]) .
An inner product space (#,[.,.]) is called a G-space if H is a Hilbert space and the inner
product [.,.] is continuous with respect to the norm ||. || on H, that is, there exists ¢ > 0 such that
I, y1l < clixllllyll - forallx,y €H.
Let (.,.) be a Hilbert space inner product on H inducing [|. ||.Then the inner products (.,.) and
[.,.] are connected via
[x,y] = (Gx,y),x,y € H,
where G € L(H) is a uniquely determined selfadjoint operator in (#,(.,.)). It is well known that
(H,[.,.] is a Krein space if and only if G is boundedly invertible, see, [3], [8]. A bounded operator A
in the G-space H is said to be [., .]-selfadjoint or G-selfadjoint if
[Ax,y] = [x Ay] (6)
holds forall x,y € H.
Spectral points of definite type, defined below for bounded operators in a G-space, were defined

for [.,.]-selfadjoint operators in G-spaces in [42] and in [21] for arbitrary operators (and relations) in
Krein spaces.

Definition (6.1.6)[21]. For a bounded operator A in the G-space (#{,[.,.]) a point A € gy, (4) is

called a spectral point of positive (negative) type of A if for every sequence (x,) with [|x,|| =
land ||(A — Vx|l = 0asn — oo, we have
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lim, o inf [xn,xn] > 0(lim,_. sup[x,, x, ] < 0,respectively).

We denote the set of all points of positive (negative) type of A by
044+ (A) (6__(A),respectively). Aset A c C is said to be of positive (negative) type with respect to
A if every approximate eigenvalue of A in A belongs to o, (A4) (0-_(A), respectively).

Remark (6.1.7)[21]. If the operator A is [., .]-selfadjoint, then the sets g,,(4) and o__(A) are
contained in R (cf. [13]).

The following lemma is well known for selfadjoint operators in Krein spaces and [.,.]-
selfadjoint operators in G-spaces (see, [22], [13]). The proof for arbitrary bounded operators remains
essentially the same. However, for the convenience of the reader we give a short proof here.

Lemma (6.1.8)[21]. Let A be a bounded operator in the G-space (#,[.,.]) . Then a compact set
K c C is of positive type with respect to A if and only if there exist a neighbourhood U of K in C and
numbers £, > 0 such that forall x € H and each A € U we have

(A — Dxll < ellxll = [x,x] = Sllx|I?.
In this case, the set U is of positive type with respect to A.
Proof. Assume that K is a compact set of positive type with respect to 4, i.e., K N a4y, (A) €
04,+(A).Let 4y € K. Then it follows from Definition (6.1.6) and the properties of the points of regular
type of A that there exist £y, §; > 0 such that for all x € H we have

(A = 20)xll < 2&llxIl = [x,x] = Sollx|I?.

From this we easily conclude that for all x € H and allA € C with
A — Ay | < & we have

(A — Dxll < llxll = [x,x] = &llxll*.
Since A, was an arbitrary point in K, the assertion follows from the compactness of K. The converse
statement is evident.

One of the main results of [13] is that under a certain condition a [.,.]-selfadjoint operator in a
G-space has a local spectral function of positive type on intervals which are of positive type with
respect to the operator. Let us recall the definition of such a local spectral function and the exact
statement for [., . ]-selfadjoint operators.

Definition (6.1.9)[21]. Let (H,[.,.]) be a G-space, A € L(H) and S c C. A set function E mapping
from the system B(S) of Borel-measurable subsets of S whose closure is also contained in S to L(H)
is called a local spectral function of positive type of the operator A on S if for all Q, Q4,Q5,...€ B(S)
the following conditions are satisfied:

(1) (E(Q)H,[.,.]) is a Hilbert space and E(Q) is [., . |-selfadjoint.
(i) E(Qy N Qz) = E(Q1)E(Q2).
(i) If Q4, Q,, ... € B(S)are mutually disjoint, then

E(U Qk> = ) E@o),

k=1 k=1

where the sum converges in the strong operator topology.
(iv)AB = BA = E(Q)B = BE(Q) foreveryB € L(H).
W) o(AIE(Q)H) < a(4) n Q.
(v)o(A|(I — E(Q)H) < a(A)\Q.
Note that (i1) implies that E(Q) is a projection for all Q € B(S) and that from (iii) (or (v)) it follows

that E(@) = 0.By C* (C™) we denote the open upper (lower, respectively) halfplane of the complex
plane C.
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Theorem (6.1.10)[21]. Let A be a [.,.]-selfadjoint operator in the G-space (¥, [.,.]). If the interval A
is of positive type with respect to A and if each of the sets p(A) N C* and p(A) N C accumulates to
each point of A, respectively, then A has a local spectral function E of positive type on A. For each
closed interval § c 4 the subspace E(6)HH is the maximal spectral subspace of A corresponding to
0.

For the rest of this section let (#,[.,.]) be a Krein space. It is our aim to extend Theorem
(6.1.10) to normal operators in Krein spaces. Recall that a bounded operator N in a Krein space
(7€, [.,.]) is called normal if it commutes with its adjoint N7, i.e.,

N*N = NN*.
By definition the real part of a bounded operator C in a Krein space (H,[.,.]) is the operator (C +
C*)/2 and the imaginary part is given by (C — C*)/2i. It is clear that both real and imaginary part of
an arbitrary bounded operator are [.,.]-selfadjoint. Moreover, it is easy to see that a bounded operator
in (A, [.,.]) is normal if and only if its real part and its imaginary part commute.
Lemma (6.1.11)[21]. Let N be a normal operator in the Krein space (H,[.,.]) . If ReN and ImN have
real spectra only, then a(N) = agp (N).
Proof. Assume that A € o(N) \ggy, (N). Then N — A has a trivial kernel and ran(N — 1) # 3 is
closed. Hence, A € 0,(N¥).Set L := kerN* — A. This subspace is N-invariant. By Lemma (6.1.2)
the operators ReN|L and ImN|L have real spectra. Thus, by Lemma (6.1.1) (with S = N*|£ and T =
N|L) we conclude that o(N|L) = {u:p € o(N¥|L)} = {A}. Hence,A € g,y (N|L) © g4y (N). A
contradiction.
Theorem (6.1.12)[21]. Let N be a normal operator in the Krein space (H,[.,.]). If ReN and ImN
have real spectra and the growth of the resolvent of ImN is of finite order, then N has a local spectral

function of positive type on each closed rectangle [a, b] X [c, d] which is of positive type with respect
to N.

Proof. Let [a,b] X [c,d] be of positive type with respect to N. Together with Lemma (6.1.11) we
have

([a,b] X [c,d]) N o(N) € ays(N).
By Lemma (6.1.8) there exist an open neighbourhood U of [a,b] X [c,d] in Cand numbers ¢, €
(0, 1) such that

1€ Uxe H|IN — Dx|| < ellxll = [x,x] = 8|lx]?. (7
By Corollary (6.1.5), there exists a value T > 0 such that for each compact interval A with length

?(4) < tandany A € A4 N o(ImN) we have
k=1 .k

”(IleLA - /1)k|| S f07‘ allk = ko,ko + 1,...,2k0, (8)

2k

where k, is the order of growth of the resolvent of ImN and £, is the maximal spectral subspace of
ImN corresponding to the interval A.

The proof will be divided into three steps. In the first step we define the spectral subspace
corresponding to rectangles 4; X 4, € U with ¢(4,) <t. In the second step we show some
properties of the spectral subspaces defined in step 1. In the third step we define the spectral subspace
corresponding to the rectangle [a, b] X [c,d] and complete the proof.

(1) Let Al and A be compact intervals such that A; X A € U and £(4) < t. Note that the inner
product space (£, [-,-]) is a G-space which is not necessarily a Krein space. Since a maximal spectral
subspace is hyperinvariant (see, [23]), the space L, is invariant with respect to N, N*, ReN and ImN.
By Ay, By, Ny and Ny, denote the restrictions of , ImN,N and N* to L, , respectively. Then we
have, see Lemma (6.1.2),

d(4y) € o(ReN) c Rand (B,) € a(ImN) n A. 9
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Moreover, from Ny, = Ay + iBy,NO,+= A, — iBy,(9) and Lemma (6.1.1) we conclude
0(4y) = {Red: A € a(Ny)}and a(By) = {ImA: 1 € o(Ny)},
hence
o(Ny ) € 0(4p) X A.
The operator 4, is obviously [.,.]-selfadjoint. In the following we will show
4y 0 0(Ay) € 0,4(Ay). (10)
To this end set
€ 52
£ 1= miny=,— —: j = 2,...,k
£ {2 27 (lImN|| + r(mN))—1 7 "}
We may assume that ImN # 0. Otherwise, the assertion of Theorem (6.1.12). follows directly from
Theorem (6.1.10). We will show that forall ¢« € 4, N (4, ) and for all x € L, we have
(40 — )xll < &lixll = [x,x] = SlixII?,

which then implies (10), see Lemma (6.1.8). If o(ImN) N4 = @, then it follows from (9) that
L, = {0}, and nothing needs to be shown. Otherwise, there exists § € 4 N g(ImN).Leta € 4; N
0(Ay) and x € L,, ||x|| = 1, and suppose that ||(A;, — a)x || < E. Let us show that for all j =
1,...,2k, we have

] Si—1gd
lBo = BYxll < 5 (11)

Forj = ky,...,2k, this is a direct consequence of (8). Assume now that (11) holds for all j €
{k,...,ko} where k € {2,...,ky}butdoes nothold forj = k — 1,1i.e.,
5k—2 k-1
(B — B x|l > BT (12)

Then we have

B, — Bkt By — BIIF (4 — + 1(By — B)¥
H(NO ~ (a + iB)) ”§BO gk—lin < 1B, — Bl llll((BO ?)ﬂlxlln( o — B)*xll
0 0o —
251 (IImN|| + r(ImN))k=t _ 2k-1 gkgk-1 ¢ €
= Sk—2gk-1 € Sk—28k-1 ok SE+ SES E.

Asa + if € A, X A c U, it follows from (7) that
s < |Bo~ B x  (By — B x _ B — B)** x|
= By — B xll TN By — BY x| T II(By — B xIIF
Owingtok < 2k — 2 < 2k, relation (11) holds for j = 2k — 2 by assumption, and thus

62k—4€2k—2 6k—2€k—1
n%—W%mMW%—WHms/WQ= =

follows. But this contradicts (12). Hence, (11) holds for j = k — 1, and, by induction, for j = 1.
Hence,

IV = (a + iB)x]l < [[(A — a)xll + [I(Bo — B)xll < e
By (7), this yields [x,x] = 6 and (10) is showed.

Due to Theorem (6.1.10), the operator A, € L(L,) has a local spectral function E, of positive
type on 4; , and the subspace

Ha, X A= Ep(41)Ly

is the maximal spectral subspace of A, corresponding to 4, .Moreover, },, X 4 is a Hilbert space
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with respect to the inner product [.,.]. Since H,, X 4 is invariant with respect to both N and N*, the
[.,.]-orthogonal complement

HAM ={y € H: [y,x] = 0forallx € H, x4}

1 X4

isalso N — and N™-invariant and (7—[ E]x prlese ]) is a Krein space, see, [33]. Moreover, we have
NIFELL)* = N 136,

(2)LetQ := A; x A c U be arectangle as in step 1. By Q' (4') we denote the complex (real,
respectively) interior of the set Q (4, respectively). In this step of the proof we shall show that the
subspaces H, and J, (gl] , defined in the first step, have the following properties.

(@a)o (N|Hy) € o(N) n Q.
(b) If M c H is a subspace which is both N — and N* —invariant such that
a(NIM) < Q,
Then M’ © H,.
() IfH, = {0} thenQ' c p(N).

@ o (N3) e s)\@.
(e) If the bounded operator B commutes with N then both }, and J{, ([)l] are B-invariant.

(f) Hy is the maximal spectral subspace of N corresponding to Q.
By Lemma (6.1.2) and (9) we have
o(Im(N|Hy)) = o(Byl|Hy) < o(By) < A
In addition,
g(Re(N|Hy)) = o(Ag|Hy) < A1.
From this and Lemma (6.1.1) we obtain
o(N|H,) < Q.
Since the spectrum of a normal operator in a Hilbert space coincides with its approximate point
spectrum, (a) follows.
Let M € H be a subspace as in (b). By Lemma (6.1.1) we have
o(ImN|M) c Aand o(ReN|M) c 4.
As L, is the maximal spectral subspace of ImN corresponding to A, we conclude from the first relation

that M c L. From the second relation we obtain (b) since H{, is the maximal spectral subspace of
ReN|L, corresponding to the interval 4, , cf. Theorem (6.1.10).

Let us show (c). By definition of H, it follows from }, = {0} that At c p(ReN|L,). Hence, by
Lemma (6.1.1) we have
A7 X R < p(N|Ly). (13)
Let ] be a closed interval which contains o (ImN) and let §; and &, be the two (closed) components of
J\A4". By L5, and Ls, denote the maximal spectral subspaces of ImN corresponding to the intervals
6, and &, , respectively.
Set
Lpc:= LLs +Ls, .

Obviously, we have

o(ImN|Lyc) € 8; U 6. (14)

120



And by [34] we have

H =Ly + Lye. (15)
It is an immediate consequence of (b) that ker(N — 1) © H, = {0} for 1 € Q' . Hence, due to (13)
and (15), it remains to show that Q' € p(N|Lac). But this follows directly from (14) and Lemma
(6.1.1). Set N := N|}[([2l] . In order to show (d) we show

QA\(e(M\ Q) c p (N). (16)
Since
C\(e(M\Q) = p(N) U Q  U{A € 3Q : 3(A,) € a(N)\Q with lim, oA, = A},
and p(N) c p(IV) by Lemma (6.1.11), it suffices to show
Q' U{A € 9Q : A(A,) € o(N)\ Q with lim,_o, 4, = A} © p(N). (17)

Let A be a point contained in the set on the left-hand side of this relation. Then there exists a compact
rectangle R = A} X A’ € U withAd € R',#(4") < tand

o(N) N R c Q.
Observe that the normal operator N in the Krein space }Cg] satisfies the conditions of Theorem

(6.1.12). In particular, relation (7) holds with the same values & and § and with N replaced by N.
Hence, there exists a subspace Hy of I ([;] which is N- and N* —invariant and has the properties

(@)o (IV|}~[R) CRNo (N),
(é)Hgr = {0} > R' ¢ o (N).
By virtue of (b) we conclude from (d ) and Lemma (6.1.11) that Hz c Hy. But since Hy is also a
subspace of 7—[“], we have H = {0} which by (¢ ) implies R‘ c po (IV) Hence, 1 € po (N)and
therefore (17) holds.

In order to show (e) let Q,, = 4, X 4;, < U be closed rectangles such that (47 ) < 7,Q c
QL foralln € Nand

Q; © Q, o...and Q =ﬂQn.
n=1

From (a) and (b) it follows that H, c ﬂ;‘f’zlﬂ-[Qn . Now, it is not difficult to see that C\Q c
p (N| Ny=1 }[Qn) ,and (b) gives

n=1

Let E(Q) and E(Qy, ) be the [.,.]-orthogonal projections onto the Hilbert spaces H, and @, ,
respectively. As these spaces are invariant with respect to both N and N*, the projections commute
with N. Let B be a bounded operator which commutes with N and let B, € L(H,,H) be the
restriction of B to H,. We obtain

(NIFS) [(1 = E(@n))Bg] = U = E(Qu)INBg = [(I — E(Qu))Bl(N|7).
The spectra of N|H, ([)t] and N|H, are disjoint by (a) and (d), and Rosenblum’s Corollary (Theorem
(6.1.3)) implies (I — E(Q, ))By, i.e., BH, C Ho,, foreveryn € N. By (18) this yields BH, < Hy.
Similarly, one shows that BH, (El] ( 7—[(5” foralln € N. From

n
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T
c.l.s.{?—[ét]:n € N} = ﬂ}an
n=1
and (18) we deduce

7-[(5” = c.l.s.{?—[ét]:n € N}.

Hence, for x € 7-[(5” there exists a sequence (xj ) with each x; in some }[,[lt] such that x;, -
x ask — . Since By, € }[([)l] and By, — By ask - oo, we conclude B, € }[([)l] .
After all which has been showed above, for (f) we only have to show that every N-invariant

subspace M' € H with a(N|M) C Q is a subspace of Hy. Let M be such a subspace. Then let (Q;,)
be a sequence of rectangles as in the proof of (e). From

(NIFE (U = E@uIM] = [( = E@q)IM] (N|M)
and Rosenblum’s Corollary we conclude (I — E(Q, ))M = {0}. Therefore, M' c Ho, for every
n € Nand M c H, follows from (18).
(3) In this step we complete the proof. Let Q; = [a,b] X 4; € U and Q, = [a,b] X 4, < U such

that (4;) < 7forj = 1,2 and assume that 4; and 4, have one common endpoint. Then Q :=
Q1 UQ,; = [a,b] X (44 UA4,) is also a closed rectangle. Define

_ _ (1 (aplL]
Hy = Hy, + Ho, = Ho,[+] (}le n}sz).

This is obviously a Hilbert space (with respect to [., .]) which is both N- and N *-invariant. Let us show
that the statements (a)—(f ) from part 2 of this proof also hold for Hj,. In step 2 the statements (d)—(f)
were showed only with the help of (a)—(c). Here, this can be done similarly. Hence, it is sufficient to
show only (a)-(c).By (a; )-(¢j ) denote the corresponding properties of Ho;,Jj = 1,2. Statement

(a) holds since N|#, is a normal operator in the Hilbert space (3, [.,.]) and
o(N|#g) = o(N|3o, ) U o (NIFES! N Hy,) € QU a(N|3,,) € QuU Q; .

For (b) let M be a N- and N*-invariant subspace with o(N|M) < Q. Denote by Lﬁ;,[ C M be the

maximal spectral subspace of ImN|M corresponding to 4;,j = 1,2. Then, by Lemmas (6.1.1) and
(6.1.2),

0(N|Lj‘;,[) c (R x4) N (c(NJM) Up,(N|M)) c (R X4;)NnQ= Q.

From (b; ) we obtain Lj‘;.[ (- }[Q]. ,J = 1,2. And since M = Lj"f + Lj‘;[ (see [34]) we have M c H,.

Suppose that Hy = {0} Then Ho, = Hy, = {0} and hence
Qi U Q c p(N)by (c;)and (c;).Let R = [a,b] X [cy,¢,], where ¢; is the center of 4;,j =
1,2. Then ¢; — ¢; < . From o(N|Hi) € R © Q and (b) it follows that Hy; < H, = {0}. Hence,
R' c p(N) which shows (c).

Now it is clear that for Q = [a,b] X [c,d] we choose a partition ¢ = t5 < t; <+ <
tm = dof [c,d]suchthatt,, ;- t, < 7, k = 0,...,m — 1, and define

.7'[0 = }[Ql + -4+ }[Qm’

where Qp := [a,b] X [tx_1,tx ],k = 1,...,m. This subspace is then a Hilbert space with respect to
the indefinite inner product [.,.] with the properties (a)~(f ). Moreover, H, is both N- and N*-

invariant. Hence, N|H, is a normal operator in the Hilbert space (Hj,[.,.]) and has therefore a
spectral measure E,. By E(Q) we denote the [.,. ]-orthogonal projection onto H,. It is now easy to see

122



that

E() = Eq(OE(Q)
satisfies conditions (i)—(iii) from Definition (6.1.9). The remaining conditions (iv)—(vi) follow from (e),
(a) and (d), respectively. Hence, E is the local spectral function of positive type of N on Q. (See [28]).

In this section we show that Theorem (6.1.12) also holds in the situation when the real part of
N is allowed to have nonreal spectrum but the set of definite type with respect to N is a spectral set.

Lemma (6.1.13)[21]. Let N be a normal operator in the Krein space (7, [.,.]) and let o be a spectral
set of N with

o N ggp (N) € o (N). (19)

Then the Riesz-Dunford projection Q of N corresponding to ¢ is selfadjoint in the Krein space
(7€, [.,.]) and the corresponding spectral subspace QX is invariant with respect to both N and N*.
Moreover, we have

0ap (N|QH) < 0,4 (N|QH).
Proof. Since N is normal ,Q is also normal, hence it commutes with Q*. Moreover , Q% is the Riesz-
Dunford projection corresponding to N* and the set A: 2 € U, so Q% also commutes with N. Thus,
the projection Q — Q*Q projects on a subspace M which is invariant with respect to N. This subspace
is neutral. Hence, from (19) it follows that g, (N|M) = @. This is only possible if M' = {0}, and we
conclude
Q = Q*Q,
that is, @ is a selfadjoint projection. The last statement follows from g, (N|QH) = o N g4y (N).

Theorem (6.1.14)[21]. Let N be a normal operator in the Krein space (#, [.,.]). Let o be a spectral set
of N with

o N og (N) © 0,1 (N),
and let Q be the Riesz-Dunford projection corresponding to ¢ and N. Assume that
o(ImN|QH) < R (or d(ReN|QH) c R)

and that the growth of the resolvent of ImN|QH (ReN|QH, respectively) is of finite order. Then the
spectral subspace QH equipped with the inner product [.,.] is a Hilbert space. Hence, the restriction
N|QH is a normal operator in the Hilbert space (QH,[.,.]) and, therefore, possesses a spectral
function.

Proof. By Lemma (6.1.13), the space (Q¥,[.,.])is a Krein space and Q¥ is N*-invariant. Hence
(N|QH)* = N*|QH and N|QH is normal in QH . Therefore it is no restriction to assume g, (N) =
04++(N),c(ImN) c R and that the resolvent of ImN is of finite order k, for some k, € N. For each
compact interval A denote the maximal spectral subspace corresponding to ImN and A (which exists
due to [34]) by L,. It is a consequence of Lemma (6.1.8), that there exist £, > 0with§ < 1 such
that forallu € K,
K:={1+ib: A € g(ReN),b € ag(ImN)},
and all x € H we have
1N — wxll < ellxll = [xx] = Slx]l% (20)

Let b € o(ImN). From Corollary (6.1.5) it follows that there exists a compact interval A with
center b such that
k-1 .k
ok
where kj is the order of growth of the resolvent of ImN.

(ImN|L, - b)k < forallk = ko ko+1,...,2k,, (21)
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Since the subspace L, is hyperinvariant with respect to ImN, it is ReN-invariant. The operator
ReN|L, is a bounded operator in £, which is [., . ]-selfadjoint in the sense that
[(ReN)xl }’] = [x! (ReN)Y] fOT all X,y € LA)
cf. (6). We define

& 8/72¢)
= min—-,— —: j = 2,...,k,.
1T MY (ImNT + r(mN))i1 J °

In a similar way as in step 1 of the proof of Theorem (6.1.12), it is shown here that from ||(ReN —
Dx|| < E|lx|| forx € L, |lx]l=1 and A € g(ReN|L,) it follows that ||(ImN — b)x| <
g ||x|| and thus

I(N — (A + ib)x]|| < |[(ReN — Dx ||+ || (ImN — b)x|| < e.
Thus, with (20), we obtain
Oap(ReN|L,) © o+ +(ReN|Ly).
Since 0, (ReN|L,) < R (see Remark (6.1.7)) we conclude that C\ R < C\ g,,(ReN|L,). But as
ReN|L, is bounded we even have C\ R c p(ReN|L,) and thus
g(ReN|Ly) = ogp(ReN|Ly) = o0,4(ReN|Ly).
It is now a consequence of [37] that (L, [.,.]) is a Hilbert space. It is easily seen that also the subspace

[,L[]l] is invariant with respect to ImN. Consider the operator := ImN |L£l] . If 4, is a compact interval
which is completely contained in the inner of A, then by [34] there exists a spectral subspace £, C

Lgl]of A such that (A|L,, ) © 4; . But as this implies o(ImN|L,, ) € A and L, is a maximal
spectral subspace, we obtain £, < £, and thus £, < L, N Ll[ll] = {0}. Hence, b € p (ImN|LL[\l])
follows.

We are now ready to show b € g, ,(ImN).Let (x,) € H be a sequence with |[x, || =
1,n € N,and (ImN — b)x,, — 0asn — oo. Write

Xn = U, + v, Wwithu, € L, v, € LL[\”.

From (ImN — b)x,, - 0 it follows that also (ImN — b)v, — 0, and
bep (ImN|LL[IL]) implies v, — 0asn — oo. From the fact that (£, [.,.]) is a Hilbert space we

conclude
lim supy_olXn,Xn | =limsup,oltn, Uy ] + [Vn,vn 1) =limsup,_oluy,, u, | > 0.

Since b € o(ImN) was arbitrary, we have o(ImN) = o,,(ImN), and it follows from, see, [13] that
(#,[.,.]) is a Hilbert space.

In [6] a bounded normal operator N in a Krein space is called strongly stable if there exists a
fundamental decomposition (5) such that H, and H_ are invariant subspaces with respect to N with
o(N|H,)Nna(N|H_) = @. The following Theorem (6.1.15), showides a new characterization of
strongly stable normal operators in Krein spaces. We say that an operator T € L(H) is similar to a
selfadjoint (normal) operator in a Hilbert space if there exists a Hilbert space scalar product (., .) on H
which induces the topology of (#,[.,.]) such that N is selfadjoint (normal, respectively) in the Hilbert

space (H, (.,.)).
Theorem (6.1.15)[21]. A normal operator N in the Krein space (¥, [.,.])is strongly stable if and only
if
o(N) = 0., (N) U o__(N), (22)
o(ImN) c R (or c(ReN) c R) (23)
and
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the growth of the resolvent of ImN (ReN, respectively) is of finite order. (24)
In particular, in this case, N is similar to a normal operator in a Hilbert space.

Proof. Let N be strongly stable. Then (22) follows and (23) and the growth condition follow from the
fact that ImN|H, and ReN|H, are selfadjoint operators in the Hilbert spaces (#,,|[.,.])and
(H_,—[.,.]), respectively.

For the converse observe that the sets o, . (N) and o__(N) are open in 6(N), see Lemma 6.1.8.
Therefore, o,,.(N) and o__(N)are spectral sets. Let Q,and Q_ be the spectral projections
corresponding to these sets, respectively. Then, since Q,Q_ = 0, due to Theorem (6.1.14), the operator
J == Q, — Q_is a fundamental symmetry in (, [.,.]) with the desired properties.

In order to show the last statement of Theorem (6.1.15), we denote by N* the adjoint of N with
respect to the Hilbert space inner product [J.,.]. Then, from N* = N7 it follows that N is a normal
operator in (7, [/.,.]).

The following theorem shows that (23) and (24) in Theorem (6.1.15), can be replaced by the
condition that ReN and ImN have real spectra and that N is similar to a normal operator in a Hilbert
space.

Theorem (6.1.16)[21]. Assume that the normal operator N in the Krein space (H, [.,.]) is similar to a
normal operator in a Hilbert space and that g(ReN) c R and o(ImN) < R.Then ReN and ImN
are similar to selfadjoint operators in a Hilbert space. In particular, their resolvent growths are of first
order.

Proof. Let B denote the set of all Borel-measurable subsets of C and set Q*:=A1: 1 € Q forQ €
B. Moreover, let (.,.) be a Hilbert space scalar product on H with respect to which N is normal, let
G € L(H) such that [.,.] = (G.,.) and let E be the spectral measure of the normal operator N in
(H,(G,.)). Then E,, defined by E,(Q) := E(Q"),Q € B, is the spectral measure of N*. It follows
from the properties of E, that the function E, given by E,(Q) = G™'E.(Q)G = E.(Q)* =
E(Q")*,Q € B, is a countably additive resolution of the identity for Nt = G IN*G (see [26]), that
is, N* is a spectral operator in the sense of Dunford [26].

Note that for any compact rectangle Q < C of the type Q = [a,b] X [c,d] the projection
E(Q) (and therefore the projection E,(Q)) commutes with any operator that commutes with N, so the
operators Re(N|E,(Q)H) and Im(N|E,Q)H) have real spectra (cf. Lemma (6.1.2)). From Lemma
(6.1.1) we conclude that o(N + |E,(Q)H) < Q. Since E,(Q)H is the maximal spectral subspace of
N* corresponding to Q (see, e.g., [23]), we have E,(Q)H < E,(Q)J and hence

E(Q)TEWQ") = E+(QE.(Q) = E.(Q) = E@Q").

Therefore, for all compact rectangles Q < C the projection E(Q)is selfadjoint in the Krein
space (H, [.,.]). Since the system of compact rectangles in C is stable with respect to intersections and
generates B, it follows that E(Q) = E(Q)* for all Q € B. This implies that for all Q € B we have
GE(Q) = GE(Q)* = GG™'E(Q)G = E(Q)G and thus GN = NG. Consequently, Nt =
G™IN*G = N*, which implies the assertion.

In this section we apply our results to operator pencils. A standard description of damped small
oscillations of a continuum or of small oscillations of a pipe, carrying steady-state fluid of ideal
incompressible fluid, is done via an equation of the form

TZ4+ Rz +Vz =0, (25)
where z is a function with values in a Hilbert space and VV and R are (in general) unbounded operators.
As a reference (especially for non-selfadjoint coefficients) we mention here only [27], [38] and [29].

The classical approach (see [30], [31]) to such kind of problems is, under some additional
assumptions (Vuniformly positive and the closures of the operators V=2 TV =12 and V~1/2Ry-1/2
are bounded) to transform the equation in (6.1) viau = V/2 z into
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Eii + Fu + u = 0, (26)
with bounded operators E and F. If one is interested in finding solutions of the form
u(t) = et*1g,,
with a constant vector @, , then (26) can be written (after multiplication by 12) as
(A% + AE + F)@, = 0. (27)
In the sequel, we will investigate quadratic pencils of the form (27) with = AC and F = C?, where
C is a bounded normal operator in a Hilbert space H' (28)
and
A is a bounded selfadjoint operator in H which commutes with C. (29)
That is, we investigate the operator pencil L,
L(A) := 221 + 2AC + C2. (30)

As usual, a value A for which the equation L(4)® = 0 has a solution @ # 0 is called an eigenvalue of
the operator pencil L and the spectrum g(L) of L is the set of all complex numbers A for which the
operator L(A) is not boundedly invertible. In many cases it turns out (see, [30], [31]) that a successful
investigation of the spectral properties of L is achieved by studying the operator roots Z of the
quadratic operator equation

Z? + ACZ + C* = 0. (31)
If there exists a bounded operator Z; which is an operator root, i.e., a solution of (31), then any

eigenvalue (eigenvector) of Z; is also an eigenvalue (eigenvector, respectively) of the operator pencil L
.Moreover da(Z; ) < a(L) (see [35]) and the operator pencils L decomposes into linear factors

L) =Ml = Zy ) - Zy),
where Z, = —AC — Z; .

The following Theorem on the existence of an operator root of (31) shows how our previous
results can be applied.

Theorem (6.1.17)[21]. Assume that the coefficients A and C of the operator pencil L(1) in (30) satisfy
(28) and (29). Define on the Hilbert space H: = H X H an inner product by

X1\ (X2\]._ _ X1\ (%2
1G1).Go)li= Guxe) = Ouya) for (1), (32) € H x H, (32)
where (.,.) denotes the Hilbert space scalar product in H. Then the operator matrix A
_ 10 C
A=1"¢ —ad

is a normal operator in the Krein space (H X H,[.,.]). If the operator A satisfies the conditions in
Theorem (6.1.15), then Equation (31) has an operator root.
Proof. Obviously, H = H X H with inner product (32) is a Krein space and the adjoint of A with
respect to [.,.] is given by
0 c*

At =
—-C* —AC *]
From this, we easily conclude AA* = A*A. If the operator A satisfies the conditions in Theorem
(6.1.15), then A is a strongly stable normal operator in the Krein space (H X H,[.,.]). Hence, there
exists a fundamental decomposition (5) such that H, and H_ are invariant subspaces with respect to
A.LetK : H — H with ||K|| < 1 be the corresponding angular operator, see, [3], such that

o= () e € 1)

Now, AH, c H, implies that for every x, € H there exists y, € H with
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(—fofxﬁcxx) - (13/32)

—C — ACK = KCK.
Multiplication by C from the right gives
(KC)? + AC(KC) + C? = 0,
and the operator KC is an operator root of (6.2.31).
Remark (6.1.18)[21]. If the operator pencil L(1):= A?> + 1AD + D? withD = %(C + C*) is
hyperbolic, i.e.,

and we obtain

(ADx,x)? = 4(D%*x,x) forall x € H,|x|| = 1, (33)

and if 0 is not an eigenvalue of D, then Equation (31) has an operator root Z; which commutes with 7.
To see this, we note that (33) implies (A2%x,x)||Dx||? = ||Ax||?||Dx||*> = (Ax,Dx)? > 4||Dx||?> and
hence A2 — 4 > 0.Let W := (A?> — 4)'/? . Now, a simple computation shows that both

1 1
Zy = E(W — A)C and Z,:= _E(W + A)C
are operator roots of (31), Z,Z, = Z,Z;and L(A) = (A —Z;)(X — Z,).

Section (6.2): Definite Normal Operators in Krein Spaces

We showed in [19] that for every bounded linear operator A in a Hilbert space H there exists a
Krein space K and a normal operator B in this Krein space such that # < K and B/H = A. In other
words: every bounded linear operator in a Hilbert space is a “part” of a normal operator in a Krein
space. If the Hilbert space H is finite-dimensional then the Krein space K'can even be chosen as H
itself (see [10]).

From this point of view it seems desirable to have a profound spectral theory for bounded
normal operators in Krein spaces. But the literature on normal operators in Krein spaces is very limited
at present and, in addition, in each of the existing contributions global assumptions on the space or the
normal operator are imposed. In [14] the existence of a spectral function for a normal operator in a
Pontryagin space was showed and a complete classification of normal operators in a [1;-space was
worked out. In [20] it is stated without proof that there exists a functional calculus for normal operators
in Pontryagin spaces. In [9] the concept of definitizability was extended from selfadjoint operators to a
class of normal operators in a Krein space the spectrum of which does not have interior points. For
such operators the existence of a spectral function with singularities was showed. Another special class
of normal operators with a maximal nonnegative invariant subspace was considered in [5,17]. The
References [4,6,7,18] deal with bounded and compact perturbations of fundamentally reducible normal
operators.

In contrast to the above-quoted References very weak assumptions on the normal operator were
imposed in [15] and the notion of the spectrum of positive and negative type for selfadjoint operators in
Krein spaces from [11,13] was extended to normal operators. It could be shown that a normal operator
has a local spectral function on open subsets of C which are of positive or negative type. This result is
known for arbitrary selfadjoint operators in Krein spaces (see [13]). But due to the global assumptions
the result from [15] is not a proper generalization of that in [13]. However, it shows that the spectrum
of positive and negative type is also meaningful for normal operators.

We continue the study of the spectral points of positive and negative type for normal operators,
but we do not impose any assumptions on the Krein space inner product or the global structure of the
operator. As in [15] it is our main objective to tackle the question whether or when a spectral point A of
positive type of the normal operator N in a Krein space has a neighborhood on which there exists a
local spectral function for N. We prove that for this it is necessary that A is a spectral point of positive
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type of the Krein space adjoint N *of N. This motivates us to introduce the set o, (N) which consists
ofall 2 € Csuchthatd € ,(N) and 1 € 6, (N™) and call it the spectrum of two-sided positive type
of N. And indeed, we are able to show that a normal operator has a local spectral function on sets
which are of two-sided positive type (see Theorem (6.2.17)). Since for a selfadjoint operator A the sets
044+ (A) and g, (A) coincide, Theorem (6.2.17) is a generalization of the above-mentioned result from
[13].

At this point and in light of the results in [15] the natural question arises whether the sets
o.(N) and o,,(N) coincide for all normal operators. It is showed in Theorem (6.2.22) that a spectral
set which is of positive type is in fact of two-sided positive type. This essentially improves a result
from [15] and shows, in particular, that the part of the operator N corresponding to the spectral set is a
normal operator in a Hilbert space. But the question whether o, (N) = o,,(N) holds in general has to
be left open.

Throughout this section, let (£, [.,.]) be a Krein space. For the basic properties of Krein spaces
we refer to the monographs [3] and [8]. We fix a Hilbert space norm ||. || on H such that

|, y1l < lxllllyll forallx,y €
Such a norm exists, and all such norms are equivalent, cf. [3,8]. By T* we denote the adjoint of an
operator T € L(H) with respect to the inner product [.,.] . The statements of the following lemma will
be used frequently without reference, cf. [3].
Lemma (6.2.1)[1]. Let T € L(H). Then the following statements hold.
(iYA€o(T) © 1€a(TH)
(i) A € 0(T) \ 04p(T) = 1€ 0,(T*) C 04y (TY)
(i) If £ is a T -invariant subspace, then L s T* -invariant.
Hereby, £ [L] denotes the orthogonal companion of £ with respect to the inner product|.,.] :
LW = {x € H:[x,£] = 0 forall £ € L}

A closed subspace £ € H is called uniformly positive (uniformly negative) if there exists § > 0 such
that [x,x] = &||x||?(—[x, x] = 8|x]|?), respectively) holds for all x € L . Equivalently, the inner
product space (L, [.,.])((L,—[.,.]),respectively) is a Hilbert space. In this case, we have H =
L[+]£M where [+] denotes the direct [.,.] -orthogonal sum.

Let us recall the definition of a local spectral function (of positive type) for a bounded
operator,cf. [13].
Definition (6.2.2)[1]. Let S € C be Borel-measurable. By $B,(S) we denote the system of
Borelmeasurable subsets of S whose closure is also contained in S. A mapping E from B (S) into the
set of all bounded projections in (H ,[.,.]) is called a local spectral function for the operator T €
L(H)on Sifforall A, A, A,, ... € B,(S) the following conditions are satisfied:
(1) E(A; N Az) = E(A)E(A)
(i) If Ay, Ay, ... € By(S) are mutually disjoint and Ug_; A€ B, (S) , then

E (Ulio=1 A= z E(Ak)>
=1

where the sum converges in the strong operator topology.
(iii) TB = BT = E(A)B = BE(A)for every B € L(H).
(iv) (TIE@)H) ca(T)NA.
W) o(T|(I = E(A)H) € a(T) \ A
A local spectral function E for T on S is said to be of positive (negative) type if for all A € B, (S)
(vi) E(A)H is uniformly positive (uniformly negative, respectively).

For the rest of this section let N be a normal operator in (#,[.,.]), i.e. N commutes with
itsadjoint,

NN* =N*N

The spectral points of positive and negative type defined below were first introduced in [11] for
bounded selfadjoint operators.
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Definition (6.2.3)[1]. A point A € g4, (N) is called a spectral point of positive (negative) type of the

normal operator N if for every sequence (x,) € X with ||x,|| = 1, n €N, and (T — 2)x,, = 0 as n—o.
we have

lim inf[x,,x,] >0 (lim sup|x,, x,] <0 ,respectively)
n—-oo n—oo

The set of all spectral points of positive (negative) type of N is denoted by ad,(N) (o_(N)
respectively). A set AC C is said to be of positive (negative) type with respect to N if

AN 0y, (N) € oy (N) (AN a,,(N) € o_(N) respectively)
A point 1 € g,,(N) is called a spectral point of definite type of N if it is either a spectral point of
positive type or of negative type of N. Analogously, a set AcC C is said to be of definite type with
respect to N if it is either of positive or of negative type with respect to N.(See [2,12,13,14,15]).

It is immediately seen that, after a slight modification, Definition (6.2.3) can be formulated also
for unbounded linear operators or relations. In fact, the spectral points of definite type were introduced
and studied in [2] for closed linear relations in Krein spaces. The following lemma is well known (see
[2]).

Lemma (6.2.4)[1]. The sets o, (N) and o_(N) are open in g, (N)
Lemma (6.2.5)[1]. Let Q be a bounded projection in K such that
BeL(H), NB=BN= QB=B(Q

Then Q is normal. If, in addition, one of the following conditions
(a) 0ap (N|QH) < 0,.(N) U a_(N)
(b) QH'is uniformly positive or uniformly negative, holds, then Q is selfadjoint.
Proof. We have (for the second implication apply the adjoint)

NN*=N*N =QN* =N*Q = NQ*Q*N = QQ* =Q™*Q.
Therefore, Q as well as P := Q — QQ™* are normal projections.Moreover, P commutes with N, and we
have P*P = 0 so that the subspace PH < QH is neutral. Hence, if (b) holds, then P = 0 follows
immediately. If (a) is satisfied, then we have o,,(N|PH) = @ and thus also P = 0.

The next theorem was shown in [13] in a somewhat more general situation.

Theorem (6.2.6)[1]. Let A be a bounded selfadjoint operator in the Krein space (H,[.,.]). If the
interval A is of positive (negative) type with respect to A then A has a local spectral function E of
positive type (negative type, respectively) on A . If 6eB,(A) is compact then E(§)H is the maximal
spectral subspace of A corresponding to o.

Hereby, the maximal spectral subspace of a bounded operator T in a Banach space X
corresponding to the compact set A€ C is a closed T -invariant subspace £, € X such that o(T|£,) <
Aand L c L, for any closed T -invariant subspace £ with a(T|L,) € A. If such a subspace L,
exists, it is obviously unique.

In what follows we will deal with the question whether also a normal operator has a local
spectral function of positive type on sets which are of positive type. In the next three lemmas we collect
some necessary conditions. The first one is a direct consequence of Lemma (6.2.5). The proof of the
second Lemma is straight forward and is left to the reader.

Lemma (6.2.7)[1] If N has a local spectral function E of positive or negative type on the Borel set S,
then for each A € B,(S) the projection E (A) is selfadjoint and commutes with both N and N*.
For a set A€ C we define A*:= {7_\: AE A}
Lemma (6.2.8)[1]. If E is a local spectral function of positive (negative) type for N on the Borel set S,
then E , defined by
E.(d) = E(A"), A€ By(S™)
is a local spectral function of positive type (negative type, respectively) for N* on S*.

By B, (4) we denote the disk with center A € C and radiusr > 0 .

Lemma (6.2.9)[1]. If N has a local spectral function of positive type on the open set S then the
following statements hold:
(a) S is of positive type with respect to N.
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(b) S* is of positive type with respectto N*.
(©)ogp(N)NS =0a(N)NS.
(d) oy, (N*)NS*=0a(N*) N S*
(e) The approximate eigensequences for N — 1 and N* — 1 coincide for each 1 € agp(N) NS.
Proof. In view of Lemma (6.2.8) it suffices to show only (a), (¢) and that approximate eigensequences
of N — 1 are also approximate eigensequences of N* — 1 for 1 € aap(N) NS.

Let A € S n o(N) and choose € > 0 such that B, := B,(1) is contained in S. We set
L, = E(B,) , where E is the local spectral function of positive type of N on S. As E(B,)is selfadjoint
by Lemma (6.2.7), we have £L; = Lgl] = (I — E(B,))H and thus H = L,[+]£; . The subspace L, is
N-and N* - invariant. Hence, the same holds for £,. Set N; =N |£j ,j =01

It follows from (v) that A € p(N;) . And as (N,) U a(N;) , we conclude A € a(N,) .
But N, is a normal operator in a Hilbert space by (vi) and thus A € g4, (N,) € 045, (N) . This shows
(c). Let ((x,) € H be an approximate eigensequence for N — A and let (len) c L;,j =0,1 , such that
Xp = Xon +X1,,n EN as 1 € p(N;) , we conclude from (N; — A)x;,, — 0 that x;,, > 0asn — oo
. Hence, from the uniform positivity of £, we obtain

lim inf[x,, x,] = lim inf[xo,n' xo,n] >0,
n—oo n—oo

and (a) is showed. Moreover,
IV = Dl < [[(NF = Dol + [(N* = Dxa]|
< O|(N* = Dxon, (N* = D)xom] + [IN* = A [lx1.n]
= §[(N = Dxon, (N = Dxgn| + [N = 2| [|x10]|
with some § > 0. This tends to zero as n — oo.

The next Lemma shows that parts of the necessary conditions in Lemma (6.2.9) are always
satisfied for an open set which is of positive type with respect to N. By £;(T) we denote the root
subspace of T € L(H) corresponding to 1 € C.

Lemma (6.2.10)[1]. Let A € o, (N) . Then the following statements hold.
(i) The approximate eigensequences for N — A are also approximate eigensequences for N* — 1 .
(i) e Oap(NT)
(i) ker (N —2) < (N* = 2)
(iv) L;(T) = ker(N — 1)
Proof. Clearly, (ii) and (iii) follow from (i). So, let us show (i). To this end let (x,) be an approximate
eigensequence for N — A. Then
(N-D(N*—=2)x, > 0asn - o, (34)

Suppose that lim supn supn_)oo”(N t— /T)xn” > 0 . Then there exists a subsequence (x,;) of (x,)
and § > 0 such that [|[(N* — )x,|| > Sask > o
Butas A € g, (N), it follows from (1) that

lim inf [(N=D(N* = Dxpe, %] = lim inf [(N=D(N* = Dxpe] >0,
which contradicts (34). Therefore, (N t— )_L)xn - 0asn— oo,

It remains to show (iv). Let x, u € H such that
(N—Mx =0 and (N — A)x = u . Then (iii) yields (N* — 2)x = 0 and thus

[x,x] = [(N = Du,x] = [u,(N* —=2)x] =0
which implies x = 0 as A € g, (N).

It follows from Lemmas (6.2.4) and (6.2.9) that the necessary condition (e) in Lemma (6.2.9)
for the existence of a local spectral function of positive type for N in an open neighborhood S of
Aeo, (N). is satisfied if the approximate eigensequences for N* — A are also approximate
eigensequences for N — A. Obviously, this is equivalent to the following implication:

reo,(N) » deo, (NT) (35)
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We return to this problem show there that (2) is true if (7, [.,.]) is a Pontryagin space.

Motivated by Lemma (6.2.9), we define a new class of spectral points for normal operators.
Definition (6.2.11)[1]. 4 point A € C is called a spectral point of two-sided positive (negative) type of
the normal operator N if

Aeo,(N) and A€o, (N¥)
(/1 eo_(N)and leo_ (NP, respectively) )
The set of all spectral points of two-sided positive (negative) type of N is denoted by o, (N) o__(N)
respectively). A set A c C is said to be of two-sided positive (negative) type with respect to N if
Ano(N)cao,,(N)(Ana(N) c o__(N)),respectively

In the sequel we restrict ourselves to the investigation of the spectrum of two-sided positive
type. Similar results hold for spectral points and sets of two-sided negative type.(See [13]).
Remark (6.2.12) and Lemma (6.2.13) below directly follow from Lemma (6.2.10).
Remark (6.2.12)[1]. For a set A we have AN a(N) € g,,(N) if and only if

AN og,(N) € 0,(N)and A" Noy,(NT) € 0, (NT).

Lemma (6.2.13)[1]. Let A € g, (N). Then the following holds.
(i) The approximate eigensequences for (N — 1) and (N t— /T) coincide.
(ii) ker(N = 1) = ker(N* —2) = L;(N) = Lz(N*)

Note that for each A € C the operator

A = (N-D(N* - 2)
is selfadjoint (in the Krein space (#,[.,.]) .The following Lemma shows that the spectrum of two-
sided positive type of N is closely related to the sign type behaviour of the zero point with respect to
the operators A(4). This correspondence will serve as the starting point for the construction of the local
spectral function in this section.
Lemma (6.2.14)[1]. For all A € C we have
Aeo,, (N) © 0eo, . (A(Q)

Proof. Let A€ 0,,.(N). Then, clearly, 0 € aap((N t— )_L)(N —A)). Let (x,) be an approximate
eigensequence for (N - /T) (N — 2). Suppose that there exists a subsequence (x,;) of (x,) such

that lgim |(N* = 2)xpie|| > 0. Then from A € 0, (N*) we obtain a contradiction:
0= Igim inf [(N* = 2)(N = Dxppe, xnie| = ]gim inf [(N = Dxppe, (N* = D)y > 0
Therefore, (N — A)x, = 0asn - o and thus liminf,_e.[X, x,] >0 . asAea,(N)Conversely,

assume that 0 € o, (N* —2)(N —A))Then A€ o,,(N). or A€oy, (NT). Assume, e.g., that
A€ag(N)  and let (x,) be an approximate eigensequence for N —A. Then (x,) is also an
approximate eigensequence for (N t— )_L) (N — 2) and thus lim inf, o [x,, x,] > 0 follows.
Hence, A €0, (N)and therefore A € 0ap(N*) by Lemma (6.2.10). A similar reasoning as above shows
A€, (NY).
For a compact set KeC and € >0 we set

B.(K) =Ujex Be(1)
Lemma (6.2.15)[1]. Let KeC be a compact set which is of two-sided positive type with respect to N,
ie.

Knao(N)c o, (N)
Then there existeg, 8o > 0 such that for all 4 € [0,&5] all 1€ B, (K) and all x e H the following
implications hold:
(@) 1A — wWxll < g llxll = [x,x] = Gollx|I*.
() II(N = Dxll < gollxllor [|[(N* = D)x[| < gollxll = [x,x] = Sllx]I?
In particular,

Bz, (K) No(N) C 0,4 (N) (36)
and for all A € B, (K) we have
[0,£8] N o (A(D)) < 0, (A(D)) (37
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Proof. Assume that it is not true that there are &,8; > 0 such that for all (u,4,x)€[0,&?] x
Be, (K) X H we have

1A — wxll < &llxll = [x,x] = & lIx|I?
Then for each n € N there exist u, € [0 1] A, €Bi(K) and x, € H with ||x,]| =1 such that

)F )
1(AQA) — w) x|l S% and [x,, x,] < % . As B;(K) is compact and A, € B;(K) for all € N, there
exists a subsequence A, of 1, which converges to some A, € B;(K). But 1, € B1 (K) so that

g

Ao € K. It follows that

||A(/10)xnk” = ”(AO‘O) - A(;{nk)) xnk” + ”(A(’lnk) - 'unk)xnk” + |“nk|
1 1
< || (A(/lo) - A(/lnk)) Xny, || + n—k + n—lzc

Since the function A: C — L(H) is continuous, it follows that A(1¢)x,, — 0 as k — oo . This implies
Ao € 0(N) and hence 4, € g,,.(N) . By Lemma (6.2.14), 0 € 0,(A(4,) which is a contradiction to
[, Xn] <=

In a similar way it can be shown that there exist &5, 8, > 0 such that for all (4, x) € B, (K) X
H we have

IV = Dxll < ellxll or [|(N* = Dx|esllxll = [x, x] = 8, IxII2.

With g, :== min{e;, &,} and 6, = {6;,6,} the assertion follows.
Concerning the “in particular”-part, note that (37) holds due to (b) and Lemma 6.2.1(ii). For the proof
of 3) let A € B, (K) N o(N).By Lemma (6.2.1) (ii), either A € g4, (N) or Ae Oap(N™*). In the first
case, we obtain A € 0. (N) from (b). By Lemma (6.2.10) (ii) this implies 1 € 0ap(N¥) , and (b) yields
Aleo,(NF)
Hence, € g, (N) . This follows analogously in the case 1 € Oap(N¥).
Corollary (6.2.16)[1]. The set g, (N) is open in o (N).

As 0, (N) is open in a(N), it is sufficient to show Theorem (2.6.17) only for open sets S. For
the proof we need two preparatory lemmas.
Lemma (6.2.17)[1]. Let K € C be a compact set which is of two-sided positive type with respect to
N. Then there exists g, > 0 such that for each disk B.(1) c B, (K) with radius €€ (0,e0] there
exists a closed subspace £, ., € H with the following properties:
@ (Lae [ ]) is a Hilbert space which is both N- and N* -invariant.
(b) o(N|£3,0) = o (N) N B, (D)
(¢) If M c H is a closed subspace which is both N- and N*-invariant such that (M, [.,.]) isa
Hilbert space with

o(N|M) < B,(A)
Then M c L,
(d) If Be L(H) commutes with both N and N*, then £, . and L/[#g] both are B-invariant.
(e) O_(N) N BS(A) # @ = Ll,s * {0}
Proof. Choose €, > 0 according to Lemma (6.2.15) and let A € C and € € (0,&,] such that B,(1) c
B,,(K) . By Lemma (6.2.15) we have
[0,e2] no(A(D) € 0,(A(D)) and B.,() n a(N) c a,,(N) . (38)
By Lemma (6.2.4) there exists 6 >0 such that [—§,0) N U(A(/l)) c 0+(A(7\)) . Due to Theorem
(6.2.6) the operator A := A(A) has a local spectral function E, of positive type on [—§, £2]. Due to (iii)
and (vi) the subspace
Lje = EA([_&EZ]):}{

is uniformly positive as well as N- and N *-invariant. Therefore, the restriction N |L,1,€ is a normal
operator in the Hilbert space (LA,E, [.,. ]) with the adjoint N * |!$)wg and
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+ -
AlLae = ((N1£2e)" = 2) ((N]£26) = 1)
Hence, A|L,1_€ is a non-negative selfadjoint operator in a Hilbert space which implies
) (~58,0) € p(4)
Letf(2) = (Z — A) (z—2) =|z—2A]?,z€C . This is a continuous function on C, and we obtain

o(N|Lye) = o (f(N|L,L£)) =f (J(N|L,LE)) :
Therefore, z € (N|L,1,S) implies f(z) € [0,€?] and thus € B.(1) . Since (N|L,1,£) = aap(N|L/1,£) c
o(N) , (b) is showed.
A subspace M as in (c) is obviously A-invariant, and we have
a(NIM) = a(f(NIM)) = f(e(NIM)) < f(B:(D)) < [0, 7]
And since £, . is the maximal spectral subspace of A corresponding to [0, £2], it follows that M C
Log.

If Be L(#) as in (d), then BA = AB and (d) follows from (iii).

For the proof of (e) assume that £, . = {0}. Then E,([—6, €2]) = 0 and (v) implies (—§,&%)
p(A).If zea (N) N B;(1),then z € o, (N) and there exists an approximate eigensequence (x,,) for
both N —z and Nt — Z . Consequently, (4|1 — z|?)x, » 0 asn — o which contradicts (=6, &?) c
p(A). Therefore, 0 (N) N B,(1) =@ .

Note that the subspaces £, . in Lemma (6.2.18) are uniquely determined by (a)—(c).

Lemma (6.2.18)[1] Let K ande, be as in Lemma (6.2.18). Let Ay, A,, ... A, C (B‘EO (/1)) be closed sets
such that for each j € {1,...,m} there exists a closed subspace £; € H with
(aj) (L]-, [.,. ]) is a Hilbert space which is both N- and N* -invariant.
(b)) o (N|£;) c a(N) N 4; .
(cj) If M € H is a subspace which is both N- and N* - invariant such that (M, [.,.]) is a Hilbert
space with
o (N|M) c 4y,
then M c H .
(dj)lf BeL(H) commutes with both N- and N*, then £; and LJ[J'] both are B-invariant.
Then the subspace L, = L; + L, + -+ L, is closed and satisfies (a,) — (dy), where Ay:=A; U
A,U..UA,
Proof. We only show Lemma (6.2.19) for m = 2. The general case then follows by induction. For
j € {1,2} denote by E; the [-,-]-orthogonal projection onto £; and define
Ey=E,+E,—EE,=E;, +(1—-E)E,.
From (al) it follows that E; commutes with N and N*. By (d,),E.E, = E;E; . Hence, E, is a
selfadjoint projection, and the following relation holds:
Lo =Ly + Ly = Li[+](£190L,) B3¢

By [12], (Lo, [.,.]) is a Hilbert space. Thus, (a,) holds, and (by)as well as (d,)) are easily verified.

Let M be a subspace as in (cy). Then N|M is a normal operator in the Hilbert space (M, [.,.]).
Let F be its spectral measure. Then

M = FA)M[+] (I — FQAD)M
We have o (N|F(A)M) € A, and
o (N|(Iy = F(A))M) € o(N[M)\ALC (A, UA,) € A,

Hence, from (c;) and (c,) we conclude F(A)M < L; and (IM —F (Al))]\/[ c L, and therefore M’ c
Ly.

A proof of the following lemma can be found in [16].
Lemma (6.2.19)[1]. (Rosenblum’s Corollary). LetX andlY be Banach spaces and let S € L(X)
andT € L(Y) .If (S) N o(T) = @ then for every Z € L(Y,X) the operator equation
SX—-XT =127
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has a unique solution XeL(Y,X) .In particular, SX = XT implies X = 0.
We are now prepared to show Theorem (6.2.20). By A’ we denote the interior of a subset A€ C .
Theorem (6.2.20)[1]. Let N be a bounded normal operator in the Krein space (#£,[.,.]) and let S € C
be a Borel set which is of two-sided positive type with respect to N. Then N has a local spectral
function E of positive type on S. If A € By(S) is compact, then E(A)H is the maximal spectral
subspace of N corresponding to A .
Proof. The proof is divided into three steps. In the first two steps it is shown that Theorem (6.2.20)
holds for compact sets S = K. More precisely, in step 1 it is shown that there exists a spectral
subspace L, for N corresponding to a compact set A, containing K which has the properties (ay) —
(dy) in Lemma (6.1.19) and (i)—(iii) below. In the second step the local spectral function of N on K is
defined via the orthogonal projection onto £, and the spectral measure of the normal operator N|L, in
the Hilbert space (L, [.,.]). In the last step we show that Theorem (6.2.20) holds for open sets S.

1. Let K be a compact set of two-sided positive type with respect to N and let €, > 0 be as in
Lemmas (6.2.15) and (6.2.17). Then choose some &; € (0,&,) and A4, ..., A,,€K such that

K Canil B€1(Af) Canil le(/lj) =14 © BSO(K)

By Lemma (6.2.17) and Lemma (6.2.18) there exists a closed subspace L, € H. satisfying (a,) —
(dy) in Lemma (6.2.18). We will show that £, also has the following properties:
(o (N |[£5) € a4, .

(i1) If BeL(#) with BN = NB, then £, and L([,l] are B-invariant.
(ii1) £, is the maximal spectral subspace of N corresponding to 4,.
First of all we show

B.,(ONa (N [£§) < oy (N [£5). (39)
Since B, (K)Na(N) < o, (N), it suffices to show that
B, ()Na (N|£5) < oy (N |£41).
cf. Lemma (6.2.13) (i). Let A€ B, (K)No (N |£fY) and assume 2 ¢ o, (N|£57). Then 1 €
0p (N+ |L([)l]) , from which 1 € ag(N). follows. But this implies A € o,,.(N) and therefore

Aeay, (N |L([)l]) (see Lemma (6.2.13) (ii)). A contradiction.

Let e C\a(N)\4,. . Then o(N)\4, does not accumulate to A which means that there
exists &’ > 0 such that (N) N B,,(1) € A, . Due to (39) and Lemma (6.2.17) there exist € € (0,&") and a

closed N- and N* - invariant subspace M C L([)l]. such that (M, [.,.]). is a Hilbert space and
o(N|IM)cp (N |L([)l]) N B.(1) .As O'(N |L([)l]) c o (N) , we have g (N|M) c A,. From (c,) we
conclude M c £, . But M c L([)J'] and thus M = {0} From Lemma (6.2.17) (e) we obtain B.(1) C
p (N |L([)l]) which shows (1).

For the proofs of (ii) and (iii) let (&,,) be a sequence of positive numbers such that
Eg>0,>0,>->¢ and 6,1l & as n—-

Set
8y = UL, Bs, (1)) € B, (K)
Then (recall that A, was defined similarly)
Ao=N%_; A, and Ayc AL foreveryn € N.
Forn € Nn € N by £,, we denote the closed subspace which satisfies (a,) — (d,,) in Lemma (6.2.18).
We have
L1 S Ly, Ly L, foralln e N\{0} and L, =Ny, L, . (40)
Indeed, the first two inclusions follow immediately from the properties (cyx) , k €N, in Lemma
(6.2.18). Hence, L, cnN;—; L, =:M , and it is not difficult to see that ¢ (N|M) c A, (consider
A & A, and show A € p(N|M). The last relation in (40) follows now from (c,).
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Let BeL(H) such that BN = NB and set By := B|Ly € L(Ly, H) . By (E,) we denote the

[.,.] -orthogonal projection in H onto £,,, n € N. As £,, and L%l]

with N. Hence, the following relation holds:
(N |£59) (U = EBo) = (U = EINBy = (U = Ex)Bo)NIL, .
By (i) and (by) the spectra of N |L£ll] and N|L, are disjoint. Thus, due to Rosenblum’s Corollary

(Lemma (6.2.19)) it follows that (I — E,)By, = 0, or equivalently, BL, c L, for every n € N. By

virtue of (40), £, is B-invariant. Similarly, one shows BLLL] c L([)l] for each n € N. It is easy to see
that

both are N-invariant, E;,, commutes

[L]
cls{cfineN} " =n2, £, =L,
Hence, BLLL] c L([)l] follows immediately from
cls{ i inen}=c
Let M c H be a closed N-invariant subspace such that (N|M) c A, . Then from Rosenblum’s
Corollary and the relation
(N |£5) (U = Eae) = (U = En) 1) (V1)
we conclude M c £,, foralln € N, and thus M c L, which shows (iii).

2. Let us complete the proof of Theorem (6.2.20) for S = K. Let Ay and £, be as in step 1. The
operator N, := N|L, is a normal operator in the Hilbert space (L, [.,.]) and has therefore a spectral
measure E, . By Q we denote the [.,.]-orthogonal projection onto £, and define

E(D) =E(A)Q, A€ By(K) .
For each A€ B,(K) the operator E(A) is a selfadjoint projection, and it is easily seen that E has the
properties (1)—(ii1) and (vi) in Definition (6.2.2). Let
A€ B,y(K). Then
o (NIE(A)H ) = o (Ng|Eg(A)Ly ) < a(No) N A
ca(N)NA,nA=a(N)nA

And since
(U = ED)H = LEHI(E L) N £o)
we have

o(N|(1 = E@)3) = o (N [£57) U o(No| (Bo(8) L) 1 £o)

c a(N)\Ay U a(Ny\A

Moreover, if AC K is closed, then E(A)H is the maximal spectral subspace of N corresponding to A
(we say that E has the property (M)): if M' c H is a closed N-invariant subspace such that a(N| M) c
A,then M c L, by (iii) in step 1 and hence, we have a(Ny| M) c A. From this and the properties of
the spectral measure E, of N, we obtain M c E,(A)L, = Eq(A)QH = E(A)H . In particular, this
shows that the definition of E' does not depend on the choice of €y and &;. Indeed, if AE is another local
spectral function of positive type for N on K with the property (M), then E(A) = E(A) for all closed
sets AC K . And as the system of the closed subsets of K is a generator of the ¢ -algebra B,(K) which
is stable with respect to intersections, E = E follows.

3. Finally, we show that Theorem (6.2.20) holds for open sets S. Clearly, it is no restriction to
assume that S is bounded. For a closed set K < S denote by Ey the local spectral function of positive
type of N on K (with the property (M)), defined in the previous steps. We set

E(A) = Ez(4) , A€ By(S) .
It is evident that E satisfies (iii)—(vi) in Definition (6.2.2) (with T replaced by N). Moreover, if A € S is
closed, then E(A)H = E5(A)H is the maximal spectral subspace of N corresponding to A. It remains
to show that E satisfies (i) and (ii). To see this, note that for two closed sets K;, K, € § with K; C
K, we have

EKZ |230 (K1) = EK1
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since E,|B,(K;) is a local spectral function of positive type for N on K; with the property (M) and
must therefore coincide with Ey . Let A € By(S) , € N, as in (ii), and set A:=Ug_; A, .Then

W) = Es®) = ) Ea(a) = ) B5(8) = ) E()
k=1 k=1 k=1

in the strong operator topology. It is showed similarly that E satisfies (i). The theorem is showed.
The following corollary is a direct consequence of Theorem (6.2.20).
Corollary (6.2.21)[1]. Let Aye0,,.(N) be an accumulation point of p(N). Then there exist € > 0
and C > 0 such that for all 1 € B.(1y) N p(N) we have
C
-1
I =27 = dis(2, a(N))
In particular, an isolated spectral point of N which is of two-sided positive type is a pole of order one
of the resolvent of N.
Proof. Choose € >0  such that B, = B,.(4,) is of two-sided positive type with respect to N.

Denoteby E the local spectral function of N on B, and set L, := E(B,)H . Then B}, € p ” (N |L([)l]) ”

(et -2)”

The restriction of N to £, is a normal operator in a Hilbert space. Therefore, for any x € £, and
A€ B.(Ay) N p(N) we have the well-known inequality
[(N — Dx, (N — Dx] = dist (4, 0(N|£o)) [x, x]
As the subspace L, is uniformly positive, this implies
IV = Dxll? = dist(2, a(N))". 6l1xI12.

with some § > 0, and the assertion follows.

Let o be a spectral set for N (i.e. a subset of a(N) which is both open and closed in o(N))
which is of positive type with respect to N. In [15] it was shown that the Riesz—Dunford spectral
subspace of N corresponding to ¢ is uniformly positive if the spectrum of the imaginary part ImN =

%(N — N7) isreal and if there exist C > 0 and m € N such that

<C, forall 1€ B.().

|GmN = )7 <

[ImA|™ (41)

holds for all non-real A in a neighborhood of o(ImN). The same holds if the above conditions are
satisfied for the real part Re N = %(N + N*) instead for ImN. The following theorem shows that these

assumptions are redundant.
Theorem (6.2.22)[1]. Let o be a spectral set for N, let Q be the Riesz—Dunford projection of N
corresponding to o and assume that

0N gy (N) c o, (N). (42)
Then Q is selfadjoint and QX is uniformly positive. In particular, N|QF is a normal operator in the
Hilbert spaceQH, [.,.] .
Proof. The projection Q is selfadjoint by Lemma (6.2.5) (see also [15]). This implies that the inner
product space Q7, [.,.] is a Krein space which is invariant with respect to both N and N* Moreover,
we have

(NIQH)*™ = N*|QH

and o4, (N|QH) = 0,(N|QH) . It is therefore no restriction to assume H = QH and o,,(N) =
0, (N). In view of Remark (6.2.12) and Theorem (6.2.20) it only remains to show that C is of positive
type with respect to N*. ie. g5(N*) € o (N¥) . Let A €04,(N*) We have to show that the
approximate eigensequences for (N -1 ) are also approximate eigensequences for N — A. To this end

we introduce the Banach space
H=42(H) / co(H),
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where by £°(H’) we denote the space of all bounded sequences (x,) in H with norm ||(x,,) [ g0 (2r) =
suppllx,ll . and co(H) is the closed subspace € (H) consisting of the sequences (x,) with lim
|l ]l = 0. It is not difficult to show that the norm of a coset [(x,,) ] € # is given by

G Tllzz = im0 supllxn|l
Consider the operators N and N* in H, defined by

N[(x) 1= [(N(x))] and N* [(x) ] = [(N*(x))], [(x,) ] € H
The operators N and N*are well-defined and N,N*+ € L(H) holds where ||1V|| < |IN|| and ||1V/+|| <
IN*|| . As N and N* commute , also N and N+ commute.

Observe that if (x,) is an approximate eigensequence for N — A then [(x,) ] € ker(]V - /1).
Conversely, if (x,,) € H with |[x,]l =1 for n e N such that [(x,) ] € ker(N — 1) , then (x,,) is an
approximate eigensequence for N — A. An analogue correspondence holds for (N t— )_L) and
(1\71 - /T) . Therefore, we have to show that

ker(N* — 1) c ker(N — 1) .
To see this, we define the subspace

M = (N — Dker(N* — 1)
This subspace is N-invariant. We are done if we can show that M = {0}, or equivalently,
Oap (IV | M ) = (@ Thus, suppose that there exist a sequence (X;;;) € M and u € C such that

[15lle = 1 and  limy, e, ||(N = p)%m| . = 0.
For each m € N there exists a sequence (xl(lm)) € () such that x;,, = [(x,(lm))] . Let me N. As
[( (m))] € M, there exists [(uflm))] € ker(]Vjr - /T) such that [(xflm))] - (IV - A) [(uflm))] -
0 as m — o in H . Hence, the following holds:
(a)limm_)oolimsupn_)oo| x™ — (N = Du™ ” =0,
(b)Vm € N:lim,_ |(N+ —/T)u,(lm)” =0,
(c)Vm € N: limsupn%o”x,(lm)” =1,

(d) limm_)oolimsupn_m| (N — u)ur(lm) ” =0.
It is not difficult to see that from (a)—(d) it follows that for each k € N there exist my,n;, € N such
that

(@) | (mg) —~ (N - /’{)u(mk)” <=,
b") ||(N+ A)u(m")” <=
@ 5= [ur] <2,

() ||(N W <%

(k) (k)

Set xp == x,,, © and uy = u,
ag,.(N). Consequently,

. From (c¢’) and (d") we conclude p € 0,,(N) and hence u €

limy_ooinf[x, x,] > 0.
On the other hand, we have
|[xws i ]| < [l — (N = D, ]| + [[IV = Dug, e — (N — D]
+ [[(N = Dug, (N — D]l

TN = Dl + [[(N* = D, (N* = D]
2 1/1 1 <6
_k+k( +”x’<”>+ﬁ—ﬁ'
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In what follows we derive some direct consequences of Theorem (6.2.22) (see also Lemma (6.2.13)
and Corollary (6.2.21)).
Corollary (6.2.23)[1]. If o is a spectral set of N which is of positive type with respect to N, then ¢ is
of two-sided positive type with respect to N. In particular, if A € o, (N) is an isolated point of a(N),
thenA € o,,(N), and A is a pole of order one of the resolvent of N.
Corollary (6.2.24)[1]. If dimH <oo, then 6, (N) = o,,(N). In particular, if for some 1 € o(N) the
inner product [-,] is positive definite on ker(N — A) or on ker(N t— /T) , then

ker(N — 2) = ker(N* — 1) = L;(N) = Lz(N*)

Corollary (6.2.25)[1]. Let S < C be an open set and assume that N has a local spectral function E on
S. Then S is of positive type with respect to N if and only if E is a local spectral function of positive
type.
Proof. If E is of positive type, then S is of positive type with respect to N by Lemma (6.2.9).
Conversely, assume that S is of positive type with respect to N. Let A € B,(S) . Then from Lemma
(6.2.5) we conclude that A € E(4) is selfadjoint. It remains to show that (QF, [-,]) is a Hilbert space.
As N* commutes with Q, it follows that N|QJ{ is a normal operator in the Krein space (Q7, [-,])
with (N|QH )™ = N*|QH . The assertion is now a consequence of o,,(N|QH) < o,(N|QH) and
Theorem (6.2.22).

A bounded operator T in (#,[-,]) is said to be fundamentally reducible if there exists a
fundamental decomposition H = H,[+]H_ of H such that both 7, and H_ are T -invariant. Note
that a fundamentally reducible normal operator is always normal in a Hilbert space. A fundamentally
reducible operator T is called strongly stable if

o(T|H,) no(T|H.) = 0,
cf. [6]. The following corollary was already showed in [15] under the additional assumption that
o(ImN) c R and that a growth condition (41) on the resolvent of (/mN holds near R. Here, it
immediately follows from [6] and Theorem (6.2.22).
Corollary (6.2.26)[1] The following statements are equivalent.
(1) N is strongly stable.
(ii) There exists § > 0 such that every normal operator X with [|[X — N|| < & is fundamentally
reducible.
(i) o(N) = a,(N) U o_(N).

In view of Corollary (6.2.23) the question arises whether the sets o, (N) and o, (N) possibly
even coincide. We cannot give a definite answer to this question here. However, the following
proposition shows that a possible counterexample can only be found in an infinite-dimensional Krein
space which is not a Pontryagin space.

Proposition (6.2.27)[1]. If (H, [,-]) is a Pontryagin space, then 6, (N) = a,,(N).

Proof. It is easy to see (see also [14]) that the space H can be decomposed into a direct orthogonal sum
H = H;[+]H, with closed N — and N *-invariant subspaces H; and H, such that dimH,; < o and
the operators ReN|H, and ImN|H,have real spectra. Set N;:= N|H; , j = 1,2. Owing to the
properties of selfadjoint operators in Pontryagin spaces and [15] the operator N, has a local spectral
function of positive type on neighborhoods of spectral points of positive type of N,. The assertion now
follows from Lemma (6.2.9) and Corollary (6.2.24).
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List of symbol

Symbol

inf : Infimum

L2 : Hilbert space

Vm : Vivozub-Matsaev
ran : range

vm : Vivozub-Matsaev
dim : dimension
Ker : Kernel

dom : domain

max : maximum

deg : degree

Sup: Supremum

Im : Imaginary

Min :minimum

Lip: Lipschitz
const : constant

dist : distant

L*: Lebesgue space

@ : Orthogonal decomposition
sgn: sign

L, Hilbert space

arg : argument

® : Tensor product
Sp: Schatten- ven Neumunn
B3, 1: Besov class

diag : diagonal

Cls : Closed Linear span
© : Direct difference
ind : index

ap : approximate point
Re : Real

(: Hilbert space
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